
1 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30814645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

 



 

 

 
 
 
 
 
 

Protecting Sensitive Data from 
System Administrators 

 

Magnus Tranum 

Master Thesis – Spring 2014 

  



ii 
 

  



iii 
 

 

 

Abstract 
 

 

 

This thesis is an attempt to limit the access to personally identifiable data by 

system administrators. The goal is to prevent unauthorized, and illegal 

access so as to conform to legal requirements, preventing both rogue admin 

vulnerabilities and unintended access which could place the offending 

administrator in an uncomfortable position. 

This is accomplished by finding the optimal point in which to make an 

implementation, researching relevant measures to implement a solution at 

the Cancer Registry of Norway (KRG) and creating a module using the 

existing development norms at KRG.  

The module is tested by placing it in an artificial environment which 

simulates attempted forms of access by an imagined rogue admin, as well as 

several actions which could lead to unintentional access. 

The module was completed with one missing aspect due to unforeseen 

hurdles. Emulating the missing aspect demonstrates that the module as it is 

designed prevents unwanted and unintended access to personal data within 

the specifications presented, resulting in a layer of security which was not 

previously extant. 

  



iv 
 

  



v 
 

Table of Contents 
 

ABSTRACT ....................................................................................................... III 

TABLE OF CONTENTS .......................................................................................V 

LIST OF FIGURES ............................................................................................. IX 

LIST OF ABBREVIATIONS ................................................................................. XI 

PREFACE ....................................................................................................... XIII 

INTRODUCTION ............................................................................................... 1 

Chapter 1 – Introduction ................................................................................................... 3 
1.1 – Motivation......................................................................................................... 3 
1.2 – Goals ................................................................................................................. 4 
1.3 – Outline .............................................................................................................. 4 

BACKGROUND AND CONTEXT ......................................................................... 7 

Chapter 2 – Computer Security Basics ............................................................................... 9 
2.1 – A Brief History ....................................................................................................... 9 
2.2 - CIA ....................................................................................................................... 11 

2.2.1 Confidentiality ................................................................................................ 11 
2.2.2 Integrity ......................................................................................................... 12 
2.2.3 Availability ..................................................................................................... 13 

2.3 - Internal Security .................................................................................................. 14 
2.3.1 Security policies ............................................................................................. 14 
2.3.2 Standards ....................................................................................................... 14 
2.3.3 Procedures ..................................................................................................... 14 
2.3.4 Baselines ........................................................................................................ 15 
2.3.5 Guidelines ...................................................................................................... 15 

2.4 - Perimeter Security ............................................................................................... 15 
2.4.1 Defining the Perimeter ................................................................................... 15 
2.4.2 Security in Layers ........................................................................................... 16 

2.5 - Other Aspects ...................................................................................................... 16 
2.5.1 The Social aspect ............................................................................................ 16 
2.5.2 The Domino Effect.......................................................................................... 17 
2.5.3 The Security Wheel ........................................................................................ 17 
2.5.4 Virtualization .................................................................................................. 17 

2.6 - Security in programming:..................................................................................... 18 
2.7 – Summary ............................................................................................................ 19 



vi 
 

Chapter 3 – Security at the Cancer Registry, the Context ................................................ 21 
3.1 - Physical security .................................................................................................. 22 
3.2 - IT Security ............................................................................................................ 22 

3.2.1 - Network structure and zones ....................................................................... 22 
3.2.2 - Connections between zones......................................................................... 23 
3.2.3 - Credentials and access restrictions ............................................................... 26 
3.2.4 - The sensitive data ........................................................................................ 27 
3.2.5 – Policies ........................................................................................................ 28 

3.3 – Summary ............................................................................................................ 28 

Chapter 4 – The KRG IT Environment .............................................................................. 31 
4.1 - Data Flow ............................................................................................................ 32 
4.2 - System Architecture ............................................................................................ 34 
4.3 - Technology Architecture ...................................................................................... 36 

4.3.1 – Access management in KNEIP ...................................................................... 36 
4.3.2 – Spring .......................................................................................................... 36 
4.3.3 – Java and Maven ........................................................................................... 37 
4.3.4 – Other technologies ...................................................................................... 37 

4.4 – Summary ............................................................................................................ 38 

Chapter 5 – Existing Solutions Targeting Rogue Administrators...................................... 39 
5.1 – Common solutions .............................................................................................. 39 

5.1.1 – Role compartmentalisation ......................................................................... 39 
5.1.2 – Secure logging ............................................................................................. 40 
5.1.3 – Automated pattern analysis ........................................................................ 40 
5.1.4 – Encryption and key management ................................................................ 40 
5.1.5 – Multi person control.................................................................................... 41 

5.2 – Summary ............................................................................................................ 41 

SECURING SENSITIVE DATA AT KRG .............................................................. 43 

Chapter 6 – Deciding on a Solution ................................................................................. 45 
6.1 – A completely secure system ................................................................................ 45 
6.2 - The powers of a System Administrator ................................................................ 47 
6.4 – The relationship between KNEIP and the Personal Number Encryption Algorithm

 .................................................................................................................................... 48 
6.4 – Drawing the line.................................................................................................. 48 
6.5 – A solution ........................................................................................................... 50 
6.6 – Summary ............................................................................................................ 51 

Chapter 7 – Implementing the Solution .......................................................................... 53 
7.1 – Assumed Services ............................................................................................... 54 
7.2 – Services and resources to be implemented ......................................................... 55 
7.3 – Intercepting service access ................................................................................. 56 
7.4 – Secondary secure logging .................................................................................... 63 
7.5 – Multi person authentication ............................................................................... 64 
7.6 – Securing the security ........................................................................................... 67 
7.7 – Summary ............................................................................................................ 68 

TESTING AND RESULTS .................................................................................. 71 



vii 
 

Chapter 8 – The testing.................................................................................................... 73 
8.1 – Interceptor and logger test ................................................................................. 74 
8.2 – Four Eyes test ..................................................................................................... 76 
8.3 – Self security tests ................................................................................................ 78 

CONCLUSION ................................................................................................. 81 

Chapter 9 – Conclusion and further work ........................................................................ 83 
9.1 – Conclusion .......................................................................................................... 83 
9.2 – Further Work ...................................................................................................... 84 

BIBLIOGRAPHY ............................................................................................... 86 

 

 

  



viii 
 

  



ix 
 

List of Figures 
 

Figure 1: Structure of internal network at KRG, with relevant zones. ......... 25 

Figure 2: Authentication Structure at KRG ................................................... 26 

Figure 3: TOGAF requirement wheel............................................................ 32 

Figure 4: Data flow of clinical and pathological reports at KRG ................... 33 

Figure 5: Systems architecture overview ..................................................... 35 

Figure 6: Application connecting to a Service .............................................. 45 

Figure 7: Maven configuration file ............................................................... 58 

Figure 8: Service Intercept Pointcut Declarations ........................................ 60 

Figure 9: Advice example, logDelete ............................................................ 62 

Figure 10: Ghost Log class variables and log entry example ........................ 64 

Figure 11: Advice which evaluates input and calls fourEyes ........................ 66 

Figure 12 - Testing set up and preparation .................................................. 74 

Figure 13: Intercept and logging test code .................................................. 75 

Figure 14: Intercept and logging test printout ............................................. 75 

Figure 15: Log Deletion attempt log database result ................................... 75 

Figure 16: Security Service Stop test code ................................................... 77 

Figure 17: Security Service Stop test printout .............................................. 77 

Figure 18: Security Service Stop test log database result ............................ 77 

Figure 19: Failed PSN Service Stop test printout .......................................... 78 

Figure 20: Failed PSN Service Stop log database result ............................... 78 

Figure 21: Attempt at calling disabled security service. .............................. 79 

Figure 22: Blatant SQL injection attempt test .............................................. 79 

Figure 23: Blatant SQL injection attempt log entry ...................................... 80 

 
  



x 
 

  



xi 
 

List of Abbreviations 
 

AD/ADC - Active Directory (Controller) 
AOP  - Aspect Oriented Programming 
ASE  - Adaptive Server Enterprise 
BPMN  - Business Process Model and Notation 
CIA  - Confidentiality, Integrity and Availability 
CTSS  - Compatible Time-Sharing System 
DB  - Database 
DBQ  - Database Query 
DMZ  - Demilitarized Zone 
EPJ  - Elektronisk Pasientjournal (Electronic Patient Journal) 
HCSIRT  - Health Computer Security Incident Response Team 
HF  - Helseforetak (Health undertaking) 
ISO  - International Organization for Standardization 
IP  - Internet Protocol 
IT/IKT  - Information Technology / (Norwegian equivalent) 
JVM  - Java Virtual Machine 
KDB  - Kvalitetsdatabasen (Quality Database) 
KISS  - Keep it simple, stupid 
KNEIP  - Kreftregsiterets Nye IKT Platform (The Cancer Registry’s New  

  Electronic IT Platform) 
KREMT  - Kreftregisterete E-MeldingsTjeneste (The Cancer Registry’s 

  Electronic Message Service) 
KRG  - Kreftregisteret (The Cancer Registry of Norway) 
LAN  - Local Area Network 
MD5  - Message Digest 5 
MIT  - Massachusetts Institute of Technology 
NHN  - Nasjonalt Helsenett (National Health Net) 
OSI  - Open System Interconnection model 
PNS  - Personal Number (encryption) Service 
RSA  - Rivest, Shamir and Adleman cryptosystem 
SQL  - Structured Query Language 
SSL  - Secure Sockets Layer 
TOGAF  - The Open Group Architecture Framework 
UFW  - Uncomplicated Firewall 
UML  - Unified Modeling Language 
US  - United States 
VDI  - Virtual Desktop Infrastructure 
VLAN  - Virtual Local Area Network 
VM  - Virtual Machine 
VPN  - Virtual Private Network  
  



xii 
 

  



xiii 
 

 

 

Preface 
 

I would like to thank my primary supervisor Jan Nygård for the opportunity 

to complete my thesis at the Cancer Registry, for help and guidance in 

understanding the systems in place and for guiding me when I needed to 

make the big decisions. 

I would like to thank my secondary supervisor Arne Maus for his help 

proofreading, correcting my disastrous sense of structure, several 

interesting conversations on the nature of security and other things and 

giving me motivation when I needed it most. 

I would like to thank Therese Hüber, Tormod Eriksen, Geir Danielsen, Basit 

Ahmed Khan, Steinar Auensen, Frank Rønning, Leif Magne Eriksen and Sølve 

Monteiro for many meetings and discussions surrounding the systems, 

network and security at the Cancer Registry, without whose help this thesis 

would never have been possible. 

I would also like to thank my fellow master student Kim Kheim Ho Xuan for 

giving me inspiration and lending me an understanding ear during several 

rants. 

Finally I would like to thank my family for their support, and the love of my 

life for her endless patience and understanding. 

  



xiv 
 

 



1 
 

 
 
 
 
 
 
 

Part I 

Introduction 
  



2 
 

  



3 
 

Chapter 1 – Introduction 
 

1.1 – Motivation 
 

Protecting critical or sensitive data from System Administrators, who in 

essence have access to everything, is a daunting task that has no fixed 

solution. A 2010 Verizon Data Breach Investigations Report found that 

in 2009 insiders participated in 48% of all known data breaches, and 

about 12% of those were rogue system/network administrators(Baker 

et al., 2010). While this number seems small, evidence supports that 

they do facilitate the bigger breaches as the elevated privileges offer 

greater opportunity for abuse. Note also that there are certainly a high 

number of unknown breaches, but no reliable numbers exist to estimate 

these for obvious reasons. With recent high-profile incursions by System 

Administrators as seen in the Edward Snowden incident(Greenwald, 

MacAskill, & Poitras, 2013) and many of the documents hosted on 

WikiLeaks, the need for more focus on precisely this threat has been put 

into stark relief. 

 

There are of course existing solutions that specifically target abuse from 

elevated users, but the challenge is to have a solution which both 

conforms to their custom in-house systems, legal requirements and 

strikes the right balance between security and ease of use for 

administrators in their daily tasks. Regular logging and authorization is 

insufficient when an administrator can manipulate the environment to 

both gain access and mask their tracks. With no existing suite that 

includes this specific functionality there is a security gap that needs 

filling.  

 

The motivation then is the desire is to prevent unauthorized access to 

the specific databases containing personal information from potential 

rogue admins, as well as System Administrators who are loyal. This is 

important not only because loyalty can never be completely assured, 

but also because administrators should not have to see data they are 

not supposed to in order to protect them from legal repercussions, 

blackmail and possible data on relatives and acquaintances.  

 



4 
 

1.2 – Goals 
 

The goal of the thesis is to prevent unauthorized access to personally 

identifiable data by System Administrators, or if all else fails discover the 

unauthorized access. I want to uncover which methods of security 

would be most effective and how it can be implemented most efficiently 

within the systems at KRG.  

 

 

1.3 – Outline 
 

The thesis is divided into chapters, with this chapter presenting the outline 

of the remaining chapters. The early chapters present the background 

needed to complete the goal and the later chapters present the work done 

followed by results and a conclusion. 

 

Chapter 2: Computer Security Basic  

Gives an overview of the history of Computer Security followed by an outline 

of basic concepts. Covering abstract security concepts, internal and 

perimeter security, the human element and pragmatic concerns such as 

security in code. This chapter also presents where this thesis fits into the 

larger context of Computer Security as a whole. 

 

Chapter 3: Security at the Cancer Registry, the Context  

Presents an overview of the security structure at KRG, briefly covering 

physical security and delving into IT security components. These include the 

zone division of the internal network, credential management and 

authorization, how sensitive data is managed and the policies currently in 

place. 

 

Chapter 4: The KRG IT Environment 

This chapter presents the environment at several levels, beginning first with 

how cancer reports and data extracted from them move through and 

interact with the KRG systems. Then the system architecture is presented 



5 
 

and the systems in which the relevant sensitive data is manipulated are 

explored further by delving into their technology architecture.  

 

Chapter 5: Existing Solutions Targeting Rogue Administrators 

Presents several solutions currently known to be in use which specifically 

target elevated user abuse. None of these alone can prevent it entirely, but 

they are reasonable attempts at limiting the occurrences which are often 

implemented in some form or combination in other security systems. 

 

Chapter 6: Deciding on a Solution 

In this chapter an example of a perfectly secure system is presented, along 

with a description of why it is an unviable solution. Then a description of the 

powers of System Administrators for context is followed by a description of 

the systems relevant to the thesis and a narrowing of the scope so that a 

solution for implementing can be approached. Several assumptions and 

prerequisites are presented and a solution is decided on. 

 

Chapter 7: Implementing the Solution 

In this chapter a description of assumed services followed by which services 

will need to be implemented to achieve the goal are presented, and a 

detailed account of each facet of the solution is discussed. This includes the 

progress of the actual implementation along with code examples to 

demonstrate how it was done.  

 

Chapter 8: Testing and Results 

The implementation is tested in an artificial environment to demonstrate 

the viability of the solution presented. Each service is tested independently, 

though some services trigger others so the entire solution is tested with a 

collection of inputs. The implementation works as expected, catching and 

analyzing the desired service calls, and the results presented show this. 

 

Chapter 9: Conclusion 

The conclusion of the thesis, presenting what went well, what did not go as 

expected along with presenting the contribution to existing work.  



6 
 

  



7 
 

 
 
 
 
 
 
 

Part II 
 

Background and Context 
  



8 
 

  



9 
 

Chapter 2 – Computer Security Basics 
 

When delving into modern computer security, which is the subset of 

information security that applies to computers and networks, some 

concepts need to be understood before one can begin to consider how to 

attack and solve the problem at hand. Looking then at network and data 

security you have to make a few basic assumptions(Paquet, 2012; Various). 

Firstly, modern systems are very large and interconnected. They are often 

open to exploitation as they run a mix of software which are not always fully 

compatible, and not always up to date. It is the simplest thing in the world 

to make an entirely secure system, but it would have to be physically 

separated from everything else with no way to interact with it, which is not 

a viable option in almost all instances. As a result, the possibility of remote 

access through the internet by an individual source or even distributed 

botnets is a continuous reality which is at the very core of understanding the 

risks of providing proper security. Even with an internal network which is 

‘separated’ from the internet as a whole with firewalls and strict policies, 

this is something which must be taken into account as no amount of 

precautions short of physical separation will guarantee immunity to external 

intrusion. Even some internal networks are also becoming so large that the 

principles that are used for the internet must be taken into consideration 

when dealing with internal security. 

Secondly, systems and applications connected to these networks are 

becoming increasingly complex making it more difficult to properly analyze 

and secure them. Even many of the simplest computer programs are 

undecidable with respect to termination, and so approximations must be 

used when trying to decide whether they are secure enough. The problem 

naturally becomes exponentially harder the more complex the systems that 

they are applied to become. As a result the possibility of vulnerabilities are 

ever increasing and you have to take this into account when implementing 

any software or system which implements some security policy. 

 

 

2.1 – A Brief History  
 

Computer security has been a concern ever since the dawn of electronic 

computers, and crackers attempt to find vulnerabilities as soon as new 

technologies and systems become available. Arguably the first breach of 



10 
 

security as it relates to computer technology occurred in 1903, when the 

magician and inventor Nevil Maskelyne disrupted a public demonstration of 

Guglielmo Marconi’s purportedly secure wireless telegraph technology by 

sending insulting morse code messages through the auditorium’s 

projector(Marks, 2011).  

A few decades later, in 1939, Alan Turing, Gordon Welchman and Harold 

Keen developed ‘the Bombe’, which was based on Maria Rejiwski’s ‘Bomba’, 

in order to crack German Enigma codes(Kozaczuk, 1984). The Enigma 

machine used a reliably small key space, making it vulnerable to brute force 

attacks, and with this development it became apparent that encryption keys 

needed to be sufficiently long to stay practically unbreakable by 

contemporary computational power. 

Later still, in the 1960’s, William D. Mathews from MIT found a vulnerability 

in a Multics CTSS, the first documented software vulnerability, which 

disclosed the contents of the password file by running multiple instances of 

the system text editor(Karger & Schell, 1974). The location of the password 

file was supposed to be secure, but this exposed the problem of having 

passwords in clear text if a cracker actually manages to gain access to it. This 

resulted in enciphered versions of user passwords to be made for the first 

time, a development which became central to all future password 

management. 

Much of the early work of studying computer security was financed and 

done by the US Department of Defense, from the 50’s on, though as 

computers became more readily accessible in the 80’s the focus had to 

expand beyond ‘simply’ securing the technologies and begin to take into 

account human error. It became easier to guess passwords than attempt to 

decrypt them(Morris & Thompson, 1979), and as networks grew and finally 

the Internet came into being in the 90’s, the human element became an 

unavoidable cornerstone in understanding and ensuring computer security. 

To sum it up, modern computer security has to take into account a 

combination of technological and social understanding to create systems 

that are not only compliant to standards and regulations, but also prevents 

accidental breaches as the result of human fault.  



11 
 

2.2 - CIA 
As a result of these realities, the field of computer security is by necessity 

vast and multifaceted, but at its core are three basic requirements: 

Confidentiality, integrity and availability, also known as the CIA 

triangle(Andress, 2011; Miami, 2006). All three factors are important to keep 

in mind when coming to a decision on my implementation, though they are 

only abstracts. 

 

2.2.1 Confidentiality 

Providing confidentiality of data guarantees that only users who are 

authorized can access sensitive information. This is probably the most 

obvious aspect of network security, and it is also the one which is most often 

attacked. Providing data confidentiality is necessary as disclosure of the 

sensitive data may result in some form of loss or damage, such as identity 

theft, loss of business, regulatory fines or legal complications. In the case of 

KRG the main issue is identity protection with the possibility of regulatory 

fines and legal complications due to breaches of security of personal data. 

  

Ensuring confidentiality hinges on two aspects. Logical and physical securing 

of data.  

● Physical security hinges on ensuring that server rooms are secured, 

that unauthorized personnel are kept out of sensitive areas and 

that workstations are locked down when users are not present. 

● Logical security includes authorization, authentication and 

encryption. Authorization is the process of determining who should 

have access, authentication is ensuring that only authorized people 

are able to gain access to the data through the use of passwords 

and user identification methods and encryption is ensuring the data 

itself is adequately protected through the use of an appropriate 

algorithm. The algorithm strength is often decided by the key 

length, and most modern algorithms are so strong that a 

conventional computer or even most server farms have no chance 

of decoding it before new algorithms or keys are in place.  

 

Looking specifically at encryption there are two main focus, storage 

encryption and transmission encryption. 



12 
 

 Storage encryption encompasses any form of encryption done on 

static data. It can be encryption of anything from entire physical 

hard drives to specific files and folders.  

 Transmission encryption refers to the action of encrypting files for 

transmission over a network from one entity to another. Data is 

encrypted, sent and then decrypted at the receiving end. 

 

The practical implementation of either is the same, and the decision of 

whether to encrypt files as soon as they are created on a device, or only 

encrypting it when needing to be transmitted depends on the type of data, 

its usage or even policy decisions. As an example, when transferring data 

the source and destination (server and client, sender and receiver) must be 

able to encrypt and then decrypt the message. This is accomplished either 

through the use of symmetrical or asymmetrical encryption methods. 

Symmetrical encryption means that the source and destination have a 

shared key. This is the most common form of encryption, as the key can 

easily be shared among authorized personnel and it requires little 

computational power. Asymmetrical encryption means that the source has 

one key and the destination uses a different one to decipher the cipher 

texts. Also referred to as a public/private key pair, it is more resource 

intensive and the use of a public key must be authenticated. Switch out the 

terminology of sender and receiver with write and read and it is equally 

applied to storage encryption.  

 

Encryption is already in place at KRG, and it might be necessary to 

understand the various forms of encryption and how they are applied 

before implementing a possible solution. 

 

2.2.2 Integrity 

Providing data integrity means ensuring that it is not modified by any 

unauthorized party, that any modifications are traceable and any data to be 

read or received is an accurate representation of the source data. In relation 

to information systems there is no assurance that the content is correct or 

true, only that whatever is input is preserved and accurately represented.  

● The complexity of transmission integrity depends on the number of 

steps it has to go through before reaching its source. The most 

banal requirements are that any lines of transmission are intact, the 

hardware functions properly and the receiving environment 

understands what you are entering. When you add distance and 



13 
 

layers of transmission protocols such as networks or even the 

internet the complexity grows exponentially. Data can be 

intercepted through man-in-the-middle attacks and this needs to be 

taken into account to ensure the data arrives unmodified by 

malicious intent. Data integrity during transmission can be 

accomplished through the use of the correct protocols, passive 

checks such as hashing or through active monitoring systems which 

attempt to detect anomalies in data transfer rates or content. 

Hashing is widely used as it is generated mathematically from the 

source data, and can be used to verify the data upon arrival. Also, it 

is important to ensure the integrity of the mode of transmission 

itself through the use of secure connections such as SSL, certificates 

or Virtual Private Network (VPN) tunnels.  

● Storage integrity is also essential, but is not always quite so easy to 

attain. At the software level integrity is mostly ensured through the 

use of constraints. Since research shows that most current 

widespread file systems don’t provide sufficient protection against 

data integrity problems(Prabhakaran et al., 2005), databases are 

the preferred mode of storage when it comes to data that requires 

strict integrity. 

 

Beside these two key areas there is source integrity. Impostors may 

masquerade as a legitimate source making you enter your username and 

password or give your shared key thus compromising any other level of 

security in place, so ensuring source integrity is important, even in internal 

networks. In addition to secure connections, you can employ tertiary levels 

of authentication such as authenticators, used in many European banks, or 

visual verification such as employed by Bank of America. 

 

2.2.3 Availability 

Providing uninterrupted access to data for users is of utmost importance, 

though it is quite beside the focus of this thesis. Suffice to mention that 

availability is the act of ensuring crypt key availability for authorized 

personnel, reliable uptime through robust hardware, redundant 

connections and defense against distributed attacks. 

 

 



14 
 

2.3 - Internal Security 
 

Now that the abstract basics of security have been covered, it’s time to move 

on to look at the whats and hows of implementing these concepts on an 

internal network or system. The whats are described by security policies, 

while the hows are covered by procedures, standards, baselines and 

guidelines. Once these are in place a security model can be produced to 

conform to the policies laid out. A security model maps the policy 

requirements into a set of rules that can be followed by a computer or 

network system, and defines the level of security to be implemented.  

 

2.3.1 Security policies 

The set of rules, practices and procedures dictating how sensitive 

information is managed, protected and distributed in a network are called 

policies. Policies are the ‘what’ of system security, decided by management 

and given to the relevant departments to implement to the best of their 

ability. Trust is usually a big part of any security policy, as people are 

necessarily a central part of any security system. Finding the balance 

between regulation and control with productivity goals is an ongoing 

process in any organization. An important point to note is that policies must 

be concise and to the point, ensuring they are as unambiguous as possible. 

 

2.3.2 Standards 

Standards are recognized best practices, principles and frameworks which 

are agreed upon on an industry-wide scale. They are like policies strategic in 

nature, as they define system parameters and processes without going into 

specifics. There are many standards, and they often overlap so deciding on 

a collection of appropriate standards for a given system is important.  

 

2.3.3 Procedures 

Procedures are the low-level documents providing systematic instructions 

on how the security policies are to be implemented into a system. Usually 

drafted by individual departments on the basis of policies set by higher 

management, procedures need to provide maximum information to the 

users and are therefore very detailed in nature. They also go in depth on 

how to apply the standards and guidelines of a security program and are 

usually the de-facto source of referral when describing security 

requirements. 



15 
 

 

2.3.4 Baselines 

A baseline is the minimum level of security required by a system. In order to 

conform to the absolute minimum security requirements across any system 

in a business, a user would look at the baselines. An example of a baseline 

would be that each Ubuntu server must be updated to at least version 12.0.4 

and include UFW firewall.  

 

2.3.5 Guidelines 

Guidelines are similar to procedures in that they are tactical in nature and 

are a list of actions for users, though they differ in that procedures are 

usually mandatory while guidelines are just that. Guidelines are often used 

as references to help users perform certain actions in ways that are 

recommended for optimal security and efficiency, while not being strictly 

mandatory.  

 

 

2.4 - Perimeter Security 
 

Once the security policies have been agreed on, the procedures distributed 

and the models implemented, a boundary marking the end of the secure 

internal network and the larger external and untrusted network, such as the 

internet, must be defined(Northcutt, Zeltser, Winters, Kent, & Ritchey, 

2005). This is called the perimeter, and perimeter security is vital to ensure 

that your, hopefully adequate, security measures are not contaminated 

from the outside. This is entirely outside the scope of the thesis, though I 

will give a short overview of the nature of perimeter security for the sake of 

a complete picture. 

 

2.4.1 Defining the Perimeter 

In recent years there has been a great deal of change in the opinions of 

perimeter security as the very nature of a network is changing and becoming 

increasingly uncertain. There is still a case to be made for a strong defined 

perimeter, but more and more it is becoming a landscape of layers. Instead 

of having a single perimeter defining the clear end of the network you could 

have several layers of networks, one contained inside the next. Despite the 

ambiguity, it is still necessary to define where the borders go, make a clear 



16 
 

distinction between the untrusted outer networks and the trusted inner 

ones. There is in other words still a need for an outermost layer of 

protection. This outer perimeter is often accompanied by a Demilitarized 

Zone or DMZ(Thomas, 2004), which is a physical or logical subnet that 

contains and exposes an organization’s external-facing services without 

giving external connections direct access to the internal network. A DMZ is 

designed to provide an extra layer of security so that you can ensure your 

network, systems and data remain secure and operational even if the DMZ 

services are attacked and compromised. 

 

2.4.2 Security in Layers 

Inside the outer perimeter the number of layers depend entirely on the 

organization and can range from one to several dozen. This division of 

everyday resources and restricted resources is what would define any 

internal network layering, and any additional layers would be the result of 

grades of sensitivity and required permissions for access. National militaries 

often operate with many layers. This all seems quite simple, but with the 

recent blossoming of VPN’s(Ferguson, 1998) and virtual desktops defining 

the borders has become a complex process. A computer on the untrusted 

network can use a VPN connection to gain access all the way down to secure 

layers of the network, and the implementation of this must be carefully 

planned. 

 

 

2.5 - Other Aspects 
 

2.5.1 The Social aspect 

When considering any form of information security, it is sometimes easy to 

forget the vital social component(Frangopoulos, Eloff, & Venter, 2008). At 

the end of the day, humans are interacting with the hopefully well designed 

system and this has its own vulnerabilities. Humans are habitual, they have 

routines and interests that might override regular caution and this can be 

exploited by a patient intruder. Analyzing the trends of employees can give 

the intruder a target to aim at, and more often than companies would like 

this works very well. Spoofing an expected email from a friend or coworker 

which pushes on a vulnerability gleaned from the footprinting can open the 

door to installing malicious code and gaining a foothold in even the most 

well designed systems, and this possibility must always be taken into 

consideration. 



17 
 

Attack from outside intruders with these tools is not directly relevant to my 

focus, but a clever rogue admin may use such tactics to hide their identity 

and grab credentials of another user. Regular users would be useless, but 

the credentials of another admin would be very useful if the rogue admin 

wished to take an indirect route in their desire to acquire data.  So while the 

actual act of a social attack is beyond my scope, its potential effects should 

be taken into account. 

 

2.5.2 The Domino Effect 

When looking at how systems communicate with one another over a 

network, you think of the OSI reference model. It is designed to enable the 

different layers to work independently from one another to accommodate 

changes in the evolving technology. Each layer is responsible for a specific 

function, and information flows up and down each subsequent layer as data 

is processed. Unfortunately if one layer is compromised, communications 

are compromised without the other layers even being aware of it. A breach 

in the physical layer would percolate up and compromise all layers above it. 

Security is only as strong as its weakest link, and any implementation I make 

must attempt to be equally secure at any level it touches. I would necessarily 

have to rely on lower layers already being sufficiently protected, and have 

knowledge of their current state at KRG. 

 

2.5.3 The Security Wheel 

Probably the most important thing to keep in mind is that network and 

information security is an ongoing process that goes through a continuous 

cycle of developing, implementing, monitoring, responding, testing and 

improving. An implementation today may not be sufficient in 5 years, and 

keeping up to date is a big task. 

 

2.5.4 Virtualization 

Virtualization(Marshall, 2011) is a rapidly growing trend in modern systems, 

as it provides an easily implemented and easily manageable environment in 

which to compartmentalize computing tasks, servers and networks. It is 

energy efficient, reduces data center footprints and potentially increases 

uptime. With a central control panel you can quickly get an overview of the 

health and performance of every virtual server in your business and be able 

to perform maintenance from a central location. VM’s are mobile, robust 

and cloneable, making disaster prevention and recovery a simple task, and 

the ability to sandbox any application or system is very useful when testing 



18 
 

or benchmarking. KRG is following the trend and has implemented 

virtualization on several of its systems with great success. It might be useful 

to implement some form of virtualization layer, as it could possibly enable 

proper control while hiding the actual contents. In which case System 

Administrators would then have to be able to get it back up and running 

without being able to change its functionality in order to circumvent its 

restrictions. 

 

 

2.6 - Security in programming: 
 

When creating a new program it is very easy to just push it out and ignore 

any potential unwanted interactions, as is quite normal when programming 

for an assignment or for your own personal use. Applications do not live in a 

vacuum however, and in order to prevent unwanted reactions you should 

always keep secure coding practices in mind(Seacord, 2011). Coding securely 

is also known as defensive programming, and the art of programming 

defensively is simply to assume that every call and every operation may be 

given incorrect output and thus must be able to handle such an eventuality. 

In Java(Oracle) you would use a try-catch implementation, or perhaps you 

would use extensive if or case chains. The result should still be that if the 

incorrect input is given the program should not suffer any problems as a 

result. 

A few things worth keeping in mind: 

● Validate the input, especially from untrusted data sources. Abusing 

unchecked inputs are the most common ways of exploiting 

vulnerabilities. 

● Heed compiler warnings. Your code may run, but that memory leak 

might come back to bite you. 

● KISS. Making overly complicated code is unnecessary, can make it 

harder to spot mistakes and can open for more and different 

exploits. 

● Check your privilege. Don’t give your program root access just 

because it is easier. Try to keep your application at the lowest 

privilege level as much as possible, and secure any point at which it 

enters higher privilege levels. 



19 
 

● Isolate unrelated code. Closely tied to privilege, ensure that code 

from different sources is compartmentalized and private access is 

not given publically. 

● Release unused resources. The garbage collector might pick it up, 

but before it does someone might find a way to exploit its 

existence. 

There are many other more specific points to heed, but these are some of 

the biggest, and some of the ones that tend to get overlooked a lot. Often 

simply because it requires more effort. 

 

 

2.7 – Summary 
 

This chapter covered several concepts important to the understanding of 

security. The CIA triangle is at the very core, and permeates every 

consideration of security. As a result they will have to be kept in mind going 

forward.  

The concepts of internal security in the form of policies, standards, 

procedures, baselines and guidelines are all important, and knowing which 

are applicable to a given situation can mean the difference between a great 

system and a broken one. These concepts are of course very dependent on 

what you are implementing and where you are implementing it and in the 

case of this thesis the ones currently in use at KRG will have to be included 

along with any which are specific to the programming language and 

framework that will be used.  

Perimeter and layer security is useful to know when considering access from 

the outside, and is a necessary consideration for any system in a modern 

business. This thesis will only concern itself with data once it is in a system, 

and thus perimeter security will not be a relevant concern. 

As for the other aspects, some are more important than others. The social 

aspect will be very important to keep in mind going forward, as even 

accidental and tangential access are undesired. Security in programming will 

also naturally be of central importance. The domino effect and security 

wheel will not be entirely unimportant, but will fall mostly outside the scope 

of the thesis as it currently stands. Finally, virtualization will likely not be 

considered further as the implementation will be on the system level, not on 

the user level where virtualization is currently in place at the KRG. 



20 
 

  



21 
 

Chapter 3 – Security at the Cancer 

Registry, the Context 
 

KRG is an institute in the Norwegian healthcare sector which gathers data 

on all patients being diagnosed and treated for cancer in Norway, processes 

it such that it is stored in a structured manner, then presents statistical 

reports and does research based on said data. Each healthcare facility that 

performs diagnostic tests of and treads patients for some form of cancer, be 

it of pathological or clinical nature, is required by law to send a report to the 

KRG, which ensures maximal coverage and accuracy of data used for 

research.  

 

Many businesses, including KRG, operate primarily on a system of necessary 

trust when it comes to their System Administrators in respect to security. 

This is often enough as a breach of this trust usually entails very harsh 

punishment such as loss of employment, criminal charges and not being able 

to get similar employment in the future. Despite this, every so often a rogue 

administrator will break the trust and use their powers for some personal 

gain, be it to earn money, get revenge or simply cause havoc. Even with 

proper security measures, at some point trust must be a part of the 

equation, and the trick is to find the balance where there is adequate 

security to prevent disastrous breaches while also keeping restrictions from 

making it impossible to work efficiently. In an attempt at improving security 

protecting against rogue admins at KRG, I will first have to get an overview 

of the current security measures in place at KRG, as well as which systems 

interact with the data flow of personally identifiable information. Once this 

is completed I will document which technologies are used on the relevant 

systems and decide on the optimal approach for a solution. 

 

Beginning then with the current security measures at KRG. As with many 

businesses, there are several layers and facets to the security system in place 

at KRG. The most abstract division is between physical security and IT 

security. Physical security is simply the physical access restrictions to 

hardware, while IT security covers system and network security against both 

outside and inside threats. 

 

 



22 
 

3.1 - Physical security 
 

Physical security is out of the scope of my thesis, but is included for 

completeness. At KRG the primary form of physical security is through the 

use of access cards. Each employee has their own access card, which are 

currently authorized and distributed by the administration. Outside of 

working hours a pin code is required in addition to the card, simply to 

prevent abuse of lost or stolen cards. A select few personnel have access to 

additional internal doors, such as the server room. Access to the server room 

is restricted to IT management, and is where the server relevant to my thesis 

is located. Card access through the outer doors into KRG is logged by the 

building security. 

 

 

3.2 - IT Security 
 

3.2.1 - Network structure and zones 

KRG operates with a multilayered security structure on the network. 

Beginning from the outside: 

The internet 

 An outer firewall 

 A DMZ, hosts services accessible from the internet such as the 

website and webmail. 

 An internal firewall 

 The internal network.  

 

 

On the internal network there are several ‘zones’, also defined as LAN’s or 

subnets, each of which have separate rules for access and perform different 

roles. The main zones of interest are Internal, Sensitive, Screening and 

Management, the structure of which is shown in Figure 1. In addition there 

is a second internal DMZ which use will be described later. 

 

 

-Internal:  

The Internal zone is where most of the user clients are located. On this zone 

you have access to all the daily tools you may require for most job related 



23 
 

tasks. You have access to relevant software, to your own ‘home’ folder on 

the network, various shared project folders and drives, and the internet. 

Users often have restricted control over their computer, with only some few 

having local admin rights. 

-Secure: 

The Secure zones are where all sensitive data is hosted. The secure zones are 

technically two zones comprised of Sensitive and Screening. Several virtual 

servers host databases with such data, any software or services required to 

manipulate sensitive data when required, as well as sensitive files stored in 

file servers. No Internal zone clients are connected directly to the Secure 

zones, and they is blocked off from the internet except through secure VPN 

tunnels. User activity is severely restricted on any Secure desktops. 

-Management:  

This zone is only used by System Administrators, and is primarily used for 

management of the other zones and their content. Management is 

completely separated from the internet. Activity on Management machines 

is restricted for normal users as in the other zones, but if you log in as a 

domain admin you are in essence not restricted at all. 

 

3.2.2 - Connections between zones 

The rules that govern the connections to and from zones as well as between 

zones is controlled by the internal firewall. The rules cover four aspects: 

The routing, which is the physical routing of traffic. What goes to which 

subnet. 

 The tunneling, ensuring that physically separated locations can 

operate in the same zone, usually through VPN’s. 

 The ports, which ports can be used. 

 The policies, who and what can access which services and when. 

The firewall logs all network traffic between zones. Domain admins can 

however manipulate the rules and logs on a firewall. 

  

In addition to the firewall which governs the connection rules, there is the 

second internal DMZ which controls several services. These handle 

communications between zones, antivirus scans of files coming from the 

internet and moving between zones and pushing updates to clients. These 

services operate within the framework of the firewall rules. 



24 
 

Finally users can connect to internal zones from the outside through the use 

of a Virtual Desktop Infrastructure (VDI) through a VPN tunnel. These 

connections are quite restricted and require a single use code from a Rivest, 

Shamir and Adleman (RSA) authenticator. 

 

 

Clients on the Internal zone can connect to the Secure zone through the use 

of a VDI solution. The VDI allows a user, sitting in for example Internal, to log 

into the Secure zone and work there without risk of unwanted interactions 

between the user’s computer and Secure servers. In order to transfer files 

between Internal and Secure you need to use a secure file transfer system 

which checks each file for integrity, for malicious content and logs the 

transfer. There is a size limit on the files allowed through the system, and 

any larger files need to be manually transferred by a domain admin. The 

domain admin then typically performs an integrity check (md5 checksum) 

and AV scan before transferring. This form of transfer is not logged 

specifically, though any traffic between zones is logged in the firewall. As 

with Internal, users can connect from the outside with a VDI through a VPN, 

using login and an RSA authentication code.  

 

The Secure zones are very strictly controlled, and as such have limited 

communications in and out of it, as already partially described above. In 

addition to these connections it has a portal connection through which 

clients at hospitals around the country can access certain agreed on data by 

logging in with authorized credentials, and send files for storage in the 

Secure zones. Any files the hospitals send or are allowed to access are placed 

in the portal, and then have to be manually transferred back and forth by 

the domain admins. Within the Secure zones, Screening is a secondary zone 

used by employees who screen for cancer at various locations around the 

country and is outside the scope of this thesis. 

 

Additionally there is a zone which is secure, but not affiliated with the Secure 

zones as such, called NHN or National Health Net. Internally this zone acts 

as a DMZ to outside systems in which external operators within the 

healthcare sector can gain access to resources internally at KRG. More 

specifically it is a VLAN or Virtual Local Area Network which allows for 

transfer of sensitive data without risk of security leaks. The connection from 

KRG to the outside goes through HCSIRT, or the Health Computer Security 

Incident Response Team which dynamically monitors data traffic to 



25 
 

intercept any attempted breaches in the healthcare sector. This zone is out 

of scope and will not be discussed further. 

 
Management is a zone apart from the rest. It has no access to the internet, 

but has otherwise complete access to all other zones. A domain admin can 

access every zone and manipulate them and their content as required or 

desired. The only cases in which additional login credentials are required is 

if an admin wishes to connect to a specific server as a user. Admins 

consciously keep Management access points secure and use them only 

when required, but once logged in the activity on this zone is not restricted 

or specifically logged beyond the normal logging done by the firewall and 

local event log.  

 

 
Figure 1: Structure of internal network at KRG, with relevant zones. 



26 
 

 
 

3.2.3 - Credentials and access restrictions 

User credentials are controlled by a Windows Active Directory Controller 

(ADC). The ADC checks the entered username and password every time a 

user attempts to connect to a zone either internally or through a VPN, or use 

a cross zone service such as the file transfer service, and either allows or 

denies the connection. All logins are logged. User credentials are authorized 

by the KRG administration and entered into the ADC by a domain admin. 

Below is a diagram which illustrates the basic structure of permissions as 

controlled by the ADC at KRG. 

 

 

Figure 2: Authentication Structure at KRG 

The authentication structure for databases and file areas under the Internal 

Zone is the same as for the Secure Zones, they are merely collapsed in the 

diagram. The structure for databases is also the same under Administrators, 

as each database has individual authentication irrespective of the ADC. 



27 
 

In addition to the ADC, databases have their own access tables which govern 

permissions specific to that database and these are managed by Database 

Administrators responsible for any given database. 

Finally, there are some systems which have internal authentication that are 

apart from the control of the ADC. For example the Sensitive zone has a 

database which contains the credentials of users which are allowed to 

connect to it, which the login service matches to. 

 

If you connect a computer to an Ethernet port inside KRG, without login 

credentials you currently have access to the internet and can see shares and 

machines on the internal KRG network, but cannot access them. This 

behavior will be changed in the near future to a required login and security 

scan even internally in the building. This because of the surge in personal 

computing devices which employees desire to connect to the network and 

the difficulty in ensuring their integrity without checking them manually first 

along with the possibility of then accessing your own shares from personal 

devices. 

 

3.2.4 - The sensitive data 

 

When a cancer message arrives electronically or is scanned into the system, 

they are stored for further processing. The personally identifiable data, the 

‘personal number’, is then masked from the scanned images, encrypted and 

the result is placed in three different locations. The unmasked original image 

remains in a file system which has restricted access. The masked image, 

which is used for further research and statistical analyses, is placed in a 

Structured Query Language (SQL) database. In addition the personal number 

is encrypted and placed in a separate SQL database along with metadata 

extracted from the report image. The relation between the masked and 

unmasked image as well as the encrypted data is handled by the FILM-

IMAGE number of the relevant image. Only in rare instances will a user be 

allowed to gain access to the unmasked version of the image. Any queries to 

the databases and any group or user modifications are logged. 

 

Looking at the current situation at KRG, it appears that there are areas where 
the current system is vulnerable should a rogue admin decide to take 
matters into his or her own hands. Looking at the zone structure, the most 
obvious line of attack appears to be through the management zone as this 
grants admin-level access to the other zones. Once in the management zone, 



28 
 

an admin could create a dummy-user with admin rights, add it to the 
permission table of the databases containing sensitive data and use it to gain 
access, covering their own tracks as far as any logging of database access 
goes. If they further deleted the system logs in management it would be 
further possible to cover their tracks in the creation of the account. In any 
case, whether by accessing using their own or a dummy account, access to 
management is the biggest weakness of the system as it currently stands.  
Despite this, the management zone must exist in order to have the ability to 

properly manage and maintain the system efficiently, so a solution must 

work with this in mind. I believe that the problem can be solved with only a 

few added measures. The most important is a more thorough logging of 

access and use. Currently, system logs are the default logging of the windows 

environment, the logs inherent in the Active Directory software used to 

manage users and access logs on each individual database. This could be 

expanded by implementing a monitoring system that logs the actions taken 

by System Administrators while performing their duties using the 

management zone. Naturally, such a program along with its log would have 

to be protected from tampering and be robust enough to endure any 

attempt at fooling or corrupting it. 

 

3.2.5 – Policies 

The Norwegian healthcare sector, including KRG, implements a standard 

known as ‘Normen’(Normen, 2013) (more formally ‘Norm for 

informasjonssikkerhet’ or ‘The Information Security Norm’), which is built on 

the ISO 27001 standard, and expanded to fit the legal and formal 

requirements for the handling of patient data and management of health 

information systems in Norway. This standard describes the requirements 

for any computer system within Norwegian health care, from the abstract 

overview, through the implementation and to how to guarantee the 

implementation works as intended.  

 

 

3.3 – Summary 
 

This chapter covered physical and IT security at KRG, only briefly mentioning 

physical due to it being out of scope while delving into detail surrounding 

the IT security. 

The zone structure and their interconnectivity was described as it is vital to 

know where the sensitive data of interest is located in the secure zone, and 



29 
 

how they are accessible, especially from the management zone. This is a 

vulnerability to consider. 

How credentials are managed and understanding how to utilize them in the 

implementation will be very relevant.  

The sensitive data and where it is located in the system is what the entire 

thesis revolves around, so this knowledge will be integral during the 

implementation process. 

The final part discussed in this chapter, the ‘Normen’ policy will naturally 

have to be kept in mind going forward. 

  



30 
 

  



31 
 

Chapter 4 – The KRG IT Environment 
 

 

Before implementing any of the solutions proposed, a more in-depth grasp 

of the systems used at KRG is needed, which in concert with the security 

structure will determine my implementation approach. This chapter will 

delve deeper into the specifics of the data flow, the data processing, 

information systems and information technologies used at KRG. This is 

essential to narrow down my scope to the relevant systems of interest, as 

well as finding out which approach will be optimal to achieve the desired 

effect. 

For this chapter I will use the structure provided in ‘The Open Group 

Architecture Framework’ (TOGAF) as a platform with which to divide the 

information into manageable categories(Josey, 2011). TOGAF is a framework 

which is made to provide an approach for designing, planning, implementing 

and governing the information architecture at an enterprise level. It is high 

level and holistic, typically modeled at four levels: Business, Application, 

Data, and Technology, which makes it ideal for getting a clear overview of a 

system in a structured manner. The structure of the TOGAF Architecture 

Development Method (ADM) can be seen in figure 3.   

I will focus primarily on phases B, C and D, which are Business Architecture, 

Information System Architecture and Technology architecture respectively. 

 



32 
 

  

Figure 3: TOGAF requirement wheel 

 

 

4.1 - Data Flow 
 

Looking at the data flow of the pertinent data, I will present an overview of 

all systems which personally identifiable information interacts with. First I 

have a diagram of the data flow at a Business Architecture level, or phase B, 

which shows the data flow with respect to both relevant entities and time. 

This was created with the Business Process Model and Notation (BPMN) 

language, as this is the standard used for modelling business processes at 

KRG.  



33 
 

 

Figure 4: Data flow of clinical and pathological reports at KRG 



34 
 

Figure 4 shows the business processes involved in data flow of personally 

identifiable data at KRG. The reports regarding diagnostics or treatment 

originate from the various hospitals, here labelled as HF(HelseForetak or 

Health Institutions), and are created in the EPJ(Electronic Patient Journal).  A 

copy of these is sent to the KRG either by printing them and shipping through 

regular mail, through the use of an electronic mail service or by filling in a 

report form on a portal hosted by the KRG. Electronically received messages 

are processed and the metadata placed directly into databases while the 

physical messages are scanned, masked and the metadata typed into an 

application called MottattMelding which dumps it and references to the 

scanned images into the relevant databases. The data is then enriched and 

aggregated for further use in statistical work or research. 

 

 

4.2 - System Architecture 
 

Moving on to the Information System Architecture level, or phase C, I have 

created a diagram using Unified Modeling Language (UML) which shows the 

data flow with respect to the information systems that interact with it.  

Figure 5 shows the current structure of the systems and databases relevant 

to the message flow at KRG. Physical messages are scanned and processed 

before the relevant data is stored in a Metadata database while the personal 

number of patients is stored in encrypted form along with this metadata. 

The data is then enriched and further assigned to ‘cases’, which can then be 

used for research or statistical analysis. Each person has at least one, and 

potentially many cases and each case describes one incidence of suspected 

or determined cancer. Different forms of cancer in a patient are defined as 

‘separate’ and become individual cases, except where one is a metastasis of 

another in which case they can be grouped together in one case. There are 

numerous complicated grouping rules beyond this, but these will not be 

described further as they are out of scope for this thesis. Note that each case 

may have several messages assigned to it describing everything from 

discovery to treatment. 

The dotted lines outline the borders of the two main systems for managing 

messages at KRG as they will be structured in the future. KREMT 

(Kreftregisterete E-MeldingsTjeneste), which translated means ‘The Cancer 

Registry’s Electronic Message Service’, will handle the arrival of messages 

and the processes involved in that, while a new system called 

KNEIP(Kreftregisterets Nye Elektroniske IKT Platform), which translates to 



35 
 

‘The Cancer Registry’s New Electronic IT Platform’, will cover KNEIP’s old 

roles as well as handle message transportation and further processing and 

management. These are further explained in the next subchapter. 

 

Figure 5: Systems architecture overview 



36 
 

 

 

4.3 - Technology Architecture 
 

Finally we get to the technology architecture that define the systems at KRG. 

Currently, the system that handles messages and reports that arrive at KRG 

is KREMT. Initially I was going to use this architecture as the basis for my 

implementation, however KNEIP is currently being developed and will 

replace parts of KREMT in the near future. KNEIP has a broader scope than 

KREMT, as it will also replace other systems at KRG and become the de facto 

data management system in the future. A part of this is the combination of 

the existing databases into one logical unit. Where there now is KDB and 

DBQ, two separate databases, there will in the future be one database, 

consisting of a merge of the old with some alterations, which will be 

integrated into KNEIP instead of being a separate entity as the current ones 

are to KREMT. KREMT functionality will also eventually be replaced by KNEIP, 

and will receive messages arriving at KRG which are then passed on to other 

modules for further data processing and management. 

First a few practical points. KNEIP is being developed in Java and is using the 

Spring framework during development. Since a development environment 

is already up and available, this decides the issue on implementation 

language, environment and framework for me quite readily. Also, KNEIP is 

not yet fully functional, so assumptions will need to be made in relation to 

functionality and services. I will be discussing and getting feedback on any 

such decisions with the development team so as to conform to their visions 

for the KNEIP system.  

4.3.1 – Access management in KNEIP 

Access management in KNEIP is handled by internal services that use Active 

Directory (AD) for authentication of users, and an internal table exclusive to 

each database for access rights and user control. As an example a user (or 

administrator) logs in to the KNEIP system, his user is checked in AD and is 

authenticated as a legitimate user. Once logged in the user attempts to 

access a specific database, and then his access right are checked in the 

access table. The user is granted access and the request is sent to the 

relevant services which manage the requested interactions. 

4.3.2 – Spring 

Spring is the framework in which KNEIP is being developed, and is necessary 

to understand when going forward with the implementation. It is a 

comprehensive programming and configuration model for modern Java-



37 
 

based enterprise applications. It provides infrastructural support at the 

application level, focusing on the ‘plumbing’ of enterprise applications so 

that focus can be given to application-level logic. It provides dependency 

injection, aspect-oriented programming, relational database management, 

authentication, logging and much more. 

4.3.3 – Java and Maven 

Java is a high-level, object-oriented programming language similar to C++, 

but simplified to eliminate language features that cause common 

programming errors. Java source code files are compiled into an architecture 

neutral bytecode format, which can then be executed by a Java interpreter, 

also known as a Java Virtual Machine(JVM). Since the program runs on the 

JVM and not directly on hardware, it is portable across all platforms that 

have a JVM installed, removing the necessity for recompiling code for 

separate hardware architectures. This is only part of the story though, as the 

compiler also combines similar code, shifts code around and changes the 

names of everything to fit its own logic.  The compiled code does in fact often 

look utterly different from the source code, the only guarantee being that 

the execution order and the consistency of outputs with a given input are 

guaranteed. In addition, once the JVM runs the bytecode it may decide to 

further compile the bytecode of often used code into machine code to 

increase efficiency using a form of Just In Time compilation(JIT). This along 

with clever selection of stack and heap placements, cache management and 

threading java code once run can be as efficient as code created in the lower 

level C language, only without the need for any memory management due 

to the Java garbage handler which continuously runs in the background 

purging the heap of unlinked data.  

Maven is a build management tool for java development. It enables full 

configuration of build paths, compile outputs and packaging structures along 

with automatic downloading and integration of required libraries, bean 

control and a plethora of third party plugins for expanded features. It uses 

Convention over Configuration, so that you don’t need to define the tasks 

you want to do as long as the files are where Maven expects them to be or 

as defined by the developer. 

 

4.3.4 – Other technologies 

In addition to spring, KNEIP uses several other technologies. It uses Apache 

Camel for open source integration, routing and mediation rules, Query dsl 

for type-safe SQL queries, Hibernate for JObject and Relation persistence 

and query services, Tomcat for the application server, Apache Active MQ for 



38 
 

the integration patterns servers and Vaadin for the Java web application 

framework. 

The databases are Sybase ASE servers which use a standard SQL syntax. 

 

 

4.4 – Summary 
 

In this chapter the data flow, system architecture and technology 

architecture of systems related to the relevant sensitive data was presented. 

The data flow and system architecture are quite important as they provide 

an overview of where the sensitive data is stored and moved within the 

systems at KRG, which was central in finding the point at which a solution 

should be implemented. It is clear from this that the implementation should 

be made within the new KNEIP system, as it will be the system which 

interacts with the personally identifiable data.  

It then follows that the technology architectures presented are all central to 

deciding on how to implement the solution. Knowing what controls the 

authentication, the Spring framework and Java language the KNEIP system 

is developed in and which other technologies that may be relevant will be 

directly relevant going forward, as will become clear in chapters 6 and 7. 

  



39 
 

Chapter 5 – Existing Solutions 

Targeting Rogue Administrators 
 

Before continuing on to deciding on a solution and implementing it, it would 

be prudent to have a look at existing solutions which are currently in use as 

parts of the effort at restricting the ability of system administrators abusing 

their power. 

As computer systems and networks have progressed, there has been an ever 

expanding battle between hackers who wish to disrupt services, destroy 

systems or steal data, and the people who do their best to protect against 

such malice. The tools of the trade become progressively more advanced 

and comprehensive, defending against a wider variety of attacks and 

tightening the noose, but with a constantly changing landscape of systems 

and services it is a battle that will never truly be over as new technologies 

and software bring new weaknesses to be discovered and patched. Because 

of this constant threat from the outside, the development of defenses 

against insider threats has not been in focus in quite the same way. While 

comprehensive security measures do take insider threats into consideration, 

a single administrator can cause catastrophic amounts of damage to a 

company’s data integrity, data confidentiality and reputation if there is 

inadequate security protecting against such threats in particular.  

 

 

5.1 – Common solutions 
 

There are several solutions which aim at preventing the above mentioned 

rogue admins(Messmer, 2010). 

 

5.1.1 – Role compartmentalisation 

One is a strict compartmentalising of administrator roles. While this can give 

extra security against tampering and make it harder to access certain data, 

it will not in fact eliminate the possibility to access personal data as we would 

want. Also, giving no one administrator complete access means that several 

administrators are required to perform certain tasks and it makes each 

person more invaluable and reduces redundancy, something which might be 

undesirable with the small size of KRG's IT staff. If one administrator was ill 



40 
 

and was needed for a critical operation, it could cause other security issues 

and seriously hamper the operation of the computer systems. 

 

5.1.2 – Secure logging 

Another, which also does not directly prevent administrators from accessing 

data, is monitoring the activity of System Administrators by use of logging 

that they cannot disable or altered. This may discourage acts of 'curiosity' 

and give leadership the ability to get an easy oversight of what is being 

accessed, how, when and by whom. This can be used to great effect as a way 

to prevent some undesired access and have a log of who accessed any and 

why. Since System Administrators are bound by a confidentiality agreement, 

this may be sufficient in the eyes of the law, as it gives the ability to audit 

the logs to ensure the confidentiality of patient data. However, this has a 

'big brother' feel to it, and can breed distrust if a System Administrators 

decisions are questioned by leadership who do not have knowledge of how 

the system works. Trust is important in an organization such as KRG after all. 

 

5.1.3 – Automated pattern analysis 

A third is similar to the second, but removing the human monitoring element 

except in cases of suspicious breaches. An automated monitoring system 

which looks for patterns of access, automatically blocks access or requires 

confirmation from multiple admins to perform certain tasks. This is a more 

acceptable form of oversight as far as trust goes, while still having the 

required monitoring. This could help greatly in restricting access to the 

relevant personal data, but again it does not completely eliminate it as 

regulations require. 

 

5.1.4 – Encryption and key management 

Looking also at the more conventional solution of data security which we 

already employ, encryption, there are some simple ways to enhance its 

effectiveness. Since System Administrators often have access to algorithms 

and keys, encrypting data will not always work. One solution could be to 

require multiple keys to access certain data, ensuring no one admin has 

both. Another would be to entirely remove System Administrators from the 

algorithm and keys by delegating the responsibility to a specialized 

employee, or a member of the leadership whom has 'clearance' and can be 

trusted to handle them properly. While admins can still copy the data if no 

further levels are implemented, at least it will be worthless without proper 

decryption keys, especially if encryption tokens have timeouts. 



41 
 

 

5.1.5 – Multi person control 

Going in an entirely different direction from the compartmentalizing of 

System Administrator roles as discussed earlier, a two-person control model, 

also known as a four-eyes authentication model, can be applied. In such a 

system one can mostly offset any attempt by malicious administrators, as 

certain administrative tasks will always require two people to complete. This 

system could also be extended to data and encryption access as outlined in 

the previous paragraph. If any single administrator can only see half of any 

data, algorithm or key, it becomes a jumbled incoherent mess which is a 

relatively simple way to make actual breaches much harder to pull off. The 

cited paper also points out how role separation can be circumvented by 

System Administrators altering their own roles to fit their desires, a valid 

point which would have to be separately evaluated. 

 

 

5.2 – Summary 
 

There appears to be no single way to achieve the ideal goal of completely 

removing System Administrators from personally identifiable data, as the 

very nature of their jobs require a level of access that enables them to access 

and tamper with this data in undesirable ways. As explored above, there are 

existing ideas on how to restrict, monitor and protect data, and to achieve a 

satisfactory level of security a compilation of several of these is likely 

needed. There is of course always progress in the field of security in general, 

and looking at new ways to apply current knowledge or new avenues of 

thought looks to be an interesting prospect. With further research, done 

over time with better resources and more depth there are certain to be 

some way to handle the somewhat unique problems facing the KRG in this 

particular area, though there is consensus that at some level the human 

element simply has to be trusted to follow the rules set before them. 

 A possible approach is twofold in addition to the above mentioned; 

a combination of automated logging of interactions with critical personally 

identifiable data and a multi-person control model. The keystone that then 

remains is the access to the encryption algorithms/keys, logs and 

administration of said, as all the preceding is moot if an admin can 

circumvent it by going in the backdoor. To close this hole the multi-person 

control model could be implemented in such a fashion that some 

information and some interactions can only be accessed and performed with 



42 
 

input from more than one. There are other avenues of approach, and they 

will be researched and assessed in order to find the optimal solution for this 

problem. 

 

 The implementation challenge will be learning about how the final 

approach can work in concert with existing frameworks and environments 

and maybe how to implement certain unique data manipulation tools. This 

will be discussed in detail in the next two chapters. 

 

 

  



43 
 

 
 
 
 
 
 
 

Part III 

Securing Sensitive Data at 
KRG 

  



44 
 

  



45 
 

Chapter 6 – Deciding on a Solution 
 

There are several possibilities for a good solution at KRG, but deciding on 

one depends on several factors. As mentioned in chapter 5, there is a fine 

line to tread when ensuring there is enough security, without making it too 

overbearing and constricting. At some level there needs to be some form of 

trust, else it will be impossible to maintain the systems in question. In 

addition, in the case of this thesis, it cannot be too comprehensive as there 

is simply not enough time to cover every possible scenario. As a result I will 

be making several assumptions, narrow the scope of my implementation 

and define a few requirements outside this scope which would need to be 

met were it to be deployed. 

 

6.1 – A completely secure system 
 

At one extreme it is possible to make security water tight, but this will make 

it utterly impossible to maintain. Let’s go beyond simply an isolated 

computer with input only and look at a scenario where you have a database 

which manages the confidential data and an application which is supposed 

to be the sole method with which to normally access it. This scenario is 

shown in figure 6. 

 

 

Figure 6: Application connecting to a Service 

 

 Storing the confidential data: 

o Firstly, it is possible to create an encrypted database which is 

practically impossible to decrypt within our lifetime, simply by 

applying a strong enough cypher. This is trivial.  

o Secondly, it is possible to have an access table in the database 

which cannot be accessed or edited by anyone, by creating the 



46 
 

list and then making the user which created the database 

inaccessible by corrupting its credentials. This is theoretically 

possible through byte corruption of the database data at the 

location of the root user credential storage.  

o Thirdly, before corrupting the administrator account, it is 

possible to ensure that no user in the authorized user list has any 

form of administrative access. 

o Lastly, you can ensure that all users have passwords that are 

strong enough to withstand any attempted brute force break. 

 

 Accessing the database: 

o  It is possible to set up a secure tunnel between the system and 

the database to avoid any attempted man in the middle attack or 

similar intercept, even from the management zone. To do this, 

you set up the tunnel between the system and database, creating 

the encryption keys on a standalone computer which is not 

connected to any network to eliminate any possible tampering. 

Extract the keys with a USB, apply them and then wipe both the 

computer and USB.  You also have to ensure the database only 

accepts connections through this tunnel, which would have to be 

done before the database management user was corrupted. 

 

 Securing the system: 

o Firstly it is possible to create a security application which 

intercepts and monitors any services which interact with the 

secure connection to the database, and perform checks to ensure 

they are legitimate. The source code would have to be kept 

confidential and either deleted once complete or isolated on a 

non-networked computer. This to prevent tampering with and 

‘updating’ the module. 

o Secondly the entire system would have to be created to spec, 

ensuring no methods which are not specified in the security 

module have access to the database and then the same isolation 

or deletion would have to be done. 

o Finally any user credential passing would have to be encrypted to 

avoid in-system intercepts before they are sent through the 

tunnel. 

 

 

 



47 
 

You now have a database, which is theoretically impossible to break into, 

and impossible to access unless you were among the initial authorized users, 

but impossible to maintain or repair should it become necessary. Also, you 

can never create any new authorized users. You also have a secure 

connection which cannot be intercepted but again cannot be changed or 

maintained in any way. You finally have a system which is impossible to 

access and spoof, but locked and impossible to maintain or upgrade.  

Assuming the job was done correctly, you can now be almost sure that your 

data is secure from access by System Administrators, unless the 

authenticated user credentials are compromised, but if anything were to go 

wrong or any changes needed to be made you would be stuck. This is clearly 

an untenable situation which cannot be the basis for any sound system. 

 

 

6.2 - The powers of a System Administrator 
 

The example of a secure system given in 6.1 – A completely secure system 

may sound more extreme than necessary, but many fail to realize the 

absolute power a full access System Administrator has if they have the 

requisite knowledge. They are not bound by the systems in place that a 

normal user has to utilize. Even ignoring physical access to the servers, they 

can access all services directly, completely circumventing most security 

protocols. They can disable or tamper with any security protocol they cannot 

circumnavigate, making it look like nothing ever happened. They can in the 

same vein frame other users, leaving no trace of their involvement. They 

could set up invisible listening programs which intercept and decrypt 

internal communications, since they have the keys, compromising 

credentials and services.  

In short a System Administrator can access anything, period. This is why 

most businesses compartmentalize roles such that System Administrators 

are not truly full access, such that they do not possess encryption keys or 

only have access to some services etc. Even with some limitations like this, 

given the skill and enough time they can usually find ways to gain access as 

long as they have the powers needed to maintain the system properly. 

 

 



48 
 

6.4 – The relationship between KNEIP and the 

Personal Number Encryption Algorithm 
 

As mentioned in 4.3 - Technology Architecture, a collection of old systems 

will be replaced by KNEIP in the near future, and once it is in place KNEIP will 

be the only system which has direct access to the service which manages the 

encryption and decryption of personally identifiable data. This service will 

henceforth be referred to as the Personal Number Service(PNS). The System 

Architecture structure will look something like what is shown in Figure 6 with 

KENIP replacing the application and the PNS replacing the database with the 

addition of a management zone which stands astride both the KNEIP system 

and the PNS as they are located in the Secure zone. 

In the strictest sense, the PNS is included in the KNEIP system, but it is 

physically separated and thus it is beneficial to imagine it as such. KNEIP will 

handle all daily connections while Management has the ability to connect to 

either in order to perform maintenance and manage the hardware. The 

critical point to take away from this is that the implementation should be 

such that the zone which access is attempted from should have no bearing 

on the integrity of the security measures. 

 

 

6.4 – Drawing the line 
 

Knowing what was discussed above, I have to make a few decisions and 

define the scope of the implementation.  

 

Firstly, System Administrators must be able to do their job. It is entirely 

untenable to overly restrict their ability to perform maintenance and 

manage the systems which they are obliged to service and make available to 

the people and systems at KRG. I will therefore not implement any security 

at the lowest level. Any changes at this level will have to go through the KRG 

leadership to be decided upon, and will have to be implemented as new 

policy to be enforced.  

Thus, if the implementation is to provide an adequate level of real-life 

security, it will be dependent on a few changes which would have to be 

decided on as policy and deployed. While this is not something I can directly 



49 
 

influence or implement, it is central to the integrity of the solution and 

eventual implementation and must therefore be presented in full. 

There are some prerequisites to this effect: 

o The PNS module is a part of KNEIP and cannot be accessed other 

than through services within the KNEIP system. 

o The PSN algorithm is hardcoded and encrypted, thus 

modification cannot be done on the fly. 

o A database to be used for secondary logging has a secure 

connection to KNEIP.  

o This database is managed by a dedicated Database 

Administrator.  

o Any connection used to administer the logging database must 

occur through the KNEIP system. 

o Logging Database Administrators cannot edit the data sent  

to the database, only read it.  

o The encryption keys used to set up the connection and the 

Database Administrator credential vault are managed by 

personnel separate from the System Administrators. 

o The algorithm and encryption protocol for the PNS are managed 

by separate personnel which do not have other Administrator 

powers which would enable them to circumnavigate the general 

security and logging currently in place. 

These prerequisites should not be invasive enough to noticeably inhibit the 

current ability of System Administrators or whomever administers the 

service to perform the majority of their duties, as they are merely a 

compartmentalisation of a select few roles. Note that even though the PNS 

is expected to be an integral part of KNEIP and only accessible through use 

of services within KNEIP, the limitation of access to the PNS algorithms 

through role compartmentalisation could by itself potentially eliminate the 

danger of access to it regardless of the source of the connection.  

Note also the mention of a Service Administrator credential vault. To clarify, 

currently, a list of the credentials of all Administrators is stored in an 

encrypted key vault which is maintained and managed by the System 

Administrators.  

 

For the sake of this thesis, I will assume these prerequisites are met and 

narrow the scope to include only the KNEIP system. Within this scope I can 

finally begin to decide on and implement a solution which achieves the 

desired goal.  



50 
 

6.5 – A solution 
 

As presented in Chapter 5, there are several existing avenues of approach 

when it comes to securing data and systems from System Administrators. 

Any one of them has been done before, and many businesses operate with 

their own set of approaches which cater to their respective needs. My 

contribution will be to combine custom versions of these to achieve the 

aforementioned goals in the framework available at KRG. Specifically 

provide an adequate level of security within the scope set forth previously, 

while still maintaining a limited impact on the daily tasks of System 

Administrators at KRG. 

Looking first at the state of the system, within the scope, before any security 

is in place.  

 The PSN can only be accessed through KNEIP.  

 The access to the PSN is controlled by the KNEIP user management, 

which are linked to the AD authentication servers. 

 KNEIP is a modular system, where services manage any action within 

it. Each service has specific roles, and no two services perform the 

same task. More details in the next chapter. 

 

Moving on to the actual implementation, taking all the prerequisites and 

assumptions set forth thus far into consideration, I will need to achieve a 

few goals. Firstly I will need to ensure that there is no possible way for a 

System Administrator, within the scope, to tamper with the PSN algorithm. 

Secondly I will need to ensure that any such attempt is caught and logged, 

and this logging needs to be secure and separate from the default system 

log. Thirdly I will need to ensure that certain authorized access is truly 

authorized through the addition of an internal list of authorized users, and 

my implementation will have to cover both System and Database 

Administrators. Finally I will have to ensure that the security service itself is 

safe from tampering. 

As a result of the above, I envision 4 distinct parts to my implementation: 

 A service call intercept to monitor activity.  

 A secondary ghost log, stored in a secure location. 

 A multi person control model when certain actions are requested 

along with an internal authorization list.  

 Maintaining the Integrity and Availability of my security module.  



51 
 

 

In addition to these four parts, an issue arises with the fact that 

authentication is controlled by the ADC, as a System Administrator could 

circumvent attempts to limit user creation in KNEIP by adding authorization 

directly to the ADC, which could then be propagated to KNEIP. To combat 

this an internal list of authorized personnel should be created and 

maintained by the implementation. It will mirror the actual list of users in 

the KNEIP system but in order to update them the KNEIP user creation 

services MUST be used as well as the list be checked whenever the multi 

person control model is called so that dummy accounts will not be allowed 

to function as substitutes. This helps ensure the scope is limited to KNEIP 

without fear of external circumvention. 

As mentioned in passing earlier, the ghost log and internal authentication 

list database must be protected from tampering. It is possible within the 

Sybase ASE databases to create Database Administrator accounts that can 

manage the database as a whole without being allowed to edit or even view 

the data on any given table. Doing this, and then keeping the credentials of 

the DB creator account confidential, should minimize the possibility of any 

tampering by the Database Administrators. This must be taken into account 

when the database is to be created. 

There are several more things to take into consideration when going forward 

with this solution, and the will be discussed in the next chapter where the 

actual implementation of each part and the application as a whole will be 

presented in depth. 

 

 

6.6 – Summary 
 

In this chapter I first presented an example of a completely secure system. 

It also happens that in order to achieve this it also becomes a completely 

unmanageable system bordering on useless.  

Following a summary of the absolute powers of a System Administrator and 

the relationship between KNEIP and the PNS a list of assumptions and 

prerequisites were presented which are either expected to come to pass or 

are otherwise required for the implementation to achieve the desired goal. 

These are obviously assumed in the next chapter where the solution will be 

implemented. 



52 
 

Finally a solution within the given confines was presented, a combination of 

method intercepts, secure logging and a multi person control model. Given 

the assumptions and prerequisites it is possible to have control over the 

ability of System Administrators to access personally identifiable data at 

KRG. This is the template used for presenting the implementation in Chapter 

7. 

 

  



53 
 

Chapter 7 – Implementing the Solution 
 

 

The goal is to develop and implement a service for the KRG KNEIP system 

which can catch, log and possibly prevent abusive access to the database 

which contains personally identifiable data, by elevated users. I will take a 

snapshot of the KNEIP system currently in development, containing only the 

services which will be relevant as well as making several assumptions on 

services which will be made in the future, and make a development 

environment in which to implement and test my solution. In order to achieve 

this the service needs to include the four parts mentioned in the previous 

chapter.  

 

First is the intercept several services which interact with the PNS service or 

commands sent to certain services which are not part of normal operations, 

such as editing or deleting logs and attempting to tamper with the security 

service. However, KNEIP is still in development and much of the final 

functionality is yet to be implemented. As a result command intercepts will 

be tested by creating several assumed dummy services which represent the 

functionality I wish to monitor and running several attempts to access these. 

Second is to log such unusual attempts in an additional ‘ghost’ log which 

cannot be edited or deleted, and can only be viewed by certain personnel. 

This operation will be entirely separate from the logging in place in the 

system, and will store the logs in a database with restricted access to ensure 

Confidentiality and Integrity.  

Third is to implement a multi person control model. This means requesting 

authentication by a second Database Administrator or other authorized 

person for some select few actions. This will require the most work as it goes 

beyond the intended functionality of Spring security. It will require the 

creation and maintenance of an authentication queue for any required 

authentications and some way to access it and authorize requests.  

Fourth, and last, is to ensure that my own service cannot be tampered with 

and the logging of any attempt to do so.  

While KNEIP implements normal authentication, a user access table and 

logging, my implementation goes beyond that and specifically targets 

elevated user abuse in regards to a specific set of data. This is not 



54 
 

functionality that is available through either the Spring framework or Java as 

a whole, and will certainly be a new extension not previously extant at KRG. 

 

7.1 – Assumed Services 
 

Due to KNEIP being in-development, parts of it are very bare and incomplete, 

and much functionality is not yet in place. As a result I will assume the 

existence of several services, also known as methods or classes, which the 

implementation will require. These assumptions are made from consultation 

with the development team and mostly reflect the current vision for the final 

product. Due to the modular nature of KNEIP it is trivial to alter, add more 

of or remove these at a later date, so these assumed methods will be 

sufficient to prove the viability of the module. I will list relevant method calls 

and classes, describe their intended functionality as well as including any 

arguments or return values. 

 In KNEIP Activity Logs: 

o Void delete(userName, timestamp) 

Assumed method which allows for the deletion of log file 

entries. Not a common feature but it will enable the testing 

of a basic intercept and the logging of this event along with 

backing up the deleted log entries without hindering the 

action. 

 

 In KNEIP User Control 

o KneipUser fetchUser(methodID) 

A method which returns the user which called the 

intercepted method. This is necessary to add data to the 

secondary log as well as ensure any four eyes authentication 

knows to not allow authentication from the same user twice. 

 

o Void createUser(id, firstName, userName, comments, roles, 

ownedLocks, projectGroup) 

Assumed method which simulates the creation of new users 

in the system. 

 

o Void setRoles(userName, roles) 

Assumed method which simulates the setting of new roles in 

existing users. Both of the above are useful for testing 

analysis of argument content. If the new user or existing user 



55 
 

is given a role of administrator my module will request a 

secondary authentication by a separate authorized user.  

 

 In System Manager 

o Void stopService(id) 

Assumed method which handles the stopping of system 

resources, in case of maintenance or upgrades which require 

such. If id matches the id of certain modules then it must be 

denied as it could be an attempt at circumventing the security 

measures maintained by it. 

 

 In Error Manager 

o genericError 

A class which represents future error objects. These are 

returned if the attempted method call is rejected and the 

system handles them further to display to the user. Contains 

a constructor which sets the message, and a method 

getMessage() which returns the relevant error message. The 

message is simply a placeholder for future ‘error type’ 

functionality. 

 

 In User Authenticator 

o Boolean AuthAttempt(token) 

A method which emulates a future authentication 

framework. This will be used in testing the four eyes 

authentication. 

 

 In ID Control 

o Long createID() 

A method which creates new process ID’s for new services 

initiated in the system. 

 

 

7.2 – Services and resources to be implemented 
 

While a solution and its parts have been decided on, the implementation of 

these will require the creation of several new services which will make up 

the structure. The package that they will all be part of is called admCtrl, an 



56 
 

obvious shorthand. They mostly follow the parts envisioned, and are as 

follows. 

 

 admCtrl 

The ‘main’ class, which initiates the remaining services, calling the 

system ID creator and passing relevant arguments to each. 

 

 secAspect 

The Aspect class which contains all the service intercepts, comprised 

of pointcut definitions and advice methods. Further described in 7.3. 

 

 ghostLog 

The ghost log logger. Contains methods for registering logs and 

searching the log database. 

 

 fourEyes 

The multi person control authenticator module. Intended to control 

authentication of a secondary authorized user. 

 

 secAuth 

Internal authenticator which manages the admCtrl authentication 

list. Secondary authentication checks separate from AD. 

 

In addition a ghost log/internal authentication database will need to be 

created and deployed for the implementation to be complete. Each ‘part’ 

and their relevant services will be covered in more detail in the following 

subchapters.  

 

 

7.3 – Intercepting service access 
 

Since KNEIP uses a highly modular design, where every major factor is 

controlled by a separate service it is possible to target specific methods in 

these services without extensive rewrites of lower level code, though this 

introduces many cross-cutting concerns. Spring supports Aspect Oriented 



57 
 

Programming (AOP), which is often used for logging, enabling easy 

interception of method calls. AOP allows for a separation of cross-cutting 

concerns, and works by writing aspect classes which specify a pointcut on 

which to perform an advice which allows injection of code before, during 

and after any method call as well as determining whether the method is 

allowed to run at all. A pointcut is simply a predicate that matches a 

joinpoint, where a joinpoint is the term describing a point during the 

execution of a program, such as a method call or the handling of an 

exception. An advice is a specification on what is to be done at any given 

pontcut, such as running code before execution, during execution, after 

execution or even preventing execution and returning an error. 

 

Spring AOP is simpler to use than the de-facto AOP extension for Java, 

namely AspectJ, however it is somewhat limited only allowing ‘before’ 

advice on method-execution pointcuts. This is not enough for this project, 

as it requires the ability to deny the execution of a method as well as extract 

the method ID to fetch the calling user. In light of this I will be using the full 

AspectJ extension.  

There is also a decision to be made in respect to when the weaving will occur. 

Weaving is the terminology given to the act of injecting code around method 

calls which AOP in essence does. Default is compile time weaving, which 

injects the code into the system at compile time and will then be an integral 

part of it. Another method is load time weaving, where it is woven once the 

system is booted up. The final is runtime weaving, where the code is 

dynamically woven when required. 

Both load time and runtime weaving are useful in some cases, but since this 

is a security application which should ideally not be disabled, I have decided 

to implement it with compile time weaving. This requires the use of the 

AspectJ compiler when compiling the system, but this is a trivial matter. 

Enabling full AspectJ support requires the addition of a line to the Maven 

dependency file, along with a list of bean definitions which AspectJ needs to 

see the classes it needs to interact with. Part of the Maven config file is 

shown in Figure 8. Beans defined in Maven are created as objects on system 

startup and can then be manipulated and tested on, removing the need to 

create the objects in the test file as you would with a simple test framework. 

Relevant constructor arguments are passed here, and the secure logging 

database connection is also defined. I have censored the location, username 

and passwords for the test database for security reasons. 



58 
 

<?xml version="1.0" encoding="UTF-8"?> 

. 
*Some schema definitions* 
. 

. 

. 
    <aop:aspectj-autoproxy/> 

 

    <bean id="ghostLog" class="net.krg.kneip.common.domain.security.admCtrl.ghostLog"> 

        <property name="dataSource" ref="dataSource"/> 

    </bean> 

 

    <bean id="fourEyes" class="net.krg.kneip.common.domain.security.admCtrl.fourEyes"/> 

 

    <bean id="acLog" class="net.krg.kneip.common.domain.common.log.ActivityLog"/> 

 

    <bean id="kUserCtrl" class="net.krg.kneip.common.domain.security.kneipUser.KneipUserCtrl"/> 

 

    <bean id="sysMgr" class="net.krg.kneip.common.domain.system.SystemManager"/> 

 

    <bean id="admCtrl" class="net.krg.kneip.common.domain.security.admCtrl.admCtrl"> 

        <constructor-arg type="long" value="0000"/> 

        <constructor-arg ref="kUserCtrl"/> 

        <constructor-arg ref="acLog"/> 

        <constructor-arg ref="ghostLog"/> 

        <constructor-arg ref="fourEyes"/> 

        <constructor-arg ref="secAspect"/> 

    </bean> 

 

    <bean id="secAspect" class="net.krg.kneip.common.domain.security.admCtrl.secAspect"> 

        <constructor-arg ref="ghostLog"/> 

        <constructor-arg ref="fourEyes"/> 

        <constructor-arg ref="kUserCtrl"/> 

        <constructor-arg ref="acLog"/> 

        <constructor-arg ref="sysMgr"/> 

    </bean> 

 

    <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> 

        <property name="driverClassName" value="com.sybase.jdbc4.jdbc.SybDriver"/> 

        <property name="url" value="jdbc:sybase:Tds:***DBIP/DBloc***"/> 

        <property name="username" value="******"/> 

        <property name="password" value="******"/> 

    </bean> 

    . 
    *some remoting config* 
    . 
    . 
    . 
</beans> 
 

Figure 7: Maven configuration file 



59 
 

 

Enabling AspectJ requires additional compiling with the AspectJ compiler, 

but there is less overhead than with Spring AOP which will be beneficial 

regardless of weave time.  

Additionally there is the choice of implementing the AOP either as regular 

Java code with annotations or in xml form. Either way is as good as the other 

and the choice depends more on preference than any other factor. For the 

sake of readability, and my own familiarity, the implementation of the 

intercept will be done in Java. 

In order to perform any form of advice, I will first have to declare pointcuts 

to determine joinpoints of interest. Pointcuts are declared with the @ 

annotation, followed by a specification of the type of pointcut, such as 

‘execution’ which defines that the pointcut will be matched to the execution 

of a method, and then the path to the joinpoint. This definition is followed 

by the name of the pointcut which can later be used to perform advice on. 

Advice is also declared with the @ annotation, which points to the desired 

pointcut. In this implementation the ‘around’ advice has been chosen as it 

allows for complete control over the called method, including whether it can 

run at all. This is then followed by a method which contains the desired code 

to run before, during and after the joinpoint such as logging and further 

authentication. Each method must return an object, as allowing the 

execution of the joinpoint requires the returning of a ProceedingJoinPoint 

object which points to the original method call or in the case of a failure or 

denial, the return of an Error object that the KNEIP error management will 

catch. 

The required pointcuts can be found in the excerpt of the aspect class in 

Figure 9.  

 



60 
 

@Aspect 
public class secAspect implements DomainEntity { 
    . 
    . 
    .  
 
    //Pointcuts 
  
    @Pointcut("execution(* " + 
                           "net.krg.kneip.common.domain.common.log.ActivityLog.deleteLog(..))"+ 
      " &&args(userName, timestamp))") 
        private void logDelete(String userName, Date timestamp) {} 
  
    @Pointcut("execution(* " +  
                           "net.krg.kneip.common.domain.security.kneipUser.KneipUserCtrl.createUser(..))"+ 
      " &&args(id, firstName, userName, comments, roles, locks, projectGroup))") 
        private void userCreation(Long id, String firstName, String userName, List<Comment> 
                                                       comments, List<KneipRole> roles, List<KneipLock> locks,  
                                                       ProjectGroup projectGroup) {} 
 
    @Pointcut("execution(* " +  
                             "net.krg.kneip.common.domain.security.kneipUser.KneipUserCtrl.setRoles(..))" + 
                             " &&args(userName, roles))") 
        private void userRoleSet(String userName, List<KneipRole> roles) {} 
  
    @Pointcut("execution(* " + 
                             "net.krg.kneip.common.domain.system.SystemManager.stopService(..))" + 
       " &&args(ident))") 
        private void serviceStop(Long ident) {} 
 
    . 
    . 
    .  
} 
 

Figure 8: Service Intercept Pointcut Declarations 

 

As seen in above, the number of pointcuts required are few, which is due to 

the demands of the prerequisites that allowed for a narrowing of the scope. 

Going through the pointcuts, what they intercept and what the advice 

methods for each will do: 

 The deleteLog pointcut is, as it states, the call to a method in the 

ActivityLog service which allows for log deletion. More an exercise in 

theory than likely implementation, but a method which may exist 

nonetheless. Even if the method exists, it is not desirable that logs 

disappear and thus it must be intercepted. 



61 
 

o The advice method will log the attempted occurrence by 

creating a deletion log entry in the ghost log database.  It will 

contain a timestamp, the name of the user that called for the 

deletion and the contents of the original log which are; the 

timestamp of the original log entry, the user name of the 

user the original log entry concerns and the log message of 

the original log. 

 

 The createUser and setRoles pointcuts concern themselves with 

methods in KneipUserCtrl which relate to the creation of new 

elevated users in the KNEIP system. While authentication occurs 

through the ADC, the system itself has its own user list. These need 

to be intercepted and the requested action analysed to decide 

whether further authentication will be required. These methods will 

need to be called to allow users to access the PNS, as will be further 

detailed in 7.5. 

o In both of these cases the list of roles will be looped over, 

and if they specify a System Administrator role, a Database 

Administrator role or a Developer role, the method will call 

for further authentication by invoking fourEyes, checking the 

internal user list for matches, as well as logging the 

occurrence in the ghost log. If authentication fails the original 

method call will be denied and an error object will be 

returned, if authentication succeeds it will be allowed to 

proceed. 

o Additionally if the creation of users with, or modification for 

roles that allow access to the decoding method of the PSN 

the method will intercept and log the occurrence and ask for 

a four eyes authentication. 

 

 The stopService pointcuts are again quite self-explanatory. They 

must be intercepted and analysed, such that any attempts at 

stopping the services presented in 7.2 be denied. Attempts to stop 

the PNS must be authorized, as further detailed in 7.6. 

o If the service ID of the service to be stopped matches the ID 

of any of the services in this implementation, it will be 

outright denied. If it matches the ID of the PSN, it will request 

further authentication and upon success be allowed to 

proceed. The occurrence will of course also be logged. 

 



62 
 

An example of advice to be performed on the pointcuts, specifically the 

advice in the case of log deletion, can be seen in Figure 10.  

@Aspect 
public class secAspect implements DomainEntity { 
    . 
    . 
    . 
    //Advice to run on pointcuts 
    @Around("logDelete(userName, timeStamp)") 
 public Object logRemoval(ProceedingJoinPoint pjp, String userName,  
                                                              Date timeStamp) throws Throwable { 
        System.out.println("Log Delete intercepted."); //Testing 
 
        ActivityLogService tmp = (ActivityLogService)pjp.getThis();//Ref  to calling object instance 
 
        try { 
            String log = tmp.getLogEntry(userName, timeStamp); 
            String user = kc.fetchUser(sm.getUserId(tmp)).getUserName(); 
            gl.addDelLog(user, userName, timeStamp, log, "Testing"); //Create ghost log entry 
        } catch (Exception e) { //Will happen if required services or ghost log DB are down. 
            System.out.println("Exception caught: " + e.toString()); //Testing 
            return new genericError(e); //Handled by KNEIP error handler 
        } 
        return pjp.proceed(); //Method call allowed to proceed as normal 
    }    
    . 
    . 
    . 
} 

 

Figure 9: Advice example, logDelete 

 

The logDelete advice fetches the reference to the calling object, then tries 

to fetch the username of the user which called this object for logging, before 

calling the ghost log service. Currently the catch handles generic errors, 

though this can easily expanded to include more specific errors as needed. 

The return is simply the reference to the called object, and the proceed() call 

allows it to do just that. 

 

 

 

 



63 
 

 

7.4 – Secondary secure logging 
 

Secure logging is necessary to avoid tampering by a rogue administrator who 

wishes to cover their tracks. It is essential that this logging not be accessible 

through normal means, and as presented in subchapter 6.5, a useful method 

is to store them in secure databases. As mentioned in Chapter 4, the 

databases at KRG are implemented with Sybase ASE and use a standard SQL 

syntax. Given the prerequisites presented the implementation is relatively 

trivial as it requires a simple SQL query which enters a log entry into the 

relevant table. The database will be divided into several different tables, one 

for each log type in order to keep searches simple and organized. 

The location of the database can be managed in two ways. Either stored in 

a flat configuration file which the program reads, or hardcoded in. A flat file 

makes altering the location of the database easier if ever needed, but it 

opens for tampering in the form of setting up a dummy server and simply 

changing the contents of the flat file, thereby compromising the integrity of 

the logs. The location will therefore be hardcoded into the configuration file. 

It is unlikely that the database will ever change location as KRG has complete 

control over its internal IP tables, making this concern an acceptable risk. In 

the event of the database crashing, being disabled forcefully or changing 

location unannounced the application will return false, causing the rejection 

of the attempted method call. This is rather harsh at first glance, however 

this implementation will rarely be invoked due to its limited scope, and as 

thus the impact will be minor. 

Finally it would be important to have security updates of the database 

periodically. There is already a system for backing up databases to several 

remote locations at KRG, and adding this database to that backup schedule 

would ensure proper backups and prevent the physical removal of the entire 

database by a particularly determined interloper. 

 

Figure 10 shows an excerpt of the ghost log class, with local variables and 

the log deletion logger. 



64 
 

@Entity 
public class ghostLog implements DomainEntity { 
 
    //Local variables 
    private Long ghostID; 
 
    private String delTable = "AALogDelete"; //Table for storing logs on system log deletions 
    private String userEditTable = "AAUserEdit"; //Table for storing logs on user creation and edits 
    private String serviceTable = "AAStopService"; //Table for logs on service termination attempts 
 
    private JdbcTemplate jdbcTemplate; 
    . 
    . 
    . 
    //Log entry in case of system log deletion 
    public void addDelLog(String user, String origUser, Date origTimeStamp, 
                          String origLog, String note) throws Exception { 
        System.out.println("Adding Deletion Log."); //Testing 
        if(user.length() > 8) { 
            note += "| User name SQL injection attempted. name was: " + user; 
            user = "REPLACED"; 
        } 
        try { 
            Date date = new Date(); 
            //Then write out the sql statement 
            String sql = "insert into " + delTable + " (Timestamp, UserName, OrigTimStamp, " + 
                    "OrigUserName, OrigMessage, Note) values (?, ?, ?, ?, ?, ?)"; 
            jdbcTemplate.update(sql, date.toString(), user, origTimeStamp, 
                    origUser, origLog, "Testing"); //Perform statement 
        } catch (Exception e) { 
            throw e; //Throw exception for secAspect to catch further 
        } 
    } 
    . 
    . 
    . 
} 

 

Figure 10: Ghost Log class variables and log entry example 

 

7.5 – Multi person authentication 
 

As decided, for some of the intercepted actions further authentication is 

necessary so a system for handling this must be made. When such an 

intercept occurs, the fourEyes service will be called and it will hold the 



65 
 

method call until such a time that it determines the secondary 

authentication is valid.  

In order to gather such a secondary authentication the implementation 

would make use of the already existing helpdesk system available to 

administrators. The service maintains a ‘queue’ by routing a message to the 

helpdesk system where the message will lay in a dedicated inbox until 

answered. It is possible to add a time limit for answering these requests, but 

for this iteration that will not be considered. 

The helpdesk software allows for secondary login prompts, and the message 

would initiate one such and return an encrypted credential token to 

fourEyes. The service will ensure the credentials do not match the 

credentials of the method caller, then send the credential token to KNEIP’s 

authentication module which validates the login with AD. If it fails, a new 

message will be sent to the queue once more to await another attempt. It is 

possible to have an arbitrary amount of retries, but in line with other 

accepted security protocols there will be the standard 3 tries. If it passes the 

method call will be released and the requested operation will be completed 

while the calling user will be notified of the success.  

In addition it will be necessary to check that the authentication token 

returned from the helpdesk does not belong to the Administrator who 

initiated the original method call to begin with. Two separate users need to 

be part of the multi person authentication naturally enough. 

For the PSN service no action will be needed. Modification is only possible 

before compile time, meaning the service would have to be stopped to 

modify it. If this were to change to allow on the fly modification, an intercept 

and four eyes control of this action would have to be implemented. 

Finally, the internal authentication list must be checked whenever fourEyes 

is called. It will be stored on the same database as the secure logging, and 

will be a black box table which Database Administrators do not have the 

ability to view or edit. Since four eyes is required for super user creation or 

elevation this very list will ensure that any new authorized users added to 

the list will not be done by dummy users created in the ADC. 

If the authentication fails, the method call will be denied and an error will be 

returned for the KNEIP error manager to handle further.  

An example of an advice which calls fourEyes can be seen in Figure 11, in this 

case an intercept of an attempt to stop a service. The input is evaluated, and 

if an attempt to stop the PNS is attempted, it requires further authentication 

and fourEyes is called. The return value of the requestAuth method is an int 

for the sake of logging, and will always attempt at most 3 times. 



66 
 

@Around("serviceStop(ident)") 
 public Object selfPreservation(ProceedingJoinPoint pjp, Long ident) throws Throwable { 
        System.out.println("Service Stop intercepted."); //Testing 
 
        SystemManagerService tmp = (SystemManagerService)pjp.getThis();//Ref to calling object 
instance 
        Long PSNid = 5L; //Since PSN has not been implemented, dummy id 
        int authAtt = 0; 
 
        try { 
            String user = kc.fetchUser(sm.getUserId(tmp)).getUserName(); 
 
            if(ident.equals(id) || ident.equals(ac.getId()) || ident.equals(fy.getId())  
                 || ident.equals(gl.getId())) { 
                gl.addServiceStopLog(user, tmp.getServiceName(ident), false, 0, 
                                                        "Not allowed to stop Security Services"); 
                return new genericError("Can't let you do that, Dave."); 
            } else if(ident.equals(PSNid)) { 
                authAtt = fy.requestAuth(user); 
                if(authAtt > 2) { //Failed authentication 
                    gl.addServiceStopLog(user, "PSN", false, authAtt, "Authentication failed"); 
                    return new genericError("Seems you failed."); 
                } else { 
                    gl.addServiceStopLog(user, "PSN", true, authAtt, ""); 
                    return pjp.proceed(); 
                } 
            } else { 
                gl.addServiceStopLog(user, "Other", true, authAtt, ""); 
                return pjp.proceed(); 
            } 
        } catch (Exception e) { 
            System.out.println("Exception caught: " + e.toString()); //Testing 
            return new genericError(e); //Handled by KNEIP error handler 
        } 
} 

 

Figure 11: Advice which evaluates input and calls fourEyes 

 

Unfortunately the implementation of this service in its entirety is currently 

not feasible as the new helpdesk system was just recently deployed and 

there was not sufficient documentation available on how to make use of the 

potential login prompt functionality in time for the completion of this thesis. 

Despite this a dummy version of the fourEyes method will be created for 

testing purposes and the completion of this module will be discussed in 

subchapter 8.2 on future works.  



67 
 

 

7.6 – Securing the security 
 

An important part of any security application is to ensure that the service 

itself is not tampered with. If the module, or parts of it, go down then any 

security it attempted to implement would be rendered quite useless, limited 

or even cause a nonfunctioning system. 

As mentioned in subchapter 7.1, the decision was made to implement 

compile time weaving. This means that the module can never be simply 

‘disabled’, as the code is woven into the system during compile time and will 

be there permanently. Only if the services that contain the joinpoints are 

disabled will the code be rendered inoperable, but then the services will be 

unavailable so any attempt at using them will automatically fail. 

The services can go down by mundane means, but in an attempt to 

immunize it from deliberate tampering the implementation will block any 

attempts at overtly disabling the services. As previously presented, the 

intercept catches any attempt at disabling any service, and if the service ID 

matches the ID of the ghost logger or the four eyes authenticator, it will deny 

the operation and return an error. 

Despite this however, if some of the services the woven code relies on go 

down anyway then the system will fail if the calls are not handled 

appropriately. It might cause instability or crashes, and that is not acceptable 

in a system which requires reliable uptime. The solution is to always use a 

try and catch for every call. This can be seen in Figure 10 where the logger is 

called. If the try fails, then the catch will perform its code. The result of such 

a failure will be the denial of the attempted method call and an error being 

returned. The use of this requires that every method throws Exeption so that 

if any internal failure occurs, then it can return an error message for the 

catch to process. There can be several catches for each try, covering several 

different forms of failure, though this implementation only implements a 

generic error. 

 

The PSN itself must also be protected from tampering. Even though there is 

a premise that dedicated personnel manage the algorithms and keys 

implemented in the PSN, it could still conceivably be possible to disable the 

service and replace it with another service which sends data to third parties 

without the normal security catching this. To combat this the ID of the PSN 

service will be made available to this implementation at system startup so 



68 
 

that any attempt at stopping this could be intercepted. Unlike with stopping 

the security services, this attempt will not simply be stopped. This gives 

slightly greater flexibility instead of demanding the recompilation of the 

entire system in order to alter it. In the event of a future policy change 

requiring the modification of this algorithm it will instead require secondary 

authentication through the use of four eyes. One of the users in this 

authentication MUST be the PSN Administrator, and the implementation will 

ensure this. 

 

Additionally, since the ghost log is a database an opening for injection 

attacks becomes possible, and it is important to not let any user input 

commands be allowed directly into the database as an unchecked passed 

variable. With this implementation, the only variable that can potentially be 

tampered with is the username of the caller. A rogue admin could 

conceivably create a user with name ‘; TRUNCATE TABLE tablename’. This 

could be a problem if the implementation simply added a string together to 

send unsanitized to the database, but using the jdbcTemplate.update 

command the database will check each incoming field data to ensure the 

format is correct, avoiding SQL injection vulnerabilities. It would be useful to 

notify administrators of some of the more blatant attacks such as the 

attempt to delete the log as shown above. As luck would have it, all 

usernames at KRG are short to the point that they are all far below the 

number of characters this requires. Even if the table name had only one 

character, the minimum length of the command would have to be 18 

characters, and old ADC naming limitations prevented any usernames above 

15 characters in length. As a result, short usernames became policy, usually 

2 to 4 letters from a combination of first and last name initials and this 

practice has continued to this day. Now, modern versions of AD allow much 

longer usernames, but due to the naming conventions in place a simple 

check for username length can be implemented and if above, say, 8 

characters a message would be instantly sent to some administrator in 

addition to it being logged normally.  

 

 

7.7 – Summary 
 

After presenting a list of assumed services for the unfinished KNEIP system, 

this chapter proceeded to describe the implementation of the three 

modules and overarching internal security in a structured manner. AOP was 



69 
 

used to implement a service intercept system which catches the attempted 

triggering of certain actions and performs various analysis which is logged. 

In some of the cases, such as admin user creation within the KNEIP system, 

a four eyes authentication is called and forces additional authentication. 

With the exception of the Four Eyes module, all desired functionality was 

implemented successfully and will be tested in the next chapter.   



70 
 

  



71 
 

 
 
 
 
 
 
 

Part IV 
 

Testing and Results 
  



72 
 

  



73 
 

Chapter 8 – The testing 
 

In order to evaluate the functionality and feasibility of the implementation, 

some testing is necessary. As there are four primary parts to the 

implementation, the testing will also take a form corresponding to each 

respective part.  

The framework used in the testing is Junit, which is a Java testing framework 

which is also build into Spring. It allows for a range of tests which cover both 

successes and failures with varying input parameters and assertions as well 

as simple method calls and printouts. It allows for the creation of a dedicated 

test class, placed in a separate ‘test’ structure in the project which can be 

called by the IDE at any time as defined in the maven configuration to initiate 

the system and run the included tests.  

 

Policy requirements and prerequisites can of course not be tested in this 

thesis, and will as such be assumed to function as described. Instead the 

testing will focus on the functionality of the implementation as described in 

the previous chapter.  

Figure 12 shows the setup of the test class which fetches references to the 

services of interest from the beans definitions and sets up several constants 

for use during testing. The @Before annotation defines the method which 

runs before any others, and is useful for preparing references and variables. 



74 
 

@RunWith(SpringJUnit4ClassRunner.class) 
@ContextConfiguration(value = "classpath:META-INF/spring/aspectConfig.xml") 
public class tester{ 
    . 
    . 
    . 
    @Before 
    public void setUp() { 
        al = (ActivityLogService) ac.getBean("acLog"); 
        actrl = (admCtrlService) ac.getBean("admCtrl"); 
        gl = (ghostLog) ac.getBean("ghostLog"); 
        fy = (fourEyes) ac.getBean("fourEyes"); 
        sa = (secAspect) ac.getBean("secAspect"); 
        kc = (KneipUserCtrlService) ac.getBean("kUserCtrl"); 
        sm = (SystemManagerService) ac.getBean("sysMgr"); 
        sm.setId(9L); //Force id for testing 
        ic = new IDControl(); 
        tmpDate = new Date(); 
        adm1 = new KneipUser(); //An administrator 
        adm2 = new KneipUser(); //Some other administrator 
    . 
    . 
    . 
} 

 

Figure 12 - Testing set up and preparation 

 

 

8.1 – Interceptor and logger test 
 

The interceptor and logger test have been combined as calling even the 

simplest of the methods to be intercepted necessarily calls the logging 

mechanism. While they were tested separately to begin with, the finished 

implementation cannot do one without the other, as intended. 

The testing of the interceptor is relatively simple. The tester simply calls the 

methods which correspond with the implemented joinpoints and check if 

they are in fact intercepted by the interceptor.  

In order to test the logger a test database is created with the required fields 

and attempts to call the methods at each of the joinpoints are performed 

with varying forms of input to check that the correct data is stored on the 

database.  



75 
 

The test was run by ensuring the objects existed, then calling an attempted 

log deletion which is supposed to be intercepted and logged. Figure 13 

shows the testing code for this, figure 14 shows the printout results and 

figure 15 shows the result in the database. 

 

@Test 
    public void testIntercept() throws Exception { 
        //Tests AoP intercepts and ghost logging 
        System.out.println("Starting test."); 
        assertNotNull(sa); 
        assertNotNull(gl); 
        al.deleteLog("testUser", tmpDate); 
        System.out.println("Test completed!"); 
        . 
        . 
        . 
    } 

 

Figure 13: Intercept and logging test code 

 

Starting ghost log test. 
Log Delete intercepted. 
In fetchUser 
Adding Deletion Log. 
In deleteLog. 
Ghost log test completed! 

 

Figure 14: Intercept and logging test printout 

 

Timestamp UserName OrigTimStamp OrigUserName OrigMessage Note

Tue Apr 22 11:4 adm1 Apr 22 2014 11: test Some log entry1 Testing

 

Figure 15: Log Deletion attempt log database result 

 

As the results show, the intercept and logging functionality works as 

intended. Once the call is attempted, the AOP code catches it, finds out the 

calling user, calls ghost log to log it and then allows the method to run. A 

note on the missing data in the timestamps in the database, this is due to a 



76 
 

too short field for these values as they are currently mere char fields and not 

timestamp fields in order to avoid a compatibility issue during testing. This 

would be corrected in any implementation for deployment. 

 

8.2 – Four Eyes test 
 

Due to this section not being implemented fully, some aspects cannot be 

tested at this time. However the concept can be tested through sending a 

few authentication attempts through a dummy service that emulates 

successes and failures depending on the input. To achieve this I edited the 

fetchUser dummy method such that I could pre-set which user it would 

return, and depending on which user I set the fourEyes test method will 

return either failure or successes in emulation of an authentication attempt. 

This will then in essence be more a test of the analysis of the data in the 

intercept method to ensure that fourEyes is called when and only when it’s 

supposed to be called. With this data the concept can be demonstrated even 

with missing functionality. 

 

The first few tests will be on an attempted service Stops, beginning with an 

attempt at stopping one of the security services. Since the KNEIP ID 

generation is not in place, I have predetermined the ID’s of each of the 

security services. admCtrl being 0L(Long), ghostLog being 1L, fourEyes being 

2L and secAspect being 3L. Figure 16 shows the test code where I set the 

user to be an administrator and ‘he’ is attempting to stop the ghost logger. 

Figure 17 shows the resulting printout, and Figure 18 shows the resulting log 

in the Service Stop Log database. 



77 
 

    @Test 
    public void testIntercept() throws Exception { 
        . 
        . 
        . 
        //Tests foureyes intercept for service Deletion 
        System.out.println("Starting service deletion test."); 
        assertNotNull(fy); 
        adm1.setUserName("adm1"); 
        kc.setTestUser(adm1); 
        System.out.println("Setup done."); 
        sm.stopService(1L); //This is the ID of the ghost Logger, set for testing purposes 
        System.out.println("Service deletion test complete."); 
        . 
        . 
        . 
    } 

 

Figure 16: Security Service Stop test code 

Starting service deletion test. 
Setup done. 
Service Stop intercepted. 
In fetchUser 
Adding Service Stop Log. 
Service deletion test complete. 

 

Figure 17: Security Service Stop test printout 

TimeStamp UserName TargetService Allowed AuthAttempts RejectionReason Note

Fri Apr 25 13:2 adm1 ghostLog FALSE 0

Not allowed to 

stop Security 

Services Testing

 

Figure 18: Security Service Stop test log database result 

 

As the test results show, the intercept works exactly as intended. In this case 

fourEyes did not need to be called as the attempt was immediately rejected. 

Moving on to an example which requires further authentication, I set the 

second admin user, which will trigger the simulated event of a failed 

authentication attempt in the dummy fourEyes module. I will forgo printing 

the test code, so figure 19 shows the resulting printout and Figure 20 shows 

the results in the logging database. 



78 
 

Starting service deletion test 2. 
Setup done. 
Service Stop intercepted. 
In fetchUser 
Requesting secondary authentication 
Adding Service Stop Log. 
Service deletion test 2 complete. 

 

Figure 19: Failed PSN Service Stop test printout 

TimeStamp UserName TargetService Allowed AuthAttempts RejectionReason Note

Fri Apr 25 14:0 adm2 PSN FALSE 3

Authentication 

failed Testing

 

Figure 20: Failed PSN Service Stop log database result 

 

Again the tests return the expected results. The intercepts accurately 

analyze the input and call the fourEyes module. Since adm2 was the caller 

the dummy module emulated 3 attempted authentications, which is the max 

allowed and then returned causing the intercept module to log the attempt 

and return an error instead of allowing the execution to proceed, as evident 

of the lack of a printout showing ‘In stopService’. 

 

More tests were run on other permutations and each returned expected 

results, but it is unnecessary to simply list several pages of similar printouts. 

The above suffice to demonstrate the method and exemplify the results. 

 

 

8.3 – Self security tests 
 

Some of this was touched on in the previous section, such as emulated 

authentication attempts due to invalid authenticating users in the fourEyes 

service. Authentication errors will not be tested further as these are all to be 

handled either by KNEIPS existing authentication system or the fourEyes 

module. Regular users would never be allowed to call the stopService 

method by KNEIP, while fourEyes would ensure at least one of the users 



79 
 

attempting a stop of the PSN service was a PSN administrator and followed 

the internal user list. 

First in this test I will disable one of the services required by this 

implementation, to simulate some error or attempt at tampering that 

somehow worked. This will be emulated by injecting a null pointer into the 

implementation and seeing what happens. Figure 21 shows the printout 

when the ghostLog service cannot be found. 

Starting service deletion test 2. 
Setup done. 
Service Stop intercepted. 
In fetchUser 
Exception caught: java.lang.NullPointerException 
Service deletion test 2 complete. 

 

Figure 21: Attempt at calling disabled security service. 

 

The final test from the fourEyes testing was used as an example, and here a 

simple null pointer exception was caught, which then resulted in the called 

method not being allowed to run and the error being percolated up the 

system to be caught by the KNEIP error handler.  

 

Next up I attempted an SQL injection. Since the logger sanitizes the input 

through the use of a prepared statement this is not a real fear due to the use 

of prepared statements as well as the ‘insert into’ statement not being very 

prone to abuse. However as mentioned in subchapter 7.6 it would be useful 

to specifically take note of blatant attempts even though they are logged. So 

if an admin who knew the structure of the log database created a username 

‘user, 24.1.2014, user2, nothing, nothing); TRUNCATE TABLE AALogDelete;’ 

which would wipe the database if it was not sanitized it is far above the set 

limit. Figure 22 shows the printout and Figure 23 the result in the database. 

Starting SQL injection test. 
Setup done. 
Log Delete intercepted. 
In fetchUser 
Adding Deletion Log. 
Blatant, lengthy SQL injection noticed 
In deleteLog. 
SQL injection test complete. 

 

Figure 22: Blatant SQL injection attempt test 



80 
 

 

Timestamp UserName OrigTimStamp OrigUserName OrigMessage Note

Fri Apr 25 15:1 REPLACED Apr 25 2014  3: testUser Some log entry1

Testing | SQL 

injection 

attempted: user, 

24.1.2014, user2, 

nothing, nothing); 

TRUNCATE TABLE 

AALogDelete

 

Figure 23: Blatant SQL injection attempt log entry 

 

As evident from the printout, the attempt was caught and the log reflects 

this. In a future version the catch would send a message to the helpdesk 

system for the administrators to see, so that it could be further investigated, 

though that functionality is not in place for the same reasons that fourEyes 

communication with the helpdesk is not. 

With these two bases covered the security module should be secure from 

tampering within the given scope. 

  



81 
 

 
 
 
 
 
 
 

Part V 
 

Conclusion 
  



82 
 

  



83 
 

Chapter 9 – Conclusion and further 

work 
 

 

9.1 – Conclusion 
 

This thesis has shown that deciding on the correct balance of security vs 

usability is a complex problem with no universal solution. Any solution needs 

to be tailored to the specific organization and a practical solution to securing 

sensitive data against System Administrators needs to be implemented 

specifically. Therefore, the specific context of the KRG was presented in 

length, and background information had to be understood before narrowing 

the scope sufficiently. In the end, this thesis presents a feasible solution 

which achieves the intended goal. 

The solution as presented, given the assumptions and requirements, will be 

able to prevent access to the PSN service by unauthorized System 

administrators. It adds a new facet where there previously was nothing, and 

due to its modular and focused nature is cheap to implement and simple to 

upgrade or expand in the future. With the combination of secure 

connections, demands for access to be granted within KNEIP so that an 

internal overview can be monitored, an intercept of services which could 

both directly and indirectly grant access, secure secondary logging and 

reporting and a multi-person authentication I believe that all relevant 

avenues have been covered. The implementation ensures that attempts 

from within KNEIP are caught and handled, while the prerequisites prevent 

external direct tampering. 

The solution is of course not absolute, as the social aspect is still in play and 

if a rogue administrator gains the credentials of another administrator, then 

the system would not prevent access. It is regardless far superior than what 

is already extant, and the fact that it would be known that this specific form 

of abuse is logged separately and securely will also certainly help deter 

abuse attempts, potentially making rogue entities think twice. 

The testing showed that the implemented solution worked as intended 

without any obvious problems. Every test returned a success and all outputs 

were as expected. Despite the incomplete fourEyes module I deem the 

implementation to be a success, and with the completion of said and some 

further testing could be ready for deployment. 



84 
 

 

Due to the self-contained nature of the modules and the precautions taken, 

knowledge gained from this thesis or insight into the source code should not 

compromise the implementation in any manner. 

 

 

 

9.2 – Further Work 
 

As mentioned the completion of the fourEyes module would be of 

immediate interest for future work. Figuring out how the helpdesk receives 

messages and handles the triggering of login screens would be necessary to 

complete the functionality the security implementation requires. If not the 

helpdesk then some other solution such as a self-made application would be 

feasible. 

The implementation of a scoring system of how ‘important’ an action is 

could potentially prioritize the reporting of certain actions. This in addition 

to a counting mechanism could add a trigger for actively sending a message 

to the administrators if a certain action is performed often, or more than 

normal in a short period of time instead of simply logging it and waiting for 

someone to read the log. This was considered for the thesis, but not included 

due to time constraints. 

This implementation is quite limited in scope, but with what has been 

created it can be expanded to monitor and control further services and 

actions for specific user groups in specific circumstances. The service could 

also potentially be ported to other systems to perform similar or different 

checks on various services. 

One interesting avenue of future work could be to see if it is possible to 

implement a method of multi person control and ghost logging at a lower 

level such as weaving code directly into the ADC and intercepting 

authentication attempts at the system level. This would require a thorough 

understanding of the source code of any given ADC, root access to inject 

such a service and insight into how an ADC communicates with the rest of 

the systems it interacts with. 

Another expansion of functionality would be to expand the error handling 

to include more specific actions in response to specific errors. As it is now it 

simply throws generic errors for the KNEIP error manager to catch, but how 



85 
 

it processes these is unknown as of yet and it might be desirable to have 

more control over these actions in the case of a security application. In 

addition it would be beneficial to implement the notification of relevant 

users of specific failures. If a service goes down send a message to the 

developers or if the logging database goes down notify the database 

Administrators. A messaging system would have to be chosen, but it could 

be of great utility in specific circumstance. 

Additionally it might be interesting to explore the possibility of creating and 

backing up log databases dynamically from within the running application as 

needed, circumventing the need for database Administrators to create the 

databases and preventing the leak of the database root user credentials.  

  



86 
 

Bibliography 
 

Andress, J. (2011). The Basics of Information Security: Understanding the 
Fundamentals of InfoSec in Theory and Practice: Elsevier Science. 

Baker, W., Gouldie, M., Hylender, C. D., Niemantsverdriet, J., Novak, C., Ostertag, 
D., . . . Service, M. a. w. o. t. U. S. S. (2010). Verizon 2010 Data Breach 
Investigations Report (R. team, Trans.) (pp. 66). 

Ferguson, P. (1998). The Internet Protocol Journal. What Is a VPN - Part 1, 1.  
Frangopoulos, E. D., Eloff, M. M., & Venter, L. M. (2008, 18-20 November 2008). 

Social Aspects of Information Security. Paper presented at the ISSA Regional 
Social Security Forum for Africa. 

Greenwald, G., MacAskill, R., & Poitras, L. (2013). Edward Snowden: the 
whistleblower behind the NSA surveillance revelations, The Guardian. 
Retrieved from 
http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-
whistleblower-surveillance 

Josey, A. (2011). TOGAF Version 9.1 Enterprise Edition, An Introduction (pp. 13).   
Karger, P. A., & Schell, R. R. (1974). Multics Security Evaluation: Culnerability 

Analysis (E. S. D. (AFSC), Trans.) (pp. 156). L. G. HANSCOM AFB, MA 01730: 
Hanscom AFB. 

Kozaczuk, W. (1984). Enigma: how the German machine cipher was broken, and 
how it was read by the Allies in World War Two: University Publications of 
America. 

Marks, P. (2011, 27 December 2011). Dot-dash-diss: The gentleman hacker's 1903 
lulz. New Scientist. 

Marshall, D. (2011). Top 10 benefits of server virtualization. Retrieved from 
InfoWorld website: http://www.infoworld.com/d/virtualization/top-10-
benefits-server-virtualization-177828 

Messmer, E. (2010). Biggest insider threat? Sys admin gone rogue. Retrieved from 
Computerworld website: 
http://www.computerworld.co.nz/article/362247/biggest_insider_threat
_sys_admin_gone_rogue/ 

Miami, U. o. (2006). confidentiality, integrity, availability (CIA). 
http://privacy.med.miami.edu/glossary/xd_confidentiality_integrity_avail
ability.htm 

Morris, R., & Thompson, K. (1979). Password security: a case history. Commun. 
ACM, 22(11), 594-597. doi: 10.1145/359168.359172 

Normen, S. f. (2013). Norm for Informasjonssikkerhet, Helse-, omsorgs- og 
sosialsektoren.  Oslo:  Retrieved from http://helsedirektoratet.no/lover-
regler/norm-for-
informasjonssikkerhet/Documents/Norm%20for%20informasjonssikkerhe
t%20i%20helse-%20omsorgs-%20og%20sosialsektoren.pdf. 

Northcutt, S., Zeltser, L., Winters, S., Kent, K., & Ritchey, R. W. (2005). Inside 
Network Perimeter Security (2nd Edition) (Inside): Sams. 

Oracle. Secure Coding Guidelines for the Java Programming Language, Version 4.0: 
Oracle Corporation. 

http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
http://www.infoworld.com/d/virtualization/top-10-benefits-server-virtualization-177828
http://www.infoworld.com/d/virtualization/top-10-benefits-server-virtualization-177828
http://www.computerworld.co.nz/article/362247/biggest_insider_threat_sys_admin_gone_rogue/
http://www.computerworld.co.nz/article/362247/biggest_insider_threat_sys_admin_gone_rogue/
http://privacy.med.miami.edu/glossary/xd_confidentiality_integrity_availability.htm
http://privacy.med.miami.edu/glossary/xd_confidentiality_integrity_availability.htm
http://helsedirektoratet.no/lover-regler/norm-for-informasjonssikkerhet/Documents/Norm%20for%20informasjonssikkerhet%20i%20helse-%20omsorgs-%20og%20sosialsektoren.pdf
http://helsedirektoratet.no/lover-regler/norm-for-informasjonssikkerhet/Documents/Norm%20for%20informasjonssikkerhet%20i%20helse-%20omsorgs-%20og%20sosialsektoren.pdf
http://helsedirektoratet.no/lover-regler/norm-for-informasjonssikkerhet/Documents/Norm%20for%20informasjonssikkerhet%20i%20helse-%20omsorgs-%20og%20sosialsektoren.pdf
http://helsedirektoratet.no/lover-regler/norm-for-informasjonssikkerhet/Documents/Norm%20for%20informasjonssikkerhet%20i%20helse-%20omsorgs-%20og%20sosialsektoren.pdf


87 
 

Paquet, C. (2012). Implementing Cisco IOS Network Security(IINS 640-554) 
Foundation Learning Guide (2nd Edition ed.): Cisco Press. 

Prabhakaran, V., Bairavasundaram, L. N., Agrawal, N., Gunawi, H. S., Arpaci-
Dusseau, A. C., & Arpaci-Dusseau, R. H. (2005). IRON file systems. SIGOPS 
Oper. Syst. Rev., 39(5), 206-220. doi: 10.1145/1095809.1095830 

Seacord, R. (2011). Top 10 Secure Coding Practices. Retrieved from Confluence 
website: 
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+
Secure+Coding+Practices 

Thomas, T. M. (2004). Network Security First-Step: Cisco Press. 
Various. Information Security. 2013, from 

http://en.wikipedia.org/wiki/Information_security 

 
 

http://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://en.wikipedia.org/wiki/Information_security

