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Preface

The topic of this thesis is the study of low-dimensional quantum magnets and the investigation

of their static and dynamic properties on very fine scales.

The main results of this work were published in the attached articles, and presented and

discussed in international conferences, schools and symposiums: NordForsk network meet-

ing in NTNU, Trondheim (November 3–5, 2008) and in Å, Lofoten, Norway (August 3–8,

2009); European School on Magnetism (ESM-2009) in Timişoara, Romania (September 1–10,

2009); Moscow International Symposium on Magnetism (MISM-2011) in MSU, Moscow, Rus-

sia (August 21–25, 2011) [1]; the 19th International Conference on Magnetism with Strongly

Correlated Electron Systems (ICM2012 with SCES) in Busan, Republic of Korea (July 8–13,

2012) [2].

Thesis structure

The thesis is organized in two parts. The first part contains an introduction to the dissertation

topic as well as calculations omitted in the published papers.

The second part consists of a list of my contributions to the papers and the published papers

themselves.
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Chapter 1

Introduction

Towards the end of the XIX-th century many physicists believed that all physical problems were

almost solved. The famous British scientist William Thomson (well-known as Lord Kelvin)

gave a lecture entitled "Nineteenth-Century Clouds over the Dynamical Theory of Heat and

Light" [3] in 1900, where he said

The beauty and clearness of the dynamical theory, which asserts heat and light to
be modes of motion, is at present obscured by two clouds.

These Kelvin’s "clouds" were two unexplained phenomena: the Michelson-Morley experi-

ment [4] and a black-body radiation effect known as the ultraviolet catastrophe [5], which were

indicated as the final steps to a complete understanding of the universe, explained in terms of

classical motion of particles. The two "clouds" on the horizon represented new challenges and

fundamental limits to the classical approach. In fact, they meant totally new and unanticipated

physics, now known as relativity theory and quantum mechanics.

In 1900 Max Karl Ernst Ludwig Planck originated the quantum theory when he suggested

the first quantum hypothesis that any energy radiating from an atomic system can be divided

into a number of discrete "energy elements" (energy quantums)1 [7, 8]. The term "quantum

mechanics" itself was first used in 1925 by Max Born [9], and a keystone to the quantum

theory was laid the same year by Erwin Schrödinger who developed and formulated the wave

equation [10] that describes the behaviour of a quantum mechanical system. In the following

years the quantum mechanical framework were applied to atomic and nuclear physics, chemical

structure and bonding.

In solid state physics quantum mechanics was used to improve predictions of the classical

theory and to explain electrical and thermal properties of crystalline materials. In particular

Arnold Sommerfeld combined the classical Drude model [11, 12] with quantum mechanics in

the free electron model (also known as the Drude-Sommerfeld model) [13], where electrons

are modelled as a gas of particles which obey the quantum mechanical Fermi-Dirac statistics

[14, 15].

1The word "quantum" (plural: quanta) comes from the Latin "quantus" which can be translated "how much".

The quantum in general was well-known also before era of the quantum mechanics. Physicians often used this

word, such as the term "quantum satis" (the amount which is needed). Historically at that time many scientists

were physicians as well as physicists (e.g. Hermann von Helmholtz graduated from Charité - Universitätsmedizin

Berlin where he defended the thesis in physiology "De fabrica systematis nervosi evertebratorum" in 1842 [6]).
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This period was also the beginning of the quantum theory of magnetism. The theory of

magnetism was initially focused on explaining order-disorder phase transitions in ferromagnets.

Wilhelm Lenz proposed a model of interacting magnetic moments (known as the Lenz-Ising

model) [16] and gave it as a problem to his student, Ernst Ising, who solved it in one dimension

in 1925 without finding any phase transitions [17]. The same model, but in higher dimensions,

was used to explain the phase transition between ferromagnetic and paramagnetic states in

subsequent studies by Rudolf Peierls, Hendrik Kramers, Gregory Wannier and Lars Onsager,

see the history review [18].

While the Ising model is a purely classical model, its quantum counterpart was introduced

by Werner Heisenberg in 1928 [19] by using the Pauli exclusion principle [20]. In 1931 the

one dimensional version of the Heisenberg model was solved by Hans Bethe [21] using a new

method, Bethe ansatz, for finding exact eigenvalues and eigenvectors. This model is, with small

modifications, used extensively to describe properties of several magnetic insulators [22].

Quantum mechanics has come a long way since its beginnings, and is now established as

the framework for explaining all microscopic phenomena, including magnetism. The effects of

quantum mechanics are getting more and more important as experiments are moving towards

the atomic scale. Experimental techniques are now approaching, and have in some cases even

reached, a spatial and temporal resolution corresponding to the atomic scale. In particular

scanning tunneling microscopy (STM), transmission electron microscopy (TEM) and atomic

force microscopy (AFM) can now spatially resolve atoms and can provide detailed information

of physical phenomena on the single-atom scale, see [23–26]. Also infrared lasers probe very

well the energy levels at the meV-scale [27, 28] and allow to access timescales of a picosecond

[29–31] that is the typical energy and time scale of quantum magnetic phenomena. There is no

reason to expect these advances to halt, and so there will also be need for quantitative theoretical

predictions in these regimes.

The aim of the works presented in this thesis has been to carry out detailed quantitative

predictions of quantum magnetic phenomena that might be within the reach of probes with high

spatial or temporal resolution in the near future. In particular, the main focus of this thesis is on

magnetic Bloch oscillations in the cobalt chloride dihydrate (CoCl2 ·2H2O). These are very fast

magnetization oscillations and will require high frequency magnetization detection equipment

in the hundreds of GHz-range, see our Article I [32]. Yet indirect signals, such as the energy

spectrum corresponding to these oscillations, can in principle be observed in todays neutron

scattering experiments [33].

To complement this with a magnetic phenomena requiring high spatial resolution we also

discuss the magnetization pattern around a general impurity in a Heisenberg antiferromagnet.

Such a pattern can only be observed with a magnetization probe that has atomic spatial reso-

lution such as for instance magnetic force microscopy (MFM) [34] or spin-polarized scanning

tunnelling microscopy (SP-STM) [35].

It is a hope that the results calculated here can be experimentally observed in the near future.
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Chapter 2

Bloch Oscillations

Bloch oscillations (BOs) [36] were predicted in the first age of quantum mechanics in 1928.

This phenomenon which is oscillatory motion of a particle in a periodic potential in a uniform

constant field is rather counterintuitive from the standpoint of classical mechanics. Initially it

was predicted for an electron in a crystal subject to an external static electric field by Bloch

and Zener [36, 37]. Electron Bloch oscillations are however extremely hard to observe exper-

imentally in metals due to electron scattering off impurities and phonons. So while the phe-

nomenon was predicted theoretically long ago, BOs have only recently been demonstrated [38]

in very clean artificial materials with a periodic layer structure known as semiconductor super-

lattices [39].

Subsequently the same oscillatory motion of a particle in an external field have been ob-

served in many different physical systems. The Bloch oscillations were experimentally demon-

strated in ultracold atoms in a periodical optical potential [40,41] and in Bose-Einstein conden-

sates [42, 43]. Bloch oscillations of light were theoretically predicted [44–46] and shown in an

experiment with optical superlattices [47]. Also acoustic Bloch oscillations were recently ob-

served in ultrasonic superlattices [48], artificial 2D-structures on water (a phononic crystal) [49]

and grating structures on solid substrates [50]. In this thesis we will discuss theoretically the

possibility of observing Bloch oscillations in magnetic systems. This possibility was suggested

by Jordan Kyriakidis and Daniel Loss [51] in 1998. Such magnetic BOs have not been ob-

served experimentally yet. Before we treat the details of magnetic BOs, we will discuss Bloch

oscillations from a general point of view.

2.1 Theory of Bloch oscillations

In general the phenomenon of the Bloch oscillations is based on the following properties of a

particle in a periodic potential and an external field [52]:

• the energy spectrum has a band structure and the energy is a periodic function in the

reciprocal lattice,

• the interaction of the particle with the external field can be described by classical equa-

tions.
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In order to simplify calculations without loss of generality we can consider a particle in one-

dimensional system.

2.1.1 Semiclassical approach

If one makes these assumptions, then the equation of motion for a particle under the influence

of an external force is
dp

dt
= Fext, (2.1)

where momentum p is proportional to wave vector (crystal momentum or quasi-momentum):

p = �k, see [53], and the external force Fext depends on the nature of the particle and the

applied field. The evolution equation can be rewritten as

�
dk

dt
= Fext, (2.2)

which is the so-called "acceleration theorem" [54, 55]. It has the following solution

k(t) = k(0) +
Fext

�
t. (2.3)

In a crystal with a periodic potential the energy spectrum has a band structure. In the simplest

case, e.g. the tight-binding approximation (or linear combinations of atomic orbitals approxi-

mation) [56], the particle energy for a given energy band in the one-dimensional crystal is

E(k) = A cos ak, (2.4)

where a is the lattice parameter and the constant A corresponds to a half of the bandwidth,

see [57, 58]. In the semiclassical approximation the velocity of the particle is given by

v(k) =
1

�

dE
dk

= −Aa

�
sin ak. (2.5)

Therefore the particle position is

x(t) =

∫
v(k(t))dt = x0 +

A

Fext

cos

(
aFext

�
t

)
, (2.6)

and so the particle undergoes oscillatory motion with the Bloch angular frequency

ωB =
aFext

�
(2.7)

and the amplitude of the Bloch oscillations is given by

xB =
A

Fext

. (2.8)

In particular, in the case of a charged particle in a constant electric field E the electric force is

Fext = eE, where the e is charge of the particle.
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It is important to note that the Bloch frequency ωB is proportional to the lattice spacing of

the crystal and to the force acting on the particle while the magnitude of the oscillations xB in

Eq. (2.8) is proportional to the bandwidth but inversely proportional to the external force.

2.1.2 Wave-packets approach

We can make the above semiclassical description of BOs more "quantum" by identifying the

particle as a wave-packet of Bloch waves. Bloch’s theorem [36] states that the solution of the

Schrödinger equation of a non-relativistic particle in a periodic potential, in the one-dimensional

case, can be written as Bloch waves:

ψn,k(x) = eikxun,k(x), (2.9)

where eikx is a plane wave envelope function, n indicates the energy band En(k), and un,k(x)

is the periodic (Bloch) function with the same periodicity as the crystalline potential un,k(x) =

un,k(x+ a) when a is the period of the lattice.

A particle subject to an external static force is described by the Hamiltonian

Ĥ = − �
2

2m

d2

dx2
+ U(x) + xFext, (2.10)

where U(x + a) = U(x) is the periodic potential of the crystal lattice. In the presence of the

applied external field the particle wave function can be considered as a wave-packet built from

the Bloch waves characterized by momentum distributions gn(k, t) for each individual band n

ψ(x, t) =
∞∑
n=1

∫
dk gn(k, t)ψn,k(x). (2.11)

In the case when only a single band n0 is occupied initially at t = t0, so that the momentum

distributions are gn(k, t0) = 0 for the band indices n �= n0 and if the distribution gn0(k, t0)

is a smooth function and well localized around some value k0 within a single Brillouin zone

(it implies that characteristic width Δk of the momentum distribution is small compared with

the Brillouin zone width 2π/a, so in real space the wave-packet extends over a few lattice

spacings) and couplings to other bands are weak (so we can neglect transitions to these bands

n �= n0), then the mentioned semiclassical "acceleration theorem" (2.2) becomes valid and the

Schrödinger equation corresponding to the Hamiltonian (2.10) can be written [37, 59] as

∂

∂t
|gn0(k, t)|2 =

Fext

�

∂

∂k
|gn0(k, t)|2, (2.12)

which has the following solution

|gn0(k, t)|2 = G

(
k +

Fext

�
t

)
, (2.13)

where G is a smooth function of its argument. It means that the momentum distribution of

the wave-packet propagates at a constant speed in momentum space, while the shape of the

7



distribution does not change, see [59,60]. This physical phenomenon corresponds to dynamical
localization of a particle in a uniform external field.

The argument of the function G in Eq. (2.13) indicates that the wave-packet center moves

with constant speed Fext/� through the Brillouin zone. When it reaches the boundary of the

Bloch band in momentum space it experiences Bragg reflection by the crystal (in the considered

approximation of "Bloch particle" within the single band model the interband transitions or

Zener tunneling were neglected), e.g. see [60, 61]. The period of the oscillatory motion is then

size of the Brillouin zone, 2π/a, divided by the effective constant speed Fext/� that gives the

angular frequency of the Bloch oscillations

ωB =
aFext

�
=

eaE

�
(2.14)

in the uniform electric field E.

2.1.3 Wannier-Stark description

The semiclassical approach in the previous sections treated the periodic potential and external

force differently. First the wave-packet is formed from Bloch states and then the only role of the

external force is to move the wave-packet. A proper quantum theory of the Bloch oscillations

solves the eigenvalue problem in the presence of both factors: the periodic potential and the

external force. The result of this is a spectrum with equidistant energy levels known as the

Wannier-Stark ladder (WSL) [62].

We will now show how the WSL can be obtained in a simple approach where we first neglect

the periodic potential and treat the particle in the external force field quantum mechanically.

Then we impose the periodic potential as a boundary condition which leads to the appearance

of the WSL. The Bloch oscillations can then be obtained from consideration of time evolution

of this quantum system with an equidistant energy spectrum (WSL) and the oscillations here

are sometimes termed Wannier-Bloch oscillations [63].

The dynamics of a single particle in an external potential of a constant force without the

periodic potential is described by the Hamiltonian

Ĥ = − �
2

2m
∇2 + V̂ (x), V̂ (x) = xFext. (2.15)

The corresponding time-independent Schrödinger equation for the particle is

Eψ = − �
2

2m

d2ψ

dx2
+ xFext ψ, (2.16)

which corresponds to the description of a particle in a linear potential (e.g. free fall in gravita-

tional field near the Earth surface [64]). This equation can be written in the following form

d2ψ

dξ
− ξψ = 0, ξ =

x

l
− λ, (2.17)
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x�x0
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Figure 2.1: Solution of the Schrödinger equation for a particle with energy E in a linear potential

described by the Hamiltonian (2.15). The zero argument ξ = 0 corresponds to the turning point

at x = x0 = E/Fext when the particle energy is equal to potential energy of the external force

field E = V (x0).

where the new variables are introduced

l = 3

√
�2

2mFext

, λ =
2mE
�2

l2 =
2mE
�2

(
�
2

2mFext

)2/3

. (2.18)

The parameter l is a characteristic length.

The general solution of the second order differential equation (2.17) is Airy functions of the

first and second types which are related to Bessel functions and modified Bessel functions of

the 1/3-order [65]. Only the Airy functions of the first type Ai(x) are physical, as the other

ones of the second type Bi(x) diverge exponentially at large positive argument and are not

normalizable. Therefore the wave function of the particle is

ψ ∼ Ai(ξ) = Ai
(x
l
− λ

)
(2.19)

and its characteristic behaviour is shown in Fig. 2.1. The zero argument ξ = 0 corresponds to

the turning point at x0 = E/Fext when the particle energy is equal to the potential energy of the

external field E = V (x0) = x0Fext.

For positive argument ξ (when x > x0) the Airy function Ai(ξ) is a positive and concave

function, and decreases exponentially to zero in the following way

Ai(ξ) ∼ ξ−1/4

2
√
π
e−

2
3
ξ3/2 . (2.20)

This corresponds to under-barrier tunneling for which the particle wave function ψ(x > x0)

decays exponentially and the particle kinetic energy is negative E < V (x).

When the argument is negative the Airy function oscillates around zero with ever-increasing

9



frequency and ever-decreasing amplitude which is given by the asymptotic formula [66]

Ai(−ξ) ∼ ξ−1/4

√
π

sin

(
2

3
ξ3/2 +

π

4

)
. (2.21)

For negative argument ξ (when x < x0) the particle is above the potential barrier (E > V (x))

and its quasi-momentum k is real-valued and depends on the spatial coordinate x.

If the particle is also subject to a periodic potential, then its velocity goes to zero at the

boundary of the Brillouin zone, so effectively the particle is reflected from the Brillouin zone

boundary. It means that magnitude of the particle wave function ψ(x) decreases with increasing

the deviation from the turning point x0 = E/Fext (see Fig. 2.1) and the wave function is non-

zero only in the region near x = x0. Therefore the electron becomes localised around the

turning point that corresponds to the phenomenon of the dynamical localization of a particle.

The energy spectrum can be found from the wave function boundary condition that the lo-

calization points, where the Airy function argument becomes zero (ξ = 0), are to be invariant

under the translations of an integer number of lattice spacings due to the periodic crystal struc-

ture

xn = x0 + a n, n = 0,±1,±2, . . . , (2.22)

that implies

λn =
x0

l
+

a

l
n. (2.23)

The energy of the states in Eq. (2.18) becomes then

En =
�
2

2ml2
λn = E0 + aFext n. (2.24)

Therefore the energy spectrum of the localized states is equidistant. It is called the Wannier-

Stark ladder (WSL) [62]

En = E0 + �ωB n, n = 0,±1,±2, . . . , (2.25)

where the index n describes the energy levels and the localization points of the particle wave

function xn = x0 +
�ωB

Fext
n, see [52]. The distance between the nearest energy levels in the

equidistant spectrum of WSL defines the frequency ωB of the Bloch oscillations

ωB =
aFext

�
=

aeE

�
(2.26)

and agrees with what is found in the wave packet approach in Eq. (2.14).

2.1.4 Experimental observation of BOs

Electron Bloch oscillations were controversial and interesting mostly from a theoretical point

of view for along time. In the idealized case even a weak electric field should be sufficient

to excite BOs at low Bloch frequency with long oscillation period TB = 2π�/(aeE) which

must be smaller than a characteristic relaxation time τ in a crystal in order to complete the

entire oscillation cycle before the electron gets scattered. At the same time the amplitude of

10



BOs depends linearly on bandwidth Δ = 2A and varies inversely to the external field by xB =

A/eE, so the oscillation magnitude should also not exceed the electron scattering length.

This means that in real natural crystals the Bloch oscillations are extremely hard to observe

because of scattering processes due to lattice defects, impurities, phonons, etc. For example the

metal copper has a face-centered cubic (fcc) crystal structure with lattice parameter a = 3.6 Å

and Fermi energy EF = 7.0 eV [67]. In a moderate electric field E = 100 kV/m it gives the

following estimates: the Bloch period is TB = 0.1 ns and the amplitude of BOs is xB = 70 μm

while the typical electron mean free path at room temperature is just le = 40 nm [58, 68]

corresponding to an extremely short mean time between collisions τ = 25 fs.

For a typical semiconductor with a lattice constant a = 5 Å and a presumably conduction

bandwidth of Δ = 1 eV [69, 70] in the same electric field an electron should oscillate with

amplitude xB = 5 μm and Bloch period TB = 80 ps while a typical inelastic scattering

time scale is τ = 0.1–10 ps and decreases with electric field strength [71]. So the Bloch

period could coincide with the scattering time at an electric field of about Eτ = 2π�/(aeτ) ≈
10–100 MV/m. This magnitude is of the order of the dielectric breakdown field strength of

most dielectric materials [70].

Therefore in these situations the period of a single Bloch oscillation exceeds significantly

the characteristic relaxation time (TB � τ ). This prevents the experimental observation of the

electron BOs in ordinary metals and semiconductors at room temperature. Experimental evi-

dence of Bloch oscillations of electrons was obtained only in synthetic artificial semiconductor

superlattices, where the typical bandwidth is in the range Δ = 10–100 meV and the lattice

constant is about a ≈ 100 Å [69, 72]. This gives a Bloch period of TB = 4 ps and amplitude

xB = 50 nm for the electric field E = 100 kV/m.

The first experimental observation of Bloch oscillations in a GaAS–GaAlAs superlattice

with lattice constant a = 65 Å and bandwidth Δ = 30 meV was seen in an electric field

E = 2 MV/m [38] that gives the Bloch period TB = 0.3 ps and the amplitude of BOs xB =

8 nm. The typical damping time of the Bloch oscillations in the semiconductor superlattices

is τB = 1–2 ps [73, 74] and originates from non-equidistant energy spectrum and electron

scattering at the interfaces of junctions in the superlattices, see [75].
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Chapter 3

Magnetic Bloch Oscillations

Theoretically one can ask the following question: "Can the same phenomenon of Bloch oscil-

lations also exist in magnetic systems?" This possibility was first discussed by Kyriakidis and

Loss [51] in 1998. They considered a spin chain where the particle is a propagating single

domain-wall excitation, and concluded that magnetic BOs should indeed exist. In particular,

the blue crystalline material CoCl2 · 2H2O which can be modeled as an easy-axis quasi one-

dimensional ferromagnet was proposed as a promising candidate to observe the magnetic Bloch

oscillations at low temperature.

3.1 Theory of magnetic Bloch oscillations

We consider this proposal in further details. In our study of a quantum ferromagnetic spin-1
2

chain we assume that

• The spin chain has a strong easy-axis (Ising) character (Jz � Jx, Jy) in order to suppress

the proliferation of domain-walls.

• There is no interband tunneling (Zener transitions). This requires the energy of the oscil-

lation to be small which restricts the magnitude of static magnetic field (hz 	 Jz).

• Inelastic scattering processes, which destroy the phase coherent motion, are neglected. It

implies that there are no phonon emissions or absorptions, and the density of excitations

(domain-wall separating regions of overturned spins) is quite small so that we can neglect

local interaction between them.

• The quantum system is at low temperature (T 	 Jz).
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3.2 Hamiltonian

Specifically we consider a spin-1
2
XY Z ferromagnetic Hamiltonian for a chain with next nearest

neighbour coupling in a magnetic field

Ĥ = −
∑
i

(
JxŜ

x
i Ŝ

x
i+1 + JyŜ

y
i Ŝ

y
i+1 + JzŜ

z
i Ŝ

z
i+1

)
+
∑
i

JBŜ
z
i Ŝ

z
i+2 −

∑
i

(
hxŜ

x
i + hzŜ

z
i

)
, (3.1)

which can be written as

Ĥ = Ĥz + Ĥa + Ĥ⊥ + Ĥx + ĤB, (3.2)

where

Ĥz = −Jz
∑
i

Ŝz
i Ŝ

z
i+1 − hz

∑
i

Ŝz
i ,

Ĥa = −Ja
∑
i

(
Ŝ+
i Ŝ

+
i+1 + Ŝ−

i Ŝ
−
i+1

)
, Ja = (Jx − Jy)/4,

Ĥ⊥ = −J⊥
∑
i

(
Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1

)
, J⊥ = (Jx + Jy)/4,

Ĥx = −h⊥
∑
i

(
Ŝ+
i + Ŝ−

i

)
, h⊥ = hx/2,

ĤB = JB
∑
i

Ŝz
i Ŝ

z
i+2 (3.3)

with the redefined coupling constants Ja and J⊥, and Ŝ±
i = Ŝx

i ± iŜy
i are the usual spin-1

2

raising and lowering operators. The parameter h⊥ = hx/2 corresponds to an effective transverse

magnetic field which can either be an external field or it can arise due to crystal field effects

and interchain coupling in real materials. The coupling constant JB describes a next-nearest-

neighbor interaction in the chain, which might arise for example due to a zigzag structure (see

Figure 3.1). In the case of a magnet with strong anisotropy with Jz > 0 as the largest coupling

the system has an easy-axis and behaves roughly like an Ising ferromagnet.

�������������

�

�

�

�

�

�

Jz
JB

�z

Figure 3.1: A chain with a zigzag structure where the next-nearest-neighbor interaction couples

z-components of spins with the parameter JB. The constant Jz describes their nearest-neighbor

coupling.

This Hamiltonian can also be mapped to an antiferromagnetic one-dimensional system,

where every second spin is rotated an angle 180◦ about the x-axis. Then the Hamiltonian in

Eq. (3.1) is mapped to a spin-1
2

antiferromagnet in a staggered longitudinal field hz
st = (−1)ihz

and a uniform transverse hx magnetic field, see [76]. In a real crystal the staggered field can be

caused by Dzyaloshinskii-Moriya interactions (antisymmetric exchange) [77, 78].
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Figure 3.2: (a) A spin state with a single domain wall. (b) Two bound states, where each state

consists of a domain and an anti-domain wall.

We consider a ferromagnet where the ferromagnetic coupling (Jz > 0) causes alignment of

z-components of neighboring spins. With Jz � Jx, Jy the energy of an excited state depends

mainly on the number of pairs of anti-aligned spin neighbours, or domain walls (see Figure 3.2).

Each domain wall costs an energy of Jz/2, thus we can divide the energy states into sectors

which are specified by the number of domain walls Ndw. An external magnetic field hz imposes

a penalty having a spin anti-aligned with the hz-field. At low temperature the ground state

favors having a large number of spins aligned with the static magnetic field hz.

In the absence of other couplings the first excited state corresponds to a single domain wall

excitation (Ndw = 1) in the system, see Figure 3.2(a). Acting on this state the Ĥa term of the

Hamiltonian (3.3) can shift the position of the domain wall which makes its dynamic. This mode

of a single domain wall propagating along the magnetic chain was first predicted by Villain [79]

in 1975 and has been observed in various neutron scattering experiments [80–82].

Natural examples of spin-1
2

systems described by the Hamiltonian (3.1) are quasi one-

dimensional magnetic materials at low temperature with Co2+-ions as magnetic centers, e.g.

the cobalt salts CsCoBr3, KCoF3, CsCoCl3, CoCl2 · 2H2O and CoNb2O6. In particular, the

quasi 1D ferromagnet CoNb2O6 has the zigzag chain structure of the magnetic ions [83, 84]

that gives the nonzero next-neighbours coupling JB. Magnetic properties of the Co2+ magnetic

centers are discussed below.

3.2.1 Properties of Co2+ ions

Cobalt is a transition element with atomic number Z = 27 which is in the d-block of the periodic

table. It means that the atomic d-orbital subshell of the second outermost shell is not filled and

the atom has the electron configuration 1s2 2s2 2p6 3s2 3p6 3d7 4s2. The labels s, p, d, f, . . .

correspond to the orbital angular momentum quantum numbers l = 0, 1, 2, 3, . . .1

In the cobalt ion Co2+ the two electrons from the outermost 4s-shell are removed and its

electron configuration for the last subshell is 3d7 in the ground state. Using Hund’s rules [86,87]

the ground state configuration corresponds to the term 4F with total spin S = 3/2 and total

angular momentum L = 3. The detailed diagram of the electron configuration in the ground

state is shown in Figure 3.3. There are three unpaired electrons on the d-subshell (with l = 2)

so the total spin of the cobalt ion is Sion = 3× 1
2
.

Examples of quasi one-dimensional magnetic materials at low temperature with Co2+-

ions as magnetic centers are the cobalt salts CsCoBr3, KCoF3, CsCoCl3, CoCl2 · 2H2O and

CoNb2O6. The total spin momentum of cobalt ion is S = 3
2

but due to spin-orbit coupling and

1Historically, letters of the orbital labels s, p, d, f came to quantum mechanics from spectroscopy and describe

properties of the spectral series observed in alkali metals as "sharp", "principal", "diffuse" and "fundamental" [85]

while letters for subsequent values of orbital momentum l were assigned in alphabetical order, omitting the letter

"j".
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3d7 ↑↓ ↑↓ ↑ ↑ ↑
Figure 3.3: Electron configuration of Co2+ ion for the outer 3d-subshell in the ground state.

The ground state term is 4F with total spin S = 3
2

and total angular momentum L = 3.

(a) (b)

Figure 3.4: (a) Crystal structure of the cobalt chloride dihydrate (CoCl2 ·2H2O) from Ref. [96].

(b) Magnetic unit cell of this material. The strong ferromagnetic Jz couples spins along the c
axis in CoCl2 · 2H2O. The spin z-axis corresponds to the crystallographic b axis. Neighbour

spin chains are coupled weakly antiferromagnetically.

slight distortion in the materials at low temperature the molecular field causes exchange mixing

of single-ion levels that results in a spectrum of doublets, thus the effective spin is S0 = 1
2

with a relatively large g-factor (for details see [88–91]). Therefore the quasi one-dimensional

magnetic materials can be described by an effective spin-1
2

Hamiltonian.

In our study we will focus mainly on magnetic properties of CoCl2 · 2H2O as a candidate

material for observing magnetic Bloch oscillations in purely Ising-like magnetic systems [51].

The crystal structure of the cobalt chloride dihydrate (CoCl2 · 2H2O) was first deduced using

electron diffraction techniques [92] and refined later by x-ray diffraction techniques [93]. The

magnetic structure of the material was investigated by using proton nuclear magnetic resonance

(NMR) measurements [94]. The lattice parameters, crystal structure and magnetic properties

of CoCl2 · 2H2O are given in the Ref. [95, 96]. In this material strong chemical bonds result in

polymeric CoCl2-chains along the crystallographic c axis which are relatively weakly bonded

by hydrogen bonds between chlorine ions of a neighboring polymeric chain and the oxygen

atom of the water molecule completing the almost octahedral structure about the Co2+-ion. The

exchange spin interaction between cobalt ions within the same chain is ferromagnetic and much

stronger than the weak antiferromagnetic interaction between different chains. These neighbour

magnetic spin chains become antiferromagnetically ordered below the Néel temperature TN ≈
17.2 K [97] with chain magnetizations directed parallel to the crystallographic b axis. Crystal

structure and magnetic unit cell of CoCl2 · 2H2O at low temperature (T 	 TN ) are shown in

Figure 3.4. The magnetic excitation spectrum of CoCl2 ·2H2O at low temperature was observed

experimentally in far-infrared transmission measurements [88, 98] and analytically studied in a

series of papers [99–101].
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3.2.2 Two domain wall approximation

In Ref. [51] Kyriakidis and Loss focused on the study of a single domain wall and how it

undergoes Bloch oscillations when subject to a magnetic field. In the presence of a magnetic

field however, the states with an odd number of domain walls are heavily suppressed as they

cost an energy of the order of the system size unless the domain walls are close to the chain

ends [102]. Therefore neglecting boundary effects the single domain wall state is not part of

the low energy spectrum in a finite magnetic field. Assuming a large energy cost to create

domain walls we therefore investigate low energy excitations involving only a few even number

of domain walls Ndw.

In the simplest approximation, the two-domain wall approximation (Ndw ≤ 2), where a

domain and an anti-domain wall create a cluster (or simply a domain) of overturned spins, each

state can be described in the following way

|j, l〉 = | . . . ↑↑
j

↓↓ . . . ↓︸ ︷︷ ︸
l

↑↑ . . .〉, (3.4)

where the index j = 1, 2, . . . , N gives the starting position of the down-spin cluster (domain)

and l = 1, 2, . . . , N describes its length, N is the total number of spins in the chain which

can be a macroscopic number (N � 1), and ↑ is a spin-up along the z-axis. Using periodic

boundary conditions there are no boundary effects. Extending this representation to l = 0 the

ferromagnetic state is |0, 0〉 = | ↑↑ . . . ↑↑〉 with all overturned spins along the magnetic field

and belongs to the zero domain wall sector, which is independent of site number j. Neglecting

contribution from higher number of domain walls we consider below the action of the spin-1
2

Hamiltonian terms in Eq. (3.3) on the state (3.4) and retain only terms with Ndw ≤ 2.

Hz-term

Since the Ŝz-operator does not change the state and Jz is the largest coupling, the first term of

the Hamiltonian has a diagonal matrix form and gives, as a result, the leading contribution to

the energy levels

Ĥz|j, l〉 =
{

− (Jz + hzl)|j, l〉, l �= 0,

0, l = 0,
(3.5)

where the energy of the fully polarized ferromagnetic state was chosen equal to zero.

HB-term

The next-nearest-neighbour interaction gives an additional contribution to the Hamiltonian di-

agonal elements that lowers the energy of a single overturned spin (one spin domain l = 1) in

comparison with the energy of domains with several overturned spins

ĤB|j, l〉 =

⎧⎪⎨
⎪⎩

2JB|j, l〉, l ≥ 2,

JB|j, l〉, l = 1,

0, l = 0.

(3.6)
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Hx-term

Acting on the state (3.4) the raising and lowering spin operators Ŝ+ and Ŝ− can change the

length of the domain by one site, create an extra domain with l = 1 (just one overturned spin)

or annihilate one. The rising operator acts in the following manner

Ŝ+
i |j, l〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 l = 0,

|0, 0〉, i = j, l = 1,

|j + 1, l − 1〉, i = j, l > 1,

|j, l − 1〉, i = j + l − 1,

0, otherwise,

(3.7)

where we neglect transition to higher number domain wall states (Ndw ≤ 2). The action of the

lowering operator is similarly

Ŝ−
i |j, l〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|i, 1〉, l = 0,

|j − 1, l + 1〉, i = j − 1,

|j, l + 1〉, i = j + l,

0, otherwise.

(3.8)

That gives the following Ĥx-contribution to the Hamiltonian

Ĥx|j, l〉 = −h⊥(1− δl,0)
[
(|j, l + 1〉+ |j − 1, l + 1〉)

+ (|j, l − 1〉+ |j + 1, l − 1〉) (1− δl,1)
]
− h⊥

N∑
i=1

(|i, 1〉δl,0 + |0, 0〉δl,1). (3.9)

The first term describes the change of a domain length of a state in the Ndw = 2 sector while the

second term corresponds to transitions between Ndw = 2 and Ndw = 0 sectors. This transition

between the ferromagnetic state and two-domain wall state depends on the system size, as there

are N places to insert the new domain with a single overturned spin.

H⊥-term

The Ĥ⊥ term involves spin operators Ŝ+
i Ŝ

−
i+1 which can change position of a single overturned

spin (or domain with l = 1) by one site or create a new additional domain in a higher domain

wall sector. Restricting to Ndw ≤ 2 the spin operators act as

Ŝ+
i Ŝ

−
i+1|j, l〉 =

{
|j + 1, 1〉, i = j, l = 1,

0, otherwise,

Ŝ−
i Ŝ

+
i+1|j, l〉 =

{
|j − 1, 1〉, i = j − 1, l = 1,

0, otherwise,
(3.10)
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Ĥ⊥ Ĥa

↑↑↑↑↑↑ → 0 ↑↑↑↑↑↑ → ↑↑↓↓↑↑ ,+2
↑↓↓↑↑↑ → ↑↓↑↓↑↑ ,+2 ↑↓↓↑↑↑ → ↑↓↓↓↓↑ , 0
↑↑↓↑↑↑ → ↑↑↑↓↑↑ , 0 ↑↑↓↑↑↑ → ↑↑↓↓↓↑ , 0

Figure 3.5: Examples of the actions of Ĥ⊥ and Ĥa terms on particular states from the zero

and two domain wall sectors. Only cases that yield the minimal amount of increase in domain

walls are shown. Operating with Ĥ⊥ are shown on the left, while the right hand side shows the

effects of operating with Ĥa. The increase in the number of domain walls is indicated to the

right of each process. Note that Ĥa has the ability to move domain walls without increasing

their number when acting on a state with one or more domain walls (right side, the two lowest

processes), while Ĥ⊥ lacks this ability with the exception that it can move a single overturned

spin without creating new domain walls (left side, the bottom line).

which can be summed up as

Ĥ⊥|j, l〉 = −J⊥(|j + 1, 1〉+ |j − 1, 1〉)δl,1. (3.11)

In fact, the Ĥ⊥ term only affects the odd l sector since Ĥ⊥ is only non-zero when it acts on the

state with a single overturned spin (i.e. the minimal bound state of two domain walls separated

by one site, see Figure 3.2(b) right), while its action on all other states produces more domain

walls, see Fig. 3.5. When the term Ĥ⊥ acts on the state with a single overturned spin (l = 1),

it can move this whole bound state without creating extra domain walls. This minimal bound

state of two domains walls (or domain with length l = 1) plays role of the "kinetic bound state"

which was observed in the neutron scattering experiment [103] in CoNb2O6.

Ha-term

The corresponding sum of the operators Ŝ+
i Ŝ

+
i+1 and Ŝ−

i Ŝ
−
i+1 in the Ĥa term can create/annihilate

an extra domain with l = 2 or change the size of a domain by two sites

Ŝ+
i Ŝ

+
i+1|j, l〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, l = 0, 1,

|0, 0〉, i = j, l = 2,

|j + 2, 1− 2〉, i = j, l > 2,

|j, 1− 2〉, i = j + l − 2, l > 2,

0, otherwise

(3.12)

and

Ŝ−
i Ŝ

−
i+1|j, l〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|j, 2〉, l = 0,

|j − 2, l + 2〉, i = j − 2, l > 0,

|j, l + 2〉, i = j + l, l > 0,

0, otherwise,

(3.13)
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where again contribution from higher domain wall sectors was neglected. Thus in the two

domain wall approximation (Ndw ≤ 2) the term Ĥa acts as

Ĥa|j, l〉 =− Ja(1− δl,0)
[
(|j, l + 2〉+ |j − 2, l + 2〉) (3.14)

+ (|j, l − 2〉+ |j + 2, l − 2〉)(1− δl,2)(1− δl,1)
]
− Ja

N∑
i=1

(|j, 2〉δl,0 + |0, 0〉δl,2),

where the sum is performed over all next nearest neighbour pairs.The first term changes the

domain length of state by two sites while the second term describes transitions between two

and zero domain wall sectors, see Figure 3.5.

The action of the full Hamiltonian on the state in the two domain wall approximation Ndw ≤
2 becomes

Ĥ|j, l〉 = (1− δl,0)

{
J |j, l〉+ hzl|j, l〉 − Ja

[
(|j, l + 2〉+ |j − 2, l + 2〉)

+ (|j, l − 2〉+ |j + 2, l − 2〉)(1− δl,2)(1− δl,1)
]
− h⊥

[
(|j, l + 1〉+ |j − 1, l + 1〉)

+ (|j, l − 1〉+ |j + 1, l − 1〉) (1− δl,1)
]}

+
[
JB|j, 1〉 − J⊥(|j + 1, 1〉+ |j − 1, 1〉)

]
δl,1

− JaN(|j, 2〉δl,0 + |0, 0〉δl,2)− h⊥N(|i, 1〉δl,0 + |0, 0〉δl,1), (3.15)

where we defined the new coupling coefficient

J = Jz − 2JB. (3.16)

We consider a system with periodic boundary conditions which does not allow of an odd

number of domain walls. This permits to express the Hamiltonian in momentum basis

|p, l〉 = e−ip l
2

1√
N

∑
j

e−iprj |j, l〉, (3.17)

where p corresponds to the total momentum of the bound state and rj = a × j with the lattice

spacing constant a = 1 in the system of units chosen here. Due to translation invariance the

ferromagnetic state has zero momentum |p = 0, 0〉. In this momentum basis the Hamiltonian is

diagonal in terms of the momentum p and acts as follows

Ĥ|p, l〉 = (1− δl,0)

{[
J + hzl +

(
JB − 2J⊥ cos

p

2

)
δl,1

]
|p, l〉 − 2Ja cos p

[
|p, l + 2〉

+ |p, l − 2〉(1− δl,2)(1− δl,1)
]
− 2h⊥ cos

p

2

[
|p, l + 1〉+ |p, l − 1〉(1− δl,1)

]}
−
[
Ja
√
N(|p, 2〉δl,0 + |p, 0〉δl,2) + h⊥

√
N(|p, 1〉δl,0 + |p, 0〉δl,1)

]
δp,0. (3.18)

The zero domain wall sector consists of just two states, all spins pointing either up or down

along the z-axis. We can see from Eq. (3.18) that the Ndw = 0 sector couples to states with

odd domain length l = 1 through only the h⊥ parameter describing the Ĥx-term. In absence

20



of the transverse field h⊥ = 0 when the Hamiltonian Ĥ acts on either of the ferromagnetic

states it can create states in the two domain wall sector with two overturned spins. We note that

since Ĥa flips two spins, while the terms Ĥ⊥ and Ĥz keep the number of up spins unchanged,

the parity of the number of up-spins will be conserved, meaning that we can diagonalize the

Hamiltonian in the sectors with an even and odd number of overturned spins (i.e. the domain

length l) separately. In addition, the zero domain wall sector states carry zero momentum p = 0

and the Hamiltonian is translational invariant, thus the states in the zero domain wall sector

couple only to states with zero momentum.

3.2.3 Contribution from Ndw > 2 sectors

We can see from Eq. (3.18) in the two domain wall approximation Ndw ≤ 2 that the matrix

elements corresponding to transitions between the ferromagnetic zero domain wall state and

the state with a single overturned spin (or a spin pair) depend on the system size N as
√
N .

This causes the energy gap between the ground state and any excited state to depend on the

chain length. This is an artifact of the two domain wall approximation. This can be understood

by considering the perturbative energy corrections to the ferromagnetic state from processes

which involve creation and annihilation of an additional state belong to a sector with higher

number of domain walls. Since there are roughly N places to insert the new extra domain, the

energy correction becomes proportional to N .

Therefore the sector with higher number of domain walls always gives this length dependent

correction to states in the nearest lower sector. When we are restricting to Ndw ≤ 2 the energy

of the ferromagnetic state in the zero domain wall sector receives this correction proportional

to the system size N , but not the states with Ndw = 2, because their corrections come from the

excluded higher domain walls sector Ndw = 4.

Simple model: contribution from Ndw = 4 sector

Let us elaborate on the size dependence of the gap by applying perturbation theory to the sim-

plest model with only the Jz and Ja couplings for a chain in the external magnetic field along

the z-axis. In this case the unperturbed Hamiltonian is diagonal and acts as

Ĥ0|p, l〉 = (1− δl,0)(Jz + hzl)|p, l〉, (3.19)

that corresponds to eigenstates |p, l = n〉 with eigenenergies E
(0)
n = Jz + hzn. The unper-

turbed ground state is the fully polarized ferromagnetic state |0, 0〉 with zero ground state en-

ergy E
(0)
0 = 0. Considering the Ja coupling as a perturbation, V̂ = Ĥa, we assume that the

perturbation parameter Ja
√
N 	 1. The transition matrix elements between low-energy states

in different Ndw sectors are given by the relations

〈0, l|V̂ |0, 0〉 = Ja
√
Nδl,2,

(〈0, l1 = 2| ⊗ 〈0, l2 = 2|)V̂ |0, l = 2〉 = Ja
√

2(N − 1− l1 − l2), (3.20)
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where the two-domain state with domain lengths l1 = l2 = 2 is expressed as tensor product of

two one-domain states in the Ndw = 4 sector, that gives the following transition matrix elements

V01 = Ja
√
N, V12 = Ja

√
2(N − 5) (3.21)

with the indices describing the number of domains in the coupled sectors. The unperturbed

energy of the lowest excited state with a single domain (l = 2) in the Ndw = 2 sector and the

state of two domains with the same minimal length (l1 = l2 = 2) in the Ndw = 4 sector are

E
(0)
1 = Jz + 2hz, E

(0)
2 = 2(Jz + 2hz). (3.22)

In accordance to perturbation theory [86] the energy levels have the following corrections up to

second-order

En ≈ E(0)
n + 〈n|V̂ |n〉+

∑
m �=n

|〈m|V̂ |n〉|2
E

(0)
n − E

(0)
m

, (3.23)

where |n〉 are the unperturbed states. The ground state energy becomes

E0 = E
(0)
0 + V00 +

|V10|2
E

(0)
0 − E

(0)
1

= −|V01|2
E

(0)
1

. (3.24)

Note that the correction to the ground state in Eq. (3.24) is negative and proportional to the

system size N . The energy correction to the first excited state is

E1 = E
(0)
1 + V11 +

|V01|2
E

(0)
1 − E

(0)
0

+
|V21|2

E
(0)
1 − E

(0)
2

= E
(0)
1 +

|V01|2
E

(0)
1

− |V12|2
E

(0)
2 − E

(0)
1

. (3.25)

We can see that the corrections shift both energies of the ground and first excited states but only

the energy difference (or gap) between the states has a physical meaning. The gap to the first

excited state behaves as

ΔE = E1 − E0 = E
(0)
1 + 2

|V01|2
E

(0)
1

− |V12|2
E

(0)
2 − E

(0)
1

, (3.26)

which becomes

ΔE = Jz + 2hz +
2NJ2

a

Jz + 2hz

− (2N − 10)J2
a

Jz + 2hz

= Jz + 2hz +
10J2

a

Jz + 2hz

. (3.27)

So taking into account the contribution from the sector with higher number of domain walls

gives a positive contribution to the gap which cancels the dependence on the system size N of

the correction to the ground state.

The analytic treatment of higher sectors with Ndw > 2 is very difficult while the Ndw ≤ 2

case can be solved analytically. In order to avoid the nonphysical dependence on the system

size N while still working with Ndw ≤ 2 states exclusively we redefine the coupling between

the ferromagnetic state and the states with l = 1, 2 in the two domain wall sector by dividing

it by a factor
√
N . This procedure makes the energy correction to the ferromagnetic state

independent of the system size. Note that this redefined coupling only has consequences for the

22



zero momentum states p = 0. Another way of viewing this is that we redefine the ferromagnetic

state as set of independent localized non-excited "particles" (or single non-overturned spins)

|p = 0, l = 0〉 = 1√
N

∑
i

|i, 0〉, (3.28)

where the states |i, 0〉 with zero domain length are independent and orthogonal 〈i, 0|j, 0〉 = δi,j .

This approach can be viewed to some extent as the independent particle approximation. In this

case the redefined Hamiltonian is

Ĥred|p, l〉 = (1− δl,0)

{[
J + hzl +

(
JB − 2J⊥ cos

p

2

)
δl,1

]
|p, l〉 − 2Ja cos p

[
|p, l + 2〉

+ |p, l − 2〉(1− δl,2)(1− δl,1)
]
− 2h⊥ cos

p

2

[
|p, l + 1〉+ |p, l − 1〉(1− δl,1)

]}
−
[
Ja(|p, 2〉δl,0 + |p, 0〉δl,2) + h⊥(|p, 1〉δl,0 + |p, 0〉δl,1)

]
δp,0, (3.29)

where the last term describes the coupling between the ferromagnetic and the two domain wall

states.

The redefined Hamiltonian can be solved analytically and for some coupling parameters its

solution can be given in exact and closed form.

3.3 Eigenvalues and eigenvectors

Before we diagonalize the redefined Hamiltonian we want to see also numerically how an upper

limit on the number of domain walls affects the eigenvalues of the Hamiltonian. For a finite

system size the Hamiltonian can be diagonalized numerically but the number of states increases

dramatically with Ndw and the system size N . In further numerical calculations in this section

we focus on CoCl2 · 2H2O which has the following coupling parameters

Jz = 36.5 K, Ja = 3.8 K, J⊥ = 5.43 K, JB = 0, (3.30)

which have been obtained from far-infrared absorption spectroscopy [88] and spin wave analysis

of neutron scattering experiments [104–106]. It is convenient for further consideration to use

system of units in terms of the leading Jz coupling that gives

J = Jz = 1, Ja = 0.1041J, J⊥ = 0.149J, (3.31)

since the coupling coefficient J = Jz − 2JB is given by Eq. (3.16).

The external uniform magnetic field was chosen at hz = 0.05J . An important consequence

of interchain coupling in CoCl2 · 2H2O is that it causes the ferromagnetic spin chains to order

antiferromagnetically with respect to each other below TN = 17.3K, see [95, 96]. This implies

that in the antiferromagnetic phase below TN the magnetic field hz used here should be inter-

preted as a sum of the external applied magnetic field and an internal field, which arises due to

the magnetic moments of neighboring chains [88].
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3.3.1 Suitable parameters for numerical calculation

The Hamiltonian (3.2) can be diagonalized numerically but the number of allowed states rises

exponentially fast with system size like ∼ 2N . The number of states can be reduced by us-

ing periodic boundary conditions, that allows only states with even number of domain walls

Ndw = 0, 2, 4, . . . We also impose a maximal Ndw since Jz is the largest coupling and we

study low-energy excitations at low temperature. In addition we use translational and reflection

symmetries of the Hamiltonian that also reduces the number of allowed states.

In the case of CoCl2 · 2H2O in the absence of a transversal magnetic field (h⊥ = 0) and no

next-nearest-neighbour coupling (JB = 0) the states with even and odd domain lengths l are

decoupled. These sectors can therefore be separately diagonalized.

The low energy spectrum as a function of system size for a chain described by the parameters

(3.31) for CoCl2 · 2H2O is shown in Figure 3.6 for different maximal Ndw of sectors included

in the numerical diagonalization. The correction from Ndw = 2 states shifts the ground state

energy towards negative energies and the shift depends on the system size N . This dependence

of the ground state energy shift is linear in N in accordance with the perturbation theory in

Eq. (3.24). We can see in Figure 3.6(a) that for the Ndw ≤ 2 diagonalization the excited levels

depend very weakly on the system size, except for the lowest excited state which energy in-

creases linearly with N . This is the ferromagnetic state where all spins are anti-aligned with the

magnetic field hz. Its energy descends into the low-energy spectrum only in a relatively weak

field for a small system. This finite system-size effect on the energy of the anti-aligned ferro-

magnetic state does not depend on the Ndw-approximation and is also visible in Figure 3.6(b).

As can be seen from the Ndw ≤ 6 diagonalization, Figure 3.6(b), the contribution from

higher Ndw > 2 sectors gives corrections to the excited states also that results in a negative shift

of these energy levels which depends also on the chain length and acts as to compensate the

ground state energy correction. Therefore the energy gap between excited states and the ground

state does not depend on the system size when one includes the high Ndw states.

The maximal number of domain walls in a finite chain is equal to the system size N that

corresponds to the antiferromagnetic state with opposite aligned neighbour spins. Certainly

it is not possible to include into consideration all domain wall sectors even for a relatively

small chain due to computational restriction, so we need to find a suitable maximal Ndw for a

reasonably large system size N . In order to do this for low energy excitations we can consider

the behaviour of the gap between the first excited state and the ground state as a function of the

system size N and pick a value of Ndw,max so that the energy gap no longer depends significantly

on system size.

Using the parameters (3.31) the energy gap between the first excited and the ground state

behaves as shown in Figure 3.7. We can conclude that for this parameters a reasonably good

value is Ndw,max = 6 for a chain with length N = 34 sites while the better approximation

with maximum 8 domain walls (Ndw ≤ 8 ) is out of reach due to computer performance for

this system size. In addition, we see that the redefined effective coupling in the Hamiltonian in

Eq. (3.29) gives a quite good agreement with the approximation Ndw ≤ 6 for the energy gap for

the finite system size N = 34. However, the true gap value for a large system size N is more

likely to be lower than this as is indicated by extrapolating the Ndw ≤ 8 curve in Figure 3.7.
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Figure 3.6: Energy levels of zero momentum eigenstates for a chain with parameters of CoCl2 ·
2H2O as function of the system size N . The plots differs by having different maximal number

of domain walls, Ndw ≤ 2 (a) and Ndw ≤ 6 (b). Including high Ndw sectors gives a negative

shift of excited levels that compensate the negative shift of the ground state energy. Due to

finite system-size effect in relatively weak magnetic field hz the first excited state for small N
corresponds to the ferromagnetic state of all spins anti-aligned with the magnetic field hz which

energy increases linearly with the system size N .

3.4 Analytic diagonalization of the redefined Hamiltonian

We now return to the redefined Hamiltonian in Eq. (3.29) for Ndw ≤ 2 which can be diagonal-

ized analytically. In order to solve the eigenvalue problem the eigenstate |n, p〉 with energy En

can be expressed in the basis of two domain wall states in Eq. (3.4) as

|n, p〉 =
∞∑
l=0

ψn,l(p)|p, l〉, (3.32)

where ψn,l(p) are coefficients which are complex-valued in general. Normalizing the eigenstates

results in ∑
l=0

ψ∗
n′,l(p

′)ψn,l(p) = δn,n′δp,p′ , (3.33)

where the asterisk ∗ corresponds to complex conjugation.

The eigenvalue equation for the Ĥred operator is given by the action of the redefined Hamil-
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Figure 3.7: Energy gap between the ground state and the first excited state in the even sector

for different Ndw as a function of the system size N . The color symbols specify the maximum

Ndw included in the diagonalization: blue solid circles (Ndw = 2), magenta squares (Ndw = 4),

brown diamonds (Ndw = 6) and green triangles (Ndw = 8). The dashed red line shows the

energy gap obtained analytically for Ndw ≤ 2 with the 1/
√
N redefinition of the coupling to

the ferromagnetic state.

tonian in Eq. (3.29) that can be written in the form of an equation set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (h⊥ψn,1 + Jaψn,2)δp,0 = Enψn,0δp,0,

[J + hz + (JB − 2J⊥ cos p)]ψn,1 − h⊥ cos(p/2)(2ψn,2 + ψn,0δp,0)− 2Ja cos pψn,3 = Enψn,1,

[J + 2hz]ψn,2 − 2h⊥ cos(p/2)(ψn,3 + ψn,1)− Ja cos p (2ψn,4 + ψn,0δp,0) = Enψn,2,

[J + 3hz]ψn,3 − 2h⊥ cos(p/2)(ψn,4 + ψn,2)− 2Ja cos p(ψn,5 + ψn,1) = Enψn,3,

...

[J + lhz]ψn,l − 2h⊥ cos(p/2)(ψn,l+1 + ψn,l−1)− 2Ja cos p(ψn,l+2 + ψn,l−2) = Enψn,l,

...
(3.34)

The first equation in the set corresponds to the coupling between the ferromagnetic state with

the coefficient ψn,l=0(p = 0) and the zero-momentum excited states with a single (l = 1) or two

overturned spins (l = 2).

The equation set in Eq. (3.34) describes the infinite system size limit (N → ∞). In the case

of a finite spin chain there are modification to the high-energy states as they are coupled to the

ferromagnetic state where all spins are opposite to the hz field. Since we are interested in low-

energy excitations at low temperature for a macroscopic chain, the coupling to the high-energy

ferromagnetic state can be neglected.

In the general case when all coupling parameters are present, the equation set in Eq. (3.34)

has a complicated solution which is hard to analyze analytically. We consider therefore two

limits. One where the coupling Ja = 0 and another where the effective transversal field h⊥ = 0.

In both these cases the solution can easily be analyzed in analytical form.
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Vanishing coupling Ja = 0: The equation set becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(h⊥ψn,1 + Enψn,0)δp,0 = 0,

[J + hz + (JB − 2J⊥ cos p)− En]ψn,1 − h⊥ cos(p/2)(2ψn,2 + ψn,0δp,0) = 0,

[J + 2hz − En]ψn,2 − 2h⊥ cos(p/2)(ψn,3 + ψn,1) = 0,

...

[J + lhz − En]ψn,l − 2h⊥ cos(p/2)(ψn,l+1 + ψn,l−1) = 0,

...

(3.35)

The equation for large l ≥ 2 can be written in the form

ψn,l =
2h⊥ cos(p/2)

J + lhz − En

(ψn,l+1 + ψn,l−1), (3.36)

which is similar to a recurrent relation for Bessel functions [107] and indicates that the solution

can be given in terms of a Bessel function of order dependent on l.

Vanishing transversal field h⊥ = 0: In this case states with even and odd domain lengths

are decoupled and can be separated. The equation set for the states in the even domain length

sector is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Jaψn,2 + Enψn,0)δp,0 = 0,

[J + 2hz − En]ψn,2 − Ja cos p (2ψn,4 + ψn,0δp,0) = 0,

...

[J + lhz − En]ψn,l − 2Ja cos p(ψn,l+2 + ψn,l−2) = 0, l ∈ even,

...

(3.37)

For the states in odd sector we have the following relation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[J + hz + (JB − 2J⊥ cos p)− En]ψn,1 − 2Ja cos pψn,3 = 0,

[J + 3hz − En]ψn,3 − 2Ja cos p(ψn,5 + ψn,1) = 0,

...

[J + lhz − En]ψn,l − 2Ja cos p(ψn,l+2 + ψn,l−2) = 0, l ∈ odd,

...

(3.38)

In the limit of large domain length l we get a recurrent relation similar to Eq. (3.36)

ψn,l =
2Ja cos p

J + lhz − En

(ψn,l+2 + ψn,l−2), (3.39)

which also has a Bessel function solution.
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3.4.1 Spectrum in zero magnetic field

The eigenvalue problem of the redefined Hamiltonian (3.29) can be easily solved in the case of

zero longitudinal magnetic field hz. Using Fourier transform of the wave function coefficients

φn,k(p) =
1√
N

∑
l

e−iklψn,l(p), (3.40)

the equation in the set (3.34) for large domain length l ≥ 2 can be written as

Jφn,k(p) + ihz
∂

∂k
φn,k(p)− 4h⊥ cos(p/2) cos k φn,k(p)

− 4Ja cos p cos(2k) φn,k(p) = Enφn,k(p), (3.41)

where the following relation was used

∂φn,k(p)

∂k
=

1√
N

∑
l

∂

∂k
e−iklψn,l(p) = −i

1√
N

∑
l

e−ikll ψn,l(p). (3.42)

For vanishing longitudinal field hz = 0, the wave function coefficients φn,k(p) can be cancelled

on both sides of Eq. (3.41) and the energy spectrum of the system becomes continuous. In this

case the energy spectrum becomes

Econt(k, p) = J − 4h⊥ cos (p/2) cos k − 4Ja cos p cos(2k), (3.43)

where 0 ≤ k ≤ 2π and is shown in Figure 3.8 for h⊥ = 0.

States with short domain lengths give an additional contribution that describes a "kinetic
bound state". This kinetic mode can be calculated analytically for the vanishing coupling con-

stant Ja or the vanishing transversal field h⊥ by using the corresponding wave function ansatz

in the following form

ψl(p)kin = Azl, Ja = 0 (3.44)

ψl(p)kin = A′z′l/2, h⊥ = 0, (3.45)

where A and A′ are normalizing constants, and the new variables were introduced

z =
2h⊥ cos (p/2)

2J⊥ cos p− JB
, z′ =

2Ja
2J⊥ − JB sec p

, (3.46)

with sec x being secant of argument x. Inserting these ansatze into Eq. (3.34) one finds

Ekin(p) = J + JB − 2J⊥ cos p− 2h⊥z cos (p/2), Ja = 0, (3.47)

E ′
kin(p) = J + JB − 2J⊥ cos p− 2Jaz

′ cos p, h⊥ = 0. (3.48)

We can see that the ansatz wave functions are normalizable only for |z| < 1 (or |z′| < 1),

thus the bound state exists only for these values of z (or z′). This requirement implies that the
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Figure 3.8: Energy spectrum in zero magnetic fields hz = 0 and h⊥ = 0 at low temperature

for different values of the next-neighbor coupling: (a) JB = 0 and (b) JB = 0.1J . The red

line corresponds to the bound state given by Eq. (3.48), the black lines describes analytically

the continuous energy spectrum of the system for the same selected values of k in Eq. (3.43).

The shaded gray region corresponds to energy solutions obtained by numerical diagonalizing

the redefined Hamiltonian. The underlying gray line of numerical solution corresponding to the

bound state coincides with the red line of analytical solution.

kinetic bound state exists when

∣∣∣cos p
2

∣∣∣ < h⊥
2J⊥

√
h2
⊥ + 2J⊥(2J⊥ + JB)− h⊥

√
h2
⊥ + 4J⊥(2J⊥ + JB)

8J2
⊥

, Ja = 0. (3.49)

In the case of the vanishing transversal field h⊥ the kinetic mode exists at

cos p <
JB

2(Ja + J⊥)
∪ cos p >

−JB
2(Ja − J⊥)

, h⊥ = 0. (3.50)

The energy gap between the continuous spectrum and the kinetic bound state vanishes at the

edges of these regions, see Figure 3.8(b).

Ground state

The ground state of the system is dominated by the zero domain wall state, but the coupling

Ja (or h⊥) mixes this with the two domain wall sector, that induces quantum fluctuations. The

ground state energy is shifted slightly below zero (energy of the ferromagnetic state) by these

fluctuations. For small parameters h⊥ 	 J and Ja 	 J , the ground state energy is given by

E0

∣∣
hz=0

≈ −h2
⊥
1 + J

2(JB−2J⊥)

(
1−

√
1− 12h2

⊥
J2

)
J + JB − 2J⊥ +

3h2
⊥

JB−2J⊥

≈ − h2
⊥

J + JB − 2J⊥
, Ja = 0, (3.51)

E ′
0

∣∣
hz=0

= −J

6

(
1−

√
1− 12

J2
a

J2

)
≈ −J2

a

J
, h⊥ = 0. (3.52)
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The corresponding wave function coefficients of the ground state are

ψ0,l(p = 0) =

{
−A0

h⊥
E0
z0, l = 0,

A0 z
l
0, l = 1, 2, 3, . . .

Ja = 0, (3.53)

ψ′
0,l(p = 0) =

{
2A′

0, l = 0,

A′
0 z

′
0
l/2, l = 2, 4, 6, . . .

h⊥ = 0, (3.54)

where A0 and A′
0 =

√
1− z′0/(2 − z′0) are normalizing constants, and the variables z0 and z′0

are

z0 =
−2h⊥

JB − 2J⊥ + h2
⊥/E0

≈ 2
h⊥
J
, z′0 = −2E ′

0

Ja
≈ 2

Ja
J
. (3.55)

This approximation is valid for small h⊥/J and Ja/J .

3.4.2 Spectrum in a finite magnetic field

Consider now the case of a finite longitudinal magnetic field hz. First of all we will study

excitations with large domain lengths, which correspond to the high energy spectrum of single

domain states, for which the equations for l > 2 in the two limits of the vanishing parameters

Ja and h⊥ are given by Eqs. (3.36) and (3.39). Using new variables

μn =
En − J

hz

, x =
4h⊥ cos (p/2)

hz

, (3.56)

μ′
n =

En − J

2hz

, x′ =
2Ja cos p

hz

. (3.57)

these equations can be transformed into the well-known form

ψn,l =
x

2(l − μn)
(ψn,l+1 + ψn,l−1), Ja = 0, (3.58)

ψn,l =
x′

2(l/2− μ′
n)
(ψn,l+2 + ψn,l−2), h⊥ = 0, (3.59)

which corresponds to a recurrent relation for Bessel functions. Therefore the equations (3.58)

and (3.59) have the solution for the wave function coefficients in terms of Bessel functions of

the first kind

ψμn,l(p) = Jl−μn(x), Ja = 0, (3.60)

ψμ′
n,l(p) = Jl/2−μ′

n
(x′), h⊥ = 0. (3.61)

In general we can extend this definition also for negative values of l. Orthonormality of the wave

function coefficients gives restriction which is used to define acceptable values of the variable
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μn. Thus the special case of Neumann’s addition theorem for Bessel function [65, 108]

∞∑
k=−∞

Jk(x) Jk+n(x) = Jn(0) = δn,0, (3.62)

indicates that the solutions in Eqs. (3.60) and (3.61) are orthogonal and normalized to unity only

when the order of the Bessel functions is an integer. The last statement gives that the parameters

μn and μ′
n are integer

μn = n, μ′
n = 2n, (3.63)

where n is an integer number. From the relations for μn and μ′
n in Eqs. (3.56) and (3.57) we

obtain the energy levels corresponding to the equidistant energy spectrum

En(p) = J + hzn, (3.64)

which describes the Wannier-Zeeman ladder (WZL) [62].

In order to study low-energy excitations we have to take into account also states with short

domain length l ≤ 2 which contribution changes significantly the energy spectrum. Continuing

by considering the two limits of the vanishing parameters Ja and h⊥ separately we can solve

the eigenvalue problem analytically.

Vanishing coupling Ja = 0: The equation set in Eq. (3.35) can be written⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψn,0 = −h⊥
En

ψn,1δp,0,

[J + hz + (JB − 2J⊥ cos p)]− En = 2h⊥ cos(p/2)
ψn,2

ψn,1

− h2
⊥

En

δp,0,

...

[J + lhz]− En = 2h⊥ cos(p/2)
ψn,l+1 + ψn,l−1

ψn,l

, for l ≥ 2

(3.65)

where the first equation describes coupling to the ferromagnetic state and contributes only for

zero-momentum states. This contribution defines the ground state of the spin system with

the ground state energy E0 and does not affect significantly any excited states since the ra-

tio h⊥/En 	 1 for the single domain excitation energy En which is at least of the order of the

strongest coupling J (each domain wall costs an energy of Jz/2). Therefore we consider first

the energy spectrum of states with non-zero momentum p.

We are looking for solution of the wave function coefficients in terms of Bessel functions

ψνn,l(p) = BJl−νn(x), (3.66)

where B is normalizing constant, the argument x is given in Eq. (3.56), and νn is to be deter-

mined by Eq. (3.65). Substituting the wave function coefficients (3.66) into the set (3.65) the

energy eigenvalues become parameterized by νn as

En(p) = J + hzνn. (3.67)
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Inserting into the second equation in the set, l = 1, we have

JB − 2J⊥ cos p = −2h⊥ cos(p/2)
Jl−1−νn(x)

Jl−νn(x)

∣∣∣∣
l=1

, (3.68)

which determines the parameter νn. Equation (3.68) can be written in the following form

J−νn(x)

J1−νn(x)
=

1

z
, Ja = 0, (3.69)

where the momentum dependent constant z is given by Eq. (3.46).

Vanishing transversal field h⊥ = 0: In this case states with even and odd domain lengths

are decoupled and are described by Eqs. (3.37) and (3.38). For states with even domain length

l the equation sets are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψn,0 = − Ja
En

ψn,2δp,0,

[J + 2hz]− En = Ja cos p
2ψn,4 + ψn,0δp,0

ψn,2

,

...

[J + lhz]− En = 2Ja cos p
ψn,l+2 + ψn,l−2

ψn,l

, l ∈ even,

(3.70)

and for states with odd length of domain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[J + hz + (JB − 2J⊥ cos p)]− En = 2Ja cos p
ψn,3

ψn,1

,

...

[J + lhz]− En = 2Ja cos p
ψn,l+2 + ψn,l−2

ψn,l

, l ∈ odd,

(3.71)

The states in even domain length sector are coupled to the ferromagnetic ground state by the

first equation in the set in Eq. (3.70). This coupling plays an important role for the ground state

while its contribution to excited states are vanishing small due to the small ratio Ja/En 	 1 for

the excitation energy En which is at least of the order of the strongest coupling J . In order to

study the excitation spectrum we consider now non-zero momentum states when this coupling

is absent.

In this case we are looking for a solution for the wave function coefficients in the form

ψν′n,l(p) = B′Jl/2−ν′n(x
′), (3.72)

where Jn(x
′) is the Bessel function of the first kind of order n with argument x′ given by

Eq. (3.57), B′ is a normalizing constant. Substituting the relation (3.72) into the sets in Eqs. (3.70)

and (3.71) we get the energy levels parameterized by the variable ν ′
n as

E ′
n(p) = J + 2hzν

′
n (3.73)
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in each domain length sector. The parameter ν ′
n is determined by the equation sets in Eq. (3.70)

and (3.71), the first equation corresponding to the shortest domain length (l = 1 and l = 2

for the odd and even sectors respectively) imposes a restriction and determines this parameter.

Therefore ν ′
n has two branches of solutions, one for odd and one fore even sectors of the domain

length l. For even lengths

J−ν′n(x
′)

J1−ν′n(x
′)
= 0, l ∈ even, (3.74)

and for the states in the odd sector

J−1/2−ν′n(x
′)

J1/2−ν′n(x
′)

=
1

z′
, l ∈ odd, (3.75)

where the momentum dependent constant z′ is given by Eq. (3.46).

We can summarize and conclude that a finite longitudinal magnetic field hz splits the con-

tinuous energy spectrum in Eq. (3.43) into discrete levels

En(p) = J + hzνn, Ja = 0, (3.76)

E ′
n(p) = J + 2hzν

′
n, h⊥ = 0, (3.77)

where νn, ν
′
n are determined by Eqs. (3.36) and (3.39). This determines the parameter νn to be

a solution of the equation
J−νn(x)

J1−νn(x)
=

1

z
, Ja = 0. (3.78)

For vanishing transversal field h⊥ = 0, the parameter ν ′
n obeys the relations

J−1/2−ν′n(x
′)

J1/2−ν′n(x
′)

=
1

z′
, for odd sector, (3.79)

J−ν′n(x
′)

J1−ν′n(x
′)

= 0, for even sector, (3.80)

with Jn(x) being the Bessel function of the first kind of order n. The momentum dependent

constants z and z′ are given in Eq. (3.46), and the momentum dependent arguments of the Bessel

functions are

x =
4h⊥ cos (p/2)

hz

, x′ =
2Ja cos p

hz

. (3.81)

The low-energy spectrum of the system in the field hz = 0.05J is shown in Figure 3.9.

The wave function coefficients are expressed in terms of Bessel functions and are given by

the following relations

ψνn,l(p) = BJl−νn(x), Ja = 0, (3.82)

ψν′n,l(p) = B′Jl/2−ν′n(x
′), h⊥ = 0, (3.83)
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where B and B′ are normalization constants, which can be found by using the identity [108]

∞∑
l=l0

J2
l−ν(x) = −x

2
J2
l0−ν(x)

∂

∂ν

[
Jl0−ν−1(x)

Jl0−ν(x)

]
, (3.84)

that gives the following expressions for the normalization constants

B =

√
2

{
x
∂

∂ν

[
Jν(x)

Jν+1(x)

]}−1
∣∣∣∣∣
ν=−νn

, Ja = 0, (3.85)

B′ =

√
2

{
x′ ∂
∂ν

[
Jν−1/2(x′)
Jν+1/2(x′)

]}−1
∣∣∣∣∣
ν=−ν′n

, h⊥ = 0, (3.86)

Orthogonality of the wave functions in Eqs. (3.82) and (3.83) follows from the properties of

product sum of Bessel functions [108]

∞∑
k=1

Jk+ν(x)Jk+μ(x) =
x

2

J1+ν(x)J1+μ(x)

ν − μ

(
Jν(x)

J1+ν(x)
− Jμ(x)

J1+μ(x)

)
, (3.87)

when the variable ν obeys the Eqs. (3.78)–(3.80).

The longitudinal hz-field shifts the energy of the kinetic bound state by an amount which is

given to linear order in hz by the following expression

Ekin(p) =Ekin

∣∣∣
hz=0

+
hz

1− z2

= J + JB − 2J⊥ cos p− 2h⊥z cos (p/2) +
hz

1− z2
, Ja = 0, (3.88)

E ′
kin(p) =E ′

kin

∣∣∣
hz=0

+
hz

1− z′2

= J + JB − 2J⊥ cos p− 2Jaz
′ cos p+

hz

1− z′2
, h⊥ = 0. (3.89)

For high energy excited states in the magnetic field we can expand the solutions and obtain

the equidistant spectrum (for details see our Article II [109]) describing the Wannier-Zeeman

ladder (WZL) [62]

En = J + hzn, (3.90)

where n is integer number corresponding to state with n � 1.

Zero momentum states: In the case of the momentum p = 0 the corresponding states

contain also the zero domain wall sector giving additional coupling. Using the wave func-

tion coefficients in terms of Bessel functions in Eqs. (3.82) and (3.83) the second relation in

Eqs. (3.65) and (3.70) can be written for the small domain length l as

JB − 2J⊥ +
h2
⊥

En

= −2h⊥
Jl−1−νn(x0)

Jl−νn(x0)

∣∣∣∣
l=1

, Ja = 0, (3.91)

J2
a

E ′
n

= −2Ja
Jl/2−1−ν′n(x

′
0)

Jl/2−ν′n(x
′
0)

∣∣∣∣
l=2

, h⊥ = 0, (3.92)
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Figure 3.9: Low-energy spectrum of the redefined Hamiltonian (3.29) in the longitudinal mag-

netic fields hz = 0.05J (h⊥ = 0) at low temperature for different values of the next-neighbor

coupling: (a) JB = 0 and (b) JB = 0.1J . The dashed red line corresponds to the approximate

analytical solution in Eq. (3.89) for the kinetic bound state.

where the energies are En = J+hzνn and E ′
n = J+2hzν

′
n given by Eqs. (3.76) and (3.77), and

arguments of Bessel functions x0 and x′
0 correspond to the zero momentum case and become

x0 = x
∣∣
p=0

=
4h⊥
hz

, x′
0 = x′∣∣

p=0
=

2Ja
hz

. (3.93)

That modifies finally Eqs. (3.78) and (3.80) defining νn to the form

J−νn(x0)

J1−νn(x0)
=

1

z0n
, Ja = 0, (3.94)

J−ν′n(x
′
0)

J1−ν′n(x
′
0)

=
1

z′0n
, h⊥ = 0, (3.95)

where the introduced parameters z0n and z′0n are similar to the constants z0 and z′0 in Eq. (3.55)

and are given by

z0n =
−2h⊥

JB − 2J⊥ + h2
⊥/(J + hzνn)

, z′0n = −2
J + 2hzνn

Ja
. (3.96)

For simplifying further calculations it is convenient to use the following notations of the

normalized wave function coefficients

Cn
l (p) =

ψνn,l(p)√∑
l |ψνn,l(p)|2

, (3.97)

where the index n describes the eigenstate with the eigenenergy En and l is the length of the

domain.
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Ground state

The lowest energy solutions ν0 and ν ′
0 of Eqs. (3.94) and (3.95) give the ground state energy

which can be approximated analytically for the small parameter h⊥ 	 J and Ja = 0 by the

relation

E0 ≈ −h2
⊥

1 +
3h2

⊥
(J+hz)(JB−2J⊥)

J + hz + JB − 2J⊥ +
3h2

⊥
JB−2J⊥

≈ −h2
⊥

J + hz + JB − 2J⊥
. (3.98)

Whereas in the case h⊥ = 0 and Ja 	 J the ground state energy becomes

E ′
0 ≈ −J + 2hz

6

(
1−

√
1− 12J2

a

(J + 2hz)2

)
≈ − J2

a

J + 2hz

. (3.99)

The wave function coefficients corresponding to the zero domain wall sector are given by

ψνn,l=0(p = 0) =
−h⊥

J + hzνn
BJ1−νn(x0), Ja = 0, (3.100)

ψν′n,l=0(p = 0) =
−Ja

J + 2hzν ′
n

B′J1−ν′n(x
′
0), h⊥ = 0, (3.101)

where B and B′ are constants which can be found from the normalization condition.

For simplifying notation of further calculations it is convenient to redefine the wave function

coefficients of the fluctuated ground state as

φ0(l) = ψνmin,l(0), (3.102)

where νmin corresponds to the lowest energy solutions ν0 and ν ′
0.

Note that the zero domain-wall sector gives the biggest contribution only to the ground

state. For excited zero-momentum states with energy En � h⊥ and E ′
n � Ja its contribution

becomes vanishing small, so we can work exclusively in the two domain wall sector Ndw = 2

to describe the excited low-energy spectrum.

3.4.3 Solution of the ratio of Bessel functions

We consider now briefly the low energy spectrum and its general behaviour for different cou-

pling parameters. In order to define the single domain excitation we have to solve the general

equation with the ratio of Bessel functions

J−ν(x)

J1−ν(x)
= γ, (3.103)

where γ is constant. Particular analytical solutions of this equation has been found in some

limits [110]. An intuitive picture of the solutions of Eq. (3.103) can be gotten by plotting

the left hand side of the equation as a function of ν for a fixed value of x. This is shown in

Figure 3.10 for the argument x = 1 as the black solid curve.

In the case of γ → 0 corresponding to the big z limit in Eqs. (3.78)–(3.79) and the even

sector for h⊥ = 0 in Eq. (3.80) the solutions are gotten by the crossings of the curve with
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the x-axis in Figure 3.10. We see that these crossings occur almost exactly at positive integer

values of ν, except for the first lowest solution which is slightly below unity. These values

of ν as a function of x for the zero constant γ is shown in Figure 3.11(a). To a very good

approximation the solution ν is a positive integer at ν ≥ 1 + |x|. This implies that in the case

of vanishing transversal field h⊥ the eigenstates in the even domain lengths sector are described

by the solution ν ′
n of Eq. (3.80) which is to a good approximation integers ν ′

n = n, where

n ∈ 1, 2, 3, . . . when n ≥ |x′|+ 1. The eigenenergies of these even states in Eq. (3.76) become

Eeven
n = J + 2hzn, ν ′

n = n, n ∈ Z ∩ n ≥ |x′|+ 1,

{
h⊥ = 0,

l ∈ even.
(3.104)

For smaller values of n, the solution ν ′
n is generally lower and depends on the argument x′ of

the Bessel functions. In the case of small γ, that corresponds to the big values of z in Eq. (3.78)

and for the odd l sector in Eq. (3.79), the solutions are very similar to the case of γ = 0. This

means that in the case of the vanishing h⊥ the solutions for the odd states ν ′
n correspond to

half-integer numbers ν ′
n = n− 1/2, where n ∈ 1, 2, 3, . . . when n ≥ |x′|+ 1, that describes the

energy levels of the odd states

Eodd
n = J + (2n− 1)hz, ν ′

n = n− 1

2
, n ∈ Z ∩ n ≥ |x′|+ 1,

{
h⊥ = 0,

l ∈ odd.
(3.105)

In the case of Ja = 0 the solutions νn are integers νn = n, where n ∈ 1, 2, 3, . . . for n ≥ |x|+1,

and the eigenvalues En in Eq. (3.76) form the equidistant energy spectrum

En = J + hzn, νn = n, n ∈ Z ∩ n ≥ |x|+ 1, Ja = 0, (3.106)

which describes the WZL.

A simple qualitative analysis of how the solution ν behaves with changing γ for a fixed

argument x in Eq. (3.103) can be performed from Figure 3.10. While the big value solutions

describing the higher-energy levels do not change substantially for this fixed value of x, the

lowest solution ν0 corresponding to the lowest-energy level decreases with increasing γ. The

solutions ν of Eq. (3.103) as functions of x for a fixed value of the constant γ = 2 are shown

in Figure 3.11(b). We see that for positive x the lowest energy solution ν0 decreases with

increasing argument x. The lowest solution behavior can be given analytically.

Using the relation for the first derivative of Bessel function

J ′
ν(z) =

Jν−1(z)− Jν+1(z)

2
(ν �= 0), (3.107)

we get

xνJ1−ν = − d

dx
(xνJ−ν) (3.108)

that allows to modify the left hand side of the equation (3.103) as

J−ν(x)

J1−ν(x)
= −

{
ν

x
+

d

dx
ln J−ν(x)

}−1

. (3.109)
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Figure 3.10: The behavior of the ratio of Bessel functions J−ν(x)/J1−ν(x) for fixed argument

x = 1 as a function of ν is plotted as the black solid curve. The blue dot-dashed line corresponds

to γ = 2, while the red dashed curve shows the right hand side of Eq. (3.114) for fixed values

of x0 = 1, y = 3/2 and b = 0. The crossing point (the red solid circle) describes the lowest

energy solution ν0 of the zero momentum even sector, the ground state.

Now using the asymptotic expression [65] for Bessel function

J−ν(−νξ) ≈ ξ−νe−ν
√

1−ξ2

√−2πν 4
√

1− ξ2
(
1 +

√
1− ξ2

)−ν , ν → ∞, 0 < ξ < 1 (3.110)

and taking the limit of large ν the ratio of the Bessel functions can be written in the form

J−ν(−νξ)

J1−ν(−νξ)
=

1 +
√

1− ξ2

ξ
= γ, x = −νξ, (3.111)

that gives the following asymptote to the lowest energy solution

ν0 ≈ −x

2

(
γ +

1

γ

)
. (3.112)

The corresponding dot-dashed blue line with this slope (γ + γ−1)/2 for a fixed value of γ = 2

is shown in Figure 3.11(b).

The limit of large argument x (or x′) given in Eq. (3.81) corresponds to the limit of vanishing

magnetic field hz. Therefore the lowest excitation energy in this case can be calculated by using

the asymptotic result in Eq. (3.112) and the definitions of γ and x. In particular, in the case of

the coupling parameters JB = 0 (or J = Jz) and h⊥ = 0 the energy of the lowest excited state

is

E = J + hz(2ν − 1) ≈ J − 2J⊥

[
1 +

(
Ja
J⊥

)2
]
cos p, (3.113)

that corresponds to a spin wave excitation in the chain [111]. This result can also be obtained
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Figure 3.11: (a) Solutions ν of Eq. (3.103) as a function of x for γ = 0. The red dashed line

is the line ν = 1 + |x|. (b) Solutions ν of this equation as a function of x for γ = 2. The

dot-dashed blue line has slope (γ + γ−1)/2 while the red dashed line corresponds to the line

ν = 1 + x for positive x.

by second-order perturbation theory in the limit of vanishing magnetic field hz in the case of

the coupling parameters Ja 	 J⊥ 	 J .

The asymptotic solution can be extended to negative x where it coincides with smooth step-

like behaviors of the energy levels in Figure 3.11(b). These steps become sharper and higher for

increasing γ and they become a step discontinuity of unit one for γ → ∞. This characteristic

behaviour of the solutions restricts the existence of the WZL to n > (γ + γ−1)|x|+1 for x < 0

and γ > 1.

Consider now the zero momentum states which are coupled to the ferromagnetic state. In

this case the relations defining νn in Eqs. (3.94) and (3.95) are modified and can be written in

the general form
J−νn(x0)

J1−ν(x0)
=

2b

x0

− x0

4(y + ν)
, (3.114)

where constants b and y are given by

b =
2J⊥ − JB

hz

(1− δh⊥,0), y =
J

hz

, (3.115)

and argument x0 corresponds to the variables x0 and x′
0 given by Eqs. (3.93). The equation

(3.114) has an additional negative solution ν0 < 0 which is well separated from the other

positive solutions νn and describes the ground state energy. This solution appears due to the

singular behavior of the right-hand side in the neighbourhood of ν = y while the first term gives

a shift along the ordinate that is shown as the dashed red curve for a fixed value of y = −3/2

and b = 0 in Figure 3.10.

We can see that in the case of vanishing constant b due to the rapid changing of the Bessel

function ratio on the left hand side around positive even integer values of ν, the right hand side

of the relation (3.114) changes only slightly the high even integer solutions found for p �= 0
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from Eq. (3.103). However, there is a crucial difference for the lowest energy solution. Since

the right hand side has a singularity at ν = −y and the left hand side is positive for ν < 0

and increases as ν → −∞, somewhere below this singularity a negative solution ν0 � −y will

occur, see the red dashed curve in Figure 3.10. This lowest solution corresponds to the ground

state energy which will be negative because E0 = J + hzν0 and ν0 < −J/hz, since y = J/hz.

In the case of non-zero b the shift of the right side of the equation (3.114) causes vertical

shift of the red dashed curve in Figure 3.10. This shift modifies only slightly the lowest energy

solution corresponding to the ground state due to its rapid variations around the singularity

ν = −y. In the case of a positive constant b only the second low energy solution is modified

significantly. This solution describes the energy of the first excited state which corresponds to

the kinetic bound state at zero momentum p = 0. For a negative b, corresponding to a negative

vertical shift, a number of higher energy solutions are also affected. The number depends

on the magnitude of the shift due to the kink-like behavior of the Bessel functions ratio, see

Figure 3.10.

The energy levels En(p) for the coupling parameters in Eq. (3.31) corresponding to CoCl2 ·
2H2O is shown in Figure 3.12. The energy spectrum is equidistant in the momentum region

around p = π/2 and p = 3π/2 that is bounded by the red dashed and blue dot-dashed curves

which correspond to the asymptotic color lines in Figure 3.11(b). The spectrum becomes the

WZL for all momenta p in the region of energies where

E(p = 0) > Jz + 2hz + 4Ja, (3.116)

E(p = π) > Jz + hz + 2J⊥

[
1 +

(
Ja
J⊥

)2
]
, (3.117)

that defines the lowest energy level of the WSL which is E0
WSL ≈ 1.6J for the CoCl2 · 2H2O

parameters. We can see that in the region below this limit of WSL the even levels are symmetric

around π/2 while the odd levels lack this property of symmetry. This is a consequence of the

level asymmetry which can be seen in Figure 3.11(b).

3.5 Magnetization

A direct probe of the magnetic Bloch oscillations is the time-dependent total magnetization.

We can consider time evolution of the magnetization both along and transverse to the uniform

magnetic field. A general time-dependent state of the quantum system can be expressed in terms

of the eigenstates as

|χ(t)〉 =
∑
n

an(t) e
−iEnt|n〉, (3.118)

where the coefficient an(t) describes the square root of the population of eigenstate |n〉 with

energy En. The eigenstate is given by Eq. (3.32) in the two domain wall approximation for

Ndw ≤ 2.
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Figure 3.12: Energy levels as a function of momentum p computed with the parameters in

Eq. (3.31) for a magnetic field hz = 0.05J . The dot-dashed blue curve corresponds to the

asymptotic dot-dashed line drawn in Figure 3.11(b) but with the constant γ = 1.43. The red

dashed curve corresponds to the red dashed line in Figure 3.11(b).

3.5.1 Longitudinal magnetization

The total magnetization along the z-axis corresponds to the expectation value of the spin oper-

ator Ŝz
q=0 =

∑
i Ŝ

z
i that gives

Mz(t) = 〈χ(t)|Ŝz
q=0|χ(t)〉 =

∫ 2π

0

dp

2π

∑
m,n

a∗m(t)an(t)S
z
mn(p) e

i[Em(p)−En(p)]t, (3.119)

where Sz
mn is the matrix element of the spin operator which can be expressed as

Sz
mn(p) = 〈m|Ŝz

q=0|n〉 =
1

N

∑
l

Cm
l

∗(p)Cn
l (p)

(
N

2
− l

)
, (3.120)

where the notation of the wave function coefficients Cn
l (p) are given in Eq. (3.97). The total

magnetization along the z-axis becomes then

Mz(t) =
1

N

∫ 2π

0

dp

2π

∑
m,n

a∗m(t)an(t) e
i[Em(p)−En(p)]t

∑
l,l′

Cm
l′

∗(p)Cn
l (p)

(
N

2
− l

)
, (3.121)

where the integration is performed over all momenta p in the Brillouin zone.

Let us consider case of high energy excited states (the limit of WZL) with zero momentum

p = 0 when the energy spectrum becomes equidistant En = Jz + hzn and the coefficients

correspond to the Bessel function of integer order Cn
l (p = 0) = J(l−n)/2(x

′
0) in the case of

h⊥ = 0, where the argument x′
0 = 2Ja/hz is given in Eq. (3.93). Using the properties of the
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Bessel function (see Appendix B) the matrix element in Eq. (3.120) becomes

Sz
mn

∣∣∣
p=0

=

(
N

2
− n

)
δn,m − x′

0δ|n−m|,2,

{
m,n ∈ even,

m, n ∈ odd,
(3.122)

where both indices m,n of the eigenstates are either both even or odd numbers since the op-

erator Ŝz does not mix states in the even and odd domain length sectors. In this case the total

magnetization becomes

Mz(t) =
N

2
−
∑
n

|an(t)|2n− 2x′
0

∑
n

� (
a∗n(t)an+2(t)e

−iωBt
)
, ωB = 2hz. (3.123)

The Bloch oscillations can thus be observed directly as time-dependent oscillations in the

magnetization. The last term in Eq. (3.123) describes the magnetic BOs and depends on the

overlap between next-neighbouring states. The real part of the oscillating term can be written

in the form ∑
n

� (
a∗nan+2e

−iωBt
)
=
∑
n

ρn cos(ωBt− φn), (3.124)

where ρn and φn are absolute value and argument of the overlap respectively

ρn = |a∗nan+2|, φn = arg(a∗nan+2). (3.125)

We can see that in order to get the magnetic BOs in a multilevel system at the Bloch frequency

ωB = 2hz the phase shift φn of the population between next-neighbouring states n and n + 2

should be constant. It means that population of the states should change coherently at least for

levels which have the biggest overlap and give the biggest contribution to the magnetic Bloch

oscillations.

The state giving maximal amplitude of the magnetic BOs consists of N coherently excited

levels (so there are N−1 pairs of neighbours). Then the overlap is ρn = 1/N with an = 1/
√
N

and the phase shift φn = 0, and the amplitude of the oscillating magnetization becomes

AB = 2x′
0

N−1∑
n=1

ρn = 2x′
0

N−1∑
n=1

1

N
= 2x′

0

(
1− 1

N

)
. (3.126)

The maximal amplitude AB
max = 2x′

0 = 4Ja/hz of corresponding magnetic BOs can be

achieved at the WZL with a large number of coherently excited states. This is twice the ampli-

tude x′
0 derived semiclassically which is natural because here we consider the motion of both a

domain wall and an anti-domain wall together.

In the case of uniformly excited states for all momenta p the total magnetization becomes

Mz(t) =
N

2
−
∑
n

|an(t)|2n−
∫ 2π

0

dp

2π
2x′∑

n

� (
a∗n(t)an+2(t)e

−iωBt
)
, (3.127)

where the argument x′ = 2Ja cos(p)/hz is given by Eq. (3.81) and the frequency is ωB = 2hz. In

this case the magnetic BOs disappear because the corresponding oscillating term in Eq. (3.127)

vanishes due to the average
∫ 2π

0
dp cos p = 0.
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3.5.2 Transverse magnetization

Consider now the total transverse magnetization along the x-axis

Mx(t) = 〈χ(t)|Ŝx
q=0|χ(t)〉 =

∑
m,n

a∗m(t)an(t)S
x
mne

i(Em−En)t, (3.128)

where Sx
mn = 〈m|Ŝx

q=0|n〉 is the matrix element of the Ŝx-spin operator which can be written in

terms of the standard Ŝ+ and Ŝ− operators which act on a zero-momentum state as

Ŝ+
q=0|l〉 = 2|l + 1〉, Ŝ−

q=0|l〉 = (2− δl,1)|l − 1〉. (3.129)

Their corresponding matrix elements are

S+
mn = (S−

mn)
† = 〈m|Ŝ+

q=0|n〉 = Cm
0

∗Cn
1 + 2

∑
l>0

Cm
l

∗Cn
l+1, (3.130)

where the notation Cn
l = Cn

l (p = 0) of the wave function coefficients was used. That gives the

following matrix element of the spin operator along the x-axis

Sx
mn =

1

2

(
S+
mn + S−

mn

)
=

1

2

(
Cm

0
∗Cn

1 + Cn
0C

m
1

∗ + 2
∑
l>0

(
Cm

l
∗Cn

l+1 + Cn
l C

m
l+1

∗)) . (3.131)

The expectation value of the total transverse magnetization is

Mx(t) =
∑
m,n

a∗m(t)an(t)S
x
mn e

i(Em−En)t (3.132)

=
1

2

∑
m,n

(Cm
0

∗Cn
1 + Cn

0C
m
1

∗)a∗m(t)an(t) +
∑
m,n

∑
l>0

(
Cm

l
∗Cn

l+1 + Cn
l C

m
l+1

∗)a∗m(t)an(t).
The first term in Eq. (3.132) gives contributions from transitions between the ground state and

excited states (overlap between these states decays exponentially). The last term corresponds to

the magnetic BOs in the system.

In the case of the WZL when the energy levels are equidistant and the wave coefficient are

described by the Bessel function, using properties of the sum of Bessel function products we

obtain

Mx(t) = 2
∑
n

� (
a∗n(t)an+1(t) e

iωBt/2
)
= 2

∑
n

ρ⊥n cos
(ωB

2
t− φ⊥

n

)
, ωB = 2hz,

(3.133)

where the sum is performed over all states including the odd and even sectors, the absolute

value and argument of the overlap between neighbouring states are

ρ⊥n = |a∗nan+1|, φ⊥
n = arg(a∗nan+1). (3.134)

In order to get the magnetic Bloch oscillations in multilevel system the levels should be popu-

lated coherently. In the case of N uniformly excited states in the WZL with an = 1/
√
N and

43



the phase shift φ⊥
n = 0 the amplitude of the magnetic BOs becomes

A⊥
0 = 2

N−1∑
n=1

ρn = 2

(
1− 1

N

)
. (3.135)

We can see that the transverse magnetization Mx oscillates at half the Bloch frequency ω⊥ =

ωB/2 = hz since the separation between neighbour levels of different sectors is En+1−En = hz.

The maximal magnitude of these oscillations is A⊥
max = 2 which does not dependent on the

argument x′
0 describing the domain length. It reflects the fact that the transverse magnetization

in an Ising-like chain is only non-zero on the domain walls and is therefore independent of the

size of domains.

3.6 Dynamical structure factor

An indirect way of studying the magnetic Bloch oscillations is to investigate the magnetic ex-

citation spectrum. This can be achieved experimentally by inelastic neutron scattering. The

magnetic neutron scattering cross section measured in experiment is related to the dynamic

structure factor, or "scattering law" [112], which is defined as

Sαβ(q, ω) =

∫
dt e−iωt 1

N

∑
i,j

eiq(ri−rj)〈Ŝα
i (t)Ŝ

β
j (0)〉 =

∫
dt e−iωt〈Ŝα

q (t)Ŝ
β
−q(0)〉, (3.136)

where the expectation value is

〈Ŝα
q (t)Ŝ

β
−q(0)〉 =

∑
n

1

Z
e−βTEn〈n|Ŝα

q (t)Ŝ
β
−q(0)|n〉. (3.137)

Here Z is the partition function and the thermodynamic βT is the inverse temperature of the

system

Z =
∑
n

e−βTEn

, βT =
1

kBT
. (3.138)

Since |n〉 are eigenstates of the Hamiltonian and they form a complete set∑
m

|m〉〈m| = 1, (3.139)

the expectation value for a translationally invariant system can be written as

〈Ŝα
q (t)Ŝ

β
−q(0)〉 =

∑
n

1

Z
e−βTEn〈n|eiĤtŜα

q e
−iĤt

∑
m

|m〉〈m|Ŝβ
−q|n〉

=
∑
n,m

1

Z
e−βTEnei(En−Em)t〈n|Ŝα

q |m〉〈m|Ŝβ
−q|n〉. (3.140)
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Substituting this into Eq. (3.136) and performing integration over time we obtain the dynamical

structure factor at finite temperature

Sαβ(q, ω) =
∑
n,m

1

Z
e−βTEnδ

(
ω − (Em − En)

) 〈n|Ŝα
q |m〉〈m|Ŝβ

−q|n〉. (3.141)

We consider first the chain at low temperature when the main contribution is given by tran-

sitions out of the ground state. In this case the dynamical structure factor for a translationally

invariant system becomes

Sαβ(q, ω) =
∑
m

δ(ω − Em) 〈0|Ŝα
q |m〉〈m|Ŝβ

−q|0〉, (3.142)

where |0〉 is the ground state and |m〉 corresponds to an excited state with energy Em and

momentum q. The dynamical structure factors measured in experiments can be cast into theo-

retically more transparent forms involving the spin rasing and lowering operators Ŝ±

Sxx =
1

4

[
(S+− + S−+) + (S−− + S++)

]
,

Syy =
1

4

[
(S+− + S−+)− (S−− + S++)

]
.

At low temperatures the leading contribution is given by the ferromagnetic state when all spins

are aligned along the magnetic field. Then only the dynamical structure factor S+−(q, ω) has

a leading non-zero contribution since only the spin lowering operator Ŝ− can act on the ferro-

magnetic state with non-zero contribution by a creating state with a single overturned spin, see

the first line in Eq. (3.8).

3.6.1 S+−(q, ω)

Approximating the ground state as the ferromagnetic spin state |0, 0〉 gives the leading contri-

bution. In this case the non-zero dynamical structure factor S+− takes the form

S+−(q, ω) =
∞∑
n

δ(ω − En(q)) In(q), (3.143)

where In is the normalized relative intensity of the n-th mode with a single flipped spin

In(q) = |Cn
l=1(q)|2 =

|ψn,l=1(q)|2∑
l |ψn,l(q)|2 . (3.144)

In this approximation S−− = S−+ = S++ = 0 which implies Sxx = Syy = S+−/4. Using the

relations (3.82, 3.83) for the wave function coefficients and the following identity of the Bessel

functions [108]
∞∑
l=l0

J2
l−ν(x) = −x

2
J2
l0−ν(x)

∂

∂ν

[
Jl0−ν−1(x)

Jl0−ν(x)

]
, (3.145)
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the intensity can be expressed in the form

In(q) = 2

{
x
∂

∂ν

[
Jν(x)

Jν+1(x)

]}−1 ∣∣∣∣
ν=−νn

, Ja = 0, (3.146)

I ′n(q) = 2

{
x′ ∂
∂ν

[
Jν−1/2(x

′)
Jν+1/2(x′)

]}−1 ∣∣∣∣
ν=−ν′n

, h⊥ = 0, (3.147)

where νn is the n-th solution of the equation (3.78) for Ja = 0, and ν ′
n is the solution of the

equation (3.79) for the odd domain length l in the case of h⊥ = 0.

For the vanishing longitudinal magnetic field (hz = 0) the relation in Eq. (3.144) can be

written in terms of contributions from the continuous and kinetic modes

S+−(q, ω) = Ikinδ(ω − Ekin) +
1

π

∫ 2π

0

δ(ω − Econt(k))I(k) dk, (3.148)

where the relative intensities for Ja = 0 are

Ikin(q) = (1− z2)Θ(1− |z|), Ja = 0, (3.149)

I(k, q) =
sin2 k

1− 2z−1 cos k + z−2
, (3.150)

and Θ(x) is the Heaviside step function [113]. In the case of the vanishing field h⊥ the intensi-

ties are given by

I ′kin(q) = (1− z′2)Θ(1− |z′|), h⊥ = 0, (3.151)

I ′(k, q) =
sin2 k

1− 2z′−1 cos k + z′−2 . (3.152)

When the parameter JB = 0 and Ja < J⊥ the kinetic mode exists in the full Brillouin zone and

its intensity is uniform

I ′kin =

(
Ja
J⊥

)2

, JB = 0. (3.153)

The dynamical structure factor S+− for coupling parameters in Eq. (3.31) relevant to CoCl2 ·
2H2O is shown in Fig. 3.13 for zero longitudinal and transversal magnetic fields (hz = 0 and

h⊥ = 0 together). We can see that the inclusion of the next-neighbor interaction leads to an

increasing intensity of the kinetic bound state.

The external magnetic field hz changes the dynamical structure factor by splitting the energy

levels. While this is in accordance with Figure 3.14 the structure factor shows very low inten-

sities in the regions where the energy levels are equidistant. Increasing of the next-neighbor

coupling JB causes the kinetic bound state to become more preferable and its corresponding

line intensifies as shown in Figure 3.14.

We can go beyond approximating the ground state as the ferromagnetic state by including
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Figure 3.13: Dynamical structure factor S+−(q, ω) calculated by the analytic expression for

zero magnetic fields hz = 0 and h⊥ = 0 at low temperature for different values of the next-

neighbor coupling: (a) JB = 0 and (b) JB = 0.1J . Other parameters as in Eq. (3.31).
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Figure 3.14: Dynamical structure factor S+−(q, ω) in the magnetic field hz = 0.02J and h⊥ = 0
at low temperature for different values of the next-neighbor coupling: (a) JB = 0 and (b)

JB = 0.1J . Other parameters as in Eq. (3.31).
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Figure 3.15: Intensities I+−(q) vs. ω at low temperature for the coupling parameters in

Eq. (3.31) and magnetic field hz = 0.05J . The results for two momenta are shown: q = 0
(open circles, dashed line) and q = π (solid circles, solid line). The lines are guides to the eye.

the quantum fluctuations in the ground state. This can be formally written

I+−
n (q) =

(
C0C

n
1 (q) + 2

∑
l>0

ClC
n
l+1(q) cos(ql/2)

)2

, (3.154)

where we have used the following notation for the normalized wave function coefficients

Cl =
φ0(l)√∑
l |φ0(l)|2

, Cn
l (q) =

ψn,l(q)√∑
l |ψn,l(q)|2

(3.155)

corresponding to the ground state and n-th excited state in the chain respectively, φ0(l) describes

the wave function coefficients of the fluctuated ground state, see Eq. (3.102).

The leading terms of the intensity in Eq. (3.154) give the contribution

I+−
n (q) ≈ C2

0In(q) + 4C0Cl0C
n
1 (q)C

n
l0+1(q) cos(ql0/2), (3.156)

where l0 = 1 for Ja = 0 and l0 = 2 in the case of h⊥ = 0. The change introduced by

this correction is relatively small and hardly visible for the parameters used in Figure 3.14.

Corresponding expressions for the intensities I−+, I++ and I−− of the corresponding dynamical

structure factors in this approximation are given in Appendix.

In Figure (3.15) we can see for the material parameters in Eq. (3.31) how the intensities

I+−
n changes for the different levels for two momenta q = 0 and q = π, open circles with

dashed line and solid circles with solid line respectively. For zero momentum the intensities

drop exponentially with frequency, while for q = π the intensities decrease only slightly before

their increase at the energy of the lowest WZL level, and then they drop rapidly. This behaviour

also reflects the fact that the main contribution in Eq. (3.156) comes from transitions to the state

with a single overturned spin l = 1.
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3.6.2 Szz(q, ω)

At low temperature the dynamical structure factor Szz characterizes the longitudinal magne-

tization squared which is mostly determined by fluctuations in the ground state carrying zero

momentum. The wave function of the ground state can be expressed as a superposition of states

|p = 0, l〉 with the coefficients φ0(l). Since the operator Ŝz acts on a two domain wall state by

the formula

Ŝz
q |p, l〉 =

1

2
N |p, l〉δq,0 − 1− eiql

1− eiq
|p+ q, l〉, (3.157)

the dynamical structure factor Szz at low temperature is given by

Szz(q, ω) = S2

[
N − 2

∑
l lφ

2
0(l)∑

l φ
2
0(l)

]2
δ(q)δ(ω) + 4S2

∑
n

δ(ω − En(q)) I
zz
n (q), (3.158)

where S = 1/2 for the spin-1
2

chain of length N , and Izzn is the normalized relative intensity of

the n-th mode given by

Izzn (q) =

[∑N
l=1 φ0(l)ψn,l(q) sin(ql/2)

]2
sin2(q/2)

∑
l φ

2
0(l)

∑
l ψ

2
n,l(q)

. (3.159)

The first term in Eq. (3.158) describes the leading order contribution from the squared total

magnetization of the ferromagnetic state: Szz
FM = (NS)2δ(q)δ(ω). The correction to the SN -

term is caused by quantum fluctuations which flips spins and gives finally the term N/2 − 〈l〉,
where 〈l〉 is the average domain length in the ground state.

The intensity Izzn (q) in Eq. (3.158) has the following leading behaviour

Izzn (q) =
E2

0

h2
⊥

|ψn,l=1(q)|2∑
l |ψn,l(q)|2 ≈ h2

⊥
(J + JB − 2J⊥ + 2hz)2

In(q), Ja = 0, (3.160)

I ′zzn (q) =
4E ′

0
2

J2
a

|ψn′,l=2(q)|2∑
l |ψn′,l(q)|2 cos

2(q/2)

≈ 4J2
a

(J + 2hz)2
cos2(q/2) I ′evn (q), h⊥ = 0, (3.161)

where the normalized relative intensity In is given by Eq. (3.146) for Ja = 0, the introduced

intensity I ′evn corresponds to contributions from states with even l for h⊥ = 0 and can be written

as

I ′evn (q) = 2

{
x′ ∂
∂ν

[
Jν(x

′)
Jν+1(x′)

]}−1 ∣∣∣∣
ν=−ν′n

, (3.162)

where ν ′
n is the solution of the Eq. (3.80) for the even domain length l. The relative intensity I ′evn

contribution to the dynamical structure factor in CoCl2 · 2H2O can be seen in Figure 3.16. We

can see that only excitations to even n level gives non-zero contribution which implies that Szz

is independent of the coupling J⊥. However, the total spectral weight of Szz(q �= 0) is much

smaller than for S+− since it is proportional to the probability to find two overturned spins in

the ground state, which is reflected by the small factor 4J2
a/(J + 2hz)

2 in Eq. (3.161).
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Figure 3.16: The dynamical structure factor Szz(q, ω) at low temperature for a magnetic field

hz = 0.02J and the coupling constants h⊥ = 0, JB = 0. Other parameters as in Eq. (3.31).

The intensity of the plot has been increased by a factor (J+2hz)
2/(4J2

a) ≈ 25 in order to make

it visible.

3.6.3 Dynamical structure factor at finite temperature

In a real experiment at finite temperature thermal effects have to be taken into account. The

dynamical structure factor for a translationally invariant system at non-zero temperature is given

by Eq. (3.141) and can be rewritten as

Sαγ(q, ω) =
∑
m,n

1

Z
e−βTEn〈n|Ŝα

q |m〉〈m|Ŝγ
−q|n〉 δ

(
ω − (Em − En)

)
, (3.163)

where |n〉 and |m〉 correspond to excited states with energy En and Em respectively, Z is the

partition function.

Since the operator Ŝz acts on a two domain wall state by the formula given in Eq. (3.157)

the dynamical structure factor Szz can be written as

Szz(q, ω) =
∑
m,n

∫
dp

2π

e−βTEn(p)

Z
Szz
mn(p, q) δ [ω − (Em(p+ q)− En(p))] , (3.164)

where the integration is performed over p-momentum in the first Brillouin zone and Szz
mn(p, q)

is the matrix element of transition between the system states |m〉 and |n〉 which is given by

Szz
mn(p, q) =

1

4

(
N

∑
l

Cn
l (p)C

m
l (p)− 2

∑
l

lCn
l (p)C

m
l (p)

)2

δq,0

+ (1− δq,0)
1

sin2 q/2

(∑
l

Cn
l (p)C

m
l (p+ q) sin

ql

2

)2

, (3.165)

where we use the notation of the wave function coefficients Cn
l (p) given in Eq. (3.97). The

first term of the transition matrix element in Eq. (3.165) describes the total bulk magnetization

50



squared at q = 0.

Similarly the transverse dynamical structure factor is

S+−(q, ω) =
∑
m,n

∫
dp

2π

e−βTEn(p)

Z
S+−
mn(p, q) δ [ω − (Em(p+ q)− En(p))] , (3.166)

where S+−
mn(p, q) is the transition matrix element between the energy eigenstates |m〉 and |n〉,

and is given by the expression

S+−
mn(p, q) =

[
Cn

0 (0)C
m
1 (q)δp,0 + 2

∑
l>0

Cn
l (p)C

m
l+1(p+ q) cos

(
ql − p

2

)]2

. (3.167)

3.7 Limit of WZL

While the expressions in Eqs. (3.164) and (3.166) can be calculated numerically it is possible to

work out an analytic expression in the simplifying case when all energy levels are equidistant.

We consider the case of zero transversal field h⊥ = 0 and vanishing coupling constant JB = 0.

The assumption of an equidistant energy spectrum describing the WZL leads to the following

restrictions on the parameters

1. Argument x′ of Bessel function should be small: hz ≥ 2Ja.

2. The parameter z′ in Eq. (3.46) should be large: J⊥ 	 h⊥.

These conditions allow to get the integer roots ν ′
n = n of Eqs. (3.79) and (3.80) with the energy

spectrum En = J + hzn where the even (odd) number n describes states in the even (odd)

domain length sector, see Eqs. (3.104) and (3.105). The normalized wave functions Eq. (3.155)

correspond then to Bessel function of integer order

Cn
l (p) = J l−n

2
(x′

0 cos p) = J l−n
2

(
2Ja cos p

hz

)
, (3.168)

where we extended the expression to all integer l (not necessarily positive). The normalization

comes from the property of Bessel functions:
∑∞

k=−∞ J2
k (x) = 1.

The partition function in the case of the equidistant energy spectrum becomes

Z = 1 +
∑
n>0

e−βT (J+hzn) = 1 +
e−βT J

eβThz − 1
, (3.169)

where βT is the inverse temperature of the system.
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3.7.1 Szz(q, ω)

Substituting Eq. (3.168) into the expression for the matrix element Szz
mn in Eq. (3.165), the

second term with q �= 0 becomes

Szz
mn

∣∣∣
q �=0

=
1

sin2(q/2)

(∑
l>0

J l−n
2
(x′

0 cos p) J l−m
2

(
x′
0 cos(p+ q)

)
sin

ql

2

)2

. (3.170)

The Bessel functions in Eq. (3.170) have integer order because the variables l, n and m are even

(or odd) simultaneously. Therefore, it is convenient to introduce a new integer-valued variable

t = (l − n)/2 and rewrite the sum in the form

∑
t>1−n

2

Jt(x
′
0 cos p) Jt+n−m

2

(
x′
0 cos(p+ q)

)
sin

[
q
(
t+

n

2

)]

= Jn−m
2

(ζ ′) sin
[(

p− π

2

)n−m

2
+ q

n

2

]
, (3.171)

where we introduced a new variable

ζ ′ = x′
0| sin q| =

2Ja
hz

| sin q|. (3.172)

The sum over the product of Bessel functions was performed using Graf’s addition theorem [65]

∞∑
k=−∞

Jk+ν(u) Jk(v)
sin

cos
(kφ) = Jν(w)

sin

cos
(νχ) (3.173)

with the relations w =
√

u2 + v2 − 2uv cosφ, w cosχ = u − v cosφ, and w sinχ = v sinφ.

With this the dynamical structure factor Szz for q �= 0 can be written in the form

Szz(q, ω)
∣∣∣
q �=0

=
1

sin2 q/2

∑
m,n

e−βT (J+hzn)

Z
δ(ω − (m− n))

× J2
n−m

2
(ζ ′)

{
1/2, n �= m,

sin2(q n
2
), n = m,

(3.174)

where integration over momentum p was performed for integer values of n and m variables

∫ 2π

0

dp

2π
sin2

[(
p− π

2

)n−m

2
+ q

n

2

]
=

{
1/2, n �= m,

sin2(q n
2
), n = m.

(3.175)

Since there are not allowed transitions between the even and odd sectors the order of Bessel

function is integer, so it is convenient to introduce a new integer variable k = (m−n)/2 which

describes energy difference between states at the transitions.
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We can reorder the double sum as

∑
m,n

=

(∑
m≥n

+
∑
m<n

)∑
n

=
∑
m≥n

∑
n

+
∑
m

∑
n>m

=
∑
n

∑
k≥0

+
∑
m

∑
k<0

, (3.176)

that allows to rewrite the dynamical structure factor in the case of non-zero energy transitions,

when n �= m and k �= 0, in the following form

Szz
∣∣∣
q,ω �=0

=
1

2 sin2 q/2

e−βT J

Z

1

eβT hz − 1
(3.177)

×
∑
k �=0

δ(ω − 2hzk)J
2
k (ζ

′)

{
1, k > 0,

eβT 2hzk, k < 0,

where we used the expression for the sum of the first N terms of a geometric series

N∑
n=1

e−βThzn = e−βThz
1− e−βT hzN

1− e−βThz
≈ 1

eβT hz − 1
. (3.178)

For the zero mode, when n = m, in order to find the sum in Eq. (3.174) we can use the following

identity
∞∑
n=1

sin2(an)e−bn =
1

1− e−b

sin2 a

2

1 + e−b

cosh b− cos 2a
, (3.179)

which can be proved using Euler’s formula and sum of terms of geometric series [113]. That

gives the contribution of the zero-mode transitions

Szz
∣∣∣
q �=0
ω=0

=
e−βT J

Z

1 + e−βT hz

1− e−βT hz

δ(ω)

2

J2
0 (ζ

′)
cosh(βThz)− cos q

(3.180)

Finally, combining together Eqs. (3.177) and (3.180) we obtain the dynamical structure factor

in the form

Szz(q, ω)
∣∣∣
q �=0

=
e−βT J

Z

e−βT hz

1− e−βThz

N∑
k=−N

Gk(q) δ(ω − 2hzk), (3.181)

where the partition function Z is given by Eq. (3.169) and the contributions from each mode are

G0 =
J2
0 (ζ

′)
cosh(βThz)− cos q

eβThz + 1

2
, (3.182)

Gk =
J2
k (ζ

′)
2 sin2(q/2)

{
1, k > 0,

eβT 2hzk, k < 0,
(3.183)

and the argument of the Bessel function is ζ ′ = 2Ja
hz

| sin q|. Analysing the expressions in

Eqs. (3.182) and (3.183) for the dynamical structure factor Szz the maximum intensity of the fi-

nite frequency WZL transitions occurs at q = π/2 when the argument ζ ′ of the Bessel functions

is maximal.

If we introduce the Bloch frequency ωB = 2hz this gives the obtained result in Eq. (3.181)
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Figure 3.17: The structure factor Szz(q = π/2, ω) as a function of ω for T = J/2 in the field

hz = 0.2J and parameters from Eq. (3.31). The red dashed curve corresponds to the WZL

result given in Eq. (3.181) using the same parameters. In order to generate the plot Dirac delta-

functions were approximated by a Gaussian distributions with variance 10−4.

similar to the expression in the article by Kyriakidis and Loss [51]. In contrast to that result,

however, there are different coefficients and we get an additional factor e−βT J which decreases

dramatically the intensity at low temperature (compared to the coupling constant J). Therefore

in order to see finite temperature signatures of the magnetic Bloch oscillations, a relatively high

temperature is required to thermally occupy the energy levels. At the same time the magnetic

field hz leads to decreasing the weights of the finite frequency Bloch peaks in Eqs. (3.181)–

(3.183) that weakens the signatures of the magnetic BOs.

Comparison of the general analytical result in Eq. (3.165) and the expression obtained in

the limit of WZL in Eq. (3.181) for the Szz(q = π/2, ω) in the magnetic field hz = 0.2J at the

temperature T = J/2 ≈ 18.3K is shown in Figure 3.17. We can see clear peaks separated by

the Bloch frequency ωB = 2hz while the calculation in the WZL limit (the red dashed curve)

gives an overestimated weight of these peaks. Nevertheless it captures their relative intensities.

The peak broadening at the Bloch frequency and other additional peaks in the general case (the

black solid line) are caused by the non-equidistance of the energy spectrum.

Let us consider now the zero momentum contribution (q = 0) to the dynamical structure

factor Szz. Then the transition matrix element Szz
mn becomes

Szz
mn

∣∣∣
q=0

=

(∑
l

(
N

2
− l

)
J l−n

2
(x′

0) J l−m
2
(x′

0)

)2

. (3.184)

Using Neumann’s addition theorem and properties of sum of Bessel functions [108]

∞∑
k=−∞

Jk(x) Jk+n(x) = Jn(0) = δn,0,
∞∑

k=−∞
kJk(x) Jk+n(x) =

x

2
δn,1, (3.185)
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we obtain the following relation

Szz
mn

∣∣∣
q=0

=

([
N

2
− n

]
δn,m − x′

0δ|n−m|,2

)2

=

(
N

2
− n

)2

δn,m + (x′
0)

2δ|n−m|,2. (3.186)

That gives an expression for the dynamical structure factor at zero momentum in the form

Szz(q = 0, ω) =
e−βT J

Z

e−βThz

1− e−βT hz

1∑
k=−1

G0
k(q) δ(ω − 2hzk),

where the contributions from each mode are

G0
0 =

(
N

2

)2

− N

1− e−βThz
+

1

2

eβThz + 1

cosh(βThz)− 1
, (3.187)

G0
k =

1

2

(
2Ja
hz

)2
{
1, k = 1,

e−βT 2hz , k = −1.
(3.188)

We can see that the expression G0
k corresponds to the limit of vanishing momentum (q → 0)

in the obtained relation for the dynamical structure factor Szz(q, ω) above, Eq. (3.181) and

Eq. (3.183), while the zero-coefficient G0
0 has additional terms describing the squared total

magnetization which are proportional to the chain length N and its squared value N2, see

Eq. (3.187).

3.7.2 S+−(q, ω)

At finite temperature the leading contribution to the transverse dynamical structure factor S+−

comes from transitions between states with non-zero momentum p. The matrix element in

Eq. (3.167) becomes

S+−
mn(p, q) = 4

[∑
l>0

J l−n
2
(x′

0 cos p) J l+1−m
2

(
x′
0 cos(p+ q)

)
cos

(
ql − p

2

)]2

. (3.189)

The order of the first Bessel function is integer (the second Bessel function has half-integer

order), therefore it is convenient to introduce a new integer variable t = (l−n)/2. Using Graf’s

addition theorem the sum over the product of the Bessel functions is

∑
t>1−n

2

Jt(x
′
0 cos p) Jt+n−m+1

2

(
x′
0 cos(p+ q)

)
cos

[
q
(
t+

n

2

)
− p

2

]

= Jn−m+1
2

(ζ ′) sin
[(

p− π

2

)n−m+ 1

2
+

p

2
+ q

n

2

]
, (3.190)

where we use the variable ζ ′ = 2Ja
hz

| sin q|.
Since the transitions between the same (even or odd) sectors are not allowed it is convenient

to introduce integer variable k = (m − n − 1)/2. In this case the corresponding integral over
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Figure 3.18: The structure factor S+−(q = π/2, ω) as a function of ω using the same parameters

as in Figure 3.17. The red dashed curve corresponds to the WZL result in Eq. (3.192) using the

same parameters. Dirac delta-functions were approximated by a Gaussian distributions with

variance 10−4.

momentum p is ∫ 2π

0

dp

2π
cos2

[(π
2
− p

)
k +

p

2
+ q

n

2

]
=

1

2
. (3.191)

After reordering of the double sum we obtain finally

S+−(q, ω) =
e−βT J

Z

1

eβThz − 1

∑
k

δ
(
ω − hz(2k + 1)

)
(3.192)

× 2J2
k (ζ

′)

{
1, k > 1/2,

eβT hz(2k+1), k < 1/2,

where ζ ′ = 2Ja
hz

| sin q| and k is integer variable which takes values in the domain 1−N ≤ k ≤
N − 1.

The dynamical structure factor S+−(q = π/2, ω) is plotted in Figure 3.18 using the same

parameters as in Figure 3.17. Peaks at frequencies corresponding to odd multiples of the mag-

netic field hz (half the Bloch frequency ωB = 2hz) are clearly visible. Other additional peaks

(the black solid line) come due to the dispersion of the lowest energy levels.

3.8 Beyond the Ndw ≤ 2 approximation

The restriction to Ndw ≤ 2 does not allow to discuss interactions between domains in the

chain which play an important role in the high energy spectrum and may even destroy the

magnetic Bloch oscillations. We will study contributions from the higher domain wall sectors

numerically.
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3.8.1 Single domain states

In order to make a connection between the analytical results for the Ndw ≤ 2 restricted Hamil-

tonian and numerical results where also states with more domain walls are allowed we construct

an approximate single domain creation operator in the following way

a†n(p) =
1√
N

∑
l

e−ipl/2ψn,l(p)
∑
j

e−iprj

j+l−1∏
k=j

Ŝ−
k , (3.193)

where ψn,l(p) are the wave function coefficients in the two domain wall approximation, see

Eq. (3.4). When this operator, with zero momentum p = 0, acts on the ferromagnetic state

| ↑↑↑ . . . ↑〉 it gives an energy eigenstate in the Ndw ≤ 2 approximation2.

The usefulness of this construction is that we can calculate overlaps of these single domain

states with exact energy eigenstates from numerical calculations which also involve higher do-

main wall sectors. This lets us identify which states that are best characterized as a single

domain excitation. For each value of the parameter n at zero momentum p = 0 we calculate the

overlaps of this state with all the exact energy eigenstates obtained numerically with the restric-

tion Ndw ≤ 6. The energy eigenstate with the biggest overlap for each value of n can be said

to correspond to the state |n, p〉 with the energy En = J + hzνn in the single domain approx-

imation. The normalized wave function coefficients of such a single domain state calculated

numerically having the biggest overlap for the quantum number n = 12 and the corresponding

analytically predicted wave function coefficients ψn=12,l(p = 0) = J(l−12)/2(2Ja/hz) in the two

domain wall approximation are shown in Figure 3.19(a). We see good agreement between the

numerically calculated coefficients for Ndw ≤ 6 and the analytically predicted ψn,l(p = 0) in

Eq. (3.168) from the redefined Hamiltonian in the case of the WZL. We see that for the energy

eigenstate with n = 12 the average domain length is 〈l〉 ≈ 12 while domains with the maximal

lmax = 18 and the minimal length lmin = 6 give the biggest contributions.

In Figure 3.19(b) we can see the good agreement between the numerically calculated eigen-

values for Ndw ≤ 6 for the finite chain and the eigenvalues of the redefined Hamiltonian (3.29)

in Ndw ≤ 2 approximation, and the analytically estimated energy levels in the low-energy re-

gion. The spectrum of these states becomes equidistant when the parameter n exceeds a certain

value that agrees with the analytical estimate for when νn = n which is n > 2Ja/hz + 1 ≈ 9

for the magnetic field hz = 0.05J and the CoCl2 · 2H2O material parameters in Eq. (3.31).

We will also be interested in the transition matrix element of the spin operator Ŝz
q=0 between

the numerically calculated single domain states |χn〉 and the ground state |χ0〉, which can be

seen to behave as αn

√
N according to Figure 3.20(a). Therefore to a good approximation the

coefficient αn corresponds to the transition matrix element of the spin operator
∑

i Ŝ
z
i between

the excited sate |χn〉 and the 1/
√
N redefinition of the ground state |χ0〉

αn = 〈χn|Ŝz
q=0

1√
N
|χ0〉. (3.194)

We can therefore compare αn to the transition matrix element of Ŝz
q=0 between excited states and

2We can consider bound state of a domain wall and an anti-domain wall as a single domain or a particle. In this

sense we can term the two domain wall approximation as a single particle approximation.
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Figure 3.19: (a) The normalized wave function coefficients squared of one domain states with

fixed quantum number n = 12 (the solid blue line) as a function of domain length l in the

Ndw ≤ 6 approximation in the magnetic field hz = 0.05J for N = 34 sites using the parameters

in Eq. (3.31). The dashed magenta line corresponds to the analytical solution of wave function

coefficients in terms of the Bessel function ψn=12,l(p = 0) = J(l−12)/2(2Ja/hz). (b) Excitation

energy of one domain states as a function of quantum number n. The solid blue circles refer to

the Ndw ≤ 6 approximation, while the solid magenta squares describe results for the redefined

Hamiltonian (3.29) for Ndw ≤ 2. The dashed red line shows the analytical solution of the WZL

equidistant spectrum En = J + hzn for n > 2Ja/hz + 1 in the magnetic field hz = 0.05J .

the ground state of the redefined Hamiltonian (3.29) which is given by Eq. (3.120). In particular,

in Figure 3.20(a) the best fitted function α2

√
N (corresponding to the red dashed line) of the

numerically calculated matrix element 〈χ2|Ŝz
q=0|χ0〉 connecting the first excited single domain

state in the even sector and the ground state has the coefficient α2 = 0.157 which is relatively

close to the Sz
2,0 = 0.165 obtained from the redefined Hamiltonian.

In Figure 3.19(b) we can see a good agreement between αn for different level numbers n in

the Ndw ≤ 6 approximation for N = 34 spins (the solid blue circles) and the matrix elements

Sz
n,m=0, see Eq. (3.120), for single domain states for Ndw ≤ 2 (the solid magenta squares)

derived from the redefined Hamiltonian. Note that αn drops very fast with increasing n. The

finite size effects influence crucially only the states with the high number n.

3.8.2 Two domain states

The construction in Eq. (3.193) can also be used to estimate the energy of states having two

domains. Approximate two domain states can be expressed as pairs with total momentum zero

of two single domain states with quantum numbers n,m and relative momentum p separated by

a distance d between domain centres. We take the creation operator of the two domain state to

be

b†n,m(d) =
∑
p

e−ipda†n(p) a
†
m(−p), (3.195)
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Figure 3.20: (a) Square matrix element of the spin operator
∑

i Ŝ
z
i between the first excited

single domain state and the ground state for Ndw ≤ 6 approximation (the solid blue circles) as

a function of the system size N . The used coupling parameters are given by Eq. (3.31). The

red dashed line corresponds to the best fitted function
(
α2

√
N
)2

, where the coefficient is α2 =
0.157. (b) Transition matrix element |αn| between single domain states and the ferromagnetic

state with the 1/
√
N redefinition of the coupling for N = 34 sites (the solid blue circles) as

a function of level number n. The solid magenta symbols describe the matrix element Sz
n,m=0

given by Eq. (3.120) for the redefined Hamiltonian. Here a logarithmic scale was used.

where the sum is performed over all momenta in the Brillouin zone. Using Eq. (3.193) the two

particle creation operator can be written in terms spin operators as

b†n,m(d) =
∑
p

e−ipd
∑
l,l′

[
ψn,l(p)ψm,l′(−p) + ψn,l′(p)ψm,l(−p)

]

×
{
1

2

∑
D> l+l′

2

cos(pD)
1

N

∑
j

j+l−1∏
k=j

Ŝ−
k

⎛
⎜⎝ j+D−1+ l+l′

2∏
k′=j+D+ l−l′

2

Ŝ−
k′ +

j−D−1+ l+l′
2∏

k′=j−D+ l−l′
2

Ŝ−
k′

⎞
⎟⎠

+ cos

(
p
l + l′

2

)
1√
N

∑
j

j+l+l′−1∏
k=j

Ŝ−
k

}
. (3.196)

Its action on the ferromagnetic state gives the two domain (or two particle) state

|n,m, d〉 = b†n,m(d)|0, 0〉, (3.197)

which can be expressed in the explicit form

|n,m, d〉 =
∑
p

e−ipd
∑
l,l′

[
ψn,l(p)ψm,l′(−p) + ψn,l′(p)ψm,l(−p)

]

×
{

1√
2

∑
D> l+l′

2

cos(pD)|l, l′, D〉+ cos

(
p
l + l′

2

)
|l + l′〉

}
, (3.198)
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Figure 3.21: Excitation energy of two domain states En,m labeled by quantum numbers n and

m. Lines with same colors refers to fixed values of n and m, but different values of the distance

d. The dashed thick red line shows the non-interacting energy of a two domain state as the sum

of single domain state energies En + Em.

where |l + l′〉 is a zero momentum state with domain length l + l′ in the Ndw = 2 sector

and a |l, l′, D〉 corresponds to a symmetrized two domain state with lengths l and l′ separated

by a distance D between their centres in the Ndw = 4 sector. For a finite system with periodic

boundary conditions the D-value is limited by the minimal distance between the domain centres

and takes values
l + l′

2
< D <

N

2
. (3.199)

The biggest overlap between numerically calculated energy eigenstates and the two domain

states |n,m, d〉 gives a set of states and energies labeled by the numbers n,m, d each which gives

the energy of a state having two domains, one of n, and other of m, separated by a distance d

between their centres. Due to interactions between domains the energy levels for fixed quantum

numbers n and m splits into several sub-levels corresponding to different separation d. The

energy spectrum of these states for Ndw ≤ 6 system is given in Figure 3.21 for a chain with

N = 34 spins.

We can construct the energy shift

ΔEn,m = En,m − (En + Em), (3.200)

where En,m is the energy of two domain states, and En and Em are single domain state ener-

gies. The energy shift for the two domain states |n,m, d〉 as a function of the distance between

domain centres d for different numbers n and m in the magnetic field hz = 0.05J is shown in

Figure 3.22. We interpret this dependence as the interaction energy of two domains separated

by d lattice spacings and speculate that the interaction energy for a finite chain length N can be

characterized by the following functional form

ΔE(d) = a− b

(
1

d
+

1

N − d

)
, (3.201)

which fits the results reasonably with the parameters: (a) a = 0.21J and b = 1.31J for n =
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Figure 3.22: Two domain energy shift En,m = En,m−(En+Em) as a function of the separation

distance d between domain centres in the magnetic field hz = 0.05J for quantum numbers (a)

n = m = 12 and (b) n = 10 and m = 12. Other parameters as in Eq. (3.31). The red dashed

line corresponds to the best fitting function ΔE(d) = a − b[1/d + 1/(N − d)] for the system

size N = 34.

m = 12, (b) a = 0.23J and b = 1.29J for n = 10 and m = 12, see Figure 3.22. The

positive value of a is caused by the restriction on the number of domain walls Ndw which tends

to overestimate energies in higher domain wall sectors relative to those in lower sectors.

Due to finite size effects we are restricted from studying the interaction of two domain states

with high quantum numbers m,n. In particular, in the case of m = n when the average size of

each domain is 〈l〉 ≈ n and the maximal domain length in the state is lmax ≈ n + 2x′
0, where

x′
0 = 2Ja/hz, the system size should be N ≥ 2n + 4x′

0 in order to completely fit both states

into the chain.

3.9 Laser Induced magnetic BOs

We have seen in Eq. (3.123) that the total magnetization of suitably prepared quantum states

oscillates at the Bloch frequency. We will now outline a procedure for how to prepare such a

state. Since the magnetic Bloch oscillations correspond to transitions between WZL levels, a

direct method to generate the magnetic BOs at low temperature is to apply coherent far-infrared

laser radiation. Using a short laser pulse with the proper frequency one can excite levels in the

equidistant region of the energy spectrum and when turning off the laser pulse the magnetization

of the material will continue to oscillate at the Bloch frequency.

Interaction of magnetic materials with electromagnetic radiation and electromagnetic re-

sponse of various classes of correlated electron materials have been studied by many scien-

tists, see the review [114]. In particular, at finite temperature the coupling of light with optical

phonons and magnons can induce additional magnetic excitations [115, 116], that was also ex-

perimentally observed by using far infrared laser spectroscopy in CoCl2 · 2H2O as the coupled

phonon-magnon mode at the energy Eph ≈ 42.1K = 1.15J , see [117–119]. In order to induce

the magnetic Bloch oscillations we need to avoid excitation of this phonon-magnon mode by

applying the laser radiation with frequency corresponding to higher energies.
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3.10 Magnetic dipole transition

The magnetic dipole transition (M1) corresponds to the leading part of the magnetic interaction

of an electromagnetic wave with an atom3. Due to the small magnitude of the magnetic field

in an electromagnetic wave the magnetic dipole interaction is much weaker than that of the

electric dipole interaction (E1). The magnetic dipole transition couples states with the same

parity in contrast to the electric dipole transition. The selection rules for the magnetic dipole

transitions [120, 121] are

1. Changing of the total angular momentum quantum number J

ΔJ = 0,±1, except J = 0 ↔ J = 0. (3.202)

2. Changing of the projection of the total angular momentum MJ along a specified axis

ΔMJ = 0,±1. (3.203)

3. No parity change

πf = πi. (3.204)

The parity of a state is defined as

π = (−1)
∑

i li , (3.205)

where li is orbital momentum quantum number of the i-th electron in the atom. In fact,

only electrons in odd orbitals (those with an odd orbital momentum l such as in the p, f ,

. . .-shells) contribute to the total parity.

The first two selection rules can be easily understood since a photon is a boson and carries

integer spin Sphoton = 1.

In the case of magnetic materials with Co2+-ions as magnetic centers (e.g. the cobalt salts

CsCoBr3, KCoF3, CsCoCl3, CoCl2 · 2H2O and CoNb2O6) there are three unpaired electrons

in the d-subshell (with angular momentum l = 2) in the ground state of the ion corresponding

to the term 4F (L = 3, S = 3
2
), see Figure 3.3. Thus the parity of the ion ground state is even

πi = (−1)
∑

i li = (−1)3×2 = 1 since filled orbitals and paired electrons do not change the parity.

Excited levels of 3d-electrons of the Co2+-ion have the same even parity πf = (−1)3×2 = 1 that

complies with the 3rd rule of the magnetic dipole transition (M1). When taking into account

crystal field effects in CoCl2 · 2H2O due to neighboring Cl atoms and H2O molecules, parity is

still a good quantum number as these crystal field perturbations do not break inversion symmetry

[92].

Therefore the electric dipole transitions (E1) are forbidden in CoCl2 ·2H2O in contrast to the

allowed magnetic dipole transitions (M1). Thus the far-infrared laser radiation interacts mainly

through the magnetic component of the light wave. Therefore we can model the laser as an

3There is no radiation due to magnetic monopoles (M0), which do not seem to exist.
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Figure 3.23: The spin z-axis corresponds to the crystallographic b axis in CoCl2 · 2H2O. The

strong ferromagnetic Jz couples spins along the c axis. A laser beam is shown propagating at

normal incidence to the b− c plane with magnetic field polarization in the b direction.

extra time-dependent magnetic field which couples to the spins as

Ĥext = − �B(t)
∑
i

�̂Si. (3.206)

For a linearly polarized laser beam such that the magnetic field is along the z-axis which corre-

sponds to the Ising direction, the effective coupling term becomes

Ĥext = −Bz
0 cos(ωt)

∑
i

Ŝz
i , (3.207)

where ω is the laser frequency and Bz
0 is the laser magnetic field amplitude.

In a far-infrared laser experiment with frequency of the incoming radiation �ω ≈ J corre-

sponds to a laser wavelength λ ≈ 0.3 mm for CoCl2 · 2H2O which is much larger than the

lattice spacing a ≈ 3.5 Å. The wave number of laser radiation k = 2π/λ satisfies the relation

ka 	 1, so in a very good approximation the interaction with photon does not change mo-

mentum of spin states and we can neglect the k dependence in Eq. (3.207). Since we study a

system at low temperature in the ground state, in the further consideration we will focus on the

zero-momentum part of the energy spectrum.

3.11 Laser induced BOs

In order to generate the magnetic Bloch oscillations at very low temperatures we need to popu-

late the excited levels in the equidistant part of the energy spectrum. We can use a laser with a

wavelength in the far-infrared spectrum.

The interaction with a linearly polarized laser beam can be expressed as the coupling Ĥext to

an extra oscillating magnetic field with the frequency ω, see Eq. (3.207). We take the magnetic

component of the polarized laser beam to be along the Ising axis which corresponds to the

crystallographic b-direction in CoCl2 · 2H2O [94, 95]. Such a setup can be made by cleaving

the crystals in the b− c plane (technical details of crystal growing and cleaving for this material

are given in [119]) and directing the laser at normal incidence to this surface and polarizing the

laser beam such that the magnetic field points along the b-direction, see Figure 3.23.

63



0 1000 2000 3000
t [h

_
 /J

z
]

0

0.2

0.4

0.6

0.8

1

|a
i|2

0
10
12
14

1600 1610 1620
t [h

_
 /J

z
]

0

0.2

0.4

0.6

0.8

1

1600 1610 1620
t [h

_
 / J

z
]

0

0.2

0.4

0.6

0.8

Σ n |a
n*a

n+
2|

Figure 3.24: Population |ai|2 of selected energy levels i, indicated in the legend, as a function

of time after turning on the laser, Hext. The laser frequency is ω = (En0=12 − E0)/� and

the magnetic field amplitude of the laser beam is Bz
0 = 0.2J . The upper right panel shows a

zoom in on the boxed time region. The lower right panel shows the time dependence of the

sum of products of two nearby probability amplitudes,
∑

n |a∗nan+2|. The time averaged value

is shown as the horizontal dashed line. Time t is measured in units of �/Jz which is 0.2 ps for

the CoCl2 · 2H2O material.

We assume that the laser beam is coherent along its front, and also through the crystal. The

laser considered here have a wavelength of about λ = 0.3 mm thus for this approximation to

be good the crystal should be thinner than this value. In the case of a thicker crystal there will

be an additional phase-shift associated with the crystal thickness.

Starting in the ground state of the Hamiltonian (3.29), the time-dependent Schrödinger equa-

tion can be solved iteratively numerically with the laser field Ĥext present. In the iterations we

keep the 300 lowest energy states of the Hamiltonian with zero momentum and Ndw ≤ 2. The

laser frequency ω is tuned such that ω = (En − E0)/� where n corresponds to an energy

level in the region where the spectrum is approximately equidistant. We choose the parameter

n = n0 = 12 corresponding to En0 − E0 ≈ 1.6J for a static magnetic field hz = 0.05J . In

practice when using a laser with a fixed wavelength, resonance can instead be found by chang-

ing the static magnetic field thereby adjusting the energy levels. The iterative solution gives

time-dependent amplitudes of the different energy levels. Figure 3.24 shows the probabilities

of finding the system in selected levels as a function of time. Only even n states are excited

because the Ŝz-terms do not flip any spins.

The black dot-dashed curve in Figure 3.24 shows how the ground state is depleted. The

minimum of the ground state population coincides with the maximum of the population of level
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n0 = 12, green solid curve, and occurs at a time

τ = π�/ωR, (3.208)

where the oscillation frequency is

ωR =
√

|Bz
0αn0 |2 + (ω − (En0 − E0))2. (3.209)

Here αn0 is the matrix element of the Ŝz terms between the ground state and the n = n0 = 12

excited state

αn = 〈n|
∑
i

Ŝz
i |0〉. (3.210)

These oscillations are in essence Rabi oscillations [122].

Exciting the level n = n0 alone does not give appreciable amplitude for Bloch oscillations

as one also needs to populate the levels with n + 2 (or n − 2), see Eq. (3.123). This can be

achieved by using a relatively large amplitude of the laser beam, we have used Bz
0 = 0.2J ,

thereby causing off-resonant tunneling between the n and the n ± 2 levels, see Fig. 3.24, the

red dotted and blue dashed curves. These off-resonant tunneling processes are fast, thus the

population of the nearby levels follows closely that of the central level.

In order to seek the maximum amplitude of the magnetic Bloch oscillations we turn off the

laser (and the interaction Hext term) at the maximum population of the central excited level. A

close look at the time dependence of a∗nan+2 near the cutoff time, reveals that the dominating

terms have the same phase, thus the amplitude of BOs is proportional to
∑

n |a∗nan+2| which is

shown in the lower inset of Figure 3.24. From this we see that it oscillates fast with a frequency

corresponding to E12 −E0. It may be difficult to turn off the laser exactly when this quantity is

maximal. However, this is not a major concern as the time averaged value is about 75% of the

maximum value.

Turning off the laser at a time τ when
∑

n |a∗nan+2| is maximal, and letting the system evolve

further in time without Ĥext, produces the BOs shown in Figure 3.25. As our simulation only

allows single domain excitations we have plotted the relative size of the domain, measured by

the expectation value of the number of spins opposing the field N1↓(t) = Mz(t)−N/2 divided

by its time average N̄1↓ ≈ n for excitation En. We see that the relative size of the domain

oscillates between 0.6 and 1.4 corresponding to a size between 7.2 and 16.8 for N̄12 = 12. Thus

the amplitude is 4.8 which is close to the expected value 4Ja/hz × 0.6 = 5 from Eq. (3.123).

Allowing a finite density ρ of coherently oscillating domain states, the relative size of a single

domain state shown in Figure 3.25 will be proportional to the experimentally relevant quantity,

the time-dependent relative magnetization

Mz(t)− M̄

M̄
=

ρN̄1↓
1/2− ρN̄1↓

(
N1↓(t)
N̄1↓

− 1

)
. (3.211)

As is evident from Figure 3.25 the magnetic Bloch oscillations are not simple harmonic. A

Fourier transformation of the beating pattern is shown in the lower panel of Figure 3.25, where

two peaks are clearly visible. These peaks correspond to the frequencies ω1 = (E14−E12)/� =

0.1J/� and ω2 = (E12 − E10)/� = 0.11J/�. Thus the beating pattern appears due to the
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Figure 3.25: Size oscillations of a domain excitation, measured as the relative number of down

spins N1↓/N̄1↓ as a function of time after the laser is switched off (upper panel), and its Fourier

spectrum (lower panel). The beating behaviour of the relative size oscillation is due to the

deviation of the energy spectrum from equidistant and is described by the two frequencies which

correspond to transitions to the off-resonance levels ω1 = (E14 − E12)/� = 0.1J/� and ω2 =
(E12 − E10)/� = 0.11J/�.

deviation of the energy levels from an equidistant ladder spectrum. This frequency difference

can be made smaller by exciting higher energy bound states where the spectrum is closer to

being equidistant, see Figure 3.9(a).

The laser polarization can also be arranged such as to have its magnetic field along the spin-x

direction. This will induce transitions between states in the even and odd domain length sectors.

In this case our simulations also show the magnetic Bloch oscillations, but now with more

frequency components due to the deviation of the eigenenergies from equidistant spectrum, as

in this case both the even and the odd sectors participate.

In order to observe the magnetic BOs we need to get a sizable population of the surrounding

levels n0 ± 2 by off-resonant tunneling. This requires the use of a large laser amplitude, Bz
0 =

0.2J , which, with a g-factor of 6.8 for CoCl2 · 2H2O [88], corresponds to an amplitude of

electric field in the beam of approximately 500 MV/m. This is too large for real experiments

since the dielectric breakdown field of most insulators is an order of magnitude less than this.

We can decrease the laser amplitude. In this case, in order to get a reasonable population of

the nearest off-resonant levels, it requires to have a longer exposition time τ , see Eq. (3.208)

and Eq. (3.209). However it is essential that this time is shorter than the coherence time of the

system, such that magnetic Bloch oscillations of different domains are coherent.

Instead we can change the laser polarization to get a magnetic component along the x-axis.

This induces transitions between the even and odd n states which are closer to each other and

so the laser amplitude can be reduced.

Another approach is to use two coherent small-amplitude laser beams each in resonance
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with nearby levels, that allows to excite resonantly two states. It will induce the magnetic Bloch

oscillations corresponding to transitions between the excited energy levels. In that way we can

avoid the large laser amplitude needed for the off-resonance tunneling process.

3.11.1 Two laser excitation of BOs

In order to get population of nearby levels with a smaller laser amplitude we can use two lasers,

each in resonance with one of the two neighbouring levels n01 = 12 and n02 = 14. The

simplest way to get coherent laser radiations at two frequencies is the use of nonlinear optical

technique of second harmonic generation [123]. However, in our case we have to excite res-

onantly two nearby energy levels so the frequencies ω1 and ω2 of the laser beams should be

relatively close. Therefore in order to obtain two coherent laser waves with tunable frequen-

cies it is more prominent to use another nonlinear method of optical parametric light generation

(OPG) used in optical parametric oscillator [124–126]. This parametric oscillator converts an

input laser beam with frequency ω into two output beams of lower frequency ω1 and ω2 by

means of second order nonlinear optical interaction so that the sum of the output frequencies

is equal to the input wave frequency ω = ω1 + ω2. When the power of the input laser beam is

significantly above a particular threshold level, the two generated output beams are coherent to

a very good approximation and behave as a laser-like wave with narrow linewidth [127].

In the case of two lasers with the frequencies ω1 and ω2 the time-dependent part of the

Hamiltonian corresponding to the spin interaction with the linearly polarized laser beams be-

comes

Ĥext = −(Bz
01 cos(ω1t) + Bz

02 cos(ω2t+ φ)
)∑

i

Ŝz
i , (3.212)

where ω1 and ω2 are the frequencies of two laser beams, Bz
01 and Bz

02 are magnetic field ampli-

tudes, and φ is phase shift between the lasers. In particular, we use the following parameters

Bz
01 = 0.01J, ω1 = (En01=12 − E0)/�, (3.213)

Bz
02 = 0.03J, ω2 = (En02=14 − E0)/� (3.214)

and zero phase-shift φ = 0 in our simulation. Since the spin operator Ŝz does not flip any spins

only eigenstates with even numbers n in the energy spectrum can be excited.

The different level populations as a function of time after the lasers are turned on is shown

in Figure 3.26. The ground state population corresponds to the black dot-dashed line and its

minimum coincides with the maxima of the population of levels n01 = 12 and n02 = 14, and

the first minimum occurs roughly at a time 2×104 �/Jz for the parameters used here. This time

becomes larger for smaller laser amplitudes and it is inversely proportional to the magnitude of

the laser field.

The population behaviour at the first maximum of the population curves, τ = 20 440 �/Jz,

is shown in the upper inset of Figure 3.26. Since the sum
∑

n a
∗
nan+2 in the magnetization in

Eq. (3.123) is dominated by the term with n = 12, the amplitude of the magnetic Bloch oscilla-

tions is proportional to the overlap |a∗12a14| which is shown in the lower inset. The overlap has

a beating pattern corresponding to the two laser frequencies ω1 and ω2, and its time-averaged

value (the dashed line) is approximately 〈|a∗12a14|〉 ≈ 0.48. Since the overlap variation is rela-
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Figure 3.26: Population |ai|2 of selected energy levels i, indicated in the legend, as a function

of time after turning on the two laser beams. The laser frequencies and amplitudes are ω1 =
(En01=12 − E0)/�, Bz

01 = 0.01J and ω2 = (En02=14 − E0)/�, Bz
02 = 0.03J . The upper

right panel shows a zoom in on the boxed time region. The lower right panel shows the time

dependence of |a∗12a14|. The time averaged value is shown as the horizontal dashed line. The

time scale �/Jz is 0.2 ps for CoCl2 · 2H2O.

tively small, it is not a major concern to turn off the lasers at non maximal overlap.

After turning off the laser at a time τ the spin system evolves further in time without Ĥext

and undergoes the magnetic Bloch oscillations which are shown in Figure 3.27. We see that

the relative domain size of single domain excitations N1↓/N̄1↓ oscillates between 0.7 and 1.3

corresponding to a size between 9.1 and 16.9 for N̄1↓ ≈ (12 + 14)/2 = 13. Thus the amplitude

is 3.9 which is close to the theoretically predicted value 4Ja/hz × 0.48 = 4.0 in Eq. (3.123). At

a finite density ρ of coherently oscillating domain states the relative size of a single domain state

in the upper panel of Figure 3.27 is proportional to the time-dependent relative magnetization

(Mz(t) − M̄)/M̄ in Eq. (3.211). In the case of noninteracting domains we can estimate the

density of domains per unit length as ρ = c(1 − |a0|2)/N̄1↓, where |a0|2 corresponds to the

population of the ground state and c is a constant of the order unity.

The Fourier spectrum of the oscillating size of a domain excitation corresponding to the

magnetic BOs is shown in the lower panel of Figure 3.27, where a single peak is clearly visible

very close to ωB = 2hz/� at the frequency ω = (E14 − E12)/� ≈ 0.103J/�. This small

deviation reflects the fact that the energy spectrum is not exactly equidistant and deviates from

the WZL at low energies, see Figure 3.9(a).

We can change the phase shift φ in the interaction Hamiltonian Ĥext in Eq. (3.212) between
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Figure 3.27: Size oscillations of a domain excitation, measured as the relative number of down

spins N1↓/N̄1↓ as a function of time after the lasers are turned off (upper panel), and its Fourier

spectrum (lower panel). The oscillation frequency corresponds to transitions between the two

resonance levels ω = (En02=14 − En01=12)/� = 0.103 J/�.

the laser beams but our simulations show that it does not change system behaviour at long time

scale t � τ , since off-resonance transitions between the excited states n01 and n02 decrease any

phase shift effects of the level populations at this time scale.

We can use another polarization of the laser beams, for example in order to get a magnetic

field component along the x-direction, that will allow to excite also states in the odd sector and

induce transitions between the even and odd n states. In this case our simulations also show the

magnetic Bloch oscillations, but now at the Bloch frequency ωB = hz/� which corresponds to

the energy spacing between adjacent even and odd levels.

In addition to CoCl2 · 2H2O we used the coupling parameters from Ref. [110] to study

magnetic excitations in a quasi one-dimensional ferromagnet CoNb2O6. Our calculations and

numerical simulations also indicated that the magnetic BOs may be excited in this material by

the similar way.

Here we considered the redefined Hamiltonian in Eq. (3.29) for Ndw ≤ 2. Let us now discuss

effects of interaction between domains in the ferromagnetic chain by including contributions

from higher domain walls sectors.

Interaction effects

In order to address the effects of interactions between domains we perform a time-dependent

numerical simulation of a N = 32 spin system with Ndw ≤ 6 in the presence of the two lasers.

The magnetization varies rapidly and has a large-scale weakly damped oscillating behavior due

to dephasing coming from populating other levels, see Figure 3.28. The estimated damping

time scale is roughly tdmp = 5 × 104 �/J . We expect that this time scale decreases when the
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Figure 3.28: Magnetization per site as a function of time for a system with interaction in the

presence of two laser beams with amplitudes and frequencies as in Figure 3.26 for chain length

N = 32 and Ndw ≤ 6 approximation. The inset shows the magnetization as a function of time

after the two lasers have been turned off at τ = 4420 �/J . The damping time tdmp of the

oscillations is roughly 5× 104 �/J .

system size N increases.

The magnetization envelope reaches its first minimum at tm = 4420 �/J in Figure 3.28

which is shorter than the time of maximal population of excited levels τ = 20 440 �/J for

the redefined Hamiltonian in Figure 3.26 by a factor k = tm/τ = 1/4.6. This is a result

coming from the
√
N -factor in the matrix element connecting the ferromagnetic state to the

single domain states, see Figure 3.20(a), together with the near blocking by interactions and

finite-size effects of states with Ndw > 2, see [128,129]. For larger system sizes we expect that

this ratio approaches

k =
1√
R
, (3.215)

where R is the distance between domains in units of the lattice spacing a, such that beyond this

distance the energy of domain-domain interaction is smaller than the perturbation magnitude

Bz
01α12 ≈ Bz

02α14, where the redefined matrix element αn coupling the ferromagnetic state to

a single domain state is given in Eq. (3.194). This value corresponds to an energy scale of

about 10−4J for the CoCl2 · 2H2O parameters in Eq. (3.31), since the magnetic field ampli-

tude is Bz
01 = 0.01J and the matrix element is αn=12 ≈ 0.01 given in Figure 3.19(b). When

domains are closer than the distance R the excitation of the second domain will be blocked by

the presence of the first domain, therefore this multi-domain state will not be excited and will

not participate in the resonance. This causes an increase of the Rabi frequency for this blocked

system. We discuss this blocking effect further in a simplified toy model in Section 3.12.

After turning off of the lasers at the first magnetization envelope minimum at tm = 4 420 �/J

the magnetization continues to oscillate at the Bloch frequency ωB = 2hz = 0.1J with the

Bloch period TB = 20π �/J that is shown in the inset of Figure 3.28.

Thus it should be possible to excite the magnetic Bloch oscillation in the one-dimensional

ferromagnet CoCl2 · 2H2O using two resonant lasers at low temperatures in a static magnetic
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field. On turning off the lasers after an excitation time τ the total magnetization will oscillate at

the Bloch frequency ωB = 2hz which is proportional to the applied static field. The estimated

Bloch frequency is about 500 GHz for the parameters of CoCl2 · 2H2O in a moderate 0.4 T

magnetic field.

However collisions between excited domains can lead to dephasing behavior and associated

decoherence that weakens the magnetic Bloch oscillations. Since the excited single domain

states have flat dispersion and form the WZL, the domain excitations are heavy and localized.

Therefore the interaction between domains plays an important role only at a high density of

excitations when neighboring domains are close together. Static impurities and interactions

between chains can also contribute to the dephasing in the real material, but the considered

Bloch oscillations of domains are localized within a region 2AB = 4x′
0 = 8Ja/hz that is

roughly 17 sites for the used parameters in Eq. (3.31). So the effects of static impurities can be

neglected if an impurity concentration is less than a few percent.

3.12 Rabi oscillation

In the previous section we considered the effects of an oscillating magnetic field from a laser

beam on the spin system. We saw that when the frequency of the laser is in resonance with one

of the excited levels the quantum system behavior is essentially that of a two-level system with

transitions between the ground state and the excited level. This is the well-known physics of

Rabi oscillations [130].

When allowing also states with more domain excitations Ndw > 2 we expect that as long as

these domains can be treated as independent of each other the Rabi frequency Ω is unchanged,

just as in the case for a dilute gas of atoms [131] where the Rabi frequency is set by the energies

of a single atom. However we saw in the previous section that interactions between domains

affected the Rabi frequency. Thus in order to get a general understanding of this it is helpful to

illustrate and discuss these effects on the Rabi frequency in a simple toy model with interaction.

3.12.1 Rabi oscillations in a simple model with interaction

2-level systems

First consider a toy model where a single spin S = 1
2

is placed in a permanent magnetic field

with strength h along the z-axis. The Hamiltonian of the atom is

Ĥ0 = −h

(
Ŝz − 1

2

)
. (3.216)

There are two eigenstates, either parallel | ↑〉 or antiparallel | ↓〉 spin to the magnetic field, so

we have a two-level system (see the Table 3.1). The ground state corresponds to the state with

the spin along the field and has zero energy.

We can introduce a time-dependent perturbation V̂ to the Hamiltonian in Eq. (3.216) and let

it describe a harmonic oscillating magnetic field along the x-axis

V̂ = h0 cos (ωt)Ŝ
x, (3.217)
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Energy State
0 | ↑〉 = |0〉
h | ↓〉 = |1〉

Table 3.1: Eigenstates and eigenenergies of the Hamiltonian (3.216).

where h0 is the amplitude of the oscillating field with frequency ω. The spin operator can be

expressed in terms of the usual rising and lowering operators Ŝx = (Ŝ+ + Ŝ−)/2 and it acts on

the states as

Ŝx| ↑〉 = 1

2
| ↓〉, Ŝx| ↓〉 = 1

2
| ↑〉, (3.218)

that gives the following matrix elements of the perturbation

Vmn(t) = 〈m|V̂ (t)|n〉 = V0 cos (ωt)(1− δmn), V0 =
1

2
h0. (3.219)

It is convenient to separate out the time-independent part of the matrix element

Vmn(t) = Vmn cos (ωt), Vmn = V0(1− δmn). (3.220)

The Schrödinger equation of the perturbed system is

i
∂ψ

∂t
=
(
Ĥ0 + V̂

)
ψ, (3.221)

where the solution can be written in the form

ψ(t) =
∑
n

an(t)e
−iEnt|n〉, (3.222)

where En are the energies of the unperturbed Hamiltonian and an(t) are the probability ampli-

tude of finding system in the state |n〉 at time t. We use system of units where the Plank constant

is set equal to unity, � = 1.

Substituting the last expression (3.222) into the Schrödinger equation (3.221) we obtain the

following set of differential equations

ȧm(t) = −i
∑
n

an(t) 〈m|V̂ (t)|n〉 ei(Em−En)t, (3.223)

which solutions correspond to exact solutions of the Schrödinger equation.

The most interesting case is the resonance behaviour of the system when the frequency ω

of the external perturbation coincides with the difference between energy levels, ω = h. In this

case the equation set (3.223) consists of two differential equations and has the explicit form{
ȧ0 = −ia1V0

(
1 + e−i2ht

)
/2,

ȧ1 = −ia0V0

(
ei2ht + 1

)
/2.

(3.224)

Using the rotating wave approximation [121] we neglect the fast oscillating term 〈ei2ht〉average 	
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1 that gives the well-known equation for the harmonic oscillator

ä1 + ω2
0a1 = 0, ω0 = V0/2. (3.225)

It means that the population of the excited state, i.e. probability |a1|2, oscillates with the Rabi

frequency

Ω = 2ω0 = V0. (3.226)

If we assume that the two-level system is initially in the ground state

a0(0) = 1, a1(0) = 0, (3.227)

the solutions of the equation set are the following

a0(t) = cosω0t, a1(t) = sinω0t. (3.228)

The total magnetization of a quantum system in state ψ(t) is

M(t) = ψ†(t)
∑
i

Ŝz
i ψ(t) =

∑
n

|an(t)|2 〈n|
∑
i

Ŝz
i |n〉. (3.229)

In the case of a single spin the time-dependent magnetization becomes

M(t) =
∑
n

|an(t)|2 〈n|Ŝz|n〉. (3.230)

Both eigenstates contribute to the magnetization

M(t) =
1

2

(|a0(t)|2 − |a1(t)|2
)
=

1

2

(
cos2 ω0t− sin2 ω0t

)
=

1

2
cos 2ω0t, (3.231)

thus the magnetization oscillates also with frequency

Ω = 2ω0 = V0 =
h0

2
, (3.232)

which corresponds to the Rabi frequency in Eq. (3.226).

It should be noted that for harmonic perturbation which is off-resonance ω �= h, the total

magnetization oscillates with the generalized Rabi frequency [121]

Ω =
√
|V0|2 + δ2, (3.233)

where δ = ω − h is the detuning.

3-level systems

To explain how interaction might change the Rabi frequency we consider a simple extension of

the two level system. We consider two spins S = 1
2

in a magnetic field h along the z-axis. The
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unperturbed Hamiltonian of this system is

Ĥ0 = −h
2∑

i=1

(
Ŝz
i −

1

2

)
. (3.234)

Its ground state corresponds to the state where all spins point along the magnetic field and we

have chosen the constant in the Hamiltonian (3.234) such that the ground state has zero energy.

The quantum system has 4 available states (see Table 3.3).

Energy State
0 | ↑↑〉
h | ↑↓〉
h | ↓↑〉
2h | ↓↓〉

Table 3.2: Eigenstates and eigenenergies of the Hamiltonian (3.234).

Since the two states with one overturned spin have the same energy, it is convenient to

rewrite their wave functions in the triplet and singlet combinations

|1〉 = 1√
2
(| ↑↓〉+ | ↓↑〉) ,

|1∗〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) . (3.235)

Using the Fourier transform

|p, l = 1〉 = 1√
N

∑
eiprj |rj, l = 1〉 (3.236)

where the wave function |rj, l = 1〉 corresponds to state with a single down spin at site rj , the

redefined wave functions |1〉 and |1∗〉 in Eq. (3.235) are states with definite momenta

|p = 0, l = 1〉 = 1√
2
(| ↑↓〉+ | ↓↑〉) = |1〉,

|p = π, l = 1〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) = |1∗〉. (3.237)

We again consider the interaction with an oscillating external magnetic field with frequency

ω along the x-axis

V̂ = h0 cos (ωt)
N=2∑
i=1

Ŝx
i , (3.238)

where h0 is the magnitude of the magnetic field and N = 2 is the total number of spins. The
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spin operator acts on the ground state as

∑
i

Ŝx
i |0〉 =

1

2

N=2∑
i=1

(
Ŝ+
i + Ŝ−

i

)
| ↑↑〉 = 1

2

N=2∑
i=1

Ŝ−
i | ↑↑〉 =

1

2
(| ↑↓〉+ | ↓↑〉) = 1√

2
|1〉,
(3.239)

that gives the following non-zero matrix elements of the perturbation

〈1|V̂ |0〉 = 〈1|V̂ |2〉 = V01(t) =
√
2
h0

2
cosωt. (3.240)

For further calculations it is convenient to extract the time-independent part of the matrix ele-

ment

V01(t) = V01 cosωt, V01 =
√
2
h0

2
=

√
2V0, (3.241)

where V0 = h0/2 is the matrix element of the time-independent part in Eq. (3.219), i.e. the

same as in the simple one spin system. We can see that the matrix element is
√
N times larger

than for the single spin system considered in the previous section. It can be easy understood

since there are now N = 2 places to insert a new overturned spin.

We can see from Eq. (3.240) that the state |1∗〉 is decoupled from the other states. This

follows from the fact that the perturbation term V̂ in Eq. (3.238) has zero momentum, thus

couples only states with equal momenta. The state |1∗〉 is the only state with momentum p =

π and does therefore not couple to any of the other states with zero momenta p = 0. The

perturbation couples the three states: |0〉, |1〉, |2〉. Therefore the quantum system of two spins

in the magnetic field can be described effectively as a coupled 3-level system, see Table 3.3.

Energy State
0 |0〉 = | ↑↑〉
h |1〉 = (| ↑↓〉+ | ↓↑〉)/√2

h |1∗〉 = (| ↑↓〉 − | ↓↑〉)/√2
2h |2〉 = | ↓↓〉

Table 3.3: Energies and wave functions of the system of two spins in magnetic field. The state

|1∗〉 is decoupled due to the zero-momentum perturbation.

The time dependence of the coupled states of the perturbed Hamiltonian Ĥ + V̂ can be

expressed in the terms of the unperturbed states as in Eq. (3.222). It follows that the Schrödinger

equation in the form of the equation set (3.223) becomes⎧⎪⎨
⎪⎩

ȧ0 = −ia1V01(t) e
−iht,

ȧ1 = −iV01(t)
(
a0e

iht + a2e
−iht

)
,

ȧ2 = −ia1V01(t) e
iht,

(3.242)

where an are probability amplitudes to find the system in the state |n〉 and the transition matrix

element V12(t) = V01(t), see Eq. (3.240). Considering the case of resonance ω = h and
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neglecting fast oscillating terms (i.e. applying the rotating wave approximation) we obtain⎧⎪⎨
⎪⎩

ȧ0 = −ia1V01/2,

ȧ1 = −iV01(a0 + a2)/2,

ȧ2 = −ia1V01/2,

(3.243)

that gives the equation for a harmonic oscillator for expansion coefficient of the state |1〉 with a

single overturned spin

ä1 + w2a1 = 0, w =
V01√
2
= V0 = Ω, (3.244)

where w = V01/
√
2 = Ω that corresponds to the Rabi frequency (3.232) of a single spin.

If we assume that initially at moment t = 0 the system is in the ground state

a0(0) = 1, a1(0) = 0, a2(0) = 0, (3.245)

the differential equation set (3.243) has the following solutions⎧⎪⎨
⎪⎩

a0(t) = (1 + coswt)/2,

a1(t) = −i sin (wt)/
√
2,

a2(t) = (coswt− 1)/2.

(3.246)

Since the state |1〉 with one overturned spin has zero magnetization, the total magnetization in

Eq. (3.229) for the system behaves as

M(t) = |a0(t)|2 − |a2(t)|2 = (cosΩt+ 1)2/4− (cosΩt− 1)2/4 = cosΩt. (3.247)

We can conclude that the total magnetization of a 3-level system with two spins oscillates

with the same Rabi frequency Ω0 = Ω as for the single spin despite the
√
N -times larger matrix

element of the perturbation.

3-level systems with interaction

Now consider the interesting case of adding an interaction between the excited spins. That is

when we add the following blocking term

V̂D = Δ

(
Ŝz
1 −

1

2

)(
Ŝz
2 −

1

2

)
(3.248)

to the Hamiltonian. This shifts the energy of the |2〉 = | ↓↓〉 state. Consider the limit where

the state | ↓↓〉 is blocked, Δ → ∞. Then the transition between the |1〉 and |2〉 states is not

possible, as it is way off resonance and it means that the 3-level system of two spins reduces

effectively to a two-level system. At the same time the matrix element between the available

states |0〉 and |1〉 is
√
2-times larger than for a single spin two-level system, Eq. (3.241). Thus

the Rabi frequency is increased to Ω∞ =
√
2Ω for this blocked system. In this case the total
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magnetization oscillates as

M∞(t) = cos
√
2Ωt = cosΩ∞t. (3.249)

The similar phenomenon of blocking effect of collective oscillations was predicted and observed

experimentally in optics with systems of cold Rydberg atoms [128, 129, 132, 133].

In the more general case of finite Δ the additional coupling of the two spins in Eq. (3.248)

causes a positive energy shift of Δ for the level |2〉 = | ↓↓〉. This can be interpreted as an

additional interaction energy between the two excited spins. The eigenstates are the same as for

the 3-level system without interaction as discussed above (see Table 3.4). The matrix elements

of the perturbation are the same as in Eq. (3.240) with

V01 =
√
2
h0

2
=

√
2V0, (3.250)

where V0 = h0/2 is the transition matrix element given by Eq. (3.219) for the single spin

system.

Energy State
0 |0〉 = | ↑↑〉
h |1〉 = (| ↑↓〉+ | ↓↑〉)/√2

h |1∗〉 = (| ↑↓〉 − | ↓↑〉)/√2
2h+Δ |2〉 = | ↓↓〉

Table 3.4: Eigenstates and eigenenergies of the two spin system with an additional interaction

which shifts the energy of the state |2〉. The state |1∗〉 is decoupled from the other three states.

Expressing the perturbed wave functions (3.222) in the terms of the unperturbed states the

equation set (3.223) of the Schrödinger equation becomes⎧⎪⎨
⎪⎩

ȧ0 = −ia1V01(t) e
−iht,

ȧ1 = −iV01(t)
(
a0e

iht + a2e
−i(h+Δ)t

)
,

ȧ2 = −ia1V01(t) e
i(h+Δ)t,

V01(t) = V01 cosωt. (3.251)

At resonance, ω = h, we have⎧⎪⎨
⎪⎩

ȧ0 = −ia1V01 (1 + e−i2ht)/2,

ȧ1 = −iV01

{
a0(e

i2ht + 1) + a2(e
−iΔt + e−i(2h+Δ)t)

}
/2,

ȧ2 = −ia1V01 (e
i(2h+Δ)t + eiΔt)/2.

(3.252)

Since the shift Δ ≥ 0 and ω = h, the rotating wave approximation simplifies Eq. (3.252) and

gives ⎧⎪⎨
⎪⎩

ȧ0 = −ia1V01/2,

ȧ1 = −iV01

(
a0 + a2e

−iΔt
)
/2,

ȧ2 = −ia1V01 e
iΔt/2.

(3.253)

Taking the first derivative of the first equation, substituting into the second row and finding its
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derivative we finally obtain the following 3rd order differential equation

...
a 0 + iΔ ä0 + w2ȧ0 + iΔ

w2

2
a0 = 0, w =

V01√
2
= V0, (3.254)

where the variable w corresponds to the Rabi frequency Ω = V0 of a single spin. We assume

that the 3-level system is in the ground state |0〉 at the moment t = 0 which gives the following

initial conditions for the coefficient a0 and its derivatives⎧⎪⎨
⎪⎩

a0(0) = 1,

ȧ0(0) = 0,

ä0(0) = −w2/2.

(3.255)

The non-interacting limit Δ = 0 and the blocking limit Δ → ∞ are found as:

1. In the limit of vanishing shift (Δ = 0) the obtained Eq. (3.254) corresponds to the deriva-

tive of the equation for harmonic oscillator

d

dt

(
ä0 + ω2a0

)
= 0, w = Ω, (3.256)

that gives the oscillating total magnetization (3.247) with the Rabi frequency Ω0 = Ω.

2. In the case of blocking due to the huge shift (Δ → ∞) the leading contribution comes

from terms in Eq. (3.254) which are proportional to the shift Δ, and gives the harmonic

equation

ä0 +
w2

2
a0 = 0, w = Ω, (3.257)

which implies that the total magnetization in Eq. (3.249) oscillates with the effective Rabi

frequency Ω∞ = 2Ω/
√
2 =

√
2Ω.

To find the transition region between these two limits we solve the homogeneous linear

ordinary differential equation (3.254). The main idea of the method is to find a solution in the

exponential form a0 = ext for possibly-complex values of x that results in the characteristic

equation

x3 + iΔ x2 + w2x2 + iΔ
w2

2
= 0, w = Ω. (3.258)

The obtained cubic equation can be solved explicitly by Cardano’s method [134]. The analytic

expression of the solution is quite complicated, but in the limit of weak interaction Δ 	 Ω the

first order solution in Δ/w is

a0(t) ≈ 1

4

(
2e−iΔ

2
t + ei(w+Δ

4
)t + e−i(w−Δ

4
)t
)
,

a2(t) ≈ 1

4

(
−2e−iΔ

2
t + ei(w+ 5

4
Δ)t + e−i(w− 5

4
Δ)t

)
. (3.259)

In this case the total magnetization depends on the interaction energy as

MΔ
Ω = cosΩt cos
3

4
Δt =

1

2

(
cos

(
Ω +

3

4
Δ
)
t+ cos

(
Ω− 3

4
Δ
)
t

)
. (3.260)
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Figure 3.29: Total magnetization Fourier spectrum for the 3-level system for different values

of the interaction Δ. The Fourier amplitude is given in arbitrary units along the vertical axis.

For weak coupling Δ 	 Ω the magnetization frequency is split into two components around

the Rabi frequency Ω = 0.1. For increasing values of Δ one of the frequency peaks weakens

and moves to higher frequencies while the second peak persists and approach the frequency

Ω∞ =
√
2Ω. The crossover between the two-peak structure and the single peak at Ω∞ happens

at Δ ∼ Ω.

We can see that for small interaction Δ the magnetization oscillation frequency is split into

two components around the Rabi frequency Ω (this splitting is linear in Δ to the lowest order).

The exact analytical solution of Eq. (3.254) with the initial conditions in Eq. (3.255) shows that

intensity of one of the frequency components disappears with increasing interaction Δ, while

the frequency of the other component shifts to the value Ω∞ =
√
2Ω, see Figure 3.29 where

the amplitude Fourier spectrum of the total magnetization as a function of the interaction Δ is

shown for the 3-level system. This can also be seen from Figure 3.30 for fixed values of the

interaction Δ.

Generalization to N spins

In the general case of a system of N spins one can expect that without interactions between the

spins the total magnetization will oscillate with the same Rabi frequency Ω0 = Ω as for a single

spin. In the case of an additional interactions between states, that shifts energy levels, magneti-

zation behaves complicated and has components which oscillate with different frequencies and

intensities. With increasing the interaction energy the biggest contribution comes from terms

with higher frequency. In the limit of large interaction when the energy shift is much large than
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Figure 3.30: Amplitude Fourier spectrum of the total magnetization given in Figure 3.29 for

the 3-level system with interaction for fixed values of the energy shift Δ = 0, 0.03, 0.1, 0.3.

Horizontal axis describes the oscillation frequency. The amplitude is given in arbitrary units

along the vertical axis. The transition matrix element corresponding to the Rabi frequency

of single spin is Ω = V0 = 0.1. In absence of the interaction (Δ = 0) frequency of the

magnetization coincides with the Rabi frequency Ω0 = Ω. In the case of blocking (Δ � Ω) the

total magnetization oscillates with the effective Rabi frequency Ω∞ =
√
2Ω.

80



the transition matrix element corresponding to the Rabi frequency (Δ � Ω = V0), the blocking

effect becomes crucial and the total magnetization oscillates with the high effective Rabi fre-

quency Ω∞ =
√
NΩ. It means that due to blocking the system of N spins behaves effectively

as a two level system with the transition matrix element V01 =
√
NV0 which causes so huge

increase of the effective Rabi frequency.

It is necessary to note that in the case of perturbation due to oscillating magnetic field along

the z-axis as discussed in Sections 3.10 and 3.11 the corresponding transition matrix of the op-

erator Ŝz has also diagonal elements which correspond to magnetization of the eigenstates. This

causes additional oscillations of the probability coefficients an(t) at the resonance frequency ω.

Therefore the level population |an|2 will oscillate with the doubled resonance frequency 2ω. In

the case of the oscillating laser field at the resonance frequency ω ≈ 1.6J/� this can be seen

in the upper right panel of Figure 3.24, where the period of the level population is in a good

agreement with the predicted value Tn = 2π/(2ω) ≈ 1.96 �/J .

3.13 Magnets in nonuniform field

An other possible model, where magnetic Bloch oscillations can be obtained, is a one-dimensional

magnet with an easy-axis anisotropy in a nonuniform magnetic field [135–138].

3.13.1 Antiferromagnetic chain

In the case of antiferromagnetic (AF) spin system the magnetic BOs can be viewed, at least

semiclassically, as a result of applying a constant force on an antiferromagnetic domain wall.
This requires a nonuniform magnetic field. For an antiferromagnetic spin chain in an inho-

mogeneous longitudinal magnetic field with zero next-nearest-neighbor coupling JB = 0 and

absence of a transverse magnetic field hx = 0 the Hamiltonian becomes

ˆHAF = ĤAF
z + Ĥa + Ĥ⊥, (3.261)

where the ĤAF
z term is

ĤAF
z = |Jz|

∑
i

Ŝz
i Ŝ

z
i+1 −

∑
i

hz(i)Ŝ
z
i , (3.262)

and the terms Ĥa and Ĥ⊥ are given in Eq. (3.3). The magnetic field along the z-axis increases

linearly along the chain with constant magnetic field gradient bz and can be written as hz(i) =

ibz (the lattice parameter is set equal to unity).

In the case of strong anisotropy with antiferromagnetic coupling |Jz| the largest, the mag-

netic system behaves as an Ising-like antiferromagnet. This coupling causes antiferromagnetic

order where z-components of neighboring spins are anti-aligned. In this case the first excited

state corresponds to a single anti-domain wall excitation (NADW = 1) in the spin system and

each such state can be described as

|j, Q〉AF = | . . . ↑↓↑
j

↓↓ ↑↓↑ . . .〉, (3.263)
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where the index j = 1, 2, . . . , N gives the position of the anti-domain wall, N is the total

number of spins in the chain, and ↑ indicates a spin-up along the z-axis. The charge Q is

defined by the first spin at the end of the antiferromagnetic chain as Q = +1 for spin-down and

Q = −1 for spin-up, see [51, 139].

Acting on the state in Eq. (3.263) the Hamiltonian term Ĥa (corresponding to the sum of

Ŝ+
i Ŝ

+
i+1 and Ŝ−

i Ŝ
−
i+1) always creates an additional anti-domain wall, while the term Ĥ⊥ (which

involves Ŝ+
i Ŝ

−
i+1) can also translate the AF domain wall by two lattice sites.

Considering the low energy excitations one can use the simplest single anti-domain wall

approximation (NADW ≤ 1) that gives the following effective Hamiltonian [51] describing the

system

ĤAF
NADW≤1

|j, Q〉 =
[ |Jz|

2
− (−1)j

bzQ

2

(
j +

1

2

)]
|j, Q〉+J⊥(|j+2, Q〉+ |j−2, Q〉), (3.264)

where the boundary effects were neglected and the position of the anti-domain wall is 2 <

j < N − 2. This expression is similar to the ferromagnetic Hamiltonian in the single domain

wall approximation (Ndw ≤ 1) that can be used with suitable modifications for analysis of the

oscillatory dynamics in an antiferromagnetic spin chain.

The energy spectrum of the Hamiltonian (3.264) is equidistant and consists of the WZL

EAF
n = (−1)n

bz
2

(
n+

1

2

)
. (3.265)

Transition between the energy states n and n+2 describes the oscillatory motion of anti-domain

wall in the AF system in a linear magnetic field. The Bloch frequency of the oscillations is

ωAF
B = bz, (3.266)

where bz is the magnetic field gradient.

3.13.2 Ferromagnetic chain

While our focus has been on domain walls and their oscillatory motion, ferromagnetic magnons

can also undergo the Bloch oscillations. This was predicted in an easy-axis one-dimensional

ferromagnet in an inhomogeneous external field by using spin wave description by solving the

phenomenological Landau-Lifshitz equation [136]. The quantum mechanical description in

terms of the oscillatory dynamics of the magnons is given in the paper [138].

The Hamiltonian of a one-dimensional isotopic infinite ferromagnetic chain of spins S =

1/2 in a nonuniform magnetic field is

Ĥ = c0 −
∑
i

J
(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 + Ŝz

i Ŝ
z
i+1

)
−
∑
i

hz(i)Ŝ
z
i , (3.267)

where J is the exchange interaction energy, hz(i) is the inhomogeneous field along the z-axis,

and c0 is a constant chosen so that the ground state energy of the ferromagnet equals zero. In
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the case of a linear magnetic field its magnitude is

hz(i) = h0 + bzi, (3.268)

where h0 is the permanent field component, bz is the magnetic field gradient, and the lattice

parameter a is set equal to unity. Considering the low energy spectrum in the finite h0-field an

excited state corresponds to a single overturned spin (magnon) in the ferromagnetic chain and

each state can be described in the following way

|j〉 = | . . . ↑↑↑
j

↓↑↑↑ . . .〉 = Ŝ−
j |0〉, (3.269)

where Ŝ−
i is the lowering spin operator and the index j = 1, 2, . . . , N gives the overturned spin

position. The ferromagnetic state corresponds to the state |0〉 = | ↓↓↓ . . . ↓↓〉. In order to solve

the eigenvalue problem the eigenstate |ν〉 with energy Eν can be expressed in the basis of the

states in Eq. (3.269) as

|ν〉 =
∑
i

ψν,i|i〉, (3.270)

where ψν,i are normalized wave function coefficients.

In this case the Schrödinger equation becomes

2
j − ν

xA

ψν,j = ψν,j−1 + ψν,j+1, −∞ < j < ∞, (3.271)

where the parameter xA is

xA =
J

bz
. (3.272)

The expression in Eq. (3.271) corresponds to the recurrent relation of the Bessel functions [107],

so its solution is given in terms of the Bessel function Jν(x) as

ψν,j = Jν−j(xA), (3.273)

where the argument xA describes the localization length of the eigenstate with energy Eν . The

energy spectrum of the spin system consists of equidistant energy levels

Eν = (J + h0) + bzν (3.274)

and forms a typical Wannier-Zeeman ladder.

In order to analyze dynamics of the spin system we can consider the time evolution of the

total longitudinal magnetization

Mz(t) = 〈χ(t)|
∑
i

Ŝz
i |χ(t)〉, (3.275)

where a general time-dependent state of the quantum system can be expressed in terms of the
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eigenstates in Eq. (3.270) as

|χ(t)〉 =
∑
ν

aν(t) e
−iEνt|ν〉, (3.276)

where the coefficient aν as a function of time describes the population of eigenstate |ν〉 with

energy Eν . Since the spin operator Ŝz does not change a spin state the corresponding matrix

element is

〈ν|Ŝz
i |μ〉 =

1

2
δμ,ν − ψν,i ψμ,i(1− δν0)(1− δνμ). (3.277)

Using properties of the Bessel functions and the transition matrix element in Eq. (3.277) the

total magnetization becomes

Mz(t) =
N

2
−
∑
n

|an(t)|2n− 2xA

∑
n

� (
a∗n(t)an+1(t)e

−iωBt
)
, ωB = bz, (3.278)

where the parameter xA = J/bz describes the magnitude of the oscillation. The real part of the

oscillating term can be written in the form∑
n

� (
a∗nan+1e

−iωBt
)
=
∑
n

ρn cos(ωBt− φn), (3.279)

where ρn and φn are absolute value and argument of the overlap respectively

ρn = |a∗nan+1|, φn = arg(a∗nan+1). (3.280)

The last term in Eq. (3.278) corresponds to the magnetic BOs and depends on the overlap

between neighbouring states. Therefore the Bloch oscillations can be observed directly as time-

dependent oscillations in the longitudinal magnetization at the Bloch frequency

ωB = bz. (3.281)

Consider now the dynamical structure factor for the spin system at non-zero temperature

which is given by Eq. (3.141) and can be rewritten in real space as

Sαβ
i,j (ω) =

∑
m,n

1

Z
e−βTEn〈n|Ŝα

i |m〉〈m|Ŝβ
j |n〉 δ

(
ω − (Em − En)

)
, (3.282)

where |n〉 and |m〉 correspond to excited states with energy En and Em respectively, Z is the

partition function, βT is the inverse temperature, and i and j are positions of spins in the chain.

Using the transition matrix element in Eq. (3.277) and explicit form of the wave function coef-

ficients in Eq. (3.273) the dynamical structure factor Szz becomes

Szz
ij (ω) =

1

4
δ(ω) +

∑
n,m

e−βTEn

Z
δ(Em − En − ω)

× (1− δn0)(1− δnm)Jn−i(xA) Jn−j(xA) Jm−i(xA) Jm−j(xA), (3.283)
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where the first term corresponds to the squared bulk magnetization.

Since the spin operators Ŝ± overturn only a single spin their matrix elements are

〈ν|Ŝ+
i |μ〉 = ψμ,i δν0(1− δμ0), 〈μ|Ŝ−

i |ν〉 = ψ∗
μ,j δν0(1− δμ0), (3.284)

where the asterisk ∗ is notation of the complex conjugate. In this case the dynamical structure

factor S+− becomes

S+−
ij (ω) =

1

Z

∑
m �=0

δ(J + h0 + bzm− ω) Jm−i(xA) Jm−j(xA), (3.285)

where the argument of the Bessel function is xA = J/bz. In order to simplify this expression we

can introduce new variables: distance l = j− i and position of "center of mass" R = (i+ j)/2.

Using the Graf’s theorem for the Bessel functions and performing the Fourier transform the

structure factor can be written as

S+−
R (q, ω) =

1

Z
√
N

∑
m �=0

δ(J + h0 + bzm− ω) J2R−2m(2xA| cos q|). (3.286)

Due to properties of the Bessel function the dynamical structure factor S+−
R has maximal

intensity of peaks at |R −m| ≈ | cos q|J/bz and it is localized around ω = J + h0 + bzR. The

structure factor behaviour for the fixed parameter R and the magnetic gradient field bz = 0.1J

and h0 = 0 is shown in Figure 3.31.

By the same way the structure factor S−+
R can be expressed as

S−+
R (q, ω) =

e−βT (J+h0)

Z
√
N

∑
m �=0

e−βT bzmδ(J + h0 + bzm+ ω) J2R−2m(2xA| cos q|), (3.287)

where the argument is xA = J/bz.

3.13.3 Bloch frequency in gradient field

We can see that in both cases the Bloch frequency of the magnetic BOs in a one-dimensional

magnet in a linear external field in Eqs. (3.266) and (3.281) is proportional to the field gradient

bz which value is naturally restricted in real experiments. The Bloch frequency in usual physical

system of units is given by

�ωB = gμBB
a

L
, (3.288)

where μB = 5.79× 10−5 eV/T is Bohr magneton, g is the spin g-factor, a is lattice parameter,

and L is sample length. For typical magnetic materials the lattice constant a is about a few

Ångströms [58], while the typical size of a magnetic crystal is of the order of a centimeter. The

field strength B of the strongest permanent magnets usually does not exceed a few Tesla [140].

It gives the following estimate of the Bloch frequency of a single soliton at ωB ≈ 103 s−1 which

expressed in units of Kelvins corresponds to extremely low energy scale �ωB ≈ 10−8 K.

Therefore it is extremely hard to observe these magnetic Bloch oscillations in a gradient

magnetic field in laboratory experiments since this phenomenon will be suppressed by thermal
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Figure 3.31: The dynamical structure factor S+−
R (q, ω) in arbitrary units given by Eq. (3.286) for

the fixed parameter R for ferromagnetic chain in linear magnetic field with gradient bz = 0.1J
and h0 = 0. In order to generate the plot Dirac delta-functions were approximated by a Gaussian

distributions with variance 10−3.

excitations in magnets.

3.14 Summary

We studied excitations in quantum magnets caused by motion of domain walls which can ex-

hibit Bloch oscillations in an applied magnetic field. We investigated the possibility to observe

signatures of the magnetic Bloch oscillations in a one-dimensional easy-axis ferromagnetic spin

system subject to an external field at low temperature. Using the quantum mechanical approach

we found the energy and the wave function of excited states corresponding to the bound states

of domain and anti-domain walls. In a noninteracting gas approximation of such excitations the

energy spectrum and the wave functions were calculated analytically by restricting the maximal

number of the domain walls to be less or equal to two. We analyzed in details the obtained result

for different spin system parameters and found regions in momentum space where the energy

levels are equidistantly spaced (also in the presence of exchange couplings), that corresponds

to the Wannier-Zeeman ladder.

We also calculated analytically the neutron scattering dynamic structure factor at zero and

finite temperatures. Our results show that the neutron scattering signatures of the magnetic

BOs are more pronounced at finite temperatures. We found that a relatively high temperature

is favorable since it allows to excite a bigger number of domain walls performing oscillations,

but the high temperature leads also to collisions between domain walls that destroy BO. In

particular, we considered material parameters corresponding to the salt CoCl2 · 2H2O, as a

prominent candidate of observing the magnetic BOs, and determined optimal parameters for
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the temperature and the magnetic field to find significant neutron scattering signatures of the

magnetic Bloch oscillations.

In addition to the study of the thermal excitation of BOs we proposed to use far-infrared

lasers in order to induce the magnetic Bloch oscillations in one-dimensional anisotropic fer-

romagnets at low temperature. We focused on the material parameters of CoCl2 · 2H2O and

considered electromagnetic interaction of the laser radiation with magnetic Co-ions in this ma-

terial. We investigated numerically dynamics of the induced total magnetization and found that

it is possible to excite the magnetic BOs in the CoCl2 · 2H2O material by using the resonant

laser beams with proper frequencies in a static magnetic field at low temperatures. After turning

off the lasers at an exposition time the total magnetization continues to oscillate at the Bloch

frequency which is proportional to the applied field. Our analytical calculations and numerical

simulations show that due to the relatively small transition matrix elements the application of

a single laser beam requires a higher laser intensity and a longer exposition time than for two

laser beams with resonant frequencies of the nearest energy levels in the WZL.

Allowing also states with a bigger number of domain walls we performed simulations taking

into account the interaction between domain walls for a spin system of size N = 32. Analysing

dynamics of this quantum system we found that the interactions cause a blocking effect which

accelerate the excitation process. Also for the used parameters the dephasing time scale due to

domain-wall interactions is longer than the exposition time needed to excite significantly the

BOs.

In addition, we also considered the possibility to obtain magnetic Bloch oscillations in one-

dimensional magnets subject to a gradient magnetic field and obtained the analytic expressions

for the dynamical structure factors. We found that the magnetic BOs in the nonuniform field

are extremely hard observable in laboratory experiments.

While we focused mostly on the material parameters for CoCl2 · 2H2O, our main results are

analytic and can also be applied with minor changes to theoretical and experimental research for

the magnetic Bloch oscillations in other similar magnetic materials, for example in CoNb2O6.
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Chapter 4

Impurity in a Heisenberg antiferromagnet

Modern experimental techniques can probe materials at high spatial resolution, the atomic scale,

that allows to investigate local magnetization around impurities in antiferromagnets, for exam-

ple, by Knight shifts in nuclear magnetic resonance (NMR) experiments [141–143]. In ad-

dition, magnetic force microscopy (MFM) [144, 145] and spin-polarized scanning tunneling

microscopy (SP-STM) offer also the unique possibility to study magnetic materials directly on

the spatial scale of individual atoms [146–148].

The general interests in antiferromagnets are rooted in the discovery of high-temperature

superconductivity (high-Tc) in 1986 [149]. Cuprate superconductors, such as La2CuO4 and

Nd2CuO4, can be considered as quasi-two-dimensional materials which contain weakly cou-

pled copper-oxide (CuO2) layers [150]. The superconducting properties of cuprates are de-

termined by electrons moving within these layers [151]. At half-filling the electrons cannot

move and the material behaves as an insulating antiferromagnet [152] which magnetic prop-

erties can be described by an square-lattice antiferromagnetic spin-1/2 Heisenberg Hamilto-

nian [153, 154].

Low-temperature properties of a quantum Heisenberg antiferromagnet can be studied by

mapping the model onto a quantum-mechanical nonlinear σ-model [155, 156]. Furthermore

when this model has long-range order at zero temperature, the long-wavelength behavior of a

two-dimensional Heisenberg antiferromagnet at finite temperatures can be described by a purely

classical σ-model, with parameters renormalized by the quantum fluctuations [157,158]. In the

same spirit, in the work [159] a single vacancy in an antiferromagnet subjected to an external

field was studied by using a renormalized classical description.

Another way of studying Heisenberg antiferromagnets is to employ the spin-wave expan-

sion. Developed in the 50’s [160, 161] this approach allows a systematic treatment of quantum

fluctuations in ordered magnets. In order to use spin-wave theory on the Heisenberg model we

can apply the Holstein-Primakoff [162] or the Dyson-Maleev transformation [163, 164], that

allows to simplify and treat this model in terms of bosonic magnon operators. The Holstein-

Primakoff representation gives excellent results for a broken symmetry phase and can be used to

investigate low-temperature properties of a two-dimensional Heisenberg model, see [165, 166].

In this chapter we will describe how the Holstein-Primakoff transformation is employed to

treat analytically a general impurity in a Heisenberg antiferromagnet in an external magnetic

field.
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Figure 4.1: Schematic illustration of an impurity in an ordered 2D antiferromagnet in external

field. The blue sphere corresponds to the impurity while the green and grey spheres describe

antiferromagnetically ordered bulk spins of two sublattices. The magnetic field is perpendicular

to the plane of the spins. Not shown is how the impurity affects its neighbouring spins via

interactions which is the main objective of this chapter.

4.1 Hamiltonian

We consider the following Hamiltonian describing a Heisenberg magnet in a magnetic field

Ĥ =
∑
〈i,j〉

Jij �̂Si · �̂Sj −
∑

BiŜ
z
i (4.1)

on a hyper cubic lattice where each site has Z nearest neighbors. In the general case the cou-

plings Jij and magnetic field Bi are site-dependent that allows to investigate a single impurity

in an otherwise uniform antiferromagnet in a homogeneous field, see Figure 4.1. We consider

the case when all bulk bounds not connected to an impurity are equal and antiferromagnetic

with a magnitude J > 0. The impurity with spin S0 resides on site i = 0 and is connected to

its neighbors by a general coupling constant J0 which can be either ferromagnetic or antifer-

romagnetic, see Figure 4.2(a). The antiferromagnet is subjected to an uniform magnetic field

directed along the z-axis with magnitude B. In the general case the impurity spin has its own

gyromagnetic factor for its Zeeman coupling to the external field, thus the magnitude of the

effective magnetic field on the impurity site is written B0 which can be different from B. We

assume that the applied field is small, B < J , and that the spin system is at zero temperature.

For further calculation it is convenient to rewrite the Hamiltonian (4.1) as

Ĥ = Ĥbulk + Ĥimp, (4.2)

where the Hamiltonian is divided into two terms corresponding to contributions from the bulk
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Figure 4.2: The rotation symmetry is broken by an applied field and the spins exhibit an ordered

canted state (a) Top view of this state. The solid blue circle describes the impurity spin S0

which is coupled to neighbor Si-spins by constant J0. The spin directions are parameterized

by the angles θi and φi. (b) Front view of the canted state. The green and white circles show

antiferromagnetically ordered bulk spins of the two sublattices. The applied field �B is directed

along the z-axis.

spins and the impurity

Ĥbulk = J
∑
〈i,j〉

�̂Si · �̂Sj −B
∑
i

Ŝz
i , (4.3)

Ĥimp = J0
∑
〈0,j〉

�̂S0 · �̂Sj −B0Ŝ
z
0 − J

∑
〈0,j〉

�̂Si=0 · �̂Sj +BŜz
i=0. (4.4)

In the expression for Ĥimp the sum is performed over all Z nearest neighbours of the impurity

site.

We can study the Hamiltonian in Eq. (4.2) with spin-wave theory which is an expansion in

fluctuations about an ordered classical state. To find the appropriate classical state to expand

about we note that an applied magnetic field breaks the rotation symmetry and causes the spins

to cant along the z-axis in an ordered antiferromagnet [167, 168], thus the classical state of the

antiferromagnet in the external field corresponds to the canted state of spins which is shown in

Figure 4.2(b).

In order to parameterize this canted state so that the classical spin configuration is directed

along the z-axis, we introduce rotated spins �S ′
i so that its z-component points along a direction

described by the latitude θi and azimuthal φi angles, see Figure 4.2. In this case the rotated spin
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components are related to the spins �Si in the global coordinate frame as [113]

Sx
i = (S ′x

i sin θi − S ′z
i cos θi) cosφi − S ′y

i sinφi,

Sy
i = (S ′x

i sin θi − S ′z
i cos θi) sinφi − S ′y

i cosφi, (4.5)

Sz
i = S ′x

i cos θi + S ′z
i sin θi.

Inserting these relations into the Hamiltonian in Eq. (4.2) we obtain the Hamiltonian ex-

pressed in terms of rotated spins for arbitrary angles, which will be determined later. In order

to use spin-wave theory and employ quantum fluctuations about the ordered classical state we

apply the Holstein-Primakoff transformation [162] which maps from the angular momentum

operators to boson creation and annihilation operators and can be written as

Ŝ+ =
√
2S − a†a a, (4.6)

Ŝ− = a†
√

2S − a†a, (4.7)

Ŝz = S − a†a, (4.8)

where Ŝ±
i = Ŝx

i ± iŜy
i are the usual spin raising and lowering operators, and creation and

annihilation operators obey the commutation relation

[a, a†] = 1. (4.9)

Expanding the square roots in Taylor series and keeping terms up to the first order of 1/S we

can rewrite the spin operators as

Ŝx ≈
√

S

2

[
a† + a− 1

4S
(a†a†a+ a†aa)

]
, (4.10)

Ŝy ≈ i

√
S

2

[
a† − a− 1

4S
(a†a†a− a†aa)

]
. (4.11)

By inserting these expressions for the spin operator �̂S ′ into the Hamiltonian in Eq. (4.2) we get

terms with different powers of bosonic operators.

4.1.1 Minimization Condition

The zeroth order term in the bosonic operators corresponds to the energy of the classical state

of spins oriented along the S ′z direction. For simpler notation let us to return to the general

expression of the Hamiltonian in Eq. (4.1). In this case the zeroth order (constant) terms give

Ĥ0 =
∑
〈i,j〉

JijSiSj (cos θi cos θj cosφij + sin θi sin θj)−
∑
i

BiSi sin θi, (4.12)

where the relative angles are φij = φi − φj and Si are spin quantum numbers. Minimizing with

respect to the variable φij gives the following condition

−JijSiSj cos θi cos θj sinφij = 0 (4.13)
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meaning that the relative angles φij should be equal to 0 or π. In order to be a minimum of the

energy it needs to obey

−Jij cosφij > 0, (4.14)

which means that φij = π for an antiferromagnetic coupling (Jij > 0) and φij = 0 for a

ferromagnetic (Jij < 0). This can be written in the equivalent form

− cos(φij) = νij, νij = sgn Jij =
Jij
|Jij| . (4.15)

In the case of a homogeneous magnet with uniform coupling J = Jij we can use the parameter

ν = νij = sgn J .

For further simplification we select the rotation angle φ0 on the impurity site, so that it is ei-

ther 0 or π. In this case using the minimization conditions in Eq. (4.15) the general Hamiltonian

can be written as

Ĥ =
∑
〈i,j〉

Jij

[
cos(θi + νijθj)

(
Ŝ ′x
i Ŝ

′x
j − νijŜ

′z
i Ŝ

′z
j

)
− νijŜ

′y
i Ŝ

′y
j

+ sin(θi + νijθj)
(
νijŜ

′x
i Ŝ

′z
j + Ŝ ′z

i Ŝ
′x
j

) ]
−
∑
i

Bi

(
Ŝ ′x
i cos θi + Ŝ ′z

i sin θi

)
. (4.16)

Now we can return to the special case of a single impurity embedded in a homogeneous spin-

S antiferromagnet described by the Hamiltonian (4.2). In order to simplify the model and treat

it analytically we assume that the variation in the latitude angles θi is relatively small for all bulk

sites i which are away from the impurity. Therefore the latitude angles can be approximated

with one site independent value of θi = θ.1 The impurity site i = 0 keeps a separate angle θ0.

In addition, the ordered antiferromagnetic state can be described by two sublattices which are

parameterized by staggered azimuthal angles φi = φeven and φj = φodd for the corresponding

sublattices.

Applying this assumption the zeroth order term of the Hamiltonian (4.2) in the bosonic

operators becomes

Ĥ0 =−NS

(
JSZ

2
cos 2θ +B sin θ

)
+ ZS

(
JS cos 2θ − |J0|S0 cos(θ + ν0θ0)

)
+BS sin θ −B0S0 sin θ0, (4.17)

where S0 and S are spins of the impurity and the bulk sites respectively, N is the total number

of sites, and the variable ν0 denotes the sign of the impurity coupling

ν0 = sgn J0 =
J0
|J0| , (4.18)

which can be antiferromagnetic (J0 > 0) or ferromagnetic (J0 < 0). Minimizing Eq. (4.17)

1In Sections 4.7.1 and 4.7.2 we will consider a site-dependent shift of the latitude angles θi in order to calculate

the non-trivial local variation of the magnetization.
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with respect to the latitude angle θ0 on the impurity site we obtain

J0SZ sin (θ + ν0θ0)− B0 cos θ0 = 0, (4.19)

which can be solved to yield

tan ν0θ0 =
B0

J0SZ cos θ
− tan θ. (4.20)

Minimizing the zeroth order Hamiltonian in Eq. (4.17) also with respect to the latitude angle θ

and taking into account the leading terms for the bulk contribution in the thermodynamic limit,

N → ∞, we finally obtain the following energy minimization conditions

sin θ =
B

2SZJ
, φeven − φodd = π, (4.21)

tan θ0 =
B0

|J0|SZ cos θ
− ν0 tan θ, cosφ0 = ν0. (4.22)

We see that the minimization conditions on the bulk angles θ and φ do not depend on the

impurity and are identical to the expressions for a uniform antiferromagnet in a magnetic field.

This fact is a natural result of taking the thermodynamic limit.

Limiting cases

Consider some limiting cases.

• The same impurity coupling J0 = J and B0 = B implies that θ0 = θ regardless of the

impurity spin magnitude S0.

• Extreme impurity coupling |J0| � J implies that the lattitude angle of the impurity is

θ0 = −ν0θ. The impurity spin is directed parallel to the bulk spin polarization in the

case of strong ferromagnetic coupling (J0 < 0), while it is antiparallel in the case of

antiferromagnetic interaction (J0 > 0).

• Isolated impurity with J0 = 0, a vacancy, gives θ0 = π/2 for B0 > 0 and θ0 = −π/2 for

B0 < 0. The spin of the impurity is directed along the applied local field.

• Classical limit of large bulk spins implies θ = 0 and θ0 = 0, so that all spins tend to be

ordered in the same plane.

4.1.2 Linear Terms

The non-collinearity of the spins in the canted state results in the appearance of terms which are

of linear order in the bosonic operators. The linear terms of the Hamiltonian corresponding to

the bulk part contribution in Eq. (4.3) is

Ĥ1
bulk = JSZ

√
S

2

(
sin 2θ − B

JSZ
cos θ

)∑
i

(
ai + a†i

)
, (4.23)
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which actually vanish by applying the minimization condition for the latitude angle θ, Eq. (4.21).

The linear terms of the impurity Hamiltonian in Eq. (4.4) however do not vanish. They can be

written as

Ĥ1
imp = C0

(
a0 + a†0

)
+

C

Z

∑
〈0,j〉

(
aj + a†j

)
, (4.24)

where sum is performed over the nearest neighbors of the impurity spin, and a†0, a0 are the

bosonic operators corresponding to the impurity spin. The constants C0 and C are given by the

relations

C0 = J0SZ

√
S0

2
sin(ν0θ0 + θ)−B0

√
S0

2
cos θ0, (4.25)

C = J0S0Z

√
S

2
ν0 sin(ν0θ0 + θ)− JSZ

√
S

2
sin 2θ. (4.26)

Using the minimization conditions in Eqs. (4.21) and (4.22) the constant C0 vanishes while the

second constant can be written equivalently as

C =

√
S

2

(
S0

S
ν0B0 cos θ0 − B cos θ

)
. (4.27)

Thus the impurity part gives the only contribution to the first order terms of the Hamiltonian in

the bosonic operators

Ĥ1 = Ĥ1
imp =

C

Z

∑
〈0,j〉

(
aj + a†j

)
. (4.28)

It is convenient to work in the momentum space by applying Fourier transforms

ai =
1√
N

∑

k

a
ke
i
k·
ri (4.29)

and introduce the usual γk characteristic of a crystal lattice

γ
k =
1

Z

∑

r

ei

k·
r =

2

Z

(
cos kx + cos ky + . . .

)
, −1 ≤γ
k ≤ 1, (4.30)

where the momentum �k is given in units of the inverse lattice spacing a as ki ∈ [−π
a
, π
a
]. In this

case the linear terms of the Hamiltonian in Eq. (4.28) can be expressed as

Ĥ1 =
C√
N

∑

k

γ
k

(
a
k + a†
k

)
. (4.31)

4.1.3 Quadratic Terms

For the quadratic terms of the Hamiltonian we keep, as a first approximation, the leading order

N terms coming from to the bulk part. Using this approximation we omit quadratic terms from

the impurity part which can change the overall magnitude in the local order around the impu-

rity. However, it was shown from numerical studies in [169] that this effect is relatively small,
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and we can neglect the impurity quadratic terms in order to calculate the bulk magnetization.

This approximation implies that the quadratic terms of the Hamiltonian do not depend on the

impurity and are given by

Ĥ2 ≈ Ĥ2
bulk =

1

2

∑

k

{
A
ka

†

k
a
k +B
ka
ka−
k + h.c.

}
, (4.32)

where the momentum-dependent coefficients are

A
k = JSZ(cos 2θ − γ
k sin
2 θ) + B sin θ, (4.33)

B
k = JSZ γ
k cos
2 θ, (4.34)

which are also known from the standard spin-wave theory [170]. Using the minimization con-

ditions in Eq. (4.21) the coefficient A
k and the sum of the coefficients A
k and B
k can be written

as

A
k = JSZ(1− γ
k sin
2 θ), (4.35)

A
k +B
k = JSZ(1 + γ
k cos 2θ). (4.36)

We can parameterize the last sum as

A
k +B
k = f × (1 + gγ
k) (4.37)

in terms of constants f and g which are

f = JSZ, g = cos 2θ (4.38)

to leading order in 1/S.

The quadratic bulk terms in the Hamiltonian in Eq. (4.32) can be diagonalized by using the

canonical Bogoliubov transformation [171]

a
k = u
kb
k + v
kb
†
−
k
, [b
k, b

†

k
] = 1,

a†
k = u
kb
†

k
+ v
kb−
k, |u
k|2 − |v
k|2 = 1, (4.39)

to yield the following quadratic Hamiltonian

Ĥ2 =
∑

k

ω
kb
†

k
b
k +

1

2

∑

k

(
ω
k − A
k

)
, (4.40)

where the coefficient ω
k is

ω
k =
√

A2

k
− B2


k
. (4.41)

The second summand in the quadratic Hamiltonian in Eq. (4.40) is a constant part which

can be lumped together with the zeroth order Hamiltonian Ĥ0 given in Eq. (4.17). Using the
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expressions in Eqs. (4.34) and (4.35) the coefficient ω
k becomes

ω
k = JSZ
√(

1− γ
k
) (

1 + cos 2θγ
k
)
. (4.42)

The canonical transformation coefficients have real values and obey the relations

u2

k
+ v2
k =

A
k

ω
k

, 2u
kv
k = −B
k

ω
k

. (4.43)

In addition, the quadratic bulk Hamiltonian gives the following expectation values for the

nearest-neighbor sites [170, 172]

δ = 〈aiai〉 = 1

N

∑

k

u
kv
k = − 1

N

∑

k

B
k

2ω
k

,

Δ = 〈aiaj〉 = 1

N

∑

k

γ
ku
kv
k = − 1

N

∑

k

γ
k
B
k

2ω
k

,

m = 〈a†iaj〉 =
1

N

∑

k

γ
kv
2

k
=

1

N

∑

k

γ
k
A
k

2ω
k

, (4.44)

n = 〈a†iai〉 =
1

N

∑

k

v2
k =
1

N

∑

k

A
k

2ω
k

− 1

2
.

Due to the bulk nature of the quadratic term in this approximation the expectation values in

Eq. (4.44) do not depend on the site positions i and j. In Table 4.1 we show the typical bulk

values calculated numerically in a uniform spin-1/2 antiferromagnet for the two different values

of the applied field strength.

B = 0.4J B = 0
δ −0.280 0
Δ −0.247 −0.276
m 0.0258 0
n 0.1684 0.1966

Table 4.1: Expectation values given by Eq. (4.44) for the nearest-neighbor sites in a two-

dimensional uniform spin-1/2 antiferromagnet. Different values of the external magnetic field

B are indicated in the table header row.

4.2 High-order corrections

Changes to the constant terms

Evaluating the expected value of the quadratic part in Eq. (4.32) in its ground state gives

an angle-dependent part which contributes to the constant terms of the Hamiltonian. This is

achieved by using the canonical Bogoliubov transformation and writing the bosonic operators

a†
k, a
k in terms of the b†
k, b
k operators. Since the non-zero contribution comes only from terms
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in the form of 〈b†
kb
k〉, we get the following additional contribution proportional to N from the

quadratic terms to the constant bulk Hamiltonian Ĥ0 in Eq. (4.17)

Ĥ0
bulk,1/S = NJSZ

(
Δcos2 θ −m sin2 θ + n cos 2θ +

B

JSZ
n sin θ

)
. (4.45)

This term will modify the energy minimization conditions in Eq. (4.21). In order to find new

renormalized angles minimizing the energy we need to take the derivative with respect to θ.

Since the bulk parameters Δ, m and n depend implicitly on the latitude angle θ through the

coefficients A
k and B
k we must also differentiate them. However, it turns out that the contribu-

tions from the differentiation of the bulk parameters cancel exactly, so the final result of these

calculation is the same as for angle-independent bulk parameters. Therefore including contri-

bution of the quadratic terms in Eq. (4.45) gives the following renormalized conditions for the

energy minimized state

sin θ|renmin =
B

2JSZ

(
1 +

Δ +m+ n

S

)
= sin θ̄

(
1 +

Δ+m+ n

S

)
,

cos θ|renmin = cos θ̄

(
1− tan2 θ̄

Δ+m+ n

S

)
(4.46)

where we used the notations for the minimizing latitude angle given by Eq. (4.21)

sin θ̄ =
B

2JSZ
. (4.47)

For further calculations it is convenient to write down also the following expressions

sin 2θ|renmin ≈ sin 2θ̄

[
1 +

(
1− tan2 θ̄

) Δ+m+ n

S

]
,

cos 2θ|renmin ≈ cos 2θ̄ − 4 sin2 θ̄
Δ+m+ n

S
. (4.48)

Changes to linear terms

We can improve the used approximation by including the third order terms in the spin wave

expansion. Taking into account the cubic terms of the Hamiltonian in the terms of the bosonic

operators and taking their expectation values we get an additional bulk contribution which can

modify the linear terms of the Hamiltonian in Eq. (4.31).

The cubic terms of the Hamiltonian corresponding to the bulk part have the form

Ĥ3
bulk =− J

√
S

2

∑
〈i,j〉

[
1

4

(
a†i n̂i + n̂iai

)
+
(
a†i + ai

)
n̂j +

1

4

(
a†jn̂j + n̂jaj

)

+
(
a†j + aj

)
n̂i

]
sin 2θ +

B

4
√
2S

∑
i

(
a†i n̂i + n̂iai

)
cos θ, (4.49)

where the bosonic operator is n̂i = a†iai. Expressing the bosonic operators a†k, ak in terms of
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the b†k, bk operators and taking the expectation values we get the following correction

Ĥ1
bulk,3 =− JSZ

√
S

2

[(
n+m+Δ

S
+

2n+ δ

4S

)
sin 2θ (4.50)

− 2n+ δ

4S

B

JSZ
cos θ

]∑
i

(
a†i + ai

)
,

which contribute to the linear bulk terms of the Hamiltonian Ĥ1
bulk given in Eq. (4.23). The total

expression for the linear terms corresponding to the bulk part of the Hamiltonian becomes

H1
bulk|total =H1

bulk +H1
bulk,3 = JSZ

√
S

2

[(
1− n+m+Δ

S
− 2n+ δ

4S

)
sin 2θ

−
(
1− 2n+ δ

4S

)
B

JSZ
cos θ

]∑
i

(
a†i + ai

)
. (4.51)

Inserting the minimizing value θ and expanding the obtained expression to order 1/S we find

that the linear bulk term vanishes also to this order.

Changes of quadratic terms

Taking into account the expectation values of the quartic Hamiltonian terms for the bulk part

gives the following contribution to the quadratic Hamiltonian

Ĥ2
bulk,4 =− J

4

∑
〈i,j〉

[{
(2n+ δ + 4Δ) cos 2θ + 2n− δ

}(
a†ia

†
j + aiaj

)
+
{
(2n+ δ + 4m) cos 2θ − 2n+ δ

}(
a†iaj + aia

†
j

)
(4.52)

+
{
(m+Δ) cos 2θ +m−Δ

}(
a†ia

†
i + aiai

)
+ 4

{
(m+Δ+ 2n) cos 2θ +Δ−m

}
a†iai.

Applying the Fourier transform this expression can be written as

Ĥ2
bulk,4 =− JZ

8

∑
〈i,j〉

[{(
(2n+ δ + 4Δ) cos 2θ + 2n− δ

)
γ
k + (m+Δ) cos 2θ +m−Δ

}
×
(
a†
ka

†
−
k

+ a
ka−
k

)
+ 2

{(
(2n+ δ + 4m) cos 2θ − 2n+ δ

)
γ
k (4.53)

+ 2
(
(m+Δ+ 2n) cos 2θ +Δ−m

)}
a†
ka
k.
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Therefore, additional contributions to the coefficients A
k and B
k from the expectation values of

the quartic order terms in the Hamiltonian for the bulk part are

A
k,1/S = −JZ

4

[
2
{
(m+Δ+ 2n) cos 2θ +Δ−m

}

+ γ
k
{(

(2n+ δ) + 4m
)
cos 2θ − 2n+ δ

}]
, (4.54)

B
k,1/S = −JZ

4

[{
(m+Δ) cos 2θ +m−Δ

}

+ γ
k
{(

(2n+ δ) + 4Δ
)
cos 2θ + 2n− δ

}]
. (4.55)

Using the renormalized latitude angle θ for the minimization conditions in Eq. (4.46) and adding

these corrections A
k,1/S and B
k,1/S the coefficients can be written in the form

A
k =JSZ

[(
1− n

S

)
cos 2θ − Δ

S
cos2 θ + 2

(
1− n+Δ+m/2

S

)
sin2 θ

− γ
k

{(
1 + 2

Δ +m+ n/2

S

)
sin2 θ +

m

S
cos 2θ +

δ

2S
cos2 θ

}]
, (4.56)

B
k =− JSZ

[
1

2S

(
m cos2 θ −Δsin2 θ

)
(4.57)

− γ
k

{(
1− n

S

)
cos2 θ − Δ

S
cos 2θ − 2

(
Δ+m+ n

S
− δ

4S

)
sin2 θ

}]
.

Therefore taking into account the 1/S corrections the sum A
k +B
k becomes

A
k +B
k =JSZ

[
1− 2n+ 2Δ +m

2S
− m+Δ

2S
sin2 θ (4.58)

+ γ
k

(
cos 2θ − 2n+ 2m+ 2Δ + δ

2s
− sin2 θ

2n+ 2m+ 2Δ− δ

s

)]
,

that can be also inferred from [170].
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4.3 Magnetization around impurity

The magnetization in the z-direction, along the applied field, corresponds to the expectation

value of the Ŝz spin operator given by

M z
i = 〈Ŝz

i 〉 = 〈Ŝ ′x
i 〉 cos θi + 〈Ŝ ′z

i 〉 sin θi. (4.59)

Using the spin wave expansion in Eqs. (4.8) and (4.10) the longitudinal magnetization can be

expressed in terms of bosonic variables up to quadratic order of 1/S as

M z
i ≈ sin θi

(
Si − 〈a†iai〉

)
+ cos θi

√
Si

2

(
〈a†i〉+ 〈ai〉

)
, (4.60)

where Si is the spin moment on site i.

The transversal magnetization is defined similarly by the expectation value 〈Ŝx
i 〉 of the spin

operator

Mx
i =

(
〈Ŝ ′x

i 〉 sin θi − 〈Ŝ ′z
i 〉 cos θi

)
cosφi − 〈Ŝ ′y

i 〉 sinφi. (4.61)

Applying the minimization conditions for the azimuthal angles φi in Eqs. (4.15) and (4.18) the

transversal magnetization can written as

Mx
i = (δi,0ν0 + (1− δi,0)(−ν)Ri)

(
〈Ŝ ′x

i 〉 sin θi − 〈Ŝ ′z
i 〉 cos θi

)
, (4.62)

where we introduced the parameter Ri = (xi+ yi+ . . .) which describes the alternating pattern

of the local magnetization in the case of a uniform antiferromagnet, J > 0 and ν = sgn J = 1.

4.3.1 Linear shift

In order to calculate the expectation value of the bosonic terms in Eq. (4.60) we perform a shift

of the bosonic operators

ai → a′i + αi (4.63)

to get rid of the remaining linear terms in the Hamiltonian in Eq. (4.31). This operator shift

corresponds to a variation of the latitude angle θi and depends on bulk site. Since this shift does

not change the Hamiltonian coefficients (the contribution from cubic terms is neglected), αk is

real and symmetric in momentum space. Applying the operator shift the linear Hamiltonian in

Eq. (4.31) becomes

Ĥ ′
1 =

C√
N

∑

k

γ
k

(
a′
k + a′†
k

)
+ 2

C√
N

∑

k

γ
kα
k, (4.64)
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while the quadratic Hamiltonian in Eq. (4.40) becomes

Ĥ ′
2 =

∑

k

ω
kb
′†

k
b′
k +

∑

k

(
A
k + B
k

)
α
k

(
a′
k + a′†
k

)

+
1

2

∑

k

(
ω
k − A
k

)
+
∑

k

(
A
k +B
k

)
α2

k
. (4.65)

The second term in the last expression of the transformed quadratic Hamiltonian is linear in

terms of the bosonic operators and gives additional contribution to the linear Hamiltonian.

Therefore the shift of the bosonic operators results in the following linear terms of the Hamil-

tonian

Ĥ1 =
∑

k

[(
A
k +B
k

)
α
k +

C√
N
γ
k

](
a′
k + a′†
k

)
. (4.66)

In order for the linear terms to vanish we should choose the operator shift as

α
k = − C√
N

γ
k
A
k + B
k

, (4.67)

where the momentum-independent coefficient C is given by Eq. (4.27). Using inverse Fourier

transform the shift can be written as

αi = −C

N

∑

k

γ
k
A
k +B
k

ei

k·
ri . (4.68)

We can see that the shift of the bosonic bulk operators in Eq. (4.67) is symmetric and has a real

value

α−k = αk, α†
k = αk. (4.69)

This shift gives also additional contributions, the last terms in Eqs. (4.64) and (4.65), to the

constant terms of the Hamiltonian.

4.3.2 Alternating magnetization

Since the shift αi is just a constant, shifting the bosonic operator gives the following expression

for the longitudinal magnetization

M z
i ≈ sin θi

(
S − |αi|2 − 〈a′†i a′i〉

)
+

√
S

2
cos θi (α

∗
i + αi) , (4.70)

where we have used the fact that 〈a′i〉 = 0 because the Hamiltonian in terms of the shifted

bosonic operators are quadratic. We can therefore also apply the usual bulk theory to calculate

the corresponding site-independent expectation value n = 〈a†iai〉 in Eq. (4.44) away from the

impurity site i = 0. Therefore the magnetization becomes

M z
i ≈ sin θ

(
S − α2

i − n
)
+
√
2S αi cos θ, i �= 0, (4.71)
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where we used the fact that the shift is a real number α†
i = αi.

Keeping the next order terms in the spin-wave expansion in Eq. (4.10) we obtain finally

the following expressions for the transversal and longitudinal magnetization away from the

impurity site

M z
i �=0 =

√
2Sαi

(
1− α2

i

4S
− n+ δ/2

2S

)
cos θ +

(
S − α2

i − n
)
sin θ, (4.72)

Mx
i �=0 = (−ν)Ri

[√
2Sαi

(
1− α2

i

4S
− n+ δ/2

2S

)
sin θ − (

S − α2
i − n

)
cos θ

]
, (4.73)

where the parameter Ri = (xi + yi + . . .) describes the alternating behaviour of the local

magnetization in the case of antiferromagnetic bulk coupling.

The leading order term of the magnetization along the applied field in Eq. (4.71) is

M z
i �=0 ∼

√
2S αi cos θ + (S − n) sin θ, (4.74)

where the first term expresses spatial dependence around the impurity while the second one

describes the uniform bulk magnetization. As is shown in our Article III [173] the sign of the

operator shift αi depends on which sublattice the i-site belongs to as a global factor ei

Q·
r =

(−1)Ri = (−1)xi+yi+... where �Q = (π, π, . . .) is the antiferromagnetic wave vector. Therefore,

it is convenient to write the shift of the bosonic operators as

αi = (−1)Riα̃i, Ri = xi + yi + . . . , (4.75)

where α̃i is the shift magnitude.

Due to the alternating-sign magnetization around the impurity it is convenient to introduce

the two sublattices (for odd and even sites, see Figure 4.2) and to express the bulk magnetization

in terms of an alternating (staggered) and a non-alternating (uniform) part

M z
alt(�r) =

M z(�rodd)−M z(�reven)

2
, (4.76)

M z
unif (�r) =

M z(�rodd) +M z(�reven)

2
, (4.77)

where �r corresponds to a position on the even sublattice. Therefore, the uniform magnetization

takes the form

M z
unif,i = sin θ

(
S − α̃2

i − n
)
, (4.78)

which decays fast to its uniform bulk value

M z
bulk = (S − n) sin θ (4.79)

given by Eq. (4.74), see [174].

The most interesting part of this study of the antiferromagnet is the alternating magnetization

M z
alt,i = −

√
2S cos θ α̃i, (4.80)
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which does not decay so rapidly with increasing distance from the impurity. The variable α̃i

defines and characterises its principal behaviour.

In order to find an analytical expression for α̃i the sum over the momentum k in the recip-

rocal space in Eq. (4.68) can be calculated by expanding the integrand about the minimum of

the denominator which is at the antiferromagnetic point �Q = (π, π, . . .). Doing this we obtain

in the square lattice (D = 2 and Z = 4) and the cubic lattice (D = 3 and Z = 6) cases for bulk

sites

α̃i �=0 ≈ CZ

2πfg2

{
K0(ri/d), D = 2,

e−ri/d/(2ri), D = 3,
(4.81)

where C is the site independent parameter given by Eq. (4.27) and ri =
√

x2
i + y2i + z2i is the

distance from the impurity in units of the lattice spacing a, for details see Appendix A.4. The

function K0(x) is the zeroth order modified Bessel function of the second kind [175] which

decays as K0(x) ≈
√

π
2x
e−x for large arguments [65]. It means that in the square lattice the al-

ternating magnetization also decays exponentially as M z
alt,i ∼ e−ri/d/

√
ri for the large distance

ri from the impurity. The characteristic decay scale is

d =

√
g

Z(1− g)
(4.82)

in both cases. Using relations for the f and g parameters in Eq. (4.38) these results allows to

rewrite the alternating magnetization in the explicit form

M z
alt,i �=0 ≈

√
2

S

C cos θ

2πJ cos2 2θ

{
K0(ri/d), D = 2,

e−ri/d/(2ri), D = 3,
(4.83)

where the decay scale is a universal characteristic

d =

√
cos 2θ

2Z sin2 θ
, (4.84)

which depends only on properties of the host magnet in the bulk. Only the constant coefficient

C given by Eq. (4.27) depends on the impurity properties S0, J0, and B0.

The alternating magnetization behaviour around the impurity in the 2D antiferromagnet

using the analytic expression in Eq. (4.83) in comparison with results from a quantum Monte-

Carlo simulation2 is shown in Figure 4.3(a). We can see that the leading order analytical result

decays faster than the independent QMC data. It happens due to the crucial dependence of the

characteristic decay scale d on the value of A
k+B
k which was approximated in Eq. (4.36) with

its leading order value. However we can improve this analytic result by including the next order

1/S-corrections given by Eq. (4.58) for the renormalized minimization angles in Eq. (4.46).

These corrections modify expressions for the constants f and g in Eq. (4.37) that results in a

slower decay of the alternating magnetization and leads to a better agreement with the quantum

Monte-Carlo data in Figure 4.3(a).

In the case of a vacancy J0 = 0 we compare the obtained analytic result for the alternating

2The QMC data are given in our Article III [173], where the simulations were performed at a low temperature

T = 0.05J on a 128× 128 square lattice.
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Figure 4.3: The alternating magnetization M z
alt as a function of the distance r from the spin-1/2

impurity on the square lattice, Z = 4, in a spin-1/2 antiferromagnet for different values of

the impurity coupling J0. The dashed red line corresponds to the analytic result in Eq. (4.83)

while the solid green line corresponds to the result with 1/S-corrections for A
k + B
k taken

into account in Eq. (4.58) and the renormalized minimization angles in Eq. (4.46). (a) For

the coupling J0 = 0.1J and B = B0 = 0.4J the black dots are the QMC data from our

Article III. (b) In the case of a vacancy J0 = 0 in the magnetic field B = 0.1J the black dots

describe independent QMC simulations while the blue solid curve corresponds to the results in

the article [159]. Here a semi-logarithmic scale was used.
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Figure 4.4: (a) The coefficient C as a function of the impurity coupling J0 for different impurity

spins: S0 = 1/2 (upper panel) and S0 = 1 (lower panel) in different applied magnetic fields

B which field strength (in units of J) is indicated by the numbers above each curve on the left

side. (b) The coefficient C as a function of the magnetic field B for different values of the

impurity spin S0 and the coupling constant J0 marked by numbers of (S0, J0) in the plot. Here

the following parameters were used: S = 1/2, Z = 4, and B0 = B.

magnetization with results of other studies in [159] and the quantum Monte Carlo simulations,

see Figure 4.3(b). We can see again that the analytical result in Eq. (4.83) decays faster while

taking into account the next order 1/S-corrections gives a better agreement with the QMC

data and almost coincides with the results from the article [159] where the authors used the

renormalized parameters from other studies.

Magnitude of alternating magnetization

While the bulk decay scale of the induced alternating magnetization pattern is determined by

the properties of the uniform host magnet, the magnitude of the alternating magnetization is

given in terms of the coefficient C in Eq. (4.27), which depends on the type and the coupling

strength of the impurity as shown in Figure 4.4.

We see from Figure 4.4(a) upper panel that for an impurity spin S0 = 1/2 in a spin-1/2

host antiferromagnet the coefficient C is negative and rather small for small positive J0. If the

impurity coupling coincides with the coupling between bulk spins J = J0 that corresponds

to the uniform case the coefficient vanishes completely. As is shown in the upper panel in

Figure 4.4(a) for large antiferromagnetic coupling the coefficient remains a quite small. For

ferromagnetic coupling of the impurity, J0 < 0, the coefficient C is negative and its magnitude

becomes larger with increasing magnetic field B, see in Figure 4.4(b). From this we expect the

biggest induced alternating magnetization pattern around a ferromagnetically coupled impurity.

The sign change of the coefficient C indicates a sublattice change in the magnetization pattern

when the spin orientation of the two sublattices reverses direction.

106



A similar behaviour is seen for a spin S0 = 1 impurity embedded in a spin-1/2 antiferro-

magnet, as is shown in Figure 4.4(a) bottom panel, except for antiferromagnetic couplings the

coefficient C is no longer necessarily small and it changes sign at a small positive value of J0.

In the case of strong magnetic field B the magnitude |C| changes linearly with field strength

except large antiferromagnetic couplings, see Figure 4.4(b).

Limiting cases

We consider some limiting cases of the parameters describing the coefficient C and the alter-

nating magnetization behaviour.

• The same impurity coupling J0 = J and B0 = B implies that C = 1√
2S
(S0 − S)B cos θ.

• Extremely large impurity coupling |J0| � J implies that C = 1√
2S
(ν0B0S0 −BS) cos θ.

• Isolated impurity with J0 = 0 gives C = −
√

S
2
BS cos θ.

Limit of large bulk S-spins

In addition we can consider the classical limit of large S-spin of the bulk sites in the antifer-

romagnet. In this case the energy minimization condition for the latitude angle in Eq. (4.21)

gives θ ≈ 0 which reflects the obvious fact that the large bulk spins tend to be antiferromagnet-

ically ordered in the same plane. Using Taylor series expansion of the analytic expressions in

Eqs. (4.26) and (4.82) we obtain the following asymptotic behaviour for the constant coefficient

C ≈
√

S

2

(
B0ν0

S0

S
−B

)
+

B3

8
√
2SSJ2Z2

(4.85)

and the characteristic decay scale

d =
1√
Z

√
2

(
JSZ

B

)2

− 1 ≈
√
2ZS

J

B
− B√

8Z3JS
, (4.86)

describing the alternating magnetization pattern. Using Eqs. (4.80) and (4.81) and keeping the

leading order terms the alternating magnetization can be written in the explicit form

M z
alt,i �=0 ≈

1

2πJ

(
B − B0ν0

S0

S

)⎧⎪⎪⎨
⎪⎪⎩
K0

(
ri√

2ZSJ/B

)
, D = 2,

e
− ri√

2ZSJ/B

2ri
, D = 3.

(4.87)

In this limit the uniform bulk magnetization given in Eq. (4.79) is described by the classical

relation which gives

M z
bulk ≈ S sin θ =

B

2JZ
. (4.88)

We can see that the characteristic decay scale in Eq. (4.87) has linear dependence on the

107



magnitude of the coupling J and the bulk S-spin as

d ∼
√
2ZS

J

B
. (4.89)

It means that increasing the magnetic coupling between bulk sites (through the coupling J or

the spin S) results in a slower decay of the alternating magnetization, while the magnitude of

the alternating part of the magnetization will decrease in accordance with Eq. (4.87). In contrast

the magnetization pattern decays faster when the applied magnetic field B gets larger.

4.4 Spin wave velocity and decay scale

Taking the logarithm of the alternating magnetization in Eq. (4.83) we find at large distances ri
from the impurity

ln
(
M z

alt,i

) ∼ −ri
d
, (4.90)

where we neglected the ln(ri) term since for large distances the relation ln(x) 	 x is valid.

Thus the magnetization slope in the semi-logarithmic plot in Figure 4.3 corresponds to the

reciprocal value of the characteristic decay scale d. This decay scale is connected to the spin

wave velocity c of the host antiferromagnet as

c = dB. (4.91)

In order to show this we consider the magnon dispersion in momentum space given by the

diagonalized quadratic bulk Hamiltonian in Eq. (4.40) where the coefficient ω
k describes the

magnon energy.

The coefficient ω
k in Eq. (4.42) as a function of the wave vector �k along a path in the first

Brillouin zone is shown in Figure 4.5. In the case of an applied magnetic field B a gap opens at
�k = (π

a
, π
a
) which value is equal to the field strength.

In order to analyse the gap behaviour we can expand the function γ
k around the antiferro-

magnetic point �Q which gives

γ
k+ 
Q ≈ −1 +
a2

Z
�k2 + . . . , �Q =

(π
a
,
π

a
, . . .

)
, (4.92)

where a is the lattice spacing. This allows to rewrite the coefficient ω
k in the explicit form

ω
k =JSZ
√(

1− γ
k
) (

1 + cos 2θγ
k
) ≈ B

√
1 +

a2

2Z

cos 2θ

sin2 θ
�k2. (4.93)

Expanding the square root in the case of finite but not too large magnetic field we get

ω
k =

⎧⎪⎨
⎪⎩B +

a2B

2Z

�k2

sec 2θ − 1
,

a2

2Z

cos 2θ

sin2 θ
	 1,

JSa
√
2Z cos 2θ|�k|, otherwise,

(4.94)
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Figure 4.5: The magnon dispersion ω
k in units of J as a function of the wave vector �k along

a path in the first Brillouin zone. The solid blue curve correspond to the case of the vanishing

magnetic field B = 0, while the dashed red curve describes the dispersion at the field strength

B = 0.4J . Here a lattice constant a = 1 was used.

which can expressed in the following form

ω
k =

⎧⎨
⎩B +

1

2m
�k2,

a2

2Z

cos 2θ

sin2 θ
	 1,

c|�k|, otherwise,

(4.95)

where the coefficient c corresponds to the spin wave velocity given by

c = JSa
√
2Z cos 2θ. (4.96)

In the limit of vanishing magnetic field this is the well-known leading-order spin wave theory

result for the spin wave velocity of a uniform antiferromagnet [58]. Using the minimizing

conditions in Eq. (4.21) for the gap the coefficient m is

m =
2Z

a2B

sin2 θ

cos 2θ
=

B

c2
, (4.97)

which corresponds to the effective mass of the dispersion minimum. With the expressions in

Eqs. (4.96) and (4.97) for c and m we see that the leading-order characteristic decay constant d

given by Eq. (4.84) can be also written as

d = a

√
cos 2θ

2Z sin2 θ
=

1√
Bm

=
1

mc
=

c

B
, (4.98)

that gives the relation in Eq. (4.91). These results are in agreement with analytic results using

a renormalized classical description for the induced magnetization around a vacancy at J0 = 0

obtained in [159].
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4.4.1 Magnetization pattern

Taking into account the next order 1/S-corrections for the renormalized minimizing angles in

Eq. (4.46) we get the following expression for the magnetization along magnetic field

M z
i �=0, 1/S =−

√
2S(−1)Riα̃i

(
1− α̃2

i

4S
− n+ δ/2

2S
− tan2 θ

Δ+m+ n

S

)
cos θ

+
(
S − α̃2

i − n
)(

1 +
Δ +m+ n

S

)
sin θ, (4.99)

where Ri = xi + yi + . . . and α̃i describes the bosonic shift given in Eq. (4.83).

The local magnetization at different positions (xi, yi = 0) close to the impurity in a two-

dimensional spin-1/2 antiferromagnet is shown in Figure 4.6, where the longitudinal magnetiza-

tion demonstrates an alternating pattern and its magnitude decreases exponentially with distance

from the impurity to the uniform bulk value given in Eq. (4.79). We can see that the analytical

results (square symbols) are in a good agreement and lie reasonably close to the independent

QMC data (solid circles) with the exception of the nearest neighbor site around the impurity.

For the impurity spin S0 = 1/2 at the coupling J0 = J the oscillating magnetization pattern

vanishes completely as it is the case of the uniform antiferromagnet, see Figure 4.6(a).

In the case of an S0 = 1 impurity the oscillations of the magnetization are also large for

the ferromagnetic coupling J0 in Figure 4.6(b). We can see that the sublattice pattern changes

for J0 being antiferromagnetic. This reflect the fact that the coefficient C changes its sign in

Figure 4.4 and the spin orientation of the sublattices reverses direction.

4.5 Magnetization on impurity site

At the impurity site the leading order term of the longitudinal magnetization is given by the

classical expression

M z
0 = S0 sin θ0, (4.100)

where the latitude angle θ0 is defined by the minimization conditions in Eq. (4.22). In Figure 4.7

we show this magnetization for different values of the impurity spin S0 in comparison with

quantum Monte-Carlo calculations. In the case of antiferromagnetic impurity coupling (J0 >

0) and for S0 = S = 1/2 this classical expression gives a reasonable agreement with the

independent QMC simulations. However for other spin values S0 and ferromagnetic impurity

(J0 < 0) the classical result in Eq. (4.100) is rather far of the QMC data. The maximum of the

magnetization in Figure 4.7 corresponds to the value of J0 = 0 which reflects the fact that an

uncoupled (isolated) impurity is directed along the magnetic field.

In order to improve the classical result we need to take into account the quantum correc-

tions to Eq. (4.100). The most important of these is the mixing bilinear terms in the quadratic

Hamiltonian connecting the impurity to its bulk neighbors. This is the topic of the next section.

The classical result for the longitudinal magnetization in Eq. (4.100) can be also improved

analytically by taking into account classical latitude angles θ1 and θ2 for the nearest and next-

nearest neighbour spins around the impurity site. This will be discussed in Section 4.7.
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Figure 4.6: Longitudinal magnetization as a function of horizontal distance xi from the impurity

site as calculated by QMC simulations (solid circles) and the analytic spin wave theory (squares)

for different impurity properties in a bulk spin-1/2 antiferromagnet subject to an external field

B = B0 = 0.4J . (a) Spin of the impurity is S0 = 1/2 and the color lines correspond to different

values of J0/J = −2 (black solid), 0 (red long dashed), 0.1 (green dot-dashed) and 0.5 (blue

dot-dashed). (b) The impurity spin is S0 = 1 and the color lines describe different values of the

impurity coupling J0/J = −1 (black solid), 0 (red long dashed), 0.2 (green dashed) and 1 (blue

dot-dashed). QMC error bars are smaller than the size of the solid circles.
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Figure 4.7: Magnetization on the impurity site as a function of a coupling J0 to a bulk spin-1/2
antiferromagnet for different values of the impurity spin: (a) S0 = 1/2 and (b) S0 = 1. The

dashed blue curve corresponds to the classical result given in Eq. (4.100), while the black dots

are data from the quantum Monte-Carlo simulations.
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4.6 Shift of bosonic operators on impurity site

In the previous calculations we used an approximation where we neglected contributions from

the impurity part of the Hamiltonian beyond linear order. These, however, play a crucial role

for the magnetization on the impurity site. Taking into account the most important of these

gives additional terms in the Hamiltonian which after applying the spin wave expansion depend

on both the bulk spin bosonic operators (a†i and ai) and bosonic operators of the impurity spin

(a†0 and a0). Keeping terms up to the second order of the bosonic operators we obtain a bilin-

ear Hamiltonian, which can be diagonalized by using a transformation (shift) of the impurity

bosonic operators in order to get rid of the linear terms corresponding to the bosonic operators

of the impurity spin.

4.6.1 The quadratic terms of Hamiltonian

Keeping terms up to the second order of the bosonic operators the impurity part of the Hamil-

tonian in Eq. (4.16) is given by

Ĥimp =
J0
2

√
SS0

∑
〈0,j〉

[(
a†0a

†
j + a0aj

)
(cos β + ν0) +

(
a†0aj + a0a

†
j

)
(cos β − ν0)

]
+ (J0SZν0 cos β +B0 sin θ0)a

†
0a0, (4.101)

where a†i and ai are the bulk spin bosonic operators, a†0 and a0 are bosonic operators of the

impurity spin. Here we introduced the new angle variable

β = θ + ν0θ0, (4.102)

which has the following value

sin β|min =
B0 cos θ0
J0SZ

(4.103)

by applying the conditions in Eqs. (4.21) and (4.22) minimizing the ground state energy.

We can rewrite the impurity Hamiltonian in Eq. (4.101) in the following form

Ĥimp = A
∑
〈0,j〉

(
a†0a

†
j + a0aj

)
+B

∑
〈0,j〉

(
a†0aj + a0a

†
j

)
+Da†0a0, (4.104)

where the constant coefficients A, B and D are given by

A =
J0
2

√
SS0(cos β + ν0),

B =
J0
2

√
SS0(cos β − ν0), (4.105)

D = J0SZν0 cos β +B0 sin θ0 = J0SZ cos β (ν0 + tan β tan θ0).

The first two coefficients A and B describe the bilinear mixing terms in the quadratic impurity

Hamiltonian in Eq. (4.104) connecting the impurity to its neighbor spins, while the coefficient

D corresponds to the quadratic terms in the bosonic impurity operators only.
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Performing the sift of the bosonic bulk operators in Eq. (4.63) the impurity Hamiltonian

becomes

Ĥimp =A
∑
〈0,j〉

(
a†0a

†
j + a0aj

)
+B

∑
〈0,j〉

(
a†0aj + a0a

†
j

)
+Da†0a0

+ a†0
∑
〈0,j〉

(
Aα∗

j +Bαj

)
+ a0

∑
〈0,j〉

(
Aαj +Bα∗

j

)
, (4.106)

where the bulk shift αi is given by Eq. (4.68) and for simplification we omitted primes for the

shifted bulk operators.

4.6.2 Shift of Impurity Operators

Consider now the transformation of variables for the impurity bosonic operator

a0 → a′0 = ca0 + f
∑
〈0,i〉

ai + g
∑
〈0,i〉

a†i + α. (4.107)

It is convenient for further calculations to use the implicit sum over all impurity neighbors, so

we can rewrite Eq. (4.107) as

a0 → a′0 = ca0 + fai + ga†i + α. (4.108)

The transformation coefficients c, f , g and α are complex numbers in the general case. The

operator shift in Eq. (4.108) should satisfy the commutation relation of the bosonic operators

[a′0, a
′†
0 ] = 1 which gives the following relation between the transformation coefficients

|c|2 + Z(|f |2 − |g|2) = 1. (4.109)

4.6.3 Transformed Hamiltonian

Since the bosonic variables for the impurity and the bulk spins are independent and correspond

to the different sites, the commutation relations between them are equal to zero. Applying

the transformation of the bosonic operators in Eq. (4.108) the quadratic Hamiltonian given by

Eq. (4.106) can be expressed as a sum of two terms

Ĥimp = F1(a0, a
†
0, ai, a

†
i ) + F2(ai, a

†
i , aj, a

†
j), (4.110)

where F1 and F2 are functions of their arguments. The second term is a just contribution to the

bulk part of the Hamiltonian and is not interesting for us now. The first term of the Hamiltonian

contains linear terms of the impurity bosonic operators and can be written in the explicit form

F1(a0, a
†
0, ai, a

†
i ) =c∗(A+Dg)a†0a

†
i + c(A+Dg∗)a0ai + c∗(B +Df)a†0ai

+ c(B +Df ∗)a0a
†
i + c∗(Dα + Aα∗

i +Bαi)a
†
0 (4.111)

+ c(Dα∗ + Aαi +Bα∗
i )a0 +D|c|2a†0a0,
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where c, f , g and α are the impurity transformation coefficients, and αi is the linear shift of the

bulk bosonic operators given by Eq. (4.68). The last term in Eq. (4.111) is quadratic in terms of

the impurity bosonic operators and does not contribute to the linear impurity Hamiltonian.

In order to get rid of the linear terms of the impurity contribution we consider the first term

of the Hamiltonian in Eq. (4.110) and equate it to zero. This gives the following relations

between the transformation coefficients

A+Dg = 0, A+Dg∗ = 0,

B +Df = 0, B +Df ∗ = 0, (4.112)

Dα + Aα∗
i +Bαi = 0, Dα∗ + Aαi +Bα∗

i = 0.

Since the constants A, B and D in Eq. (4.105) are real, the transformation coefficients f and g

are also real numbers. Taking into account the fact that the bulk shift αi is a real value, we get

a real bosonic coefficient α and the following relations

g = −A

D
, f = −B

D
, α = −A+B

D
αj = (f + g)αj, (4.113)

where the constants A, B and D are given by Eq. (4.105). Using the commutation relation of

the bosonic operators resulting in Eq. (4.109) we have the additional condition

c =
√
1− Z(f 2 − g2). (4.114)

The explicit form of the coefficients for the transformation of the impurity bosonic operators in

Eq. (4.108) is

g = −
√

S0

S

cos β + ν0
2Z cos β(ν0 + tan β tan θ0)

, f = −
√

S0

S

cos β − ν0
2Z cos β(ν0 + tan β tan θ0)

, (4.115)

α = −
√

S0

S

1

Z(ν0 + tan β tan θ0)
αj, c =

√
1 +

S0

S

ν0
Z cos β(ν0 + tan β tan θ0)2

.

Some limiting cases

Consider some limiting cases of the parameters.

• The same impurity parameters J0 = J and B0 = B gives that there is no impurity in

case of S0 = S. Using the expressions in Eqs. (4.21) and (4.22) of the latitude angles

minimizing the ground state energy we obtain

θ0|min = θ, β|min = 2θ. (4.116)

That gives the following formulas for the coefficients

g = −
√

S0

S

cos2 θ

Z
, f =

√
S0

S

sin2 θ

Z
,

α = −
√

S0

S

cos 2θ

Z
αj, c =

√
1 +

S0

S

cos 2θ

Z
. (4.117)
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• Extremely large impurity coupling |J0| � J . In this case the angles minimizing the

energy become

θ0|min = −ν0θ, β|min = 0. (4.118)

That gives the following expressions for the transformation coefficients of the impurity

bosonic operators

g = −
√

S0

S

ν0 + 1

2Z
, f = −

√
S0

S

ν0 − 1

2Z
,

α = −
√

S0

S

ν0
Z
αj, c =

√
1 +

S0

S

ν0
Z
. (4.119)

From the last equation we see that the transformation coefficient c is a real value except

in the case of an extreme ferromagnetic impurity which gives the following condition

S0 � SZ (4.120)

for all the transformation coefficients being real numbers.

• Isolated impurity with J0 = 0 implies that the ground state angles are

θ0|min =
π

2
sgnB0,

β|min = θ + ν0
π

2
sgnB0, (4.121)

which results in the following expressions for the transformation coefficients

g = f = α = 0, c = 1. (4.122)

It means that the impurity bosonic variables do not change in this case.

4.6.4 Magnetization on Impurity Site

The magnetization on the impurity site in the z-direction is given by the expression

M z
0 = sin θ0〈Ŝ ′z

0〉+ cos θ0〈Ŝ ′x
0〉, (4.123)

where 〈Ŝ ′z
0〉 and 〈Ŝ ′z

0〉 are expectation values of the rotated spin operators.

Using spin wave expansion in Eqs. (4.10) and (4.11) and keeping terms up to the first order

of 1/S the impurity spin operators can be expressed in terms of bosonic variables as

Ŝz
0 = S0 − a†0a0,

Ŝx
0 ≈

√
S0

2

[
a†0 + a0 − 1

4S0

(
a†0a

†
0a0 + a†0a0a0

)]
, (4.124)

Ŝy
0 ≈ i

√
S0

2

[
a†0 − a0 − 1

4S0

(a†0a
†
0a0 − a†0a0a0)

]
.
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Inserting these expressions for the rotated impurity spin operator Ŝ ′
0 into the longitudinal mag-

netization on the impurity site we obtain terms with different power of the impurity bosonic

operators a†0 and a0.

The leading order magnetization

In the first approximation we consider the leading terms to order 1/S0 of the operator expansion

by neglecting the cubic terms

Ŝx
0 〈1〉 ≈

√
S0

2

(
a†0 + a0

)
, (4.125)

that gives the magnetization on the impurity site along the applied magnetic field

M z
0 〈1〉 = sin θ0

(
S0 − 〈a†0a0〉

)
+ cos θ0

√
S0

2

(
〈a†0〉+ 〈a0〉

)
. (4.126)

Applying the shift of bulk bosonic operator in Eq. (4.63) and the transformation of the

impurity bosonic variables in Eq. (4.108) we obtain the following expectation values

〈a†0〉 = 〈a0〉 = α = (f + g)αi, (4.127)

〈a†0a0〉 = g2Z + (f 2 + g2)〈a†iaj〉+ 2fg〈aiaj〉+ (f + g)2αiαj,

where we used the implicit sum by indices i, j over all impurity neighbors. By analogy to the

bulk parameters in Eq. (4.44) we can introduce new variables which depend only on bulk sites

of the nearest impurity neighbors

m̃ =
1

Z2

∑
〈0,i〉
〈0,j〉

〈a†iaj〉 =
1

N

∑
k

v2kγ
2
k =

1

2N

∑
k

(
Ak

ωk

− 1

)
γ2
k ,

Δ̃ =
1

Z2

∑
〈0,i〉
〈0,j〉

〈aiaj〉 = 1

N

∑
k

ukvkγ
2
k = − 1

2N

∑
k

Bk

ωk

γ2
k (4.128)

and an additional variable concerning the shift of the bosonic operators of the impurity

α̃0 =
1

Z

∑
〈0,i〉

αi =
1√
N

∑
k

αkγk. (4.129)

In Table 4.2 we show the typical modified bulk values calculated numerically in a uniform

spin-1/2 antiferromagnet for the two different values of the applied field strength.

Taking into account the expectation values in Eq. (4.127) the longitudinal magnetization on

the impurity site in Eq. (4.126) becomes

M z
0 〈1〉 =sin θ0

{
S0 −

[
g2Z + (f 2 + g2)Z2m̃+ 2fgZ2Δ̃ + (f + g)2Z2α̃2

0

]}
+
√

2S0 cos θ0(f + g)Zα̃0. (4.130)

For further simplification it is convenient to redefine the variable α given by Eq. (4.113) as a
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B = 0.4J B = 0
m̃ 0.1245 0.1506

Δ̃ −0.0259 0

Table 4.2: Expectation values corresponding to the modified bulk variables given by Eq. (4.128)

for the nearest-neighbor sites in a two-dimensional uniform spin-1/2 antiferromagnet. Different

values of the external magnetic field B are indicated in the table header row.

shift of the impurity bosonic operators

α0 ≡ α = (f + g)Zα̃0, (4.131)

that allows to rewrite the magnetization in Eq. (4.130) in the form

M z
0 〈1〉 = sin θ0

{
S0 −

[
α2
0 + g2Z + (f 2 + g2)Z2m̃+ 2fgZ2Δ̃

]}
+ cos θ0

√
2S0 α0. (4.132)

Using the relations in Eqs. (4.27), (4.36) and (4.67) and applying the integration rule given

by Eq. (A.65) in Appendix A.4 we can express the variable α̃0 in the explicit form

α̃0 =− 1

N

∑

k

Cγ2

k

A
k +B
k

= − C

JSZ

1

N

∑

k

γ2

k

1 + γ
k cos 2θ
(4.133)

=

√
S

2

(
sin 2θ − |J0|

J

S0

S
sin β

)
1

cos2 2θ

[
4

π(1 + sin 2θ)
K

(
1− sin 2θ

1 + sin 2θ

)
− 1

]
,

where the special function K(x) is a complete elliptic integral of the first kind [107] and given

by Eq. (A.61). Therefore for the shift in Eq. (4.131) we obtain

α0 =

√
S0

2

|J0|
J

S0

S
sin β − sin 2θ

ν0 + tan β tan θ0

1

cos2 2θ

[
4

π(1 + sin 2θ)
K

(
1− sin 2θ

1 + sin 2θ

)
− 1

]
. (4.134)

Substituting these formulae to the expression of the impurity magnetization in Eq. (4.132) we

get finally

M z
0 〈1〉 =S0 sin θ0

(
1− α2

0

S0

− 1

S

1

4Z cos2 β (ν0 + tan β tan θ0)2

{
(ν0 + cos β)2

+ 2Z
[
(1 + cos2 β)m̃− (1− cos2 β)Δ̃

]})
+ cos θ0

√
2S0α0, (4.135)

where the factor α0 is given in Eq. (4.134). For further analysis it is convenient to define the

normalized magnetization on the impurity site

M̃ z
0 =

M z
0

S0

, (4.136)

which allows to compare the magnetization behaviour for different values of the impurity spin.

In Figure 4.8 we plot the normalized impurity magnetization M z
0 /S0 for different values of
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Figure 4.8: The normalized magnetization on the impurity site M z
0 /S0 as a function of the

coupling strength J0 in a two-dimensional spin-1/2 antiferromagnet. The analytical results for

different values of the impurity spin S0 = 1/2, 1 and 3/2 (the solid blue, purple and brown

lines respectively) are compared with the independent quantum Monte-Carlo simulations for

the same spin values (the dashed red, green and black lines respectively). The applied magnetic

field is B0 = B = 0.4J .

the impurity spin S0 as a function of the coupling strength J0 and compare the analytical result

in Eq. (4.135) with the independent quantum Monte-Carlo calculations for different spins of the

impurity. We can see a reasonably good agreement of the analytical results in the case of strong

ferromagnetic coupling J0 < 0 of the impurity.

In order to improve these results we need to take into account higher order terms of the

impurity Hamiltonian which complicate considerably the analytic calculations.

4.7 Corrections due to site-dependent angles θi

Another approach to improve the calculations of the impurity magnetization is to improve the

description of the classical state by parameterizing it by more bulk angles.

4.7.1 Magnetization with θ1

If we include additional parameter θ1 to the problem as latitude angle for the nearest impurity

neighbors we get additional terms to the constant term of the Hamiltonian that results in the

following equations for the energy minimization condition⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tan θ0 =
B0 − J0SZ sin θ1
|J0|SZ cos θ1

,

tan θ1 =
B − J0S0 sin θ0 − JS(Z − 1) sin θ

|J0|S0 cos θ0 + JS(Z − 1) cos θ
,

sin θ =
B

2JSZ
.

(4.137)
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In order to minimize the energy the azimuthal angles φ0 and φ1 have to obey{
− J0 cos (φ0) cos(φ1) > 0,

sinφ1 = 0.
(4.138)

We can chose the coordinate system where the azimuthal angle φ1 of the nearest neighbour site

is equal to π that gives the minimizing condition for the impurity angle similar to Eq. (4.22)

cosφ0 = ν0, φ1 = π, − cosφij = ν, for i, j �= 0, 1. (4.139)

We can solve the equation set in Eq. (4.137) numerically, but it can be also solved analytically

by using approximations cos θ1 ≈ cos θ and keeping linear terms in a series expansion that gives

the following expressions for the latitude angles minimizing the energy

tan θ0|min ≈ B0 − BJ0
2J

|J0|SZ cos θ0
+

B0
S0

S
− ν0B

JSZ(Z − 1) cos θ
, (4.140)

tan θ1|min ≈ B(Z + 1)− 2ν0B0
S0

S cos θ

2JSZ(Z − 1) cos θ
. (4.141)

It is necessary to note that the approximation of tan θ0|min given in Eq. (4.140) is a rather

accurate. Comparing to numerical calculations it differs by � 1% for the typical conditions

Z = 4, S = S0 = 1/2, and B = B0 = 0.4J under consideration. While the approximated

tan θ1|min in Eq. (4.141) is independent of the impurity exchange constant J0, however its exact

value depends on the coupling J0 through θ0 in the equation set (4.137). Therefore, comparing

to numerical calculations the approximated tan θ1|min has a relative error ∼ 1% which increases

up to 40% in the limit of the vanishing impurity coupling J0.

For further calculations it is convenient to introduce new angular variables

β0 = θ1 + ν0θ0, β1 = θ + θ1, (4.142)

where θ0, θ1, θ are the latitude angles on the impurity, nearest neighbors and other bulk sites

respectively. This inclusion of the nearest neighbors angle θ1 leads to a change of the shift in

Eq. (4.68) of the bulk bosonic variables

αi =− 1

N

∑

k

√
S

2

[{( |J0|
J

S0

S
sin β0 − sin 2θ

)
+

B

JS
(cos θ − cos θ1)

}
γ
k

+ (sin β1 − sin 2θ)
(
(Z − 1)γ
k + Zγ2


k
− 1

)] ei

k·
ri

1 + γ
k cos 2θ
. (4.143)

It gives additional contribution to the shift of impurity bosonic operator α̃0 which is defined by
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Figure 4.9: Comparison of the normalized impurity magnetization M z
0 /S0 by introduction of

additional angle θ1 for different values of the impurity spins S0 = 1/2, 1 and 3/2 (the blue,

purple and brown curves respectively) with results of the independent quantum Monte-Carlo

simulations (the dashed red, green and black lines respectively).

Eq. (4.129) and can be expressed as

α̃0 =−
√

S

2

[{( |J0|
J

S0

S
sin β0 − sin 2θ

)
+

B

JS
(cos θ − cos θ1)

}
I2

+ (sin β1 − sin 2θ)
(
(Z − 1)I2 + ZI3 − I1

)]
, (4.144)

where we introduce the following notations

I1 =
1

N

∑

k

γ
k
1 + gγ
k

, I2 =
1

N

∑

k

γ2

k

1 + gγ
k
, (4.145)

I3 =
1

N

∑

k

γ3

k

1 + gγ
k
(4.146)

by using the sum relations given by Eqs. (A.64), (A.65) and (A.66) in the Appendix A.4, where

the constant g = cos 2θ in the leading order approximation is defined in Eq. (4.36). Therefore

the impurity bosonic shift α0 given by Eq. (4.131) can be expressed in the final form

α0 =

√
S0

2

1

ν0 + tan β tan θ0

[{( |J0|
J

S0

S
sin β0 − sin 2θ

)
(4.147)

+
B

JS
(cos θ − cos θ1)

}
I2 + (sin β1 − sin 2θ)

{
(Z − 1)I2 + ZI3 − I1

}]
.

One should note that the change of the minimization angle θ0 in Eqs. (4.140) and (4.141) gives

a more dominating contribution to the impurity magnetization than the change of the impurity

variable α0 due to the shift of the impurity bosonic operators.

120



Taking into account the latitude angles of the impurity neighbours results also in renormal-

ization of the bulk parameters m̃ and Δ̃ given in Eq. (4.128). As a first approximation, we can

assume that the modified bulk variables are unchanged. In this case the normalized impurity

magnetization M̃ z
0 = M z

0 /S0 taking into account of additional neighbors angle θ1 as a function

of the impurity coupling J0 is shown in Figure 4.9. The obtained analytical results are also

compared with the results of the independent Monte-Carlo simulations.

4.7.2 Corrections due to θ1 and θ2

We can also consider the second line of impurity neighbors sites and introduce their latitude

angle θ2 that gives additional contribution to the constant terms of the Hamiltonian and leads to

the following combined equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan θ0 =
B0 − J0SZ sin θ1
|J0|SZ cos θ1

,

tan θ1 =
B − J0S0 sin θ0 − JS(z − 1) sin θ2
|J0|S0 cos θ0 + JS(Z − 1) cos θ2

,

tan θ2 =
2B
JS

− (Z − 1) sin θ1 − (2Z − 3) sin θ

(Z − 1) cos θ1 + (2Z − 3) cos θ
,

sin θ =
B

2JSZ
.

(4.148)

This equation set can be solved accurately numerically that enables to change the minimization

latitude angle θ0 and improve results for the magnetization on the impurity site.

In Figure 4.10 we show the impurity magnetization calculated by the classical relation in

Eq. (4.100) improved by taking into account the different angles for the impurity neighbors in

order to find the latitude angle θ0 on the impurity site. Including variation of the neighbor bulk

angles results in better agreement with the quantum Monte-Carlo simulations or ferromagnetic

couplings J0 > 0 for a spin-1/2 impurity, while for positive J0 these results coincide with the

classical result in a spin-1/2 antiferromagnet as is shown in Figure 4.10(a). In the case of the

impurity spin S0 = 1 differing from the bulk spins we see in Figure 4.10(b) that taking into

account the different angles if the impurity neighbors gives a proper agreement with the QMC

data in contrast to the classical result.

Taking into account more latitude angles θi for the bulk sites is extremely hard in analytic

form. However, these calculations can be performed numerically by solving the general mini-

mization conditions which can be written in the form of the equation set

tan θi =
Bi −

∑
〈i,j〉 JijSj sin θj∑

〈i,j〉 |Jij|Sj cos θj
, (4.149)

where the sum is performed over all the nearest neighbours of each i-site. In our Article III [173]

we numerically diagonalized the quadratic bosonic Hamiltonian keeping track of all the bulk

angles θi by the relaxation method where the boundary conditions were specified to fit the

minimization conditions in Eq. (4.21) for a typical lattice size (28× 28).
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Figure 4.10: Magnetization on the impurity site given by classical relation in Eq. (4.100) taking

into account different angles for impurity neighbors as a function of a coupling J0 to a bulk

spin-1/2 antiferromagnet for different values of the impurity spin: (a) S0 = 1/2 and (b) S0 = 1.

The solid purple curve is the analytic results including the angle θ1 for the nearest neighbors,

the solid green curves describes also taking into account the latitude angles θ2, while the dashed

blue line corresponds to the classical result and the black dots are the QMC data in Figure 4.7.

The applied magnetic field is B = B0 = 0.4J .

4.8 Linear response theory

We can apply also another approach within the framework of spin wave theory in order to study

analytically a general impurity in a Heisenberg antiferromagnet in an external magnetic field.

Considering an impurity in an otherwise uniform magnet as a static perturbation allows to apply

perturbation theory in order to find the local magnetization. Since we study static properties of

the spin system, the time-independent variant of linear response theory (LRT) [176–178] is

appropriate and answers how the equilibrium system changes in response to an external time-

independent perturbation. Within this framework the Hamiltonian of the quantum system is

Ĥ = Ĥ0 + V̂ , (4.150)

where Ĥ0 is the unperturbed Hamiltonian and V̂ is the time-independent perturbation. The

corresponding Schrödinger equation is

Ĥ|ψ〉 = E|ψ〉. (4.151)

Using stationary perturbation theory [86, 120] we are looking for the eigenenergy E and the

wave function |ψ〉 in the general form

|ψ〉 =
∑
n

cn|ψ(0)
n 〉, cn = c(0)n + c(1)n + c(2)n + . . . , (4.152)

E = E(0) + E(1) + E(2) + . . . , (4.153)

where ψ
(0)
n and E(0) are the eigenfunctions and the eigenenergies of the unperturbed Hamil-

tonian Ĥ0, c
(k)
m are expansion coefficients, and the number in parentheses (k) corresponds to
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the k-order correction. The perturbed wave functions are normalized 〈ψ|ψ〉 = 1. In further

calculations we will consider the case of a non-degenerate energy spectrum.

For the unperturbed system the coefficients of the eigen function |ψ(0)
n 〉 in Eq. (4.152) are

given by the relation

c(0)m = δmn. (4.154)

Perturbation theory gives the well-known result for the first-order corrections

E(1)
n = 〈ψ(0)

m |V̂ |ψ(0)
m 〉 = Vnn, Vmn = 〈ψ(0)

m |V̂ |ψ(0)
n 〉, (4.155)

where Vmn is a matrix element of the perturbation operator connecting the unperturbed m- and

n-states. The corrections to the |ψ(0)
n 〉 wave function coefficients are

c(1)m =
Vmn

E
(0)
n − E

(0)
m

, for m �= n, (4.156)

while the coefficient c
(1)
n is arbitrary and can be chosen equal to zero. Thus the wave functions

can be written in the explicit form

|ψ(I)
n 〉 = |ψ(0)

n 〉+ |ψ(1)
n 〉, |ψ(1)

n 〉 =
∑
m �=n

Vmn

E
(0)
n − E

(0)
m

|ψ(0)
m 〉. (4.157)

The perturbed wave functions are orthogonal and normalized, |ψ(I)
n | ≈ 1, is valid up to the

second order terms. This linear approximation is applicable only if the perturbation is relatively

small as compared with the difference of the energy levels

|Vmn| 	 |E(0)
n − E(0)

m |. (4.158)

The weak perturbation causes change of an observable parameter corresponding to the ex-

pectation values of operator Ô in the quantum system. This variation of the observable can be

written in the first-order approximation as

〈ΔÔ〉 = 〈Ô〉(I) − 〈Ô〉(0), (4.159)

where the expectation values for different correction orders are given by

〈Ô〉(0) = 〈ψ(0)|Ô|ψ(0)〉, 〈Ô〉(I) = 〈ψ(I)|Ô|ψ(I)〉. (4.160)

Therefore the change of the observable becomes

〈ΔÔ〉 =
(
〈ψ(1)|Ô|ψ(0)〉+ 〈ψ(0)|Ô|ψ(1)〉

)
+ 〈ψ(1)|Ô|ψ(1)〉 =

= 2�〈ψ(1)|Ô|ψ(0)〉+ 〈ψ(1)|Ô|ψ(1)〉, (4.161)

where � denotes the real part. Taking into account the wave function corrections in Eq. (4.157)
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the first term in Eq. (4.161) can be written in the form

〈ψ(1)|Ô|ψ(0)〉 =
∑
n

∑
m �=n

c∗nm〈ψ(0)
m |Ô|ψ(0)

n 〉 =
∑
n

∑
m �=n

Vnm〈ψ(0)
m |Ô|ψ(0)

n 〉
E

(0)
m − E

(0)
n

. (4.162)

Considering the case where the system is initially in the ground state |0〉 = |ψ(0)
0 〉 with zero

ground state energy we get

〈ψ(1)|Ô|ψ(0)〉 = −
∑
m �=0

V0m

E
(0)
m

〈ψ(0)
m |Ô|0〉. (4.163)

Neglecting the second term in Eq. (4.161) corresponding to the second order corrections gives

the linear response to the time-independent perturbation in the explicit form

〈ΔÔ〉 = −2�
∑
m �=0

〈0|V̂ |ψ(0)
m 〉 〈ψ(0)

m |Ô|0〉 1

E
(0)
m

. (4.164)

Taking into account also the second order corrections the response becomes

〈ΔÔ〉(II) = 2�〈ψ(1)|Ô|ψ(0)〉+ 2�〈ψ(2)|Ô|ψ(0)〉+ 〈ψ(1)|Ô|ψ(1)〉, (4.165)

where the correction to the unperturbed eigenfunctions is given by [86]

|ψ(2)
n 〉 =

∑
m �=k

∑
k �=n

VmkVkn

(E
(0)
n − E

(0)
k )(E

(0)
n − E

(0)
m )

|ψ(0)
m 〉

−
∑
m �=n

VnnVmn(
E

(0)
n − E

(0)
m

)2 |ψ(0)
m 〉 − |ψ(0)

n 〉
2

∑
m �=n

|Vmn|2(
E

(0)
n − E

(0)
m

)2 , (4.166)

while the perturbed wave functions |ψ(II)
n 〉 = |ψ(0)

n 〉 + |ψ(1)
n 〉 + |ψ(2)

n 〉 should be normalized to

unity.

In order to see how our previous results can be obtained using linear response theory we

focus on the local longitudinal magnetization which is described by the z-component of the

spin operator. In this case the operator of the experimental observable is site-dependent and

corresponds to

Ô = Ŝz
i . (4.167)

For further calculations we will use the following notations for the eigenfunctions and

eigenenergies of the unperturbed Hamiltonian

|m〉 = |ψ(0)
m 〉, Em = E(0)

m . (4.168)
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4.8.1 The case of a vacancy

First of all we will consider a single vacancy in a Heisenberg antiferromagnet described by the

Hamiltonian

Ĥ = Ĥbulk + Ĥvac, (4.169)

where the bulk Hamiltonian is given by Eq. (4.3) and is to be considered as the unperturbed

Hamiltonian, while the vacancy Hamiltonian is treated as a static perturbation

Ĥvac = V̂vac,J + V̂vac,B, (4.170)

where we divided the perturbation into two parts corresponding to the absence of the interaction

between the vacancy and bulk sites

V̂vac,J = −J
∑
〈0,j〉

�̂Si=0 · �̂Sj (4.171)

and the absence of the interaction with the applied magnetic field

V̂vac,B = +BŜz
i=0. (4.172)

This separation of the perturbation is convenient due to different operator forms of the interac-

tions.

Performing the Holstein-Primakoff expansion in Eqs. (4.8)–(4.11) in the rotated coordinate

frame in Eq. (4.5) and keeping the leading and linear terms we get the expression for the operator

of the observable

Ô = Ŝz
i ≈ sin θi

(
Si − a†iai

)
+ cos θi

√
Si

2

(
a†i + ai

)
. (4.173)

The non-zero transition matrix element of the vacancy perturbation due to the magnetic field

becomes

〈m|V̂vac,B|0〉 = B

√
S

2
cos θ〈m|(a†i=0 + ai=0)|0〉, (4.174)

while the perturbation part of the interaction with the surrounding bulk sites gives

〈m|V̂vac,J |0〉 = −JS

√
S

2
sin 2θ

[
Z〈m|(a†i=0 + ai=0)|0〉+ 〈m|

∑
〈0,j〉

(a†j + aj)|0〉
]
. (4.175)

Applying the Fourier transform the matrix elements can be written in momentum space as

〈�k|V̂vac,B|0〉 =
√

S

2
cos θ

1√
N

∑

k

〈�k|(a†
k + a
k)|0〉, (4.176)

〈�k|V̂vac,J |0〉 = −JS

√
S

2
sin 2θ

Z√
N

∑

k

〈�k|(a†
k + a
k)(1 + γ
k)|0〉. (4.177)
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The spin operator of the observable in Eq. (4.173) has the following non-zero transition elements

〈0|Ô|m〉 = 〈0|Ŝz
i |m〉 =

√
S

2
cos θ〈0|(a†i + ai)|m〉, (4.178)

which can be written in momentum space as

〈0|Ô(�ri)|�k〉 =
√

S

2
cos θ

1√
N

∑

k

〈0|(a†
k e
i
k·
ri + a
k e

−i
k·
ri)|�k〉. (4.179)

Using the canonical Bogoliubov transformation in Eq. (4.39) we can express the bosonic

operators a†
k, a
k in terms of the magnon creation and annihilation operators b†
k, b
k which act on

the system eigenstates as

b†
k|0〉 = |�k〉, b
k|�k〉 = |0〉. (4.180)

This allows to calculate the non-zero transition matrix elements of the bosonic operator

〈�k|a†
k|0〉 = u
k + v
k, (4.181)

where the transformation coefficients u
k and v
k obey the relations in Eq. (4.43). Employing

Eq. (4.164) for the linear response and taking into account the fact that the E
k eigenenergies3 of

the unperturbed bulk Hamiltonian can be determined from the diagonalized quadratic Hamilto-

nian in Eq. (4.40) and correspond to the coefficient ω
k given by Eq. (4.41), we get the following

corrections to the magnetization on site-i

ΔM z
vac,B = −BS cos2 θ

1

N

∑

k

1

A
k +B
k

cos
(
�k ·�ri

)
, (4.182)

ΔM z
vac,J = 2JS2Z cos2 θ sin θ

1

N

∑

k

(1 + γ
k)

A
k +B
k

cos
(
�k ·�ri

)
, (4.183)

where the coefficients A
k and B
k are given in Eqs. (4.35) and (4.34). Using the minimization

conditions in Eq. (4.21) the total linear response to the vacancy becomes

ΔM z
vac = ΔM z

vac,B +ΔM z
vac,J = 2JS2Z cos2 θ sin θ

1

N

∑

k

γ
k
A
k +B
k

cos
(
�k ·�ri

)
, (4.184)

which can be written in the explicit form [179]

ΔM z
vac(�ri) = S cos θ sin 2θ

1

N

∑

k

γ
k
1 + γ
k cos 2θ

cos
(
�k ·�ri

)
. (4.185)

Performing the sum over all momenta in Eq. (4.185) as is shown in Appendix A.4 the mag-

netization correction due to the vacancy in a uniform two-dimensional spin-S antiferromagnet

3The ground state energy is chosen equal to zero.
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becomes

ΔM z
vac = S sin θ tan 2θ

⎧⎪⎪⎨
⎪⎪⎩

1− 4

π(1 + sin 2θ)
K

(
1− sin 2θ

1 + sin 2θ

)
, i = 0,

(−1)Ri
−2

π cos 2θ
K0

(r
d

)
, otherwise,

(4.186)

where Ri = xi+yi describes the alternating behaviour, d is the decay scale given by Eq. (4.84),

K(x) is the complete elliptic integral of the first kind, and K0(x) is the zeroth-order modified

Bessel function of the second kind.

Since the uniform magnetization M z
bulk of the unperturbed antiferromagnet is given by the

classical relation in Eq. (4.79), in the case of a vacancy the local spacial magnetization pattern

around the vacancy is determined by the correction in Eq. (4.185) within LRT

M z
vac(�ri) = (S − n) sin θ +ΔM z

vac(�ri), (4.187)

where the bulk parameter n is given by Eq. (4.44) and corresponds to the quantum corrections

from the quadratic bulk Hamiltonian.

4.8.2 The case of a general impurity

In the case of an embedded general impurity the Hamiltonian contains additional terms which

can be considered as extra static perturbations. The impurity Hamiltonian can be also divided

into two parts

Ĥimp = V̂imp,J0 + V̂imp,B0 , (4.188)

which correspond to the interaction between the impurity and bulk sites through the coupling

constant J0 as

V̂imp,J0 = J0
∑
〈0,j〉

�̂S0 · �̂Sj (4.189)

and the Zeeman coupling of the impurity to the external magnetic field

V̂imp,B0 = −B0Ŝ
z
0 . (4.190)

This perturbation V̂imp,B0 is described by the impurity spin operator Ŝz
0 which can be written

in terms of the impurity bosonic operators a†0 and a0 in Eq. (4.124) by applying the Holstein-

Primakoff transformation. These impurity operators do not change the eigenstates of the unper-

turbed bulk Hamiltonian, thus only the diagonal matrix element has non-zero value

〈m|V̂imp,B0 |0〉 ∼ δm,0. (4.191)

This gives in accordance with Eq. (4.164) that within linear response theory the correction to

the magnetization due to the interaction of the impurity with the magnetic field vanishes

ΔM z
imp,B0

= 0. (4.192)

Applying the Holstein-Primakoff transformation in the rotated coordinate frame and using
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the minimization conditions in Eq. (4.21) we get the following off-diagonal matrix elements for

the part of the impurity perturbation corresponding to the coupling to the surrounding bulk sites

〈m|V̂imp,J0 |0〉 = J0S0

√
S

2

(
sin θ0 cos θ + ν0 cos θ0 sin θ

)〈m|
∑
〈0,j〉

(a†j + aj)|0〉, (4.193)

which can be written in the Fourier space in the form

〈�k|V̂imp,J0 |0〉 = J0S0Z

√
S

2
ν0 sin β

1√
N

∑

k

〈�k|(a†
k + a
k)|0〉, (4.194)

where ν0 = sgn J0 and the angle β = θ + ν0θ0. Employing the Bogoliubov transformation and

taking into account the transition matrix elements of the observable operator in Eq. (4.179) and

the bosonic bulk operators in Eq. (4.181) we get the correction to the bulk magnetization due to

the impurity coupling

ΔM z
imp,J0

= −ν0J0S0SZ sin β cos θ
1

N

∑

k

γ
k
A
k +B
k

cos
(
�k ·�ri

)
, (4.195)

which can be written in the explicit form

ΔM z
imp,J0

(�ri) = −|J0|
J

S0 sin β cos θ
1

N

∑

k

γ
k
1 + γ
k cos 2θ

cos
(
�k ·�ri

)
. (4.196)

The total linear response due to the embedded impurity contains also the contribution from the

vacancy calculated in Eq. (4.185) that gives the magnetization pattern around the impurity

ΔM z(�ri) =ΔM z
vac +ΔM z

imp,J0
+ΔM z

imp,B0
=

=

(
S sin 2θ − |J0|

J
S0 sin β

)∑

k

γ
k
1 + γ
k cos 2θ

cos
(
�k ·�ri

)
. (4.197)

Applying the minimization conditions in Eqs. (4.21), (4.22) and (4.103) we can rewrite the

correction to the magnetization in Eq. (4.197) in the compact form

ΔM z(�ri) = − C

JZ

√
2

S

1

N

∑

k

γ
k
1 + γ
k cos 2θ

cos
(
�k ·�ri

)
, i �= 0, (4.198)

where the coefficient C is given by Eq. (4.27).

Taking into account the uniform magnetization of the unperturbed bulk antiferromagnet

given by the classical relation containing the quantum corrections in Eq. (4.79) the local longi-

tudinal magnetization around the impurity becomes

M z(�ri) = M z
bulk+ΔM z = (S−n) sin θ− C

JZ

√
2

S

1

N

∑

k

γ
k
1 + γ
k cos 2θ

cos
(
�k ·�ri

)
, (4.199)
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which can be written in the general form

M z(�ri) = (S − n) sin θ −
√
2S

C

N

∑

k

γ
k
A
k + B
k

cos
(
�k ·�ri

)
, i �= 0. (4.200)

Comparing the obtained result in Eq. (4.200) with the leading order terms in Eq. (4.74) with

the bosonic shift αi given by Eq. (4.68) we see that linear response theory gives the same result

for the local bulk magnetization as the direct calculations of the expectation value of the spin

operator Ŝz performed in Section 4.3.

4.9 Summary

We studied statical local properties of spin-S antiferromagnets with an embedded impurity by

using analytical spin wave approach. We calculated analytically the spatial magnetization pat-

tern induced by a general magnetic impurity in a Heisenberg spin-S antiferromagnet in the

presence of a magnetic field. The obtained analytical results are in a good agreement with the

independent quantum Monte-Carlo simulations which were performed in our Article III. The

complete analytical expressions for the local magnetization were obtained and examined for dif-

ferent values of the impurity spin S0, coupling J0 and strengths of the applied magnetic fields

B and B0. We found that the induced magnetization around the impurity has a alternating mag-

netization pattern along the field direction. We analyzed in details the form and characteristic

scale of the magnetization decay to its uniform bulk value for the square and cubic lattices. Our

analytic calculations show that the parameters and type of the impurity affect only the overall

coefficient C describing the magnetization magnitude while the scale and shape of the magneti-

zation decay are universal and depend only on the properties of the host magnet and the applied

field.

In addition, we also verified our analytical calculations by employing linear response theory

treatment considering an embedded impurity as a static perturbation to a uniform bulk antifer-

romagnet. In the case of a vacancy the expression for the local spatial magnetization is also

derived analytically.

The obtained results can be applied to predict the detailed local magnetization pattern around

general magnetic and non-magnetic impurities in isotropic antiferromagnets (e.g. from doping

Zn, Co and Ni atoms in a quasi two-dimension CuO2-antiferromagnets) in experiments on the

atomic scale by using, for example, MFM and SP-STM techniques.
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Appendix A

Additional calculations

A.1 Schrieffer-Wolff transformation

In order to improve the procedure of numerically finding eigenvalues and eigenvectors of the

Hamiltonian by including higher domain sectors without increasing the number of states one

can use a technique of degenerate perturbation theory which is known as Schrieffer-Wolff trans-

formation [180]. In general this method can be implemented for study a quantum many-body

system when description of the system at the low-energy must be extracted from a full Hamil-

tonian describing the full-energy spectrum. In our case of studying the low-energy excitations

in a finite system we can obtain a low-energy effective Hamiltonian by unitary transformation

(so-called direct rotation) that decouples high-energy and low-energy domain walls subspaces.

The detailed description of the technique for general quantum many-body systems is given in

Ref. [181].

Consider Ĥ as some unperturbed diagonal Hamiltonian and a perturbation V̂ which couples

different subspaces. Using perturbation theory for the states in the low-energy subspace and

retaining terms up to second order the matrix element of the effective Hamiltonian in the low-

energy subspace can be written

〈i|Ĥeff |j〉low = Eiδij + 〈i|V̂ |j〉+
∑

k∈high

〈i|V̂ |k〉〈k|V̂ |j〉
2

(
1

Ei − Ek

− 1

Ek − Ej

)
, (A.1)

where indexes i, j describe states in the low-energy subspace and Ei are the eigenenergies of

the unperturbed Hamiltonian. The effective Hamiltonian in Eq. (A.1) contains corrections from

the high-energy subspace that allows to include the leading contribution of the higher sectors.

The advantage with this method is that effects of the high energy states can be included

without having to diagonalize larger matrices. However, in our case when including perturba-

tions from sectors with higher number of domain walls Ndw > 6, that requires to calculate all

available states in the Ndw = 8 sector, the number of states rises dramatically with the system

size N . In addition, for a larger perturbation we have to keep higher order terms of the Taylor

series expansion which include contributions from higher sectors, see [181], that finally also

increases the number of states and complicates the calculations.

We found that the effective Hamiltonian method for Ndw ≤ 4 with leaving at least the

second order terms in Eq. (A.1) gives underestimated energy levels in contrast to the eigenvalues
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Figure A.1: Energy gap of the effective Hamiltonian between the ground state and the first

excited state in even sector for different Ndw as a function of the system size N . The solid lines

describe the maximum Ndw of low-energy subspace of the Schrieffer-Wolff transformation:

blue solid line with circles is Ndw = 2 and magenta squares is Ndw = 4. The dashed brown line

with diamonds shows the full contribution of the Ndw ≤ 6 sectors of the full Hamiltonian in

Eq. (3.18). The dashed red line describes the energy gap for the Ndw ≤ 2 redefined Hamiltonian

in Eq. (3.29).

of the full Hamiltonian for Ndw ≤ 6, see Figure A.1. Including higher order terms in the

Taylor expansion of the effective Hamiltonian requires contributions from higher Ndw sectors.

In particular, keeping up to the third order terms of the effective low-energy Hamiltonian with

the maximal number of domain walls Ndw = 4 needs contribution from states in the higher

Ndw ≤ 8 sectors which are restricted due to performance for the finite system size Ndw = 34.

Therefore in the case of the Hamiltonian in Eq. (3.1) with the parameters given by Eq. (3.31)

the Schrieffer-Wolff transformation does not essentially improve the numerical description of

the quantum spin system, so we do not use it.

A.2 Dynamical structure factors

A.2.1 S−+(q, ω)

When we consider transitions between the ground state and excited states we get non-zero

contribution to the S−+ dynamical structure factor

S−+(q, ω) =
∞∑
n

δ(ω − En(q)) I
−+
n (q), (A.2)

where I−+
n is corresponding normalized relative intensity of the n-th mode

I−+
n (q) =

∣∣∣∣∣C1C
n
0 (0)δq,0 + 2e−iq/2

∑
l>1

ClC
n
l−1(q) cos(ql/2)

∣∣∣∣∣
2

. (A.3)
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The leading terms of the intensity give

I−+
n (q) ≈

(
C1C

n
0 (0)δq,0 + 2C2C

n
1 (q) cos q

)2

. (A.4)

In the case of h⊥ = 0 there is only non-zero wave functions corresponding states with even

domain length l in the ground state that gives zero intensity at q = 0.

A.2.2 S++(q, ω) and S−−(q, ω)

When we consider transitions between the ground state and excited states we get non-zero

contribution to the S++ and S−− dynamical structure factors

S++(q, ω) =
(
S−−(q, ω)

)†
=

∞∑
n

δ(ω − En(q)) I
++
n (q), (A.5)

where I++
n is corresponding normalized relative intensity of the n-th mode which is given for

leading contribution by

I++
n (q) =

(
C0C

n
1 (q) + 2

∑
l>0

ClC
n
l+1(q) cos(ql/2)

)

×
(
C1C

n
0 (0)δq,0 + 2

∑
l>1

ClC
n
l−1(q) cos(ql/2)

)
. (A.6)

The leading terms of the intensity give

I++
n (q) ≈ C1C

n
0 (0)

(
C0C

n
1 (0) + 2C1C

n
2 (0)

)
δq,0 + 2C0C2C

n
1
2(q) cos q. (A.7)

In the case of h⊥ = 0 only states with even domain length l are in the ground state that gives

zero intensity I++
n = 0 at zero momentum q = 0.

A.3 Relation to system of units SI

In our calculation we use a system of units where the energy and the magnetic fields are ex-

pressed in terms of the coupling constant Jz. For the material parameters of CoCl2 · 2H2O

given in Eq. (3.31) this gives the following relation to units in the International System of Units

(SI):

1. Energy:
Jz = 36.5 K = 3.15 meV = 5.03× 10−12 J, (A.8)

so for energy in terms of the coupling constant we have

ESI = E × 5.03× 10−12 [J]. (A.9)
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2. Magnetic field:

BSI =
BJz

gμB

, (A.10)

where μB = 5.79× 10−5 eV/T = 9.27× 10−24 J/T is the Bohr magneton, g is the spin

g-factor and the magnetic field B is expressed in units of Jz. In case of CoCl2 · 2H2O the

g-factor is

gCoCl2·2H2O = 6.81± 0.10, (A.11)

see Ref. [88]. So we get the relation

BSI = B × 7.98 [T], (A.12)

that gives the following values

hz = 0.4 T, Bz
0 = 1.6 T (A.13)

for the static magnetic field, hz = 0.05Jz, and magnitude of the magnetic field, Bz
0 =

0.2Jz, in the laser beam. In the case of two lasers with the largest magnitude of the

magnetic component, Bz
02 = 0.03Jz, we get the value Bz

02 = 0.24 T.

The magnitude of the electric field in an electromagnetic wave is related to the magnitude

of the magnetic field by E = cB, where c is the speed of light. This gives the following

relation of the electric field to magnetic field amplitude expressed in units of Jz

ESI = B × 2.39× 109 [V/m]. (A.14)

The laser beam electric field is thus E = 4.8 × 108 V/m when the laser beam magnetic

field is Bz
0 = 0.2Jz. In the case of two lasers the largest electric component of the

radiation is E02 = 7.2× 107 V/m for the magnetic field amplitude Bz
02 = 0.03Jz.

It is interesting to estimate the intensity of the laser beam. The optical intensity of an

electromagnetic wave is given by

I =
cB2

0

2μ0

, (A.15)

where μ0 = 4π × 10−7 H/m is the vacuum permeability and c = 3 × 108 m/s is the

speed of light, that gives the intensity of the laser beam I = 3.1 × 1014 W/m2. If

the cross section of the laser beam is A = 1 mm2 then the laser with magnetic field

amplitude Bz
0 = 0.2Jz will produce radiation power of about P = 3 × 108 W. In the

case of two lasers the corresponding optical intensity of the "brightest" laser beam is

I02 = 6.9× 1012 W/m2.

3. Time scale:
tSI = t

�

Jz
, (A.16)

where � = 6.58 × 10−16 eV · s = 1.055 × 10−34 J · s is the reduced Planck constant.

Therefore

tSI = t× 2.09× 10−13 [s]. (A.17)
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So a time unit of �/Jz corresponds to 0.2 ps for the CoCl2 · 2H2O material.

A.3.1 Natural line width

Let us estimate an upper limit of the life time of the laser excited levels. The spontaneous

emission rate [121] for a transition connecting an excited state with energy En to a state with

Em is given by

An,m =
μ0ω

3
n,m|�pμ|2

3π�3c3
, ωn,m =

En − Em

�
, (A.18)

where the vacuum permeability is μ0 = 4π × 10−7 H/m, c is the speed of light and �pμ is the

transition matrix element of the magnetic dipole operator between levels n and m

�pμ = gμB
�Vs, (A.19)

where g is the spin g-factor and �V is the matrix element of the spin operator
∑

i
�Si. So the

emission rate becomes

An,m =
μ0(gμB)

2(En − Em)
3

3π�4c3
|�Vm,n|2, (A.20)

since the transition matrix element is complex in general case the last factor is

|�V |2 = |V x|2 + |V y|2 + |V z|2. (A.21)

The total spontaneous emission rate of an excited state and its life time are given by

An =
n∑

m=0

An,m, τn =
1

An

. (A.22)

Using the material parameters in Eq. (3.31) for a single particle excitation at the energy level

En=12 = 1.6J in CoCl2 · 2H2O we get the life time τn=12 ≈ 20 days.

This is certainly an upper limit as there are other mechanisms of level broadening. For

example due to lattice distortion and impurities in the material that causes decreasing of the life

time τ .

A.4 Integral Expressions

A.4.1 Sum I

We can consider the following sum

I =
1

N

∑

k

ei

k·
r

1 + bγ
k
, (A.23)
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where γ
k can be represented for a quadratic lattice (Z = 4) in the two dimensional case as

γk =
1

2
(cos kxa+ cos kya), ki ∈

[
−π

a
,
π

a

]
, (A.24)

where a is a lattice constant. We assume that a = 1 for simplification of further calculation.

We apply the usual transformation rule of a sum to an integral

1

N

∑

k

=
1

(2π)n

∫
d�k, (A.25)

where n is the dimension of a lattice (n = 2 in the case of a two-dimensional system). Therefore

the sum in Eq. (A.23) can be written in the following way

I =
1

4π2

∫
ei

k·
r

1 + bγ
k
d�k (A.26)

The leading contribution to the integral is defined by maximal value of its integrand. In the

case of 0 ≤ b ≤ 1, that is valid for b = cos 2θ in our model, denominator in the integrand in

Eq. (A.23) is minimized for the �k coinciding with the antiferromagnetic wave vector �Q = (π, π)

where the parameter γ
k can be approximated as

γ
k ≈ −1 +
�k2

4
+ . . . (A.27)

at �k → �Q+ �k. Therefore the leading contribution in the integral is given by

I ≈ ei

Q·
r 1

4π2

∫
ei

k·
r

1− b+ b�k2/4
d�k = (−1)RI ′, (A.28)

where the distance R = x + y in units of the lattice spacing describes the spatial alternating

pattern while the rest term I ′ gives the magnitude

I ′ =
1

4π2

∫
ei

k·
r

1− b+ b
4
�k2

d�k =
1

4π2

∫ π

−π

dkx

∫ π

−π

dky
ei(xkx+yky)

1− b+ b
4
(k2

x + k2
y)
. (A.29)

We can see that the domain of integration is a square: kx ∈ [−π, π] and ky ∈ [−π, π]. Since

the major contribution in Eq. (A.29) is given by the integrand at the vanishing �k, we can extend

the integration domain to a circle with large radius that allows to simplify the integral in the

polar coordinate system parameterized by azimuth angle φ and radial coordinate k. Applying

the transformations

�k2 = k2, �k ·�r = cosφ, (A.30)

d�k = k dk dφ, (A.31)
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the integral in Eq. (A.29) becomes

I ′ =
1

4π2

∫ ∞

0

dk

∫ 2π

0

dφ
k

A+Bk2
cos(kr cosφ), (A.32)

where we expanded the integration domain to all real plane, and the coefficients A and B are

A = 1− b, B = b/4. (A.33)

Using the integral representation of the Bessel function of integer order [65]

J0(x) =
1

π

∫ π

0

cos(x cos t) dt, (A.34)

we can perform integration over the azimuthal angle φ in Eq. (A.32) that gives

I ′ =
1

2π

∫ ∞

0

k J0(kr)

A+Bk2
dk, (A.35)

where J0(x) is the Bessel function of the zeroth order. Introducing new integration variable

t = k2, dt = 2k dk (A.36)

and using table integral of cylinder functions [107] #6.532.4 we get

I ′ =
1

4π

∫ ∞

0

J0
(
r
√
t
)

A+Bk2
dt =

1

2πB
K0

(
r
√

A/B
)
, (A.37)

where K0(x) is the zeroth-order modified (hyperbolic) Bessel function of the second kind [175],

which main properties are given in Appendix B. Putting the explicit form of the coefficients A

and B in Eq. (A.33) the integral I ′ can be written down as

I ′ =
2

πb
K0

(
2r
√

1/b− 1
)
, (A.38)

Therefore the sum in Eq. (A.23) becomes finally

I =
1

N

∑

k

ei

k·
r

1 + bγ
k
≈ (−1)R

2

πb
K0

(
2r

√
1− b

b

)
, (A.39)

where the distance R = x + y describes the alternating pattern, and K0 is the zeroth-order

modified Bessel function of the second kind. We can introduce the characteristic decay scale d

and rewrite the argument of the modified Bessel function as K0(r/d), that gives

d =
1

2

√
b

1− b
=

√
cos 2θ

8 sin2 θ
(A.40)

for the used parameter b = cos 2θ.
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A.4.2 Sum I0

We can consider now the sum

I0 =
1

N

∑

k

1

1 + bγ
k
, (A.41)

which corresponds to the particular case of the sum I given by Eq. (A.23) at r = 0. Transform-

ing the sum into the integral we get

I0 =
1

4π2

∫
d�k

1 + bγ
k
=

1

4π2

∫ π

−π

dkx

∫ π

−π

dky(
1 + b

2
cos ky

)
+ b

2
cos kx

. (A.42)

The last integral corresponds to a tabulated integral [107, 182] which can be found as

∫
dx

ã+ b̃ cos x
=

2√
ã2 − b̃2

arctan

(
(ã− b̃) tan x

2√
ã2 − b̃2

)
, for ã2 > b̃2, (A.43)

where the variables in our case are

ã = 1 +
b

2
cos ky, b̃ =

b

2
, (A.44)

which give that the inequality ã2 > b̃2 is identically true. The definite integral in Eq. (A.43)

over its interval [−π, π] has the value∫ π

−π

dkx

ã+ b̃ cos kx
=

2π√
ã2 − b̃2

. (A.45)

That enables to reduce the double integral in Eq. (A.42) to the single integral

I0 =
1

2π

∫ π

−π

dky√(
1 + b

2
cos ky

)2 − (
b
2

)2 (A.46)

=
1

2π

1√
1− b2

4

∫ π

−π

dky√
1 + ã cos ky

√
1 + b̃ cos ky

,

where the variables ã and b̃ were redefined

ã =
b

2− b
, b̃ =

b

2 + b
. (A.47)

The integral in Eq. (A.46) can be written in the following form

I0 =
1

π

1√
1− b2

4

∫ 1

−1

dy√
1− y2

√
1 + ãy

√
1 + b̃y

(A.48)

by using integration variable

y = cos ky, dy = − sin ky dky. (A.49)
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We can introduce new variables for further simplification of the integral

k =

√
1 + ã

1− ã

√
1− b̃

1 + b̃
=

1√
1− b2

, (A.50)

z =

√
ã− 1

ã+ 1

√
1− y

1 + y
= i

√
1− b

√
1− y

1 + y
, (A.51)

where z appears as a complex variable: z ∈ C and z ∈ (−i∞, 0]. It enables to transform the

integral in Eq. (A.48) to the form

∫ +1

−1

dy√
1− y2

√
1 + ãy

√
1 + b̃y

= −2i

√
1− b2/4

1− b2

∫ i∞

0

dz√
1− z2

√
1− k2z2

. (A.52)

On the other hand an incomplete elliptic integral of the first kind F(x; k) in Jacobi’s form [65,

182] is defined as

F(x; k) =

∫ x

0

dt√
(1− t2)(1− k2t2)

, (A.53)

where x is amplitude and k is elliptic modulus or eccentricity [65]. Therefore the integral in

Eq. (A.48) can be written

I0 = − 2i

π
√
1− b2

lim
z→∞

F

(
iz;

1√
1− b2

)
. (A.54)

Using properties of this special function F(x; k) [65] we can express its limit value for the

imaginary amplitude as

lim
z→∞

F(iz; k) = iK
(√

1− k2
)
, (A.55)

where special function K(x) is complete elliptic integral of the first kind which is defined as

K(x) =

∫ 1

0

dt√
(1− t2)(1− x2t2)

. (A.56)

That gives following expression of the integral in Eq. (A.54) as a special function of complex

argument

I0 =
2

π
√
1− b2

K

(
i

b√
1− b2

)
. (A.57)

Using transformation properties of the complete elliptic integral of the first kind [183]

K(x) =
2

1 +
√
1− x2

K

(
1−√

1− x2

1 +
√
1− x2

)
, (A.58)

we get the final analytical expression of the integral

I0 =
1

N

∑

k

1

1 + bγ
k
=

4

π
(
1 +

√
1− b2

) K(
1−√

1− b2

1 +
√
1− b2

)
. (A.59)
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Figure A.2: Complete elliptic integral of the first kind K
(
1−x
1+x

)
as a function of its argument for

x =
√
1− b2 and x ∈ [0, 1].

The special function K(x) is the complete elliptic integral of the first kind which is defined

in [107] as

K(x) =

∫ π/2

0

dθ√
1− x2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− x2t2)

(A.60)

and can be expressed as the infinite power series, see [65]

K(x) =
π

2

⎛
⎝1 +

∞∑
n=1

[
n∏

j=1

2j − 1

2j

]2

xn

⎞
⎠ =

π

2

(
1 +

∞∑
n=1

[
(2n)!

22nn!2

]2
x2n

)
. (A.61)

The series representation gives the special value K(0) = π/2.

In Figure A.2 we plot the complete elliptic integral of the first kind K
(
1−x
1+x

)
as a function

of its argument x =
√
1− b2 which varies in the domain x ∈ [0, 1] and corresponds to the bulk

parameter x = sin 2θ in our model.

A.4.3 Additional Sums

Using the integral representation in Eq. (A.25) we can calculate other similar sums. Consider

sum which can be represented as integral

I1 =
1

N

∑

k

γ
k
1 + bγ
k

=
1

4π2

∫
γ
k

1 + bγ
k
d�k (A.62)

and can be simplified in the following way

∫
γ
k

1 + bγ
k
d�k =

1

b

∫
(1 + bγ
k)− 1

1 + bγ
k
d�k =

1

b

(∫
d�k −

∫
d�k

1 + bγ
k

)
. (A.63)
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The first integral is equal to volume of integration domain that in our case gives 4π. The second

term corresponds to the integral I0 given in Eq. (A.59). Therefore we get the final expression

I1 =
1

N

∑

k

γ
k
1 + bγ
k

=
1

b
(1− I0) (A.64)

=
1

b

[
1− 4

π
(
1 +

√
1− b2

) K(
1−√

1− b2

1 +
√
1− b2

)]
.

The other sums can be calculated by the same way

I2 =
1

N

∑

k

γ2

k

1 + bγ
k
=

1

b2
(I0 − 1) (A.65)

=
1

b2

[
4

π
(
1 +

√
1− b2

) K(
1−√

1− b2

1 +
√
1− b2

)
− 1

]
.

I3 =
1

N

∑

k

γ3

k

1 + bγ
k
=

1

b3

(
I0 − 1− b2

4

)
(A.66)

=
1

b3

[
4

π
(
1 +

√
1− b2

) K(
1−√

1− b2

1 +
√
1− b2

)
− 1− b2

4

]
.

In our case the parameter b is

b = cos 2θ,
√
1− b2 = sin 2θ, (A.67)

that gives the following value of the I2 integral

I2(cos θ) =
1

cos2 2θ

[
4

π(1 + sin 2θ)
K

(
1− sin 2θ

1 + sin 2θ

)
− 1

]
. (A.68)

A.4.4 Integrals in the 3D case

We will consider system with a cubic lattice Z = 6 with the lattice spacing a = 1. In this case

the γ-factor becomes

γ
k =
1

Z

∑
j

ei

k·
rj =

2

Z

∑
i=x,y,z

cos kiri =
cos kxrx + cos kzrz + cos kzrz

3
. (A.69)

Applying the integral transformation to the sum in Eq. (A.23) we get

I(r) =
1

N

∑

k

ei

k·
r

1 + bγ
k
=

1

4π2

∫
ei

k·
r

1 + bγ
k
d�k, (A.70)

where �k is a 3-vector defined in the cube ki=x,y,z ∈ [−π, π] and the parameter b = cos 2θ in our

model. The leading contribution to the integral is defined by maximal value of the integrand,
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where the denominator is minimal for the �k coinciding with the antiferromagnetic wave vector
�Q = (π, π, π). The parameter γ
k can be approximated at �k → �Q+ �k as

γ
k ≈ −1 +
�k2

6
+ . . . (A.71)

Therefore the leading contribution in the integral in Eq. (A.70) is given by

I ≈ ei

Q
r 1

(2π)3

∫
ei

k
r

1− b+ b�k2/6
d�k = (−1)RI ′, (A.72)

where the distance R = x + y + z describes the spatial alternating pattern and the integral I ′

corresponds to the magnitude

I ′ =
1

(2π)3

∫
ei

k·
r

1− b+ b
6
�k2

d�k. (A.73)

The leading contribution in this integral comes from the integrand at the vanishing �k, thus we

can extend the cubic domain of integration to a sphere with large radius. This procedure allows

to simplify the integral in the spherical coordinate system parameterized by angles θ and φ, and

radial coordinate k, which can be chosen so that the �r-vector is parallel to the z-axis. In this

case we get the following transformation relations

�k2 = k2, �k ·�r = cos θ, (A.74)

d�k = k2 sin θ dk dθ dφ. (A.75)

Extending the integration domain to all space the integral in Eq. (A.73) becomes

I ′ =
1

(2π)3

∫ ∞

0

dk

∫ π

0

dθ

∫ 2π

0

dφ
k2

A+Bk2
cos(kr cos θ) sin θ, (A.76)

where the coefficients A and B are

A = 1− b, B =
b

6
. (A.77)

Since the integrand in Eq. (A.76) does not depend on φ, the integration over this azimuthal angle

results in the factor 2π only. Using the standard substitution for the trigonometric integrals

t = cos θ, dt = − sin θ dθ, (A.78)

we can perform the integration over the polar angle∫ π

0

cos(kr cos θ) sin θ dθ = −
∫ 1

−1

cos(krt) dt = 2
sin(kr)

kr
, (A.79)
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that gives

I ′ =
1

2π2

∫ ∞

0

k sin(kr)

A+ Bk2
dk. (A.80)

Using the table integral [107] ∫ ∞

0

x sin(ax)

1 + bx2
dx =

π

2b
e−a/

√
b, (A.81)

the integral I ′ becomes

I ′ =
1

4π

e−r
√

A/B

Br
=

3

2π

e−r
√

6(1/b−1)

br
(A.82)

by substituting the explicit form of the coefficients A and B given in Eq. (A.77). Therefore in

the case of the cubic lattice the sum in Eq. (A.70) is

I =
1

N

∑

k

ei

k·
r

1 + bγ
k
≈ (−1)R

3

2πb

e−r
√

6 1−b
b

r
, (A.83)

where the distance R = x + y + z describes the alternating pattern. The argument of the

exponential function can be expressed in terms of the characteristic decay scale d which is

given as

d =

√
b

6(b− 1)
=

√
cos 2θ

12 sin2 θ
(A.84)

for the used parameter b = cos 2θ.

Furthermore we can also consider the following sum

I1(r) =
1

N

∑

k

γ
k
1 + bγ
k

ei

k·
r =

1

b

⎛
⎝ 1

N

∑

k

ei

k·
r − 1

N

∑

k

ei

k·
r

1 + bγ
k

⎞
⎠ , (A.85)

where the last term corresponds to the calculated integral I(r) in Eq. (A.83), while the first term

becomes
1

N

∑

k

ei

k·
r = δr,0. (A.86)

Therefore the integral in Eq. (A.85) can be expressed as

I1(r) =
1

N

∑

k

γ
k
1 + bγ
k

ei

k·
r =

1

b

(
δr,0 − I(r)

)
. (A.87)

It is necessary to note that the analytical result in Eq. (A.83) gives a very good agreement

with results of numerical integration only for large distances r. However, for small distance

this is a bit rough analytical approximation because of weak convergence of the integrand in the

case of 3D system. In comparison with the numerical calculations of the integral for the typical

bulk parameters, S = 1/2 and B = 0.4J , the approximated analytical expression in Eq. (A.83)

gives a ratio error ε about 10% for the two nearby sites around the impurity and about 1.5–2%

for larger distances r.
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If we compare the expressions in Eqs. (A.40) and (A.84) for the characteristic decay scale

obtained in the case of the square and cubic lattices, we can see that in general case the decay

scale d can be written down as

d =

√
b

Z(b− 1)
. (A.88)

Thus this is very sensitive to the exact value of the coefficient b which is prefactor of γ
k in the

summand denominator in Eq. (A.23).
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Appendix B

Properties of Bessel function

B.1 Asymptotic and recurrent relations

For non-negative order α > 0 Bessel function has the following asymptotic forms

Jα(x) ∼ 1

Γ(α + 1)

(x
2

)α

for 0 < x 	 √
α + 1, (B.1)

Jα(x) ∼
√

2

πx
cos

(
x− απ

2
− π

4

)
for x � |α2 − 1/4|, (B.2)

where Γ(x) is the gamma function corresponding to factorial Γ(n) = (n−1)! for positive integer

arguments [107] which grows faster than an exponential function and is given by Stirling’s

formula Γ(n+ 1) ∼ √
2πn (n/e)n for n → ∞.

The asymptotic expression for the Bessel function of large argument is

J−ν(−νξ) ≈ ξ−νe−ν
√

1−ξ2

√−2πν 4
√
1− ξ2

(
1 +

√
1− ξ2

)−ν , (B.3)

which is valid for ν → ∞ and 0 < ξ < 1, see [65].

For integer order of the Bessel function the relation is valid

J−n(x) = (−1)nJn(x). (B.4)

The recurrent relations are given by

Jα−1(x) + Jα+1(x) =
2α

x
Jα(x), (B.5)

Jα−1(x)− Jα+1(x) = 2
dJα
dx

. (B.6)

The integral representation of the Bessel function of integer order [65] is

Jn(x) =
1

2π

∫ π

−π

e−i(nt−x sin t) dt. (B.7)
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The modified (hyperbolic) Bessel function of the second kind (or the Macdonald function)

[175] is defined by

Kα(x) =
π

2

iαJ−α(ix)− i−αJα(ix)

sin(απ)
(B.8)

or using the integral representation we get

Kα(x) =

∫ ∞

0

e−x cosh t cosh(αt) dt. (B.9)

The asymptotic behavior of the modified Bessel function of the second kind for large argu-

ment is given [65] by

Kα(x) ≈
√

π

2x
e−x

(
1 +

μ− 1

8x
+

(μ− 1)(μ− 9)

2!(8x)2
(B.10)

+
(μ− 1)(μ− 9)(μ− 25)

3!(8x)3
+ · · ·+

∏n
j=1 (μ− (2j − 1)2)

n!(8x)n
+ . . .

)
,

where μ = 4α2. This gives for the zeroth order of the modified Bessel function

K0(x) ≈
√

π

2x
e−x

(
1− 1

8x
+

9

2!(8x)2
+ · · ·+ (−1)n

∏n
j=1(2j − 1)2

n!(8x)n
+ . . .

)
, (B.11)

which leading term is

K0(x) ∼
√

π

2x
e−x, for x → ∞. (B.12)

B.2 Sums

Identities of the sums for the Bessel function products [108] are

∞∑
l=l0

J2
l−ν(x) = −x

2
J2
l0−ν(x)

∂

∂ν

[
Jl0−ν−1(x)

Jl0−ν(x)

]
(B.13)

and ∞∑
k=1

Jk+ν(x)Jk+μ(x) =
x

2

J1+ν(x)J1+μ(x)

ν − μ

(
Jν(x)

J1+ν(x)
− Jμ(x)

J1+μ(x)

)
. (B.14)

Neumann’s addition theorem for Bessel functions [65] gives

Jν(x± y) =
∞∑

k=−∞
Jν∓k(x) Jk(y). (B.15)

In the special case of the parameters we get

∞∑
k=−∞

J2
k (x) = 1. (B.16)
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Graf’s addition theorem [65] states that

∞∑
k=−∞

Jk+ν(u) Jk(v) sin(kφ) = Jν(w) sin(νχ), (B.17)

∞∑
k=−∞

Jk+ν(u) Jk(v) cos(kφ) = Jν(w) cos(νχ), (B.18)

where ν is an integer or zero, and the following relations are used

w =
√

u2 + v2 − 2uv cosφ,

w cosχ = u− v cosφ, (B.19)

sinχ = v sinφ.
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Spectral signatures of magnetic Bloch oscillations in one-dimensional easy-axis ferromagnets
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Domain walls in a one-dimensional gapped easy-axis ferromagnet can exhibit Bloch oscillations in an applied
magnetic field. We investigate how exchange couplings modify this behavior within an approximation based
on noninteracting domain-wall bound states. In particular, we obtain analytical results for the spectrum and
the dynamic structure factor, and show where in momentum space to expect equidistant energy levels, the
Wannier-Zeeman ladder, which is the spectral signature of magnetic Bloch oscillations. We compare our results
to previous calculations employing a single domain-wall approximation, and make predictions relevant for the
material CoCl2 · 2H2O.
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I. INTRODUCTION

Quantum mechanics predicts that a particle in a periodic
potential will undergo oscillatory motion in response to
a constant force. This rather counterintuitive phenomenon,
known as Bloch oscillations (BO), was controversial for a
long time, but has now been experimentally demonstrated
in very clean semiconductor superlattices1 and Bose-Einstein
condensates.2

Can Bloch oscillations also exist in magnetic systems?
Kyriakidis and Loss3 discussed this possibility. They consid-
ered a system where the particle is a propagating domain-wall
excitation in an easy-axis one-dimensional ferromagnet, and
concluded that magnetic BO should indeed exist. In particular,
the blue crystalline material CoCl2 · 2H2O was identified as
a promising candidate for observing magnetic BO. Searches
using neutron scattering were performed,4,5 but did not find
evidence of BO.
Another very similar system where one can expect BO

of magnetic domain walls is the Ising model in a magnetic
field having both longitudinal and transversal components.6

Such a model is believed to be realized in CoNb2O6 where
indeed an intriguing frequency spectrum has recently been
observed.7 However, in the region of momentum space
where one expects to find the quantum-mechanical spectral
signature of BO—a spectrum with equidistant energy levels,
the so-called Wannier-Zeeman ladder (WZL)—the spectral
weight in the experiment in Ref. 7 is dominated by a strong
feature attributed to additional couplings in the Hamiltonian,
a “kinetic bound state,” stabilized by next-nearest-neighbor
interactions.7,8 Thus it appears that additional terms in the
Hamiltonian prevent BO in CoNb2O6.
This might also be the case in CoCl2 · 2H2O where the

kinetic bound state will be generated by a nearest-neighbor
spin flip exchange coupling that, indeed, is present in CoCl2 ·
2H2O,4 but neglected in Ref. 3. It is themain goal of this article
to investigate its influence on the WZL in CoCl2 · 2H2O.
Our results show that the WZL is present in certain regions

of momentum space also in the presence of the exchange
couplings. However, the neutron scattering spectral weight of
the WZL in CoCl2 · 2H2O is less than 1% of the total spectral
weight at these momenta, thus making it difficult to observe
the WZL at zero temperature in inelastic neutron scattering
experiments.

At finite temperatures, the neutron scattering signatures
of the WZL are more pronounced. We find that a relatively
high temperature is favorable as the number of domain walls
performing BO are exponentially suppressed with temperature
below the largest ferromagnetic coupling. Unfortunately, a
high temperature leads also to collisions of domain walls
that destroy BO. For CoCl2 · 2H2O, we find that this collision
rate is determined by the velocity of the kinetic bound state
and the distance between domain-walls bound states that
gets smaller as the temperature increases. A way to alleviate
this is to increase the applied magnetic field that leads to a
reduced collision rate. However, a large magnetic field makes
the intrinsic signature of BO weaker as it reduces the BO
amplitude. In searching for a compromise, we find significant
neutron scattering signatures of BO at finite frequencies in
CoCl2 · 2H2O at the temperature T = Jz/2, magnetic field
hz = 0.2Jz, and momentum transfer q = π/2 where the first
Blochmode atωB = 2hz carries about 12%of the total spectral
weight.
While we focus on the material parameters for CoCl2 ·

2H2O, our results are analytic and can, with minor efforts,
also be used for aiding searches for magnetic BO in other
similar materials.

II. HAMILTONIAN

Westartwith the spin-1/2XYZ ferromagneticHamiltonian
for a chain with nearest-neighbor coupling in a magnetic field,

H = −
∑

i

(
JxS

x
i Sx

i+1 + JyS
y

i S
y

i+1 + JzS
z
i S

z
i+1 + hzS

z
i

)
, (1)

which can be written as

H = Hz + Ha + H⊥, (2)

where

Hz = −Jz

∑
i

Sz
i S

z
i+1 − hz

∑
i

Sz
i ,

Ha = −Ja

∑
i

(S+
i S+

i+1 + S−
i S−

i+1),

H⊥ = −J⊥
∑

i

(S+
i S−

i+1 + S−
i S+

i+1)
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FIG. 1. A spin state with a single domain wall.

with Ja = (Jx − Jy)/4 and J⊥ = (Jx + Jy)/4 and S±
i = Sx

i ±
iS

y

i are the usual raising and lowering operators. We will
assume that Jz is by far the largest coupling thus the system has
an easy axis and its behavior is Ising like. The ferromagnetic
coupling causes neighboring spins to align their z components,
and with a large Jz, the excitation energy of a state is mainly
dependent on the number of antialigned spin neighbors, or do-
main walls. Each domain wall costs an energy of Jz/2 (our Jz

is twice that of Ref. 9). Thus the ground state is approximately
the ferromagnetic state where all spins are aligned along the
z axis. In the absence of a magnetic field and other couplings,
the first excited state has a single domain wall, see Fig. 1. This
domain wall can be placed between any of the spins, implying
a macroscopic degeneracy. The Ha term lifts this degeneracy
resulting in a band dispersion describing the dynamics of
a single domain wall. This mode was first predicted by
Villain10 and was subsequently observed in neutron scattering
experiments.11,12

Kyriakidis and Loss treated a single domain wall in the
presence of a finite magnetic field and predicted BO.3 The
BO are caused by Ha together with the magnetic field that
causes the domain wall to oscillate. While the single domain
wall approximation is presumably good on short time scales
where collisions between domain walls can be ignored, it will
break down at longer time scales. In a finite magnetic field, this
time scale is likely to be very short as a domain wall and an
antidomain wall are closely bound together. The energy cost
of a domain of spins antialigned with the field is proportional
to the magnetic field times the number of spins in the domain.
Thus the magnetic field induces a linear potential between a
domain wall and an antidomain wall, which confines them in
a bound state. Therefore the low-energy excitations will not
be isolated single domain walls, but rather bound states of
domain-wall/antidomain-wall pairs that define the boundaries
of a spin cluster of overturned spins, see Fig. 2. The far-infrared
light absorption experiments on the quasi-one-dimensional
material CoCl2 · 2H2O in amagnetic field have been explained
in terms of such spin cluster excitations.9,13 In the bound state
picture, Ha and the magnetic field cause the bound state to
shrink and expand. This is what gives rise to the BO and
the WZL.
Going beyond the single domain-wall approximation also

allows the inclusion of the spin-flip exchange Hamiltonian
H⊥. The action of H⊥ on the single domain-wall state shown
in Fig. 1 produces a high-energy state having three domain
walls. In contrast whenH⊥ acts on theminimal bound state—a
single overturned spin, see Fig. 2 right—it can move the whole
bound state without introducing extra domain walls, thus H⊥

FIG. 2. Two bound states.

acts directly in the low-energy Hilbert space of a single bound
state. This minimal bound state is the analog to the kinetic
bound state in CoNb2O6.
In zero magnetic field, the predictions for the neu-

tron scattering dynamic structure factor were shown to
be independent14 of whether one considered noninteracting
domain walls10 or bound states.15 However, as argued above,
this does not hold in a finite magnetic field, at least not
on longer time scales. In this paper, we will treat the
single bound state exactly in the low-energy subspace to two
domain walls and assume that thermally the system can be
well approximated by a noninteracting gas of such bound
states.

III. QUANTUM MECHANICS OF A SINGLE BOUND STATE

Let us represent a bound state of a domain wall and an
antidomain wall as the state

|j,l〉 =
∣∣∣∣ . . . ↑↑

j

↓↓ . . . ↓︸ ︷︷ ︸
l

↑↑ . . .

〉
, (3)

where the index j = 1,2, . . . ,N gives the starting position of
the down-spin cluster and l = 1, . . . ,N describes its length.N
is the total number of spins in the chain, which we will take to
be amacroscopic number.Wewill extend this representation of
states to l = 0 in order to also include the ferromagnetic state
|j,0〉, which is independent of j . The action of theHamiltonian
on such a state can be written as

H |j,l〉 = (1− δl,0){Jz|j,l〉 + hzl|j,l〉 − Ja[|j,l + 2〉
+ |j − 2,l + 2〉 + (|j,l − 2〉 + |j + 2,l − 2〉)
× (1− δl,2)(1− δl,1)]} − Ja(|j,2〉δl,0 + |j,0〉δl,2)

− J⊥(|j + 1,1〉 + |j − 1,1〉)δl,1, (4)

where we have neglected terms that result in more than two
domain walls.
We consider a system with periodic boundary conditions.

This ensures translational invariance and the total momentum
of the bound state will be a good quantum number. It is
thus convenient to express the Hamiltonian in the momentum
basis |p,l〉 = e−ipl/2∑

j e−ipj |j,l〉, where p denotes the total
momentum of the bound state (we use units where the
lattice spacing is one). Note that the ferromagnetic state
necessarily has zero momentum |p = 0,0〉. In the momen-
tum basis, the Hamiltonian is diagonal in p and acts as
follows:

H |p,l〉 = (1− δl,0){[Jz + hzl − 2J⊥ cosp δl,1]|p,l〉
− 2Ja cosp [|p,l + 2〉 + (1− δl,1)(1− δl,2)

× |p,l − 2〉]} − Ja(|p,2〉δl,0 + |p,0〉δl,2)δp,0. (5)

BecauseHa flips two spins, the state sectors with even and odd
values of l are decoupled. Note that H⊥ only affects the odd
l sector. This follows from the fact that H⊥ is only nonzero
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Ha H⊥
, +2 0

, 0 , +2
, 0 , 0

FIG. 3. Examples of the actions of Ha on particular states from
the 0 and 2 domain-wall sectors. Only cases that yield the minimal
amount of increase in domain walls are shown. Operating with Ha

are shown on the left, while the right-hand side shows the effects of
operating with H⊥. The increase in the number of domain walls is
indicated to the right of each process. Note that Ha has the ability
to move domain walls without increasing their number when acting
on a state with one or more domain walls (left side, the two lowest
processes), while H⊥ lacks this ability with the exception that it can
move a single overturned spin without creating new domain walls
(right side, the lowest process).

when it acts on the state with a single down spin, the action on
all other states produces more domain walls, see Fig. 3.
In order to solve the eigenvalue problem, we first

parametrize the energy eigenvalues as

En(p) = Jz + hzμn, (6)

where p is the total momentum, n is a positive integer, which
labels the internal excitation mode of the bound state, and
μn depends on p and coupling constants of the Hamiltonian.
Because the excitation spectrum separates into distinct sectors,
we will reserve the odd(even) n values for labeling the energy
levels in the l odd(even) sector. The energy of the nth mode is
found by determining the dimensionless quantity μn from the
following equations:

J−(μn+1)/2(x)
J1−(μn+1)/2(x)

= z, n ∈ odd, (7)

J−μn/2(x)

J1−μn/2(x)
= 0, n ∈ even, (8)

with Jν(x) being the Bessel function of the first kind of order
ν. The upper(lower) equation is obtained by considering the
odd(even) l sector. Here, we have introduced the new variables

x = 2Ja cosp

hz

, z = J⊥
Ja

. (9)

The even sector equation (8) is only valid forp �= 0. Thep = 0
case will be considered separately below.
Both equations are of the form

J−ν(x)

J1−ν(x)
= γ, (10)

where γ is a constant. Analytical solutions of this equation
has been found in some limits.16 To get an intuitive picture
of the solutions of Eq. (10), we have plotted the left-hand
side of the equation for a particular value of x in Fig. 4
as the black solid curve. For γ → 0, relevant for the even
sector and the small z limit of the odd sector, the solutions
are gotten by the zero crossings of the curve. We see that
they occur almost exactly at positive integer values of ν,
except for the lowest value which is somewhat below 1. In
Fig. 5, we show these values of ν as a function of x for
γ = 0. To a very good approximation, ν is a positive integer

FIG. 4. (Color online) The behavior of the ratio of Bessel
functions J−ν(x = 1)/J1−ν(x = 1) as a function of ν is shown as the
black solid curve. The blue dot-dashed line marks the value γ = 2,
while the red dashed curve shows the right-hand side of Eq. (14) for
y = 3. The red circle indicates the crossing point that gives the lowest
energy solution ν0 = μ0/2 of the p = 0 even sector.

as long as ν � 1+ |x|. For the even l sector where μ = 2ν,
this implies that the solutions μn, n ∈ {2,4,6, . . .} are to a
good approximation even integersμn = nwhen n � 2|x| + 2.
For lower values of n, μn is generally lower and depends
on x. For small γ , relevant for the odd l sector where μ =
2ν − 1when z is small, the solutions are very similar to the case
γ = 0. This means that the solutions μn, n ∈ {1,3,5, . . .} are
odd integers μn = n for n � 2|x| + 1. The qualitative effects
on the solutions ν of changing γ for a fixed value of x can
be inferred from Fig. 4. While the higher-energy levels do
not change substantially for this value of x, the lowest-energy
level decreases with increasing γ . In Fig. 6, we have plotted
the solutions of Eq. (10) as functions of x for a fixed value
of γ = 2. For positive x, the lowest energy state decreases
with increasing x. This decrease becomes linear at large x

and its slope can be found by writing the Bessel function

FIG. 5. (Color online) Solutions ν of Eq. (10) as a function of x

for γ = 0. The red dashed line is the line ν = 1+ |x|.
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FIG. 6. (Color online) Solutions ν of Eq. (10) as a function of x

for γ = 2. The dot-dashed blue line has slope (γ + γ −1)/2 and the
red dashed line is the line ν = 1+ x for positive x.

ratio J−ν(x)/J1−ν(x) = −{ν/x + d
dx
ln[J−ν(x)]}−1 and using

the asymptotic expression17

J−ν(−νθ ) ∼ θ−νe−ν
√
1−θ2

√−2πν(1− θ2)1/4(1+ √
1− θ2)−ν

(11)

valid for ν → ∞ and 0 < θ < 1. We find that the lowest-
energy state solution decreases as ν ∼ −(γ + γ −1)x/2 for
x → ∞ and γ > 1.A linewith this slope is overlaid on the plot
in Fig. 6 for γ = 2. The large x limit corresponds to the limit of
vanishing magnetic field. Using the asymptotic result and the
definitions of γ and x, we get for the lowest excited state in the
limit of vanishing hz, E = Jz + hz(2ν − 1) ∼ Jz − 2J⊥[1+
(Ja/J⊥)2] cosp corresponding to a spin wave excitation. This
result can also be obtained by second-order perturbation theory
in the limit of vanishing magnetic field when Jz � J⊥ � Ja .
Extrapolating the spin-wave line to negative x, we see that

it coincides smooth steplike behaviors of the energy levels.
These steps become sharper and higher as γ is increased and
become a step discontinuity of unit one for γ → ∞. This
feature restricts the existence of the WZL for odd n to n >

(γ + γ −1)|x| + 1 for x < 0 and γ > 1.
From these considerations, it follows that a momentum-

independent WZL

En = Jz + hzn, (12)

with integer n, is restricted to high energies where

n > 1+ 2Ja

hz

×
{
2, J⊥ � Ja,

J⊥/Ja + Ja/J⊥, J⊥ > Ja.
(13)

For p = 0, the sector with domain walls of even l will also
couple to the ferromagnetic state. Thus, at p = 0, the equation
for the energy levels in the even sector is different from the
one at p �= 0, Eq. (8). For p = 0, we get

J−μn/2(x0)

J1−μn/2(x0)
= − x0

4(y + μn)
, (14)

where y = Jz/hz and x0 = 2Ja/hz. A similar equation in-
cluding also the effects of an optical phonon at p = 0 was
obtained in Ref. 13. The equation for p = 0 has an additional
negative solutionμ0 < 0well separated from the other positive
solutions. This solution arises from the singular behavior of
the left-hand side in the vicinity of μ = −y. Figure 4 shows
a graphical solution of Eq. (14) with μ = 2ν for fixed values
x0 = 1 and y = 3. Because of the rapid variations of the ratio
of Bessel functions on the left-hand side around positive even
integer values of μ, we see that a relatively small finite value
of the right-hand side changes only slightly the even integer
solutions found for p �= 0 in the even sector. However, at low
energies, there is a crucial difference. The right-hand side has
a singularity at μ = 2ν = −y. The left-hand side is positive
for negativeμ and increases asμ → −∞while the right-hand
side is negative for μ > y before it changes sign as μ passes
y. Thus somewhere below this singularity a negative solution
μ0 will occur. This means that the ground-state energy will be
negative as J + hzμ = 0 for μ = −y. For Ja  Jz, we find
for the lowest-energy solution approximately

E0 = Jz + hzμ0 ≈ −Jz + 2hz

6

[
1−

√
1− 12J 2a

(Jz + 2hz)2

]

≈ − J 2a

Jz + 2hz

(15)

consistent with what is expected from second-order perturba-
tion theory.
The energy eigenfunctions are given by |n,p〉 =∑∞
l=0 ψn,l(p)|p,l〉 with coefficients

ψn,l(p) ∝
[
1− (−1)l

2

]
J(l−μn)/2(x) (16)

valid for n odd and

ψn,l(p) ∝
[
1+ (−1)l

2

] [
J(l−μn)/2(x)(1− δl,0)

− Ja

En(p = 0)
J(2−μn)/2(x)δp,0δl,0

]
(17)

for n even. Note that only the odd(even) l coefficients are
nonzero for odd(even) n. For small x, the Bessel function
is maximal when l = μn ≈ n. Qualitatively, this implies that
for large magnetic fields, the nth mode of the bound state
is dominated by the state having n overturned spins. This
domination is total at p = π/2, 3π/2 where x = 0.
These energy wave functions are orthogonal when the

variable μn obeys one of the Eqs. (7), (8), or (14) due to
the Bessel function property18

∞∑
k=1

Jk+ν(x)Jk+μ(x)

= x

2

J1+ν(x)J1+μ(x)

ν − μ

[
Jν(x)

J1+ν(x)
− Jμ(x)

J1+μ(x)

]
. (18)
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IV. DYNAMIC STRUCTURE FACTOR

Having the eigenfunctions |n,p〉 and energies En(p), we
can calculate the dynamic structure factor, which at zero
temperature, is

Sαα′
(q,ω) =

∑
n

〈0,0|Sα
−q |n,q〉〈n,q|Sα′

q |0,0〉

× δ{ω − [En(q)− E0(0)]}, (19)

where |0,0〉 is the ground state and we have restricted the
intermediate states to the states |n,q〉 in the zero and two
domain-wall sectors that restricts the energy transfer ω < 2Jz.
In the following, we will consider Sxx , Syy , and Szz separately.
For Sxx and Syy , it is convenient to consider the raising

and lowering operators S± = Sx ± iSy . Expressed in terms of
these the transverse dynamic structure factors, Sxx and Syy are

Sxx = 1
4 [(S

+− + S−+)+ (S−− + S++)],

Syy = 1
4 [(S

+− + S−+)− (S−− + S++)].

The ground state has zero momentum and can for Ja  Jz be
approximated by the ferromagnetic state |FM〉where all spins
point along the magnetic field. The calculation is simplified
greatly by this approximation as then the structure factors S−−,
S++, and S+− are zero, which follows from S+|FM〉 = 0
implying that Sxx = Syy = 1

4S
+−. The action of S− on the

ferromagnetic state creates a state with one down spin, thus it
belongs to the odd sector, and will have rather high energy, of
the order Jz + hz. Using the eigenfunctions, we find

S+−(q,ω) =
∞∑

n=1
δ[ω − En(q)] In(q),

where In is normalized relative intensity of the nth mode,

In(q) = |ψn,l=1(q)|2∑
l |ψn,l(q)|2 . (20)

Using the expression for the wave functions and the following
Bessel function identity

∞∑
l=l0

J 2l−ν(x) = −x

2
J 2l0−ν(x)

∂

∂ν

[
Jl0−ν−1(x)
Jl0−ν(x)

]
(21)

with l0 an integer, the intensity can be expressed in the form

In(q) =
{
x

∂

∂μ

[
Jμ/2(x)

Jμ/2+1(x)

]}−1 ∣∣∣∣
μ=−μn

, (22)

where μn is the solution of Eq. (7) for the odd domain
length l.
For larger values of Ja/Jz, it is no longer adequate to

approximate the ground state with the ferromagnetic state.
Taking into account the exact nature of the ground state
gives additional contributions to S+− and the corresponding
intensity becomes

I+−
n (q) =

[
C0
0C

n
1 (q)+ 2

∑
l>0

C0
l C

n
l+1(q) cos(ql/2)

]2
, (23)

where we have used the following notation for the normalized
wave functions:

Cn
l (q) = ψn,l(q)√∑

l |ψn,l(q)|2
. (24)

We will omit the momentum label for the ground state C0
l as

it has zero momentum. The leading terms of the intensity give
the contribution

I+−
n (q) ≈ (

C0
0

)2
In(q)+ 4C0

0C
0
2C

n
1 (q)C

n
3 (q) cos(q). (25)

In this case, we also get nonzero contributions to S−+ and to
S−−,S++ which cause Sxx to be different from Syy . In the
same notation as above, their contributions are

I−+
n (q) =

∣∣∣∣∣C0
1C

n
0 (0)δq,0 + 2e−iq/2

∑
l>1

C0
l C

n
l−1(q) cos(ql/2)

∣∣∣∣∣
2

,

I++
n (q) =

[
C0
0C

n
1 (q)+ 2

∑
l>0

C0
l C

n
l+1(q) cos(ql/2)

]

×
[
C0
1C

n
0 (0)δq,0 + 2

∑
l>1

C0
l C

n
l−1(q) cos(ql/2)

]
,

I−−
n (q) = [I++

n (q)]∗,

where the ∗means complex conjugation. Approximating these
with their leading terms, we get

I−+
n (q) ≈ [

C0
1C

n
0 (0)δq,0 + 2C0

2C
n
1 (q) cos q

]2
, (26)

I++
n (q) ≈ C0

1C
n
0 (0)

[
C0
0C

n
1 (0)+ 2C0

1C
n
2 (0)

]
δq,0

+ 2C0
0C

0
2

[
Cn
1 (q)

]2
cos q. (27)

Applying the operator Sz to the ground state does not
change the parity of l, thus all contributing intermediate states
have even n. It is convenient to split off the ground-state
contribution as it has zero momentum and frequency, it
represents the squared magnetization, and write

Szz(q,ω) = 1

4

[
N − 2

∑
l

l
(
C0

l

)2]2
δq,0δ(ω)

+
∑

n

δ[ω − En(q)] I
zz
n (q), (28)

where

I zz
n (q) =

[∑N
l=2 C0

l C
n
l (q) sin(ql/2)

]2
sin2(q/2)

. (29)

The leading contribution of the sum is

I zz
n (q) = 4E02

J 2a

|ψn,l=2(q)|2∑
l |ψn,l(q)|2 cos

2(q/2)

≈ 4J 2a
(Jz + 2hz)2

cos2(q/2) I evn (q), (30)

where the introduced intensity I evn corresponds to contribution
from the states with even n and can be written as

I evn (q) =
{
x

∂

∂μ

[
Jμ/2(x)

Jμ/2+1(x)

]}−1 ∣∣∣∣
μ=−μn

, (31)
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where μn is the solution of the Eq. (8) for the even domain
length l.

V. FINITE TEMPERATURE

At finite temperatures, the dynamic structure factor will
in addition to transitions out of the ground state also get
contributions that depend solely on the excited states. In
particular, there will be contributions at low frequencies
corresponding to the spacing between energy levels. It was
these temperature-induced contributions that were the focus
of the neutron scattering experiments in Refs. 4 and 5. We will
consider such temperature-induced contributions at relatively
low frequencies ω < Jz.
At finite temperature, entropic factors make it favorable

to break up a spin domain, thus inducing domain walls. The
magnetic field confines pairs of domain walls leading to a
picture of the finite-temperature state as consisting of several
bound states; short spin-down domains, interspaced by longer
spin-up domains. To handle these thermal states, we will
use the exact quantum-mechanical treatment of an isolated
bound state and neglect the interaction between different bound
states. We expect the quality of this noninteracting bound
state approximation to be good on time scales shorter than
the typical collision time between bound states. This collision
time can be estimated by the mean distance between the bound
states, which is the typical size of a spin-up domain, divided
by the velocity of a bound state. The typical length of a spin-up
domain ξ↑ in units of the lattice spacing can be estimated from
the emptiness formation probability for the Ising model in a
magnetic field19 and gives

ξ↑ = 1

1− α↑
, (32)

where

α↑ = eβhz/2

cosh(βhz/2)+
√
sinh2(βhz/2)+ e−βJz

, (33)

where β is the inverse temperature. Using this and the
maximum velocity of a spin-down bound state vmax, we expect
the independent bound state approximation to be good for
frequencies

ω >
2πvmax

ξ↑
. (34)

The bound-state velocity vn(p) = ∂En(p)
∂p

is largest for low-
lying energy modes. For higher-energy modes, the dispersion
becomes flatter and their velocity approaches zero. For
the n = 1 mode, the energy varies as E1(p) ≈ −2J⊥[1+
(Ja/J⊥)2] cosp for J⊥ > Ja at lowmomenta p, which implies
a maximum velocity v1 = 2J⊥[1+ (Ja/J⊥)2]. For J⊥ < Ja ,
the n = 1 mode behaves almost as the n = 2 mode, which
for 2Ja/hz < 1, has a maximum velocity v2 ≈ 2J 2a /hz that
increases for smaller fields and approaches v2 ∼ 4Ja . Thus
the maximum velocity of a bound state is vmax = max(v1,v2).
The above validity criterion (34) takes into account the

center of mass motion of the bound states. In addition, the
quantum-mechanical uncertainty in the size of a bound state
can also ruin the noninteracting bound state approximation.
From the wave functions, we estimate the size uncertainty to

be ±2Ja/hz, which implies that adjacent bound states have
nonoverlapping boundaries when

4Ja/hz < ξ↑. (35)

Keeping in mind these restrictions, we can write down the
dynamic structure factor at low frequencies ω < Jz in the
independent bound-state approximation as

Sαα′
(q,ω) =

∑
p,m,m′

nm,pSαα′
m′m(p,q)

× δ {ω − [Em′(p + q)− Em(p)]} , (36)

where

Sαα′
m′m(p,q) = 〈m,p|Sα

−q |m′,p + q〉〈m′,p + q|Sα′
q |m,p〉

and nm,p is the occupation number of a bound state with
internal energy index m and momentum p. Its functional
form depends generally on the statistics of these excitations,
but is expected to behave at low temperatures as nm,p ≈
e−β[Em(p)−E0(0)]κ(β), where κ is close to unity for T < Jz.
The action of the operator Sz on a state with a spin-down

cluster of l spins and momentum p is

Sz
q |p,l〉 = N

2
|p,l〉δq,0 − 1− eiql

1− eiq
|p + q,l〉, (37)

which implies that the matrix elements Szz
mn is given by the

expression

Szz
mn = δq,0

[
N

2

∑
l

Cn
l (p)C

m
l (p)−

∑
l

lCn
l (p)C

m
l (p)

]2

+ (1− δq,0)
1

sin2 q/2

[∑
l

Cn
l (p)C

m
l (p + q) sin

ql

2

]2
.

(38)

This expression is rather difficult to deal with analytically for
general values of the parameters. However, in the region of
parameters where we expect the spectrum to be the WZL,
we can evaluate it analytically. Focusing on this region where
2Ja/hz  1 and J⊥ < Ja , we get, see Appendix,

Szz(q,ω) = κ(β)e−β(Jz+hz)

1− e−βhz

N∑
k=−N

Gk(q) δ(ω − 2hzk), (39)

where the contribution from each mode for q �= 0 is

G0(q) = J 20 (ζ )

cosh(βhz)− cos q
eβhz + 1
2

,

Gk(q) = J 2k (ζ )

2 sin2(q/2)

{
1, k > 0,

eβ2hzk, k < 0,

and the argument of the Bessel function is ζ = 2Ja

hz
| sin q|.

For q = 0, we get also a contribution from the ground-state
magnetization squared:

G0(0) =
(

N

2

)2
− N

1− e−βhz
+ 1

2

eβhz + 1
cosh(βhz)− 1 ,

Gk(0) = 1

2

(
2Ja

hz

)2⎧⎪⎨
⎪⎩
1, k = 1,

e−β2hz , k = −1,
0, |k| > 1.
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Thus there are contributions for ω = 2hzk, where k is an
integer. The 2hz reflects the fact that Sz does not change the
parity of l. If we introduce the Bloch frequency ωB = 2hz,
this gives a result similar to the expression found in Ref. 3.
However, the temperature-dependent factors are different. In
particular, we get a prefactor e−βJz , which is a consequence of
the occupation number of bound states. This is in contrast
to the factor e−βJz/2 expected in the single domain-wall
approximation. A noteworthy feature of Eq. (39) is that
increasing the magnetic field moves the spectral weight to
lower Bloch frequencies. This follows from the fact that the
maximum of the Bessel function squared Jk(ζ ) for fixed ζ

occurs when k ≈ ζ − 1.
For the transverse dynamic structure factor, we find

S+−
mn (p,q) =

[
Cn
0 (0)C

m
1 (q)δp,0 + 2

∑
l>0

Cn
l (p)C

m
l+1(p + q)

× cos

(
ql − p

2

)]2
. (40)

This expression can also be evaluated analytically in the region
where the spectrum is the WZL, see Appendix,

S+−(q,ω) = κ(β)e−βJz

eβhz − 1
∑

k

δ[ω − hz(2k + 1)]

× 2J 2k (ζ )
{
1, k > 1/2,

eβhz(2k+1), k < 1/2,
(41)

where ζ = 2Ja

hz
| sin q| and k is an integer variable. For the

transverse structure factor, the excitations occur at frequencies
that are an odd multiple of hz, a consequence of the fact that
S− changes the parity of l, the number of overturned spins.

VI. COBALT CHLORIDE

CoCl2 · 2H2O is a quasi-one-dimensional anisotropic spin-
1/2 magnet, proposed in Ref. 3 as a candidate exhibiting
BO in a magnetic field. CoCl2 · 2H2O has a dominant
ferromagnetic coupling Jz along the chains, which was
determined from far-infrared absorption spectroscopy9 to
be Jz = 36.5 K. Other intrachain couplings Jx and Jy are
smaller but nonzero. The values of these couplings as well
as other interchain couplings have been inferred both from
far-infrared spectroscopy9 and from spin wave analysis of
neutron scattering experiments.4,5,20 In this paper, we use the
following values to describe CoCl2 · 2H2O:

Jz = 36.5 K, Ja = 3.8 K, J⊥ = 5.43 K. (42)

An important consequence of interchain couplings in CoCl2 ·
2H2O is that they cause the spins to order antiferromagnetically
below TN = 17.3 K. This implies that in the antiferromagnetic
phase below TN , the magnetic field hz used here should be
interpreted as a sum of the external applied magnetic field and
an internal field, which arises due to the magnetic moments of
neighboring chains.9

We have plotted the energy levels En(p) for the above
couplings in Fig. 7. The WZL is present at low energies
in the momentum region around p = π/2 (3π/2) and is
bounded by the red dashed and blue dot-dashed curves, which

FIG. 7. (Color online) Energy levels vs momentum computed
with the parameters in Eq. (42) for a magnetic field hz/Jz = 0.05.
The dot-dashed blue curve corresponds to the asymptotic dot-dashed
line drawn in Fig. 6 but with γ = 1.43, and the red dashed curve
corresponds to the red dashed line in Fig. 6.

correspond to the asymptotic lines drawn in Fig. 6. For energies
E > Jz + 2hz + 4Ja , the spectrum is the WZL for p = 0
and for E > Jz + hz + 2J⊥[1+ (Ja/J⊥)2], it extends also to
the region above π so that the spectrum is the WZL for all
momenta. For regions of energies where the spectrum is not
WZL for all momenta, it is possible to see from Fig. 7 that the
even levels are symmetric aroundπ/2while the odd levels lack
this symmetry property. This is a consequence of the skewness
of levels seen in Fig. 6.
In order to see the effects of J⊥, we have in Fig. 8 also

plotted the energy levels when J⊥ = 0 for comparison.21 We
see that the main effect of J⊥ is to lower the energy of
the lowest odd level and to shift the low-energy odd levels
in the region π/2 < p < 3π/2 so that they almost coincide
with the even levels. The even levels are unaffected by J⊥.
The zero temperature transverse dynamic structure factor

S+− at hz/Jz = 0.05 is shown in Fig. 9. Only transitions to
odd n levels have nonzero intensity and it is seen that most of

FIG. 8. (Color online) Energy levels vs momentum computed
with J⊥ = 0, Ja/Jz = 0.104, and hz/Jz = 0.05. The red dashed curve
corresponds to the red dashed lines in Fig. 5 and marks the lower
boundary of the WZL.
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FIG. 9. Gray-scale plot of S+−(q,ω) vs q and ω at T = 0 for
J⊥/Jz = 0.149, Ja/Jz = 0.104, and hz/Jz = 0.05.

the spectral weight occurs for transitions to the spin-wave-like
state n = 1. The intensities of higher excited levels are weak
in the momentum region around p = π/2 where we expect
to see the WZL. Exactly at p = π/2, the size of the bound
state is a good quantum number, thus higher excited bound
states with n > 1 have no amplitude to have the size l = 1,
which is the dominant intermediate state generated by neutron
scattering on a ferromagnetic state. Any intensity of n > 1
levels at p = π/2 reflects how the ground state deviates from
being fully ferromagnetic. For the coupling constants relevant
for CoCl2 · 2H2O, the probability for finding all spins up in
the ground state is roughly 99%, so fluctuation corrections to
the ground state are small and the integrated spectral intensity
above the n = 1 mode is less than 1%. In Fig. 10, we show
how the intensities Eq. (23) of the different levels vary for
two momenta q = 0 and q = π . For q = 0, the intensities
drop exponentially with frequency, but for q = π , the intensity
decreases only slightly before it increases up to the energy
where theWZL sets in and then drops rapidly. This also reflects
the fact that the main contribution comes from transitions to
the l = 1 state.

FIG. 10. Intensities I+−(q) vs ω at T = 0 for J⊥/Jz = 0.149,
Ja/Jz = 0.104, and hz/Jz = 0.05. The results for two momenta are
shown, q = 0 (open circles, dashed line) and q = π (solid circles,
solid line). The lines are guides to the eye.

FIG. 11. Gray-scale plot of Szz(q,ω) vs q and ω at T = 0 for
J⊥/Jz = 0.149, Ja/Jz = 0.104, and hz/Jz = 0.05. The intensity of
the plot has been increased by a factor 28 in order to make it visible
on the same gray scale as used in Fig. 9.

The behavior of the longitudinal dynamic structure factor
Szz for parameters relevant for CoCl2 · 2H2O is shown in
Fig. 11. Here, only excitations to even n levels are nonzero
which implies that Szz is independent of J⊥. The total spectral
weight of Szz(q �= 0) is however much smaller than for S+−
because it is proportional to the probability for finding two
overturned spins in the ground state. This is reflected by the
small factor J 2a /(Jz + 2hz)2 in Eq. (30).
For finite T , the validity of the noninteracting bound-state

approximation for CoCl2 · 2H2O used here is constrained
mostly by J⊥. Its relatively large value causes the n = 1
bound state to have the largest velocity which according to
the inequality (34) gives a lower bound on the frequency
for which our approach is valid. If we require that this
lowest frequency equals the Bloch frequency ωB = 2hz, the
noninteracting bound-state approximation will be valid in the
temperature/magnetic field region shaded dark gray in Fig. 12
for the parameters relevant for CoCl2 · 2H2O.We do not expect

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

T Jz

h z
J z

FIG. 12. Region of validity of the noninteracting bound state
approximation using the parameters in Eq. (42). The region where
the inequality (35) holds is shaded in light gray (which also overlaps
entirely the dark gray region). The region where the noninteracting
approximation can be used for frequencies down to the Bloch
frequency ωB = 2hz, inequality (34), is shown in dark gray.
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FIG. 13. (Color online) Szz(q = π/2,ω) vs ω/Jz for T = Jz/2,
hz/Jz = 0.2, and parameters from Eq. (42). The red dashed curve is
the corresponding WZL result Eq. (39) using the same parameters.
In order to generate the plot, δ functions were approximated by a
Gaussian distributions with variance 10−4. The vertical axis values
are in multiples of κ(β = 2/Jz), a number of order unity.

our results to apply outside this region as a treatment of
bound-state collisions is needed there.
In order to see finite temperature signatures of BO, a

high temperature is needed to thermally occupy the bound
state levels. However, at high temperatures, the validity of
our approach is restricted to large magnetic fields, as seen
from Fig. 12. Increasing the magnetic field has the disad-
vantage that the weights of the finite frequency Bloch peaks
become small Eq. (39), thus weakening the signatures of BO.
Therefore a judicial choice of temperature and magnetic field
must be made to make observations possible.
The optimal magnetic field for the first resonance at ωB

is hz ∼ Ja . We will use a larger magnetic field, hz = 0.2Jz,
as that allows our approach to be used up to a temperature
T ≈ Jz/2. We find that for Szz the maximum intensity of the
finite frequencyWZL transitions occur at q = π/2. In Fig. 13,
we have plotted our analytical result Eq. (38) numerically. We

FIG. 14. (Color online) S+−(q = π/2,ω) vs ω/Jz using the same
parameters as in Fig. 13. The red dashed curve is the corresponding
WZL result Eq. (41) using the same parameters. Delta-functions were
approximated by a Gaussian distributions with variance 10−4. The
vertical axis values are in multiples of κ(β = 2/Jz), a number of
order unity.

compare this with the expression obtained in the WZL limit
Eq. (39) using the same parameters. We see a clear peak at
the Bloch frequency ωB = 2hz also when the conditions for
the WZL are suboptimal as is the case with the parameters in
Eq. (42). TheWZL calculation (red dashed line) overestimates
the weight of the peaks, but do reasonably capture their relative
intensities. For higher temperatures, the WZL expression
matches Eq. (38) better as then more emphasis is put on the
higher-energy part of the spectrumwhich ismoreWZL-like for
all momenta. We wish to emphasize that the thermally induced
transitions here comewith an overall factor e−βJz whichmakes
them difficult to observe at low temperatures.
In Fig. 14, we have plotted S+− using the same parameters

as in Fig. 13. Peaks at frequencies corresponding to odd
multiples of the magnetic field are clearly seen among other
peaks caused by the dispersion of the lowest-energy modes.

VII. CONCLUSION

In this work, we have investigated the possibility of
observing spectral signatures of magnetic BO in a one-
dimensional anisotropic ferromagnetic spin system placed in
a magnetic field. This system was considered previously3 but
within an approximation where only a single domain wall was
included. We argue that the single domain-wall approximation
is insufficient at a finite magnetic field. Instead, we consider
a bound state of a domain wall and an antidomain wall; a
spin cluster of adjacent spins antialigned with the magnetic
field,9 and treat the thermal state as a noninteracting gas of
such excitations. This allows us to also include the effects
of the additional coupling J⊥, which probably is present in
most anisotropic materials that have a nonzero value of Ja .
For instance, in CoCl2 · 2H2O for which neutron scattering
searches for BO have been made, J⊥ is bigger than Ja .
We have treated the quantum mechanics of the bound

state and obtained its energy levels and wave functions. The
spectrum in a magnetic field will be split by the magnetic field
essentially into modes corresponding to the size (number of
overturned spins) of the bound state. In the momentum region
around p = π/2 (p = 3π/2), the energy levels are equidis-
tantly spaced down to the lowest energies. This corresponds to
the WZL. For other momenta the exchange couplings, Ja and
J⊥, cause dispersion of the low-lying energy levels. This effect
diminishes for higher energies and the spectrum becomes the
WZL above a threshold energy for all momenta.
We have also calculated the neutron scattering dynamic

structure factor at zero and low temperatures. At zero tempera-
ture, the expected response occurs at high frequencies and there
should be considerable chances of seeing the magnetic field
splitting of the spectrum. However, it will be difficult to see the
WZL because of the low spectral weight in this region. This is
because neutron scattering flips a single spin and couples most
strongly to the bound states that have a significant amplitude of
having a single down-spin cluster, which has a dispersion that
is heavily influenced by J⊥. The longitudinal channel is not
influenced by J⊥, but is much weaker at nonzero momentum.
Detecting BO at finite temperatures with neutron scattering

seems more promising. However, the thermal occupation
number of bound states implies that these signatures will be
suppressed at low temperatures as e−βJz . This might be the
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reason for the nonobservation of BO in the neutron scattering
experiments.4,5 Nevertheless, it might still be possible that
neutron scattering on CoCl2 · 2H2O can be used to observe
signatures of BO provided a careful selection of temperature
and magnetic field is being made. In that respect, care must be
taken so as to secure a big enough thermal population of bound
states, a large intensity of the finite frequency resonance(s),
and a regime where collisions of bound states do not destroy
the BO.

APPENDIX: WZL STRUCTURE FACTORS

Let us calculate the dynamic structure factors at finite
temperature in the limit where the spectrum is theWZL, that is
hz � 2Ja and J⊥  Ja . In this limit, En(p) = Jz + hzn and
the wave functions are Bessel functions of integer order

Cn
l (p) = 1+ (−1)l−n

2
J l−n

2
(x0 cosp), (A1)

where x0 = 2Ja/hz  1. In the limit x0 → 0, these wave
functions are normalized to unity. This also holds approxi-
mately at small finite x0, which follows from the property
of Bessel functions:

∑∞
k=−∞ J 2k (x) = 1 and the fact that

contributions from higher Jk(x0) decrease rapidly with k for
small x0. Thus only small errors are introduced by extending
the sum to −∞ at small finite x0.
For Szz(q �= 0,ω), the matrix elements (38) become

Szz
mn

∣∣
q �=0 = 1

sin2 q/2

{∑
l>0

J l−n
2
(x0 cosp)

× J l−m
2
[x0 cos(p + q)] sin

ql

2

}2
, (A2)

where the sum over l goes over even(odd) integers when n

and m both are even(odd), otherwise every term in the sum is
zero. It is convenient to introduce a new integer-valued variable
t = (l − n)/2 and rewrite the sum in the form

∑
t>− n

2

Jt (x0 cosp) Jt+ n−m
2
[x0 cos(p + q)] sin

[
q

(
t + n

2

)]

= J n−m
2
(ζ ) sin

[(
p − π

2

)
n − m

2
+ q

n

2

]
, (A3)

where we introduced a new variable ζ = x0| sin q|. The sum
over the product of Bessel functions was performed by
extending the sum to negative −∞, which only induces small
errors when x0  1, and then using Graf’s addition theorem17

∞∑
k=−∞

Jk+ν(u) Jk(v)
sin
cos (kφ) = Jν(w)

sin
cos (νχ ) (A4)

with the relationsw =
√

u2 + v2 − 2uv cosφ,w cosχ = u −
v cosφ, and w sinχ = v sinφ.
The dynamic structure factor Szz for q �= 0 in the inde-

pendent bound-state approximation can then be written in the

form

Szz(q,ω)|q �=0 = κ(β)

sin2 q/2

∑
m,n

e−β(Jz+hzn) δ[ω − (m − n)]

× J 2n−m
2
(ζ )

{
1/2, n �= m,

sin2
(
q n
2

)
, n = m,

(A5)

where integration overmomentumpwas performed for integer
values of n and m variables∫ 2π

0

dp

2π
sin2

[(
p− π

2

)
n − m

2
+ q

n

2

]
=
{
1/2, n �= m,

sin2
(
q n
2

)
, n = m.

No transitions between the even and odd sectors are allowed,
thus it is convenient to introduce a new integer-valued variable
k = (m − n)/2 that describes the energy difference between
the states involved in the transition.
We can reorder the double sum as

∑
m,n

=
(∑

m�n

+
∑
m<n

)∑
n

=
∑
m�n

∑
n

+
∑
m

∑
n>m

=
∑

n

∑
k�0

+
∑
m

∑
k<0

, (A6)

that allows us to rewrite the dynamic structure factor in the
case of nonzero energy transitions, k �= 0, in the following
form:

Szz|q �=0,ω �=0 = κ(β)

2 sin2(q/2)

e−βJz

eβhz − 1
∑
k �=0

δ(ω − 2hzk)J
2
k (ζ )

×
{
1, k > 0,

eβ2hzk, k < 0,
(A7)

where we used the expression for the sum of the first N terms
of a geometric series

N∑
n=1

e−βhzn = e−βhz
1− e−βhzN

1− e−βhz
≈ 1

eβhz − 1 . (A8)

For the zero mode, k = 0, in order to find the sum in Eq. (A5),
we can use the following identity

∞∑
n=1
sin2(an)e−bn = 1

1− e−b

sin2 a

2

1+ e−b

cosh b − cos 2a , (A9)

which can be proved using Euler’s formula and sum of terms
of geometric series. This gives the contribution to the zero
mode

Szz
∣∣

q �=0
ω=0

= κ(β)e−βJz
1+ e−βhz

1− e−βhz

δ(ω)

2

J 20 (ζ )

cosh(βhz)− cos q .

(A10)

Finally, combining together Eqs. (A7) and (A10), we obtain
the dynamic structure factor:

Szz(q,ω)|q �=0 = κ(β)e−β(Jz+hz)

1− e−βhz

N∑
k=−N

Gk(q) δ(ω − 2hzk),

(A11)
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where the contribution from each mode is

G0 = J 20 (ζ )

cosh(βhz)− cos q
eβhz + 1
2

, (A12)

Gk = J 2k (ζ )

2 sin2(q/2)

{
1, k > 0,

eβ2hzk, k < 0,
(A13)

and the argument of the Bessel function is ζ = 2Ja

hz
|sin q|.

The leading contribution to the dynamic structure factor
S+− comes from transition between states with nonzero
momentum p. Then the matrix element in Eq. (40)
becomes

S+−
mn (p,q) = 4

{∑
l>0

J l−n
2
(x0 cosp)J l+1−m

2
[x0 cos(p + q)]

× cos

(
ql − p

2

)}2
, (A14)

where the sum over l is over even(odd) integers when n is
even(odd) and m is odd(even). Introducing the new integer
variable t = (l − n)/2 and summing over the product of Bessel

functions using Graf’s addition theorem gives∑
t>− n

2

Jt (x0 cosp)Jt+ n−m+1
2
[x0 cos(p + q)]

× cos

[
q

(
t + n

2

)
− p

2

]

= J n−m+1
2
(ζ ) cos

[(
p − π

2

)
n − m + 1

2
+ p

2
+ q

n

2

]
.

(A15)

Since the only allowed transitions are between different parity
sectors it is convenient to introduce the integer-valued quantity
k = (m − n − 1)/2. The integral over momentum is∫ 2π

0

dp

2π
cos2

[(
π

2
− p

)
k + p

2
+ q

n

2

]
= 1

2
.

After reordering of the double sum, we finally obtain

S+−(q,ω) = κ(β)e−βJz

eβhz − 1
∑

k

δ[ω − hz(2k + 1)]

× 2J 2k (ζ )
{
1, k > 1/2,

eβhz(2k+1), k < 1/2,
(A16)

where ζ = 2Ja

hz
| sin q| and k is an integer.
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We propose to use lasers to excite magnetic Bloch oscillations in one-dimensional easy-axis ferromagnets
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CoCl2 · 2H2O.
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According to quantum mechanics a particle in a periodic
potential will oscillate in response to a constant force.
Such Bloch oscillations (BOs) were predicted in the early
days of quantum mechanics,1,2 but have only recently been
experimentally demonstrated in very clean semiconductor
superlattices,3 in Bose-Einstein condensates,4 and in optical5

and ultrasonic6 superlattices.
In condensed-matter systems the particles need not be of

the ordinary kind resembling electrons. In particular, an ele-
mentary particle in a one-dimensional anisotropic ferromagnet
is a domain wall separating regions of up and down spins. Such
domain walls can have a dispersion relation like that derived
fromaperiodic potential, and in the presence of a uniformmag-
netic field these magnetic systems have been predicted to show
BOs.7 In particular the blue crystalline material CoCl2 · 2H2O
and CoNb2O6 have been proposed as candidate materials.
However, no BOs have been experimentally observed in these
to date.8,9

In a recent paper10 we have revisited the material CoCl2 ·
2H2O and refined the predictions of Ref. 7 for detecting
spectral signatures of BOs in neutron-scattering experiments,
taking also into account extra interactions present in the
material. While our result indicates that the spectral signatures
of BOs can indeed be observed in neutron scattering, the
signatures are relatively weak, at the 10% level of the total
spectral weight at finite temperatures. This is a consequence
of neutrons being a relatively weak probe as they cause only
single spin-flip excitations.
We propose here a more direct way to excite BOs by

keeping the material at low temperature and induce excitations
using a short laser pulse. Upon turning off the laser pulse the
magnetization of the material will continue oscillating at the
Bloch frequency. It has been known since long ago11,12 that
light in the far-infrared frequency range can induce magnetic
excitations in CoCl2 · 2H2O, but no time dependence of the
magnetization was studied there.
In this Rapid Communication we model the laser pulse as

a time-dependent perturbation to the Hamiltonian and inves-
tigate its effects by solving the time-dependent Schrödinger
equation numerically. We show that BOs can be generated this
way, and give appropriate laser frequencies and pulse-duration
times.
The magnetic properties of CoCl2 · 2H2O are described by

the spin-1/2 Hamiltonian11,13

H = −
∑

i

(
JzS

z
i S

z
i+1 + hzS

z
i

)+ Hd, (1)

where Hd denotes subdominant terms to be discussed below.
The ferromagnetic coupling Jz = 36.5 K11 is the dominant
term in the Hamiltonian. Alone it causes neighboring spins to
align their spin z components, thus the energy of an excited
state depends on the number of antialigned spin neighbors:
domain walls, where each domain wall costs an energy of
Jz/2. In the presence of an external magnetic field along the
z axis, hz, the energy will also depend on the number of spins
opposing the field, implying pairwise confinement of domain
walls. Such a bound state of two domain walls separating
l overturned spins, known as a spin cluster excitation,11 or
simply a domain, has an energy Jz + hzl above the ground-
state energy.
The termHd describes additional couplings that partly give

dynamics to the domain walls and partly induce more domain
walls,

Hd = −
∑

i

[Ja(S
+
i S+

i+1 + S−
i S−

i+1)+ J⊥(S+
i S−

i+1 + S−
i S+

i+1)],

(2)

where Ja = 3.8 K9 and J⊥ = 5.43 K.9 S±
i = Sx

i ± iS
y

i are the
usual raising and lowering operators. The Ja term can move
a domain wall two lattice spacings, thus mixing states with
even (or odd) l. Similarly J⊥ gives kinetic energy to the l = 1
domain state. Both of these terms can also induce new domain-
wall pairs. However, with Jz being the dominant coupling,
extra domain walls will be energetically costly, thus we will
restrict our calculations to states having a small number of
domain walls Ndw.
When restricting to Ndw � 2, H can be diagonalized. The

energy spectrum is En = Jz + μnhz, where μn is found by
solving an equation involving a ratio of Bessel functions.10,14,15

For high energiesμn ≈ n, an integer, thus the energy spectrum
becomes equidistant, the so-called Wannier-Zeeman ladder
(WZL).16 The corresponding energy eigenfunctions |ψn〉 are
Bessel functions.10 From these one can construct a time-
dependent state |χ (t)〉 = ∑

n ane
−iEnt |ψn〉. When this state

is dominated by energy eigenstates with energies from the
equidistant region, the time dependence of the magnetization
Mz(t) = 〈χ (t)|∑i S

z
i |χ (t)〉 becomes

Mz(t) = c − 2x0
∑

n

Re(a∗
nan+2e−iωB t ), (3)

where c is a constant, ωB = 2hz/h̄ is the Bloch frequency, and
x0 = 2Ja/hz. Thus theBOamplitude is proportional to 4Ja/hz

times a factor which depends on the probability amplitudes an

of the excited states. Our BO amplitude is a factor 2 larger
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c
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b
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FIG. 1. In CoCl2 · 2H2O the spin z axis corresponds to the
crystallographic b axis. The strong ferromagnetic Jz couples spins
along the c axis. A laser beam is shown propagating at normal
incidence to the b-c plane with magnetic-field polarization in the
b direction.

than obtained in Ref. 7 as we consider the size oscillations of a
single domain having two domain walls, while they considered
the motion of a single domain wall.
In order to populate the excited levels at very low tempera-

tures, thus producing BOs, we propose here to use a laser with
a wavelength in the far infrared. The Co electrons causing
the magnetism are d-shell electrons thus having no electric
dipole moment.17 We therefore model the laser as an extra
time-dependent magnetic field which couples to the spins as

Hext = −Bz
0 cos(ωt)

∑
i

Sz
i , (4)

where ω is the laser frequency and Bz
0 is the laser magnetic-

field amplitude. We have here assumed a linearly polarized
laser beam such that the magnetic field is along the Ising
direction. This corresponds to the crystallographic b direction
in CoCl2 · 2H2O. Such a setup can be made by cleaving the
crystals in the b-c plane and directing the laser at normal
incidence to this surface polarizing the laser beam such that
the magnetic field points along the b direction; see Fig. 1. We
have assumed the laser beam to be coherent along its front,
and also through the crystal. The laser considered here has a
wavelength of about 0.3 mm thus for this approximation to
be good the crystal should be thinner than this. For thicker
crystals there will be an additional phase shift associated with
the depth.
The time-dependent Hamiltonian H + Hext can be treated

numerically for large system sizes when restricting to states
where Ndw � 2. This restriction implies that the energy gap
between the ground state and any excited state will depend on
the system size N . This can be understood by considering
the perturbative energy correction from virtual processes
involving the creation and destruction of an additional domain.
As there are roughly N places to insert the new domain, the
energy correction will be proportional to N . When restricting
to Ndw � 2 the ferromagnetic state receives this correction,
but not the states having one domain, as their corrections
come from the excluded Ndw � 4 sector. In order to make
the energy gap intensive we redefine the coupling between the
ferromagnetic and the l = 2,Ndw = 2 state in the Hamiltonian
by dividing it by a factor

√
N .10 This effectively makes the

correction to the ferromagnetic state independent of system
size.
Starting in the ground state of H , the time-dependent

Schrödinger equation is solved iteratively numerically with
the laser field Hext present. In the iterations we keep the 300
lowest energy states ofH with zero momentum andNdw � 2.
The laser frequency ω is tuned such that ω = (En − E0)/h̄
where n corresponds to an energy level in the region where
the spectrum is approximately equidistant. We choose n = 12
corresponding to E12 − E0 ≈ 1.6Jz for a static magnetic field
hz = 0.05Jz. With this we find essentially Rabi oscillations
between the ground state and the n = 12 excited level with
a Rabi frequency ωR = |Bz

0α12|/h̄, where α12 is the matrix
element of

∑
i S

z
i between the ground state and the n = 12

excited state. Exciting the level n = 12 alone does not give
Bloch oscillations as one also needs to populate the levels with
n + 2 (or n − 2); see Eq. (3). This can be achieved by using
a large laser amplitude which causes off-resonant tunneling
between the n and the n ± 2 levels. However, in order to get
a sizable population of the n ± 2 levels we have to use a laser
amplitude as big asBz

0 = 0.2Jz, which, with a g factor of 6.8,11

corresponds to an electric-field amplitude of approximately
500 MV/m. Experimentally this is too large as the dielectric
breakdown field strength of most insulators is an order of
magnitude less than this.
To achieve population of nearby levels with a smaller

laser amplitude we propose instead to use two lasers, each
in resonance with one of the two nearby levels. Specifically
we use Bz

01 = 0.01Jz, ω1 = (E12 − E0)/h̄, and Bz
02 = 0.03Jz,

ω2 = (E14 − E0)/h̄ in our simulation. The population of the
different levels as a function of time after the lasers are turned
on is shown in Fig. 2. Only even n states are excited because the
Sz terms do not flip any spins. The black dot-dashed curve in
Fig. 2 shows how the ground state is depleted. Theminimumof
the ground-state population coincides with the maxima of the
population of levels n = 12 and n = 14, and occurs roughly
at a time 2× 104h̄/Jz for the parameters used here. Using
smaller laser amplitudes this time gets larger proportional to
the inverse laser amplitude.
We turn off Hext at the first maximum of the population

curves, τ = 20 440h̄/Jz. As the sum
∑

n a∗
nan+2 is dominated

by the term n = 12, the amplitude of the BO will be
proportional to |a∗

12a14| which is shown in the lower inset
of Fig. 2. It shows a beating pattern corresponding to the two
frequencies ω1 and ω2. It may be difficult to turn off the laser
when this quantity is maximal. However, this is not a major
concern as the variation is small. The time-averaged value is
approximately 0.48.
Letting the system evolve further in time without Hext

produces the BOs shown in Fig. 3. As our simulation only
allows single domain excitations we have plotted the relative
size of the domain, measured by the expectation value of the
number of spins opposing the field N1↓(t) = Mz(t)− N/2
divided by its time average N̄1↓. N̄1↓ ≈ n for excitation En.
We see that the relative size of the domain oscillates between
0.7 and 1.3 corresponding to a size between 9.1 and 16.9 for
N̄1↓ ≈ (12+ 14)/2 = 13. Thus the amplitude is 3.9 which
is close to the expected value 4Ja/hz × 0.48 = 4.0 from
Eq. (3). Allowing a finite density ρ of coherently oscillating
domain states, the relative size of a single domain state
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FIG. 2. (Color online) Population |ai |2 of selected energy levels i,
indicated in the legend, as a function of time after turning on the two
lasers. The laser frequencies and amplitudes are ω1 = (E12 − E0)/h̄,
Bz
01 = 0.01Jz, and ω2 = (E14 − E0)/h̄, Bz

02 = 0.03Jz. The upper-
right panel shows a zoom in the boxed time region. The lower-right
panel shows the time dependence of |a∗

12a14|. The time-averaged
value is shown as the horizontal dashed line. The time scale h̄/Jz

is 0.2× 10−12 s for CoCl2 · 2H2O.

shown in Fig. 3 will be proportional to the experimentally
relevant quantity, the time-dependent relative magnetization:
[Mz(t)− M̄] / M̄ = ρN̄1↓ / (1/2− ρN̄1↓)[N1↓(t) / N̄1↓ − 1].
Assuming noninteracting domains we estimate that the
density of domains per unit length is ρ = c(1− |a0|2)/N̄1↓,
where c is a constant of the order unity. The lower panel of
Fig. 3 shows the power spectrum of the BOs which reveals a
single peak very close to ωB = 2hz/h̄. The small deviation
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FIG. 3. Size oscillations of a domain excitation, measured as the
number of down spinsN1↓/N̄1↓ vs time after the laser is switched off
(upper panel), and its Fourier spectrum (lower panel).
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FIG. 4. Magnetization per site vs time for an interacting system in
the presence of two laser beams, having amplitudes and frequencies as
in Fig. 2 forN = 32 andNdw � 6. The inset shows the magnetization
vs time after the two lasers have been switched off at τ = 4420h̄/Jz.

reflects the fact that the spectrum is not exactly the WZL at
low energies.10

One can also change the laser polarization to have a com-
ponent along the spin-x direction. This will induce transitions
between the even and odd n states. Our simulations show BOs
also in this case, but with ωB = hz/h̄, which corresponds to
the energy spacing between adjacent even and odd levels.
The restriction to Ndw � 2 and the associated redefinition

of the coupling to the ferromagnetic state can raise doubts
about the validity of the matrix elements calculation, also
it does not allow for any discussion of interactions between
domains. We have therefore numerically investigated cases
where we allow more domains without any redefinition of
couplings. Computer performance restrictions let us consider
Ndw � 6 for N � 34.
In order to address the effects of interactions between

domains we do a time-dependent simulation of the magne-
tization of a N = 32 system with Ndw � 6 in the presence
of the two lasers. Figure 4 shows that the magnetization is
rapidly varying, and has large-scale weakly damped oscillating
behavior due to dephasing coming from populating other
levels. We estimate the damping time scale to be roughly
5× 104h̄/Jz. We expect this time scale to decrease as the
system size is increased. The time at which the magnetization
envelope reaches its first minimum, tm = 4420h̄/Jz, is shorter
than the time ofmaximal population in Fig. 2, τ = 20 440h̄/Jz,
by a factor k = tm/τ = 1/4.6. This is a reflection of the

√
N

in the matrix element connecting the ferromagnetic state to
the single domain states, together with the near blocking by
interactions and finite-size effects of states with more than one
domain.18,19 For larger system sizes we expect that k turns
into k = 1/

√
R where R is the distance, in units of the lattice

spacing, between domains beyond which the domain-domain
interaction energy is smaller than Bz

01α12 ≈ Bz
02α14. This

energy scale is ∼10−4Jz for the parameters in Fig. 4. When
domains are closer than this the excitation of the second
domain will be blocked by the presence of the first domain
and will not participate in the resonance. On turning off the
lasers at tm = 4420h̄/Jz the magnetization oscillates at the
Bloch frequency, shown in the inset of Fig. 4.
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FIG. 5. Energy gap� to the first excited state vs system sizeN for
differentNdw . The legend specifies the maximumNdw included in the
diagonalization. The dashed line shows the energy gap for Ndw � 2
with the 1/

√
N redefinition of the coupling to the ferromagnetic

state.

To see how energies are affected by allowing more domains
we have plotted in Fig. 5 theN dependence of the energy gap�

to the first excited state. This decreases as higher domain-wall
sectors are included. For comparison the Ndw � 2 result with
redefined coupling to the ferromagnetic state is shown as the
dashed line.
In order to identify the elementary domain excitations and

the associated transition matrix elements, for the interacting
system, we construct the approximate single domain creation
operator10

a†
p,n =

∑
l,j

e−ip(rj +l/2)

√
N

J(l−μn)/2 (x0 cosp)�
j+l−1
k=j S+

k (5)

withmomentump = 0 and let it act on the ferromagnetic state.
The sum is restricted to even values of l, and Jm(x) is the Bessel
function of the first kind of orderm with argument x. We then
compute the overlap of this with the exact eigenstates of the
Ndw � 6 system. For each value of n we pick the state with
maximum overlap. Figure 6(a) shows the energies of these
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FIG. 6. (a) Excitation energy of elementary domain states vs n

(triangles). Also shown is |αn| vs n (circles) on a semilog scale.
Filled symbols refer to Ndw � 6 and N = 34, while open symbols
are for Ndw � 2 with redefined coupling to the ferromagnetic state.
(b) Interaction energy of two n = 12 excitations vs separation
distance r for Ndw � 6 and N = 34.

states. We see that for high enough n the energies become
equidistant and agree well with what we found for Ndw � 2.
The laser transition matrix element between these states and
the ground state behaves as

√
Nαn. The coefficients αn are

very close to those we found for Ndw � 2; see Fig. 6(a). Note
that αn drops very fast with increasing n.
Further insights about interactions can be gotten by iden-

tifying two-domain excitations. We construct approximate
two-domain states as pairs with total momentum zero of
two n = 12 single domain states separated by a distance r ,
with creation operator b

†
r,n = ∑

p a
†
p,na

†
−p,ne

−ipr . We let this
act on the ferromagnetic state, retain only the terms having
four domain walls, and compute its overlap with the exact
eigenstates of the Ndw � 6 system. The energy of the states
with maximum overlap minus two times the single-particle
excitation energy E12 is shown in Fig. 6(b) as a function
of r . We interpret this as the interaction energy of domains
separated by r lattice spacings. We find that the functional
form a − b[1/r + 1/(N − r)] fits the results reasonably with
a = 0.22Jz and b = 1.37Jz. The positive a is caused by the
restriction on Ndw which tends to overestimate energies in
higher domain-wall sectors relative to those in lower sectors.
This interaction energy causes an inhomogeneous broadening
of the resonance frequency, and can lead to an upper limit
on the density of domains excited by the laser together with
an increased oscillation frequency due to interaction blocking
effects, as seen in Fig. 4.
We conclude that it should be possible to excite mag-

netic BOs in CoCl2 · 2H2O using two resonant lasers at
low temperatures in a static magnetic field. On turning off
the lasers after an excitation time τ the magnetization of
CoCl2 · 2H2O will oscillate at the Bloch frequency which
is proportional to the static magnetic field and is 500 GHz
for CoCl2 · 2H2O in a 0.4 T field. In order to generate the
BOs one needs to populate at least two nearby levels in
the WZL. Due to the relatively small laser transition matrix
elements connecting the ground state to these levels we
propose to use two large amplitude resonant lasers. It should
be possible to use also resonant lasers with smaller amplitudes
at the expense of longer excitation times, limited by the
coherence time of the system. Collisions between domains
can lead to dephasing behavior and associated decoherence.
The domain excitations are heavy due to their flat dispersion,
so we expect a significant effect only at a high density of
excitations when neighboring domains are close together. We
have performed a simulation taking into account the interaction
between domains for a system of size N = 32. From this
we conclude that the interactions cause a blocking effect
which speeds up the excitation process and that the dephasing
time scale due to interactions is long compared with the
excitation time for the parameters considered. Other effects
might contribute to dephasing such as static impurities and
interactions between chains. We have not studied these, but
given the fact that the oscillations considered here are localized
within a region of roughly 20 sites, we expect that the effects
of static impurities are small for an impurity concentration
of less than a few percent. In addition to CoCl2 · 2H2O
our simulations using the Hamiltonian and parameters from
Ref. 20 also indicate that BOs in CoNb2O6 may be excited in a
similar way.
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Spin-wave calculation of the field-dependent magnetization pattern around
an impurity in Heisenberg antiferromagnets
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We consider the magnetic-field-dependent spatial magnetization pattern around a general impurity embedded
in a Heisenberg antiferromagnet using both an analytical and a numerical spin-wave approach. The results are
compared to quantum Monte Carlo simulations. The decay of the magnetization pattern away from the impurity
follows a universal form which reflects the properties of the pure antiferromagnetic Heisenberg model. Only the
overall magnitude of the induced magnetization depends also on the size of the impurity spin and the impurity
coupling.
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I. INTRODUCTION

The local magnetization around impurities in antiferromag-
nets has already been studied by nuclear magnetic resonance
(NMR) experiments since the early 1970s.1,2 The analysis of
local Knight shifts has been expanded after the discovery of
high-temperature superconductivity.3 Typically, the strongly
correlated state is reflected by the observation of large alter-
nating magnetic moments around static impurities,3 which be-
come especially strong in one dimension.4 Another remarkable
experimental tool is given by scanning tunneling microscopy
(STM),5 which offers the unique possibility of studying
materials directly on the atomic scale. In particular, by coating
the STM tips with different magnetic materials,6 so-called
spin-polarized scanning tunneling microscopy (SP-STM) has
made it possible to study the magnetization of individual
atoms.7

From the theoretical point of view, antiferromagnets are
often represented by the isotropicHeisenbergmodelwith static
impurities. In this case the pinning of the order is a result of an
interplay of the applied uniformmagnetic fieldwith impurities.
The first theoretical studies of impurities in an antiferromagnet
date back to the 1960s.8,9 More recent research has mademuch
progress in the understanding of the impurity behavior in
one-dimensional4,10,11 and two-dimensional12–14 Heisenberg
antiferromagnets. In particular, themagnetic response around a
vacancy in an isotropic antiferromagnet was studied in Ref. 15
using a hydrodynamic approach. In this work, we now extend
those studies by considering the local magnetization using
spin-wave theory for a more general impurity type, which
is given by a spin S0 coupled to the host antiferromagnet
with a general coupling J0. One main result is that the
decay constant of the magnetization is to leading order
governed by properties of the host magnet, while the overall
magnitude is governed by properties of the impurity and
its coupling to the host antiferromagnet. We complement
our analytical spin-wave analysis with quantum Monte Carlo
(QMC) simulations as well as a numerical spin-wave approach
for the case of calculating themagnetization on and close to the
impurity site.

II. HAMILTONIAN

We consider the following Hamiltonian of a Heisenberg-
type magnet in a magnetic field

H =
∑
〈i,j〉

Jij
�Si · �Sj −

∑
i

BiS
z
i (1)

on a hypercubic latticewhere each site hasZ nearest neighbors.
We will start out with general site-dependent couplings Jij

and magnetic fields Bi and later specialize to the case of a
single impurity in an otherwise uniform antiferromagnet in a
homogeneous field.
In order to treat the nonhomogeneous Hamiltonian in

Eq. (1) with spin-wave theory, let us first review in detail
how to derive the expansion in fluctuations about an ordered
classical state. The classical state of an antiferromagnet in a
magnetic field is that of canted spins pointing partly along
the z axis (see Fig. 1). In order to parametrize this state we
introduce rotated spins �S ′ so that S ′z

i points along a direction
parametrized by the angles θi and φi (see Fig. 1).
The rotated spin components �S ′ are related to the spin

components in Eq. (1) as

Sx
i = (

S ′x
i sin θi − S ′z

i cos θi

)
cos φi − S

′y
i sin φi,

S
y

i = (
S ′x

i sin θi − S ′z
i cos θi

)
sin φi − S

′y
i cos φi, (2)

Sz
i = S ′x

i cos θi + S ′z
i sin θi .

Inserting these into Eq. (1) we get the Hamiltonian expressed
in terms of rotated spins for arbitrary angles, which will be
determined later. In order to express the fluctuations about the
ordered state we use the Holstein-Primakoff transformation16

on the rotated spins into bosonic operators

S ′z
i = Si − a

†
i ai,

S ′+
i =

√
2Si

√
1− a

†
i ai

2s
ai, (3)

S ′−
i =

√
2Si a

†
i

√
1− a

†
i ai

2s
,
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θi

i

B

FIG. 1. The canted spin state for classical spins. θi ∈ [0,π/2] is
the angle between the spin i and a line drawn perpendicular to the
applied magnetic field B. The angle φi ∈ [0,2π ] parametrizes how
much the spin i is rotated (a full rotation is indicated by the ellipse)
about the applied magnetic field.

where expanding the square roots and using S ′±
i = S ′x ± iS ′y

yields

S ′x
i =

√
Si

2

[
ai + a

†
i − 1

4s
(a†

i aiai + a
†
i a

†
i ai)+ · · ·

]
,

(4)

S
′y
i = −i

√
Si

2

[
ai − a

†
i − 1

4s
(a†

i aiai − a
†
i a

†
i ai)+ · · ·

]
.

By inserting these expressions for �S ′ into the Hamiltonian
(1) we get terms Hn with different powers n of bosonic
operators.
The zeroth-order term in boson operators corresponds to

the energy of classical spins oriented along the S ′z axes. This
is so because in the classical limit Si → ∞ the S ′x and S ′y
components are overwhelmed by the S ′z component which is
proportional to S. The zeroth-order terms read

H0=
∑
〈ij〉

JijSiSj (cos θi cos θj cos(φij )+ sin θi sin θj )

−
∑

i

BiSi sin θi, (5)

where φij = φi − φj . Because of the U (1) symmetry of spin
rotations about the magnetic field axis H0 depends on the
relative angles φij . Minimizing with respect to φij gives the
condition

−JijSiSj cos θi cos θj sin(φij ) = 0, (6)

meaning that φij = 0 or π . For this to be a minimum
of the energy one needs −Jij cos(φij ) > 0, which means
that φij = π for an antiferromagnetic coupling and 0 for a
ferromagnetic one. Equivalently,− cos(φij ) = Jij /|Jij | ≡ νij .
In the following we will select the rotation angle φ0 so that
it is either 0 or π . With this choice, and the minimization
condition φij = 0 or π , all terms with sin φi will be zero.
Then the Hamiltonian can be written

H =
∑
〈ij〉

Jij

[
cos(θi + νij θj )

(
S ′x

i S ′x
j − νijS

′z
i S ′z

j

)
− νijS

′y
i S

′y
j + sin(θi + νij θj )

(
νijS

′x
i S ′z

j + S ′z
i S ′x

j

)]
−
∑

i

Bi

(
S ′x

i cos θi + S ′z
i sin θi

)
. (7)

We will now specialize to the case of a single impurity
embedded in an otherwise uniform antiferromagnet of spin-S

J0 J

FIG. 2. Couplings. Dashed lines indicate the coupling J0 to the
impurity site (empty circle) while solid lines indicate J .

spins. We label the impurity site i = 0 and allow for an
impurity spin S0 which, in general, can be different from
S. We take all bonds not connected to the impurity to be
antiferromagnetic with a magnitude J . The bonds connected
to the impurity are also equal, but of a different magnitude
J0 and can be either ferromagnetic or antiferromagnetic (see
Fig. 2); ν0 denotes the sign of J0. This antiferromagnet is
placed in a magnetic field oriented along the z direction with
magnitude B. We have absorbed the Zeeman coupling into the
magnitude of themagnetic field. In order to allow for a different
gyromagnetic factor of the impurity spin and thus a different
Zeeman coupling, we label the magnitude of the effective
magnetic field on the impurity site B0 which, in general, can
be different from B.
In order to simplify Eq. (7) we use an initial rotated frame

that is given by a site-independent value of θi = θ for all sites
i away from the impurity site to zeroth order. We will later
allow for a site-dependent shift of θ in order to calculate the
nontrivial local variation of themagnetization. For the impurity
site i = 0 we keep a separate angle θ0. Performing this ansatz
the zeroth-order term in boson operators takes the form

H0 = −NS

(
JSZ

2
cos 2θ + B sin θ

)

+ ZS(JS cos 2θ − |J0|S0 cos(θ + ν0θ0))

+ BS sin θ − B0S0 sin θ0. (8)

Minimizing this with respect to θ and θ0 in the thermodynamic
limit, N → ∞, determines the angles θ and θ0,

sin θ = B

2SZJ
(9)

and

tan θ0 = B0

|J0|SZ cos θ
− ν0 tan θ. (10)

The zeroth-order condition on θ is identical to the one found
for a uniform antiferromagnet in a homogeneous field and does
not depend on the impurity. This is a natural consequence of
taking a site-independent ansatz in the thermodynamic limit.
When using the value of θ obtained from Eq. (9) the terms

that are of linear order in boson operators connected to the
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bulk behavior vanish. After also using the condition (10) only
linear terms of bosons around the impurity are left:

H1 = C

Z

∑
〈0j〉
(aj + a

†
j ), (11)

where the sum is restricted to run over the nearest neighbors of
the impurity spin. This expression can be interpreted as a local
effective field in the rotated frame acting on the spins that are
coupled to the impurity spin, which will cause a shift of the
angles θ over an extended range as we will see later.
The constant C is given by

C = J0S0Z

√
S

2
ν0 sin(ν0θ0 + θ )− JSZ

√
S

2
sin 2θ (12)

or equivalently when we use the minimization conditions

C =
√

S

2

(
S0

S
ν0B0 cos θ0 − B cos θ

)
. (13)

The linear terms can also be written in terms of Fourier
transforms

ai = 1√
N

∑
�k

a�ke
i�k·�ri (14)

as

H1 = C√
N

∑
�k

γ�k(a�k + a
†
�k), (15)

where we have defined γk = 2(cos kx + cos ky + · · ·)/Z,
where the k’s are given in units of the inverse lattice spacing and
the dots indicate the remaining directions on the hypercubic
lattice.
For the quadratic terms we will as a first approximation

keep only the terms that are leading order in N . Therefore,
the quadratic terms are identical to those in the absence of an
impurity

H bulk
2 = 1

2

∑
�k

{A�ka
†
�ka�k + B�ka�ka−�k + H.c.}, (16)

where A�k = JSZ(cos 2θ − γ�k sin
2 θ )+ B sin θ = JSZ

(1− γ�k sin
2 θ ) and B�k = JSZ cos2 θγ�k which are also

known from standard spin-wave theory.17 The neglected
quadratic impurity terms can, in principle, lead to a
renormalization of the overall magnitude in the local order
around the impurity. However, this effect is known to be
surprisingly small from numerical studies,18 so that we
can omit those terms for now in order to calculate the
magnetization around the impurity. We will include them
later when considering the magnetization of the impurity spin
itself.
The quadratic term can be diagonalized by the canonical

transformation

a�k = u�kb�k + v�kb
†
−�k, (17)

which results in the quadratic Hamiltonian

H bulk
2 =

∑
�k

ω�kb
†
�kb�k + 1

2

∑
�k
(ω�k − A�k), (18)

where ω�k =
√

A2�k − B2
�k which becomes

ω�k = JSZ
√
(1− γ�k)(1+ cos 2θγ�k). (19)

The transformation coefficients obey u2�k − v2�k = 1, u2�k + v2�k =
A�k/ω�k , and 2u�kv�k = −B�k/ω�k .
Using the quadratic bulk Hamiltonian we can calculate the

following expectation values:

δ = 〈aiai〉 = 1

N

∑
�k

u�kv�k,

� = 〈aiaj 〉 = 1

N

∑
�k

γ�ku�kv�k,

(20)

m = 〈a†
i aj 〉 = 1

N

∑
�k

γ�kv
2
�k ,

n = 〈a†
i ai〉 = 1

N

∑
�k

v2�k

for nearest-neighbor sites i and j . Note that the bulk nature
of the quadratic term dictates that these expressions do not
depend on i and j . At this stage we truncate higher-order terms
in the Hamiltonian. Therefore we have reduced the problem
to a solvable bulk Hamiltonian in Eq. (16) together with an
impurity term in Eq. (15).

III. MAGNETIZATION AWAY FROM THE IMPURITY

The magnetization in the direction of the field Mz
i = 〈Sz

i 〉
is

Mz
i = 〈

S ′x
i

〉
cos θi + 〈

S ′z
i

〉
sin θi . (21)

Expressed in terms of bosons the above expression is up to
quadratic order

Mz
i ≈ sin θi(Si −〈a†

i ai〉)+ cos θi

√
Si

2
(〈a†

i 〉+〈ai〉). (22)

To calculate these expectation values in the presence of the
impurity we perform a shift of the boson operators

ai → ai + αi (23)

so as to get rid of the remaining linear terms in the Hamiltonian
in Eq. (15). This is equivalent to a site-dependent variation of
the angle θi . The impurity-induced shift is given by

αi = − C

N

∑
�k

γ�k
A�k + B�k

ei�k·�ri . (24)

For future convenience we parametrize

A�k + B�k = f (1+ gγ�k) (25)

in terms of constants f and g which to leading order in 1/S
are obtained from Eq. (16); f = JSZ and g = cos 2θ .
Shifting the boson operators gives the following expression

for the magnetization:

Mz
i ≈ sin θi(Si − |αi |2 − 〈a†

i ai〉)+
√

Si

2
cos θi(α

∗
i + αi).

(26)

054423-3
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Since the shift of the boson operators has eliminated the linear
terms, we can now use the usual bulk theory to calculate the
corresponding expectation value n = 〈a†

i ai〉 in Eq. (20). Thus
the magnetization takes the form

Mz
i ≈ sin θ (S− |αi |2− n)+

√
S

2
cos θ (α∗

i + αi), i �= 0.

(27)

As is shown in the Appendix, αi is real and changes
sign depending on which sublattice i belongs with ei �Q·�r =
(−1)xi+yi+zi , where �Q = (π,π,π ) is the antiferromagnetic
wave vector. Here we have specialized to the cubic lattice.
The case of the quadratic lattice can be obtained by setting
zi = 0 and �Q = (π,π ). With this oscillating behavior it is
convenient to write αi = (−1)xi+yi+zi α̃i and to divide the
magnetization into an alternating and a nonalternating part.
Using the assumption that α̃i does not vary rapidly, the
alternating (nonalternating) magnetization on site i is obtained
by taking half of the magnetization on an odd sublattice
site i and subtract (add) half of the magnetization on the
neighboring even sublattice sites surrounding site i. Therefore,
the nonalternating part takes the form

Mz
nalt,i = sin θ

(
S − n − α̃2i

)
, (28)

which will decay rapidly to its uniform bulk value. This
nonalternating part is not our primary focus here. Instead we
will focus on the alternating part which does not decay as
rapidly. To leading order the alternating magnetization is

Mz
alt,i = −

√
2S cos θα̃i, (29)

thus α̃i dictates its behavior. The sum in Eq. (24) can be carried
out by expanding the integrand about the minimum of the
denominator which is at the antiferromagnetic point �Q, as
shown in the Appendix. Carrying out this expansion for the
case i �= 0, we get in D = 2 and D = 3 dimensions.

α̃i ≈ CZ

2πfg2

⎧⎨
⎩

K0(ri/d), D = 2

e−ri /d/(2ri), D = 3
, i �= 0, (30)

where ri = √
x2i + y2i + z2i is the distance from the impurity in

units of the lattice spacing andK0 is the zeroth-order modified
Bessel function of the second kind which decays as e−ri /d/

√
ri

for large arguments. The characteristic decay scale is

d =
√

g

Z(1− g)
(31)

in both cases. The result in Eq. (30) is the main result of this
section for the induced magnetization by the general impurity
model, which will be compared to Monte Carlo results in
the following. Note that the shape and the decay scale d are
universal and only depend on properties of the host magnet in
the bulk. Only the constant prefactor C in Eq. (13) depends on
impurity properties S0, J0, and B0. With the expression g =
cos 2θ , the decay constant is d = [cos 2θ/(2Z sin2 θ )]1/2.
In Fig. 3 we have plotted a comparison of Mz

alt calculated
using the expressions in Eqs. (29) and (30) and results from a
QMCsimulation. TheQMCsimulationswere carried out using
the stochastic series expansion technique19 using directed-loop

0 20
r

0.0001

0.001

0.01

0.1

1

m
al

t
FIG. 3. (Color online) Mz

alt vs distance from the impurity r on
the square lattice. The circles are quantum Monte Carlo data, while
the dashed line (red) is a plot of the analytic result (29) using g =
cos 2θ . The result where we have taken into account 1/S corrections
for A�k + B�k is shown as the solid line (green). Here S = S0 = 1/2,
Z = 4, B = B0 = 0.4J , and J0 = 0.1J .

updates20 at a low temperature T/J = 0.05 on a 128× 128
square lattice. As can be seen from Fig. 3 , the leading-order
analytical result decays faster than the QMC result. However,
the decay d depends crucially on the exact expression for
A�k + B�k which we have approximated with its leading-order
value d = [cos 2θ/(2Z sin2 θ )]1/2. In fact, we can do better by
including 1/S corrections. Taking into account 1/S corrections
to A�k + B�k and to the angle sin θ , we get

A�k + B�k = JSZ

[
1− 2n + 2� + m

2S
− sin2 θ

m + �

2S

+ γ�k

(
cos 2θ − 2n + 2m + 2� + δ

2S

− sin2 θ
2n + 2m + 2� − δ

S

)]
. (32)

This result can also be inferred from Ref. 17. The 1/S
corrections give modified expressions for the constants f and
g, which lead to better agreement with the S = 1/2 Monte
Carlo data in Fig. 3 . For higher spin S of the embedding lattice
we expect that the 1/S corrections become less important,
and the decay d

√
Z will depend only on the scaling variable

B/SZJ . By also allowing another classical angle θ1 for the
impurity nearest-neighbor spins the agreement with QMC
close to the impurity site can be improved at the expense of
havingmore complicated analytic expressions. To connect our
result in Eqs. (29) and (30) to that obtained in Ref. 15 for the
induced magnetization around a vacancy (J0 = 0) we observe
that for �k close to �Q but |�k − �Q| > [8 sin2 θ/ cos 2θ ]1/2 the
dispersion equation (19) is linear with a spin-wave velocity
c = 2JS

√
2 cos 2θ . In the limit B → 0 this becomes the

well-known leading-order spin-wave theory result for the
spin-wave velocity of an antiferromagnet. Combining this with

054423-4



SPIN-WAVE CALCULATION OF THE FIELD-DEPENDENT . . . PHYSICAL REVIEW B 83, 054423 (2011)

Eq. (9) we see that the decay constant of Ref. 15 becomes
c/B = [cos 2θ/(8 sin2 θ )]1/2, which equals the leading-order
result for the decay constant d. Similarly, we can compare the
factor multiplying the Bessel function K0. In the case of a
vacancy J0 = 0 our expression for C = −(S/2)1/2B cos θ so
that the prefactor becomes

−
√
2S cos θ

C

2πfg2
≈ B

2πJ
, (33)

where we have used f = JSZ and g = cos 2θ and approxi-
mated cos θ ≈ 1 which is valid for low magnetic fields. This
is to be compared to the expression mmaxSB/(2πρs) obtained
in Ref. 15. When inserting the leading-order expressions
mmax = S, ρs = JS2 we see that the two results become equal.
For larger fields the use of the renormalized zero-field spin-

wave velocity c in Ref. 15 is not so natural, however. As the
decay depends heavily on the behavior of A�k + B�k around�k = �Q, where the dispersion is quadratic in a finite field, it
is more natural to relate the decay constant to the effective
mass of this minimum. For finite but not too large fields the
dispersion around �Q can be written ω�k = B + �k2

2m , where the

effective mass is m = 2Z sin2 θ
B cos 2θ . It is then straightforward to

see that the leading-order decay constant can also be written
d = 1/

√
Bm.

While the decay of the induced alternating magnetization
pattern is governed by the properties of the uniformmagnet, the
magnitude of the alternating magnetization is given in terms
of the prefactor C in Eq. (13), which depends on impurity
properties, as shown in Figs. 4 and 5. For impurity spin
S0 = 1/2 and coupling 0 < J0 < 1, the prefactorC is negative
and rather small. For J0 = J it vanishes completely because it
corresponds to the uniform case. For ferromagnetic couplings
J0 < 0, |C| gets larger with increasing magnetic field B/J .
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-0.4

0

0.4

C
/J

-2 -1 0 1 2
J

0
 /J
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0.4

C
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0.1
0.2

0.4

0.8

0.1
0.2

0.4

0.8

S
0
=1/2

S
0
=1

FIG. 4. (Color online) C/J vs impurity coupling J0 for impurity
spin S0 = 1/2 (upper panel) and S0 = 1 (lower panel) for different
values of the magnetic field B/J indicated by the numbers above
each curve on the left side. Here S = 1/2, Z = 4, and B0 = B.

0 0.2 0.4 0.6 0.8 1
B/J

-0.4

0

0.4

C
/J

(1,1)

(1,0.1)

(1/2,0.1)

(1/2,0)

(1/2,-1)

(1,-1)

FIG. 5. (Color online) C/J vs magnetic field B/J for different
values of the impurity spin and coupling denoted by (S0,J0). Here
B0 = B, S = 1/2, and Z = 4.

Thus we expect a substantial induced alternating magne-
tization pattern for ferromagnetically coupled impurities.
Note, however, that when the field gets larger the magneti-
zation pattern decays faster with distance from the impurity.
For an S0 = 1 impurity, |C| is no longer necessarily small
for antiferromagnetic couplings and it changes sign at a small
positive value of J0/J . The sign change signals a sublattice
change in the magnetization pattern as indicated in Fig. 6,
where for a ferromagnetic impurity the magnetization follows
the pattern shown in Fig. 6(a). This pattern extends also
to weak antiferromagnetic couplings up to a critical value
of J0 that depends on the magnetic field where it becomes
favorable to interchange the orientation of magnetization on
the two sublattices while keeping the impurity spin oriented
along the field. This results in the pattern shown in Fig. 6(b).
For large values of B/J and for all couplings except large
antiferromagnetic ones, |C| increases linearly with field
strength B/J , as shown in Fig. 5. For S0 = 1 and a small
antiferromagnetic coupling J0,C changes sign as the magnetic
field is increased (see second curve from the top in Fig. 5).
Thus a change in the sublattice rearrangement in Fig. 6 can
also happen for a fixed J0 as the magnetic field is varied. The
exact point where C reverses sign is special, because when
C = 0 the spin-1 impurity appears to have no effect on the
host spins of the surrounding antiferromagnet. Therefore, the
field and/or the coupling can be tuned in such a way that the
impurity becomes almost invisible to the bulk, i.e., very little
scattering occurs.
For high spin S of the embedding lattice and not too large

magnetic field, the prefactor of the alternating magnetization
becomes

−
√
2S cos θ

CZ

2πfg2
≈ BS − B0S0ν0

2πJS
+ O(S−2), (34)

thus it approaches a constant as S → ∞.
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(b)(a)

FIG. 6. Orientations of the magnetization close to the impurity.
The impurity spin is the middle circle. Open circles indicate that
the magnetization is pointing along the applied magnetic field,
while filled circles indicate the opposite orientation. (a) C < 0 and
(b) C > 0.

IV. MAGNETIZATION OF THE IMPURITY SPIN

At the impurity site the leading-order magnetization is
obtained by the classical expression

Mz
0 = S0 sin θ0. (35)

For S0 = 1/2 and J0 > 0 this gives reasonable agreement with
the QMCdata, as is seen in Fig. 7. However, for other spins and
ferromagnetic couplings J0 < 0, the result is rather far from
that of the QMC result. Thus it is necessary to also take into
account the quantum corrections to Eq. (35). However, these
quantum corrections are difficult to calculate analytically. This
is because for the impurity itself it is necessary to include
explicitly the bilinear terms connecting the impurity site to its
neighbors, in addition to the quadratic bulk part in Eq. (18).
These impurity terms induce nonlocal interactions in k space,
thus an analytic diagonalization becomes difficult. In order
to solve this we will instead numerically diagonalize the
quadratic boson Hamiltonian as described below, which gives
much better results, as shown in Fig. 7. As this method is
numerical there is no need for the restriction of keeping only
two angles θ0 and θ . Thus we will instead keep track of all
the angles θi . This has the consequence that all linear boson
terms vanishwhen using the values of the angles obtained from
minimizing the zeroth-order term, as will be shown below.
As a function of all angles θi , the zeroth-order term is

H0 =
∑
〈ij〉

−|Jij |SiSj cos(θi + νij θj )−
∑

i

BiSi sin θi,

(36)

where we have used the minimization condition for the φ’s.
Minimizing H0 with respect to θi , we find∑

j=ei

|Jij |Sj sin(θi + νij θj )− Bi cos θi = 0, (37)

where the sum is restricted to run over the nearest neighbors
ei of site i. This condition is equivalent to the equation

tan θi =
Bi − ∑

j=ei

Jij Sj sin θj∑
j=ei

|Jij |Sj cos θj

. (38)
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J
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/J
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FIG. 7. (Color online) Magnetization at the impurity site for a
spin-1/2 impurity coupled to a bulk spin-1/2 antiferromagnet by a
coupling J0. The filled black circles are results from quantum Monte
Carlo simulations. The dashed line (green) is the classical result
coming from Eq. (35), and the solid line (red) is the numerical spin-
wave result.

The operators S ′x
i S ′z

j , S ′z
i S ′x

j , and the magnetic field term in
Eq. (7) give the linear terms of the Hamiltonian,

H1 =
∑
〈ij〉

(
|Jij |

√
Si

2
Sj sin(θi + νij θj )(ai + a

†
i )+ (i ↔ j )

)

−
∑

i

Bi

√
Si

2
cos θi(ai + a

†
i )

=
∑

i

√
Si

2
(ai + a

†
i )

×
(∑

j=ei

|Jij |Sj sin(θi + νij θj )− Bi cos θi

)
. (39)

By comparing this to Eq. (37) we see that the minimization of
the constant terms leads to the vanishing of the linear terms.
The quadratic terms are

H2 =
∑
〈ij〉

Jij

√
SiSj

4
[cos(θi + νij θj )− νij ](a

†
i aj + a

†
j ai)

+ Jij νij cos(θi + νij θj )(Sja
†
i ai + Sia

†
j aj )

+ Jij

√
SiSj

4
[cos(θi + νij θj )+ νij ](aiaj + a

†
i a

†
j )

+
∑

i

Bi sin θia
†
i ai, (40)

which can be written in the form

H2 =
∑
ij

(a†
i Aij aj + aiA

∗
ij a

†
j + a

†
i Bij a

†
j + aiB

∗
ij aj )+ G,

(41)
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where the constants are

G = −
∑

i

(
Bi

2
sin θi +

∑
j=ei

Jij

2
νij cos(θi + νij θj )Sj

)
,

(42)

Aij = Jij

√
SiSj

4
[cos(θi + νij θj )− νij ]δ〈ij〉

+
(

Bi

2
sin θi +

∑
k=ei

Jik

2
νikSk cos(θi + νikθj )

)
δij ,

(43)

and

Bij = Jij

√
SiSj

4
[cos(θi + νij θj )+ νij ]δ〈ij〉, (44)

where δ〈ij〉 is 1 when i and j are nearest neighbors and zero
otherwise.
In order to numerically diagonalize Eq. (41) we will first

find the numerical values of the θi’s by solving Eq. (38).
This is achieved by the relaxation method where the boundary
condition is specified as sin θboundary = B/2SZJ and an initial
guess for the angles on other sites is made as indicated in
Fig. 8. Then the lattice is traversed site by site and new
angles are computed using Eq. (38). This step is repeated until
convergence. It is known that this procedure converges slowly.
However, for typical lattice sizes (28× 28) used here this is
not an issue of practical importance. Having determined the
angles numerically we proceed to diagonalize the quadratic
Hamiltonian.
We begin by forming the 2N column vector a =

(a1,a2, . . . ,aN ,a
†
1,a

†
2, . . . ,a

†
N )

T , where we have numbered the
lattice sites in a consecutive fashion from 1 through N . The
components of a obey the commutation relation

[
ai ,a

†
j

] = ηij ,

FIG. 8. Geometry of a 6× 6 lattice. The open circles mark sites
where the boundary condition is imposed. The filled circles are sites
where the angles are being calculated. The small circle is the impurity
site. Periodic boundary conditions are used.

where η =
(
1N×N 0
0 −1N×N

)
. With this notation the quadratic

Hamiltonian takes the form

H = a†Da, (45)

whereD is the 2N × 2N matrixwith entries from the quadratic
part of the Hamiltonian

D =
(

A B

B∗ A∗

)
. (46)

We seek a 2N × 2N Bogoliubov transformation matrix t that
transforms a into new bosonic operators b: a = tb. In order for
the entries of b to obey bosonic commutation rules the matrix
t must obey

η = tηt†. (47)

Inserting a = tb into the Hamiltonian (45) we seek a t that
fulfills the commutation condition (47) and that makes t†Dt =
E where E is diagonal. However, it is not always possible to
find such a diagonal matrix. When the Hamiltonian contains
zero modes associated with a continuous spectrum one will
never be able towrite the free-particle operatorp2 as a b†b term
alone. However, such a term can always be written as b†b +
bb† − bb − b†b† with the proper rescaling of operators. Thus
we will seek a matrixE that is almost diagonal in the sense that
for massive modes it only has entries along the diagonal, while
the continuous parts of the spectrum are represented by 1s or
−1s in appropriate places. More specifically, we are seeking a
matrix t that makes t†Dt into a 2N × 2N matrix E of the form

E =

⎛
⎜⎜⎜⎜⎜⎝

Ee

0z̄ 0z̄

Iz Jz

Ee

0z̄ 0z̄

Jz Iz

⎞
⎟⎟⎟⎟⎟⎠, (48)

whereEe is a diagonal e × ematrix of positive energies which
represents the discrete harmonic oscillator energies associated
with e gapped modes. Here 0z̄ is a z̄ × z̄ matrix of zeros that
represents z̄ proper zero modes where the harmonic oscillator
energy is zero, Iz and Jz are describing the z improper zero
modes associated with a continuous free-particle spectrum, Iz

is a z × z diagonal unitmatrix, andJz is a z × z diagonalmatrix
with diagonal entries either +1 or −1. The sign distinguishes
between operators of the type x2 andp2. Empty entries indicate
zeros. The procedure of finding such a t is outlined in detail
in Ref. 21. We have implemented this on a computer and find
that the procedure works very well.
In the absence of linear terms the magnetization is given to

quadratic order by

〈Sz
i 〉 = sin θi(Si − 〈a†

i ai〉). (49)

The value of sin θi is known from the minimization of
the classical term, and 〈a†

i ai〉 can be obtained from the
transformation matrix t. Without loss of generality the matrix
t can be written

t =
(

U V ∗
V U ∗

)
, (50)
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where U and V are N × N matrices. Then the expectation
value 〈a†

i ai〉 is
〈a†

i ai〉 =
∑
jk

(U ∗
ijUik〈b†j bk〉 + VijV

∗
ik〈bjb

†
k〉

+ U ∗
ijV

∗
ik〈b†j b†k〉 + VijUik〈bjbk〉). (51)

We will compute the expectation value in a state with low
energy. For massive modes we pick the ground state to be
the vacuum state and then only the second term contributes
〈bjb

†
k〉 = δjk . The situation is not so simple for the improper

zero modes. An improper zero mode b†b + bb† ± bb ± b†b†
can be written as the momentum-squared operator 2p2 (the
minus sign) or the position-squared operator 2x2 (the plus
sign) using b = 1√

2
(x + ip) and b† = 1√

2
(x − ip). Thus it is

clear that its spectrum is continuous.
For each improper zeromodewe choose instead to compute

the expectation value in a Gaussian state22 characterized by a
width w. Specifically,

ψ(x) =
(
1

πw2

)1/4
e−1/2(x/w)2 . (52)

In this state the expectation values of the energies are

〈p2〉 = 1
2w

−2, (53)

〈x2〉 = 1
2w

2, (54)

while the expectation values of the operators needed in 〈a†
i ai〉

are

〈b†b〉 = (w2 + w−2 − 2)/4, (55)

〈bb†〉 = (w2 + w−2 + 2)/4, (56)

〈b†b†〉 = 〈bb〉 = (w2 − w−2)/4. (57)

Using this the expectation value 〈a†
i ai〉 takes the form

〈a†
i ai〉 =

∑
j∈e

|Vij |2 +
∑
j∈z

1

4

(
w2

j |U ∗
ij + Vij |2

+ 1

w2
j

|U ∗
ij − Vij |2 − 2 (|Uij |2 − |Vij |2

) )
. (58)

We will refer to the last sum in the above as the zero mode(s)
contribution, and we have allowed for a separate width wj

for each improper zero mode. We will choose values of wj

so that the total energy of the improper zero modes is equal
to that of the lowest finite-energy mode. This choice is made
to avoid divergences and at the same time still justify calling
them zero-energy modes. In our case, in the presence of a
magnetic field, there is only one improper zero mode, and
it turns out that the precise value of the w is not important
quantitatively for the z-axis magnetization. In all cases we
have looked at here, the zero mode contribution is negligible
and we might as well neglect it completely. This is in contrast
to the one-dimensional case, where the zero modes dominate
and are responsible for the divergences of spin-wave theory in
the infinite volume limit.

The results from this numerical diagonalization on a
28× 28 lattice are shown in Fig. 7 for S0 = 1/2 alongside
the classical result and results from QMC simulations for the
square lattice at a fixed value of the magnetic fieldB/J = 0.4.
Figure 9 is similar but for S0 = 1.
The numerical diagonalization restricts the system size

L � 28. One may ask whether this is adequate to represent
the infinite size behavior. We expect that it is as long as the
decay length of the alternating magnetization d  L. For
the magnetic field B = 0.4J , d = 3.5. Thus we expect that
L = 28 is large enough to essentially capture the infinite size
limit. We have checked this by performing QMC simulations
of the magnetization for different system sizes ranging from
L = 4 to L = 96 using the magnetic field B = 0.4J . We find
that the magnetization depends roughly linearly on L for
L � 12 at which it saturates rapidly. At L = 28 the values
of the magnetization differ by the extrapolated infinite size
values by roughly 1%.
From Fig. 7 one can see that the numerical diagonalization

procedure compares much more favorably to the QMC data
than the classical result does. Especially for antiferromagnetic
J0, the agreement is very good. For large ferromagnetic J0
the agreement is worse, which we believe is related to the
truncation of the Hamiltonian at quadratic order in boson
operators. The main feature of the curves is a maximum
at J0 = 0 which reflects the trivial fact that an uncoupled
(isolated) impurity will point along the magnetic field. In fact,
the impurity spin will point along the field for most couplings
except very large antiferromagnetic J0 for S0 = 1/2.
For sites in the neighborhood of the impurity we can also

compare the analytic and the numerical spin-wave calculations

-4 -2 0 2 4
J

0
/J

0

0.2

0.4

0.6

0.8

1

M
0z

FIG. 9. (Color online) Magnetization at the impurity site for a
spin-1 impurity coupled to a bulk spin-1/2 antiferromagnet by a
coupling J0. The filled black circles are results from quantum Monte
Carlo simulations. The dashed line (green) is the classical result
coming from Eq. (35), and the solid line (red) is the numerical spin-
wave result.
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FIG. 10. (Color online) Magnetization as a function of horizontal
distance xi from the impurity site as calculated by QMC (solid
circles), numerical spin waves (triangles), and the analytic spin-wave
theory (squares).S0 = 1/2,S = 1/2, andB = B0 = 0.4J . The colors
are for different values of J0/J = −2 [solid (black)], 0 [long dashed
(red)], 0.1 [dashed (green)], and 0.5 [dot-dashed (blue)]. QMC error
bars are smaller than the size of the solid circles, and both the QMC
and the numerical spin-wave calculations are carried out on a 28× 28
lattice.

to the QMC results. In Fig. 10 we show the magnetization for
an S0 = 1/2 impurity at different positions (xi,yi = 0) close
to the impurity. The different lines are for the various values
of the impurity coupling J0 and the different symbols indicate
the method used. In comparing the methods we see that the
analytic result lies reasonably close to the QMC data except
for the nearest-neighbor point where the numerical spin-wave
calculation gives a better approximation to the QMC data. For
a fixed value of J0 one can see that the magnetization exhibits
a predominantly alternating pattern with a magnitude that is
largest for ferromagnetic couplings J0 < 0, as predicted in
Fig. 4. As the ferromagnetic coupling J0 becomes smaller, the
magnetization of the impurity spin increases (Fig. 7), while
the surrounding pattern is not much affected. On the antiferro-
magnetic side, J0 > 0, the magnetization of the impurity spin
decreases accompanied also by a decrease in the amplitude
of the magnetization oscillation away from the impurity. At
J0 = J the oscillation pattern vanishes completely. For strong
antiferromagnetic couplings J0 > J there is almost no induced
magnetization on the sites surrounding the impurity, but the
magnetization of the impurity spin becomes smaller than the
average magnetization and can even become negative for
strong enough J0.
For the S0 = 1 impurity the magnetization pattern around

the impurity is shown in Fig. 11. Again the oscillations are
large for ferromagnetic J0. As J0 → 0 themagnetization of the
impurity spin increases, while the oscillating pattern around
it decreases. Then as J0 becomes antiferromagnetic the mag-
netization oscillations increase again, but now the sublattice

1 2 3 4 5 6 7 8
x

i

-0.1

0

0.1

0.2

0.3

M
z

FIG. 11. (Color online) Magnetization as a function of horizontal
distance xi from the impurity site as calculated by QMC (solid
circles), numerical spin waves (triangles), and the analytic spin-wave
theory (squares). S0 = 1, S = 1/2, and B = B0 = 0.4J . The colors
are for different values of J0/J = −1 [solid (black)], 0 [long dashed
(red)], 0.2 [dashed (green)], and 1 [dot-dashed (blue)]. QMC error
bars are smaller than the size of the solid circles, and both the QMC
and the numerical spin-wave calculations are carried out on a 28× 28
lattice.

pattern has changed to the pattern in Fig. 6(b), consistent with
the fact that C changes sign in Fig. 4. The amplitude of the
oscillations saturates as J0 becomes even stronger.

V. DISCUSSION

We have presented results for the magnetization around a
general impurity in a Heisenberg spin-S antiferromagnet in
a magnetic field. Away from the impurity we find that the
induced magnetization is dominantly a staggered magnetiza-
tion in the field direction. We have calculated this alternating
magnetization, and our results are in reasonable agreement
with extensive QMC simulations that we have also carried
out. One important feature of the spin-wave result is that
the parameters of the impurity model only affect the overall
prefactor C of the magnetization, while the scale and shape of
the decay are universal and only reflect the properties of the
host magnet and the applied field. We have analyzed how the
prefactor C depends on impurity properties and found that
the effect on the alternating magnetization is largest for ferro-
magnetically coupled impurities and generally increases with
magnetic field. In order to calculate the magnetization at the
impurity sitewe have described in detail how to diagonalize the
quadratic spin-wave Hamiltonian numerically. This approach
agrees well with the QMC calculations and we have outlined
how the magnetization of the impurity spin depends on the
coupling strength of the impurity to its neighbors.
In summary, the results can be used to predict the detailed

local magnetization pattern around general magnetic and
nonmagnetic impurities in isotropic antiferromagnets, e.g.,
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from doping Zn, Co, and Ni in copper-oxide antiferromagnets.
In most real materials the effects from crystal fields and other
anisotropies are also important, but our calculations provide
the first step, before other possible terms in the Hamiltonian
are taken into account.
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APPENDIX: SUM

The sum

I = 1

N

∑
�k

γ�k
1+ gγ�k

ei�k·�r (A1)

for �r �= 0 can be written

I = 1

gN

∑
�k

1+ gγ�k − 1
1+ gγ�k

ei�k·�r = − 1

gN

∑
�k

1

1+ gγ�k
ei�k·�r .

(A2)

This sum can be calculated by expanding the denominator
about the antiferromagnetic point �Q = (π,π,π ). Shifting the
�k summation �k → �k + �Q and expanding the denominator to
order �k2 we get

I ≈ −ei �Q·�r

g

1

N

∑
�k

ei�k·�r

1− g + g�k2/Z , (A3)

where Z is the coordination number of the lattice. This can
also be written

I ≈ −Zd2ei �Q·�r

g2

1

N

∑
�k

ei�k·�r

1+ d2�k2 , (A4)

where d =
√

g

Z(1−g) . The sum is calculated by transforming it

into an integral and using polar coordinates

1

N

∑
�k

ei�k·�r

1+ d2�k2 = 1

2πd2

{
K0(r/d), D = 2

e−r/d/(2r), D = 3,
(A5)

where K0 is the zeroth-order modified Bessel function of the
second kind. Putting this together we get

I ≈ −Zei �Q·�r

2πg2

{
K0(r/d), D = 2

e−r/d/(2r), D = 3,
(A6)

where ei �Q·�r = (−1)xi+yi+zi .
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