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Summary

The first part of this thesis deals with cuspidal curves on Hirzebruch surfaces. Bounds
are given on the number and type of cusps on cuspidal curves, and rational cuspidal
curves are constructed using birational transformations.

The second part of this thesis deals with Segre classes of closed subschemes of
smooth projective toric varieties. An algorithm for computing Segre classes of closed
subschemes of projective spaces is generalized to an algorithm for computing Segre
classes of closed subschemes of smooth projective toric varieties.
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Notation

N denotes the natural numbers.
Z denotes the integers.
R denotes the real numbers.
C denotes the complex numbers.
Pn denotes the complex projective n-space.
Fe denotes the eth Hirzebruch surface, e ≥ 0.
P1 × P1 := F0.
�a� is the largest integer ≤ a.
�a	 is the smallest integer ≥ a.
V denotes the zero set in Part I.
V denotes the zero set in Part II.
Fx denotes the partial derivative of the polynomial F with respect to the variable x.
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Introduction

Given an algebraic curve in some ambient space, determining its possible number and
types of singularities are classical tasks in geometry. The number and types of singu-
larities on a curve are bounded by fundamental invariants of the curve and structural
properties of the ambient space. Nevertheless, there are still open problems concerning
the classification of algebraic curves up to its number and type of singularities. Re-
stricting to curves with only unibranched singularities, so-called cuspidal curves, the
classification is still not complete, even for rational curves on the complex projective
plane. The main aim of this thesis is to give examples of rational cuspidal curves on
complex Hirzebruch surfaces, and to provide first results in the classification of such
curves.

The classification of cuspidal curves on the complex projective plane begins with the
construction of curves of low degree. From the late 19th and early 20th century there
are impressive systematical constructions of curves of low degree with prescribed sin-
gularities. One early comprehensive collection of such curves can be found in [59] by
Salmon, and plane rational curves of degree three and four are thoroughly explained
by Telling in [63]. While these results on curves of degree three and four are quite
complete, the early attempts to construct and classify cuspidal curves of degree five or
higher are more rare and mostly incomplete. Curves of degree five are described by
Slobin in [61], but only curves with particularly simple cusps, so-called ordinary cusps,
appear in this article. Moreover, there are articles describing examples of curves of
degree five with many cusps, see for example [13] by del Pezzo and [19, 20] by Field.
There are also articles on curves with very peculiar cusps, see [79] by Yoshihara. The
first complete classification of cuspidal curves of degree five that we have found, in
particular the first complete list of rational cuspidal curves of degree five, is by Namba
in [49] from as late as 1984, see also [22] by Flenner and Zaidenberg and [76] by Wall.
The list of plane rational cuspidal curves of degree five is quite short, but it contains
several interesting curves, the most exceptional being a curve with four cusps. In higher
degrees, we only know the complete classification up to the types of singularities in the
case of plane rational cuspidal curves of degree six, provided by Fenske in [16].

From the late 19th and early 20th century there are also results estimating the
maximal number of singularities on a curve on the complex projective plane. There is
a vast number of articles on this subject, and there are also a few results on the maximal
number of cusps on a curve. A first result relevant to our situation is given by Clebsch
in [8], where the maximal number of ordinary cusps on a rational, not necessarily
cuspidal, curve is determined. This result is independently found by Veronese in [73],
using the theory of projections. In [78] Wieleitner restricts this result to a bound on the
number of ordinary cusps on a rational cuspidal curve. Subsequently, in [38] Lefschetz
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gives an exact upper limit for the number of ordinary cusps on a curve of any genus,
where again the curve is not necessarily cuspidal. Fundamental to all these estimates
are the famous formulas by Plücker [56], and the bounds depend on the degree of the
curve.

The study of plane cuspidal curves becomes more interesting in the late 20th cen-
tury, following the appearance of several articles that connect other topics in algebraic
geometry to these curves. In [74] Wakabayashi links the theory of open surfaces to
the complements of plane curves, with particularly interesting results for curves with
several cusps. In [21] Flenner and Zaidenberg study a special class of open surfaces,
surfaces that for example appear as complements of plane rational cuspidal curves.
Moreover, in [42] Matsuoka and Sakai compare the degree of a rational cuspidal curve
and the maximal multiplicity of its cusps, and the result hints to a specialized version
of the unsettled conjecture from the middle of the 20th century bearing the name of
Coolidge and Nagata, see [9, 42, 48].

Conjecture (Coolidge–Nagata). Every plane rational cuspidal curve can be trans-
formed to a line by a birational transformation.

The turning point in the study of plane rational cuspidal curves comes in 1994,
when Sakai poses two unsolved problems on cuspidal curves [30]. The two tasks at
hand are first to classify all rational and elliptic cuspidal plane curves, and second to
find the maximal number of cusps on a rational cuspidal plane curve. The formulation
of the two problems dramatically increases the interest in rational cuspidal curves.
The announcement of the problems is followed by a series of articles by many different
authors, the most active being Fenske, Flenner, Orevkov, Tono and Zaidenberg, where
rational cuspidal plane curves with a certain number or certain kinds of cusps are
constructed. In particular, three series of curves with three cusps are constructed using
birational transformations by Fenske in [16], and Flenner and Zaidenberg in [22, 23].
Some years later, an upper bound on the number of cusps for a cuspidal plane curve
of any genus is found by Tono in [68]. This upper bound is in fact only dependent on
the genus of the curve, and for plane rational cuspidal curves the maximal number of
cusps is merely eight. The last powerful result on Sakai’s problems is a computer based
exclusion of curves by Piontkowski in [55]. The result says that up to degree 20, under
an additional requirement that is conjectured to hold, there are no other plane rational
cuspidal curves with three or more cusps than the ones in the mentioned three series
and two curves of degree five with three and four cusps respectively. This observation
leads to the following conjecture [55].

Conjecture. A plane rational cuspidal curve can not have more than four cusps. If it
has three or more cusps, then it is either a curve of degree five or in one of the three
series of rational cuspidal curves with three cusps.

This thesis grew out of an attempt to find an answer to the above problems. In
the process we realized that it would be interesting to instead study cuspidal curves
on surfaces related to the projective plane, and reformulate the problems in this new
setting. Although we study cuspidal curves of any genus, our main question is restricted
to the rational cuspidal curves.
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Question. How many and what kind of cusps can a rational cuspidal curve on a
Hirzebruch surface have?

The Hirzebruch surfaces are rational ruled surfaces, including the doubly ruled surface
P1 × P1, and these surfaces are linked to the projective plane by birational transfor-
mations. Moreover, the Hirzebruch surfaces can be considered as toric varieties with
homogeneous coordinate rings, and a curve on one of these surfaces can be given as
the zero set of a polynomial in the corresponding homogeneous coordinate ring. With
this in mind, we approach the cuspidal curves on the Hirzebruch surfaces from three
angles. We first generalize the abstract results given for cuspidal curves on the projec-
tive plane. Second, we find bounds and restrictions on the possible number and types
of cusps on a curve using properties of the defining polynomial of the curve. Third, we
focus on rational cuspidal curves and use plane rational curves to construct examples
of rational cuspidal curves on the Hirzebruch surfaces using birational transformations.

To our knowledge there is very little previous work on cuspidal curves on Hirzebruch
surfaces. In fact, we have found only two articles, [2] by Ballico and [54] by Piene, that
mention curves with cusps on Hirzebruch surfaces. The topic is treated quite briefly
in these articles, and the curves are studied from a very different point of view than in
this thesis. The results are not considered relevant this time around, but can perhaps
inspire further studies.

In the new setting on the Hirzebruch surfaces, our results resemble the known results
for the cuspidal curves on the projective plane. First, the general approach gives results
parallel to the results on the projective plane. We have found some results concerning
the multiplicity sequences of the cusps on the curves, and we have found a bound on the
number of cusps of a curve of a given genus. The results on the multiplicity sequences
follow from applying general formulas to curves on the Hirzebruch surfaces. The latter
result is found mimicking the theorem and the proof by Tono in [68], and the bound is
on the same form as the bound for plane cuspidal curves, that is, it depends only on
the genus of the curve. Moreover, the bound is independent of the ambient Hirzebruch
surface. In particular, the maximal number of cusps on a rational cuspidal curve on a
Hirzebruch surface is by this theorem fourteen.

Second, closer inspection of the defining polynomial of a curve gives a few minor
results, for example bounds on the multiplicity sequence of a cusp on a curve. In the
case of P1 × P1 there are slightly stronger results following from the symmetry in the
homogeneous coordinate ring of this surface.

Third, the constructions of curves using birational transformations give many series
of rational cuspidal curves with four and three cusps on the Hirzebruch surfaces, but
we do not find any curves with more than four cusps. Furthermore, we observe that we
are able to construct more rational cuspidal curves on the first few Hirzebruch surfaces
than on a general Hirzebruch surface. We can not stress enough that we do not claim
to have found all rational cuspidal curves with four or three cusps on the Hirzebruch
surfaces. However, finding all such curves is itself an interesting task, and we hope
that we have found most of them.

Our main conjecture, based on our results and constructions, is similar to the
conjecture on the projective plane.

Conjecture. A rational cuspidal curve on a Hirzebruch surface can not have more
than four cusps. In particular, if it has four cusps, then it is given in Chapter 3.
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Our findings do not prove any of the above conjectures, neither for the plane curves,
nor for the curves on the Hirzebruch surfaces. They do, however, support the observa-
tion that cuspidal curves on the projective plane and the Hirzebruch surfaces are rare
and that they have few cusps. Moreover, our constructions illustrate that the rational
cuspidal curves on all these surfaces in some sense are related, and they indicate that
plane rational curves of low degree play a crucial role. Since the study of these curves
has not given precise answers to the conjectures, we recognize that perhaps a different
approach to the curves and surfaces is needed to produce the desired results.

Taking one step back, it is possible to discern an enumerative problem from the above
discussion. If we were able to perform some sort of count of the number of curves
with a given number and type of cusps, then we could shed light on some of the above
conjectures. Even more speculatively, we could wish for a situation where we were able
to count curves with a given number of cusps. To prove that a plane rational cuspidal
curve can have at most four cusps, we would then only need to check that the number
of curves with five to eight cusps is zero.

Counting curves on the projective plane of degree d and genus g going through
3d + g − 1 points in general position and having only ordinary nodes as singularities
is a classical task in enumerative geometry. The first results date back to the second
half of the 19th century, but the major breakthroughs on variations of this question
appear in the past two decades. The problem is solved on the projective plane by
Caporaso and Harris [6] in 1998, and it is solved on rational ruled surfaces by Vakil
[72] in 2000. Generally, for an arbitrary surface S with a sufficiently ample line bundle
L , similar counts of the number of nodal curves with divisor class L is calculated
by Tzeng [71] in 2010, after a conjecture by Göttsche [28] from 1998. In particular,
for L sufficiently ample, the number of curves is given as a polynomial in the four
Chern numbers c1(L )2, c1(L )c1(S), c1(S)2 and c2(S). The latter claim is generalized
by Tzeng [40] and Rennemo [57] to counts of curves with any prescribed singularities.
The methods involved in the works of Tzeng and Rennemo are not applicable to our
situation since the approaches only consider counting curves that in some sense are
general enough, while we are interested in counting the sometimes very special cases
of cuspidal curves.

There is still no way known to us of attacking the problem of counting the number
of rational cuspidal curves, neither on the projective plane nor on the Hirzebruch
surfaces, with a prescribed number and type of cusps. However, in the enumerative
setting, intersection theory and Segre classes are important objects coming into play.
Computing Segre classes is therefore the topic of the second part of this thesis.

In [14] from 2011, Eklund, Jost and Peterson give a way of explicitly computing
the Segre classes of a subscheme of a projective space given only the ideal of the
subscheme. The fundamental prerequisites for their algorithm are the straightforward
representation of the Chow ring of projective space, and the fact that a subscheme
is given by an ideal in the homogeneous coordinate ring. In the second part of this
thesis we show that the algorithm of Eklund–Jost–Peterson generalizes to the case of
subschemes of smooth projective toric varieties. This is joint work with Nikolay Qviller.
Our main observations are that the smooth projective toric varieties have manageable
Chow rings, and that a subscheme again is given by an ideal in the homogeneous
coordinate ring of the ambient toric variety. The algorithm is implemented in the
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computer programs Sage and Macaulay2.
Note that since both the projective plane and the Hirzebruch surfaces are examples

of smooth projective toric varieties, the generalization provides Segre classes in a sit-
uation that could prove important for the questions dealt with in the first part of the
thesis.

Cuspidal curves on Hirzebruch surfaces is the title of this thesis, and it is the topic
of Part I. In Chapter 1 we explain the theoretical foundation for concepts that will
appear later on. First, we present general results on properties of cuspidal curves that
are known in the literature. Second, we give a brief introduction to the projective plane
and the Hirzebruch surfaces. Third, we explain the birational transformations linking
these surfaces. This is not original work, and it is included because it provides the
necessary prerequisites to perform the constructions of curves in later chapters and to
construct and investigate curves using suitable computer programs.

In Chapter 2 we give an overview of the results on cuspidal curves on the projective
plane, with particular focus on rational cuspidal curves. We elaborate the conjectures
given in the introduction and present lists of cuspidal configurations of rational cusp-
idal curves. Additionally, we include a construction due to Orevkov [50] of a series of
cuspidal curves that links the theory of toric varieties to cuspidal curves. Our contri-
butions in terms of new results in this chapter restrict to a few comments on inflection
points and real cuspidal curves.

In Chapter 3 we turn our attention to cuspidal curves on Hirzebruch surfaces. This
chapter is the core of the thesis, and where our main results can be found. In this chap-
ter we find general results for cuspidal curves on Hirzebruch surfaces mimicking known
results and proofs on the projective plane. We also construct rational cuspidal curves
with four and three cusps, and we present conjectures for these curves. Additionally,
we provide some minor results for rational cuspidal curves.

In Chapter 4 we take a closer look at the special Hirzebruch surface P1 ×P1. Using
the structure of P1×P1 and a special class of curves we find bounds on the multiplicities
of cusps on curves on this surface. Furthermore, we investigate the rational cuspidal
curves of low bidegree and describe more rational cuspidal curves on this surface.
The images in this chapter are created using surfex [32], in cooperation with Georg
Muntingh.

The topic of Part II and Chapter 5 is Segre classes of subschemes of smooth pro-
jective toric varieties. This article is joint work with Nikolay Qviller. We provide a
generalization of the algorithm of Eklund–Jost–Peterson for computing Segre classes
of closed subschemes of projective spaces. The algorithm is generalized to computing
the Segre classes of closed subschemes of smooth projective toric varieties.

In Appendix A we use Maple [77] and the tools from Chapter 1 to find defining
polynomials for some of the rational cuspidal curves from Chapter 3.

In Appendix B we give the code in Macaulay2 [29] and Sage [62] for the algorithm
to compute Segre Classes of closed subschemes of smooth projective toric varieties
presented in Chapter 5.
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Part I

Cuspidal curves
on Hirzebruch surfaces

1





Chapter 1

Background

This chapter represents the theoretical foundation of this thesis. In this chapter we
make precise what we mean by a cuspidal curve on a surface, define general invariants,
and state relevant properties and results. We first present results on curves and cusps
that will be applied to specific situations in later chapters. Then we set notation and
briefly introduce the projective plane and the Hirzebruch surfaces. Last in this chapter
we describe the birational transformations connecting these surfaces.

1.1 General concepts for cusps, curves and surfaces

In this section we explain what we mean by a cuspidal curve on a surface and give
essential associated definitions and results. The blowing up of a point on a surface and
the minimal embedded resolution of a curve are particularly important tools in this
context, and we recall some of the local invariants and results that can be derived from
these processes. We also recall a few general concepts and results that will be applied
in later chapters.

1.1.1 First definitions and general concepts

We first define the objects of study. By a variety we here mean a reduced, irreducible
scheme of finite type over C. By a surface we mean a 2-dimensional smooth projective
variety. By a curve we mean any 1-dimensional closed subscheme of a surface. By a
point we mean an irreducible 0-dimensional closed subscheme of a surface or a curve.

Let X denote a surface, C a curve on X and p a point on X. For any variety Y ,
let OY denote the structure sheaf of Y , and let OY,p denote the stalk of OY at p. Let
mp denote the maximal ideal in the local ring OY,p.

Following [31, Proposition II 3.1, p.82], a curve C is called reduced and irreducible
if and only if for every open set U ⊂ C, the ring OC(U) is an integral domain.

Let p be a point on a curve C. Then p is a smooth point on C if the local ring OC,p

is a regular local ring. Otherwise, p is a singular point (singularity) on C. Note that a
reduced and irreducible curve can only have finitely many singularities [31, Theorem I
5.3, p.33].

By a germ of a curve C at p we mean an equivalence class of curves defined in
some analytic neighbourhood of p, modulo the equivalence relation of having the same
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restriction to an open neighbourhood of p [7, p.8]. Let (C, p) denote the germ of a
curve C at a point p on a surface X, and let f ∈ OX,p be a local equation for C in
local coordinates x and y. The multiplicity m of p is defined to be the largest integer
m such that f ∈ mm

p ⊂ OX,p. Note that m ≥ 0, and that m ≥ 1 if and only if p ∈ C.
Moreover, m = 1 if and only if p is a smooth point on C, and m ≥ 2 if and only if p is
a singularity [31, pp.388–389].

Following [7, pp.9–13], a non-empty germ (C, p) is said to be irreducible if it cannot
be obtained as the sum of two non-empty germs. If p is a smooth point, then the germ
(C, p) is irreducible. If p is a singular point and the germ (C, p) is irreducible, then p
is called a cusp. Thus, a cusp is a unibranched singularity, and an illustration is given
in Figure 1.1.

Figure 1.1: A cusp.

Definition 1.1.1. A cuspidal curve is a reduced and irreducible curve with only cusps
as singularities.

There are several definitions and results associated to cuspidal curves, and next
we recall some of them. With (C, p) as above, write f =

∑
i+j≥m aijx

iyj. Then the

tangent cone to C at p is given by the equation fm =
∑

i+j=m aijx
iyj [7, p.10]. The

reduced linear factor(s) of fm define the local tangent line(s) of C at p. Note that if
p is a smooth point or a cusp, then C has a unique tangent line at p. Two curves are
said to be tangent at a point p if some local tangent lines coincide, and transversal
otherwise.

Let Div(X) denote the group of divisors on X, and let Pic(X) denote the group of
divisors on X modulo linear equivalence. A curve C on X corresponds to an effective
divisor on X, and following conventions, we will use the same letter for a curve and
its corresponding divisor [31, Remark II 6.17.1, p.145]. Moreover, we let L (C) denote
the invertible sheaf associated to C.

Assume that two curves C and C ′, without common components, meet at a point
p. Then p is called an intersection point of C and C ′. Let f and f ′ be local equations
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of C and C ′ at p. By the intersection multiplicity (C · C ′)p of C and C ′ at p we mean

(C · C ′)p := dimC OX,p/(f, f ′).

For any two divisors C and C ′ there is a unique, symmetric, bilinear pairing

Pic(X) × Pic(X) → Z,

denoted by C . C ′ [31, Theorem V 1.1, pp.357–358]. Moreover, the number C . C ′ is
called the intersection number, and it is calculated using linear equivalence.

The intersection number C . C ′ and the intersection multiplicity (C · C ′)p are con-
nected through the following proposition [31, Proposition V 1.4, p.360].

Proposition 1.1.2. If C and C ′ are two curves on X having no common irreducible
component, then

C . C ′ =
∑

p∈C∩C′
(C · C ′)p.

Note that the self intersection number C2, defined as

C2 := degC(L (C) ⊗ OC),

is calculated using linear equivalence [31, Example V 1.4.1, pp.360–361]. Moreover,
any curve Y ∼= P1 with Y 2 = −1 is called an exceptional curve of the first kind.

Recall that a surface is said to be a relatively minimal model of its function field if
every birational morphism to another surface is necessarily an isomorphism. By [31,
p.418], a surface is a relatively minimal model if and only if it contains no exceptional
curves of the first kind.

We sometimes view the intersection of C and C ′ as a 0-cycle, and express this by
the notation C · C ′, where

C · C ′ =
∑

p∈C∩C′
(C · C ′)pp.

For any variety Y of dimension r, we let Hi(Y ; R) denote the ith homology group
of Y with coefficients in a ring R. Note that we will sometimes consider Y as a real 2r-
dimensional manifold in this context. In that case, we let e(Y ) denote the topological
Euler characteristic of Y .

We let Hi(Y, F ) denote the ith cohomology group of Y with respect to a sheaf F .
We let χ(F ) denote the Euler characteristic of a coherent sheaf F , so that

χ(F ) :=
r∑

i=0

(−1)i dim Hi(Y,F ).

By pa(Y ) we mean the arithmetic genus of Y , where

pa(Y ) := (−1)r(χ(OY ) − 1).

In particular, if C is an effective divisor on a surface X, then

pa(C) = 1 − χ(OC).
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For two divisors C and C ′, we have by [31, Exercise V 1.3, p.367] that

pa(C + C ′) = pa(C) + pa(C
′) + C . C ′ − 1. (1.1.1)

Following [31], we let ΩX/C be the sheaf of differentials of X/C, and we let ωX =∧2 ΩX/C be the canonical sheaf of X. By the canonical divisor on X we mean any
divisor K linearly equivalent to a divisor corresponding to ωX . Moreover, NC/X =
L (C) ⊗ OC denotes the normal sheaf of C in X.

Connecting some of the above definitions, we now state two important results. First,
there is the Adjunction formula [31, Exercise V 1.3, p.366].

Proposition 1.1.3 (Adjunction formula). For an effective divisor C on a surface
X with canonical divisor K,

2pa(C) − 2 = C . (C + K).

Second, there is the theorem of Riemann–Roch for surfaces [31, Theorem V 1.6,
p.362], here in our notation. Note the convention that for a divisor C on a surface X
we let hi(C) := dimC Hi(X,L (C)).

Theorem 1.1.4 (Riemann–Roch for surfaces). If C is any divisor and K the
canonical divisor on a surface X, then

h0(C) − h1(C) + h0(K − C) =
1

2
C . (C − K) + 1 + pa(X).

Closely related to the above concepts is the geometric genus. If Y is a nonsingular
variety of dimension r, ΩY/C the sheaf of differentials of Y/C, and ωY =

∧r ΩY/C, then
the geometric genus pg(Y ) of Y is defined as

pg(Y ) := dim H0(Y, ωY ).

In particular, if C is a reduced and irreducible nonsingular curve, then pa(C) = pg(C)
[31, Proposition IV 1.1, p.294]. If C is a reduced and irreducible singular curve, with
C̃ its normalization, then we let g := pg(C̃) denote its geometric genus.

A reduced and irreducible nonsingular curve C is called rational if it is birational
to P1. Moreover, a reduced and irreducible nonsingular curve C is rational if and only
if pa(C) = 0 [31, Example IV 1.3.5, p.297]. A reduced and irreducible singular curve
C is called rational if g = 0.

Note that we call a divisor D a rational tree if all components Di of D are smooth
rational curves and the weighted dual graph Γ(D) of D is connected and without cycles.

1.1.2 The minimal embedded resolution

In this section we explain how a minimal embedded resolution of a curve is important
in the study of cuspidal curves.

A minimal embedded resultion of a curve consists of a sequence of monoidal trans-
formations. A monoidal transformation of a surface X is the blowing up of a single
point p on X, where the transformation π : X̃ → X induces an isomorphism of
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X̃ \ π−1(p) onto X \ p. Note that X̃ is a smooth projective surface. The divisor
E = π−1(p) on X̃ is referred to as an exceptional curve, E is isomorphic to P1, and
E2 = −1 [31, Proposition V 3.1, p.386]. Moreover, the canonical divisor KX̃ of X̃ is
given by KX̃ = π∗KX +E, and we have K2

X̃
= K2

X −1. Blowing up a point p is referred
to as a blowing up, and contracting an exceptional curve of the first kind is referred to
as a contraction.

Let C be an effective divisor on X. With π as above, the divisor π∗C is called the
the total transform of C. The curve C̃, defined as the closure in X̃ of π−1(C∩(X−P )),
is called the strict transform of C. The following proposition [31, Proposition V 3.6,
p.389] and corollary [31, Corollary V 3.7, p.389] are essential.

Proposition 1.1.5. Let C be an effective divisor on X, let p be a point of multiplicity
m on C, and let π : X̃ → X be the monoidal transformation with center p. Then

π∗C = C̃ + mE.

Corollary 1.1.6. With the same hypotheses as above, we have

C̃ . E = m,

and

pa(C̃) = pa(C) − 1

2
m(m − 1).

By composing several monoidal transformations, we can ensure that the inverse
image of a curve has special properties, and these properties are the main point of
performing a minimal embedded resolution of a curve.

We adapt the definition of a simple normal crossing divisor from Iitaka [34, Defini-
tion, p.257] to our situation. Let D be a reduced divisor with nonsingular irreducible
components on a smooth surface V . Then D is said to have a simple normal crossing
at a point p if there exists a coordinate neighbourhood U of p, with (x, y) as local
coordinates, such that D ∩ U is defined by x or x · y. If D has only simple normal
crossings everywhere, then D is called a simple normal crossing divisor (SNC-divisor).

By [31, Theorem V 3.9, p.391], there exists for any curve C on a surface X a
sequence of t monoidal transformations,

V = Vt
σt−→ Vt−1 −→ · · · −→ V1

σ1−→ V0 = X,

such that the reduced total inverse image of C under the composition σ : V → X,

D := σ−1(C)red,

is an SNC-divisor on V . The pair (V, D) and the transformation σ are referred to as
an embedded resolution of C.

Definition 1.1.7. An embedded resolution of C on X is called a minimal embedded
resolution of C when t is the smallest integer such that D is an SNC-divisor.

Note that a minimal embedded resolution of a curve C is unique up to the order of the
monoidal transformations, and we therefore generally refer to such a resolution as the
minimal embedded resolution of a curve.
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For each monoidal transformation σi : Vi → Vi−1 in the minimal embedded reso-
lution of a curve C there is an exceptional divisor Ei ⊂ Vi and a center pi−1 ∈ Vi−1.

Moreover, E ′
i ⊂ V denotes the strict transform of Ei by σi+1 ◦ · · · ◦ σt, and E

(k)
i ⊂ Vi+k

denotes the strict transform of Ei by σi+1 ◦ · · · ◦ σi+k. On each surface Vi, Ci denotes
the strict transform of C under the sequence of monoidal transformations σ1 ◦ · · · ◦ σi.
Note in particular that the curve C̃ = Ct, that is, the strict transform of C under σ, is
smooth.

1.1.3 Invariants associated to a cusp

We now take a closer look at a cusp and list invariants associated to the singularity.
The invariants listed in this section are given without any index referring to the cusp,
and in later sections we add a natural index to the invariants to clarify which cusp
they belong to.

In the minimal embedded resolution of a curve, we now focus on the resolution
of only one cusp. With (C, p) the germ of C at a cusp p, we perform the monoidal
transformations needed to resolve the singularity in such a way that σ−1(p) is an SNC-
divisor (see [34, Proposition 11.1, p.320]). This process will be referred to as the
minimal resolution of the cusp p. The sequence of monoidal transformations centers in
p and successively in the intersection points pi of Ci and Ei. Since p is a cusp, the point
pi is unique for each i [17, Proposition 1.3.6., p.22]. The points pi in the resolution of
p are called the infinitely near points of p. Abusing notation, we will in this section
assume that the cusp p is resolved after t monoidal transformations.

The minimal resolution of a cusp on a curve leads to the notion of the multiplicity
sequence of a cusp.

Definition 1.1.8. Let p be a cusp on a curve C, and let mi denote the multiplicity of
pi ∈ Ci in the minimal resolution of p, with m = m0. Then the multiplicity sequence
m of the cusp p is defined to be the sequence of integers

m = [m, m1, . . . , mt−1].

Note that the multiplicity sequence is a decreasing sequence of integers,

m ≥ m1 ≥ . . . ≥ mt−1, (1.1.2)

and that mt−1 = 1.
The following lemma by Flenner and Zaidenberg, here adapted to our situation,

describes the changes in the intersections of the curve and the exceptional divisors
in the course of the minimal resolution of a cusp using the multiplicity sequence [22,
Lemma 1.3, p.440].

Lemma 1.1.9. Let m = [m0, m1, . . . , mt−1] be the multiplicity sequence of a cusp p on

a curve C. Let E
(k)
i ⊂ Vi+k denote the strict transform of the exceptional divisor Ei of

σi. Then the following hold.

a) Ei . Ci = mi−1.

b) E
(k)
i . Ci+k = max{0, mi−1 − mi − . . . − mi+k−1}, k > 0.
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c) E
(1)
i . Ci+1 = mi−1 − mi.

Furthermore, there is a proposition by Flenner and Zaidenberg giving restrictions
on the multiplicity sequence, and we rewrite the proposition in our notation [22, Propo-
sition 1.2, p.440].

Proposition 1.1.10. Let m = [m0, m1, . . . , mt−1] be the multiplicity sequence of a
cusp.

a) For each i = 1, . . . , t − 1, there exists an integer k ≥ 0 such that

mi−1 = mi + . . . + mi+k,

where
mi = mi+1 = . . . = mi+k−1.

b) The number of ending 1’s in the multiplicity sequence equals the smallest mi > 1.
If pq−1 is singular on Cq−1 in the minimal resolution and pq is smooth on Cq, we
have

mq−1 = t − q.

Conversely, if m = [m0, m1, . . . , mn] is a non-increasing sequence of positive integers
satisfying the above, then m = mp for some irreducible plane germ (C, p).

By convention and the above proposition, there is a shorthand notation for the mul-
tiplicity sequence. First of all, we may omit the ending 1’s in the sequence. Moreover,
if some elements in the sequence are equal, they will be listed as one element, and we
use a subscript to indicate how many times each value is repeated. For example, we
write

[6, 6, 2, 2, 2, 1, 1] = [62, 23].

Note that the multiplicity sequence of a cusp determines the topological type of the
singularity [4, Theorem 21, p.535]. A cusp with multiplicity sequence [2] will be called
an ordinary cusp.

The intersection multiplicity of two curves C and C ′ at a point p can be expressed
using the multiplicity sequences, and this formula is referred to as Noether’s formula
[7, Theorem 3.3.1, p.79]. The theorem holds for points p of any type, but to keep the
notation clean, we here restate a version of the theorem for p a smooth point or a cusp.
For the purpose of the following theorem, we say that a smooth point has multiplicity
sequence [1].

Theorem 1.1.11 (Noether’s formula). Let p be a point on two curves C and C ′,
and assume that p is a smooth point or a cusp. Moreover, let m and m′ denote the
respective multiplicity sequences of the curves at p, and append sequences of 1’s to
the multiplicity sequences as long as C and C ′ share points infinitely near p. The
intersection multiplicity (C · C ′)p is finite if and only if C and C ′ share finitely many
points infinitely near p, and in that case

(C · C ′)p =
l∑

i=0

mim
′
i,

where l is the largest integer such that pl ∈ Cl ∩ C ′
l .
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There is an immediate corollary to Theorem 1.1.11 [31, Exercise I 5.4, p.36].

Corollary 1.1.12. With the same hypothesis as above, let m and m′ be the respective
multiplicities of C and C ′ at p. Then

(C · C ′)p ≥ m · m′.

Moreover, there is a lemma by Flenner and Zaidenberg describing the intersection
of two curves at a point that is a cusp on one of the curves and smooth on the other
curve. We include a modified version of this lemma, here in our notation [23, Lemma
2.6 b), p.101].

Lemma 1.1.13. Assume that (Γ, p) is a smooth germ, and assume that (C, p) is an ir-
reducible germ of a curve, where the cusp p has multiplicity sequence
m = [m, m1, . . . , mt−1]. Then the intersection (Γ · C)p is

(Γ · C)p = m + m1 + · · · + mk

for some k ≥ 0, and moreover, m = m1 = · · · = mk−1.

Lemma 1.1.13 has an interesting consequence that ultimately gives restrictions on
the multiplicity sequence of a cusp, see Lemma 2.1.6 and Theorem 4.1.16.

Lemma 1.1.14. Assume that T is a smooth curve tangent to a reduced and irreducible
curve C at a cusp p. Then

(T · C)p = k · m + mk for some k ≥ 1.

In particular,
(T · C)p ≥ m + m1.

Proof. Since T is smooth and tangent to C at p, the intersection multiplicity
(T ·C)p > m. By Lemma 1.1.13, we have (T ·C)p = m+m1 + . . .+mk for some k ≥ 0,
where m = m1 = . . . = mk−1, and the result follows by compacting the notation.

Revealing even more subtle properties of cusps, there is a lemma by Fenske that
provides insight to the changes of a cusp under a monoidal transformation. This lemma
is fundamental in our constructions of curves in later chapters, and we recall it here in
an adapted version [17, Lemma 1.4.8, p.31].

Lemma 1.1.15. Let C and D be curves without common components, and let p
be a point on both curves, such that p is a cusp on C with multiplicity sequence
mp = [m, m1, . . . , mt−1], and p is smooth on D. Let π be the monoidal transforma-
tion of X with center p, and let E = π−1(p) be the exceptional divisor of π. Let C̃ and
D̃ denote the respective strict transforms, and let p̃ denote the point E ∩ C̃. Then the
following hold.

a) C̃ has a cusp at p with multiplicity sequence [m1, . . . , mt−1], and

(C̃ · E)p̃ = m.
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b) (C ·D)p = m + m1 + · · ·mk with m = m1 = · · · = mk−1 for a k ≥ 1, and moreover,

(C̃ · D̃)p̃ = (C · D)p − m.

There are several invariants linked to a cusp. With f a local equation of a curve C
at a singularity p, the Milnor number μ is defined to be

μ := dimC OC,p/(fx, fy),

where x and y are local coordinates, and fx and fy are the partial derivatives of f . The
delta invariant δ of p is defined as [31, Exercise IV 1.8, p.298]

δ := length(ÕC,p/OC,p),

where ÕC,p is the integral closure of OC,p. For a cusp, the delta invariant can be
calculated using the multiplicity sequence [31, Example V 3.9.3, p.393],

δ =
t−1∑
i=0

mi(mi − 1)

2
.

For any singularity with b branches, the Milnor number and the delta invariant are
linked by the Milnor–Jung-formula, which says that

μ = 2δ − b + 1.

For a cusp, this formula reduces to

μ = 2δ.

Hence, the Milnor number of a cusp can be expressed in terms of the multiplicity
sequence,

μ =
t−1∑
i=0

mi(mi − 1).

For a cusp p, we additionally use an invariant M , referred to as the M-number. It is
not clear who introduced this invariant, and the first definitions we have found are by
Fenske [17, Definition 1.5.23, p.44] and Orevkov [50, p.659], the latter using a slightly
different notation. A blowing up σi in the minimal embedded resolution of p is called
inner if its center is an intersection point of the strict transforms of two exceptional
curves of the resolution. Similarly, a blowing up in the resolution is called outer if
its center is on exactly one exceptional divisor. We let ω denote the number of inner
blowing ups, and we let ρ denote the number of outer blowing ups. The first blowing
up, σ1, is by definition neither inner nor outer. Summing up, we have

t − 1 = ω + ρ.

Following [17], the M -number of p is defined as

M := η + ω − 1,
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where

η :=
t−1∑
i=0

(mi − 1) .

By [22, Lemma 2.3, p.445] we can express ω in terms of the multiplicity sequence,

ω =
t−1∑
i=1

(⌈
mi−1

mi

⌉
− 1

)
,

where �a	 is the smallest integer ≥ a. Hence, M can be expressed using only the
multiplicity sequence,

M =
t−1∑
i=0

(mi − 1) +
t−1∑
i=1

(⌈
mi−1

mi

⌉
− 1

)
− 1.

The multiplicity, the Milnor number and the M -number of a cusp can be compared
through the following lemma by Orevkov [50, Lemma 4.1 and Corollary 4.2, pp.663–
664].

Lemma 1.1.16. For a cusp p with multiplicity m, M-number M and Milnor number
μ, we have

a) M − μ
m

> m − 3.

b) M ≥ μ
m

.

1.1.4 More definitions and general concepts

We now move back to the situation where we look at the minimal embedded resolution
of a cuspidal curve C, where all the cusps are resolved. Considering curves from this
perspective, there are global invariants and formulas connecting them. Throughout this
section we let C be a cuspidal curve with s cusps. The collection of the multiplicity
sequences of the cusps of C will be referred to as the cuspidal configuration of the
curve. Note that two cuspidal curves C and C ′ on the same surface X are said to be
equisingular equivalent if they have the same genus and the same cuspidal configuration.
The cusps of the curve C will be denoted by pj, where j = 1, . . . , s. For each cusp
we have the invariants defined in Section 1.1.3, and we will use the index j or pj as
subscripts to link an invariant to its cusp, for example we append an index j to the
multiplicity sequence mj of a cusp pj. Note that we do not generally append an index
j to elements mi in the multiplicity sequence. Abusing notation further, we still let
pi denote the centers of the minimal embedded resolution of the curve C. Moreover,
we use mi both to denote the multiplicity of the centers pi of the minimal embedded
resolution, and to denote an element in the multiplicity sequence of a cusp. This slightly
ambiguous notation will hopefully not cause any confusion in the frequent transitions
from discussions of properties of one cusp to discussions of global properties of a curve.

As before, let C̃ = Ct denote the strict transform of the curve C under the minimal
embedded resolution σ. The total transform of the curve C by σ is the divisor

σ∗C = C̃ +
t∑

i=1

mi−1Ei.
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Moreover, the reduced inverse image of C under σ is the divisor D,

D := σ−1(C)red = C̃ +
t∑

i=1

E ′
i.

The genus formula is the first essential result that can be formulated using the
above invariants, here in our notation [31, Example V 3.9.2, p.393].

Proposition 1.1.17 (Genus formula). Let C̃ denote the normalization of a cuspidal
curve C on X, and let K be the canonical divisor on X. Let g denote the geometric
genus of C, let t denote the number of monoidal transformations needed in the minimal
embedded resolution of C, and let mi denote the multiplicities of the centers pi in this
transformation. Then

g = g(C̃) = pa(C) −
t−1∑
i=0

mi(mi − 1)

2

=
C . (C + K)

2
+ 1 −

t−1∑
i=0

mi(mi − 1)

2
.

The latter term in the genus formula can be recognized as the sum of the delta invariants
δj of the cusps pj of C. If C has s cusps, then we rewrite the above as

g =
C . (C + K)

2
+ 1 −

s∑
j=1

δj.

Moreover, there is an important theorem by Hurwitz, here in a special setting [31,
Corollary IV 2.4, p.301].

Theorem 1.1.18 (Hurwitz’s theorem). Let C be a smooth curve of genus g, let
f : C → P1 be a finite morphism, and let n = deg f . Let ep = length(ΩC/P1)p + 1, with
ΩC/P1 the sheaf of relative differentials, be the ramification index. Then

2n + 2g − 2 =
∑
p∈C

(ep − 1).

From the minimal embedded resolution of a cuspidal curve, a relation between the
M -numbers of the singularities and the involved divisors can be stated, here using our
notation [22, Proposition 2.4, p.445].

Proposition 1.1.19. Let C be a cuspidal curve with s cusps pj on a smooth compact
complex surface X. Let (V, D) be the minimal embedded resolution of the curve C. Let
KV and KX denote the canonical divisors on the respective surfaces. Then

KV . (KV + D) = KX . (KX + C) +
s∑

j=1

Mj,

where Mj is the M-number of the cusp pj.
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Another important concept needed in the study of cuspidal curves on surfaces is the
logarithmic Kodaira dimension. A few preliminary definitions must be stated before
the main definition can be recalled.

We first recall the definition of a morphism ΨD for any divisor D, and this definition
is taken from [17, p.39]. Let V be a nonsingular complete surface and let L be an
invertible sheaf on V . By [31, Theorem II 5.19, p.122], H0(V, L ) is finite dimensional.
Let H0(V, L ) be generated by sections s0, . . . , sn of L . The base points of L form a
set

Z := {z ∈ V | s0(z) = . . . = sn(z) = 0}.
Let U ⊂ V be an open set. For each a ∈ V \ Z a trivialization φ|U : L|U → OV |U can
be fixed. The images φi,U of si under this map form a morphism

ΨU : U \ Z → Pn

x �→ (φ0,U(x) : . . . : φn,U(x)).

For an open covering {Ui}i∈I of V , the morphisms ΨUi
define a rational map

ΨL : V → Pn.

If D is a divisor corresponding to L , then this map is denoted by ΨD.
For the remaining definitions, we follow [34, Chapter 10 and 11]. Let D be an

SNC-divisor on V . Note that V is called a smooth completion of V \ D with smooth
boundary D. Let N(D) := {n ∈ N | h0(nD) > 0}. Then the D-dimension is

κ(D, V ) =

{
max{dim ΨnD(V ) |n ∈ N(D)}, if N(D) �= ∅,
−∞, otherwise.

Using this construction, the Kodaira dimension κ(V ) of V is defined to be κ(KV , V )
[34, p.309]. A related definition is more useful to us [34, p.326].

Definition 1.1.20. With V and D as above, the logarithmic Kodaira dimension
κ(V \ D) of V \ D is

κ(V \ D) := κ(KV + D, V ).

Note that κ(V \ D) ∈ {−∞, 0, 1, 2}.
Furthermore, we recall a result from Iitaka (see [34, Theorem 10.2, p.301]) that

establishes an important property of the logarithmic Kodaira dimension [34, p.326].

Theorem 1.1.21. With V and D as above, if κ(V \D) ≥ 0, then one has λ ∈ N with
h0(λ(KV + D)) > 0, and α, β > 0 such that

αnκ ≤ h0(nλD) ≤ βnκ, for n � 0.

The logarithmic Kodaira dimension is not directly defined for the complement of
a reduced and irreducible curve C on a surface X, but we calculate it through the
logarithmic Kodaira dimension of its minimal embedded resolution [34, p.332]. This
invariant will be frequently referred to in the subsequent Chapters.
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Definition 1.1.22. With (V, D) the minimal embedded resolution of a curve C on a
surface X, we let

κ(X \ C) := κ(V \ D).

Another important theorem, often referred to as the Bogomolev–Miyaoka–Yau-
inequalities (B–M–Y-inequalities), uses the classification of surfaces by the logarithmic
Kodaira dimension to link the Euler characteristic and divisors related to the curve and
surface in question. The inequalities are given in a very general form in the original
literature (see [36, 45]). Here we present the results for a situation that includes the
curves and surfaces we investigate, and Theorem 1.1.23 is adapted from [51, Theorem
2.1, p.660].

Let V be a smooth projective surface, D a reduced SNC-divisor, and KV the canon-
ical divisor on V . If κ(V \D) ≥ 0, then there exists a decomposition of KV + D called
the Zariski decomposition (see [24, Section 6, pp.527–528]). The decomposition is given
by

KV + D = H + N,

where H and N are Q-divisors, that is, linear combinations of its prime components
with rational coefficients, with the below properties. With N =

∑
niNi, recall that the

intersection matrix
[
NiNj

]
is called negative definite if all its eigenvalues are negative.

a) N = 0, or N is an effective Q-divisor with negative definite intersection matrix.

b) H . C ≥ 0 for any effective divisor C ∈ Pic(X).

c) H . Ni = 0 for any prime component Ni of N .

Theorem 1.1.23 (B–M–Y). With notation as above, the following hold.

a) If κ(V \ D) ≥ 0, then

(KV + D)2 ≤ 3e(V \ D).

b) If κ(V \ D) = 2, then

H2 ≤ 3e(V \ D).

In the subsequent chapters, there are additionally a few sheaves associated to a
curve that we need to recall. First, the tangent sheaf ΘX of a smooth surface X is
defined as ΘX := H omOX

(Ω1
X/C

, OX). The sheaf ΘX is locally free of rank 2 [31,

p.180].
Second, for D an SNC-divisor on a complete nonsingular surface V , there exists a

so-called sheaf of logarithmic 1-forms of V tangent along D. We adapt the definitions
found in [34, p.321] to our situation. Assume that V is a smooth completion of V \D,
and that the SNC-divisor D is its smooth boundary. Any point q ∈ D is contained
in at most two irreducible components of D, say either it is contained in Dx or it is
contained in Dx ∩Dy. Since D is an SNC-divisor on a surface, we have for every point
q ∈ D a coordinate neighbourhood Uλ with a local coordinate system (xλ, yλ). In these
coordinates, we have that Dx ∩ Uλ = V (xλ) and Dy ∩ Uλ = V (yλ).

First, we recall a preliminary definition from [34, p.321].

15



Definition 1.1.24. The OV -module of logarithmic 1-forms of V along D is defined to
be the OV -submodule Ω1

V/C
(log D) of Ω1

V/C
(D) = Ω1

V/C

⊗
OV

OV (D) such that

a) Ω1
V/C

(log D)|V \D = Ω1
(V \D)/C

.

b) At any closed point q of D,

ωq ∈ Ω1
V/C

(log D)q ⇔ ωq ∈ Ω1
V/C

(D)q

and

ωq =

{
adxλ

xλ
+ bdyλ

yλ
if q ∈ Dx ∩ Dy,

adxλ

xλ
+ b dyλ if q ∈ Dx,

where (xλ, yλ) is as above and a, b ∈ OV,q.

Note that Ω1
V/C

(log D) is locally free of rank 2 [34, p.321].

We then state the proposed definition, see [34, p.321] for a more general definition.

Definition 1.1.25. The sheaf of logarithmic 1-forms of V tangent along D is the sheaf

ΘV 〈D〉 := H omOV
(Ω1

V/C
(log D), OV ).

Note that, given (V, D), we will sometimes refer to ΘV 〈D〉 as simply the logarithmic
tangent sheaf.

1.2 Surfaces

This section is a brief introduction to the projective plane and the Hirzebruch surfaces.
We describe the surfaces, recall some important observations, and explain what we
mean by a change of coordinates.

1.2.1 The projective plane – P2

Let P2 denote the projective plane, which is both a rational and a relatively minimal
surface. Considered as a toric variety, P2 can be given as the variety associated to the
fan Σ ⊂ Z2, where the ray generators of Σ are

v1 =

[
1
0

]
, v2 =

[
0
1

]
, v3 =

[−1
−1

]
.

The coordinate ring of P2 is C[x, y, z] with standard grading, and the dth graded
part is referred to by C[x, y, z]d. The surface P2 can be covered by three open affine
sets,

Ux := P2 \ V (x), Uy := P2 \ V (y) and Uz := P2 \ V (z).

A subscheme Z of P2 is given by a graded ideal I in C[x, y, z]. A point p on P2 will
be referred to by its homogeneous coordinates,

p = (x : y : z).
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A reduced and irreducible curve C is given as the zero set V (F ) of a reduced and
irreducible homogeneous polynomial F (x, y, z) in C[x, y, z]d. The curve C is said to
have degree d. Note that we by a curve on P2 mean a reduced and irreducible curve,
unless otherwise specified.

The Picard group of P2 is isomorphic to Z. We let L denote a generator of Pic(P2)
with L2 = 1. The divisor corresponding to a curve C of degree d is linearly equivalent
to C ∼ dL, and moreover C2 = d2. A curve of degree 1 is referred to as a line, its
divisor linearly equivalent to L. Since L2 = 1, two lines on P2 intersect in one point.
Moreover, the canonical divisor K on P2 is linearly equivalent to K ∼ −3L, and K2 = 9
[31].

A point p on P2 can be moved by a change of coordinates, sometimes referred to
as a linear transformation. The linear transformations of P2 are elements of the group
PGL3(C), given by (3× 3)-matrices. A linear transformation on P2 is uniquely defined
by moving four points, no three of them on the same line.

1.2.2 The Hirzebruch surfaces – Fe

Let Fe denote the Hirzebruch surface of type e for any e ≥ 0. Recall that Fe is a
projective ruled surface, with Fe = P(O ⊕ O(−e)) and morphism π : Fe −→ P1. We
have pa(Fe) = 0 and pg(Fe) = 0 [31, Corollary V 2.5, p.371]. The Hirzebruch surfaces
are rational surfaces, relatively minimal in all cases except e = 1. The surface F1 is
isomorphic to P2 blown up in a point, and it contains an exceptional curve E ∼= P1

with E2 = −1.
For any e ≥ 0, the surface Fe can be considered as the toric variety associated to a

fan Σe ⊂ Z2, where the rays of the fan Σe are generated by the vectors

v1 =

[
1
0

]
, v2 =

[
0
1

]
, v3 =

[−1
e

]
, v4 =

[
0
−1

]
.

The coordinate ring of Fe (see [10]) is denoted by Se := C[x0, x1, y0, y1], where the
variables can be given a grading by Z2,

deg x0 = (1, 0),

deg x1 = (1, 0),

deg y0 = (0, 1),

deg y1 = (−e, 1).

Fe can be covered by four affine sets isomorphic to C2,

D+(xiyj) := P1 × P1 \ V (xiyj), i = 0, 1, j = 0, 1.

A point p on Fe is, for e ≥ 1, referred to by its coordinates on the form,

p = (x0 : x1; y0, y1).

Observe that the notation reflects that we consider (x0 : x1) to be homogeneous coordi-
nates, while the pair (y0, y1) have a more complex structure for all e ≥ 1. This structure
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will be elaborated later in this section. For e = 0, we write p = (x0 : x1; y0 : y1), mean-
ing homogeneous in both pairs, reflecting the doubly ruled structure of P1 × P1.

A subscheme Z of Fe is determined by a graded ideal I of Se. Let Se(a, b) denote
the (a, b) graded part of Se,

Se(a, b) := H0(Fe, OFe(a, b)) =
⊕

α0+α1−eβ1=a
β0+β1=b

Cxα0
0 xα1

1 yβ0

0 yβ1

1 .

If F is a polynomial in Se(a, b), then we say that F has bidegree (a, b).
A reduced and irreducible curve C on Fe is given as the zero set V (F ) of a reduced

and irreducible polynomial F (x0, x1, y0, y1) ∈ Se(a, b). The curve C is then said to be
of type (a, b). Note that we by a curve on Fe mean a reduced and irreducible curve,
unless otherwise specified.

In the language of divisors, let L be a fiber of π : Fe −→ P1 and M0 the special
section of π. The Picard group of Fe, Pic(Fe), is isomorphic to Z ⊕ Z, and L and M0

can be chosen as generators of this group. We have [31, Section V 2]

L2 = 0, L . M0 = 1, M2
0 = −e.

The canonical divisor K can then be expressed as [31, Corollary V 2.11, p.374]

K ∼ −(2 + e)L − 2M0.

To simplify our calculations, we will use another generating set of Pic(Fe) [31,
Theorem V 2.17, p.379]. Let L and M ∼ eL + M0 be the new generating set, and note
that this is equivalent to taking as generators the divisors D1 and D4 corresponding to
the minimal ray generators v1 and v4 of the fan Σe. Then we have

L2 = 0, L . M = 1, M2 = e.

Moreover, in this basis,

K ∼ (e − 2)L − 2M and K2 = 8.

Note that we from now on, unless otherwise specified, will use L and M as a basis for
Pic(Fe).

Any irreducible curve C �= L, M0 corresponds to a divisor on Fe given by [31,
Proposition V 2.20, p.382]

C ∼ a′L + b′M0, b′ > 0, a′ ≥ b′e.

Expressing the curve using the preferred generators L and M , we write

C ∼ aL + bM, b > 0, a ≥ 0.

Thus an irreducible curve C of type (a, b) corresponds to a divisor C ∼ aL + bM .
Observe that the ordering of (a, b) is essential, except in the case of P1 × P1.

Note that if b = 0, then C ∼ aL, and that any curve of type (1, 0), its corresponding
divisor linearly equivalent to L, will be referred to as a fiber.

The existence of the special section M0 = V (y1) on Fe gives the Hirzebruch surfaces
a special structure.
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Definition 1.2.1. A point p on Fe is called special if p ∈ V (y1), that is, p has coor-
dinates (x0 : x1; y0, 0). A point p on Fe is called general if p /∈ V (y1), that is, p has
coordinates (x0 : x1; y0, y1), with y1 �= 0.

We make the following essential observation of the structure of Fe.

Lemma 1.2.2. A point p on Fe determines a unique curve L of type (1, 0). Moreover,
a general point determines in addition an e-dimensional family of curves of type (0, 1).
Conversely, a curve L of type (1, 0) and an irreducible curve M of type (0, 1) determine
a general point p on Fe.

Proof. Let p = (px0 : px1 ; py0 , py1) be a point on Fe. Then L = V (px1x0 − px0x1) is the
unique curve of type (1, 0) through p.

Let p be general and let M denote a curve of type (0, 1), given as the zero set of a
polynomial in Se(0, 1),

M = V (by0 +
e∑

k=0

ckx
k
0x

e−k
1 y1).

Requiring that M passes through p determines one of the coefficients.
Conversely, given curves L and M of type (1, 0) and (0, 1), we have that L . M = 1.

Hence, the intersection is exactly one point p. Since M is irreducible, the point is
general.

With the above lemma in mind, we say that two sets of coordinates represent the
same general point if they determine the same (1, 0)-curve and the same collection
of (0, 1)-curves, and the same special point if y1 = 0 and they determine the same
(1, 0)-curve.

Change of coordinates on Fe, e > 0

Moving points on Fe is slightly more difficult than in the case of P2. For e > 0, a
change of coordinates must preserve the structure of Fe, hence M0 must be fixed under
such a transformation. Moreover, a change of coordinates must be bidegree preserving.
A change of coordinates on Fe can be given by a map ν : Fe → Fe, explicitly,

(x0 : x1; y0, y1)
�

��
(a00x0 + a01x1 : a10x0 + a11x1; by0 + y1(

∑e
k=0 ckx

k
0x

e−k
1 ), dy1),

where b, d ∈ C∗, ck ∈ C for k = 0, . . . , e, and aij ∈ C for i, j ∈ {0, 1} with

det

[
a00 a01

a10 a11

]
�= 0.

This map allows us to freely move a general point on Fe to any other general point, or
a special point to any other special point.
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1.2.3 The special surface – P1 × P1

When e = 0, the Hirzebruch surface F0 is F0 = P(O ⊕ O). We refer to this surface as
P1 × P1, and note that it has two morphisms to P1. The double ruling is reflected in a
particular symmetry in the coordinate ring, and the symmetry offers results that are
unique to P1 × P1 and curves on this surface.

Recall that the coordinate ring of P1 × P1 is given by

S := C[x0, x1, y0, y1],

where the four variables are bigraded,

deg x0 = (1, 0) = deg x1,

deg y0 = (0, 1) = deg y1.

Moreover, we observe that there is no special section on P1 × P1, hence points are not
classified as special or general in this case. A point on P1 × P1 will be referred to by
its bihomogeneous coordinates (x0 : x1; y0 : y1).

The (a, b)-graded part of S0 is

S0(a, b) :=
⊕

a0+a1=a
b0+b1=b

Cxa0
0 xa1

1 yb0
0 yb1

1 .

Recall that a reduced and irreducible curve C on P1 ×P1 is given as the zero set V (F )
of a reduced and irreducible polynomial F (x0, x1, y0, y1) ∈ S0(a, b).

Let L be a curve of type (1, 0), and M a curve of type (0, 1). With the corresponding
divisors L and M a set of generators of Pic(P1 × P1), we have

L2 = 0, L . M = 1, M2 = 0.

Both curves of type (1, 0) and (0, 1) will be referred to as fibers of P1 × P1. A reduced
and irreducible curve C of type (a, b) on P1 × P1 is determined by a reduced and
irreducible bihomogeneous polynomial F ∈ S0(a, b), and it corresponds to a divisor
C ∼ aL + bM .

The structure of P1 × P1 is reflected in Lemma 1.2.3, which is a special case of
Lemma 1.2.2.

Lemma 1.2.3 (Special case of Lemma 1.2.2). A point p on P1 × P1 determines a
unique curve L of type (1, 0) and a unique curve M of type (0, 1). The converse also
holds.

In Figure 1.2, the surface P1 ×P1 is shown embedded in P3 using the Segre embed-
ding, and we have chosen a suitable affine covering of P3. The black curves are fibers
reflecting the structure of the surface. The image is made in cooperation with Georg
Muntingh using surfex [32].
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Figure 1.2: The surface P1 × P1 with fibers.

Change of coordinates

A change of coordinates on P1 × P1 is a bidegree preserving transformation given by
linear transformations of the two P1’s separately. The transformation can be expressed
by an element of PGL2(C) × PGL2(C) on the form[

a00 a01 | b00 b01

a10 a11 | b10 b11

]
.

Note that we must have

det

[
a00 a01

a10 a11

]
�= 0 and det

[
b00 b01

b10 b11

]
�= 0.

Interchanging the two P1’s changes the order of the bidegree. Since a change of co-
ordinates on P1 is uniquely determined by moving three distinct points, a change of
coordinates on P1 × P1 is uniquely determined by moving three points, no two on the
same (1, 0)- or (0, 1)-curve.

The action of these transformations reveals an important aspect of the structure of
P1×P1. A change of coordinates will move two points on the same (1, 0)- or (0, 1)-curve
to two points with the same property. It is important to notice that two arbitrary points
on P1×P1 do not generally define a (1, 0)- or (0, 1)-curve. Hence, we can not move two
points on the same (1, 0)- or (0, 1)-curve to two arbitrary points, or conversely, using
a change of coordinates.
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(1, 1)-curves on P1 × P1

A (1, 1)-curve on P1 × P1 is given by the zero set of a polynomial,

c00x0y0 + c01x0y1 + c10x1y0 + c11x1y1 = 0, cij ∈ C.

These curves have properties that are quite special, and they will eventually provide
results for cuspidal curves on P1 × P1. The following theorem is fundamental.

Theorem 1.2.4. Let p, q and r be three distinct points on P1 ×P1 not all on the same
(1, 0)- or (0, 1)-curve. Then the three points define a unique, possibly reducible, curve
Qpqr of type (1, 1). Moreover, if no pair of points are on the same (1, 0)- or (0, 1)-curve,
then the (1, 1)-curve is irreducible.

In either case, if the points have coordinates

p = (px0 : px1 ; py0 : py1),

q = (qx0 : qx1 ; qy0 : qy1),

r = (rx0 : rx1 ; ry0 : ry1),

then the defining polynomial of Qpqr is given by

F = det

⎡⎢⎢⎣
x0y0 x0y1 x1y0 x1y1

px0py0 px0py1 px1py0 px1py1

qx0qy0 qx0qy1 qx1qy0 qx1qy1

rx0ry0 rx0ry1 rx1ry0 rx1ry1

⎤⎥⎥⎦ .

Proof. There are three cases to consider.

(1) The points p and q are on the same (1, 0)-curve, and q and r are on the same
(0, 1)-curve. Then the product of the defining polynomials of the two curves is the
defining polynomial of a unique (1, 1)-curve passing through the three points.

(2) The points p and q are on the same (1, 0)-curve, and r is not on the same (0, 1)-curve
as any of the other two. Then r is on a unique (0, 1)-curve, and the product of the
defining polynomials of the two curves gives the defining polynomial of a unique
(1, 1)-curve passing through the three points. By symmetry, the same obviously
holds if the points p and q are on the same (0, 1)-curve, and r is not on the same
(1, 0)-curve as any of the other two.

(3) Let p, q and r be three distinct points on P1 × P1, not in any of the above config-
urations. Then the points can be moved by a change of coordinates to

p = (1 : 0; 1 : 0),

q = (0 : 1; 0 : 1),

r = (1 : 1; 1 : 1).

Let
F = c00x0y0 + c01x0y1 + c10x1y0 + c11x1y1
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be the defining polynomial of a (1, 1)-curve containing p, q and r. Then F (p) = 0
implies C00 = 0, and F (q) = 0 implies c11 = 0. Moreover, F (r) = 0 implies that
c01 = −c10. Thus, the coefficients of the defining polynomial of the (1, 1)-curve
containing p, q and r is uniquely determined up to multiplication with c ∈ C∗, and
the (1, 1)-curve is unique. Additionally, observe that the curve must be irreducible.
If it were reducible, then, contrary to assumption, two of the points must have been
on the same (0, 1) or (1, 0)-curve.

The polynomial

F = det

⎡⎢⎢⎣
x0y0 x0y1 x1y0 x1y1

px0py0 px0py1 px1py0 px1py1

qx0qy0 qx0qy1 qx1qy0 qx1qy1

rx0ry0 rx0ry1 rx1ry0 rx1ry1

⎤⎥⎥⎦
is the defining polynomial of a (1, 1)-curve containing p, q and r, and by uniqueness it
is the defining polynomial of Qpqr.

1.3 Birational transformations

In this section we explain the main constructional tool of this thesis. We observe that
birational transformations allow us to move from one surface to the other. In this
process we blow up points and contract lines, which in turn changes the curves we
consider. In combination with changes of coordinates the birational transformations
provide the necessary tools to construct curves with prescribed singularities on a given
surface.

By a birational transformation of surfaces we mean a rational map which admits an
inverse. The following theorem ensures that a birational transformation of two surfaces
can be composed of a sequence of blowing ups and contractions [31, Theorem V 5.5,
p.412].

Theorem 1.3.1. Let φ : X ��� Y be a birational transformation of surfaces. Then
it is possible to factor φ into a finite sequence of monoidal transformations and their
inverses.

1.3.1 Birational links

Following [5], we next give detailed descriptions of some fundamental birational trans-
formations between the surfaces P2 and Fe. These transformations are called birational
links.

From P2 to F1

The map εI+ : P2 ��� F1 is given in coordinates by

P2 ��� F1

(x : y : z) �→ (x : y; z, 1).
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This map blows up the point p = (0 : 0 : 1). If p is a point of multiplicity m on a curve
C = V (F ) of degree d on P2, then the strict transform of C is a curve C̃ = V (F̃ ) of
type (m, d − m) on F1. Substituting the variables using the substitution

x = x0y1, y = x1y1, z = y0,

we have
F (x, y, z) = ym

1 F̃ (x0, x1, y0, y1).

From F1 to P2

The map εI− : F1 ��� P2 is given in coordinates by

F1 ��� P2

(x0 : x1; y0, y1) �→ (x0y1 : x1y1 : y0).

This map contracts the special section of F1, that is, V (y1). If C = V (F ) is a curve of
type (a, b) on F1, then the strict transform of C is a curve C̃ = V (F̃ ) of degree a + b
on P2. Substituting the variables using the substitution

x0 = x, x1 = y, y0 = z, y1 = 1,

we have
F (x0, x1, y0, y1) = F̃ (x, y, z).

Hirzebruch one up

The map εII+ : Fi ��� Fi+1 is given in coordinates by

Fi ��� Fi+1

(x0 : x1; y0, y1) �→ (x0 : x1; x0y0, y1).

This map blows up the point p = (0 : 1; 1, 0) and contracts the fiber V (x0). If p has
multiplicity m on a curve C = V (F ) of type (a, b) on Fi, then the strict transform of
C is a curve C̃ = V (F̃ ) of type (a−m, b) on Fi+1. Substituting the variables using the
substitution

x0 = x′
0, x1 = x′

1, y0 = y′
0, y1 = x′

0y
′
1,

we have
F (x0, x1, y0, y1) = x′m

0 F̃ (x′
0, x

′
1, y

′
0, y

′
1).

Hirzebruch one down

The map εII− : Fi ��� Fi−1 is given in coordinates by

Fi ��� Fi−1

(x0 : x1; y0, y1) �→ (x0 : x1; y0, x0y1).

This map blows up the point p = (0 : 1; 0, 1) and contracts the fiber V (x0). If p has
multiplicity m on a curve C = V (F ) of type (a, b) on Fi, then the strict transform of
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C is a curve C̃ = V (F̃ ) of type (a + b−m, b) on Fi−1. Substituting the variables using
the substitution

x0 = x′
0, x1 = x′

1, y0 = x′
0y

′
0, y1 = y′

1,

we have

F (x0, x1, y0, y1) = x′m
0 F̃ (x′

0, x
′
1, y

′
0, y

′
1).

Flip of P1 × P1

The map εIII : P1 × P1 ��� P1 × P1 that flips the coordinates on P1 × P1 is given by

P1 × P1 ��� P1 × P1

(x0 : x1; y0 : y1) �→ (y0 : y1; x0 : x1).

This map only changes the order in the bidegree of the curve. If C = V (F ) is a curve
of type (a, b) on P1 × P1, then we get a curve C̃ = V (F̃ ) of type (b, a).

The next theorem ensures that every birational transformation between two mini-
mal rational surfaces consists of birational links and changes of coordinates [5, Theorem
1.1, p.3].

Theorem 1.3.2 (Noether–Castelnuovo). Let X and Y be minimal rational surfaces
over C and φ : X ��� Y a birational map between them. Then there are birational links
ε1, . . . , εr and a change of coordinates ν of Y such that φ = ν ◦ εr ◦ . . . ◦ ε1.

The birational transformations transform a curve on one surface into a curve on
the other surface. The important point in this construction is to position the curve
appropriately with respect to the points that are blown up and the lines that are
contracted by the transformation. Our main aim is to construct cuspidal curves, hence
we want to resolve existing and avoid constructing new singularities that are not cusps.

In essence, we blow up existing singularities that are not cusps, and contract lines
such that we only get cusps as new singularities on the curve. The theory of blow-
ing up ensures that we can get rid of any singularity on the curve by a sequence of
blowing ups. Finding lines that when contracted give at most a new cusp on the strict
transform of the curve is a bit harder. Ultimately, the line that is contracted can only
intersect the curve in one single point, and this point can either be smooth or a cusp,
but no other singularity. This is indeed a very limiting restriction. However, since
birational transformations between the projective plane and the Hirzebruch surfaces
are compositions of blowing ups and contractions that are linked to one another, the
situation is even more complicated in practice; we do not necessarily have the desired
freedom of choice of points to blow up or lines to contract.

1.3.2 Standard transformations

It is sometimes convenient to have direct expressions for birational transformations
between two surfaces. In the following we list maps that are used in the construction
of curves on P2 or in some form appear later on in this thesis.
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Cremona transformations

Birational maps from P2 to P2, called Cremona transformations, are widely used in
the construction of cuspidal curves on P2 (see [17, 22, 23, 67, 46, 64, 58]). There is
additionally a conjecture linking Cremona transformations to rational cuspidal curves,
the Coolidge–Nagata conjecture (see Chapter 2 and [27, 42]). All Cremona transfor-
mations can be generated by linear transformations and three different quadratic maps
(see [46]),

ψ3 : (x : y : z) �−→ (yz : xz : xy),

ψ2 : (x : y : z) �−→ (z2 : xy : xz),

ψ1 : (x : y : z) �−→ (y2 − xz : yz : z2).

Notice that these maps are their own inverses.
The main difference between the three maps is the number of basepoints on P2.

The map ψ3 has three distinct basepoints on P2, p = (1 : 0 : 0), q = (0 : 1 : 0) and
r = (0 : 0 : 1), and it contracts three lines x = 0, y = 0 and z = 0. The strict transform
F̃ has degree 2d − mp − mq − mr, and we have F (x, y, z) = xmpymqzmr F̃ (x, y, z).

The map ψ2 has two base points on P2 and ψ1 has one base point on P2. The
remaining base points of these maps are infinitely near points of the base points on P2.
Using the maps ψ2 and ψ1 directly can be tricky since some of the basepoints are not
on P2. Factoring these Cremona transformations using birational links leads to more
control over the situation.

Birational maps of P1 × P1

A birational transformation from P1 ×P1 to P1 ×P1 can be constructed by blowing up
two points on P1×P1 lying on different (1, 0)-curves and (0, 1)-curves, and subsequently
contract the two (1, 0)-curves going through the points. Note that we equivalently could
have chosen to contract the (0, 1)-curves.

Explicitly, we may write φ : P1 × P1 ��� P1 × P1,

φ : (x0 : x1; y0 : y1) �−→ (x0 : x1; x1y1 : x0y0). (1.3.1)

Notice that this map is its own inverse. This birational map blows up the two points
ν0 = (0 : 1; 1 : 0) and ν1 = (1 : 0; 0 : 1). It additionally contracts the two fibers V (x0)
and V (x1).

In the construction of cuspidal curves on P1 × P1 starting out with a curve on
P1 × P1, a change of coordinates is used to position the curve C appropriately before
the birational transformation is applied. If F (x0, x1, y0, y1) is a bihomogeneous poly-
nomial of bidegree (a, b), then its total transform F ′(x0, x1, y0, y1) under the birational
transformation can be factored

F ′(x0, x1, y0, y1) = x
mν0
0 x

mν1
1 F̃ (x0, x1, y0, y1),

where mνi
denotes the multiplicity of F at the points νi. The bihomogeneous poly-

nomial F̃ has bidegree (a + b − mν0 − mν1 , b), and it is the defining polynomial of
the strict transform of the curve C = V (F ). Hence, C̃ = V (F̃ ) is a curve of type
(a + b − mν0 − mν1 , b).

26



Maps between P2 and P1 × P1

When constructing cuspidal curves on P1 × P1, we additionally use birational trans-
formations from P2 to P1 × P1. Explicit equations for such transformations can be
obtained by composing two birational links, for example

φ : P2 ��� P1 × P1

(x : y : z) �→ (x : y; z : x).

This transformation blows up two points on P2, here (0 : 1 : 0) and (0 : 0 : 1), and
contracts the line they span, here V (x).

The inverse of φ can be given by

φ−1 : P1 × P1 ��� P2

(x0 : x1; y0 : y1) �→ (x0y1 : x1y1 : x0y0).

This inverse transformation blows up one point on P1 × P1, here (0 : 1; 1 : 0) and
contracts two lines, here V (x0) and V (y1).

In the construction of cuspidal curves on P1 × P1 starting out from P2, we use a
change of coordinates to position the curve C on P2 such that the appropriate points are
blown up and the appropriate line is contracted by the birational map. Let F (x, y, z)
be the defining polynomial of C on P2, and let my and mz be the multiplicities of F
at the respective base points of φ. Applying the transformation then gives

F (x0, x1, y0, y1) = x
my

0 ymz
1 F̃ (x0, x1, y0, y1),

where F̃ is a bihomogeneous polynomial of bidegree (d − my, d − mz) defining the
rational curve C̃ of type (d − my, d − mz) on P1 × P1.

Conversely, given a curve C = V (F (x0, x1, y0, y1)) of type (a, b) on P1 × P1 with
mp the multiplicity of the point (0 : 1; 1 : 0), we may find a curve Ĉ on P2 of degree
a + b − mp. The transformation leaves us with the following relation for the defining
polynomial,

F (x, y, z) = xmpF̂ (x, y, z).
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Chapter 2

Cuspidal curves
on the projective plane

In this chapter we present some of the known results about cuspidal curves on the
projective plane. First, we recall general results valid for curves on the projective plane.
In particular, we specialize the results in Chapter 1, we consider properties of inflection
points on cuspidal curves, we recall a theorem on the logarithmic Kodaira dimension
of the complement of a curve by Wakabayashi [74], and we discuss the question of how
many cusps a cuspidal curve can have. Then we focus on rational cuspidal curves. We
recall a few results for curves of this type, and list the cuspidal configurations of some
of the many known rational cuspidal curves. In particular, we investigate three series
of curves with three cusps. Moreover, we recall two conjectures on rational cuspidal
curves, and consider real rational cuspidal curves. Last in this chapter, we recall a
toric construction of a series of cuspidal curves by Orevkov [50]. Note that the results
and the curves presented in this chapter are in general not original to this thesis, but
they are included to give an overview and because they serve as a starting point for
the results and the curves that we find in subsequent chapters.

2.1 Background and preliminary results

In this section we will state the results for cuspidal curves on the projective plane that
follow from the general theorems in Chapter 1 and properties of the projective plane.

Recall from Chapter 1 that a cuspidal curve C on P2 of degree d is given as the
zero set of a reduced and irreducible polynomial F ∈ C[x, y, z]d.

First we take a closer look at a point p on a cuspidal curve on P2. For any point
p ∈ P2, we have seen that we may make a linear change of coordinates such that p =
(0 : 0 : 1). In the open neighbourhood Uz of p, the polynomial F (x, y, 1) = f(x, y) is the
affine defining equation of C. Sorting the polynomial f = f(x, y) by its homogeneous
terms in the affine coordinates x and y we get,

f = f0 + f1 + · · · + fi + · · · + fd,

where fi = fi(x, y) denotes the terms of f(x, y) of degree i in x and y. Recall that
the multiplicity m of p is the smallest integer m such that fm �= 0 [31, p.36]. The
multiplicity m is restricted by the following lemma.
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Lemma 2.1.1. Let p be a point on a reduced and irreducible curve C of degree d ≥ 2
on P2. Then

0 < m < d.

Proof. Clearly d ≥ m ≥ 0. Since p ∈ C, we have 0 < m. Assume for contradiction
that m = d. Then C would be a union of d lines through p, contrary to the assumption
that C was reduced and irreducible, so m < d.

Recall that for a cusp p, the multiplicity is m ≥ 2. Additionally, we have the
multiplicity sequence m and the other invariants described in Chapter 1.

Moreover, recall that we can determine that a point p on a curve C is singular using
only the defining polynomial.

Definition 2.1.2. Let C = V (F ) be a reduced and irreducible curve on P2, and p be
a point on C. Then p is a singular if p ∈ V (Fx, Fy, Fz), where Fx, Fy and Fz denote
the respective partial derivatives of F .

There are several results concerning cuspidal curves on P2. The first is a well-known
lemma with a straightforward proof.

Lemma 2.1.3. Let p and p′ be two cusps with multiplicities m and m′ respectively on
a reduced and irreducible plane curve C of degree d. Then we have

m + m′ ≤ d.

Proof. On P2 there is a unique line L passing through the two cusps. We have L.C = d.
By Corollary 1.1.12 (L · C)p ≥ m and (L · C)p′ ≥ m′, and the result follows.

Recall that every smooth point or cusp p on C has a unique local tangent line. On
P2, the local tangent line can be homogenized to a global tangent line Tp := TpC. For
a smooth point, the tangent line can be calculated without a change of coordinates,

Tp := V
(
Fx(p)x + Fy(p)y + Fz(p)z

)
.

Definition 2.1.4. The intersection multiplicity (C · Tp)p of a curve C and a tangent
line Tp to C at a point p is called the tangential intersection multiplicity.

The tangent line Tp of a smooth point p on a curve C has the property that
(C · Tp)p > 1.

Definition 2.1.5. If p is a smooth point on a reduced and irreducible curve C with
tangent Tp at p and we have (C ·Tp)p ≥ 3, we say that p is an flex point, or equivalently
an inflection point, of type (C · Tp)p − 2.

Let P2∗ denote the dual space of P2, where a line V (ax+ by + cz) on P2 is identified
with a point (a : b : c) on P2∗. The existence of a unique global tangent line for every
smooth point p on a curve C on P2, allows the definition of a dual curve C∗ on P2∗.
The curve C∗ is defined as

C∗ :=
({(

Fx(p) : Fy(p) : Fz(p)
) | p smooth on C

}) ⊂ P2∗.

Another well-known result, resembling Lemma 2.1.3, can be found using properties
of the tangent line of a curve at a cusp.
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Lemma 2.1.6. Let p be a cusp on a reduced and irreducible curve C of degree d with
multiplicity sequence m = [m0, m1, . . . , mt−1]. Then

m0 + m1 ≤ d.

Proof. Let Tp denote the tangent line to C at p. By intersection theory, Tp . C ≤ d. By
Lemma 1.1.14, m0 + m1 ≤ (C · Tp)p. By Proposition 1.1.2, (C · Tp)p ≤ Tp . C, and the
result follows.

We sometimes need the associated polar curve PpC of a plane curve C with respect
to a point p = (px : py : pz) ∈ P2,

PpC := V (pxFx + pyFy + pzFz).

The polar curve has the property that it intersects the curve C in the singular points
of C and in the smooth points of C that have tangent lines that pass through p.

Moreover, the Hessian curve HC = V (HF ) can be used to find inflection points on
a curve C = V (F ), where

HF := det

⎡⎣Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

⎤⎦ .

The intersection of C and HC consists of the singular points and the inflection points
on C.

2.1.1 Inflection points on plane cuspidal curves

When studying cuspidal curves on the projective plane, the question of how many
and what kind of cusps such a curve can have can be answered by classifying them
up to genus, degree and cuspidal configuration, that is up to so-called equisingular
equivalence. This classification is sometimes too coarse to catch interesting features of
a curve. Let p and p′ be two cusps having the same multiplicity sequences on two curves
C and C ′, and let T and T ′ denote their respective tangent lines. We saw in Chapter
1 that the multiplicity sequence of a cusp determines its topological type, but two
curves with cusps with the same multiplicity sequences may have different intersection
multiplicities with the respective tangents. This can be seen in an example with two
curves of the same degree and cuspidal configuration.

Example 2.1.7. Let C and C ′ be two rational cuspidal curves of degree 5 with the
same cuspidal configuration [22], [3, 2], given by the parametrizations (s5 : s3t2 : t5)
and (s5 : s3t2 : st4 + t5) respectively. Let p ∈ C and p′ ∈ C ′ denote the cusps with
multiplicity sequence [22]. Let T and T ′ denote the respective tangent lines. Upon
inspection we find that (T · C)p = 5, while (T ′ · C ′)p′ = 4. Moreover, we see that C ′

has a flex point, while C has no such point.
The seemingly irrelevant difference in the tangential intersections makes the curves

very different. For example, the dual curves do not have the same cuspidal configura-
tion.
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In the context of this thesis, the above observation is essential. Applying birational
transformations to two equisingular equivalent curves on P2 can possibly lead to very
different curves, and the tangential intersection multiplicity plays a fundamental role
in the study and construction of plane cuspidal curves. We therefore pay attention to
this invariant in our work. Note that the invariant is strongly linked to the number of
flex points on the curve.

The significance of the tangential intersection multiplicities of cusps and their effect
on the number of inflection points on a cuspidal curve is apparent in the inflection point
formula for plane curves, that calculates the number of inflection points, counted with
multiplicity. The theorem is a modified version of [4, Theorem 2 (ii), p.586].

Theorem 2.1.8 (Inflection point formula). Assume that C is a plane cuspidal
curve with s cusps pj, each having tangent Tj. Let mj denote the multiplicity, δj the
delta invariant, and rj := (Tj ·C)pj

the tangential intersection multiplicity of pj. Then
the number of inflection points v on C, counted such that an inflection point qi of type
vi accounts for vi inflection points, is given by

v = 3d(d − 2) −
s∑

j=1

(6δj + mj + rj − 3).

Since v = 6δ + m + r − 3 for any inflection point of C, where δ = 0 and r is the
tangential intersection multiplicity, we rewrite the inflection point formula in Theorem
2.1.8. This gives ∑

p∈C∩HC

(C · HC)p =
∑

p∈C∩HC

(6δp + mp + rp − 3).

This result is in fact a local result.

Theorem 2.1.9 (Local Hessian intersection formula). The intersection multi-
plicity (C · HC)p of a cuspidal curve C and its Hessian curve HC at any point p ∈ C
is

(C · HC)p = 6δp + mp + rp − 3.

Proof. The formula follows from combining a result by Josse and Pène in [35] and
a result by Brieskorn and Knörrer in [4]. Since C is cuspidal, all points p ∈ C are
unibranched. For unibranched points, the results in [35, Proposition 25 and 29, pp.18–
21] give,

(C · HC)p = 3(C · PqC)p + rp − 2mp,

where PqC is the polar curve to C at a point q /∈ Tp. Since C is cuspidal, by [4, proof
of Theorem 2 (i), p.596] we have

(C · PqC)p = 2δp + mp − 1,

and the result follows.
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2.1.2 Preliminary results for plane cuspidal curves

From the general genus formula given in Proposition 1.1.17 we get the following corol-
lary. This formula gives global restrictions on the multiplicity sequences of the cusps
on a cuspidal curve on P2.

Corollary 2.1.10 (Corollary to Proposition 1.1.17). Let C be a cuspidal curve
of degree d with s cusps pj, each with multiplicity sequence mj = [m0, m1, . . . , mtj−1].
Then the genus g of C is given by

g =
(d − 1)(d − 2)

2
−

s∑
j=1

tj−1∑
i=0

mi(mi − 1)

2
.

Proof. By Proposition 1.1.17 and since K ∼ 3L,

g =
C . (C + K)

2
+ 1 −

s∑
j=1

δj

=
dL . (d − 3)L

2
+ 1 −

s∑
j=1

tj−1∑
i=0

mi(mi − 1)

2

=
(d − 1)(d − 2)

2
−

s∑
j=1

tj−1∑
i=0

mi(mi − 1)

2
.

Moreover, there are the B–M–Y-inequalities for curves on P2.

Corollary 2.1.11 (Corollary to Theorem 1.1.23). Let (V, D) be the minimal em-
bedded resolution of a cuspidal curve C of genus g on P2, and let KV and H be as in
the Zariski decomposition described in Chapter 1.

a) If κ(V \ D) ≥ 0, then
(KV + D)2 ≤ 6g + 3.

b) If κ(V \ D) = 2, then
H2 ≤ 6g + 3.

Proof. First, e(V \ D) = e(P2 \ C) since V \ D is isomorphic to P2 \ C. For a plane
cuspidal curve of genus g, the Euler characteristic of the complement is e(P2\C) = 2g+1
[68, Proof of Theorem 1.1, p.220]. The conclusion follows from Theorem 1.1.23.

Another result links the M -numbers to the minimal embedded resolution of a plane
curve. This result is a corollary to Theorem 1.1.19.

Corollary 2.1.12 (Corollary of Theorem 1.1.19). With V , D, KV and Mj as in
Chapter 1, for a cuspidal curve C ∈ P2 of degree d with s cusps,

KV . (KV + D) = 9 − 3d +
s∑

j=1

Mj.
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Proof. The result follows from Theorem 1.1.19,

KV . (KV + D) = K . (K + C) +
s∑

j=1

Mj

= −3L . (d − 3)L +
s∑

j=1

Mj

= 9 − 3d +
s∑

j=1

Mj.

There is additionally a result on self intersection numbers. This result follows
directly from [31, Proposition V 3.2, p.387] and induction.

Lemma 2.1.13. Let C̃ be the strict transform of the minimal embedded resolution of
a plane cuspidal curve C of degree d. Let mi denote the elements of the multiplicity
sequences of the cusps on C. Then

C̃2 = d2 −
∑

i

m2
i .

2.2 The logarithmic Kodaira dimension

An important result for curves on P2 involves the logarithmic Kodaira dimension of
the complement of the curve. A theorem by Wakabayashi [74] is fundamental for
the development of new results on cuspidal curves on P2. In particular, the theorem
is critical in the production of upper bounds for the number of cusps on a rational
cuspidal curve (see [51, 68]).

Theorem 2.2.1 ([74, Theorem, p.157]). Let C be an irreducible curve of genus g
and degree d ≥ 4 on P2.

(I) If g > 0, then κ(P2 \ C) = 2.

(II) If g = 0 and C has at least three cusps, then κ(P2 \ C) = 2.

(III) If g = 0 and C has at least two cusps, then κ(P2 \ C) ≥ 0.

2.3 On the number of cusps

The question of how many cusps a cuspidal plane curve can have is still unsettled,
but there has been a huge effort to solve the problem. Since the cuspidal curves are
algebraic, the first conclusion is that the number of cusps on a cuspidal curve on P2 is
finite [31, Theorem I 5.3, p.33].

A more specific upper bound on the number of cusps can be found as a consequence
of the genus formula.
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Lemma 2.3.1. The number of cusps s on a cuspidal curve C on P2 of genus g and
degree d is bounded,

s ≤ (d − 1)(d − 2)

2
− g.

Proof. A curve has the maximal number of cusps whenever the cusps all have multiplic-
ity sequence [2]. The number of ordinary cusps equals the sum of the delta invariants,
s =

∑
δj, and the result follows.

The question of the number of cusps on a plane curve, not necessarily cuspidal,
is intensively studied in articles from the late 19th and early 20th century. In the
introduction we mentioned three articles by Clebsch [8], Wieleitner [78] and Lefschetz
[38]. We state their results in our notation for completeness.

Proposition 2.3.2 ([8, p.51]). A rational, not necessarily cuspidal, plane curve C of
degree d can have at most 3

2
(d − 2) ordinary cusps.

Proposition 2.3.3 ([78, p.76]). A rational cuspidal plane curve C of degree d can
have at most 3

8
d(d − 2) ordinary cusps. In particular, for d > 4 there does not exist a

rational plane curve where all singularities are ordinary cusps.

Proposition 2.3.4 ([38, p.27–28]). A plane, not necessarily cuspidal, curve C can

have at most
⌊

d(d−2)
3

⌋
ordinary cusps when d ≤ 13, and at most

⌊
d(d+3)

4
− 4

⌋
ordinary

cusps when d ≥ 14.

The above observations were significantly improved recently. There is a much
stronger result by Tono [68], that depends only on the genus g of the curve. This
result is so far the best known upper bound for the number of cusps on a plane cuspi-
dal curve. We restate the result using our notation [68, Theorem 1.1, p.216].

Theorem 2.3.5 (On the number of cusps on P2). The number of cusps s on a
cuspidal curve C of genus g on P2 has an upper bound,

s ≤ 21g + 17

2
.

Finding cuspidal curves with many cusps is a quite hard task, and the known
examples indicate that the bound in 2.3.5 is not sharp. For example, the largest
number of cusps found on a rational cuspidal curve is four. Even more surprisingly, up
to equisingular equivalence, only one rational cuspidal curve with four cusps has been
found. To our knowledge, this curve was first constructed by Namba in [49].

Example 2.3.6. There exists a plane cuspidal curve C of genus g = 0 and degree
d = 5 with four cusps and cuspidal configuration

[23], [2], [2], [2].

A parametrization of this curve can be found in [49, Theorem 2.3.10, pp.179–182],

x = s4t, y = s2t3 − s5, z = t5 + 2s3t2.

A defining polynomial F can be found by eliminating s and t,

F = y4z − 2xy2z2 + x2z3 + 2x2y3 − 18x3yz − 27x5.
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Theorem 2.3.5 indicates that the number of allowed cusps increases with higher
genus. With the results for rational cuspidal curves in mind, the following example of
a curve of genus g = 1 and five cusps fits nicely in this picture. Note that this curve
has been thoroughly investigated in the literature, see [39] for details.

Example 2.3.7. There exists a plane cuspidal curve C = V (F ) of genus g = 1 and
degree d = 5 with five ordinary cusps. A defining polynomial F can be found in [19],

F =
(αy2z2 + βx2z2 + γx2y2 − 6ax2yz − 6bxy2z − 6cxyz2)2 − (yz + xz + xy)3(α2yz + β2xz + γ2xy)

xyz
,

where

α = −a + b + c, β = a − b + c, γ = a + b − c.

We can do even better for curves with g = 1 and find a cuspidal curve of degree six
with nine cusps.

Example 2.3.8. There exists a plane cuspidal curve C = V (F ) of genus g = 1 and
degree d = 6 with nine ordinary cusps. This curve is the dual of a nonsingular plane
cubic curve, for example the curve given by V (x3 + y3 + z3). Computing the dual of
the cubic curve, we find a defining polynomial F of C,

F = x6 + y6 + z6 − 2x3y3 − 2x3z3 − 2y3z3.

The latter two examples show that cuspidal curves that are not rational can have
a quite high number of cusps, and the situation is therefore more complicated than
the situation for rational cuspidal curves. Theorem 2.3.5 shows that there is an upper
bound on the number of cusps on a cuspidal curve of any genus, and again the examples
suggest that this bound is not sharp. The main focus of this thesis are rational cuspidal
curves, but finding new examples of cuspidal curves and sharp upper bounds for the
number of cusps on cuspidal curves of any genus is a task that could be studied in the
future.

2.4 Rational cuspidal curves on the projective plane

Although rational cuspidal plane curves have been intensively studied, there are still
unanswered questions concerning them. In this section we give an overview of known
results and proposed conjectures for the rational cuspidal plane curves. None of the
questions from the introduction are completely answered, but they are elaborated, and
we present restrictions for the answers.

In recent years the hunt for rational cuspidal curves has been popular, in particular
after the announcement of Sakai’s open problems on rational cuspidal curves in [30].
There are many approaches to this hunt that have been extensively explored. Indeed,
fixing either the degree d of the curve, the largest multiplicity m̂ of any cusp, the number
of cusps s, or the logarithmic Kodaira dimension of the complement of the curve has
lead to quite major results. Combining this with the use of Cremona transformations,
the existence of many rational cuspidal curves, even infinite series of rational cuspidal
curves, has been established.
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In this section we first give a few background results on plane rational cuspidal
curves. Then we present some of the known curves and results closing off the hunt
for rational cuspidal curves in some directions. For detailed proofs, constructions and
defining polynomials, see for example [17, 22, 23, 46, 49, 50, 58, 65, 66, 67, 70].

2.4.1 Background

We now present a few results that are valid only for rational cuspidal curves. By the
genus formula we have strong restrictions on the multiplicity sequences for cusps on a
rational cuspidal curve. Recall that we do not append an index j to the elements of
the multiplicity sequence of a cusp pj.

Theorem 2.4.1. Let C be a rational cuspidal curve with s cusps pj with multiplicity
sequences mj = [m0, . . . mtj−1]

(d − 1)(d − 2)

2
=

s∑
j=1

tj−1∑
i=0

mi(mi − 1)

2
.

Moreover, the degree d and the maximal multiplicity m̂ of all the cusps on C,

m̂ := max{mj, j = 1, . . . , s},

must satisfy the following inequalities by Matsuoka and Sakai in [42, Theorem, p.233]
and Orevkov in [50, Theorem A, p.657], where the latter estimate is a better estimate
for all d ≥ 9.

Theorem 2.4.2. Assume that C is a rational cuspidal curve of degree d on P2 with s
cusps. Let m̂ be the maximal multiplicity of all the cusps on C, then

(M–S) d < 3m̂. (2.4.1)

(O) d <
3 +

√
5

2
(m̂ + 1) +

1√
5
. (2.4.2)

Next there is a lemma that has been important in the development of new results
for rational cuspidal curves on P2 [21, Lemma 1.3, p.148]. The lemma is stated in a
general setting, namely for Q-acyclic surfaces, and we here recall the lemma using our
notation. By [17, Proposition 1.5.16, pp.42–43] the complement of a rational cuspidal
curve C on P2 is Q-acyclic, that is Hi(P

2 \ C; Q) = 0 for all i > 0, so the lemma
directly applies to the minimal embedded resolution of such curves. By c2(V ) we mean
the second Chern class of V , see [31, pp.431–433].

Lemma 2.4.3 (Lemma for Q-acyclic surfaces). Assume that V is a smooth com-
plete surface, that D is an SNC-divisor, and that V \ D is Q-acyclic. Let D1, . . . , Dr

be the irreducible components of D. Then the following hold.

(0) D is a rational tree.

(1) χ(ΘV ) = 10 − 2r.
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(2) K2
V = 10 − r.

(3) c2 := c2(V ) = 2 + r.

(4) χ
(⊕

NDi/V

)
= r +

r∑
i=1

D2
i .

(5) We have

χ
(
ΘV 〈D〉

)
= (KV + D)2 + 2

= −D2 − r + 8

= KV . (KV + D).

A conjecture by Fernandéz de Bobadilla, Luengo, Melle-Hernández and Némethi
proposes that for a plane rational cuspidal curve C there is an inequality between the
dimension of the subgroup of PGL3(C) that keeps C fixed, the so-called stabiliser, and
the degree d and the M -numbers of the cusps. We include the inequality, alternatively
stated using the Euler characteristic of the logarithmic tangent sheaf, for completeness
[18, p.420].

Conjecture 2.4.4. Assume that C is a plane rational cuspidal curve. Let StabPGL3(C)(C)
denote the stabiliser of C. Then

dim StabPGL3(C)(C) ≥ χ(ΘV 〈D〉).

Another result with powerful consequences involves the logarithmic Kodaira dimen-
sion of the complement of a rational cuspidal plane curve C. The known results can
be summed up as follows.

Proposition 2.4.5. Let C be a plane rational cuspidal curve with s cusps. Then the
following hold.

a) κ(P2 \ C) �= 0.

b) If κ(P2 \ C) = −∞, then s = 1.

c) If s ≥ 2, then κ(P2 \ C) ≥ 1.

d) If s ≥ 3, then κ(P2 \ C) = 2.

Proof. The first result, κ(P2 \C) �= 0, can be found in [50, Theorem B–c), p.657]. The
next results are consequences of Theorem 2.2.1. See [18, p.422].

Note that there are examples of unicuspidal and bicuspidal curves with κ(P2 \ C) = 1
and κ(P2 \ C) = 2.

Using the logarithmic Kodaira dimension, Orevkov improves the results in Theorem
2.4.2 with the following result [50, Theorem B–a)–b), p.657].
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Theorem 2.4.6. Assume that C is a plane rational cuspidal curve of degree d and let
m̂ be the maximal multiplicity of any cusp on C.

a) If κ(P2 \ C) = −∞, then

d <
3 +

√
5

2
m̂.

b) If κ(P2 \ C) = 2, then

d <
3 +

√
5

2
(m̂ + 1) − 1√

5
.

2.4.2 Assuming κ(P2 \ C) = 2.

In answering the question of how many cusps a rational cuspidal curve on P2 can
have, we are interested in describing curves with three or more cusps. The above
discussion tells us that assuming s ≥ 3 implies that κ(P2 \ C) = 2. Conversely,
assuming κ(P2 \ C) = 2 includes both curves with s ≥ 3 and curves with s < 3. We
will now assume that κ(P2 \ C) = 2 and find interesting properties of all these curves.

We have already seen one result in Theorem 2.4.6. Moreover, we have further
restrictions on the multiplicity sequences of the cusps on C when κ(P2 \ C) = 2 (cf.
Lemma 2.1.6). A first result is established in [17, 2.3.2 and 2.3.3, p.57].

Theorem 2.4.7. Let C be a plane rational cuspidal curve of degree d, and assume that
κ(P2 \ C) = 2. For a cusp with multiplicity sequence m = [m0, m1, . . . , mt−1], we have

m0 + m1 < d.

The next result is a consequence of [68, Lemma 4.1, p.219] and Lemma 2.4.3.

Proposition 2.4.8. Let C be a rational cuspidal curve on P2 such that κ(P2 \C) = 2,
and let (V, D) be the minimal embedded resolution of C. Then

0 ≤ χ(ΘV 〈D〉). (2.4.3)

Proof. By [68, Remark 4.5], 0 ≤ KV . (KV + D). The result then follows from Lemma
2.4.3(5).

The following proposition is a consequence of Proposition 2.4.8 and a result by
Orevkov and Zaidenberg. The first inequality is due to Proposition 2.4.8, and was not
known to Orevkov and Zaidenberg, who established the second inequality and a weaker
version of Corollary 2.4.10 in [51]. We recall the proof to explain the connections.

Proposition 2.4.9. Let C be a plane rational cuspidal curve with s cusps and κ(P2 \
C) = 2. Then

0 ≤ χ(ΘV 〈D〉) < 5 − s

2
.
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Proof. By Proposition 2.4.8, there is the inequality 0 ≤ χ(ΘV 〈D〉). By Lemma
2.4.3(5), we have χ(ΘV 〈D〉) = (KV + D)2 + 2. By the Zariski-decomposition, (KV +
D)2 + 2 = H2 + N2 + 2. Moreover, by the B–M–Y-inequality, Theorem 2.1.11,
H2 + N2 + 2 ≤ 3 + N2 + 2 ≤ 5 + N2. Moreover, it is shown in [51, Lemma 5
and Lemma 6] that in this situation

N2 < −s

2
.

Hence,

0 ≤ χ(ΘV 〈D〉) < 5 − s

2
.

Corollary 2.4.10. The number of cusps s on a plane rational cuspidal curve is bounded,

s ≤ 9.

Note that this estimate is not as good as the one given in Theorem 2.3.5. The bound
s ≤ 9 was established for rational cuspidal curves satisfying 0 ≤ χ(ΘV 〈D〉) by Orevkov
and Zaidenberg in [51], but by Proposition 2.4.8 and Theorem 2.2.1, this always holds
for plane rational cuspidal curves C with s ≥ 3.

Moreover, by a result of Iitaka [33, Theorem 6, p.185], for a plane rational cuspidal
curve C with κ(P2 \ C) = 2 it follows that h0(V, ΘV 〈D〉) = 0. Hence,

χ(ΘV 〈D〉) = h2(V, ΘV 〈D〉) − h1(V, ΘV 〈D〉). (2.4.4)

By [18, Lemma 5.1, pp.420–422], we have for rational cuspidal curves C with κ(P2 \
C) = 2 that dim StabPGL3(C)(C) = 0. Hence, we directly have a modified version of
Conjecture 2.4.4.

Conjecture 2.4.11. If κ(P2 \ C) = 2, then

χ(ΘV 〈D〉) = 0,

and moreover,
s∑

j=1

Mj = 3(d − 3).

In the exploration of rational cuspidal curves, there has been a discussion and use
of the stronger so-called rigidity conjecture, proposed by Flenner and Zaidenberg (cf.
[21, 22]), and this conjecture is also still open.

Conjecture 2.4.12 (The rigidity conjecture). If κ(P2 \ C) = 2, then

h1(V, ΘV 〈D〉) = 0 = h2(V, ΘV 〈D〉).

In particular,

χ(ΘV 〈D〉) = 0.
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2.4.3 Cuspidal curves of low degree

In the literature all rational cuspidal curves of degree d ≤ 6 have been classified up to
equisingular equivalence. In the below tables we recall these curves and their cuspidal
configurations. These curves will be extensively used in later chapters, so we include
their parametrizations or defining polynomials, as given in [49] and [17].

Curve Cuspidal configuration Parametrization Defining polynomial

C1 [2] (t2 : t3 : 1) y2z − x3

Table 2.1: The rational cuspidal cubic [49, Proposition 2.2.1, p.128].

Changing the coordinates, we can make a real affine image of a plane rational
cuspidal curve of degree three, where also the inflection point of this curve can be seen.
The image is given in Figure 2.1, and it is created with Maple [77] and the package
plots.

Figure 2.1: A rational cuspidal cubic.

The tables of rational cuspidal curves of degree four and five up to equisingular
equivalence counts four and eight curves respectively. It is, however, possible to con-
struct curves with the same cuspidal configuration but different number of inflection
points, see [46]. We include these additional curves since the appearance of inflec-
tion points allows the construction of other curves on the Hirzebruch surfaces in the
subsequent chapters.

Notice in particular that there are few rational cuspidal curves of degree four and
five with many cusps, and among them there is only one curve with four cusps.
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Curve Cuspidal configuration Defining polynomial

C1A [3] x4 − y3z

C1B [3] x4 − x3y + y3z

C2 [23] (yz − x2)2 − xy3

C3 [22], [2] (yz − x2)z2 − x3y

C4 [2], [2], [2] (2yz + x2)2 − 4x2(x − 2z)(x + y)

Table 2.2: Rational cuspidal curves of degree four [49, p.135, Theorem 2.2.5, p.146].

Real affine images of the plane rational cuspidal curves of degree four up to cuspidal
configuration is given in Figure 2.2. The images are created with Maple [77] and the
package plots.

(a) C1 (b) C2

(c) C3 (d) C4

Figure 2.2: Rational cuspidal curves of degree four up to cuspidal configuration.
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Curve Cuspidal conf. Parametrization

C1A [4] (s5 : st4 : t5)
C1B [4] (s5 − s4t : st4 : t5)
C1C [4] (s5 + as4t − (1 + a)s2t3 : st4 : t5), a �= −1
C2 [26] (s4t : s2t3 − s5 : t5 − 2s3t2)

C3A [3, 2], [22] (s5 : s3t2 : t5)
C3B [3, 2], [22] (s5 : s3t2 : st4 + t5)
C4 [3], [23] (s4t − 1

2s5 : s3t2 : 1
2st4 + t5)

C5 [24], [22] (s4t − s5 : s2t3 − 5
32s5 : − 47

128s5 + 11
16s3t2 + st4 + t5)

C6 [3], [22], [2] (s4t − 1
2s5 : s3t2 : −3

2st4 + t5)
C7 [22], [22], [22] (s4t − s5 : s2t3 − 5

32s5 : −125
128s5 − 25

16s3t2 − 5st4 + t5)

C8 [23], [2], [2], [2] (s4t : s2t3 − s5 : t5 + 2s3t2)

Table 2.3: Rational cuspidal curves of degree five [49, Theorem 2.3.10, pp.179–182].

The classification of rational cuspidal curves of degree six was completed by Fenske
in [17], and from Table 2.4 we see that there are few such curves. Moreover, it is worth
noticing that there are no curves with more than three cusps in the list, and only two
curves with three cusps.

# Cusps Curve Cuspidal configuration

1

C1 [5]

C2 [4, 24]

C3 [33, 2]

2

C4 [33], [2]

C5 [32, 2], [3]

C6 [32], [3, 2]

C7 [4, 23], [2]

C8 [4, 22], [22]

C9 [4], [24]

3
C10 [4], [23], [2]

C11 [4], [22], [22]

Table 2.4: Rational cuspidal curves of degree six [17, Corollary 3.4.6, p.83].

2.4.4 Rational unicuspidal and bicuspidal curves

There are several series of rational cuspidal curves with one or two cusps, and such
curves are referred to as uni- and bicuspidal curves, respectively. In this section we
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present some of these series of curves together with their cuspidal configurations. We
additionally recall some related results and results on the classification of such curves.

A rational cuspidal curve with κ(P2 \C) = −∞ will by Proposition 2.4.5 have only
one cusp. By Fernandéz de Bobadilla et al. [18], a classification of these curves can be
found in [43], and we list examples of such curves in the following.

A cuspidal curve C is said to be of Abhyankar–Moh–Suzuki -type (AMS-type) if
there exists a line L such that C \L is isomorphic to C. A rational curve of AMS-type
is therefore either a line, an irreducible curve of degree two, or a rational unicuspidal
curve that intersects the line L only at the cusp. Note that all AMS-type cuspidal
curves have κ(P2 \ C) = −∞ [18].

The following series of curves of AMS-type is constructed by Tono using Cremona
transformations. Defining equations for these curves are given in [66], and here we
present the construction, the degree and the multiplicity sequence of these curves,
which is part of [66, Theorem 1.1, pp.47–48].

Theorem 2.4.13 ([66, Theorem 1.1, pp.47–48]). For a given positive integer k
and a = (a1, . . . , ak+1) ∈ Ck × C∗, let φa denote the Cremona transformation

(x : y : z) �→ (yzk : xzk +
k+1∑
j=1

ajy
jzk+1−j : zk+1).

For any positive integers k1, . . . , kv+1, for any a ∈ C and any ai ∈ Cki × C∗, there is
a cuspidal curve C with one cusp that can be constructed in the following way. Let
Fv+1 = y + az, and let Fi−1(x, y, z) = (Fi ◦ φai

)(x, y, z). Then the defining polynomial
of C can be given by F0. Moreover, the degree of C is

deg C =
v+1∏
i=1

(ki + 1).

With dv := kv+1 + 1 and di−1 := (ki + 1)di for i = 2, . . . , v, the cusp has multiplicity
sequence

m = [k1d1, (d1)2k1 , k2d2, (d2)2k2 , . . . , kvdv, (dv)2kv , kv+1].

If v = 0, then m = [k1].

Moreover, there is a curious result by Yoshihara [80] quoted by Tono in [67].

Proposition 2.4.14. Let C̃ denote the strict transform of a unicuspidal curve C under
the minimal embedded resultion of the cusp. For such a curve κ(P2 \ C) = −∞ if and
only if C̃2 > −2.

A cuspidal curve C is said to be of Lin–Zaidenberg-type (LZ-type) if there exists a
line L such that C\L is homeomorphic to C. It is known that if C is a rational cuspidal
curve of LZ-type, then C \ L has only one cusp, so C is either uni- or bicuspidal [65].

The rational unicuspidal curves of LZ-type are projectively equivalent to the curves
given by [65]

yd + xd−1z = 0.

The cuspidal configuration is simply m = [d−1], and these curves have κ(P2\C) = −∞
by Proposition 2.4.14 and Lemma 2.1.13.
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For plane rational cuspidal curves with one cusp and κ(P2 \ C) = 1, there is a
complete classification, and defining polynomials for these curves are constructed by
Tono in [67]. Here we recall only the degree and the multiplicity sequences of the
unicuspidal curves [67, Theorem 2 and Corollary 2, pp.83–84].

Theorem 2.4.15 ([67, Theorem 2 and Corollary 2, pp.83–84]).

(I) For arbitrary integers n ≥ 2 and v ≥ 2, there exists a plane rational unicuspidal
curve C with κ(P2 \ C) = 1 and

deg C = (n + 1)2(v − 1) + 1,

m =
[
n(n + 1)(v − 1), ((n + 1)(v − 1))2n+1, (n + 1)2(v−1)

]
.

(II) For an arbitrary integer n ≥ 2, there exists a plane rational unicuspidal curve
C with κ(P2 \ C) = 1 and

deg C =
(4n + 1)2 + 1

2
,

m = [(n(4n + 1))4, (4n + 1)2n, 3n + 1, n3] .

(III) For arbitrary integers n ≥ 2 and v > 0, there exists a plane rational unicuspidal
curve C with κ(P2 \C) = 1. With n̂ := 4n + 1 and v̂ := 4v − 1, the degree of C
and the multiplicity sequence of its cups are

deg C =
n̂2v̂ + 1

2
,

and

m =

{
[(3n̂n)4, (3n̂)2n, n̂3, 3n + 1, n3] if v = 1,[
(v̂n̂n)4, (v̂n̂)2n, (vn̂)3, (v − 1)n̂, n̂2(v−1), 3n + 1, n3

]
if v > 1.

Moreover, a plane rational unicuspidal curve has κ(P2 \ C) = 1 if and only if the
multiplicity sequence of the cusp is one of the above.

We additionally recall part of a result on the maximal multiplicity for these curves
by Tono [67, Corollary 1, p.84], improving the result in Theorem 2.4.2.

Corollary 2.4.16. Let C be a plane rational unicuspidal curve of degree d with maximal
multiplicity m̂.

a) For the curves of type (I) in Theorem 2.4.15, we have

m̂ < d ≤ 5

3
m̂.

b) For the curves of type (II) and (III) in Theorem 2.4.15, we have

2m̂ < d ≤ 41

18
m̂.
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A very special class of rational unicuspidal curves are those found and constructed
by Orevkov in [50]. The curves, referred to as Orevkov’s curves, are constructed with
their defining polynomials by applying compositions of Cremona transformations to
simple curves of low degree, and we include this construction here, see [50, Theorem
C, p.658].

Let ψ denote the Cremona transformation given by the composition of the formulas
in Table 2.5. Applying the substitutions to a polynomial F (x′, y′, z′) leads to a poly-
nomial F (x, y, z). With C = V (F ), ψ(C) here denotes the strict transform of C under
the Cremona transformation ψ.

x1 = xy x2 = x1z1 − y2
1 x′

2 = y2z2 x′
1 = x′

2z
′
2 x′ = x′

1
2

y1 = y2 y2 = y1z1 y′2 = x2z2 y′1 = y′2z′2 + x′
2
2 y′ = x′

1y
′
1

z1 = yz − x2 z2 = z2
1 z′2 = x2y2 z′1 = z′2

2 z′ = x′
1z

′
1 + y′1

2

Table 2.5: The Cremona transformations used to construct Orevkov’s curves.

Given four curves,

C−3 = V (F−3), where F−3 = x,

C−1 = V (F−1), where F−1 = y,

C0 = V (F0), where F0 = 3x + 3y + z,

and C�
0 = V (F �

0 ), where F �
0 = 21x2 − 22xy + 21y2 − 6xz − 6yz + z2,

define recursively

Ck = ψ(Ck−4), k ≥ 3, k �≡ 2 mod 4,

C�
k = ψ(C�

k−4), k > 0, k ≡ 0 mod 4.

Then the curves Ck and C�
k have particular properties, given in the following theorem.

Theorem 2.4.17 (Orevkov’s cuves [50]). Let ϕk denote the kth Fibonacci number,
with ϕ0 = ϕ1 = 1. Then there exist unicuspidal curves

(I) Ck for any k > 1, k ≡ 1 mod 4, κ(P2 \ Ck) = −∞,

(II) Ck for any k > 0, k ≡ 3 mod 4, κ(P2 \ Ck) = −∞,

(III) Ck for any k > 0, k ≡ 0 mod 4, κ(P2 \ Ck) = 2, and

(IV ) C�
k for any k > 0, k ≡ 0 mod 4, κ(P2 \ C�

k) = 2.

The curve Ck has degree dk = ϕk+2 and a single cusp of multiplicity mk = ϕk. The
multiplicity sequence is

mk = [ϕk, Sk, Sk−4, . . . , Sν ],

where k = 4j + ν, ν = 3, 4, 5, j ∈ N ∪ {0} and

Si = [(ϕi)5, (ϕi − ϕi−4)], i > 5,

S3 = [25],

S4 = [35],

S5 = [55].

46



The curve C�
k has degree d�

k = 2ϕk+2 and a single cusp of multiplicity m�
k = 2ϕk. The

multiplicity sequence of the cusp on these curves is 2mk.

Let p denote the cusp on Ck (respectively C�
k). Observe that the tangent T to Ck at p

has (T · Ck)p = 2ϕk (respectively (T · C�
k)p = 4ϕk).

Observe that in Theorem 2.4.17 there are examples of unicuspidal curves with
κ(P2 \ C) = 2. The unicuspidal curves with κ(P2 \ C) = 2 are not classified, but there
is the following result by Tono [69, Theorem 1, p.1].

Theorem 2.4.18. Let C be a rational unicuspidal plane curve with κ(P2 \ C) = 2.
Then C is projectively equivalent to one of Orevkov’s curves Ck or C�

k with k ≡ 0
mod 4 if and only if C̃2 = −2.

More generally, there is the following theorem by Tono for unicuspidal curves with
κ(P2 \ C) = 2 [67, Corollary 3, p.84].

Proposition 2.4.19. Let C be a rational unicuspidal plane curve with C̃ the strict
transform of C under the minimal embedded resolution of its cusp. Then κ(P2 \C) = 2
if and only if C̃2 ≤ −2 and the multiplicity sequence of the cusp is not given in Theorem
2.4.15.

The search for more cuspidal curves leads Fenske to the discovery of essentially
eight different series of rational unicuspidal and bicuspidal curves [15, Theorem 1.1,
p.310]. The curves are found using suitable Cremona transformations to transform
cuspidal curves of degree d,

V (xyd−1 − zd) and V (xyd−1 − zd − yzd−1).

An overview is given in Table 2.6. Note that since the curves are strict transforms of
the above curves, their degree is given as a function of d.

Curve Degree Cuspidal configuration

C1 da + d [da, da+b, d − 1)], [da−b]

C1′ da + d [(da, d2a, d − 1]

C2 da + d [da, da+b], [da−b, d − 1]

C2′ da + d [da, d2a], [d − 1]

C3 da + d + 1 [da + 1, da], [da+1]

C4 da + d + 1 [da, da+1], [(d + 1)a]

C5 da + d + 1 [da, da], [(d + 1)a, d]

C6 da + d + 2 [da + 1, da], [(d + a)a+1]

C7 da + 2d − 1 [da + d − 1, da, d − 1], [da+1, d − 1]

C8 a + 2 [a], [2a]

d ≥ 2 and 0 ≤ b < a, with a, b integers.

Table 2.6: Fenske’s plane rational unicuspidal and bicuspidal curves [15, Theorem 1.1,
p.310].
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Fenske furthermore finds and constructs all rational uni- and bicuspidal curves C of
degree d with maximal multiplicity m̂ = d− 2, and with m̂ = d− 3, up to equisingular
equivalence [17]. His results are summarized in Table 2.7 and Table 2.8. The curves
exist for integers a and b, with a ≥ 1 and 0 ≤ b < a. Conversely, there are no other
uni- or bicuspidal rational curves of degree d with m̂ = d − 2 or m̂ = d − 3. Note that
the curves in Table 2.7 were independently found by Sakai and Tono in [58].

# Cusps Curve Degree Cuspidal configuration

1 C1 2a + 2 [2a, 22a]

2

C2 a + 2 [a], [2a]

C3 2a + 3 [2a + 1, 2a], [2a+1]

C4 2a + 2 [2a, 2a+b], [2a−b]

Table 2.7: Series of plane rational unicuspidal and bicuspidal curves with m̂ = d − 2
[17, Theorem 3.1.4, Theorem 3.1.5, pp.62–63].

# Cusps Curve Degree Cuspidal configuration

1
C1 5 [26]

C2 3a + 3 [3a, 32a, 2]

2

C3 7 [4], [33]

C4 6 [3], [32, 2]

C5 5 [24], [22]

C6 2a + 3 [2a, 2a], [3a, 2]

C7 2a + 4 [2a + 1, 2a], [3a+1]

C8 2a + 3 [2a, 2a+1], [3a]

C9 3a + 3 [3a, 32a], [2]

C10 3a + 4 [3a + 1, 3a], [3a+1]

C11 3a + 3 [3a, 3a+b, 2], [3a−b]

C12 3a + 3 [3a, 3a+b], [3a−b, 2]

C13 3a + 5 [3a + 2, 3a, 2], [3a+1, 2]

Table 2.8: Series of plane rational unicuspidal and bicuspidal curves with m̂ = d − 3
[17, Theorem 3.4.1, Theorem 3.4.2, pp.73–74].

In [65], Tono succeeds in classifying all rational bicuspidal curves with κ(P2\C) = 1.
The rational bicuspidal curves with κ(P2 \C) = 1 are given in [65] by defining polyno-
mials and Cremona transformations. We will not list the curves and the multiplicity
sequences here because of the complex notation, but we quote a few results.

Theorem 2.4.20 ([65, Theorem 1, p.1]). Let C be a plane rational bicuspidal curve.
Then C is of LZ-type if and only if κ(P2 \ C) = 1.
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Theorem 2.4.21 ([65, Corollary 4.5, p.17]). Let C be a rational bicuspidal plane
curve and C̃ its strict transform under the minimal embedded resolution. Then C̃2 ≤ 0,
and the equality holds if and only if κ(P2 \ C) = 1.

There is additionally a result on the maximal multiplicity of both unicuspidal and
bicuspidal curves of LZ-type.

Theorem 2.4.22 ([65, Corollary 1.2, p.3]). If C is a rational cuspidal curve of
LZ-type of degree d and maximal multiplicity m̂, then d ≤ 2m̂.

Assuming κ(P2 \C) = 2, Tono finds a new series of plane rational bicuspidal curves
in [70, Theorem 2, p.2]. Table 2.9 presents the cuspidal configuration of all rational
bicuspidal curves C with C̃2 = −1, and they exist for the integers a and b specified in
the table. Note that this does not violate Proposition 2.4.19, since C here is assumed
to be bicuspidal. Observe also that some of these curves are described by Fenske, see
Table 2.6.

# Cusps Curve Degree Cuspidal configuration

2

C1 2ab + b − 1 [ab + b − 1, ab − 1, ba−1, b − 1], [(ab)2, ba]

C2 2ab + b + 1 [ab + b, ab, ba], [(ab + 1)2, ba]

C3 2ab + 1 [ab + 1, ab − b + 1, ba−1], [(ab)2, ba]

C4 2ab + 2b − 1 [ab + b, ab, ba], [(ab + b − 1)2, ba, b − 1]

Integers a > 0 and b ≥ 2 for C1 and C2.

Integers a > 0 and b ≥ 3 for C3 and C4.

Table 2.9: Series of plane rational bicuspidal curves with C̃2 = −1 [70, Theorem 2,
p.2].

2.4.5 Three or more cusps

Finding curves with three or more cusps has proved significantly harder than finding
cuspidal curves with fewer cusps. The below list represents the only curves that have
been found up to equisingular equivalence.

(I) For d = 5, the only rational cuspidal curves with three or more cusps have one
of these cuspidal configurations [49, Theorem 2.3.10, pp.179–182]:

[3], [22], [2],

[22], [22], [22],

[23], [2], [2], [2].

(II) For any a ≥ b ≥ 1 there exists a rational cuspidal plane curve C of degree
d = a + b + 2 with three cusps [22, Theorem 3.5, p.448],

[d − 2], [2a], [2b].
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(III) For any a ≥ 1, there exists a rational cuspidal plane curve C of degree d = 2a+3
with three cusps [23, Theorem 1.1, p.94],

[d − 3, 2a], [3a], [2].

(IV ) For any a ≥ 1, there exists a rational cuspidal plane curve C of degree d = 3a+4
with three cusps [16, Theorem 1.1, p.512],

[d − 4, 3a], [4a, 22], [2].

All these curves are constructed explicitly by successive Cremona transformations of
plane curves of low degree. In cases (II) and (III) it is proved by Flenner and Zaiden-
berg in [22, 23] that these are the only tricuspidal curves with maximal multiplicity of
this kind. The same is proved by Fenske in [16] for case (IV ) under the assumption
that χ(ΘV 〈D〉) = 0. Note that this result is originally proved with χ(ΘV 〈D〉) ≤ 0,
but by Proposition 2.4.8 we only need χ(ΘV 〈D〉) = 0. The curves in (II), (III) and
(IV ) constitute three series of cuspidal curves with three cusps, with infinitely many
curves in each series.

Further research by Fenske in [17, Section 5] implies that there are no other tri-
cuspidal curves. In [17], Fenske in particular shows the following theorem, here in our
notation [17, Theorem 5.1.2, Corollary 5.1.3, pp.111–112].

Theorem 2.4.23. Up to equisingular equivalence there are only finitely many rational
curves of degree d with at least three cusps and m̂ = d − k that do not possess the
following cuspidal configuration,

m1 = [d − k, (k − 1)a, n1], (2.4.5)

m2 = [kb, n2], (2.4.6)

m3 = [2c]. (2.4.7)

where a, b, c are suitable positive integers, and n1, n2 are suitable multiplicity sequences.
In particular, there exists no infinite series of plane rational cuspidal curves with

at least four cusps.

Under the extra conditions that d−k = (k−1)a and a = b, Fenske additionally proves
that for k > 4 there exists no series of tricuspidal curves with the cuspidal configuration
from Theorem 2.4.23. These conditions hold for the known series (III) and IV , with
k = {3, 4} respectively [17, Theorem 5.2.2, p.127].

Piontkowski proves in [55] that, assuming χ(ΘV 〈D〉) = 0, there are no other curves
with three or more cusps of degree d ≤ 20 than the curves in the above list. This
observation leads to the following conjecture [55, Conjecture 1.4, p.252].

Conjecture 2.4.24 (Piontkowski). Any rational cuspidal plane curve with at least
three cusps is contained in the above list.

As a curiosity we mention the following theorem by Tono.

Theorem 2.4.25 ([64, Theorem 5, p.4]). If C is a rational cuspidal plane curve
having exactly three cusps, then C̃2 ≤ −2. Moreover, C̃2 = −2 if and only if C is the
quartic curve with three cusps.
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2.4.6 Inflection points on tricuspidal curves

Closer investigation of the defining polynomials of rational cuspidal curves with three
cusps indicates that most of them have inflection points. Contrary to the intuitive
feeling that these curves have a lot of ramification in their cusps, inflection points seem
to exist on these curves from a certain degree on. The existence of inflection points is
not immediately apparent, and we have not been able to prove the claim in general.

The problem of inflection points is linked to the tangential intersection multiplicities
for the cusps, and we list these for the cusps of the tricuspidal curves in series (II),
(III), and (IV ) in Table 2.10, Table 2.11, and Table 2.12.

Case [d − 2] [2a] [2b]

a = b = 1 3 3 3

a > 1,b = 1 d − 1 rIIa(a) 3

a,b > 1 d − 1 rIIa(a) rIIb(b)

Table 2.10: Tangential intersection multiplicities for the cusps on the rational cuspidal
curves in series (II).

Case [d − 3,2a] [3a] [2]

a = 1 4 4 3

a > 1 d − 1 rIII(a) 3

Table 2.11: Tangential intersection multiplicities for the cusps on the rational cuspidal
curves in series (III).

Case [d − 4,3a] [4a,22] [2]

a = 1 6 6 3

a > 1 d − 1 rIV (a) 3

Table 2.12: Tangential intersection multiplicities for the cusps on the rational cuspidal
curves in series (IV ).

Note that the value of the unknown tangential intersection appears to be constant
in all the examples that we have checked, with rIIa(a) = rIIb(b) = 4, rIII(a) = 6 and
rIV (a) = 8, but we have not been able to prove this. If we could prove these equalities,
the existence of inflection points would follow from Theorem 2.1.8. Note that in all
series, the tangential intersection at the cusp with highest multiplicity is d−1 by Lemma
1.1.14, and an ordinary cusp with multiplicity sequence [2] has tangential intersection 3.
It follows that in series (II), the inflection point formula in Theorem 2.1.8 gives that the
number of inflection points counted with multiplicity, v, is v = d+2− rIIa(a)− rIIb(b).
In series (III) the formula reduces to v = d− 1− rIII(a), and in series (IV ) it reduces
to v = d − 1 − rIV (a).
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However, it is still possible to prove the existence of inflection points on some of the
curves using the formula in Theorem 2.1.8. As an example, we show that most curves
in series (III) have inflection points.

Example 2.4.26. For a = 1, all the tangential intersections can be found by inspec-
tion. For a > 1, the only unknown tangential intersection multiplicity is that of the
cusp with multiplicity sequence [3a]. We have checked that up to degree d = 13, the
value of rIII(a) is independent of a, and in fact rIII(a) = 6. By Theorem 2.1.8, the
number of inflection points counted with multiplicity is v = d − 1 − rIII(a). Assume
for contradiction that there are no inflection points, that is rIII(a) = d−1. By Lemma
1.1.14, we have either rIII(a) = 3k for some integer k ≤ a, or rIII(a) = 3a + 1. In
the first case, 2a + 3 − 1 = 3k, which is only possible if a ≡ 2 mod 3. In the second
case, 2a + 3 − 1 = 3a + 1, which is true only for a = 1. By contradiction, if a ≡ 0 or 1
mod 3, then the curve must have inflection points.

Remark 2.4.27. It is important to notice that most rational cuspidal curves with three
cusps have inflection points. Through the inflection point formula, the occurrence of
inflection points gives useful information about lines intersecting the curve, that is,
tangential intersection multiplicities of both smooth points and cusps. Control over
the tangential intersection multiplicities of both smooth points and cusps of a cuspidal
curve is essential in the construction of new curves on Hirzebruch surfaces.

2.4.7 An important conjecture

With Piontkowski’s conjecture in mind, there is an obvious upper bound for the number
of cusps on a rational cuspidal curve.

Conjecture 2.4.28. A plane rational cuspidal curve can not have more than four
cusps.

This seemingly elementary observation has not been proved. The best upper bound so
far is the consequence of Theorem 2.3.5 [68, Corollary 1.2, p.216].

Corollary 2.4.29 (Corollary to Theorem 2.3.5). A rational cuspidal plane curve
has no more than eight cusps.

Hence, the answer to the question of how many cusps s a rational cuspidal plane curve
can have is narrowed down to s ∈ {4, 5, 6, 7, 8}.

The question of the number of cusps on a rational curve has also been studied
for other curves than projective rational curves. Borodzik and Zoladek study this
question in [3] for plane algebraic annuli, that is, reduced algebraic curves C ⊂ C2

that are homeomorphic to C∗. They believe that their methods can be extended to
all rational curves on C2, but claim that the computations in that situation are highly
complex. We recall the theorem of Borodzik and Zoladek and restate it as a corollary
applicable to our situation.

Theorem 2.4.30 ([3, Main Theorem, p.1]). Any algebraic curve in C2 homeomor-
phic to C∗ has at most three singular points.
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Corollary 2.4.31. Let C be a plane rational cuspidal curve that admits a parametriza-
tion of the following form in a suitable affine covering,

x = φ(t) = tp + a1t
p−1 + . . . + ap+rt

−r

y = ψ(t) = tq + b1t
q−1 + . . . + bq+st

−s, ap+rbq+s �= 0.

Then C can have at most five cusps.

Proof. This corollary follows from Theorem 2.4.30. Curves on the above form are
homeomorphic to C∗ and may have at most three cusps for finite values of t, in addition
to at most two singularities at t = {0,∞} (see [3, p.5]). Note that Theorem 2.4.30 is
proved in [3] using the above invariants, p, q, r and s, and the B–M–Y-inequality.

Example 2.4.32. We observe that the cuspidal quintic with four cusps admits a
parametrization as above. One reason for this is that there exists a line that intersects
the curve in exactly two points. This line is here the tangent line of the cusp with
multiplicity sequence [23], which additionally intersects the curve transversally in a
smooth point. Explicitly, we have the parametrization

φ(t) = t4 + 2t,

ψ(t) = t2 − t−1.

2.4.8 Real cuspidal curves

Can all cusps on a cuspidal curve on the projective plane have real coordinates? By
elementary properties of changes of coordinates of P2, the answer to this question is
yes for all rational cuspidal curves with four or fewer cusps.

If we ask the same question for curves with defining polynomials that have only
real coefficients, the answer is less obvious. We say that a plane curve C = V (F ) is
real if F ∈ R[x, y, z].

For real curves, there is the following formula, originally due to Klein, and gener-
alized by Schuh [60], here presented as an adapted version of [75, Theorem, p.361] by
Wall.

Theorem 2.4.33 (Generalized Klein formula). Let C be a real plane cuspidal
curve of degree d with real cusps pj, j = 1, . . . , s, and let mj denote the multiplicity of
pj. Let C∗ be the dual curve of C with degree d∗ and real cusps p′j′, j′ = 1, . . . , s′, and
let m′

j′ denote the multiplicity of p′j′. For every real cuspidal curve C on P2,

d −
∑

pj∈Sing C(R)

(mj − 1) = d∗ −
∑

p′
j′∈Sing C∗(R)

(m′
j′ − 1).

For the known rational cuspidal curve with four cusps, using the generalized Klein
formula, we show in [46] that if the curve is real, then the cusps can not all have real
coordinates. We recall the result.

Proposition 2.4.34. Let C be the plane rational cuspidal quintic with four cusps, and
assume that C is a real curve. Then the cusps on C can not all have real coordinates.
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Proof. Let C be the quintic with cuspidal configuration [23], [2], [2], [2], and assume
that C is a real curve. The dual curve C∗ is a quartic with cuspidal configuration
[23]. Assume for contradiction that all the cusps on C have real coordinates. Since C
is a real curve, the cusp on C∗ must also have real coordinates. Then C contradicts
Theorem 2.4.33,

5 − 4 · (2 − 1) �= 4 − (2 − 1).

Hence, the cusps on C can not all have real coordinates.

Moreover, it is shown by construction in [16, 22, 23] that the known series of ra-
tional cuspidal curves with three cusps can be defined over R, in fact over Q. Investi-
gation of the rational quintic with cuspidal configuration [22], [22], [22], using the real
parametrization given in Table 2.3 and calculating in Maple, shows that the cusps of
this real curve can have real coordinates too. From these observations we conclude
that all known rational cuspidal curves with three cusps can be defined over R.

2.4.9 The Coolidge–Nagata conjecture

The question of which rational curves can be transformed into a line via Cremona
transformations has been thoroughly investigated. In this section we will clarify some
definitions and give a conjecture linked to the mentioned question and plane rational
cuspidal curves.

We begin in a general setting. Let C be a plane rational curve of degree d and with
singular points pj of multiplicity mj. In [9, pp.396-399], Coolidge claims to prove that
such a curve can be transformed into a line via Cremona transformations if and only
if C has no special adjoint of any index. A curve Cs of degree d− 3s is called a special
adjoint to C of index s ≥ 1 if Cs has multiplicity ≥ mj − s at every point pj. The
proof of Coolidge’s claim given in [9] is noticed to be incomplete by Garcia in [27].

Using new techniques, an equivalent result is properly proved by Mohan Kumar
and Murthy in [47]. Let σ : V → P2 be the minimal embedded resolution of C ⊂ P2,
and let C̃ be the strict transform of C. Then with κ(C̃, V ) as defined in Section 1,
let κ̃(C, P2) := κ(C̃, V ). The claim by Coolidge is then restated and proved with the
following theorem, here in our notation.

Theorem 2.4.35 ([47, Theorem 2.6, p.772]). Let C ⊂ P2 be an irreducible rational
curve. Then there exists a Cremona transformation ψ of P2 such that ψ(C) is a line
if and only if κ̃(C, P2) = −∞.

Note that Mohan Kumar and Murthy in [47] additionally give a direct proof of Coolidge’s
claim, but this proof is also incomplete.

The specialization from general plane curves to cuspidal curves is first discussed by
Matsuoka and Sakai in [42]. Let C be a plane curve of degree d. Let pi be the centers
of the blowing ups in the minimal embedded resolution of C. Renumber the points pi

such that the multiplicities are ordered m1 ≥ m2 ≥ . . . ≥ mt−1 ≥ 1. If t−1 ≥ 2, define
k to be the maximal positive integer such that m1 ≥ m2 + . . . + mk.

Theorem 2.4.36 ([42, Theorem A, p.245]). Let C be a plane curve of degree d.
With mi and k as above, if C is transformable into a line by a Cremona transformation,
then either
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a) d < m1 + 2mk+1 (2 ≤ k < t − 1),

b) d = m1 + 1 (t − 1 = 1 or k = t − 1 ≥ 2, m2 = · · · = mk = 1), or

c) d = 1 or 2 (t − 1 = 0).

A straightforward observation reveals that the condition of not having any special
adjoint of any index implies that d < m1 +m2 +m3, with the pi ordered as in Theorem
2.4.36 (see [9]). This obviously implies that d < 3m1. Because of the result for rational
cuspidal curves given in Theorem 2.4.2, Matsuoka and Sakai conjecture the following.

Conjecture 2.4.37 (Coolidge–Nagata [42, Corollary, p.234]). Every plane ra-
tional cuspidal curve can be transformed into a line by a Cremona transformation.

The classification of plane rational cuspidal curves by the logarithmic Kodaira di-
mension of their complements gives a partial answer to the conjecture. In this Chapter,
we have seen that there is a complete classification of all plane rational cuspidal curves
with κ(P2 \ C) = {−∞, 1}, and these curves can all be transformed into lines by Cre-
mona transformations. For all known curves with κ(P2 \C) = 2, it is shown that they
can be transformed into lines by Cremona transformations. Since the classification
of rational cuspidal curves with κ(P2 \ C) = 2 is not complete, the conjecture is not
proved in general.

Recently, it is shown by Palka in [52] that the Coolidge–Nagata conjecture holds for
rational cuspidal curves with more than four cusps. The proof relies on the B–M–Y-
inequality, Zariski decomposition and properties of the minimal embedded resolution
of a rational cuspidal curve. An estimation of the number of maximal twigs (see proof
of Theorem 3.3.2) of such a resolution forms the essential step of the proof. With
Conjecture 2.4.24 in mind, this result is not surprising.

2.5 A toric construction

In this section we will revisit the special class of rational unicuspidal curves found and
constructed by Orevkov in [50]. As mentioned, these curves are originally constructed
using Cremona transformations. Orevkov does, however, additionally explain a way to
construct the curves using theory from toric geometry, and we will repeat his construc-
tion in the following. This section does not introduce new results, but it is included as
an illustration of how toric geometry can be used to shed light on the rational cuspidal
curves.

Let ϕk denote the kth Fibonacci number, with ϕ1 = ϕ2 = 1. Recalling Theorem
2.4.17, we know that there exist unicuspidal curves Ck of degree ϕk+2, where the cusp
has multiplicity mk = ϕk and multiplicity sequence

mk = [ϕk, Sk, Sk−4, . . . , Sν ],

where k = 4j + ν, ν = 3, 4, 5, j ∈ N ∪ {0} and

Si = [(ϕi)5, (ϕi − ϕi−4)], i > 5,

S3 = [25],

S4 = [35],

S5 = [55].
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In the following we make a summary of Orevkov’s toric construction of the curves Ck

for odd values of k, where k ≥ 3.
Given a smooth surface X and a linear chain of rational curves D = D1 + . . .+Dn,

we have a sequence of integers (−D2
1, . . . ,−D2

n). By [50] we may then uniquely, up to
the action of SL2(Z), encode these self intersections by a sequence of vectors

c(D) = (v0, . . . , vn+1), where vi ∈ Z2,

with the following properties. With (a, b) ∧ (c, d) = ad − bc, the vi’s in the sequence
have the properties that

vi ∧ vi+1 = 1 and vi−1 ∧ vi+1 = −D2
i .

For any vector v ∈ Z2, let Av denote the automorphism defined by Avu = u + (v ∧
u)v. Observe that A−1

v u = u−(v∧u)v and that Avv = v. Define the discriminant d(D)
of D to be the determinant of the intersection matrix of D. Moreover, let bi denote
the positively oriented angle from vi to vi+1 and define the rotation number r(D) of
D, r(D) :=

∑n
i=0 bi. Then there is the following proposition by Orevkov [50].

Proposition 2.5.1 ([50, Proposition 7.1, p.670]).

a) If X̃ is obtained by blowing up Di ∩Di+1, i = 0, . . . , n, and D̃ is the total transform
of D, then

c(D̃) = (v0, . . . vi, vi + vi+1, vi+1, . . . , vn+1).

b) If X ′ is obtained by blowing up a smooth point of Di, i = 1, . . . , n, and D′ is the
strict transform of D, then

c(D′) = (v0, . . . , vi, Avi
vi+1, . . . , Avi

vn+1).

c) d(D) = v0 ∧ vn+1.

d) D can be blown down to a smooth point if and only if v0 ∧ vn+1 = 1 and r(D) < π.

Fixing an odd k, we may consider three vectors in Z2,

v0 = −(ϕ2
k, ϕ

2
k+2), v1 = (ϕk−2, ϕk+2), v2 = (ϕk, ϕk+4).

By easily proved relations for Fibonacci numbers (see [50]), we have

v0 ∧ v1 = ϕk+2, v1 ∧ v2 = 3, v2 ∧ v0 = ϕk. (2.5.1)

The key to the construction of the curves Ck is to manipulate the above vectors in such
a way that Proposition 2.5.1 can be applied. Roughly speaking, we find a divisor that
can be contracted, and in addition a curve that transforms into the appropriate plane
curve in the course of the contraction.

First take the complete fan Σ = span{v0, v1, v2}. By the relations in (2.5.1), the
cones σij = Cone(vi, vj), i, j = 0, 1, 2, are singular cones, that is, the minimal generators
of the cones do not form a Z-basis for Z2. Let Σ′ denote the refinement of Σ, such that

56



the associated toric surface XΣ′ is smooth. The vectors spanning Σ′ can be written as
a sequence of vectors,

(v0, u1, . . . , v1, . . . , uk, . . . , v2, . . . , un, v0).

Second, let Di denote the closure of the 1-dimensional orbit corresponding to vi,
i = 0, 1, 2, and let Ek correspond to uk, k = 1, . . . , n. Denote by D the closure of
XΣ′ \ (X0 ∪ D0), where X0 is the open orbit of XΣ′ . By properties of resolutions of
singularities on toric varieties, we may consider D as a finite linear chain of rational
curves on the smooth surface XΣ′ , and write

D = E1 + . . . + D1 + . . . + D2 + . . . + En.

By [50], there is the convenient correspondence

c(D) = (v0, u1, . . . , v1, . . . , uk, . . . , v2, . . . , un, v0).

We then blow up generic points p1 and p2 on D1 and D2 respectively and let D′ denote
the strict transform of D. We let F1 and F2 denote the exceptional divisors of the
blowing ups. Let e1 and e2 denote the unit vectors of Z2. By Proposition 2.5.1 b), we
get

c(D′) = (v0, u1, . . . , v1, . . . , Av1uk, . . . , Av1v2, . . . , Av1Av2un, Av1Av2v0)

= (A−1
v1

v0, A
−1
v1

u1, . . . , A
−1
v1

v1, . . . , uk, . . . , v2, . . . , Av2un, Av2v0)

= (v0 − (v1 ∧ v0)v1, u1 − (v1 ∧ u1)v1, . . . , v1, . . . , uk, . . .

. . . , v2, . . . , un + (v2 ∧ un)v2, v0 + (v2 ∧ v0)v2)

= (e1, . . . , v1, . . . , v2, . . . , e2).

Considering this new sequence of vectors, we see that d(D′) = e1 ∧ e2 = 1 and
r(D′) = π

2
< π. By Proposition 2.5.1 d), the divisor D′ can be blown down to a smooth

point. In total, we have performed the same number of blowing ups and contractions,
hence we are back in P2. Moreover, by the shape and weights of the dual graph of the
divisor D′ + F2, we see that F2 is mapped onto a rational unicuspidal curve Ck. The
characteristic pair of the cusp p can be calculated using [50, Proposition 3.2, p.662]
and Proposition 2.5.1 c),

Ch(p) = (e1 ∧ v1, v2 ∧ e2)

= (ϕk, ϕk+1).

Hence, the strict transform of F2 has the desired properties, it is indeed the plane
rational unicuspidal curve Ck.
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Chapter 3

Cuspidal curves
on Hirzebruch surfaces

In this Chapter we will investigate cuspidal curves on Hirzebruch surfaces. Motivated
by the results on cuspidal curves on the projective plane, our main focus will be finding
bounds on the number of cusps and constructing series of rational curves with many
cusps.

3.1 Background and preliminary results

We begin our investigation of cuspidal curves on Fe with a few general facts. Recall
from Chapter 1 that a reduced and irreducible curve C of type (a, b) on Fe is given by
V (F ), where F ∈ Se(a, b) is a reduced and irreducible polynomial, and

Se(a, b) =
⊕

α0+α1−eβ1=a
β0+β1=b

Cxα0
0 xα1

1 yβ0

0 yβ1

1 .

In the language of divisors we have that C ∼ aL + bM . The notions of a singular
point, its multiplicity and multiplicity sequence are local, and the results from Chapter
1 apply.

We start with a closer look on an affine part of a curve around a point p. Assuming
that the point p on the curve C = V (F ) is a general point on Fe, we can move it
by a change of coordinates to the point (0 : 1; 0, 1). In the affine neighbourhood
D+(x1y1) we consider the polynomial f(x, y) = F (x, 1, y, 1). Splitting f = f(x, y) into
its homogeneous terms, we write

f = f0 + · · · + fi + · · · + fa+be,

where fi = fi(x, y) denotes the terms of f(x, y) of degree i in x and y.
Assuming, on the other hand, that the point p on the curve C = V (F ) is a special

point on Fe, so that p ∈ V (y1), we can move it by a change of coordinates to the
point (0 : 1; 1, 0). In the affine neighbourhood D+(x1y0) we consider the polynomial
f(x, y) = F (x, 1, 1, y). Splitting f = f(x, y) into its homogeneous terms, we write

f = f0 + · · · + fi + · · · + fa+b(e+1),
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where fi = fi(x, y) denotes the terms of f(x, y) of degree i in x and y. Note that this
is the situation for all points when e = 0.

In both the above cases, when p is a point on C we have

f = fm + · · · ,

with m the the multiplicity of C at p. Recall that if p is smooth or a cusp, then the
term fm defines a unique local tangent line of C at p. If p is smooth, we have by the
Taylor expansion of f that f1(x, y) = fx(p)x + fy(p)y. Note that the local tangent line
in general is not the restriction of a curve on Fe since its defining polynomial normally
is not an element of Se. There are exceptions to this general observation, for example
when the local tangent line is a fiber, that is, a (1, 0)-curve, or the special section
V (y1).

With the above in mind, we classify points on Fe in the following way.

Definition 3.1.1. Let p be a point on a curve C = V (F ) ⊂ Fe.

a) The point p is called fiber tangential if a fiber is tangent to the curve C at the point
p.

b) The point p is called special tangential if the special section is tangent to the curve
C at the point p.

Note that both fiber tangential and special tangential points can be either smooth or
singular.

Note that the tangential property of fiber and special tangential points can be used
when we construct curves. Setting up the right situation, we may choose to contract the
tangent line, and its intersection multiplicity with the curve will affect the singularities
of the curve.

In general, we can make additional small observations connecting local tangent lines
to (0, 1)-curves. When e = 0, a (0, 1)-curve can in fact be a tangent line, since in that
case (0, 1)-curves are fibers. For e ≥ 1, the situation is more subtle. A special point p
can not be on any irreducible (0, 1)-curve. This can be seen by considering the possible
defining polynomials of (0, 1)-curves through p, all of which must have y1 as a factor.
For a general point, however, a local tangent line can be uniquely homogenized to a
(0, 1)-curve, but this is not well defined as a tangent line in the global sense, except in
the case of e = 1. Lemma 3.1.2 clarifies the situation.

Lemma 3.1.2. Let p be a smooth general point on a curve C = V (F ) on the surface
Fe, e ≥ 1. Then there exists an (e − 1)-dimensional family of (0, 1)-curves, where the
curves are possibly reducible, tangent to C at p.

Proof. By Lemma 1.2.2 there exists an e-dimensional family of (0, 1)-curves through
any general point p on Fe. Moving the point p to coordinates (0 : 1; 0, 1), the defining
polynomials of curves in this family are on the form

by0 +
e∑

k=1

ckx
k
0x

e−k
1 y1,
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with b and ck complex coefficients. As above, let f(x, y) = F (x, 1, y, 1). Then the
Taylor expansion of f gives

f(x, y) = fx(p)x + fy(p)y + H(2),

where H(2) denotes higher order terms. Note that in these coordinates, we have
fx(p) = Fx0(p) and fy(p) = Fy0(p). Requiring the (0, 1)-curves through p to be tangent
to C at p determines the two coefficients b = Fy0(p) and c1 = Fx0(p). Then we are left
with an affine (e − 1)-dimensional family of curves tangent to C at p.

We now prove a simple observation, similar to the Euler relation on projective
spaces.

Lemma 3.1.3. For a polynomial F ∈ Se(a, b) the following hold,

x0Fx0 + x1Fx1 − ey1Fy1 = aF,

y0Fy0 + y1Fy1 = bF.

Proof. We show this for the first expression, and the second equation can be proved in
the same way. Notice that if the expression holds for a monomial F = xα0

0 xα1
1 yβ0

0 yβ1

1 ∈
Se(a, b), then it also holds for a general polynomial in Se(a, b). So it suffices to show
that the formula holds for a monomial, say F .

x0Fx0 + x1Fx1 − ey1Fy1 = α0F + α1F − eβ1F

= (α0 + α1 − eβ1)F

= aF.

Note that we can not evaluate F and the partial derivatives at a point to get an
element of any graded part of the coordinate ring of Fe from Lemma 3.1.3, except in
the case when e = 0.

Moreover, for a point p ∈ V (F ), where p /∈ V (x0x1y0y1), the relations imply that
if Fy0(p) = 0, then Fy1(p) = 0, and conversely. If either Fy0(p) = 0 or Fy1(p) = 0, the
same holds for Fxi

(p). If follows that the definition of a singular point given in Chapter
1 is equivalent to saying that p is singular if Fx0(p) = Fx1(p) = Fy0(p) = Fy1(p) = 0.

A first result concerning curves on Fe regards the genus g of the curve.

Corollary 3.1.4 (Proposition 1.1.17). A cuspidal curve C on Fe of type (a, b) with
cusps pj, for j = 1, . . . , s, and multiplicity sequences mj = [m0, m1, . . . , mtj−1] has
genus g, where

g =
(b − 1)(2a − 2 + be)

2
−

s∑
j=1

tj−1∑
i=0

mi(mi − 1)

2
.

Proof. Recall that C ∼ aL + bM , K ∼ (e− 2)L− 2M , L2 = 0, L . M = 1 and M2 = e.
By Proposition 1.1.17, we have

g =
(aL + bM) . (aL + bM + (e − 2)L − 2M)

2
+ 1 −

s∑
j=1

δj.
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This gives

g =
b2e − 2be + ab + be − 2a + ab − 2b

2
+ 1 −

s∑
j=1

tj−1∑
i=0

mi(mi − 1)

2

=
(b − 1)(2a − 2 + be)

2
−

s∑
j=1

tj−1∑
i=0

mi(mi − 1)

2
.

The structure of Fe gives restrictions on the multiplicity sequence of a cusp on a
curve.

Theorem 3.1.5. Let p be a cusp on a reduced and irreducible curve C = V (F ) on Fe

of type (a, b) with multiplicity sequence m = [m, m1, . . . , mt−1]. Then m ≤ b.

Proof. The point p determines a unique (1, 0)-curve L by Lemma 1.2.2. By Corollary
1.1.12, m ≤ (L · C)p. By Proposition 1.1.2, (L · C)p ≤ L . C. By intersection theory,
L . C = b. Hence, m ≤ (L · C)p ≤ L . C = b.

Further restrictions on the type of points on a curve on Fe can be found using Hur-
witz’s theorem [31, Corollary IV 2.4, p.301]. First, the general result in this situation.

Theorem 3.1.6 (Hurwitz’s theorem for Fe). Let C be a curve on Fe, e > 0, of
genus g and type (a, b), where b > 0. Let C̃ denote the normalization of C, and let ν
be the composition of the normalization map C̃ → C and the projection map C → P1

of degree b. Let ep denote the ramification index of a point p ∈ C̃ with respect to ν.
Then the following equality holds,

2b + 2g − 2 =
∑
p∈C̃

(ep − 1).

When e = 0, for curves C of genus g and type (a, b), with a, b > 0, we have

2 min{a, b} + 2g − 2 =
∑
p∈C̃

(ep − 1).

Proof. The result follows from [31, Corollary IV 2.4, p.301]. With ν as above, we get

2b + 2g − 2 =
∑
p∈C̃

(ep − 1).

When e = 0, use the projection map of lower degree, min{a, b}.
The first corollary gives restrictions on the multiplicities of cusps on a curve.

Corollary 3.1.7. Let C be a cuspidal curve on Fe of type (a, b) and genus g with s > 0
cusps pj with multiplicities mj. Then the following inequality holds,

2b + 2g − 2 ≥
s∑

j=1

(mj − 1).
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Proof. The cusps pj of C gives branching points with ramification index bigger than
or equal to the multiplicity mj, so the result follows from Theorem 3.1.6.

The second corollary gives restrictions on the number of smooth fiber tangential
points.

Corollary 3.1.8. Let C be a cuspidal curve on Fe of type (a, b) and genus g with s > 0
cusps pj with multiplicities mj. Then the number θ of smooth fiber tangential points is
finite, and bounded above,

θ ≤ 2b + 2g − 2 −
s∑

j=1

(mj − 1).

Proof. Since a smooth fiber tangential point has ramification index ep ≥ 2, the result
follows from Theorem 3.1.6 and Corollary 3.1.7.

We now establish a result on the Euler characteristic of the complement of a curve
C on Fe. In this case we view C and Fe as real manifolds.

Lemma 3.1.9. Let C be a cuspidal curve of genus g and type (a, b) on Fe. Then

e(Fe \ C) = 2g + 2.

Proof. For the pair (Fe, C) we have the long exact sequence of cohomology groups

0 −→ H0(Fe, C; Z) −→ H0(Fe; Z) −→ H0(C; Z)
−→ H1(Fe, C; Z) −→ H1(Fe; Z) −→ H1(C; Z)
−→ H2(Fe, C; Z) −→ H2(Fe; Z) −→ H2(C; Z)
−→ H3(Fe, C; Z) −→ H3(Fe; Z) −→ 0
−→ H4(Fe, C; Z) −→ H4(Fe; Z) −→ 0.

It is well known that the Hirzebruch surfaces have cohomology groups of the fol-
lowing form,

H0(Fe; Z) ∼= Z,

H1(Fe; Z) ∼= 0,

H2(Fe; Z) ∼= Z ⊕ Z,

H3(Fe; Z) ∼= 0,

H4(Fe; Z) ∼= Z.

Since a cuspidal curve is homeomorphic to its normalization, we have the following
cohomology groups for a cuspidal curve C of genus g (see [17, Proof of Proposition
1.5.16 pp.42–43]),

H0(C; Z) ∼= Z,

H1(C; Z) ∼= Z2g,

H2(C; Z) ∼= Z.
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We get the long exact sequence

0 −→ H0(Fe, C; Z) −→ Z −→ Z
−→ H1(Fe, C; Z) −→ 0 −→ Z2g

−→ H2(Fe, C; Z) −→ Z ⊕ Z −→ Z
−→ H3(Fe, C; Z) −→ 0 −→ 0
−→ H4(Fe, C; Z) −→ Z −→ 0.

Using Poincaré-Lefschetz duality, we have Hi(Fe \ C; Z) ∼= H4−i(Fe, C; Z) for i =
0, . . . , 4. Taking dimensions in the long exact sequence, we find that e(Fe \ C) =
2g + 2.

We may now establish the B–M–Y-inequalities for curves on Fe.

Corollary 3.1.10 (Theorem 1.1.23). Let (V, D) be the minimal embedded resolu-
tion of a cuspidal curve C of genus g on Fe, and let KV and H be as in the Zariski
decomposition described in Chapter 1.

a) If κ(Fe \ C) ≥ 0, then

(KV + D)2 ≤ 3e(Fe \ C) = 6g + 6.

b) If κ(Fe \ C) = 2, then
H2 ≤ 3e(Fe \ C) = 6g + 6.

3.2 The logarithmic Kodaira dimension

In this section we establish a result parallel to Theorem 2.2.1 by Wakabayashi [74] con-
cerning the logarithmic Kodaira dimension of complements of curves on the Hirzebruch
surfaces.

Theorem 3.2.1 (On the logarithmic Kodaira dimension on Fe, e ≥ 0). Let C
be an irreducible curve on Fe of genus g and type (a, b), with b > 2 and a > 2 − 1

2
be,

a > 0.

(I) If g > 0, then κ(Fe \ C) = 2.

(II) If g = 0 and C has at least three cusps, then κ(Fe \ C) = 2.

(III) If g = 0 and C has at least two cusps, then κ(Fe \ C) ≥ 0.

We prove this theorem closely following the proof given by Wakabayashi in [74] for
the parallel theorem for curves on the projective plane, replacing only the details for
P2 with the corresponding details for Fe where necessary. Note that the proof goes
through without essential changes, but that we have different indices in some parts of
the proof.

We start by recalling the essential definitions from Chapter 1. Let L and M de-
note the generators of Pic(Fe). Let σ : V −→ Fe be a finite sequence of monoidal
transformations,

V = Vt
σt−→ Vt−1 −→ · · · −→ V1

σ1−→ V0 = Fe.

64



In short,

σ = σ1 ◦ · · · ◦ σt : V → Fe.

Each transformation σi has exceptional divisor Ei ⊂ Vi and is centered in pi−1 ∈ Vi−1.
Let E ′

i denote the strict transform of Ei by σi+1 ◦ · · · ◦ σt. By abuse of notation, we
also use the symbol Ei for (σi+1 ◦ · · · ◦ σt)

∗Ei, M for σ∗M and L for σ∗L.
Before giving the proof of the theorem, we need a lemma and a proposition. The

formulation and proofs of these are simply adjustments to the ones found in [74].

Lemma 3.2.2. Let σ : V → Fe, M , L and Ei be as above. For any â, b̂ ∈ N, ni ∈
N ∪ {0} we have

dim H0
(
V, O

(
âL + b̂M −

t∑
i=1

niEi

)) ≥ (b̂ + 1)(2â + 2 + b̂e)

2
−

t∑
i=1

ni(ni + 1)

2
.

Proof. Most of the proof of [74, Lemma, p.157] goes unchanged, since it only con-
cerns local properties of points. A calculation of the dimension of the vector space of
polynomials of bigrading (â, b̂) can be found in [37, Proposition 2.3, p.129].

Let C be an irreducible curve on Fe of type (a, b). Let σ : V → Fe be the minimal
embedded resolution of its singularities, such that its reduced inverse image D is an
SNC-divisor. Let Ci denote the strict transform of C by σ1 ◦ · · · ◦ σi, and let mi be the
multiplicity of pi on Ci. Let C̃ denote the strict transform of C by σ. Finally, let KV

denote the canonical divisor on V . Then with the sloppy notation introduced above,
we have

D = C̃ +
t∑

i=1

E ′
i,

KV ∼ (e − 2)L − 2M +
t∑

i=1

Ei,

aL + bM ∼ C = C̃ +
t∑

i=1

mi−1Ei.

Hence,

D + KV ∼ (a + e − 2)L + (b − 2)M +
t∑

i=1

E ′
i −

t∑
i=1

(mi−1 − 1)Ei. (3.2.1)

Proposition 3.2.3. With C, a, b, D, KV , L and M as above, suppose that for suffi-
ciently large k ∈ N

λk(D + KV ) ∼ λ
(
(a + e − 2)L + (b − 2)M

)
+ Gk, (3.2.2)

where λ is a suitable positive number independent of k, and Gk is a suitable non-negative
divisor on V dependent on k. Then κ(Fe \ C) = 2.
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Proof. Choose a k such that (3.2.2) holds. Since Gk is non-negative, then for any n ∈ N
we have

dim H0
(
V, O

(
nλk(D + KV )

)) ≥ dim H0
(
V, O

(
nλ((a + e − 2)L + (b − 2)M)

))
.

For readability, we will use an even more sloppy notation and write C + K instead of
(a + e− 2)L + (b− 2)M . By Riemann–Roch [31, Theorem V 1.6, p.362], we have that

h0
(
nλ

(
C + K

))− h1
(
nλ

(
C + K

))
+ h0

(
KV − nλ

(
C + K

))
=

1
2
nλ

(
(a + e − 2)L + (b − 2)M

)
.
(
nλ

(
(a + e − 2)L + (b − 2)M

)− KV

)
+ 1 + pa(V ).

Rewriting this equation, using that pa(V ) = pa(Fe) = 0 and h1
(
nλ(C + K)

)
≥ 0, we

find that

h0
(
nλ(C + K)

)
=

1
2
nλ

(
(a + e − 2)L + (b − 2)M

)
.
(
nλ

(
(a + e − 2)L + (b − 2)M

)− KV

)
+ 1 + h1

(
nλ(C + K)

)
− h0

(
KV − nλ(C + K)

)
≥ 1

2
nλ

(
(a + e − 2)L + (b − 2)M

)
.
(
nλ

(
(a + e − 2)L + (b − 2)M

)− KV

)
− h0

(
KV − nλ(C + K)

)
≥ 1

2
n2λ2(b − 2)(2a + be − 4) +

1
2
nλ(2a + 2b + be − 8)

− h0
(
KV − nλ(C + K)

)
≥ 1

2
n2λ2(b − 2)(2a + be − 4) − h0

(
KV − nλ(C + K)

)
.

Next we show that

h0
(
KV − nλ((a + e − 2)L + (b − 2)M)

)
≤ 0.

Assume to the contrary that on V there exists a positive divisor

P ∼ KV − nλ
(
(a + e − 2)L + (b − 2)M

)
. (3.2.3)

Then σ(P ) must be effective. Considering Fe as a toric variety, the divisor L + M
is in the interior of the nef cone, hence it is ample (see [10, Example 6.1.16, p.273]).
Therefore, σ(P ) . (L + M) ≥ 0. Because of (3.2.3) and the conditions on a and b, we
have that

P . σ−1(L + M) = σ(P ) . (L + M)

=
(
(e − 2)L − 2M − nλ(a + e − 2)L − nλ(b − 2)M

)
. (L + M)

= −e − 4 − nλ
(
a + b − 4 + e(b − 1)

)
< 0.
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This is a contradiction to the above assumption, hence

h0
(
nλ

(
(a + e − 2)L + (b − 2)M

)) ≥ n2λ2 (b − 2)(2a + be − 4)

2
.

In other words

dim H0
(
V, O

(
nλ

(
(a + e − 2)L + (b − 2)M

))) ≥ c · n2

for a suitable constant c > 0 independent of n. Note that c > 0 because of the
conditions on a and b. By definition of the logarithmic Kodaira dimension (see Theorem
1.1.21), we then have κ(Fe \ C) = 2.

We now prove Theorem 3.2.1 in the same way that Wakabayashi proves the result
for curves on P2 in [74].

Proof of Theorem 3.2.1 (cf. Wakabayashi [74]).
Case (I). Let C be an irreducible curve with g(C) ≥ 1, b > 2 and a > 2 − 1

2
be, a > 0.

The genus formula ensures that

g(C) =
(b − 1)(2a − 2 + be)

2
−

t−1∑
i=0

mi(mi − 1)

2
≥ 1.

With â = a + e − 2, b̂ = b − 2, and ni = mi−1 − 1 in Lemma 3.2.2, we get

dim H0
(
V, O

(
(a + e − 2)L + (b − 2)M −

t∑
i=1

(mi−1 − 1)Ei

)) ≥ 1.

Hence, the below vector space is non-zero,

H0
(
V, O

(
(a + e − 2)L + (b − 2)M −

t∑
i=1

(mi−1 − 1)Ei

)) �= 0.

Therefore,

(a + e − 2)L + (b − 2)M ∼
t∑

i=1

(mi−1 − 1)Ei + G,

where G is a positive divisor on V . This implies that

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M + (k − 1)
(
(a + e − 2)L + (b − 2)M

)
+ k

t∑
i=1

E ′
i − k

t∑
i=1

(mi−1 − 1)Ei

∼ (a + e − 2)L + (b − 2)M + (k − 1)G + k

t∑
i=1

E ′
i −

t∑
i=1

(mi−1 − 1)Ei.

Each Ei, that is each (σi+1 ◦ · · · ◦σt)
∗Ei, is a linear combination of the strict transforms

E ′
j, j ≥ i, so for large k the latter three terms in the above sum constitute a non-

negative divisor. Hence, we can use Proposition 3.2.3, with λ = 1, to conclude that
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κ(Fe \ C) = 2.

Case (II). Let C be a rational cuspidal curve on Fe. We first assume that C has only
one cusp. Let q denote the index with the property that pq−1 is singular on Cq−1 and pq

is non-singular on Cq. As before, we let t be the number of monoidal transformations
such that D is the minimal embedded resolution of p on C. We write

Eq = E ′
q + Eq+1 + · · · + Et, (3.2.4)

Et−1 = E ′
t−1 + E ′

t,

t − q = mq−1.

Using the strategy from [74], we first look at the following vector space,

H0
(
V, O

(
(a + e − 2)L + (b − 2)M −

∑
i �=q

(mi−1 − 1)Ei − (mq−1 − 2)Eq − Eq+1 − · · · − Et−2

))
,

(3.2.5)
and show that this vector space is non-zero. Changing the index in the genus formula
gives

g(C) =
(b − 1)(2a − 2 + be)

2
− 1

2

t∑
i=1

mi−1(mi−1 − 1) = 0.

Rewriting this expression, we have

(b − 1)(2a − 2 + be)
2

− 1
2

∑
i�=q

mi−1(mi−1 − 1) − 1
2
(mq−1 − 1)(mq−1 − 2) − (mq−1 − 2) = 1.

Using Lemma 3.2.2, we conclude that the vector space in (3.2.5) above is non-zero.
This implies that we may write

(a + e − 2)L + (b − 2)M ∼
∑
i�=q

(mi−1 − 1)Ei + (mq−1 − 2)Eq + Eq+1 + · · · + Et−2 + Gp,

where Gp is a positive divisor.
The latter observation can be used together with (3.2.4) to get an expression for

k(D + KV ).

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M + (k − 1)
(
(a + e − 2)L + (b − 2)M

)
+ k

t∑
i=1

E′
i − k

t∑
i=1

(mi−1 − 1)Ei,

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M

+ (k − 1)
(∑

i�=q

(mi−1 − 1)Ei + (mq−1 − 2)Eq + Eq+1 + · · · + Et−2 + Gp

)

+ k
t∑

i=1

E′
i − k

t∑
i=1

(mi−1 − 1)Ei,
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k(D + KV ) ∼ (a + e − 2)L + (b − 2)M + (k − 1)Gp

−
∑
i�=q

(mi−1 − 1)Ei − k(mq−1 − 1)Eq + (k − 1)(mq−1 − 2)Eq

+ (k − 1) (Eq+1 + · · · + Et−2) + k

t∑
i=1

E′
i,

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M + (k − 1)Gp −
t∑

i=1

(mi−1 − 1)Ei

− (k − 1)Eq + (k − 1) (Eq+1 + · · · + Et−2) + k
t∑

i=1

E′
i,

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M + (k − 1)Gp −
t∑

i=1

(mi−1 − 1)Ei

+ (k − 1) (−Eq + Eq+1 + · · · + Et−2) + k
t∑

i=1

E′
i,

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M + (k − 1)Gp −
t∑

i=1

(mi−1 − 1)Ei

+ (k − 1)
(−E′

q − Et−1 − Et

)
+ k

t∑
i=1

E′
i,

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M + (k − 1)Gp

−
t∑

i=1

(mi−1 − 1)Ei + k
t∑

i=1

E′
i − (k − 1)

(
E′

q + E′
t−1 + 2E′

t

)
Then we make the assumption that C has three cusps, p1, p2 and p3. Note that

the following procedure also works if we assume that C has more than three cusps.
We perform successive minimal embedded resolutions of the cusps, and take one cusp
at the time until we reach V . Let t̂j denote the number of monoidal transformations
needed to resolve the cusps p1, . . . , pj, but not pj+1, . . ., j = 1, 2, 3. To resolve the three
singularities in such a way that D is an SNC-divisor, we must apply in total t := t̂3
successive monoidal transformations to the curve. We let q̂j denote the smallest index
such that the cusps p1, . . . , pj−1 are resolved and that in the process of resolving pj,
the curve Cq̂j−1 is singular at pq̂j−1, but Cq̂j

is non-singular at pq̂j
. For each cusp pj we

have that t̂j = q̂j + mq̂j−1.
The minimal embedded resolution of the curve can be viewed in three different

ways, and we use this to find three positive divisors Gp,j and similar expressions to the
above for k(D + KV ) on the surface V . Note that we now sum up to t. For each j we
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may write

k(D + KV ) ∼ (a + e − 2)L + (b − 2)M

+ (k − 1)Gp,j −
t∑

i=1

(mi−1 − 1)Ei

+ k
t∑

i=1

E′
i − (k − 1)

(
E′

q̂j
+ E′

t̂j−1
+ 2E′

t̂j

)
.

We then add the three expressions and get

3k(D + KV ) ∼ 3
(
(a + e − 2)L + (b − 2)M

)
+ (k − 1)

3∑
j=1

Gp,j − 3
t∑

i=1

(mi−1 − 1)Ei

+ 3k

t∑
i=1

E′
i − (k − 1)

3∑
j=1

(
E′

q̂j
+ E′

t̂j−1
+ 2E′

t̂j

)
.

The latter two lines of the sum constitutes a non-negative divisor for large k. The
conclusion then follows by Proposition 3.2.3, and we have κ(Fe \ C) = 2.

Case (III). If C has two cusps p1 and p2, then as in Case (II) we can look at each cusp
separately and find two expressions on the form

(a + e− 2)L + (b− 2)M ∼
∑
i�=q

(mi−1 − 1)Ei + (mq−1 − 2)Eq + Eq+1 + · · ·+ Et−2 + Gp,j,

where Gp,j is a positive divisor for each j = 1, 2.
By performing the blowing-ups of the cusps successively, with the same indices as

in Case (II), we can use (3.2.1),

D + KV ∼
t∑

i=1

E ′
i + Gp,j − Eq̂j

+ Eq̂j+1 + · · · + Et̂j−2.

Summing these expressions, we get

2(D + KV ) ∼ 2
t∑

i=1

E ′
i +

2∑
j=1

Gp,j +
2∑

j=1

(−Eq̂j
+ Eq̂j+1 + · · · + Et̂j−2).

Using (3.2.4), we then get

2(D + KV ) ∼ 2
t∑

i=1

E ′
i +

2∑
j=1

Gp,j −
2∑

j=1

(E ′
q̂j

+ E ′
t̂j−1 + 2E ′

t̂j
).

The right hand side is a positive divisor, hence

H0
(
V, O

(
2(D + KV )

)) �= 0.

It follows that κ(Fe \ C) ≥ 0.
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3.3 On the number of cusps

In this section we find an upper bound for the number of cusps on a rational cuspidal
curve on a Hirzebruch surface. This result is a modification of Theorem 2.3.5 by Tono
[68] and its proof, and essentially everything in the proof goes unchanged.

We first introduce a few preliminary definitions and results needed in the proof.
Let D be a reduced effective SNC-divisor on a nonsingular projective surface V . We
write D as the sum of its irreducible components Di, that is, D = D1 + . . . + Dr.

We have from [24, 44, 68] a number of important notions related to D. We define the
branching number of Di, β(Di) = (D−Di) . Di. The component Di is called an isolated
component of D if β(Di) = 0. If β(Di) = 1, then Di is called a tip. If β(Di) ≥ 3,
then Di is called a branching component of D. A partial sum of components of D,
say L = D1 + . . . + Dm, is called a linear chain of D if β(D1) = 1, β(Di) = 2 for
2 ≤ i ≤ m − 1, and Di . Di+1 = 1 for 1 ≤ i ≤ m − 1. If β(Dm) = 1, then L is called a
rod. If β(Dm) = 2, then L is called a twig. In the latter case, L is connected to D by a
component Dm+1 /∈ L. If β(Dm+1) ≥ 3, that is Dm+1 is a branching component, then
L is called a maximal twig. A linear chain is called rational if Di is a rational curve for
every i. It is called admissible if D2

i ≤ −2 for every i.
A divisor on V is called contractible if the intersection matrix of its irreducible

components is negative definite. If a linear chain L of D is rational and admissible,
then it is contractible [68]. Moreover, there exists a unique Q-divisor Bk(L), called the
bark of L, with the property that (K + D).Di = Bk(L).Di for every i.

A component F of D consisting of three rational admissible maximal twigs and a
rational curve F1 is called a fork if (K + F + B).F1 < 0, where B is the sum of the
barks of the three maximal twigs. A fork is called admissible if F 2

1 ≤ −2, and a fork is
admissible if and only if it is contractible [68].

The bark of D, Bk(D) is defined to be the sum of the barks of all rational admissible
rods, rational admissible forks and the remaining rational admissible twigs.

We call the the pair (V, D) almost minimal if for every irreducible curve M in V ,
either (K + D − Bk(D)) . M ≥ 0 or (K + D − Bk(D)) . E < 0 and Bk(D) + M is not
contractible.

We also need the following proposition before we state and prove the main theorem.
This proposition holds for nonsingular projective surfaces defined over C, and it is
proved by Tono in [68, Corollary 4.4, p.219], here stated for our situation.

Proposition 3.3.1. Let l denote the number of rational maximal twigs of D. If κ(V \
D) = 2, if the pair (V, D) is almost minimal, and if D contains neither a rod consisting
of (−2)-curves nor a fork consisting of (−2)-curves, then

l ≤ 12e(V \ D) + 5 − 3pa(D). (3.3.1)

We are now ready to give an upper bound on the number of cusps on a rational
cuspidal curve on Fe. The result is similar to the one given by Tono in [68] for P2 (see
Theorem 2.3.5).

Theorem 3.3.2 (On the number of cusps on Fe, e ≥ 0). The number of cusps s
on a cuspidal curve C of genus g on Fe has an upper bound,

s ≤ 21g + 29

2
.
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Proof (cf. Tono [68]). The proof given by Tono in [68] for P2 is directly applicable in
this situation, and the following is essentially the same proof. At some places we have
chosen to write out some details more carefully than in the original proof.

The aim of the proof is to set up a situation where we can apply Proposition 3.3.1,
then the theorem follows.

We now construct the surface to which we can apply Proposition 3.3.1, and first
show that two of the prerequisites in the proposition hold for this surface. Let C =
V (F ) be a cuspidal curve of genus g on Fe. Let s denote the number of cusps on C.
We are looking for an upper bound of s, hence we may assume that s ≥ 3.

Let σ : V −→ Fe denote the minimal embedded resolution of C, and let D =
C̃ +

∑t
i=1 Ei be the reduced total inverse image of C on the surface V . For a cusp p,

the dual graph of σ−1(p) + C̃ has the shape given in Figure 3.1.

︸ ︷︷ ︸
A1

⎫⎪⎬⎪⎭B1

︸ ︷︷ ︸
A2

⎫⎪⎬⎪⎭B2

⎫⎪⎬⎪⎭Bk−1

︸ ︷︷ ︸
Ak

E

⎫⎪⎬⎪⎭Bk

C̃

Figure 3.1: The dual graph of σ−1(p) + C̃.

In Figure 3.1, E denotes the last blowing up in the resolution of p, and we have
E2 = −1. All other curves in D have self intersection ≤ −2. Notice that the morphism
σ can be viewed as successive contractions in a way that can be handled with a quite
clean notation. For a cusp p, σ first contracts E + Ak + Bk in Figure 3.1 to a (−1)-
curve E ′. The process then continues in the same manner, with the contraction of
E ′ + Ak−1 + Bk−1 to another (−1)-curve and so on, until we reach Fe.

Considering the graph of the minimal embedded resolution of all cusps on C, we
see that D is connected. Notice that D contains s curves Ej with self intersection −1,
all of which are branching components, and that the strict transform C̃ of C is also a
branching component when s ≥ 3.

We do not know if the pair (V, D) is almost minimal, so we cannot use Proposition
3.3.1 on this surface directly. We solve this problem by applying a theorem by Tsunoda
in [44] (see [68, Lemma 3.2, p.218]). By [44, Theorem 1.11, p.226], there exists a
birational morphism μ : V −→ V ′, consisting of successive contractions of (−1)-curves
such that, with D′ = μ∗D, the pair (V ′, D′) is almost minimal and κ(V \D) = κ(V ′\D′).
Since we assume that s ≥ 3, by Theorem 3.2.1, Definition 1.1.22 and [44, Theorem
1.11, p.226], we have

2 = κ(Fe \ C) = κ(V \ D) = κ(V ′ \ D′).

Before we show that the third prerequisite in Proposition 3.3.1 holds for (V ′, D′), we
must estimate some of the invariants involved in the formula in Proposition 3.3.1. We
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begin with the Euler characteristic. By Lemma 3.1.9 we have e(V \ D) = e(Fe \ C) =
2g + 2. To determine e(v′ \ D′) we investigate the morphism μ more closely. The
morphism μ is a composition of contractions, and we let M1, . . . , Mn ⊂ V denote the
strict transforms of the (−1)-curves that are contracted by μ and not contained in
D. Observe that μ possibly contracts some (−1)-curves contained in D in addition
to the Mj’s, but these contractions would not affect the Euler characteristic of the
complement. Since D is connected, we must by Tono [68, Lemma 3.4, p.218] have
D .Mj ≤ 1. Moreover, since V \ D ∼= Fe \ C ∼= D+(F ), it is affine. Hence, Mj

∼= P1

cannot be contained in V \ D, and therefore D . Mj = 1. Using this information, we
calculate the Euler characteristic,

e(V ′ \ D′) = e(V \ D) − n = 2g + 2 − n.

Note that since V ′ \ D′ ∼= V \ D is affine, it follows that e(V ′ \ D′) > 0.
Our next aim is to ensure that the number l of rational maximal twigs of D′ can

be estimated by the number of cusps on C. This estimate relies on the fact that some
of the components of D cannot be contracted by μ.

For each cusp pj, j = 1, . . . , s, let Ej denote the (−1)-curve that intersects C̃ in
the minimal embedded resolution. We will now show by contradiction that μ does
not contract any Ej. Assume for contradiction that one Ej, say E, is contracted by μ.
Now E is a branching component of D, hence it cannot be directly contracted by μ [68,
Lemma 3.4, p.218], and μ must contract a (−1)-curve that intersects E. Contracting
the (−1)-curve intersecting E turns E into a curve with nonnegative self intersection.
Then E cannot be contracted, contrary to the assumption. We conclude that Ej cannot
be contracted for any cusp.

We additionally have to ensure that C̃ is not contracted by μ. This can be shown
by induction on the number of blowing downs in the morphism μ. Note that this part
of the proof is also by Tono (personal communication). Let μ = μν ◦ · · · ◦ μ1, ν ≥ n,
be a decomposition of μ. Then μ1 cannot contract C̃ since s ≥ 3 makes C̃ a branching
component of D, that is, βD(C̃) ≥ 3. That would contradict [68, Lemma 3.4, p.218].
So suppose that μk ◦ · · · ◦ μ1, k < n, does not contract the strict transform of C̃ by
μk−1◦· · ·◦μ1. Let Dk and C̃k denote the strict transforms of D and C̃ under μk◦· · ·◦μ1.
Now since μ does not contract any of the last exceptional curves Ej for any cusp pj,
C̃k will still be a branching component of Dk. Then μk+1 cannot contract C̃k, because
that would contradict [68, Lemma 3.4, p.218]. Hence, μk+1 ◦ · · · ◦ μ1 does not contract
C̃. So by induction, C̃ cannot be contracted by μ.

The number l of rational maximal twigs of D′ can now be estimated by the number
of cusps on C. For each cusp p, let A = σ−1(p)−E −Bk. The morphism μ affects the
tree of rational curves A + E + Bk, and contracts it at most to another tree of rational
curves. Since E is not contracted by μ, μ(E) must be a curve with self intersection
≥ −1. Then by [68, Lemma 3.5, p.218], μ(E) cannot be part of any rational linear
chain or fork, hence not part of any rational maximal twig of D′. This implies that
A cannot be contracted to a point by μ. Furthermore, μ(Bk) can be contracted to a
point, but then μ(A) has to contain at least two rational maximal twigs in order to
avoid that μ(E) is part of a rational maximal twig. Summing up, we observe that D′

must have at least two rational maximal twigs per cusp, so we have 2s ≤ l.
Now we note that the third prerequisite in Proposition 3.3.1 holds for (V ′, D′). The
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morphism μ does not disconnect D, so D′ is connected. Since D′ is connected and
additionally has at least 6 ≤ 2s maximal twigs, it is impossible that it contains a rod
consisting of (−2)-curves or a fork consisting of (−2)-curves.

Proposition 3.3.1 additionally involves the invariant pa(D
′), which is equal to g in

this case. Indeed, since C̃ is nonsingular, pa(C̃) = g. Since D′ = C̃ +
∑

Ei, not
necessarily for all i, and since D′ is an SNC-divisor, we can successively apply formula
(1.1.1) on p.6, and find that pa(D

′) = pa(C̃) = g.
By Proposition 3.3.1 applied to (V ′, D′) and the above estimates, we then find the

desired upper bound on the number of cusps,

2s ≤ 12(2g + 2 − n) + 5 − 3g

≤ 21g + 29 − 12n

≤ 21g + 29.

We immediately get a corollary for rational cuspidal curves on Fe.

Corollary 3.3.3. A rational cuspidal curve on Fe can not have more than 14 cusps.

3.4 Rational cuspidal curves on Hirzebruch surfaces

In this section we give examples of rational cuspidal curves on Hirzebruch surfaces, and
our aim is to shed light on the question of how many and what kind of cusps a rational
cuspidal curve on a Hirzebruch surface can have. Constructing rational cuspidal curves
with many cusps is a difficult task. On the projective plane we have seen that there
are very few such curves, and they are indeed constructed with care. A natural place
to look for curves on the Hirzebruch surfaces is to start out with the rational cuspidal
curves on the projective plane, and this is our main point of attack. From these
curves we construct rational cuspidal curves on the Hirzebruch surfaces with four and
three cusps, using birational transformations. Moreover, the connections between the
projective plane and the Hirzebruch surfaces allow us to look for rational cuspidal
curves starting out with curves with other singularities in addition to cusps. We do
not explore the latter strategy in depth, but show an example and discuss some of the
issues we face using this approach.

3.4.1 Rational cuspidal curves with four cusps

We begin with the construction of rational cuspidal curves with four cusps on the
Hirzebruch surfaces. Perhaps not surprisingly, we are not able to construct many such
curves. Indeed, on each Fe, with e ≥ 0, we construct one infinite series of rational
cuspidal curves with four cusps. On P1 ×P1 and F1 we construct another three infinite
series of rational cuspidal curves with four cusps, and on F2 we construct a single
additional rational cuspidal curve with four cusps.

The following theorem presents the series of rational fourcuspidal curves that con-
sists of curves on all the Hirzebruch surfaces. In Appendix A we construct some of the
curves from a plane fourcuspidal curve using the birational maps from Chapter 1.
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Theorem 3.4.1. For all e ≥ 0 and k ≥ 0, except for the pair (e, k) = (0, 0), there exists
a rational cuspidal curve Ce,k on Fe of type (2k + 1, 4) with four cusps and cuspidal
configuration

[4k−1+e, 23], [2], [2], [2].

Proof. We will show that for each e ≥ 0 there is an infinite series of curves on Fe, and
we show this by induction on k. The proof is split in two, and we treat the case of k
odd and even separately. We construct the series of curves Ce,0 for e ≥ 1, and then
we construct the initial series Ce,1 and Ce,2, with e ≥ 0. We only treat the induction
to prove the existence of Ce,k for odd values of k, as the proof for even values of k is
completely parallel.

Let C be the rational cuspidal curve of degree 5 on P2 with cuspidal configuration
[23], [2], [2], [2]. Let p be the cusp with multiplicity sequence [23], and let T be the
tangent line to C at p. Then T · C = 4p + r, with r a smooth point on C. Blowing
up at r, the strict transform of C is a curve C1,0 of type (1, 4) on F1 with cuspidal
configuration [23], [2], [2], [2]. Letting T1,0 denote the strict transform of T and p1,0 the
strict transform of p, we have T1,0 · C1,0 = 4p1,0. We observe that p1,0 is fiber tangential.
Let E1 denote the special section on F1, and let s0,1 = E1 ∩ T1,0.

From C1,0 we can proceed with the construction of curves on Hirzebruch surfaces
in three ways.

First, we show by induction on e that the curves Ce,0 exist on the Hirzebruch
surfaces Fe, for all e ≥ 1. We have already seen that C1,0 exists on F1, and that there
exists a fiber T1,0 with the property that T1,0 · C1,0 = 4p1,0 for the first cusp p1,0. Now
assume e ≥ 2 and that the curve Ce−1,0 of type (1, 4) exists on Fe−1 with cuspidal
configuration [4e−2, 23], [2], [2], [2], where pe−1,0 denotes the first cusp and Te−1,0 has the
property that Te−1,0 · Ce−1,0 = 4pe−1,0. Then, with Ee−1 the special section of Fe−1,
blowing up at the intersection se−1,0 ∈ Ee−1 ∩ Te−1,0 and contracting Te−1,0, we get Ce,0

on Fe of type (1, 4) with cuspidal configuration [4e−1, 23], [2], [2], [2]. Moreover, we note
that there exists a fiber Te,0 with Te,0 · Ce,0 = 4pe,0. So the series exists on all e ≥ 1 for
k = 0.

Second, note that from the curve C1,0 on F1 it is possible to construct the curve C0,1

on P1 × P1 by blowing up at p1,0 before contracting T1,0. The curve C0,1 is a curve of
type (3, 4) with cuspidal configuration [23], [2], [2], [2], and there is a fiber T0,1 such that
T0,1 . C0,1 = 4p0,1. Blowing up at a point s0,1 ∈ T0,1 \ {p0,1} and contracting T0,1 result
in the curve C1,1 on F1 of type (3, 4) with cuspidal configuration [4, 23], [2], [2], [2].
Moreover, there exists a fiber T1,1 with T1,1 · C1,1 = 4p1,1 and p1,1 /∈ E1. The same
induction on e as above proves that the series exists for k = 1.

Third, note that from the curve C1,0 on F1 it is possible to construct the curve
C0,2 on P1 ×P1 by blowing up at a point t1,0 ∈ T1,0 \ {p1,0, s1,0} before contracting T1,0.
The curve C0,2 is a curve of type (5, 4) with cuspidal configuration [4, 23], [2], [2], [2], and
there is a fiber T0,2 such that T0,2 · C0,2 = 4p0,2. Blowing up at a point s0,2 ∈ T0,2 \ {p0,2}
and contracting T0,2 give the curve C1,2 on F1 of type (5, 4) with cuspidal configuration
[42, 23], [2], [2], [2]. Moreover, there exists a fiber T1,2 with T1,2 · C1,2 = 4p1,2 and p1,2 /∈
E1. The same induction on e as above proves that the series exists for k = 2.

Next assume k ≥ 3, with k odd, and that there exists a series of curves Ce,k−2 of type
(2k − 3, 4) on Fe for all e ≥ 0 with cuspidal configuration [4e+k−3, 23], [2], [2], [2]. Then,
in particular, the curve C1,k−2 on F1 with cuspidal configuration [4k−2, 23], [2], [2], [2]
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exists. Moreover, there exists a fiber T1,k−2 on F1 such that T1,k−2 · C1,k−2 = 4p1,k−2,
where p1,k−2 denotes the cusp with multiplicity sequence [4k−2, 23]. With E1 the special
section on F1, let s1,k−2 ∈ E1 ∩ T1,k−2. We now blow up at a point t1,k−2 ∈ T1,k−2 \
{p1,k−2, s1,k−2} and subsequently contract T1,k−2. This gives the curve C0,k on P1 × P1

of type (2k +1, 4) with cuspidal configuration [4k−1, 23], [2], [2], [2]. With T0,k the strict
transform of the exceptional line of the latter blowing up, we have T0,k · C0,k = 4p0,k.
Blowing up at a point s0,k ∈ ΘV 〈D〉0,k \ {p0,k} and contracting T0,k gives the curve
C1,k on F1 of type (2k + 1, 4) with cuspidal configuration [4k, 23], [2], [2], [2]. Moreover,
there is a fiber T1,k with the property that T1,k · C1,k = 4p1,k. With the same induction
on e as above, we get the series of curves Ce,k.

There are three infinite series of rational fourcuspidal curves that can be found on
the Hirzebruch surfaces P1 × P1 and F1. We will shortly list these three series.

First we consider the rational cuspidal curves with four cusps on F1 that we can get
by blowing up a single point on P2. These curves represent examples from the series.

Theorem 3.4.2. Let C be the rational cuspidal curve with four cusps of degree 5 on
P2. The following rational cuspidal curves on F1 with four cusps can be constructed
from C by blowing up a single point on P2.

# Cusps Curve Type Cuspidal configuration

4

C1 (0, 5) [23], [2], [2], [2]

C2 (1, 4) [23], [2], [2], [2]

C3 (2, 3) [22], [2], [2], [2]

Table 3.1: Rational cuspidal curves on F1 with four cusps.

Proof. The curve C1 is constructed by blowing up any point r on P2 \ C. Note that if
r is on the tangent line to a cusp on C, then C1 has cusps that are fiber tangential. If
r is only on tangent lines of smooth points on C, then C1 has smooth fiber tangential
points.

The curve C2 is constructed by blowing up any smooth point r on C. Again, if r is
on a tangent line of C, C2 will have points that are fiber tangential.

The curve C3 is constructed by blowing up the cusp with multiplicity sequence
[23].

The fact that we can construct curves with fiber tangential points is crucial in the
later constructions. Although we do not get new cuspidal configurations in this first
step, the fiber tangential points can sometimes account for enough intersection with
the fiber such that a cusp can be constructed later on.

We now give the three series of rational cuspidal curves with four cusps on P1 × P1

and F1. For notational purposes we denote these surfaces by Fh, with h ∈ {0, 1}, in
the theorems.

Theorem 3.4.3. For h ∈ {0, 1} and all integers k ≥ 0, except the pair (h, k) = (0, 0),
there exists a rational cuspidal curve Ch,k on Fh of type (3k + 1− h, 5) with four cusps
and cuspidal configuration

[42k−1+h, 23], [2], [2], [2].
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Proof. The proof is by construction and induction on k. Let C be a rational cuspidal
curve of degree 5 on P2 with cuspidal configuration [23], [2], [2], [2]. Let p be the cusp
with multiplicity sequence [23], and let T be the tangent line to C at p. There is a
smooth point r ∈ C, such that T ·C = 4p + r. Blowing up at any point t ∈ T \ {p, r},
we get the curve C1,0 of type (0, 5) and cuspidal configuration [23], [2], [2], [2] on F1.
Moreover, with T1,0 the strict transform of T and p1,0, r1,0 the strict transforms of the
points p and r, we have T1,0 · C1,0 = 4p1,0 + r1,0.

Now assume that the curve C1,k−1 of type (3(k−1), 5) exists on F1 with cuspidal con-
figuration [42(k−1), 23], [2], [2], [2], and the intersection T1,k−1 · C1,k−1 = 4p1,k−1 + r1,k−1

for a fiber T1,k−1 and points as above. Then blowing up at r1,k−1 and contracting
T1,k−1, we get a curve C0,k on P1 × P1 of type (3k + 1, 5) and cuspidal configu-
ration [42k−1, 23], [2], [2], [2]. Moreover, there is a fiber T0,k with the property that
T0,k · C0,k = 4p0,k + r0,k. Blowing up at r0,k and contracting T0,k, we get a rational cus-
pidal curve C1,k of type (3k, 5) on F1 with cuspidal configuration [42k, 23], [2], [2], [2].

Theorem 3.4.4. For h ∈ {0, 1} and all integers k ≥ 0, except the pair (h, k) = (0, 0),
there exists a rational cuspidal curve on Fh of type (2k + 2− h, 4) with four cusps and
cuspidal configuration

[32k−1+h, 2], [23], [2], [2].

Proof. The proof is by construction and induction on k. Let C be the rational cuspidal
curve of degree 5 on P2 with cuspidal configuration [23], [2], [2], [2]. Let q be one of the
cusps with multiplicity sequence [2], and let T be the tangent line to C at q. Then
there are smooth points r, s ∈ C, such that T · C = 3q + r + s. Blowing up at s, we get
the curve C1,0 of type (1, 4) and cuspidal configuration [23], [2], [2], [2] on F1. Moreover,
with T1,0 the strict transform of T and p1,0, r1,0 the strict transforms of the points p
and r, we have T1,0 · C1,0 = 3p1,0 + r1,0.

Now assume that the curve C1,k−1 of type (2k−1, 4) exists on F1 with cuspidal con-
figuration [32k−2, 2], [23], [2], [2], and the intersection T1,k−1 · C1,k−1 = 3p1,k−1 + r1,k−1

for a fiber T1,k−1 and points as above. Then blowing up at r1,k−1 and contracting
T1,k−1, we get a curve C0,k on P1 × P1 of type (2k + 2, 4) and cuspidal configu-
ration [32k−1, 2], [23], [2], [2]. Moreover, there is a fiber T0,k with the property that
T0,k · C0,k = 3p0,k + r0,k. Blowing up at r0,k and contracting T0,k, we get a rational cus-
pidal curve C1,k of type (2k+1, 4) on F1 with cuspidal configuration [32k, 2], [23], [2], [2].

Theorem 3.4.5. For h ∈ {0, 1}, all integers k ≥ 2, and every choice of nj ∈ N, with
j = 1, . . . , 4, such that

∑4
j=1 nj = 2k + h, there exists a rational cuspidal curve on Fh

of type (k + 1 − h, 3) with four cusps and cuspidal configuration

[2n1 ], [2n2 ], [2n3 ], [2n4 ].

Proof. We prove the existence of the curves on P1 ×P1 by induction on k. In the proof
we show that any curve on F1 can be reached from a curve on P1×P1 by an elementary
transformation, hence we prove the theorem for h ∈ {0, 1}.

First we observe that a choice of nj such that the condition
∑4

j=1 nj = 2k means
that either all four nj are odd, two are odd and two are even, or all four are even. We
split the proof into these three cases, and prove only the first case completely. The
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other two can be dealt with in the same way once we have proved the existence of a
first curve.

We now prove the theorem when all nj are odd. Let C be a rational cuspidal curve
on P2 of degree 4 with three cusps and cuspidal configuration [2], [2], [2] for cusps pj,
j = 1, 2, 3. Let p4 be a general smooth point on C and let T be the tangent line to C
at p4. Then T · C = 2p4 + t1 + t2, where t1, t2 are two smooth points on C. Blowing
up at t1 and t2 and contracting T , we get a rational cuspidal curve on P1 × P1 of type
(3, 3) with four ordinary cusps.

Fixing notation, we say that we have a curve C2 on P1 × P1 of type (3, 3) and four
cusps p2

j , j = 1, . . . , 4, all with multiplicity sequence [2]. Since the choice of p4 ∈ P2

was general, there are four (1, 0)-curves L2
j such that

L2
j · C2 = 2p2

j + r2
j ,

for smooth points r2
j ∈ C2. Now assume that we have a curve Ck−1 on P1 × P1 of type

((k− 1) + 1, 3), with cuspidal configuration [2n1−2], [2n2 ], [2n3 ], [2n4 ] such that all nj are
odd, and such that there exist fibers Lk−1

j with

Lk−1
j · Ck−1 = 2pk−1

j + rk−1
j ,

for smooth points rk−1
j on Ck−1.

We blow up at rk−1
1 , contract the corresponding Lk−1

1 and get a curve C1,k−1 on F1

of type (k − 1, 3) with cuspidal configuration [2n1−1], [2n2 ], [2n3 ], [2n4 ]. Moreover, since
rk−1
1 was not fiber tangential, we have that r1,k−1

1 /∈ E1, and the strict transform of the
exceptional fiber of the blowing up, L1,k−1

1 , has intersection with C1,k−1,

L1,k−1
1 · C1,k−1 = 2p1,k−1

1 + r1,k−1
1 .

Blowing up at r1,k−1
1 and contracting L1,k−1

1 bring us back to P1 × P1 and a curve Ck

of type (k + 1, 3) and cuspidal configuration [2n1 ], [2n2 ], [2n3 ], [2n4 ]. This takes care of
the case when all nj are odd.

To prove the theorem when two nj are even or all nj are even, we only show that
there exist curves on P1×P1 of the right type and cuspidal configurations [22], [22], [2], [2]
and [22], [22], [22], [22]. The rest of the argument is then similar to the above. To get
the first curve, we blow up C2 in r2

1 and r2
2 and contract L2

1 and L2
2. This is a curve

C3 of type (4, 3) with cuspidal configuration [22], [22], [2], [2]. The curve is on P1 × P1

since it can be shown with direct calculations in Maple that r2
1 and r2

2 are not on the
same (0, 1)-curve. To get the second curve, we blow up at the analogous r3

3 and r3
4

on the curve C3, before contracting L3
3 and L3

4. We are again on P1 × P1 by a similar
argument to the above, and the curve C4 is of type (5, 3) and has cuspidal configuration
[22], [22], [22], [22].

Note that the construction of the curves in Theorem 3.4.5 can also be done from the
rational cuspidal cubic on P2.

Alternative proof of Theorem 3.4.5. Let C be the rational cuspidal cubic on P2. Let
s be a general point on P2, where general here means that s is neither on C, nor the
tangent line to the cusp, nor the tangent line to the inflection point on C. For example
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we can choose y2z − x3 as the defining polynomial of C, and take s = (0 : 1 : 1). Then
the polar curve of C with respect to the point s, given by the defining polynomial
2yz + y2, intersects C in three smooth points, (2

2
3 : −2 : 1), (2−

1
3 (−1 +

√
3i) : −2 : 1)

and (2−
1
3 (−1 −√

3i) : −2 : 1). Blowing up at s brings us to F1 and a curve of type
(0, 3) with one ordinary cusp, say p4. We additionally have three fibers Lj, j = 1, . . . , 3,
with the property that Lj · C = 2pj + rj for smooth points pj and rj on C. Blowing
up at the rj’s and contracting the Lj’s, we get the desired series of curves.

The series in Theorem 3.4.5 can be extended to a series of rational cuspidal curves
with less than four cusps in an obvious way. We state this as a corollary.

Corollary 3.4.6. For h ∈ {0, 1}, all integers k ≥ 0, and every choice of nj ∈ N∪{0},
with j = 1, . . . , 4, such that

∑4
j=1 nj = 2k + h, there exists a rational cuspidal curve on

Fh of type (k + 1 − h, 3) with s ∈ {0, 1, 2, 3, 4} cusps and cuspidal configuration

[2n1 ], [2n2 ], [2n3 ], [2n4 ].

Proof. These curves can be constructed from the curves in Theorem 3.4.5 by a similar
construction. In order to construct the curves with less than four cusps we have to
blow up cusps on the curves in the series from Theorem 3.4.5.

Last in this section we provide an example of a curve not represented in any of the
above series. This is the only example we have found of such a curve, and in particular
the only such curve on F2.

Theorem 3.4.7. There exists a rational cuspidal curve on F2 of type (0, 3) with four
cusps and cuspidal configuration

[2], [2], [2], [2].

Proof. Let C be the plane rational fourcuspidal curve of degree 5. Let p be the cusp
[23] and pi, i = 1, 2, 3, the cusps with multiplicity sequence [2]. Let T be the tangent
line to C at p. Let Li denote the line through p and pi, with i = 1, 2, 3. There are
smooth points s and ri, i = 1, 2, 3, on C, such that

T · C = 4p + s, Li · C = 2p + 2pi + ri.

Blowing up at p gives a (2, 3)-curve on F1 with cuspidal configuration [22], [2], [2], [2].
Let C ′ denote the strict transform of C, T ′ and L′

i the strict transforms of T and Li,
and let E ′ be the special section on F1. Let p′ be the cusp [22], p′i the other cusps,
and s′ and r′i the strict transforms of the points s and ri. Then we have the following
intersections,

E ′ · C ′ = 2p′, T ′ · C ′ = 2p′ + s′, L′
i · C ′ = 2p′i + r′i.

Since p′ ∈ E ′, blowing up at p′ and contracting T ′, we get a cuspidal curve on F2 of
type (0, 3) and cuspidal configuration [2], [2], [2], [2].
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3.4.2 Rational cuspidal curves with three cusps

In this section we present lists of rational cuspidal curves on Hirzebruch surfaces with
three cusps. We do not give all the details in the proofs of the existence of these curves,
but in most cases we describe the arrangement of lines on P2 needed in the construction
of the curves on Fe. An arrangement of lines on P2 determines a fibration of F1, and
properties of this fibration are crucial in the construction of the cuspidal curves using
birational transformations. Note that by the curve C ′ on F1 in this section we mean
the strict transform of a plane curve C under a transformation given by blowing up a
point on P2.

In order to construct curves with three cusps on Fe from curves on P2, we need
appropriate line arrangements or a high number of cusps on a curve C on P2. We
therefore proceed with the construction starting out with plane curves of low degree
and the three series of plane rational tricuspidal curves.

The following three theorems list rational tricuspidal curves that exist on Fe and
are constructed from curves on P2 of degree d ≤ 5, see Table 2.1, Table 2.2 and Table
2.3. In some cases, the same series of curves can be constructed from two different
curves, and we then only include the construction from the curve of lower degree. For
notational purposes, we give the type of the curve as (k, b), where b is determined
and k is a suitable integer. Given a surface Fe, e ≥ 0, and a rational curve C with
its cuspidal configuration, the integer k can be computed from the genus formula in
Corollary 3.1.4. Note that k depends on the conditions on the cuspidal configurations.

Theorem 3.4.8. For all integers e ≥ 0 and l ≥ 0 such that the conditions on m, n1

and n2 are met, the following rational cuspidal curves exist on Fe for suitable k.

Curve Type Cuspidal configuration Conditions

C1 (k, 3) [3m], [2n1 ], [2n2 ]

n1, n2 ≥ 1

m ≥ e − 1, m ≥ 1

m + n1 + n2 = 2l + e

C2 (k, 3) [3m, 2], [2n1 ], [2n2 ]

n1, n2 ≥ 1

m ≥ e − 1, m ≥ 0

m + n1 + n2 = 2l + e − 1

Table 3.2: Rational tricuspidal curves on Fe from a plane rational cuspidal cubic.

Proof. Let C be a plane rational cuspidal cubic curve. It has one ordinary cusp and
one inflection point.

For the construction of C1, let p be the cusp of C. Let q be the inflection point of
C, and let Tq be the inflection tangent. We have Tq ·C = 3q. Let r be a smooth point
on C, and let Tr be the tangent line of C at r. Then Tr ·C = 2r+r1 for another smooth
point r1 on C. Let s denote the intersection point of Tq and Tr. Notice that the line L
between p and s has the following intersection with C, L · C = 2p + s1, where s1 is a
smooth point on C. Then blowing up at s brings us to F1. The strict transform of C
is a curve C ′ of type (0, 3). The strict transforms of Tq, Tr and L are fibers T ′

q, T ′
r and
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L′, and nothing has changed in the intersections of C ′ and these fibers. Appropriate
elementary transformations on T ′

r, T ′
q and L′ give the series.

For the construction of C2, let p denote the cusp of C. Let Tp be the tangent
line of C at p, with Tp · C = 3p. Let t be a point on Tp \ {p}, t /∈ Tq, and let PtC
be the polar curve to C at t. Using F = y2z − x3 as the defining polynomial of C,
the polar curve to C at t = (l : 0 : 1) for a parameter l ∈ C∗ is reducible, given by
V ((y −√

3lx)(y +
√

3lx)). By intersection theory, we have PtC · C = 4p + r + s for
two smooth points r and s on C. Then the tangent lines Tr, Ts and Tp intersect at
t. Moreover, Tr · C = 2r + r1 and Ts · C = 2s + s1 for two smooth points r1 and s1 on
C. Blowing up at t brings us to F1. The strict transform of C is a curve C ′ of type
(0, 3), which the strict transforms T ′

p, T ′
q and T ′

r of Tp, Tq and Tr intersect as before.
Appropriate elementary transformations on these three fibers give the series.

Theorem 3.4.9. For all integers e ≥ 0 and l ≥ 0 such that the conditions on m and
n are met, the following rational cuspidal curves exist on Fe for suitable k.

Curve Type Cuspidal configuration Conditions

C1 (k, 4) [4m, 22], [3n], [2]

n ≥ 1

m ≥ e − 1, m ≥ 0

m + n = 2l + e − 1

Table 3.3: Rational tricuspidal curves on Fe from rational cuspidal quartics.

Proof. Let C be a rational cuspidal quartic with two cusps, cuspidal configuration
[22], [2], and one inflection point. Let p be the cusp with multiplicity sequence [22], and
let q be the inflection point of C. The tangent lines Tp and Tq intersect C as follows,
Tp · C = 4p and Tq · C = 3q + r for a smooth point r ∈ C. Let s denote the intersection
of Tp and Tq, and note that s /∈ C. Blowing up at s gives a curve C ′ on F1, and the
strict transforms T ′

p and T ′
q of Tp and Tq intersect C ′ as before. Appropriate elementary

transformations on the two fibers T ′
p and T ′

q give the series.
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Theorem 3.4.10. For all integers e ≥ 0 and l ≥ 0 such that the conditions on m and
n are met, the following rational cuspidal curves exist on Fe for suitable k.

Curve Type Cuspidal configuration Conditions

C1 (k, 4) [4m, 3], [22], [2]
m ≥ e − 1, m ≥ 0

m = 2l + e − 1

C2 (k, 4) [4m, 22], [3n], [2]

n ≥ 1

m ≥ e − 1, m ≥ 0

m + n = 2l + e

C3 (k, 4) [4m, 22], [22], [22]
m ≥ e − 1, m ≥ 0

m = 2l + e − 1

Table 3.4: Rational tricuspidal curves on Fe from rational cuspidal quintics.

Proof. We construct C1 from a rational cuspidal curve C of degree 5 with cuspidal
configuration [3], [22], [2]. Let p denote the cusp with multiplicity sequence [3]. Let Tp

be the tangent line to C at p. Then Tp · C = 4p + r for a smooth point r ∈ C. Blowing
up at r, we get a curve C ′ of type (1, 4) on F1. Moreover, the strict transform T ′

p of
Tp intersects C ′ only at p′, with T ′

p · C ′ = 4p′. Appropriate elementary transformations
on the fiber T ′

p give the series.

We construct C2 from a rational cuspidal quintic C with cuspidal configuration
[3], [22], [2]. Let p and q denote the first two cusps. Let Tq be the tangent line to C at
q. Then Tq · C = 4q + r for a smooth point r ∈ C. Let L be the line between r and p,
then L · C = 3p + r + s for a smooth point s ∈ C. Blowing up at r, we get a curve C ′

of type (1, 4) on F1. Moreover, the strict transforms T ′
q and L′ of Tq and L, intersect C ′

as follows, T ′
q · C ′ = 4q′ and L′ · C ′ = 3p′ + s′. Appropriate elementary transformations

on the two fibers T ′
q and L′ give the series. Note that this series is not the same as the

series constructed in Theorem 3.4.9, but that the two series complement each other.
Indeed, given e, it is possible to construct curves C2 for pairs m,n that satisfy the
conditions on m and n, and m + n = 2l + e for some integer l, while it is possible to
construct curves C1 in Theorem 3.4.9 for pairs m,n that satisfy the conditions on m
and n, and m + n = 2l + e − 1 for some integer l.

We construct C3 from a rational cuspidal quintic C with cuspidal configuration
[22], [22], [22]. Let p be one of the cusps. Let Tp be the tangent line to C at p. Then
Tp · C = 4p + r for a smooth point r ∈ C. Blowing up at r, we get a curve C ′ of
type (1, 4) on F1. Moreover, the strict transform T ′

p of Tp intersects C ′ only at p′.
Appropriate elementary transformations on the fiber T ′

p give the series.
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From the curves of low degree we get even more rational cuspidal curves with three
cusps on P1 × P1 and F1 in addition to the above.

Theorem 3.4.11. For h ∈ {0, 1} and all integers l ≥ 0 such that the conditions on m,
n, n1, n2 and n3 are met, the following rational cuspidal curves exist on Fh for suitable
k.

Curve Type Cuspidal configuration Conditions

C1 (k, 4) [3m, 2], [2], [2]
m ≥ 0

m = 2l + h − 1

C2 (k, 4) [3m, 2], [3n, 2], [2]
m, n ≥ 0

m + n = 2l + h − 1

C3 (k, 4) [3m, 2], [3n], [22]

n ≥ 1

m ≥ 0

m + n = 2l + h − 1

C4 (k, 4) [3m], [3n], [23]
m, n ≥ 1

m + n = 2l + h − 1

C5 (k, 4) [3n1 ], [3n2 ], [3n3 ]
n1, n2, n3 ≥ 1

n1 + n2 + n3 = 2l + h

Table 3.5: Rational tricuspidal curves on P1×P1 and F1 from rational cuspidal quartics.

Proof. We construct C1 from a rational cuspidal quartic C with cuspidal configuration
[2], [2], [2]. Let p be one of the cusps, and let Tp be the tangent line to C at p. We have
Tp · C = 3p + r for a smooth point r ∈ C. Blowing up at a point s ∈ Tp \ {p, r} gives
a curve C ′ on F1 of type (0, 4). The strict transform T ′

p of Tp intersects C ′ as before.
Appropriate elementary transformations on the fiber T ′

p give the series.
We construct C2 from a rational cuspidal quartic C with cuspidal configuration

[2], [2], [2]. Let p, q denote two of the cusps, and let Tp and Tq be the respective
tangent lines to C. We have Tp · C = 3p + r1 and Tq · C = 3q + r2 for smooth points
r1, r2 ∈ C. Let s be the intersection point of Tp and Tq. Notice that s /∈ C, hence
blowing up at s gives a curve C ′ on F1 of type (0, 4). The strict transforms T ′

p and
T ′

q of Tp and Tq intersect C ′ as before. Appropriate elementary transformations on the
fibers T ′

p and T ′
q give the series. Notice the similarities in the constructions of C1 and

C2.
We construct C3 from a rational cuspidal quartic C with cuspidal configuration

[22], [2] and one inflection point. Let p be the cusp with multiplicity sequence [2],
and let q be the unique inflection point on C. Then the respective tangents Tp and Tq

intersect C in the following way, Tp · C = 3p + r1 and Tq · C = 3q + r2, where r1, r2 ∈ C
are smooth points. Let s denote the intersection point of Tp and Tq. Blowing up at
s gives a curve C ′ on F1 of type (0, 4). The strict transforms T ′

p and T ′
q of Tp and Tq

intersect C ′ as before. Appropriate elementary transformations on the fibers T ′
p and

T ′
q give the series.
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We construct C4 from a rational cuspidal quartic C with cuspidal configuration
[23] and three inflection points. Let p and q be two inflection points on C. Then the
tangents Tp and Tq intersect C in the following way, Tp·C = 3p+r1 and Tq · C = 3q + r2,
where r1, r2 ∈ C are smooth points. Let s be the intersection point of Tp and Tq. Since
s /∈ C, blowing up at s gives a curve C ′ on F1 of type (0, 4). The strict transforms T ′

p

and T ′
q of Tp and Tq intersect C ′ as before. Appropriate elementary transformations on

the fibers T ′
p and T ′

q give the series.
We construct C5 from a rational cuspidal quartic C with cuspidal configuration

[3] and two inflection points. Let p denote the cusp, and let q and r be the two
inflection points on C. Then the tangents Tq and Tr intersect C in the following way,
Tq · C = 3q + s1 and Tr · C = 3r + s2, where s1, s2 ∈ C are smooth points. Let t be the
intersection point of Tq and Tr. Let L be the line between p and t. Since t /∈ C, Tp, we
have L · C = 3p + s3, for a smooth point s3 ∈ C. Blowing up at t gives a curve C ′ on
F1 of type (0, 4). The strict transforms T ′

q, T ′
r and L′ of Tq, Tr and L intersect C ′ as

before. Appropriate elementary transformations on the fibers L′, T ′
q and T ′

r give the
series.

Theorem 3.4.12. For h ∈ {0, 1} and all integers l ≥ 0 such that the conditions on m
and n are met, the following rational cuspidal curves exist on Fh for suitable k.

Curve Type Cuspidal configuration Conditions

C1 (k, 4) [3m, 2], [3n], [22]

n ≥ 1

m ≥ 0

m + n = 2l + h

C2 (k, 4) [3m], [3n], [23]
m, n ≥ 1

m + n = 2l + h

C3 (k, 4) [3m], [24], [22]
m ≥ 1

m = 2l + h

C4 (k, 4) [3m], [3n, 2], [22]

n ≥ 0

m ≥ 1

m + n = 2l + h

C5 (k, 5) [4m, 22], [4n, 3], [2]
m, n ≥ 0

m + n = 2l + h − 1

C6 (k, 5) [4m, 22], [22], [22]
m ≥ 0

m = 2l + h − 1

C7 (k, 5) [4m, 22], [4n, 22], [22]
m, n ≥ 0

m + n = 2l + h − 1

Table 3.6: Rational tricuspidal curves on P1×P1 and F1 from rational cuspidal quintics.

Proof. We construct C1 from a rational cuspidal quintic C with cuspidal configuration
[3, 2], [22] and one inflection point. Let p be the cusp with multiplicity sequence [3, 2],
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and let q be the inflection point of C. Let Tq be the tangent line to C at q. We have
Tq · C = 3q + r1 + s for two smooth points r1, s ∈ C. Let L be the line between s and
the cusp p. We have L · C = 3p + r2 + s, where r2 ∈ C is a smooth point. Blowing
up at s gives a curve C ′ on F1 of type (1, 4). Moreover, for the strict transforms T ′

q

and L′ of Tq and L we have the intersections T ′
q · C ′ = 3q′ + r′1 and L′ · C ′ = 3p + r2.

Appropriate elementary transformations on the fibers T ′
q and L′ give the series. Note

that this series is not the same as the series C3 constructed in Theorem 3.4.11, but
that the two series complement each other. Indeed, given h, it is possible to construct
curves C1 for pairs m, n that satisfy the conditions on m and n, and m+n = 2l +h for
some integer l, while it is possible to construct curves C3 in Theorem 3.4.11 for pairs
m, n that satisfy the conditions on m and n, and m + n = 2l + h − 1 for some integer
l.

We construct C2 from a rational cuspidal quintic C with cuspidal configuration
[3], [23] and one inflection point. The construction is parallel to the construction of C1.

We construct C3 from a rational cuspidal quintic C with cuspidal configuration
[24], [22] and one inflection point. Let q denote the inflection point, with tangent line
Tq. We have Tq · C = 3q + r + s for smooth points r, s ∈ C. Blowing up at s we get a
curve C ′ on F1 of type (1, 4). Moreover, for the strict transform T ′

q of Tq we have the
intersection T ′

q · C ′ = 3q′ + r′. Appropriate elementary transformations on the fiber T ′
q

give the series.
We construct C4 from a rational cuspidal quintic C with cuspidal configuration

[3], [22], [2]. Let p and q be the cusps with multiplicity sequence [3] and [2] respectively.
Let Tq be the tangent line at q, with Tq · C = 3q + r1 + s for smooth points r1, s ∈ C.
Let L be the line between s and p, with L · C = 3p + r2 + s for a smooth point r2 ∈ C.
Blowing up at s we get a curve C ′ on F1 of type (1, 4). For the strict transforms T ′

q

and L′ of Tq and L, we have the intersections T ′
q · C ′ = 3q′ + r′1 and L′ · C ′ = 3p′ + r′2.

Appropriate elementary transformations on the fibers T ′
q and L′ give the series.

We construct C5 from a rational cuspidal quintic C with cuspidal configuration
[3], [22], [2]. Let p and q be the cusps with multiplicity sequence [3] and [22] respectively.
Let Tp and Tq be the respective tangent lines, with Tp · C = 4p + r1 and Tq · C = 4q + r2

for smooth points r1, r2 ∈ C. Let s be the intersection point of Tp and Tq. Since s /∈ C,
blowing up at s we get a curve C ′ on F1 of type (0, 5). For the strict transforms T ′

p

and T ′
q of Tp and Tq we have intersections with C ′ as before. Appropriate elementary

transformations on the fibers T ′
p and T ′

q give the series.
We construct C6 from a rational cuspidal quintic C with cuspidal configuration

[22], [22], [22]. Let p be one of the cusps. We have Tp · C = 4p + r for a smooth point
r on C. Let s /∈ C be a point on the tangent line Tp. Blowing up at s gives a curve
C ′ on F1 of type (0, 5). For the strict transforms T ′

p and T ′
q of Tp and Tq we have

intersections with C ′ as before. Appropriate elementary transformations on the fiber
T ′

p give the series. We construct C7 from a rational cuspidal quintic C with cuspidal
configuration [22], [22], [22]. Let p, q be two of the cusps, and Tp, Tq their respective
tangent lines. We have Tp · C = 4p + r1 and Tq · C = 4q + r2, with r1, r2 ∈ C smooth
points. Let s /∈ C denote the intersection point of Tp and Tq. Blowing up at s we get
a curve C ′ on F1 of type (0, 5). Appropriate elementary transformations on the fibers
T ′

p and T ′
q give the series. Notice that the cuspidal configuration of C6 is included in

C7, but that C7 has fiber tangential properties. �
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From the three series of tricuspidal rational curves on P2, there are more tricuspidal
rational curves on Fe. The curves that only exist on P1 × P1 and F1 are marked with
a �.

Theorem 3.4.13. For all integers e ≥ 0, h ∈ {0, 1} and l ≥ 0 such that the conditions
on m are met, the following rational cuspidal curves exist on Fe and Fh for integers
a, b ≥ 1, where a + b = d − 2, and suitable k.

Curve Type Cuspidal configuration Conditions

C1 (k, d−2) [(d − 2)m], [2a−1], [2b]
m ≥ e − 1, m ≥ 1

m = 2l + e

C2 (k, d−1) [(d − 1)m, d − 2], [2a], [2b]
m ≥ e − 1, m ≥ 0

m = 2l + e − 1

�C3 (k, d) [(d − 1)m, d − 2], [2a], [2b]
m ≥ 1

m = 2l + h − 1

�C4 (k, d−1) [(d − 2)m], [2a], [2b]
m ≥ 1

m = 2l + h

Table 3.7: Rational tricuspidal curves on Fe from the plane tricuspidal curves with
m̂ = d − 2.

Proof. Let C be a plane rational cuspidal curve of degree d with three cusps p1, p2

and p3 with multiplicity sequences [d− 2], [2a] and [2b] respectively, where a, b ≥ 1 and
a + b = d − 2.

We construct the series C1 from C by blowing up at p2. We then get a curve C ′

of type (2, d − 2) on F1. Let L be the line on P2 between p1 and p2, and notice that
L · C = (d − 2)p1 + 2p2. The strict transform L′ of L intersects C ′ only at the cusp p′1,
and we have L′ · C ′ = (d − 2)p′1. Appropriate elementary transformations on the fiber
L′ give the series.

We construct the series C2 from C. Let T be the tangent line to C at p1. Then we
have T · C = (d − 1)p1 + r for a smooth point r ∈ C. Blowing up at r, we get a curve
C ′ of type (1, d− 1) on F1. The strict transform T ′ of T intersects C ′ only at the cusp
p′1, and we have T ′ · C ′ = (d − 1)p′1. Appropriate elementary transformations on the
fiber T ′ give the series.

We construct the series C3 from C by blowing up a point s ∈ T \ {p1, r}. Then we
have a curve C ′ on F1 of type (0, d). Notice that the strict transform T ′ of T intersects
C ′ in two points, T ′ · C ′ = (d − 1)p′1 + r′. Appropriate elementary transformations on
the fiber T ′ give the series on Fh.

We construct the series C4 from C by blowing up a smooth point t ∈ C. Let
Lt be the line between t and p1. We have Lt · C = (d − 2)p1 + t + u, for a smooth
point u ∈ C. Blowing up at t, we get a curve C ′ on F1 of type (1, d − 1), and for
the strict transform L′

t of Lt we have L′
t · C ′ = (d − 2)p′1 + u′. Appropriate elementary

transformations on the fiber L′
t give the series on Fh.
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Theorem 3.4.14. For all integers e ≥ 0, h ∈ {0, 1} and l ≥ 0 such that the conditions
on m, n1 and n2 are met, the following rational cuspidal curves exist on Fe and Fh for
integers a ≥ 1, where d = 2a + 3, and suitable k.

Curve Type Cuspidal configuration Conditions

C1 (k, d−3) [(d − 3)m, 2a], [3a−1], [2]
m ≥ 0

m = 2l + e

C2 (k, d−1) [(d − 1)m, d − 3, 2a], [3a], [2]
m ≥ 0

m = 2l + e − 1

C3 (k, 3) [3a+m], [2a+n1 ], [21+n2 ]

n1, n2 ≥ 0

m ≥ e − 1, m ≥ 0

m + n1 + n2 = 2l + e − 1

�C4 (k, d) [(d − 1)m, d − 3, 2a], [3a], [2]
m ≥ 0

m = 2l + h − 1

Table 3.8: Rational tricuspidal curves on Fe from the plane tricuspidal curves with
m̂ = d − 3.

Proof. Let C be a plane rational cuspidal curve of degree d with three cusps p1, p2

and p3 with multiplicity sequences [d − 3, 2a], [3a] and [2] respectively, with a ≥ 1 and
d = 2a + 3.

We construct the series C1 from C by blowing up at p2. We then get a curve C ′

of type (3, d − 3) on F1. Let L2 be the line on P2 between p1 and p2, and notice that
L2 · C = (d − 3)p1 + 3p2. The strict transform L′

2 of L2 intersects C ′ only at the cusp
p′1, and we have L′

2 · C ′ = (d − 3)p′1. Appropriate elementary transformations on the
fiber L′

2 give the series.

We construct the series C2 from C. Let T be the tangent line to C at p1. Then we
have T · C = (d − 1)p1 + r for a smooth point r ∈ C. Blowing up at r, we get a curve
C ′ of type (1, d− 1) on F1. The strict transform T ′ of T intersects C ′ only at the cusp
p′1, and we have T ′ · C ′ = (d − 1)p′1. Appropriate elementary transformations on the
fiber T ′ give the series.

We construct the series C3 from C by blowing up at p1. Let L3 be the line on P2

between p1 and p3, with L3 · C = (d − 3)p1 + 2p3 + t for a smooth point t ∈ C. Blowing
up at p1 we get a curve C ′ on F1 of type (d − 3, 3). The strict transforms L′

2, L′
3 and

T ′ of L2, L3 and T intersect C ′ such that appropriate elementary transformations on
these three fibers give the series.

We construct the series C4 from C by blowing up a point s ∈ T \ {p1, r}. Then we
have a curve C ′ on F1 of type (0, d). Notice that the strict transform T ′ of T inter-
sects C ′ in two points, and we have T ′ · C ′ = (d − 1)p′1 + r′. Appropriate elementary
transformations on the fiber T ′ give the series on Fh.
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Theorem 3.4.15. For all integers e ≥ 0, h ∈ {0, 1} and l ≥ 0 such that the conditions
on m and n are met, the following rational cuspidal curves exist on Fe and Fh for
integers a ≥ 1, where d = 3a + 4, and suitable k.

Curve Type Cuspidal configuration Conditions

C1 (k, d−4) [(d − 4)m, 3a], [4a−1, 2a], [2]
m ≥ 0

m = 2l + e

C2 (k, d−1) [(d − 1)m, d − 4, 3a], [4a, 22], [2]
m ≥ 0

m = 2l + e − 1

C3 (k, 4) [3a+m], [4a+n, 22], [2]
m,n ≥ 0

m + n = 2l + e − 1

�C4 (k, d) [(d − 1)m, d − 4, 3a], [4a, 22], [2]
m ≥ 0

m = 2l + h − 1

Table 3.9: Rational tricuspidal curves on Fe from the plane tricuspidal curves with
m̂ = d − 4.

Proof. Let C be a plane rational cuspidal curve of degree d with three cusps p1, p2 and
p3 with multiplicity sequences [d − 4, 3a], [4a, 22] and [2] respectively, with a ≥ 1 and
d = 3a + 4.

We construct the series C1 from C by blowing up at p2. We then get a curve C ′

of type (4, d − 4) on F1. Let L2 be the line on P2 between p1 and p2, and notice that
L2 · C = (d − 4)p1 + 4p2. The strict transform L′

2 of L2 intersects C ′ only at the cusp
p′1, and we have L′

2 · C ′ = (d − 4)p′1. Appropriate elementary transformations on the
fiber L′

2 give the series.

We construct the series C2 from C. Let T be the tangent line to C at p1. Then we
have T · C = (d − 1)p1 + r for a smooth point r ∈ C. Blowing up at r, we get a curve
C ′ of type (1, d− 1) on F1. The strict transform T ′ of T intersects C ′ only at the cusp
p′1, and we have T ′ · C ′ = (d − 1)p′1. Appropriate elementary transformations on the
fiber T ′ give the series.

We construct the series C3 from C by blowing up at p1. We get a curve C ′ on F1

of type (d − 4, 4). The strict transforms L′
2 and T ′ of L2 and T intersect C ′ such that

appropriate elementary transformations on these two fibers give the series.

We construct the series C4 from C by blowing up a point s ∈ T \ {p1, r}. Then we
have a curve C ′ on F1 of type (0, d). Notice that the strict transform T ′ of T inter-
sects C ′ in two points, and we have T ′ · C ′ = (d − 1)p′1 + r′. Appropriate elementary
transformations on the fiber T ′ give the series on Fh.
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There are additionally a few other series of curves arising from tricuspidal curves
of low degree 6 ≤ d ≤ 10.

Theorem 3.4.16. For all integers e ≥ 0, h ∈ {0, 1} and l ≥ 0 such that the conditions
on m and n are met, the following rational cuspidal curves exist on Fe and Fh for
suitable k.

Curve Type Cuspidal configuration Conditions

�C1 (k, 5) [4m, 22], [4n], [22]

m ≥ 0

n ≥ 1

m = 2l + h

�C2 (k, 5) [4m, 23], [4n], [2]

m ≥ 0

n ≥ 1

m = 2l + h

C3 (k, 6) [6m, 32], [4, 22], [2]
m ≥ 0

m = 2l + e − 1

�C4 (k, 7) [6m, 4, 22], [6n, 32], [2]
m,n ≥ 0

m = 2l + h − 1

�C5 (k, 9) [8m, 42, 22], [6, 32], [2]
m ≥ 0

m = 2l + h − 1

Table 3.10: Rational tricuspidal curves on Fe from special plane tricuspidal curves.

Proof. We construct the series C1 from a plane rational cuspidal curve C of degree 6
with three cusps p1, p2 and p3 with multiplicity sequences [4], [22] and [22] respectively.
Let T be the tangent line to C at p2. Then T · C = 4p2 + r + s for smooth points
r, s ∈ C. Note that the line L between r and p1 has the following intersection with C,
L · C = 4p1 + r + t for a smooth point t ∈ C. Blowing up at r, we get a curve C ′ on
F1 of type (1, 5). The strict transforms T ′ and L′ of T and L intersect the curve C ′ in
≤ 2 such that appropriate elementary transformations on the two fibers give the series
on Fh.

We construct the series C2 from a plane rational cuspidal curve C of degree 6
with three cusps p1, p2 and p3 with multiplicity sequences [4], [23] and [2] respectively.
Let T be the tangent line to C at p2. Then T · C = 4p2 + r + s for smooth points
r, s ∈ C. Note that the line L between r and p1 has the following intersection with C,
L · C = 4p1 + r + t for a smooth point t ∈ C. Blowing up at r, we get a curve C ′ on F1

of type (1, 5). The strict transforms T ′ and L′ of T and L intersect the curve C ′ such
that appropriate elementary transformations on the two fibers give the series on Fh.

We construct the series C3 from a plane rational cuspidal curve C of degree 7 with
three cusps p1, p2 and p3 with multiplicity sequences [4, 22], [32] and [2] respectively.
Let T be the tangent line to C at p2. Then T · C = 6p2 + r for a smooth point r ∈ C.
Blowing up at r, we get a curve C ′ on F1 of type (1, 6). The strict transform T ′ of T
intersects the curve C ′ only at the cusp p′2. Appropriate elementary transformations
on the fiber T ′ give the series.
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We construct the series C4 from a plane rational cuspidal curve C of degree 7 with
three cusps p1, p2 and p3 with multiplicity sequences [4, 22], [32] and [2] respectively.
Let T1 and T2 be the tangent lines to C at p1 and p2. We have T1 · C = 6p1 + r1 and
T2 · C = 6p2 + r2 for two smooth points r1, r2 ∈ C. Let s denote the intersection point
of T1 and T2. Blowing up at s we get a curve C ′ on F1 of type (0, 7). The fibers T ′

1 and
T ′

2 intersect C ′ such that appropriate elementary transformations on these two fibers
give the series on Fh.

We construct the series C5 from a plane rational cuspidal curve C of degree 10 with
three cusps p1, p2 and p3 with multiplicity sequences [6, 32], [42, 22] and [2] respectively.
Let T be the tangent line to C at p2. Then T · C = 8p2 + r + s for smooth points
r, s ∈ C. Blowing up at r, we get a curve C ′ on F1 of type (1, 9). The strict transform
T ′ of T intersects C ′ in the following way, T ′ · C ′ = 8p′2 + s′. Appropriate elementary
transformations on the fiber T ′ give the series on Fh.

3.4.3 Rational cuspidal curves from noncuspidal curves

In this section we show by an example that we can use a noncuspidal curve on the
projective plane to construct a cuspidal curve on a Hirzebruch surface. This example
supports the claim that we have more flexibility and more rational cuspidal curves on
a Hirzebruch surface than on the projective plane. This approach could be interesting
to explore in depth and detail, but we argue that it has some major downsides.

We begin with the announced example.

Example 3.4.17. Let C be a rational curve on P2 of degree 5 with four real cusps
and two real nodes. Recall that a node is a singularity with two transversal branches.
A parametrization of such a curve can be found in [20], where λ1, λ2 are arbitrary
constants.

x = (t − λ1)
2
(
(λ1 − 2λ2 + 2λ1λ2)t − λ1λ2

)
,

y = λ3
1(t − 1)2(t − λ2),

z = (t − 1)2(t − λ1)
2
(
(λ1 − 2λ2)t − λ1λ2

)
.

Blowing up at one of the nodes on the curve on P2, we get a curve on F1 of type
(2, 3) with four cusps and one node. There is a fiber L on F1 intersecting this curve in
the remaining node and one further point. In particular, the node is not on the special
section of F1. Blowing up at the node and contracting L, we get a rational cuspidal
curve on P1 × P1 of type (3, 3) with four ordinary cusps.

The above example is the beginning of a third construction of the rational cuspidal
curves with four cusps with multiplicity sequences [2nj

] on P1 × P1 and F1. Notice in
particular that the four cusps have real coordinates because the transformation from
P2 is real at all stages.

Moreover, Example 3.4.17 shows that we can get cuspidal curves on a Hirzebruch
surface from a curve that is not cuspidal on the projective plane. The example even
shows that we can start out with curves with more than one singularity that is not a
cusp.

A natural place to start looking for cuspidal curves on Hirzebruch surfaces would
be the curves on P2 with only one multiple point in addition to cusps. In particular,
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it should be possible to resolve the singularity in one blow-up. More precisely, we can
handle multiple points with b branches, all of which are smooth or cusps, where the b
tangent directions are distinct. We call such a singularity an easily resolvable multiple
point.

Our main task would be to look for curves with many cusps. Among the plane
rational curves of degree d ≤ 5, there seems to be no curves with s ≥ 5 cusps and only
one easily resolvable multiple point. The first possible curve would be a quintic with
five ordinary cusps and one node, but there is no such curve. Indeed, using Hurwitz’s
theorem 1.1.18 on the composition of the normalization map and a projection to P1

from the node, leads to a contradiction. Moving to degree d = 6, the situation becomes
more complicated, since the singularities now can be more complex, and we have yet
to find a good candidate in this degree or higher.

We could also start our search with rational curves on P2 with more multiple points,
as in Example 3.4.17. Then there are even more restrictions that come into play, and
the situation again runs out of hand.

The major downside of approaching rational cuspidal curves on Fe from noncuspidal
curves on P2 is first of all the fact that we know very little about the rational curves on
P2 of degrees d ≥ 6. It seems that finding curves that fit even the simplest restrictions
is hard, and more research is needed.

3.4.4 Reflexions and conjectures

So far in this chapter we have seen that we can construct many rational cuspidal curves
on Hirzebruch surfaces from plane rational curves. We have in particular considered
curves with four and three cusps. Constructing curves with fewer cusps is of course also
possible. Reflecting on the structure of the birational maps between the surfaces, we
argue that it is natural that there are more cuspidal curves on the Hirzebruch surfaces
than on the projective plane. However, the observation that there seems to be no
rational cuspidal curve with more than four cusps on any Hirzebruch surface either,
still suggests that the rational cuspidal curves are very special.

It is very easy to construct examples of curves with two cusps or less. Indeed,
inspired by Fenske in [17] we can start out with simple plane rational cuspidal curves
and construct several series of curves on Hirzebruch surfaces. We will not go into
details here, only briefly describe the curves.

The first plane curves that easily give a lot of curves are the binomial cuspidal
curves. For every pair m, n, where n > m and with gcd(m,n) = 1, let C be the plane
cuspidal curve C = V (ymzn−m − xn). By symmetry, we may assume that n−m > m.
If m = 1, then C is a unicuspidal curve with an inflection point. The multiplicity
sequence of the cusp is [n − 1]. The intersection multiplicity of the tangent line and
the curve equals n at both the cusp and the inflection point. If m > 1, then the curve
is bicuspidal. The two cusps have multiplicities n − m and m, and their multiplicity
sequences can fairly easily be calculated using the Enriques–Chisini algorithm, see [4,
Theorem 12, p.516]. The intersection multiplicity of the tangent line and the curve

equals n at both cusps. The delta invariants are (n−m−1)(n−1)
2

and (m−1)(n−1)
2

.

The second plane curves that easily give a lot of rational cuspidal curves on the
Hirzebruch surfaces are the curves given by C = V (yzn−1 − xn − xn−1z). These curves
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are unicuspidal, with one cusp with multiplicity sequence [n − 1] and one inflection
point. The intersection multiplicity of the tangent line and the curve equals n at the
cusp and n − 1 at the inflection point. Blowing up appropriate points on these curves
gives curves on F1 with fibers intersecting the curves in such a way that cuspidal curves
can be constructed. As above, the key to the constructions is finding the lines that
intersect the curve in few points, and general lines through the cusps and tangent lines
at cusps and inflection points are examples here.

The constructions of curves in this chapter additionally lead to the claim that
the surfaces P1 × P1 and F1 allow more rational cuspidal curves than P2 and the
other Hirzebruch surfaces. This claim is actually plausible just from looking at the
birational transformations from one surface to the other, without the vast amount of
curves provided in this chapter.

Starting out with a curve on P2, moving to F1 only requires blowing up a single
point. This is extremely flexible since we do not contract any lines.

Moving from F1 to P1 ×P1 requires one blowing up and one contraction, where the
point we blow up is general on F1. This is still quite flexible, but in order to avoid
constructing multiple points we need a fiber with at most two intersections with our
curve. If there are two intersections between the curve and the fiber, then at least one
intersection must be transversal for a general point.

Moving from F1 to F2 also requires one blowing up and one contraction, but this
time the point we blow up is special on F1. This is less flexible than the elementary
transformation from F1 to P1×P1. To avoid constructing multiple points we again need
a fiber with at most two intersections with our curve. If there are two intersections
between the curve and the fiber, then one of them must be transversal and on the
special section.

To get a series of cuspidal curves on Fe we see that we must have a fiber that
intersects the curve in only one point.

If we want to get back to P2, we must perform several elementary transformations
and one contraction of the special section on F1, and in each step we have to avoid
creating multiple points. This turns out to be very difficult, and accounts perhaps for
the rigidity we see in the curves on P2.

The fact that cuspidal curves can be constructed on Hirzebruch surfaces from non-
cuspidal plane curves complicates the picture further. We have already noted that more
research is needed, and although we do not go into this topic, as a first observation we
say that a plane curve that can be transformed into a cuspidal curve on a Hirzebruch
surface is a semi-cuspidal curve.

Regardless of the theorems, the curves and the above discussion, it is important to
notice that we have not found any rational cuspidal curves with more than four cusps.
This observation leads to a natural conjecture.

Conjecture 3.4.18. Let C be a rational cuspidal curve on the projective plane or on
a Hirzebruch surface. Then C has at most four cusps.

Another observation is the fact that the curves of type (a, b) with four cusps all
have b ≤ 5, and by Theorem 3.1.5 the cusps then have multiplicity m ≤ 5. In fact,
the cusps in the series we have found all have multiplicity m ≤ 4. These observations
might be interesting points of attack for a future proof of the above conjecture.
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3.5 More results for rational cuspidal curves

First in this section we state and prove two lemmas for rational cuspidal curves on
Hirzebruch surfaces, the first analogous to Lemma 2.4.3 by Flenner and Zaidenberg,
and the other a lemma bounding the sum of the M -numbers. Second, we use these
lemmas to give an explicit formula for χ(ΘV 〈D〉) in this case. Third, we use the
lemmas and some other results to find a lower bound on the highest multiplicity of
a cusp on a rational cuspidal curve on a Hirzebruch surface. Last in this section, we
investigate real cuspidal curves on Hirzebruch surfaces.

3.5.1 Two lemmas

We now state and prove two lemmas for rational cuspidal curves on Hirzebruch surfaces.
First, we prove a lemma that is a variant of Lemma 2.4.3.

Lemma 3.5.1 (Variant of 2.4.3). Let C be a rational cuspidal curve on Fe. Let
(V, D) be the minimal embedded resolution of C. Let D1, . . . , Dr be the irreducible
components of D. Then the following hold.

(0) D is a rational tree.

(1) χ(ΘV ) = 8 − 2r.

(2) K2
V = 9 − r.

(3) c2 := c2(V ) = 3 + r.

(4) χ
(⊕

NDi/V

)
= r +

r∑
i=1

D2
i .

(5) χ(ΘV 〈D〉) = KV . (KV + D) − 1.

Proof. Note that the proof is very similar to the proof of Lemma 2.4.3 given in [21],
only small details are changed.

(0) Since (V, D) is the minimal embedded resolution of C, D is an SNC-divisor. Since
C is a rational curve, C̃ is smooth, and all exceptional divisors are smooth and
rational, then all components of D are smooth and rational. The dual graph of
D, say Γ, is necessarily a connected graph, and since C is cuspidal, Γ will not
contain cycles. Thus, D is a rational tree by the definition given in Chapter 1.

(3) Since V is obtained by r−1 blowing ups, we have that the Chern class c2 := c2(V )
is

c2(V ) = c2(Fe) + r − 1.

Moreover, by [31, Corollary V 2.5, p.371] we have that χ(OFe) = 1. With K the
canonical divisor on Fe, we apply the formula in [31, Remark V 1.6.1, p.363],

12χ(OFe) = K2 + c2(Fe)

12 = 8 + c2(Fe).
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We get c2(Fe) = 4, hence,

c2(V ) = 4 + r − 1

= 3 + r.

(2) We have by [31, Proposition V 3.4, p.387] that χ(OV ) = χ(OFe) = 1. By the
formula in [31, Remark V 1.6.1, p.363] again, we get

K2
V = 12χ(OV ) − c2

= 12 − (3 + r)

= 9 − r.

(4) Since Di is a rational curve on the surface V for all i, we have that g(Di) = 0.
By [31, Proof of Proposition II 8.20, p.182] we have that

NDi/V
∼= L (Di) ⊗ ODi

.

Hence, by the Riemann–Roch theorem for curves [31, p.362],

χ
(⊕

NDi/V

)
= χ

(⊕
L (Di) ⊗ ODi

)
=

r∑
i=1

(
D2

i + 1
)

= r +
r∑

i=1

D2
i .

(1) By the Hirzebruch–Riemann–Roch theorem for surfaces [31, Theorem A 4.1,
p.432], we have that for any locally free sheaf E on V of rank s with Chern
classes ci(E ),

χ(E ) =
1

2
c1(E ) .

(
c1(E ) + c1(ΘV )

)− c2(E ) + s · χ (OV ) .

Moreover, by [31, Example A 4.1.2, p.433], ΘV has rank s = 2 and c1(ΘV ) = −KV .
We have by the previous results,

χ(ΘV ) =
1

2
(−KV ) . (−2KV ) − c2(ΘV ) + 2χ (OV )

= K2
V − c2 + 2

= 9 − r − (3 + r) + 2

= 8 − 2r.

(5) Observe first that since D is an SNC-divisor, we have by direct calculation

D2 =
r∑

i=1

D2
i +

∑
i�=j

DiDj

=
r∑

i=1

D2
i + (1 + 2(r − 2) + 1)

=
r∑

i=1

D2
i + 2r − 2.
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Since D is an effective divisor, we have by definition that pa(D) = 1 − χ(OD).
Since D is a rational tree, by [21, Lemma 1.2, p.148], pa(D) = 0. So by Theorem
1.1.3,

KV . D = −D2 − 2.

Using the additivity of χ on the short exact sequence (see [21, pp.147,162]),

0 −→ ΘV 〈D〉 −→ ΘV −→
⊕

NDi/V −→ 0,

and the above results and remarks, we get

χ
(
ΘV 〈D〉

)
= χ(ΘV ) − χ

(⊕
NDi/V

)
= (8 − 2r) −

(
r +

r∑
i=1

D2
i

)
= 8 − 2r − (r + D2 − 2r + 2)

= 6 − r − D2

= K2
V − D2 − 3

= K2
V + 2KV . D − 2(−D2 − 2) − D2 − 3

= (KV + D)2 + 1

= KV . (KV + D) − 1.

The second lemma bounds the sum of the M -numbers by the type of the curve,
and this work is inspired by Orevkov (see [50]).

Lemma 3.5.2. For a rational cuspidal curve C of type (a, b) on Fe with s cusps and
κ(Fe \ C) ≥ 0, we have

s∑
j=1

Mj ≤ 2(a + b) + be.

Proof. Let (V, D) and σ = σ1 ◦ . . . ◦ σt be the minimal embedded resolution of C. Write
σ∗(C) = C̃ +

∑t
i=1 mi−1Ei, with C̃, mi and Ei as before. Then by induction and [31,

Proposition V 3.2, p.387] we find that

C̃2 =
(
σ∗(C) −

t∑
i=1

mi−1Ei

)2

= C2 −
t−1∑
i=0

m2
i

= b2e + 2ab −
t−1∑
i=0

m2
i .
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By the genus formula, we may rewrite this,

C̃2 = b2e + 2ab −
t−1∑
i=0

m2
i

= be + 2(a + b) − 2 −
t−1∑
i=0

mi.

Moreover, we have that for D = C̃ +
∑t

i=1 E ′
i,

D2 = C̃2 + 2C̃ .
( t∑

i=1

E ′
i

)
+

( t∑
i=1

E ′
i

)2

= C̃2 + 2s +
( t∑

i=1

E ′
i

)2

.

Now we split the latter term in this sum into the sum of the strict transforms of the
exceptional divisors for each cusp,

t∑
i=1

E ′
i =

s∑
j=1

Epj
,

where s denotes the number of cusps. By [42, Lemma 2, p.235], we still have

ωj = −E2
pj
− 1.

Combining the above results, we get

D2 = be + 2(a + b) − 2 −
t−1∑
i=0

mi + 2s −
s∑

j=1

(ωj + 1)

= be + 2(a + b) − 2 −
t−1∑
i=0

mi −
s∑

j=1

(ωj − 1).

By the proof of Lemma 3.5.1, we have

6 − r − D2 = (KV + D)2 + 1.

Note that r denotes the number of components of the divisor D. This number is equal to
the total number of blowing ups needed to resolve the singularity, plus one component
from the strict transform of the curve itself. Following the notation established, we
have r = t + 1. Moreover, by assumption, κ(Fe \C) ≥ 0. By Corollary 3.1.10, we then
have that

(KV + D)2 ≤ 6.
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So we get

0 ≤ 1 + r + D2

≤ 1 + r + be + 2(a + b) − 2 −
t−1∑
i=0

mi −
s∑

j=1

(ωj − 1)

≤ −1 + 1 + be + 2(a + b) −
t−1∑
i=0

(mi − 1) −
s∑

j=1

(ωj − 1)

≤ be + 2(a + b) −
s∑

j=1

Mj.

Hence,
s∑

j=1

Mj ≤ 2(a + b) + be.

3.5.2 An expression for χ (ΘV 〈D〉)
In this section we show that the value of χ(ΘV 〈D〉) for curves C on Fe is more subtle
than in the case of curves on P2, even if we require κ(Fe \ C) = 2. We first provide an
explicit formula for χ (ΘV 〈D〉).
Theorem 3.5.3. For an irreducible rational cuspidal curve C of type (a, b) on Fe with
s cusps pj with respective M-numbers Mj, we have

χ
(
ΘV 〈D〉

)
= 7 − 2a − 2b − be +

s∑
j=1

Mj.

Proof. By Proposition 1.1.19,

KV . (KV + D) = KFe . (KFe + C) +
s∑

j=1

Mj.

By Lemma 3.5.1, we then get

χ
(
ΘV 〈D〉

)
= KV . (KV + D) − 1

= KFe . (KFe + C) +
s∑

j=1

Mj − 1

= ((e − 2)L − 2M) .
(
(a + e − 2)L + (b − 2)M

)
− 1 +

s∑
j=1

Mj

= 7 − 2a − 2b − be +
s∑

j=1

Mj.
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With the above result in mind, we investigate χ(ΘV 〈D〉) further. Let C be a
rational cuspidal curve on Fe of type (a, b), and let (V, D) be as before. By the above,
we have that

χ(ΘV 〈D〉) := h0(V, ΘV 〈D〉) − h1(V, ΘV 〈D〉) + h2(V, ΘV 〈D〉),
= KV . (KV + D) − 1,

= 7 − 2(a + b) − be +
s∑

j=1

Mj.

Moreover, when κ(Fe \ C) ≥ 0, we see from Lemma 3.5.2 that

χ(ΘV 〈D〉) ≤ 7.

If κ(Fe \ C) = 2, then it follows from a result by Iitaka [33, Theorem 6] that
h0(V, ΘV 〈D〉) = 0. Then

χ(ΘV 〈D〉) = h2(V, ΘV 〈D〉) − h1(V, ΘV 〈D〉).
If κ(Fe \C) = 2 and (V, D) is almost minimal, we can apply a lemma by Tono [68,

Lemma 4.1, p.219]. In this case KV . (KV + D) ≥ 0, hence

−1 ≤ χ(ΘV 〈D〉) ≤ 7.

Going back to the proof of Theorem 3.3.2, we see that for curves of genus g on Fe,
we have that n < 2g + 2. As before, n is the number of exceptional curves not in D
that will be contracted by the minimalization morphism.

For rational cuspidal curves, we see that we have n = {0, 1}. This means that we,
in contrast to the situation on P2, are not directly in the situation that the resolution
of a rational curve gives an almost minimal pair (V, D). Therefore, χ(ΘV 〈D〉) is not
necessarily bounded below in this case. For rational cuspidal curves with four cusps on
Hirzebruch surfaces Fe and Fh, where e ≥ 0, h ∈ {0, 1}, we have the following table.

Type Cuspidal configuration χ(ΘV 〈D〉) Surface

(2k + 1, 4) [4k−1+e, 23], [2], [2], [2] 1 − k − e Fe

(3k + 1 − h, 5) [42k−1+h, 23], [2], [2], [2] −1 Fh

(2k + 2 − h, 4) [32k−1+h, 2], [23], [2], [2] 0 Fh

(k + 1 − h, 3) [2n1 ], [2n2 ], [2n3 ], [2n4 ] −1 Fh

(0, 3) [2], [2], [2], [2] −1 F2

Table 3.11: χ(ΘV 〈D〉) for rational cuspidal curves with four cusps on Fe and Fh. For
the three first series, k ≥ 0. For the fourth series, k ≥ 2 and

∑4
j=1 nj = 2k + h.

An important observation from this list is the fact that χ(ΘV 〈D〉) ≤ 0 for all these
curves. We reformulate this observation in a conjecture.

Conjecture 3.5.4. Let C be a rational cuspidal curve on Fe with four or more cusps.
Then χ(ΘV 〈D〉) ≤ 0.
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3.5.3 On the multiplicity

In the following we establish a result on the multiplicities of the cusps on a rational
cuspidal curve on a Hirzebruch surface. Note that this work is inspired by Orevkov
(see [50]).

Assume that C is a rational cuspidal curve on a Hirzebruch surface Fe. Let p1, . . . , ps

denote the cusps of C, and mp1 , . . . , mps their multiplicities. Renumber the cusps such
that mp1 ≥ mp2 ≥ . . . ≥ mps . Then for curves with κ(Fe \ C) ≥ 0 we are able to
establish a lower bound on mp1 .

Theorem 3.5.5. A rational cuspidal curve C on Fe of type (a, b) with κ(Fe \ C) ≥ 0
and s cusps must have at least one cusp p1 with multiplicity m := mp1 that satisfies the
below inequality,

m >
3

2
+ a + b − 1

2

√
1 + 20(a + b) + 4(a2 + b2) + 4be(1 − b).

Proof. Using Lemma 3.5.2 and Lemma 1.1.16, we get

2(a + b) + be ≥
s∑

j=1

Mj

≥ M1 +
s∑

j=2

Mj

>
μ1

m
+ m − 3 +

s∑
j=2

Mj

=
(b − 1)(2a − 2 + be)

m
+ m − 3 +

s∑
j=2

(
Mj − μj

m

)
≥ 2ab − 2(a + b) + 2 + b2e − be

m
+ m − 3 +

s∑
j=2

(
Mj − μj

mj

)
≥ 2ab − 2(a + b) + 2 + b2e − be

m
+ m − 3.

This means that

0 >
2ab − 2(a + b) + 2 + b2e − be

m
+ m − 3 − 2(a + b) − be.

Let

g(a, b, m) =
2ab − 2(a + b) + 2 + b2e − be

m
+ m − 3 − 2(a + b) − be.

Factoring g, we have that g < 0 for

m >
3

2
+ a + b − 1

2

√
1 + 20(a + b) + 4(a2 + b2) + 4be(1 − b).
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Corollary 3.5.6. A rational cuspidal curve C on Fe of type (a, b) with two or more
cusps must have at least one cusp p1 with multiplicity m that satisfies the below in-
equality,

m >
3

2
+ a + b − 1

2

√
1 + 20(a + b) + 4(a2 + b2) + 4be(1 − b).

Note that this theorem will exclude some potential curves. For example, a rational
cuspidal curve of type (a, 4) on F1 with two or more cusps must have at least one cusp
with multiplicity m = 3 for any a ≥ 6. We also have that any rational cuspidal curve of
type (a, 5) on F1 with two or more cusps must have at least one cusp with multiplicity
m = 3 for any a ≥ 3. Similarly, any rational cuspidal curve of type (a, b) on F1 with
two or more cusps and b ≥ 6 must have at least one cusp with multiplicity m = 3.

3.5.4 Real cuspidal curves

We observed in Chapter 2 that the known plane rational cuspidal curves with three
cusps could be defined over R. That was not the case for the plane rational cuspidal
quintic curve with cuspidal configuration [23], [2], [2], [2].

On the Hirzebruch surfaces, the question whether all cusps on real cuspidal curves
can have real coordinates is still hard to answer. Recall that we call C = V (F ) a real
curve if the polynomial F has real coefficients. However, all known curves on Fe can be
constructed from curves on P2. Since the birational links are real transformations, if it
is possible to arrange the curve on P2 such that the preimages of the cusps have real
coordinates, then the cusps will have real coordinates on the curve on the Hirzebruch
surface as well. Note the possibility that this arrangement is not always attainable.

Considering the rational cuspidal curves on Fe with four cusps, we see that most of
them are constructed from the plane rational cuspidal quintic with cuspidal configura-
tion [23], [2], [2], [2]. Hence, we expect that the cusps on these curves can not all have
real coordinates when the curve is real. Contrary to this intuition, however there are
examples of fourcuspidal curves with this property.

Proposition 3.5.7. The series of rational cuspidal curves on Fh of type (k + 1 − h, 3),
k ≥ 2, with four cusps and cuspidal configuration [2n1 ], [2n2 ], [2n3 ], [2n4 ], where the
indices satisfy

∑4
j=1 nj = 2k + h, has the property that all cusps can be given real

coordinates on a real curve.

Proof. We have seen that the series of curves can be constructed using the plane rational
cuspidal quartic C with three cusps. Let

y2z2 + x2z2 + x2y2 − 2xyz(x + y + z)

be a real defining polynomial of C. Then it is possible to find a tangent line to C that
intersects C in three real points. For example, choose the line T defined by

2048

125
x +

2048

27
y − 1048576

3375
z = 0.

This line is tangent to C at the point (64
9

: 64
25

: 1), and it intersects C transversally at
the points (16 : 16

25
: 1) and (4

9
: 4 : 1). With this configuration, there exists a birational
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transformation from P2 to P1 × P1 that preserves the real coordinates of the cusps
on C and constructs a fourth cusp with real coordinates on the strict transform of
C on P1 × P1. We blow up the two real points at the transversal intersections and
contract the tangent line T , using the birational map from P2 to P1 × P1 described in
Chapter 1. The strict transform is a real curve C ′ on P1×P1 of type (3, 3) and cuspidal
configuration [2], [2], [2], [2], and all the cusps have real coordinates.

On P1 ×P1, since the cusps pj have real coordinates, a fiber, say Lj, intersecting C ′

at a cusp is real. Using the defining polynomial of Lj to substitute one of the variables
x0 or x1 in the defining polynomial of C and removing the factor of x3

i , we are left
with a polynomial with real coefficients in y0 and y1 of degree 3. This polynomial has
a double real root, and one simple, hence real, root. The double root corresponds to
the y-coordinates of the cusp pj, and the simple root to the y-coordinates of a smooth
intersection point rj of C and Lj. Successively blowing up at any rj and contracting
the corresponding Lj lead to the desired series of curves. Since the points we blow up
have real coordinates, the transformations preserve the real coordinates of the cusps.
Hence, all the curves in the series can have four cusps with real coordinates.

An image of a real rational cuspidal curve of type (3, 3) with four ordinary cusps
on P1 × P1 is given in Figure 3.2. In the figure, the surface P1 × P1 is embedded in P3

using the Segre embedding, and we have chosen a suitable affine covering of P3. The
image is created by Georg Muntingh with surfex [32].

Figure 3.2: A real rational cuspidal curve of type (3, 3) with four ordinary cusps on
P1 × P1.

101



102



Chapter 4

The special case of P1 × P1

In this Chapter we explore the nature of cuspidal curves on P1 × P1 in more detail.
We use properties of the defining polynomial of a curve and the structure of P1 ×P1 to
give bounds on the multiplicity and multiplicity sequences of a cusp. We additionally
give more examples of rational cuspidal curves.

4.1 Bounds on the multiplicity

The defining polynomial of a curve and the structure of P1 × P1 give results about the
possible cuspidal curves on this surface. In this section we first consider the defining
polynomial of a curve and show that this ultimately gives bounds on the multiplicity
and multiplicity sequence of a cusp. Then we look at the (1, 1)-curves on P1 × P1 and
get general results from these curves reflecting the structure of P1 × P1. Some of these
results also give direct bounds on the multiplicity and the multiplicity sequence of a
cusp on a curve.

4.1.1 From the defining polynomial

Since P1 × P1 has a double ruling and no special section, the defining polynomial of
a curve C = V (F ) may be described in more detail. We recall the construction from
Chapter 3 and derive special results in the case of curves on P1 × P1.

The freedom of the change of coordinates of P1 ×P1 ensures that we may move any
point p to (0 : 1; 0 : 1). In the affine neighbourhood D+(x1y1), we now keep (x0, y0) as
coordinates, and consider the defining polynomial f(x0, y0) = F (x0, 1, y0, 1). Splitting
f = f(x0, y0) into its homogeneous terms, we have

f = f0 + . . . + fi + . . . + fa+b,

where fi = fi(x0, y0) denotes the terms of f(x0, y0) of degree i in x0 and y0. Note that
there may exist a k such that fi = 0 for all k < i ≤ a + b. Recall that this is not the
case for curves on P2. In this situation we may state and prove a small lemma.

Lemma 4.1.1. Let C = V (F ) be a reduced and irreducible curve of type (a, b) on
P1 × P1. Let p = (0 : 1, 0 : 1) ∈ C, and let f(x0, y0) = F (x0, 1, y0, 1). Then the
following hold.
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a) If a + b ≥ 2, then fi �= 0 for at least two i.

b) The polynomial f has to contain at least one monomial with factor xa
0 and at least

one monomial with factor yb
0.

c) The integer k above must have the property that k ≥ max{a, b}.
Proof.

a) Assume for contradiction that f = fi for some i. Then obviously the polynomial F
would be reducible.

b) Assume for contradiction that f does not contain a monomial with factor xa
0. Bi-

homogenizing f to F with x1, y1, we observe that all monomials of F must contain
at least one factor of x1, hence it would be reducible.

c) This follows from b).

Recall that the smallest integer m such that fm �= 0 in the above decomposition of
f gives the multiplicity of p, and that fm gives the local tangent line(s) of C at p. The
notion of a global tangent line on P1 × P1 is only defined in the particular case that
the local tangent line is a fiber.

We have the following theorem about the multiplicity m of a cusp p.

Theorem 4.1.2. For the multiplicity m of a cusp p on an irreducible cuspidal curve
of type (a, b) on P1 × P1 we have

m ≤ min{a, b}.
We can prove this result using the defining polynomial directly.

Proof. Choose an open affine neighbourhood of a cusp p = (0, 0) with multiplicity m,
and let (x0, y0) denote local coordinates. As above, we have f = fm + . . . + fa+b.
Without loss of generality we may assume that b ≥ a. Assume for contradiction that
m > a. Since x0 is a factor of all terms of fm of power ≤ a, y0 must also be a factor of
fm. The same is true for all the other homogeneous terms of f since they have degrees
≥ m > a. Hence, y0 must be a factor of f , which is a contradiction to the irreducibility
of C.

Alternatively, we may prove the result using the notion of divisors.

Alternative proof of Theorem 4.1.2. Without loss of generality we let a ≤ b. The point
p determines uniquely a curve M of type (0, 1). By intersection theory M . C = a.
Hence, m ≤ (M · C)p ≤ a.

We have two immediate corollaries.

Corollary 4.1.3. For the multiplicities of two cusps p and q on an irreducible cuspidal
curve of type (a, b) on P1 × P1 we have

mp + mq ≤ 2 · min{a, b} ≤ a + b.
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Corollary 4.1.4. For the multiplicity sequence m = [m, m1, . . . mt−1] of a cusp on a
curve of type (a, b) on P1 × P1, we have that

m + m1 ≤ 2 · min{a, b} ≤ a + b.

Proof. We always have m ≥ m1, so the result follows from Theorem 4.1.2.

4.1.2 From properties of (1, 1)-curves

In this section we take a closer look at the (1, 1)-curves on P1 × P1 introduced in
Chapter 1. In the investigation of these curves, we observe that we get some restrictions
on the multiplicity sequence of a cusp on a curve on P1 × P1.

We begin with a consequence of Theorem 1.2.4.

Theorem 4.1.5. Let p, q and r be three distinct points on an irreducible cuspidal curve
C of type (a, b) on P1 × P1. Then the multiplicities of the points satisfy the inequality,

mp + mq + mr ≤ a + b.

Proof. The theorem follows from intersection theory and Theorem 1.2.4. We split the
proof into four cases to give the nuance that we sometimes get even better estimates.

(1) The points p, q and r are on the same (1, 0)-curve or (0, 1)-curve. In this case,
we have by intersection theory

mp + mq + mr ≤ b or mp + mq + mr ≤ a.

In any case, we have
mp + mq + mr ≤ a + b.

(2) The points p and q are on the same (1, 0)-curve, and q and r are on the same
(0, 1)-curve. In this case, we have

mp + mq ≤ b,

mq + mr ≤ a.

Hence,
mp + mq + mr ≤ mp + 2mq + mr ≤ a + b.

(3) The points p and q are on the same (1, 0)-curve, and r is not on the same (0, 1)-
curve as p or q. In this case, we have

mp + mq ≤ b.

The point r is on a unique (0, 1)-curve, so mr ≤ a. Hence,

mp + mq + mr ≤ a + b.
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(4) The points p, q and r are general. These three points define by Theorem 1.2.4 a
unique curve Qpqr of type (1, 1). Intersecting C and Qpqr, we get

mp + mq + mr ≤ a + b.

The theorem has a fairly obsolete consequence, and we state and prove it for com-
pletion.

Corollary 4.1.6. Let C be a cuspidal curve of type (a, b), where a, b ≥ 2, on P1 × P1

with at least two cusps p and q. Then

mp + mq < a + b.

Recall that by Corollary 4.1.3 we always have mp + mq ≤ 2 min{a, b}. This corollary
provides a better bound only when a = b.

Proof. If p and q are on the same (0, 1)- or (1, 0)-curve, then by intersection theory we
have either mp + mq ≤ b < a + b or mp + mq ≤ a < a + b. So assume that p and q are
not on the same (0, 1)- or (1, 0)-curve. Pick a general point r on C and let Qpqr denote
the unique (1, 1)-curve passing through p, q and r. Then mr = 1, and by Theorem
4.1.5 we have

mp + mq ≤ a + b − 1 < a + b.

We now show that we can find (1, 1)-curves on P1 × P1 with certain tangential
properties with respect to a curve. Since a point can be freely moved on P1 × P1, we
first show the theorems for the point p = (0 : 1; 0 : 1).

Theorem 4.1.7. Let p = (0 : 1; 0 : 1) be a smooth point on a curve C = V (F ) of type
(a, b), a, b > 0, such that no fiber is tangent to C at p. Let k be as on p.103. Then the
following hold.

a) There exists a net of (1, 1)-curves intersecting C at p. These curves are given by

c00x0y0 + c01x0y1 + c10x1y0 = 0, c00, c01, c10 ∈ C.

b) There exists a pencil of (1, 1)-curves Tp intersecting C at p non-transversally, that
is (Tp · C)p ≥ 2. These curves are given by

c00x0y0 + Fx0(p)x0y1 + Fy0(p)x1y0 = 0, c00 ∈ C.

c) If k ≥ 3, there exists a unique (1, 1)-curve Op such that (Op · C)p > 2. This curve
is given by(

Fx0y0(p) − Fx0x0(p)Fy0(p)

2Fx0(p)
− Fy0y0(p)Fx0(p)

2Fy0(p)

)
x0y0 + Fx0(p)x0y1 + Fy0(p)x1y0 = 0.
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Remark 4.1.8. Note that a) holds for any point p ∈ C.

Proof. Let
c00x0y0 + c01x0y1 + c10x1y0 + c11x1y1 = 0, cij ∈ C

denote a general (1, 1)-curve.

a) Requiring that a general (1, 1)-curve passes through p determines one coefficient,
say c11 = 0, which is what we need to show.

b) If two curves have non-transversal intersection at a point, then locally the tangent
lines must coincide. In an affine neighbourhood of p, F is given by

f(x0, y0) = H(2) + fx0(p)x0 + fy0(p)y0,

where H(2) denotes the higher order terms of f . Locally, a general (1, 1)-curve
passing through p is given by the equation

c00x0y0 + c01x0 + c10y0 = 0.

Demanding locally coinciding tangent lines determines two of the coefficients up to
multiplication by an element of C∗. Hence, we set

(c01 : c10) = (fx0(p) : fy0(p)).

By choice of p, we have fx0(p) = Fx0(p) and fy0(p) = Fy0(p). Observe that since no
fiber is tangent to C at p, we have Fx0(p), Fy0(p) �= 0, and the curves are irreducible
for all values of c00. The conclusion follows.

c) Let T = c00x0y0 + Fx0(p)x0y1 + Fy0(p)x1y0 be the polynomial defining the pencil of
(1, 1)-curves from (II), and let t(x0, y0) = T (x0, 1, y0, 1). We will now perform a
series of operations on the polynomials f and t to show that there exists a unique
value of c00 such that (Op · C)p > 2 for the curve Op given by the vanishing of the
corresponding polynomial in the pencil.

For two constants k1 and k2, we consider the polynomial P = f − t− k1y0t− k2x0t.
This gives

P = H(3) +
(1

2
fx0x0(p) − k2fx0(p)

)
x2

0

+
(
fx0y0(p) − k1fx0(p) − k2fy0(p) − c00

)
x0y0

+
(1

2
fy0y0(p) − k1fy0(p)

)
y2

0.

If the three coefficients in the above expression vanish, then (T · C)p > 2. This is
the case whenever

k1 =
fy0y0(p)

2fy0(p)
,

k2 =
fx0x0(p)

2fx0(p)
,

c00 = fx0y0(p) − fy0y0(p)fx0(p)

2fy0(p)
− fx0x0(p)fy0(p)

2fx0(p)
.
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By choice of p, we have that fx0x0(p) = Fx0x0(p), fx0y0(p) = Fx0y0(p) and fy0y0(p) =
Fy0y0(p). Hence, the unique curve Op with the property that (Op · C)p > 2 is given
by(

Fx0y0(p) − Fx0x0(p)Fy0(p)

2Fx0(p)
− Fy0y0(p)Fx0(p)

2Fy0(p)

)
x0y0 + Fx0(p)x0y1 + Fy0(p)x1y0 = 0.

Example 4.1.9. Take C to be the (2, 1)-curve V (x0x1y1 + x2
1y0 + x2

0y0). The point
p = (0 : 1; 0 : 1) is smooth on C, and there is a pencil of curves

Tp = V (c00x0y0 + x0y1 + x1y0), c00 ∈ C,

intersecting C at p with (Tp ·C)p ≥ 2. The unique curve Op in this pencil intersecting
C at p with (Op · C)p = 3 > 2, is given by

Op = V (x0y1 + x1y0).

In Figure 4.1, the curve C is visualized in black on P1 × P1 in a neighbourhood of p.
Two curves in the pencil Tp, for c00 ∈ {−1, 1}, having the intersection (Tp · C)p = 2,
are displayed in red, and the curve Op is displayed in white. In the figure, the surface
P1 × P1 is embedded in P3 using the Segre embedding, and we have chosen a suitable
affine covering of P3. The image is made with surfex [32].

Figure 4.1: (1, 1)-curves intersecting a curve at a smooth point non-transversally.
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Corollary 4.1.10. Let p = (A : 1; B : 1) be a smooth point on a curve C = V (F ) of
type (a, b), a, b > 0, such that no fiber is tangent to C at p. Let k be as on p.103. Then
the following hold.

a) There exists a net of (1, 1)-curves intersecting C at p.

b) There exists a pencil of (1, 1)-curves Tp intersecting C at p non-transversally, that
is (Tp · C)p ≥ 2. These curves are given by

cx0y0 +(Fx0(p)−Bc)x0y1 +(Fy0(p)−Ac)x1y0 +(ABc+Fx1(p)+Fy1(p))x1y1 = 0, c ∈ C.

c) If k ≥ 3, there exists a unique (1, 1)-curve Op such that (Op · C)p > 2. This curve
is given by

1∑
i,j=0

(
Fxiyj

(p) − Fxixi
(p)Fyj

(p)

2Fxi
(p)

− Fyjyj
(p)Fxi

(p)

2Fyj
(p)

)
xiyj = 0.

Proof.

a) We can determine one of the coefficients of the general (1, 1)-curve by requiring it
to pass through p.

b) Abusing notation we move p = (0 : 1; 0 : 1) to p = (A : 1; B : 1) by substituting x0

by x0 − Ax1 and y0 by y0 − By1. Moreover, we observe that the partial derivatives
with respect to x0 and y0 evaluated at the respective points do not change under
this translation. In the new coordinates, we have by the Euler relations,

AFx0(p) + Fx1(p) = aF (p) = 0

BFy0(p) + Fy1(p) = bF (p) = 0.

Moving the curves Tp by the mentioned translation and using the Euler relations,
we get the desired expression.

c) This follows using the same strategy as in case (II). Let the constant c = c00 from
case (II) be as in Theorem 4.1.7. Note that by differentiating the Euler relations,
we have the following relations on the second order partial derivatives evaluated at
p = (A : 1; B : 1).

AFx0x0(p) + Fx0x1(p) = (a − 1)Fx0(p)

AFx0x1(p) + Fx1x1(p) = (a − 1)Fx1(p)

AFx0y0(p) + Fx1y0(p) = aFy0(p)

AFx0y1(p) + Fx1y1(p) = aFy1(p)

BFy0y0(p) + Fy0y1(p) = (b − 1)Fy0(p)

BFy0y1(p) + Fy1y1(p) = (b − 1)Fy1(p)

BFx0y0(p) + Fx0y1(p) = bFx0(p)

BFx1y0(p) + Fx1y1(p) = bFx1(p)

Straightforward calculations give the desired symmetry in the defining equation.
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The notion of (1, 1)-curves also triggers the definition of the equivalent on P1 × P1

of an inflection point on P2. We mention this only as a curiosity.

Definition 4.1.11. Let p be a smooth point on a curve C = V (F ) on P1 × P1.

a) The point p is called a flex point of normal type if it is a smooth point that is not
fiber tangential and (Op · C)p > 3.

b) The point p is called a fiber tangential flex point if it is a fiber tangential smooth
point and (T · C)p ≥ 3 for T the tangent (1, 0)- or (0, 1)-curve of C at p.

Example 4.1.12. In Figure 4.2 we show two images of curves on P1 × P1 in a neigh-
bourhood of the point p = (0 : 1; 0 : 1). The first curve is the same as in Example
4.1.9, that is,

Ca = V (x0x1y1 + x2
1y0 + x2

0y0).

The second curve is given by

Cb = V (x0x1y
3
1 + x2

1y0y
2
1 + x2

0y
3
0).

As in Figure 4.1, the curves are visualized in black. The two curves have the same
pencil of tangential (1, 1)-curves at p, Tp = V (c00x0y0 + x0y1 + x1y0), where c00 ∈ C,
and the same unique curve Op = V (x0y1 + x1y0), such that (Op · C)p > 2. For the
first curve, we have (Op · Ca)p = 3. For the second curve, we have (Op · Cb)p = 5,
hence p is a flex point of normal type on Cb. In the images in Figure 4.2, we display a
curve in the pencil in red, here Tp = V (x0y0 + x0y1 + x1y0), and we display the curve
Op = V (x0y1 + x1y0) in white. In the images, the surface P1 × P1 is embedded in P3

using the Segre embedding, and we have chosen a suitable affine covering of P3. The
images are made with surfex [32].

(a) Curve with a smooth point. (b) Curve with a flex point of normal type.

Figure 4.2: (1, 1)-curves intersecting a curve at a smooth point (a) and a flex point of
normal type (b).
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Theorem 4.1.13. A smooth point p = (0 : 1; 0 : 1) on a curve C = V (F ) is a flex
point of normal type if Fx0(p), Fy0(p) �= 0 and

Fx0y2
0
(p) − 2k2c00 − 2k4Fy0(p)

2Fx0(p)
=

Fx2
0y0

(p) − 2k1c00 − 2k3Fx0(p)

2Fy0(p)
,

where
k1 =

Fy0y0 (p)

2Fy0 (p)
, k2 =

Fx0x0 (p)

2Fx0 (p)
,

k3 =
F

y3
0
(p)

6Fy0 (p)
, k4 =

F
x3
0
(p)

6Fx0 (p)
,

c00 = Fx0y0(p) − Fy0y0(p)Fx0(p)

2Fy0(p)
− Fx0x0(p)Fy0(p)

2Fx0(p)
.

Proof. Consider the local polynomials f and t of C and Op. Then we investigate the
polynomial P = f − t − k1ty0 − k2tx0 − k3ty

2
0 − k4tx

2
0 − k5tx0y0. With k1, k2 and c00

as in the proof of Theorem 4.1.7, we get

P = H(4) +
(1

6
fx3

0
(p) − k4fx0(p)

)
x3

0

+
(1

2
fx2

0y0
(p) − k2c00 − k4fy0(p) − k5fx0(p)

)
x2

0y0

+
(1

2
fx0y2

0
(p) − k1c00 − k3fx0(p) − k5fy0(p)

)
x0y

2
0

+
(1

6
fy3

0
(p) − k3fy0(p)

)
y3

0.

If the four coefficients in the above expression vanish, then (T · C)p > 3. This is
the case whenever

c00 = fx0y0(p) − fy0y0(p)fx0(p)

2fy0(p)
− fx0x0(p)fy0(p)

2fx0(p)
,

k1 =
Fy0y0 (p)

2Fy0 (p)
, k2 =

Fx0x0 (p)

2Fx0 (p)
,

k3 =
F

y3
0
(p)

6Fy0 (p)
, k4 =

F
x3
0
(p)

6Fx0 (p)
,

k5 =
Fx2

0y0
(p) − 2k2c00 − 2k4Fy0(p)

2Fx0(p)
=

Fx0y2
0
(p) − 2k1c00 − 2k3Fx0(p)

2Fy0(p)
.

Hence, the point p is a flex point whenever such a k5 exists.

Theorem 4.1.14. Let p be a cusp of multiplicity m on a reduced and irreducible curve
C = V (F ) of type (a, b) on P1×P1 such that the fibers are not tangent to C at p. Then
there exists a pencil of (1, 1)-curves Tp such that (Tp · C)p > m.

Proof. We move p to (0 : 1; 0 : 1) and observe that F has affine defining polynomial
that can be written

f(x0, y0) = (d01x0 + d10y0)
m + H(m + 1)
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for some d01, d10 ∈ C∗. The (1, 1)-curves intersecting C at p non-transversally, so that
(Tp · C)p > m, must be on the form

dx0y0 + d01x0y1 + d10x1y0 = 0, d ∈ C.

Example 4.1.15. As an example, consider the (3, 2)-curve

C = V (x2
0x1y

2
1 + 2x0x

2
1y0y1 + x3

1y
2
0 + x3

0y
2
1).

This curve has an ordinary cusp at the point p = (0 : 1; 0 : 1), and it can be visualized as
the black curve in Figure 4.3. A pencil of (1, 1)-curves intersecting C non-transversally
at p is given by

Tp = V (dx0y0 + x0y1 + x1y0), d ∈ C.

In Figure 4.3, elements of this pencil are displayed in white for d ∈ {−0.5, 0, 0.5}. In
the figure, the surface P1 × P1 is embedded in P3 using the Segre embedding, and we
have chosen a suitable affine covering of P3. The image is made with surfex [32].

Figure 4.3: A pencil of (1, 1)-curves intersecting a curve at a cusp non-transversally.

Theorem 4.1.16. Let p and q be two cusps on a reduced and irreducible curve C =
V (F ) of type (a, b) on P1 × P1, and let p and q have multiplicity sequences mp =
[mp

0, m
p
1, . . .] and mq = [mq

0, m
q
1, . . .] respectively. Then

mp
0 + mp

1 + mq
0 ≤ a + b.
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Proof. By Theorem 4.1.14 there is a pencil of (1, 1)-curves Tp through p that each
intersects C with intersection multiplicity (Tp · C)p > mp

0. By Lemma 1.1.14, we have
(Tp · C)p ≥ mp

0 + mp
1. If p is moved to (0 : 1; 0 : 1), this pencil is given by

dx0y0 + d01x0y1 + d10x1y0 = 0, d ∈ C,

with d01 and d10 as in the proof of Theorem 4.1.14. Requiring that the (1, 1)-curve
should pass through q, determines the coefficient d, hence a curve Op,q uniquely. We
have (Op,q · C)q ≥ mq

0. The result then follows from Proposition 1.1.2.

4.2 More on rational cuspidal curves

In this section we present some rational cuspidal curves on P1 × P1 in addition to the
ones presented in Chapter 3. First we consider curves of low bidegree, and then we
look at curves that can be constructed from a local parametrization.

4.2.1 Low bidegree

Let C be a curve on P1 ×P1 of type (a, b), and by symmetry we may let a ≤ b. With a
fairly low, the search for cuspidal curves is quite easy since the multiplicity is restricted
by min{a, b} and because of Hurwitz’s theorem and the genus formula. For a = 1, the
quest stops immediately, since a rational curve of type (1, b) must be nonsingular for
all b ≥ 1.

Moving on to curves C of type (2, b) we get that the multiplicity of any cusp can
not exceed 2. From Hurwitz’s theorem we get that C can have at most two cusps. This
leaves us with the following list of possible cuspidal configurations for curves of type
(2, b) for b ≤ 6.

Type Cuspidal configuration # Cusps

(2, 2) [2] 1

(2, 3)
[22] 1

[2], [2] 2

(2, 4)
[23] 1

[22], [2] 2

(2, 5)

[24] 1

[23], [2] 2

[22], [22] 2

(2, 6)

[25] 1

[24], [2] 2

[23], [22] 2

Table 4.1: Rational cuspidal curves on P1 × P1 of type (2, b) for b ≤ 6.
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Table 4.1 can be extended in a natural way with curves of type (2, b) with either just one
cusp with multiplicity sequence [2b−1] or exactly two cusps with multiplicity sequences
[2k], [2l], where k + l = b − 1.

Theorem 4.2.1. For every b ≥ 2 there exists a rational cuspidal curve C on P1×P1 of
type (2, b) with one cusp and cuspidal configuration [2b−1]. For every b ≥ 3 there addi-
tionally exist � b−1

2
� rational cuspidal curves with two cusps and cuspidal configuration

[2k], [2l], where k + l = b−1. Moreover, these curves can be constructed from the series
of plane rational cuspidal curves of degree d with three cusps and largest multiplicity
d − 2 using a birational transformation from P2 to P1 × P1.

Proof. The existence follows from the construction. From Chapter 2 we know that for
every d ≥ 4 there exists a series of plane rational cuspidal curves of degree d with three
cusps and cuspidal configuration [d − 2], [2m], [2n], where m + n = d − 2.

We first construct the unicuspidal curves. Let Ĉ be the plane tricuspidal curve of
degree d as described above, with n = 1 and m = d − 3. Then blowing up the two
cusps with multiplicity sequences [d−2] and [2] and contracting the line between them
gives a curve C on P1 × P1 of type (2, d − 2) with one cusp with multiplicity sequence
[2d−3]. Letting b = d − 2, we have the result.

We now construct the bicuspidal curves. Let Ĉ be the plane tricuspidal curve of
degree d with cuspidal configuration [d−2], [2m], [2n], where m, n ≥ 1 and n+m = d−2.
The tangent line to Ĉ at the cusp with multiplicity sequence [d − 2] intersects the
curve in the cusp, say p, and in one smooth point, say r. Applying the birational
transformation from P2 to P1×P1 that blows up p and r and contracts the line between
them, we get a curve C on P1×P1. C is a rational cuspidal curve of type (2, d−1) and
has two cusps with multiplicity sequences [2m] and [2n], m, n ≥ 1 and n + m = d − 2.
Letting b = d − 1, k = m, and l = n, we have the result. The number of different
cuspidal configurations can easily be counted for each b.

Letting a = 3, we get a lot more curves. However, the multiplicity of a cusp
can not exceed 3, and by Hurwitz’s theorem, we can maximally have four cusps with
multiplicity 2 on such a curve. The below tables lists the curves of type (3, 3) and
(3, 4).

Type Cuspidal configuration # Cusps

(3, 3)

[3, 2] 1

[24] 1

[23], [2] 2

[22], [22] 2

[3], [2] 2

[22], [2], [2] 3

[2], [2], [2], [2] 4

Table 4.2: Rational cuspidal curves on P1 × P1 of type (3, 3).
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Type Cuspidal configuration # Cusps

(3, 4)

[32] 1

[3], [3] 2

[3, 2], [22] 2

[32], [2], [2] 3

[3], [22], [2] 3

[26] 1

[25], [2] 2

[24], [22] 2

[23], [23] 2

[24], [2], [2] 3

[23], [22], [2] 3

[22], [22], [22] 3

[23], [2], [2], [2] 4

[22], [22], [2], [2] 4

Table 4.3: Rational cuspidal curves on P1 × P1 of type (3, 4).

Note that the curves in Table 4.2 and Table 4.3 all exist. The curves can be constructed
using birational transformations from P2 to P1 × P1 of for example plane rational
cuspidal curves of degree 4 or 5, see Chapter 3.

Letting a = 4, we quickly loose control over the list of possible curves of type
(4, b) and their cuspidal configurations. Already for b = 4, finding the list of cuspidal
configurations of existing rational cuspidal curves is hard. We are not even able to
construct all the curves in the list of curves with four or more cusps. In fact, using
the bounds on the multiplicity sequences, the genus formula and Hurwitz’s theorem,
the list of possible rational cuspidal curves of type (4, 4) with four or more cusps
counts 26 curves. We have found only one of them, its cuspidal configuration being
[3, 2], [23], [2], [2]. As discussed in Chapter 3, we do not expect that any of the other 25
curves exist.

It is possible to exclude some of the curves from the list of rational fourcuspidal
curves on P1×P1 of type (4, 4) using a birational transformation from P1×P1 to P2 and
showing that the curve reached on P2 does not exist. A problem with this approach
is that, in general, the curves reached on P2 will be hard to exclude because the
singularities on them can be quite complex, and the degrees of the curves in question can
be quite high. Moreover, there can be a certain ambiguity concerning fiber tangential
properties of the cusps, further complicating the picture. As an example we can,
however, exclude one of the cuspidal configurations appearing in the mentioned list.

Example 4.2.2. Assume that C is a curve on P1 × P1 of type (4, 4) with cuspidal
configuration [4], [2], [2], [2]. Blowing up at the cusp with multiplicity sequence [4], we
get a curve C1 of type (0, 4) on F1 that does not intersect the special section. Moreover,
there is a smooth point p1 on C1, and a fiber L1 on F1, such that L1 intersects C1 in the
following way, L1 ·C1 = 4p1. Contracting the special section on F1, the strict transform
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of C1 is a curve C̃ on P2 of degree 4 with three ordinary cusps and an inflection point.
This curve would contradict the inflection point formula in Theorem 2.1.8, thus C does
not exist.

4.2.2 Bicuspidal curves from local parametrization

As a final curiosity we observe that we have bicuspidal curves on P1 × P1 with local
parametrization on the following form,

(x(t) : 1; y(t) : 1),

x(t) = tm,

y(t) = tr +
n−1∑
i=0

ait
αim + ant

αnm,

where r, m ∈ N, with r > m and gcd(m, r) = 1, the coefficients ai ∈ C, and the
exponents αi ∈ N.

Bihomogenizing, we find that these curves of type (m, αnm) have two cusps with
Puiseux pairs (m, r) and (m, 2αnm − r) respectively. The multiplicity sequences may
be calculated from the Puiseux pairs using the Enriques–Chisini algorithm, see [4,
Theorem 12, p.516].
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Part II

Segre classes on toric varieties
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Appendix B

The toricSegreClass algorithm

We include the implementation in Macaulay2 and Sage of the toricSegreClass al-
gorithm used in Chapter 5 to compute Segre classes of closed subschemes of toric
varieties.

B.1 M2 part of the algorithm

-- TORIC SEGRE CLASS VERSION 1.0

needsPackage "FourierMotzkin";
needsPackage "NormalToricVarieties";

-- Correction of nef method, so that returned nef cone depends on specified basis

nef NormalToricVariety := List => X ->
(

if not isComplete X then return false
else
(

n := #rays X;
A := transpose matrix degrees ring X;
outer := 0 * A_{0};
for s in max X do
(

sc := select(n, i -> not member(i,s));
outer = outer | (fourierMotzkin A_sc)#0;

);
return ((fourierMotzkin outer)#0)^{0..(n-dim X-1)};

);
);

-- INPUT: Two positive integers, m and l
-- OUTPUT: A list of lists, corresponding to all possible ways
-- to write m as a a length l sum of non-negative integers

listings = (m,l) -> if l == 1 then return {{m}} else
(

poss := {};
for i from 0 to m do
(
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for p in listings(m-i,l-1) do
(

poss = append(poss,append(p,i));
);

);
return poss;

);

-- INPUT: A toric variety X and an ideal I in its Cox ring
-- OUTPUT: An admissible multidegree, two help lists

toricSegreClass = (X, I) ->
(

-- Setup
S = ring X;
B = ideal X;
r = length rays X;
k = dim X;
nefCone = nef X;

gensI = flatten entries sort gens I;
degs = degrees I;
len = length degs;

-- Find admissible multidegree, i.e., apex of the
-- admissible cone
P = convexHull(transpose matrix {degs_0}, nefCone);

for i from 1 to (len-1) do
(

P = intersection(P, convexHull(transpose matrix {degs_i}, nefCone));
);
temp = flatten entries transpose vertices P;

degAlpha = {};
for i from 0 to (length temp -1) do
(

degAlpha = append(degAlpha, floor temp_i);
);

-- Create random variables in I of admissible multidegree
f = for i from 1 to k list sum(gensI, g -> g * random(degAlpha - degree g, S));

-- Create residual schemes
for d from 1 to k do
(

J_d = saturate(ideal(take(f,d)),B);
R_d = saturate(J_d, I);

);

for i from 0 to r-1 do
(

deg_i = degree x_i;
);
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gammaLists = {};
integerLists = {};

-- Find degrees of intersections of the R_d with
-- monomials in torus-invariant divisors...
for d from 1 to k do
(

currentGammaList = {};

currentIntegerList = listings(k-d,r);

for p in currentIntegerList do
(

-- Intersect residual scheme with monomial in torus-
-- invariant divisors determined by p
K = R_d;
for i from 0 to r-1 do
(

for j from 0 to (p#i)-1 do
(

K = K + ideal random(deg_i, S);
);

);

-- Add degree of intersection to list of degrees
currentGammaList = append(currentGammaList,

multidegree saturate(K,B));
);

gammaLists = append(gammaLists, currentGammaList);
integerLists = append(integerLists, currentIntegerList);

);

-- Return everything (user should manually input this in Sage)
return (degAlpha, integerLists, gammaLists);

);

B.2 Sage part of the algorithm

# TORIC SEGRE CLASS VERSION 1.0

# INPUT: A toric divisor div, an integer m
# OUTPUT: A Chow cycle corresponding to intersecting
# the divisor m-1 times with itself

def intDiv(div, m):
if m == 1:

return div.Chow_cycle()
else:

return intDiv(div,m-1).intersection_with_divisor(div)

# INPUT: A Chow cycle, a divisor div, an integer m
# OUTPUT: A Chow cycle, the original cycle intersected with div m times
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def intCycleDiv(cycle, div, m):
if m == 1:

return cycle.intersection_with_divisor(div)
else:

return intCycleDiv(cycle, div, m-1).intersection_with_divisor(div)

# INPUT: The fan of a toric variety X, an ideal in its Cox ring,
# an admissible multidegree, two lists returned from the M2 part
# OUTPUT: The Segre class of the subscheme defined by I,
# expressed in the Chow ring of X

def toricSegreClass(fan, I, degAlpha, integerLists, gammaLists):
# Setup

X = ToricVariety(fan)
k = X.dimension()

S = X.coordinate_ring()
X.inject_variables()
Z = X.subscheme(I)
n = Z.dimension()

A = X.Chow_group()
r = S.ngens()
D = X.toric_divisor_group().gens()

residualClasses = []

# Compute residual classes R_d by solving equations
for d in range(k-n, k+1):

# Collect Chow ring generators of correct degree
generators = A.gens(degree = k-d)
l = len(generators)

# Initialize equation and variable lists
eqns = []
v = list(var(’v_%d’ % i) for i in range(0,l))

currI = len(integerLists[d-1])

# Consider all possible intersections of Chow generators
# with monomials in the torus-invariant divisors
for counter in range(0, currI):

p = integerLists[d-1][counter]
betaList = []
for b in generators:

cycle = b
for i in range(0,r):

for j in range(1,p[i]+1):
cycle = cycle.intersection_with_divisor(D[i])

# Add degree of resulting cycle to list of betas
betaList.append(cycle.count_points())

currentGamma = gammaLists[d-1][counter]
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# Create equations
eq = betaList[0]*v[0]

if (l > 1):
for i in range(1, l):

eq = eq + betaList[i]*v[i]

# Add new equation to list of equations
eqns.append(eq == currentGamma)

# Solve equations (test cases required for proper formatting)
if (len(eqns) == 1):

if (len(v) == 1):
c = [solve(eqns, v[0])]

else:
c = [solve(eqns, v)]

else:
if (len(v) == 1):

c = solve(eqns, v[0])
else:

c = solve(eqns, v)

a = []
for i in range(0,len(c[0])):

# Convert symbolic solution to integer and add to list a
a.append(ZZ(c[0][i].rhs()))

# Create and append the new residual class
Rd = sum (a[i]*generators[i] for i in range(0,l))
residualClasses.append(Rd)

# Find (components of) Segre class using
# the residual intersection formula
s = []
alpha = degAlpha[0]*D[0]

for i in range(1,len(degAlpha)):
alpha = alpha + degAlpha[i]*D[i]

s.append(intDiv(alpha,k-n) + (-1)*residualClasses[0])

for i in range(1,n+1):
temp = 0
for j in range(0,i):

temp = temp + binomial(i+k-n,i-j)*intCycleDiv(s[j],alpha,i-j)

s.append(intDiv(alpha,i+k-n) + (-1)*residualClasses[i] + (-1)*temp)

return sum (s[i] for i in range(0,n+1))
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