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Introduction 

Gyrodactylus is a genus of ectoparasitic platyhelmiths within the class Monogenea that 

parasitizes fish externally on different parts of the host (Malmberg 1993). The gyrodactylus 

genus has been known for over 180 years and was described by von Nordmann (1832) 

(Bakke et al. 2007). These parasites are non swimming, free floating flukes in the water, 

attaching themselves to suitable hosts when they come in contact with it. They are 

furthermore unique in the light of having no specific transmission stage, but rather four 

major methods of transmission between hosts: (1) random contact between an uninfected 

and an infected host, (2) uninfected host comes in contact with detached parasites on the 

substrate, (3) uninfected host comes in contact with infected dead host, (4) uninfected host 

comes in contact with detached parasites drifting in the water column (Bakke et al. 1992: 

Soleng et al. 1999).  

These flatworms are among the smallest monogeneans and possess a fusiform body bearing 

a posterior opisthaptor with marginal hooks and two anterior cephalic processes with 

adhesive glands and spiked sensilla for attachment and sensing the surroundings (Bakke et 

al. 2007). The primary mode of attachment is the posterior opisthaptor armed with 16 

peripheral marginal hooks possessing articulated blades, which is capable of considerable 

mobility as each hook has the potential to move independently from the others. This enables 

the gyrodatylids to attach themselves firmly to the surface of the fish host and stay put, and 

represent the major mode of attachment in most gyrodactylids in existence today (Bakke et 

al. 2007). The gyrodactylids also show a variance in site specificity on the host body, where 

some species show a marked specificity, whereas others do not. The majority infects the fins 

and the skin, and some are shown to prefer attachment on and around the gills (Bakke et al. 

2007).    

When these gyrodactylid flawtorms feed, they position themselves so the anterior end lies 

flat with the host epidermis and use the opisthaptor to firmly stay in place. Then the pharynx 

is extended onto the epidermis and a slight pumping motion commences as it feeds on the 

epidermic cells while minimizing the damage to the host epithelium (Bakke et al. 2007). In 

spite of having a feeding behavior selected for minimizing skin damage, the feeding may still 

create small lesions or feeding pits in the skin of the host made by the pharynx (Harris 1982: 



Cable et al. 2002), and/or by the marginal hooks digging into the epidermis of the host, 

which again may lead to secondary bacterial or fungal infections in the skin (Malmberg & 

Malmberg 1993). Such infections may be seen as negligible when the burden of a 

gyrodactylid infection is small, but when the amount of parasites reaches high numbers, 

particularly on susceptible hosts, the outcome of these small bacterial or fungal infections 

may prove significantly harmful, and in many cases deadly (Shäperclaus 1991: Malmberg 

1993). Another source of harm to the host due to lesions in the skin comes from the 

potential loss of osmoregulatory abilities, where the small tears, if numerous enough, can 

cause the host to lose body fluids and electrolytes to the environment causing potential 

death in the event of a severe enough parasite infection (Pettersen et al. 2012).    

Furthermore, gyrodactylids are also unique in that the genus contains multiple viviparous 

species, as well as oviparous species which possess a reproductive system similar to that of 

most other monogeneans. Viviparous gyrodactylids are also found to be highly progenetic, 

being able to reproduce early in life. This combination makes these gyrodactylids some of 

the most successful parasites within the monogeneans (Bakke et al. 2007), in that they can 

reproduce at a very young age, and the time from birth to first reproduction is very short. 

This population dynamic resembles that of microparasites more than the typical population 

dynamic of their fellow parasitic helmiths (Anderson & May 1979: Cable & Harris 2002). 

This kind of reproduction follows a highly specific pattern, where the first daughter always 

arises asexually, and following daughters arises only days later from oocytes that enter the 

uterus after the previous daughter has been born (Cable & Harris 2002). The viviparous 

gyrodactylids are furthermore protogynous hemaphrodites where the female reproductive 

system matures before the male, who develops its reproductive system only after the first 

asexual birth (Bakke et al. 2007).  

Another astounding feature of reproduction in viviparous gyrodactylids is that before the 

first daughter is born, a second embryo develops within the daughter in utero like a “Russian 

doll” (Fig 1) (Cable & Harris 2002). This adaptation allows gyrodactylids to have the potential 

for an especially explosive and rapid population growth, which help to make it an especially 

effective and potentially devastating parasite capable of rapid colonization of its host 

species.  



 

Figure 1: Gravid G.salaris, showing the fully developed embryo, with its own embryo. Photograph from 
Bakke et al. 2007. 

 

It is also these adaptations that have made the gyrodactylids able to radiate with such 

success, infecting teleosts, amphibians, and cephalopods in a variety of different 

environments (Bakke et al. 1992: Cable & Harris 2002). Because of this astounding ability to 

adapt to new hosts, the gyrodacylids are now one of the richest genera of species in the 

lower monogenea, with over 400 potentially valid species on nearly as many hosts, 

something that may very well indicate a significantly higher number of gyrodactylid species 

in regard to the amount of fish species in existence (Harris et al. 2004). As there currently are 

some ~25 000 teleost species, the actual number of the hyperviviparous gyrodactylus 

species are thought to be in the range of 23 000 (Bakke et al. 2002). The high number of 

actual and potential hosts for these flatworms are in large part due to the fact that 

gyrodactylids show a high degree of host specificity, where a staggering 73.7% of 319 species 

studied by Bakke et al. (1992) only existed on single hosts, and a mere 4.1% on more than 

four host species (Bakke et al. 1992: Bakke et al. 2002). This high degree of host specificity in 

gyrodactylids may very well owe to the two major forms of speciation normally found in 

parasites.  

The first one is co-evolution with the host, where gradual divergence of the host species can 

lead to isolation and thereby create a new species of parasite adapted only to one, or a few 

different host species. The second method of speciation entails host switching from one host 

species to another, unrelated, species in the same habitat called ecological transfer or host 

switching. 

 As many gyrodactylids possess a very short generation time and hyperviviparity, they are 

thought to be ideal for such a mechanism as host switching (Cable & Harris 2002). 

Furthermore, these modes of speciation in gyrodactylid flatworms are assumed to have 



been facilitated in significant degree by Pleistocene glaciation events in northern Europe, 

where host switching and/or co-evolution is thought to have occurred by respectively 

species mixing and/or species isolation in relatively small ice-free refugia which is thought to 

have forced association between parasite and host. The fact that teleost species with a 

relatively wider distribution, and therefore more likely to be present in a larger number of 

refugia during the Pleistocene ice-age, like the minnow, Phoxinus phoxinus, today is infected 

by no less than 14 gyrodactylid species from 7 families, lends support to this hypothesis 

(Bakke et al. 2002).   

However, there are some taxonomic uncertainties hailing from the fact that gyrodactylid 

morphology is quite conserved, with features such as body plan being highly simplified 

causing taxonomic and phylogenetic identification of species to be difficult (Cable et al. 

1999). This makes the biological species concept as well as the morphological species 

concept (Mayr 1963) extremely difficult to use, when trying to distinguish separate species 

within the gyrodactylus genus because of the use of asexual reproduction and extremely 

similar morphology. The morphological features traditionally used for differentiating 

gyrodactylus species, the attachment hooks, comprising of dorsal bars, ventral bars, hamuli 

and marginal hooks, possess so minute differences between species that separating them 

with significant certainty is no easy matter (Shinn et al. 1996). It has been suggested by 

multiple authors that the use of sensory structures could be a valid alternative for 

taxonomically determining species (Bakke et al. 2007), but the traditional use of attachment 

structures coupled with modern statistical methods, like multivariate analysis, makes it 

possible to study morphometric variables in taxonomically close species with more certainty 

(Shinn et al. 1996).  

 

Gyrodactylus salaris 

Within this genus of Gyrodactylus, the hypervivparous species Gyrodactylus salaris (Fig1) has 

shown to be a epidemic on East Atlantic salmon, Salmo Salar, in northern Europe, especially 

Norway (Bakke et al. 2004). The species was first described by Malmberg in 1957 from fins 

and skin of salmon in a hatchery in Sweden (Johnsen & Jensen 1986). By 1975, the parasite 

had spread westward to Norway and was detected at what is now the Institute for 



Aquaculture in Sunndalsøra (Johnsen 1978: Hansen et al. 2003). As initial research on the 

parasite was quite slow, the parasite continued to spread, mainly through introduction from 

Sunndalsøra, to other rivers by different means, and by 1995 the parasite had spread to a 

variety of locations within Norway (Bakke et al. 2007). During the next decade, G.salaris had 

been observed in as many as 46 rivers (10 % of the rivers in Norway) and 39 salmon farms, of 

which, by 2007, about 20 rivers remained infected despite 20 years of combating the 

spreading (Bakke et al 2007). So where did this flatworm currently wrecking havoc on 

Norwegian salmon populations come from? The consensus is that the parasite was 

introduced into Norway and to the east Atlantic stocks of salmon, from the Baltic region. 

Baltic stocks of salmon seem to be relatively resistant to G.salaris, unlike stocks from Norway 

which when tested were highly susceptible (Bakke et al., 1990, 2007). These experiments 

originally compared salmon stocks from the river Neva in Russia with Norwegian stocks from 

the rivers Alta and Lone, respectively in northern and western Norway (Bakke et al 1990). 

 

Figure 2: Attached G.salaris attached to a host. Photograph obtained from www.fluefiske.net 

 

This kind of introduction of an evasive species into an ecosystem that has no evolutionary 

history with the “invaders” often causes exponential population growth and subsequently 

severe damage to the ecosystem in question. As with the invasion of G. salaris in Norway, 

there are widespread examples of such occurrences worldwide, like the Brown Tree Snake in 

Guam, the Caulerpa Seaweed in the Mediterranean, or the Rosy Wolfsnail on islands in the 

Pacific and Indian Ocean (Lowe et al. 2000). 

 



The economic implications for such a devastating fish parasite on Norwegian salmon is no 

less than profound, and it is estimated that G.salaris causes economic losses of about 200-

250 million Norwegian Kroner (NOK) annually (www.lakseelver.no). The parasite has 

exterminated the salmon population in multiple Norwegian rivers and severely reduced the 

density in others (Bakke et al. 2007). Per 2007, the annual loss of salmon was estimated to 

have reached a staggering 250-500 tons, and the methods of controlling the spread of the 

epidemic using the poison rotenone (C23H22O6) or acidified aluminium, have proven 

unsuccessful in many cases where the parasite can reappear, even though this types of 

treatments kill everything living in the stretches of river where it is administered. Another 

economic drain due to the G.salaris parasite lies in the cost of these treatments, adding to 

the total cost due to this parasitic invader (Bakke et al. 2007).   

G.salaris, as with multiple other species of hyperviviparous, progenetic gyrodactylid 

flatworms, are furthermore not necessarily restricted to live on only one host species such as 

the east Atlantic salmon in Norway, but has the ability to infect a range of other teleost 

species as well, something that may have played an important role in the spreading of the 

parasite throughout Norwegian rivers.  

G.salaris in Norway have been shown to use both anadromous and resident Arctic charr, 

Salvelinus alpinus, as a host in absence of salmon, with varying effect on mortality within 

populations, sometimes causing mortality and in other instances existing in very limited 

numbers on the hosts (Bakke et al. 1996, Winger et al. 2008, Kristoffersen et al 2005). 

G.salaris may also infect Brown Trout, Salmo Trutta, (Jansen & Bakke 1995). Although the 

Brown Trout shows low susceptibility and innate resistance to G.salaris growth and 

reproduction, it still serves as a possible dispersal tool rather than host species to the 

parasite, facilitating transport to other suitable hosts.  

Rainbow trout, Onrorhynchus mykiss, have also been shown to be somewhat susceptible 

G.salaris infections (Jørgensen et al. 2007), and is thought to be the main long distance 

transport host for the parasite, proving important for the spreading of G.salaris (Bakke et al. 

1992). Other such temporary “transport hosts” that coexist with salmon include lampreys, 

roach, perch minnow, flounder, stickleback and eel (Bakke et al. 2001). 

http://www.lakseelver.no/


The difference observed in susceptibility between east Atlantic and Baltic stocks of salmon 

to G.salaris has shown to be quite profound although the two stocks of salmon are 

geographically close.  Bakke et al. (1990), showed a significant difference in susceptibility to 

infection by comparing salmon stocks from river Neva in Russia with Norwegian stocks from 

river Alta and Lone, respectively in northern and western Norway, where the Norwegian 

stocks showed little resistance to infection compared with Baltic salmon, which were able to 

eliminate the infection after some time. Also, G.salaris placed on salmon from the 

Norwegian rivers of Lierelva and river Alta have shown a higher fecundity and lower 

mortality compared to the same strain of G.salaris on salmon from the Baltic Neva stock. 

Here, the parasites gave birth significantly faster on the Norwegian stocks (2.3 days after 

infection in the Baltic stock compared to 1.8 days) in addition to only giving birth twice while 

on the Baltic salmon, compared to third and fourth births on the Norwegian stocks (Cable et 

al. 2000). Experiments on Finnish salmon, being part of the Baltic stocks, also seem to show 

an innate resistance, or at least significantly less susceptibility, to G.salaris infections 

compared to east Atlantic stocks in Norway, lending further support to this pattern of 

different susceptibility between Baltic and east Atlantic salmon (Rentamaki-Kinnunen & 

Valtonen 1996). During the course of experimental G.salaris infections on these stocks of 

salmon, one particular common pattern seems to stand out.  

In a report ordered by the Norwegian Institute for Water Research (www.niva.no), Bakke et 

al. showed that the intensity and growth of infection on both the Baltic Neva stock, and the 

east Atlantic Lone and Alta stocks of salmon, looks to have a somewhat similar trajectory 

during the first few weeks. After this initial period though, the infection on the east Atlantic 

stocks wound take off exponentially, while the infections on the Baltic stocks were kept 

under control and eventually declined to the point of elimination (Bakke et al. 1990). This 

lends further support to an innate resistance within the Baltic stocks of salmon, which makes 

them able to control infections and coexist with the parasite.  

In addition to Norwegian stocks of east Atlantic salmon, other stocks located further west, 

like the Scottish salmon, also show a generally high susceptibility to G.salaris (Bakke & 

MacKenzie 1993).  

 

http://www.niva.no/


However, there are some deviations from the paradigm of differing susceptibility. Hybrids of 

susceptible salmon and innately resistant brown trout, which co-exist naturally in coastal 

rivers, have been tested in the lab, showing individuals possessing an intermediate 

susceptibility to G.salaris. This further indicates a genetic component for susceptibility to 

G.salaris in salmon (Bakke et al. 1999).  

Furthermore, salmon from the Swedish river Indalselv were found to be almost as 

susceptible to infection from a Norwegian strain of G.salaris, as the Norwegian salmon 

stocks. Apart from a few individuals in the experiment, the Swedish indalselv stock showed a 

susceptibility to Norwegian strain of G.salaris similar to some of the highly susceptible east 

Atlantic stocks (Bakke et al. 2004).  

 

Host-Parasite Dynamic 

Even though most east Atlantic salmon stocks show high susceptibility to G.salaris, and are 

generally unable to control or mount any significant response to an infection, A few 

individuals apparently have the capability respond and control infections, if they survive the 

initial exponential growth of the parasite population. According to Bakke et al. (2004), 

salmon from the Norwegian river Lierelva in south eastern Norway seemed to be somewhat 

able to control the infection at the end of their experiment, indicating that some Norwegian 

salmon may mount some sort of a response to infection after all. The experiments on 

Scottish salmon by Bakke & MacKenzie (1993), also show that a very few individuals have 

the ability to survive the initial exponential growth of infection and control their parasite 

burden. 

This dynamic of a gyrodactylid population being controlled on a host has been studied in 

length by Lester & Adams (1974), which investigated factors controlling the rise and fall in 

parasite number on the host, not including environmental factors, which had been widely 

relied upon until then. Rather, the rates of reproduction and mortality of the parasite while 

on the host, mortality and reattachment while off the host, and the rate of parasite shedding 

by the host were investigated. In their experiments using Gyrodactylus alexanderi on three-

spined sticklebacks, Gasterosteus aculeatus, the population dynamics of gyrodactylid growth 



on isolated fish showed a clear trend of infected fish shedding their infections, if they 

survived for around the first 2 weeks of infection. Those who did not, died from osmotic 

stress when the parasite burden reached about 150-400 parasites, the stress being 

hypothesized to hinder any response from the host. The ones that mounted a response by 

shedding their infections, showed a loss of susceptibility to further infections if they retained 

a few parasites after responding, while those fish that had shed all parasites got re-infected 

and started the cycle over again. The experiments also showed that parasites were lost by 

the shedding of the cuticle by the host, thought to be a possible mechanism of the response 

to infection at least in the species studied. This experiment sheds light on how population 

growth of gyrodactylids can be controlled by the host after an amount of time has passed, 

given they survive the initial couple of weeks of infection, and the infection does not become 

too big so that the stress experienced hinders a response. 

Furthermore, Anderson & Scott (1984) showed that without any addition of new, previously 

uninfected, and therefore susceptible hosts to a population of fish infected by gyrodactylids, 

the host population has the ability to control and eliminate infection. This free-running 

experiment was carried out using Gyrodactylus bullatarudis Turnbull 1956, on the guppy 

Poecilia reticulata Peters, and lends support to the trend of successful control of infection 

given that the hosts survive the initial time period. Once the individuals that became too 

heavily infected died, the rest of the population, having mounted a response, eliminated the 

parasites altogether. Also, the fact that some hosts die, while others survive, lends more 

support to the presence of a genetic factor influencing resistance, not just previous 

exposure.  

The parasite-host interaction shown in these experiments, paints a picture of a possible 

mechanism of time-dependence in host response, where the control of a gyrodactylid 

infection is induced after an amount of time has passed post infection. Along with this 

possible factor of host response, density-dependence of response to the parasite burden, 

where the host starts responding to infection when the parasite population reaches a certain 

density, could also be thought of as a possible cue for host response.  However, density-

dependence in hosts to gyrodactylids is poorly studied and there is currently no consensus 

on it. If such a density-dependence exists, the growth rate of the parasite population will 



have a significant negative relationship with the increase in parasite burden, or possibly a 

threshold of the size of the infection.     

In my thesis, I therefore aim to investigate whether the parasite growth rates in east Atlantic 

salmon could show evidence of density dependence, time-dependence, or both. I will also 

investigate if any of these mechanisms for parasite population growth, given their existence, 

could be linked to host response to-, and subsequent control of infection on east Atlantic 

stocks of salmon viewed highly susceptible by the classic paradigm. In order to do so, i have 

re-analyzed data from infection experiments done over the last 20 years on different stocks 

of both Norwegian and Scottish salmon, both viewed as highly susceptible. In addition, i use 

data from my own experiments done in the past 2 years. For comparison, i use data from the 

same type of experiments on the generally resistant stocks of Baltic salmon from river Neva 

in Russia and river Indalselv in Sweden.         

 

 

Materials & Methods 

For an overview of datasets used, see table 1, and for geographical overview of rivers, see 

figure 3 and 4. The different datasets used have furthermore been given short names based 

on location and replicate number for increased simplicity when plotted. These origin of the 

datasets used in the current study in addition to my own, which can be found in the 

Appendix, are listed in table 1   

 

Atlantic host stocks: 

From northern Norway, I used data from three experiments done on fish from river Alta 

(Cable et al. 2000, Bakke et al. 1999) which is located in the lower part of the Alta-

Kautokeino watercourse, emptying out in the Altafjord in the western part of Finnmark 

county.  



From western Norway, I used a dataset on salmon from Batnfjord (unpublished, Bakke et al. 

2001, Fig.6) which is located in Møre og Romsdal county. The river runs from the lake 

Botnvatnet and empties out in the Batnfjord.  

From southeastern Norway, i used two datasets each from Lierelva salmon (Bakke & 

MacKenzie 1993, unpublished, Bakke et al. 2001, Fig.7)  and river Numedalslågen. The 

Lierelva river is located in Buskerud county and runs from Sylling village in the north, down 

to the Drammensfjord in the south where it empties out. The river Numedalslågen runs 

through Buskerud and Vestfold county. It starts at the Hardanger plateau and empties out in 

the Skagerrak Sea in the town of Larvik, Vestfold about 250 km away.  

From southwestern Norway, i used one dataset from salmon in the collected from the 

Aquatic Research Station Ims (unpublished, Bakke et al 2001, Fig.14), a part of the 

Norwegian institute for Nature Research, near the city of Stavanger in Rogaland county.  

From Scotland, I used two datasets. One from an experiment done on salmon in the river 

Conon and one of salmon from the river Shin (Bakke & MacKenzie 1993). River Conon is 

located in the Highlands of Scotland, starting in Loch Luichart, emptying out in the North 

Sea. River Shin starts in the North West Highlands of Scotland and runs from Loch Shin to the 

North Sea. 

 

Baltic host stocks: 

 From Russia, I used datasets from four experiments (Cable et al. 2000, Bakke et al. 1990), all 

on salmon from river Neva in northwest Russia. It runs from Lake Ladoga, emptying out in 

the Gulf of Finland in the Baltic Sea.  

From Sweden, i used one dataset from salmon from the river Indalselv (Bakke et al 2004), 

which runs from Jämtland and the lake Storsjön, emptying out in the Baltic sea. 

 

 

 



Experimental procedure      

Every dataset used are based on similar, common garden, experimental methods using 

isolated salmon fry 0+ infected with G.salaris, regularly observed for change in parasite 

burdens. 

My own experiments on salmon from both river Neva in one replicate, and river 

Numedalslågen in two replicates, done in the fall of 2011 and the spring of 2012 

respectively, follow the same general methodology as Bakke et al. (1990). The host 

populations of 0+ salmon fry, previously uninfected by G.salaris, were kept in grey plastic 

tanks (1mx1mx1m) with opaque lids and a continuous flow of normal Oslo tap water around 

the clock. The fish were further individually separated by enclosures approx 20cmX7cm with 

a wire mesh bottom to allow water to flow through. The temperature was kept steady at 12° 

C, and light conditions were kept dim continuously. The fish were fed equal amounts at a 

standard time interval. All variables were kept equal for each individual in both experiments, 

which took place in the basement aquarium at the Museum of Natural History in Oslo 

(NHM), Zoological department.  

Table 1: Overview of datasets used in current study.  

Region Stock Host species Parasite  # 
Fish 

Time 
(days) 

Mortality 
% 

Original Research 

N.Norway Alta 1 Salmo Salar G.salaris 12 51 58.3 Cable et al. 2000 

 Alta 2 Salmo Salar G.salaris 12 42 0 Bakke et al. 1999 

 Alta 3 Salmo Salar G.salaris 12 42 8.3 Bakke et al. 1999 

W.Norway Batnfjord Salmo Salar G.salaris 23 36 60.8 Unpublished, Bakke et al. 
2001, Fig.6 

SE.Norway Lier 1 Salmo Salar G.salaris 24 36 54.1 Unpublished, Bakke et al. 
2001, Fig.7 

 Lier 2 Salmo Salar G.salaris 24 50 50 Bakke & MacKenzie 1993 

 Numedals 
1 

Salmo Salar G.salaris 9 55 11.1 Own research 

 Numedals 
2 

Salmo Salar G.salaris 9 49 44.4 Own research 

SW.Norway Imsa Salmo Salar G.salaris 18 35 88.9 Cable et al. 2000 

Russia Neva 1 Salmo Salar G.salaris 22 35  Cable et al. 2000 

 Neva 2 Salmo Salar G.salaris 12 51 8.3 Bakke et al. 1990 

 Neva 3  Salmo Salar G.salaris 16 51  Bakke et al. 1990 

 Neva 4 Salmo Salar G.salaris 18 21 5.5 Own research 

Scotland Shin Salmo Salar G.salaris 24 49 33.3 Bakke & MacKenzie 1993 

 Conon Salmo Salar G.salaris 24 49 54.1 Bakke & MacKenzie 1993 

Sweden Indals Salmo Salar G.salaris 24 50 87.5 Bakke et al. 2004 

 



 

Figure 3: Geographical distribution of rivers in Scandinavia and western Russia where salmon stocks have 

been collected for the various datasets used. Photograph obtained from Google Maps (maps.google.no) 

 

 

Figure 4: Geographical distribution of Scottish rivers where salmon stocks have been collected for various 

datasets used. Photograph obtained from Google Maps (maps.google.no) 

 

 

For the experiment on salmon from Numedalslågen, starting infections of G.salaris were 

administered by obtaining fin clippings of already heavily infected individuals from other 

stocks kept in the aquarium, and transporting 5 worms, one by one, from these fin clippings 



directly onto the anesthetized host individual by use of a pin needle under a stereo 

microscope, placing them on the caudal fin of the host. In the experiment on Neva salmon, a 

variable degree of initial infection was administered, using either pin needle to place one 

and five infections, or by letting host individuals swim with heavily infected fin clippings for 

24 hours. After the administering of parasites had been completed, each fish were then 

divided amongst the separate enclosures within the tank, keeping them isolated from each 

other. The first day after infections in both experiments, the fish were anesthetized and the 

infections controlled to ensure that none failed to establish. All host individuals in both 

experiments were checked once per week throughout the duration of the experiment, at 

about the same time of day.   

The hosts were anesthetized using a 0.05% solution of Chlorobutanol (trichloro-2-methyl-2-

propanol) in water. When checking parasite burden, each fish was carefully removed from 

its enclosure in the tank and put in the bucket containing anesthesia until the individual was 

anesthetized sufficiently to be examined under stereo microscope in a tray of water. The 

whole fish was then carefully examined, counting every parasite as fast and effectively as 

possible so not to put too much stress on the host fish, without overlooking any worms. If 

the anesthesia proved to be too light and the fish became active during counting, it was 

simply placed back in the bucket containing the anesthesia solution for a short time until 

calm again, and the remaining counting completed. When the counting was finished, the 

host was put over in another bucket containing fresh tap water gathered from the same 

source as the tank housing the experiment population, and transported back to its 

respective enclosure within the tank. The dynamic of infection, and growth rates, was 

calculated on the basis on these weekly counts.    

Graphics 

To investigate density- and time-dependence in parasite growth rates, and possible host 

responses in all datasets used, several plots were constructed from each dataset using the 

graphics tools within Microsoft excel.  

The increase in parasite population was plotted in a scatter plot against time to demonstrate 

the population dynamics for the parasite burden on each host during the course of the 

experiment 



To investigate the possibility of parasite growth rate being dependent on parasite population 

size, the growth rate of the parasite population for each census point was plotted in a 

scatter plot against the explanatory variable being intensity of parasite burden counted for 

each of the corresponding census points. To investigate possible time-dependence of the 

parasite growth rate, it was plotted in a scatter plot with time as the explanatory variable.  

Further, parasite growth rate was plotted against the natural logarithm of the recorded 

parasite burden for the previous census point. As this plot shows the trend between the 

parasite growth rate and the parasite population density for the previous week, a 

statistically significant relationship between these variables will indicate, at least in some 

part, parasite growth rate having some significant relationship with earlier parasite 

population density. This was done separately for each dataset used.  

In addition, to investigate if density- or time-dependence could be seen as possible cues for 

a host response to parasite infection, a second set of plots, using straight line scatter plots, 

were made using the mean values only of hosts surviving to the end of the experiment. This 

was done to correct for any possible skewing of the trajectories due to parasites lost from 

host death, and to make the trends easier to observe. The trends showing mean parasite 

population densities are separated according to region of the salmon used, to easier 

compare trends, and the mean parasite growth rate are plotted against both parasite 

population density and time, in separate plots for each replicate used from each experiment.      

 

Statistical analysis 

To check if these relationships in the scatter plots created indeed were statistically 

significant, the statistical open-source software R (www.r-project.org) was used to analyze 

each dataset. To check for statistical significance, all variable interactions used were 

modeled using general linear modeling (GLM), used to test hypotheses in statistical 

experiments, and factor in known quantities, estimates, and noise, or other sources of error. 

The p-values obtained from this modeling were used to determine if the patterns and 

seeming relationships observed between variables, proves significant enough to draw a 

conclusion of an active relationship.    

http://www.r-project.org/


 

Results 

(For all GLM values from interaction between variables, see Appendix) 

Northern Norway: Alta stock 

G.salaris infections became established on every fish in all 3 datasets of salmon from the 

river Alta the first days post infection, with mean intensities of 5.83, 41.6 and 67.4 parasites 

per host respectively, and continued to increase until the population reached its peak (Fig 

5c). This occurred after between about 30 to 40 days in all 3 datasets on Alta salmon (Alta 1 

~40 days, Alta 2~35 days and Alta 3~35 days). The maximum number of parasites reached on 

a single host was quite uniform within each population with the peak parasite burden 

remaining below 500 in Alta 1, having one distinct outlier with a burden of 670 parasites 

after 44 days. Alta 2 had a maximum parasite burden for most of the hosts at just below 400, 

with two outliers having 545 and 743 parasites at day 35 and 42 respectively, while the Alta 

3 population had a parasite density peak just below 500 for the majority, with two outliers 

having 565 and 563 parasites at 28 and 35 days respectively. The parasite growth rates were 

highest the after the first week in all 3 datasets, then declined throughout the experiment, 

showing a significant negative relationship with time, eventually hitting its minimum at 

about 30 to 40 days post infection in all 3 datasets, not changing significantly beyond that 

point (Alta 1~37 days, Alta 2~42 days, Alta 3~28 days)(Fig 5b). The first replicate was the only 

one showing a statistically significant relationship between parasite growth rate and parasite 

population density (Fig 5a). At the end of the experiments, both Alta 2 and 3 showed 

multiple hosts with parasite growth rates below 0.  

When parasite growth rate was plotted against the natural logarithm of the number at the 

previous census date, the result was a significant negative relationship in all replicates (Fig 

5d). Not all salmon survived to the end of the experiment and 2 out of the 3 experiment 

populations of Alta salmon showed mortality. In the first replicate, 7 out of the 12 fish died 

before experiment end (58%). In the third replicate experiment using Alta stock fish, only 

one died out of 12 (8.3%). In the second, there was no mortality. 



 

Figure 5: Graphic representation of variables tested in the first dataset on Alta salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 

 

Figure 6: Graphic representation of variables tested in the second dataset on Alta salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 



 

Figure 7: Graphic representation of variables tested in the third dataset on Alta salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 

Western Norway: Batnfjord stock 

Infections became quickly established on the entire experimental population from Batnfjord 

first few days post infection with a mean intensity of 84.1 parasites per host. The infection 

continued to grow on all individuals until the end of the experiment, 36 days post first 

infection (Fig 8c). The maximum parasite population size was close to 2000 parasites, with 3 

outliers at 2500 parasites after 28 days, 2400 after 36 days, and one host with 2500 after 36 

days. The parasitic growth rates were highest at the beginning of the experiment, then 

continued to decline towards the end of the experiment (Fig 8b), showing a significant linear 

relationship with the time factor. The growth rate also show a similar negative relationship 

with the increase of parasite population (Fig 8a), declining towards the end of the 

experiment, with the sharpest drop up to an infection burden of about 500 parasites. The 

rate plotted against the natural logarithm of parasite population at the previous census 

point (fig 8d) also shows a significant relationship. During the course of this experiment, 14 

out of the 23 fish (60.8%) died before the end of the experiment from gyrodactylosis.  



 

Figure 8: Graphic representation of variables tested in the dataset on Batnfjord salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 

Southeastern Norway: Lierelva and Numedalslågen 

In both experiments done using fish from the river Lier, infections became established 

quickly within the first week post infection with a mean of 128.2 and 77.5 parasites per host 

respectively, then grew steeply in both experimental populations, before peaking and 

leveling out after c. 28 days in the first replicate (Fig 9c). In the second replicate, the growth 

of infections halted after c. 38 days, and then proceeded to decline until the end of the 

experiment (Fig 10c). In the first replicate, no fish sustained infections above 1500 parasites 

(apart from 3 outliers with 2500, 1750 and 1750 parasites after 28 days). In the second 

replicate, the infections reached as high as 1500-2000 parasites on several individuals, 

although the majority of infections remained below 1500 worms. The growth rate showed a 

significant decline over the course of the experiment in the first replicate (Fig 9b), with the 

sharpest decline 28 days post infection. In the second replicate, the growth rate remained 

approximately constant the first 20 days, and then declined until day 42. After this, it rose 

again (Fig 10b), while still showing a significant relationship with time. Parasite growth rate 

also show a significant decreasing relationship with the increase of the parasite population in 

Lier 1 (Fig 9a), but showed no significant relationship in the second replicate (Fig 10a). The 

rate plotted against the natural logarithm of parasite number on the previous census date 



showed significant relationships in both experimental populations (Fig 9-10d). During the 

course of the experiments on Lier salmon, 13 out of 24 salmon (54.1%) died in the first 

replicate, while in the second, 12 out of 24 (50%) died before the end of the experiment.  

 

Figure 9: Graphic representation of variables tested in the dataset on the first replicate of Lier salmon. A) 
Parasite growth rate against parasite density, B) parasite growth rate against time factor, C) parasite density 
against time factor, D) parasite growth rate against Ln of previous parasite density. 

 

Figure 10: Graphic representation of variables tested in the dataset on the second replicate of Lier salmon. A) 
Parasite growth rate against parasite density, B) parasite growth rate against time factor, C) parasite density 
against time factor, D) parasite growth rate against Ln of previous parasite density. 

 



 
All the hosts in both populations from Numedalslågen showed an established parasite 

population shortly after experiment start with 5 parasites on each host. In both experiments, 

the infections grew slowly the first 20-30 days, and then grew at a substantially increased 

rate until the experiments ended (Fig 11-12c) In the first replicate, the parasite burdens 

ranging from 300 to almost 800 parasites per fish were achieved by the end of the 

experiment (55 and 49 days respectively), while in the second replicate, no host achieved an 

infection of more than 400 parasites. In neither replicate was there a significant relationship 

between parasite growth rate and time (Fig 11-12b), and neither was there a relationship 

between parasite growth rate and parasite population growth (Fig 11-12a). When plotting 

growth rate against the natural logarithm of parasite number at the previous census date, no 

significant relationship was seen (Fig 11d-12d). During the course of the experiments, 1 out 

of 9 fish (11.1%) died in the first replicate population, while 4 out of the 9 fish (44.4%) died in 

the second.   

 

Figure 11: Graphic representation of variables tested in the dataset on the first replicate of Numedals 
salmon. A) Parasite growth rate against parasite density, B) parasite growth rate against time factor, C) 
parasite density against time factor, D) parasite growth rate against Ln of previous parasite density. 



 

 
Figure 12: Graphic representation of variables tested in the dataset on the second replicate of Numedals 
salmon. A) Parasite growth rate against parasite density, B) parasite growth rate against time factor, C) 
parasite density against time factor, D) parasite growth rate against Ln of previous parasite density. 

 

 

Southwestern Norway: Ims 

In the experiment on salmon from Ims, all infections became established during the first 

week with a mean infection of 79.3 parasites per host, and continued to grow until 

approximately day 21, when the parasite population growth peaked and started to decline 

towards the end of the experiment (Fig 13c). The vast majority of the fish did not experience 

infection levels above 1000 parasites, apart from three outliers infected with 1200 parasites 

after 21 days, and 1030 and 1100 parasites after 28 days. For the Ims salmon, the parasite 

growth rate showed a significant declining relationship with time towards the end of the 

experiment (35 days) (Fig 13b). This decline in parasite growth rate was also significantly 

related to the increase in density (Fig 13a), with the steepest decline occurring up to a 

burden of about 500 parasites. The growth rate also shows a significant negative relationship 

with the natural logarithm of parasite number at the previous census point (Fig 13d). During 

this experiment, only 2 of the 18 original fish survived (mortality 88.9%) to the end of the 

experiment at 36 days. 



 

Figure 13: Graphic representation of variables tested in the dataset on the Ims salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 

 
 

Scotland: river Conon & river Shin 

Both experimental populations of Scottish salmon established a parasite infection on all 

individuals the first week with a mean intensity of 20.5 parasites per host in Conon, and 91.8 

in Shin. These infections continued to increase in size until reaching a peak infection after c. 

42 days in Conon, after which it decreased until the end of the experiment (Fig 14c), whereas 

the parasite burden in the Shin population grew steady up to c. 28 days, after which it 

declined sharply towards the end of the experiment (Fig 15c). Most of the salmon from the 

Conon experiment did not experience parasite burdens above 1500, with the exception of 5 

outliers experiencing 1700, 3000, 4000, 1650, and 4000 after 21, 28, 35, 35 and 42 days 

respectively. In the Shinn population, the vast majority of individuals experienced infections 

below 1400, but some individuals exceeded this and the highest infection reached 1760 

parasites. In both experimental populations of Scottish salmon, the parasite growth rate 

showed a significant negative relationship with time, decreasing until the linear regression 

predicted a negative growth rate after 42 days in the Conon population (Fig 14b), while the 



Shinn population on the other hand showed a linear regression predicting a negative growth 

rate of parasites after about 35 days (Fig 15b). Neither Scottish salmon population showed a 

relationship between parasite growth rate and parasite density (Fig 14-15a), but the growth 

rate plotted against the natural logarithm of parasite population size at the previous census 

point did show a significant negative relationship (Fig 14-15d). During these 2 experiments, 

the population in the Conon experiment lost 13 out of 24 fish (54.1%), while the Shinn 

population lost 8 out of 24 fish (33.3%). 

 

Figure 14: Graphic representation of variables tested in the dataset on the Conon salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 



 

Figure 15: Graphic representation of variables tested in the dataset on the Shin salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 
 

Baltic Stocks 

Russia: river Neva 

In all the 4 experiments on salmon from river Neva in Russia, the G.salaris infections became 

established the first week with mean numbers of 27.5, 4.25, 37.3 and 29.5 parasites per host 

respectively, continuing to grow. In the first, third and fourth replicate, the parasite 

populations increased until about day 21, after which the population of parasites started to 

decline until the end of the experiments in replicates 1 and 3 (Fig 16-18c) The fourth 

replicate ended only after 21 days, and so a decline could not be observed (Fig 19c). In the 

second replicate, the same trend was observed, but the increase of the parasite population 

continued slightly longer until c. day 28, before a decrease in parasite population was 

observed. No Neva salmon experienced parasite burdens of more than 400 parasites, except 

in the final fourth replicate, where burdens up to c 800 were observed 21 days post 

infection. All populations of Neva salmon showed a significant decrease in parasite 

population growth rate over time, with parasite population growth rate declining to zero 

and becoming negative for most individual fish after 28-35 days (Fig 16-19b). In replicate 2, 



parasite growth rate decreased most rapidly during the first 14 days, and then declines more 

slowly to a negative growth rate throughout the experiment, showing a possible weak 

tendency to start rising again. In replicate 3, the growth rate also decreased steadily, 

becoming negative for all individuals after 35 days post infection. The parasite growth rate in 

the fourth replicate showed little overall change between the first and second week, but 

then declined towards zero until the end of the experiment.  Parasite growth rate showed a 

significant relationship with increase in parasite population growth in replicates 3 and 4, but 

no significance in the first and second (Fig 17-19a). In the third replicate, the parasite growth 

rate seems to mostly start of negative for low numbers of parasite infections, then increase 

up to a parasite population density of about 50-100 parasites, where the linear regression 

predicts the mean growth rate becomes positive, then stabilize for higher densities. In the 

fourth replicate, the growth rate decreases, from relative high variability, slowly with rising 

parasite population density towards the peak infection number observed in the experiment. 

Parasite growth rate plotted against the natural logarithm of the number of parasites found 

at the previous census date, showed a significant relationship in the first, second and fourth 

replicates, and not in the third. Where significant, the relationship is negative (Fig 16-19d). 

During the experiments on Neva salmon,   

 

Figure 16: Graphic representation of variables tested in the first dataset on Neva salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 



 

 

Figure 17: Graphic representation of variables tested in the second dataset on Neva salmon. A) Parasite 
growth rate against parasite density, B) parasite growth rate against time factor, C) parasite density against 
time factor, D) parasite growth rate against Ln of previous parasite density. 

 

 

Figure 18: Graphic representation of variables tested in the third dataset on Neva salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 



 

Figure 19: Graphic representation of variables tested in the fourth dataset on Neva salmon. A) Parasite 
growth rate against parasite density, B) parasite growth rate against time factor, C) parasite density against 
time factor, D) parasite growth rate against Ln of previous parasite density. 
 

Sweden: Indalsälv 

The Swedish population from river Indalsälv showed an establishment of parasites during 

the first week, with a mean of 115.8 parasites per host, and the infections then grew rapidly 

in size. The parasite population grew on every host until c. day 35, where on most hosts, 

parasite population growth began to slow down somewhat (Fig 20c). Most of the host 

individuals did not experience parasite burdens greater than 1000 parasites, but six reached 

around 1500, and on two fish, the parasite population was as large as 2000 after 40 days.  

The parasite growth rate on all hosts showed a significant negative relationship with time, 

declining the first 14 days, and then stabilizing growth rates around 0-0.1 (Fig 20b). The 

parasite growth rate shows no significant relationship with parasite density at all (Fig 20a), 

but the growth rate show a significant negative relationship with the natural logarithm of 

previous parasite numbers population size at the previous census date. Out of the 24 fish in 

the experiment, only 3 survived till the end, giving a mortality of 87.5%. 



 

Figure 20: Graphic representation of variables tested in the dataset on Indalsälv salmon. A) Parasite growth 
rate against parasite density, B) parasite growth rate against time factor, C) parasite density against time 
factor, D) parasite growth rate against Ln of previous parasite density. 

 
The plots on the mean parasite population numbers against time, and the mean growth rate 

against mean density, to correct for any skewed results from a drop in parasite population 

numbers due to possible host death before end of experiment, show a marked difference in 

trends of parasite population growth, fitting the results of the plots containing the same 

variables done on whole datasets, but show more visually pleasing representations of the 

data (Fig 22). The use of plots only containing values from surviving hosts, makes little to no 

difference in the strength of the representation of data, as they mach the same type of plots 

done on the entire population when correcting the means of parasite population number 

and parasite growth rate in a select few examples plotted (figure, Appendix) 

 

Further analysis of the results 
 

The results obtained in the current study show a significant negative relationship between 

parasitic population growth rate and parasite population density in 7 of the 16 experimental 

populations investigated, being the first and third replicate of the Alta stock, the Batnfjord 

stock, the Ims stock, the first replicate of the Lier stock and the third and fourth replicate of 

the Neva stock. In these seven experiments, parasite population growth rate is highest when 



the parasite population is small, i.e in the first weeks of the experiments. This negative 

relationship between abundance and population growth rate may be for a number of 

reasons, for example possibly because population growth of G.salaris is fastest when the 

population age structure is skewed towards young (pre-1st ) birth flukes, which is most likely 

in the first few days and weeks of the infection. This is a result of the asymmetry in parasite 

reproduction, with the first birth occurring in one third of the time of the second and 

subsequent births (Cable et al. 2000; Ramirez et al. 2012).  This asymmetry is a consequence 

of the development of embryos within the uterus of the mother, while the mother is itself 

still an embryo (Bakke et al. 2007), and results in very high initial rates of population growth. 

The other 9 datasets, the second replicate of the Alta stock, the second replicate of the Lier 

stock, both replicates of the Numedals stock, the first and second Neva stock, the Indalsälv 

stock, and the two Scottish stocks from river Conon and river Shin, show no such relationship 

between the parasitic growth rate and parasite population density, but rather show only 

time dependence. Their infections seem to have growth rates unrelated to any trend with 

parasite population, but rather just time.  

When comparing the populations showing a significantly density-dependent parasitic growth 

rate, to the ones where parasite population growth rate are independent the population 

density, a distinct pattern is observed.  

When controlling for host death by using mean parasite burdens from only those hosts 

surviving to the end of the experiment, the behavior of parasite population growth over time 

suggests that almost none of the experimental populations in which parasite population 

growth rate exhibits density dependence are able to control their infections before death or 

the end of the experiment.  Instead they demonstrate exponential growth in parasite 

population with no threshold. In contrast, in those experimental populations lacking a 

statistical significant relationship between parasite population density and parasite 

population growth rate, the infections were controlled and growth of the parasite 

population halted, and in some cases the population decreased in size (Fig 21, Appendix). 

There were some exceptions to this general trend. For example the Ims salmon data set, in 

which a significantly negative relationship between parasite density and parasite population 

growth rate was noted, appear at first sight able to control their infections by the end of the 



experiment. However, as only 2 of the original 18 fish survived to the end of the experiment, 

this is not representative, and removing these two survivors from the dataset results in an 

exponential growth curve for the parasites until the experiment ends. The third Neva 

replicate also showed an unusual trend, with the population showing a significant 

relationship between parasite growth rate and parasite population size, but this fish still 

appeared able to control its infection. One explanation might be that in this replicate the fish 

did not mount a response to infection because the parasite population never increased 

above a level of c. 80 parasites, with the exception of one outlier reaching 150. Another 

factor that could explain this deviation from the trend of density dependent parasitic growth 

rate and the inability to respond to infection, is the possibility of environmental influence on 

parasite growth rate, or salmon susceptibility. The third replicate with Alta salmon also 

showed density dependence weakly, but also appeared able to control infections by the end 

of the experiment. 

When parasite growth rate was corrected for host death by excluding fish from the data set 

which subsequently died, the decline in parasite population growth rate can be fitted using a 

predicted polynomial regression, and is similar to the corresponding plots done on whole 

datasets. When fitting polynomial regressions to these plots of mean population growth 

rates, we can clearly see that the trajectories of the two types of parasite population 

behavior (density dependent, no host response versus host response, no density 

dependence) is inverse to each other Fig (22-27 Appendix). Also, when using this polynomial 

regression, another deviation in the datasets arises. The fourth Neva replicate looks unusual 

in that it display exponential growth when plotted using mean density against time, and also 

density dependence, but when plotted using the mean of parasitic growth rate against time, 

is showed the same trend as the controlling populations (Fig 25 Appendix). Amongst most of 

the host populations showing significant density-dependence in parasite population growth 

rates, but without limitation or control of the parasite population, the polynomial regression 

represents a negative asymptote, with the growth rate declining most rapidly early in the 

infection or at low parasite population density. On the other hand, for host populations 

which control their infections and fail to show parasite population density dependence, the 

rates can best be fitted by a polynomial regression which is a positive asymptote, with the 



fastest decline in the rate of parasite population growth occurring late in the infection, when 

parasite population size is large (Fig 22-27 Appendix). 

In some host stocks on which the parasites exhibit density-independent growth and are 

controlled, the mean parasite population growth rate declines when plotted against parasite 

population density until it becomes negative, indicating a loss of parasites. It then however 

tends towards circularity (skewing the polynomial regression lines), indicating that, after the 

parasite growth rate has become negative, the parasite population can start to grow again 

(Fig 22-27 in Appendix). Amongst the other host stocks which exhibit a response to parasite 

abundance, the initial pattern of change in parasite population growth rate when plotted 

against parasite abundance is similar, but growth rate does not increase at the end of the 

experiment.  It is probable that, had the experiment been prolonged, the same pattern of 

fluctuating positive/negative parasite population would have become apparent. The 

dynamic of host-parasite population growth observed here is similar to findings from 

experiments with G.alexanderi on three-spined sticklebacks (Gasterosteus aculeatus) 

performed by Lester & Adams (1974), who showed that if the parasite infection is controlled 

and begins to decrease, immune hosts may experience a new increase in parasite 

populations if a few parasites remain after the bulk of the infection has been lost. This cyclic 

behavior in host resistance could translate to the circular pattern in parasite growth rate 

changing with parasite population density observed in the current study.  

Density- or Time-dependence as cues for host response 

 As 43.8% of the experimental populations investigated show significant relationships 

between parasite growth rate and parasite population density, and all the datasets used 

show a significant relationship between parasite growth rate and time, one or both of these 

factors may play a part in the mounting of a host response to infections of G.salaris on east 

Altantic salmon stocks at least, and perhaps Baltic stocks as well. 

The trend shared by all the experimental populations capable of mounting a response to 

infection, and thereby has no significant density dependent relationship between the 

parasite growth rate and the density of the parasite population, within both east Atlantic 

and Baltic stocks, seem to show that the response to infection is based on time passed from 

initial infection. The vast majority of these responding populations (8 out of 10) seem to 



start responding to their parasite burdens around the 21st day post infection (Fig 21). This 

may indicate the host response being somewhat time-dependent. This timing in response to 

infection furthermore seems to transcend parasite population density, where both 

Norwegian and Scottish stocks investigated seem to be able to respond at different densities 

of parasite population, but at the same time period. Baltic stocks investigated from river 

Neva show the expected high resistance previously shown for these fish (Cable et al. 2000).  

 

At last, the most bizarre and unexplainable results obtained in this study came from the 

Numedalslågen replicates which warrants a separate interpretation These salmon showed a 

highly unusual pattern of parasite population growth when compared to the other 

populations considered here. They show an unusually slow trend in parasite population 

growth over time, resembling the asymptotic growth trajectory of the parasite populations 

found in the density dependent populations investigated with the biggest rate of change 

happening at later time points (Fig 21). During these experiments, many of the hosts nearly 

lost the infection altogether several times, further indicating high initial resistance to 

G.salaris in both replicates. However, since both replicates eventually started to show 

increased parasite population growth towards the end of the experiments, it is hard to 

determine if they would have mounted a response given enough time, or continued to show 

the exponential parasite growth fashion present at the end of the experiments. 

Furthermore, since one of the replicates displayed a mortality of 44.1 % at the end of the 

experiment, and the other 11.1 %, both control and exponential growth can be viewed as 

possible outcomes. Why these hosts showed such a high resistance to parasite population 

growth the majority of the experiment is uncertain. Reasons for this may be many things, 

biotic or abiotic. The only certain thing is that these two populations were highly unusal for 

them being Numedals salmon. 

 

 

 

 



Discussion 

With its short generation time and high reproductive output, G.salaris is truly an excellent 

model species when investigating possible methods of adaptation. The high number of 

different species and strains the gyrodactylids shows that these parasites are highly efficient 

at adapting to new environments, something underlined by the use of different host species 

for of transport between main hosts. This explains why G.salaris established so rapidly on 

Norwegian salmon which show a high susceptibility to them in contrast to the co-evolved 

Baltic stocks of salmon. This paradigm however, being somewhat challenged in the last 

decade by showing high susceptibility in Swedish Indalsälv salmon, and some potential for 

control in Lier salmon, as I have reiterated in the current study, may, on the background of 

new research be proven to not be fitting as anymore. Early infection studies investigating 

host susceptibility to infection, used small parasite population sizes to look for relationships 

and host response. In these instances, parasite population growth rate may not be such a 

useful parameter, as the subtle differences in susceptibility and host response are not as 

evident in small parasite infections (Ramirez et al. 2012). I suspect this also being the case 

for at least one of my own datasets, the fourth replicate of Neva salmon. This host 

population showed a significant relationship between parasite population and parasite 

growth rate, and not seeming to respond to infection, yet being from a salmon stock with 

historically high resistance. As the experiment used low initial infections of parasites and 

terminated after only three weeks, earlier than it took the other population showing host 

response to control their infections, I suspect this would also have been the case if this 

population had been allowed to continue its infection. The results obtained in the current 

study can furthermore be used to explain the classic paradigm of host susceptibility, as the 

host populations are experiencing the steepest decline in parasite growth rate early, and 

thereby at low population parasite population intensities, start out with fewer parasites the 

first weeks of infection, all displayed an exponential growth without being able to control 

infection, concurrent with the general thought of high susceptibility in east Atlantic stocks of 

salmon.  

When looking at the resulting trends from the datasets then, the general pattern observed in 

parasite growth rate over time, indicate that if the initial parasite growth rate is more stable 



at higher levels early in the experiment, and the steepest change in growth rate doesn’t 

occur until higher time points, the parasite burden will grow faster during this early time 

period. This results in a higher parasite population on the host these first days. This trend is 

observed in the experimental populations not showing any statistical relationship between 

the parasite growth rate and the size of the parasite population itself, i.e density dependent 

growth rate, but being able to respond to- and control their infections.  This initial time 

when the parasite growth rate is at its highest, lasts for the first 14 days based on the 

asymptotic growth curves, after which the parasitic growth rate starts to decline with 

increased rate of change towards zero for the rest of the experiment.   

In contrast to this, the populations possessing density dependent growth rates, not being 

able to respond and control their infections, experience the sharpest decline of parasite 

growth rate during this same initial 14 days, after which it starts to stabilize. This translates 

to these populations yielding relatively lower parasite populations during these first couple 

of weeks.  

The difference between these two groups then, with respect to host-parasite dynamic in the 

populations showing statistically significant relationships between parasite growth rate and 

parasite density, and the populations with no clear density dependence, is apparently not 

only the latter groups ability to respond to- and control infection. It is also the initial size of 

the parasite population gained during the first weeks of the experiments that is differing, 

and this remains the only observable factor varying before a possible response to infection 

from the start of infection. Therefore, even if the responses mounted by the populations 

able to control infection, all occur after an equal amount of time, the initial cue for host 

response seems rather to be influenced by how large the parasite population is allowed to 

grow during these first few days post infection. It would seem then, that host response to 

infection is not exclusively dependent on time, but more likely is controlled indirectly by 

density of the parasite population at an early period of the infection.  

To my knowledge this is the first time this method of investigating density dependence in 

parasitic growth rate have been used, and subsequently have been able to show this form of 

density dependence within the population dynamic of G.salaris, backed up by statistical 

significance that the growth rate in a G.salaris population can be dependent on the size of 



the parasite population when the infection is in its youngest stages. Furthermore, the 

emerging trend that was found, indicating a density controlled host response, have not been 

previously investigated either, at least not using common garden experiments between and 

among stocks of both generally resistance and susceptible salmon populations. 

However, even though density dependence in parasitic growth rate is currently an area of 

very limited study on gyrodactylids, other parasitic species have been has been studied, both 

endo-, and ectoparasittic. The responses by immune systems in Wood mice, Apodemus 

sylvaticus, to variable density of the nematode Heligmosomoides polygyrus, as well as the 

louse Polyplax serrata, show a significant relationship between growth rate and parasite 

density. The mice mounted immune responses more successfully at lower densities of 

infection by these parasites indicating a possible parasite-density driven immune response 

(Jackson et al. 2009). Another example of density dependent growth in parasites comes from 

the cestode species, Hymenolepis diminuta. Roberts (1961) showed that this cestode has a 

relative high growth rate the first 48 hours when population density is low, but then 

experiences lower growth rate at higher densities, much like the G.salaris populations being 

able to control their infections.  

 Nonetheless, the strong relationship observed between the differences in initial parasite 

population size, and the ability for some host populations to mount successful responses to 

an infection by G.salaris proves that, at least in these populations, the response to infection 

being controlled by density dependent cues by the parasite population intensity. Even 

though the classic paradigm of high susceptibility and an inability to respond to infections in 

all east Atlantic stocks of salmon, have been somewhat disproved, the comparative and 

statistical evidence for a density dependent mechanism of host response is certainly novel.  

In addition, the results from the current study also show a difference in the ability to control 

infection within stocks of salmon, shown most prominently in the comparisons of Alta 

salmon. This may very well indicate a genetic factor for density dependent host response. If 

this is the case, genetic heterogeneity may be no more important than environmental 

factors or phenotypic plasticity in determining the direction and outcome of a G.salaris 

infection. Furthermore, the results obtained by statistical comparison as well as comparisons 



of host-parasite dynamic, does have a good strength to them based on the experimental 

method used.  

Since every dataset investigated in this study came from common garden experiments on 

individually isolated fish, we can safely rule out such effects of possibly confounding factors, 

be it  differences in feeding success, temperature, proximity to other hosts, contact with the 

substrate etc, within each dataset. Such experiments are widely used in studies of local 

adaptation in parasites, where the genetic composition of local host populations is assumed 

to be the environmental factor essential for parasite adaptation (Kaweki & Ebert 2004). 

Environmental factors then, which have the ability to influence the time between first 

infection, rate of parasite population growth, thereby also and a possible host response, 

should one choose to believe the results found in this study, could cause biases in the data, 

affecting the outcome of an experiment. Jansen & Bakke (1993a) showed that susceptibility 

and/or resistance to G.salaris infections on east Atlantic salmon from river Glitra, a tributary 

to river Lierelva, can be influenced by host size, where parasite densities tend to decline 

faster from peak infections on larger individuals.  

Stress may also be central a factor influencing susceptibility/resistance to infection. 

Suppression of immune response was simulated by Harris et al. (2000) on three species 

known to act as transportation hosts for G.salaris between salmon hosts, being Brook charr, 

Salvelinus fontinalis, Arctic charr, Salvelinus alpinus, and Brown trout, Salmo trutta. Brook 

charr and Arctic charr are show initial susceptibility, but are able to eliminate their 

infections, whereas Brown trout have shown to be highly resistant. To simulate a stress 

induced suppression of the host immune system, individuals from these species were 

implanted with hydrocortisone acetate, which mimics a natural hormone released during 

stress, and then infected with G.salaris. Their findings show the innate ability to resist 

infection was negatively affected in both Brook trout and Brown trout, where both 

experiments showed higher parasite burdens, as well as longer durations of infection on 

individuals treated with hydrocortisone acetate compared to the controls. This was also the 

case for Arctic charr showing variable levels of susceptibility within stocks. These 

experiments also included challenge infections 6 months later using the same method of 

suppressing the immune system, which showed the same results of increased susceptibility 

in treated individuals. Thereby the immune system of s host looks to be a possible 



mechanism for controlling resistance to G.salaris infections at least in these species, and 

probably in other salmonid species as well. Such stress affecting the capability of host 

resistance, may be induced by various sources. Predation risk, resource competition, mate 

competition etc may induce the release of stress hormone in the wild, causing a possible 

bias in host resistance.  

Furthermore, successful resistance to G.salaris also been seen to be influenced by water 

temperature; parasite population growth rate is positively correlated with temperature, 

generating a seasonal variation in parasite resistance and susceptibility (Jansen & Bakke 

1993b). The increase in parasite population growth rate with increased temperature is 

attributed to the negative relationship between parasite life-span and temperature, and also 

generation time and temperature. (Jansen & Bakke 1991). The relationship with 

temperature may also have an effect on potential host responses to infection.  

The results found in the current study also fit well with previous work in host-parasite 

dynamic such as the model of response generated by Lester & Adams (1974), so the 

existence of a density dependent mechanism for host-response may not be so surprising 

after all, even if new. Further research is indeed needed on this subject to locate stronger 

evidence for more stocks. Elevated research on these findings may furthermore have 

implications that could add to the research being done on controlling G.salaris presence in 

Norwegian rivers.  

The fact that this density dependence is being somewhat masked behind time dependence 

in the populations not showing a direct link between parasite population size and parasite 

growth rate, may also explain the amount of statistically significant trends observed then 

growth rate was plotted against the natural logarithm of parasite number at previous census 

dates indicating statistically significant density dependence in instances where it was not 

directly observed. The main trend of statistical significance here, is that the highly resistant 

Neva salmon show the weakest link to it, as they do not possess neither the indirect density 

dependence-inducing host response, as they do seldom need to respond to increasing levels 

of infection, nor the exponential directly density dependent parasitic growth rate. This 

method of plotting then, may very well be a more useful tool than previously thought, 

possibly unmasking the density dependence inducing host response. Further research is truly 



needed to better understand the dynamic this fascinating parasite has with its hosts, but for 

now, this study is the only indication that such a mechanism exists for host-parasite dynamic 

in G.salaris. 
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Appendix 

Glm outputs for all datasets: 

Alta 1 

                     Estimate     Std. Error     t value     Pr(>|t|)     

(Intercept)  1.221471    0.080746     15.127    < 2e-16 *** 

day               -0.021472   0.002835     -7.574     1.53e-10 *** 

--- 

AIC: 41.313 

                     Estimate        Std. Error   t value       Pr(>|t|)     

(Intercept)  0.9095945     0.0674473   13.486    < 2e-16 *** 

No                -0.0015768    0.0003452   -4.568     2.21e-05 ***     

--- 

AIC: 65.169 

                      Estimate   Std. Error   t value     Pr(>|t|)     

(Intercept)  1.45983     0.10248     14.245    < 2e-16 *** 

lnPrev         -0.20821     0.02563     -8.125     1.58e-11 *** 

--- 

AIC: 36.706 

 

Alta 2 

Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.776152   0.064198  12.090  < 2e-16 *** 

day         -0.021231   0.002355  -9.016 2.47e-13 *** 

--- 

AIC: 2.1216 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.3037506  0.0737876   4.117 0.000104 *** 

No          -0.0002924  0.0003747  -0.780 0.437801     

--- 



AIC: 56.985 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.63809    0.21062   7.778 4.69e-11 *** 

lonPrev     -0.29602    0.04457  -6.641 5.59e-09 *** 

--- 

AIC: 22.427 

 

Alta 3 

Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.741085   0.052781  14.041  < 2e-16 *** 

day         -0.019564   0.001958  -9.991 4.84e-15 *** 

--- 

AIC: -23.279 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.4653941  0.0862030   5.399 8.95e-07 *** 

No          -0.0007471  0.0003002  -2.489   0.0152 *   

--- 

AIC: 34.146 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.03606    0.20088  10.136 2.67e-15 *** 

lonPrev     -0.34041    0.03841  -8.863 5.30e-13 *** 

--- 

AIC: -13.717 

 

Batnfjord: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.53273    0.10174   24.89   <2e-16 *** 

day         -0.05501    0.00410  -13.42   <2e-16 *** 

--- 



AIC: 10.016 

                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.784e+00  9.998e-02  17.841  < 2e-16 *** 

No          -5.733e-04  8.948e-05  -6.407 4.69e-08 *** 

--- 

AIC: 58.78 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.44268    0.15778   21.82   <2e-16 *** 

lonPrev     -0.41048    0.02888  -14.21   <2e-16 *** 

--- 

AIC: 5.2063 

 

Ims: 

 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.07731    0.06392  16.854  < 2e-16 *** 

day         -0.02811    0.00354  -7.941 9.67e-11 *** 

--- 

AIC: -8.8907 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.8184161  0.0690892  11.846  < 2e-16 *** 

No          -0.0004710  0.0001392  -3.383  0.00131 **  

--- 

AIC: 24.071 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.99958    0.16425  12.174  < 2e-16 *** 

lonPrev     -0.26518    0.03119  -8.502 1.16e-11 *** 

--- 

AIC: -13.218 



 

Lier 1 

 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.876937   0.103435  18.146  < 2e-16 *** 

day         -0.036632   0.004122  -8.888 4.39e-12 *** 

 

AIC: 15.997 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.2579431  0.1025901  12.262  < 2e-16 *** 

No          -0.0003103  0.0001123  -2.763  0.00786 **  

--- 

AIC: 58.781 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   2.8489     0.2190  13.012  < 2e-16 *** 

lonPrev      -0.3372     0.0397  -8.494 1.83e-11 *** 

--- 

AIC: 18.923 

 

Lier 2 

 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.1585148  0.0102994   15.39   <2e-16 *** 

day         -0.0043672  0.0003528  -12.38   <2e-16 *** 

--- 

AIC: -408.66 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 4.086e-02  1.133e-02   3.606 0.000432 *** 

Popn        7.826e-06  1.635e-05   0.479 0.632977     



--- 

AIC: -304.13 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.283232   0.034600   8.186 1.56e-13 *** 

LonPrev     -0.041978   0.006013  -6.982 1.10e-10 *** 

--- 

AIC: -346.28 

 

Numedals 1 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.5566435  0.1162259   4.789 1.14e-05 *** 

days        0.0006292  0.0034033   0.185    0.854     

--- 

AIC: 70.39 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.5923644  0.0670096   8.840 1.84e-12 *** 

No          -0.0001111  0.0002800  -0.397    0.693     

--- 

AIC: 70.263 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.67869    0.13693   4.957  6.2e-06 *** 

lnPrev      -0.02911    0.03581  -0.813     0.42     

--- 

AIC: 69.747 

 

Numedals 2: 

 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -27.417     11.114  -2.467   0.0166 *   



days           3.471      0.419   8.284 1.81e-11 *** 

--- 

AIC: 652.98 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.362448   0.237400   1.527    0.134 

days        0.006059   0.007905   0.766    0.447 

 

AIC: 101.54 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.460081   0.127515   3.608 0.000771 *** 

No          0.001099   0.001298   0.847 0.401636     

--- 

AIC: 101.41 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.78071    0.23506   3.321  0.00178 ** 

LnPrev      -0.08972    0.07560  -1.187  0.24155    

--- 

AIC: 100.7 

 

Conon 

 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.015060   0.060970   16.65   <2e-16 *** 

day         -0.027362   0.002098  -13.04   <2e-16 *** 

--- 

AIC: 104.79 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.136e-01  5.404e-02   5.803 3.82e-08 *** 

No          -1.518e-05  7.497e-05  -0.203     0.84     



--- 

AIC: 219.5 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.88298    0.20502   9.184 3.43e-16 *** 

lonPrev     -0.28526    0.03658  -7.799 1.03e-12 *** 

--- 

AIC: 167.91 

 

Shin 

 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.06850    0.07494   14.26   <2e-16 *** 

day         -0.03083    0.00253  -12.19   <2e-16 *** 

--- 

AIC: 171.97 

             Estimate Std. Error t value Pr(>|t|)   

(Intercept) 0.1528982  0.0874462   1.748   0.0825 . 

No          0.0002000  0.0001378   1.452   0.1486   

--- 

AIC: 274.05 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.26397    0.27519   8.227 9.10e-14 *** 

lonPrev     -0.34841    0.04725  -7.374 1.09e-11 *** 

--- 

AIC: 229.24 

 

Neva 1 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.794951   0.103107   7.710 1.15e-10 *** 



day         -0.034555   0.005754  -6.005 1.04e-07 *** 

--- 

AIC: 66.732 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) 0.092966   0.102843   0.904   0.3695   

No          0.002322   0.001249   1.858   0.0678 . 

--- 

AIC: 92.684 

                        Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.43702    0.36421   3.946 0.000203 *** 

lonPrev     -0.31519    0.09546  -3.302 0.001586 **  

--- 

AIC: 85.779 

 

Neva 2 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.907950   0.135355   6.708 3.26e-09 *** 

day         -0.024344   0.004303  -5.658 2.65e-07 *** 

--- 

AIC: 130.14 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.112527   0.111634   1.008    0.317 

No          0.004687   0.003375   1.389    0.169 

 

AIC: 155.55 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.00112    0.20825   4.807 7.69e-06 *** 

lonPrev     -0.29145    0.07428  -3.924 0.000192 *** 

--- 



AIC: 143.13 

 

Neva 3 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.208574   0.152830   7.908 2.95e-11 *** 

day         -0.055443   0.005862  -9.459 4.40e-14 *** 

--- 

AIC: 139.15 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.541623   0.167539  -3.233 0.001881 **  

No           0.005647   0.001530   3.690 0.000443 *** 

--- 

AIC: 185.39 

             Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.039846   0.493797  -0.081    0.936 

lonPrev     -0.003565   0.120123  -0.030    0.976 

 

AIC: 198.18 

 

Neva 4 

 

                     Estimate   Std. Error    t value   Pr(>|t|)     

(Intercept)  0.06866    0.01982      3.464     0.000914 *** 

Week           0.02768    0.01060      2.612     0.011007 *   

--- 

AIC: -122.51 

                     Estimate    Std. Error    t value   Pr(>|t|)     

(Intercept)  1.104e-01   1.586e-02   6.965   1.44e-09 *** 

Infection   -1.632e-06   6.181e-05   -0.026    0.979     



--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

AIC: -115.82 

Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.65323    0.17110   9.663  4.1e-13 *** 

lonPrev     -0.17623    0.04403  -4.002 0.000204 *** 

--- 

AIC: 96.966 

 

Plots of mean values of variables: 

 

Figure 21: Mean number of parasites in hosts surviving until end of experiment, plotted against time  
 

 



 

Figure 22: Western Norway. The mean growth rate of the parasite population from surviving hosts plotted 
against mean number of parasites at the same point in time for each surviving host 
 

 

Figure 23: Southeastern Norway. The mean growth rate of the parasite population from surviving hosts 
plotted against mean number of parasites at the same point in time for each surviving host 
 

 

Figure 24: Scotland. The mean growth rate of the parasite population from surviving hosts plotted against 
mean number of parasites at the same point in time for each surviving host 

 
 



 

Figure 25: Russia. The mean growth rate of the parasite population from surviving hosts plotted against 
mean number of parasites at the same point in time for each surviving host 

 

 

Figure 26: Sweden. The mean growth rate of the parasite population from surviving hosts plotted against 
mean number of parasites at the same point in time for each surviving host 
  



 

Figure 27: Alta. The mean growth rate of the parasite population from surviving hosts plotted against mean 
number of parasites at the same point in time for each surviving host 

 
 

Datasets from own research conducted at NHM, UiO. 

Neva: 

Fish Day post 
infection 

Number of 
parasites 

Ln Number of 
parasites 

Ln Numer of 
parasites 

Previous date 

Parasite growth 
Rate 

1 0 15 2.70805   

1 7 86 4.454347 2.70805 1.746297 

1 14 247 5.509388 4.454347 1.055041 

1 21 537 6.285998 5.509388 0.77661 

2 0 16 2.772589   

2 7 67 4.204693 2.772589 1.432104 

2 14 207 5.332719 4.204693 1.128026 

2 21 332 5.805135 5.332719 0.472416 

3 0 30 3.401197   

3 7 161 5.081404 3.401197 1.680207 

3 14 457 6.124683 5.081404 1.043279 

3 21 775 6.652863 6.124683 0.52818 

4 0 47 3.850148   

4 7 123 4.812184 3.850148 0.962037 

4 14 363 5.894403 4.812184 1.082218 

4 21 528 6.269096 5.894403 0.374693 

5 0 98 4.584967   

5 7 211 5.351858 4.584967 0.766891 



5 14 359 5.883322 5.351858 0.531464 

5 21 624 6.43615 5.883322 0.552828 

6 0 119 4.779123   

6 7 230 5.438079 4.779123 0.658956 

6 14 477 6.167516 5.438079 0.729437 

6 21 813 6.700731 6.167516 0.533215 

7 0 1 0   

7 7 6 1.791759 0 1.791759 

7 14 10 2.302585 1.791759 0.510826 

7 21 30 3.401197 2.302585 1.098612 

8 0 1 0   

8 7 4 1.386294 0 1.386294 

8 14 14 2.639057 1.386294 1.252763 

8 21 24 3.178054 2.639057 0.538997 

9 0 77 4.343805   

9 7 151 5.01728 4.343805 0.673474 

9 14 244 5.497168 5.01728 0.479888 

10 0 2 0.693147   

10 7 1 0 0.693147 -0.69315 

10 14 12 2.484907 0 2.484907 

10 21 10 2.302585 2.484907 -0.18232 

11 0 4 1.386294   

11 7 5 1.609438 1.386294 0.223144 

11 14 33 3.496508 1.609438 1.88707 

11 21 65 4.174387 3.496508 0.67788 

12 0 93 4.532599   

12 7 251 5.525453 4.532599 0.992853 

12 14 529 6.270988 5.525453 0.745535 

12 21 660 6.49224 6.270988 0.221251 

13 0 3 1.098612   

13 7 18 2.890372 1.098612 1.791759 

13 14 111 4.70953 2.890372 1.819158 

13 21 329 5.796058 4.70953 1.086528 

14 0 11 2.397895   

14 7 26 3.258097 2.397895 0.860201 

14 14 96 4.564348 3.258097 1.306252 

14 21 181 5.198497 4.564348 0.634149 

15 0 1 0   

15 7 12 2.484907 0 2.484907 

15 14 193 5.26269 2.484907 2.777784 

15 21 449 6.107023 5.26269 0.844333 

16 0 7 1.94591   

16 7 20 2.995732 1.94591 1.049822 



16 14 103 4.634729 2.995732 1.638997 

16 21 222 5.402677 4.634729 0.767948 

17 0 4 1.386294   

17 7 15 2.70805 1.386294 1.321756 

17 14 99 4.59512 2.70805 1.88707 

17 21 204 5.31812 4.59512 0.723 

18 0 2 0.693147   

18 7 12 2.484907 0.693147 1.791759 

18 14 63 4.143135 2.484907 1.658228 

18 21 162 5.087596 4.143135 0.944462 

 

Numedalslågen 1 

Fish Days post 
infection 

Number of 
parasites 

Ln Number of 
parasites 

Ln Number of 
parasites at 

Previous date 

Parasite 
growth rate 

Fish1 0 5 1.609438   

Fish1 7 4 1.386294 1.609438 -0.22314 

Fish1 14 14 2.639057 1.386294 1.252763 

Fish1 21 8 2.079442 2.639057 -0.55962 

Fish1 28 33 3.496508 2.079442 1.417066 

Fish1 35 37 3.610918 3.496508 0.11441 

Fish1 41 78 4.356709 3.610918 0.745791 

Fish1 48 195 5.273 4.356709 0.916291 

Fish1 55 364 5.897154 5.273 0.624154 

Fish2 0 5 1.609438   

Fish2 7 7 1.94591 1.609438 0.336472 

Fish2 14 18 2.890372 1.94591 0.944462 

Fish2 21 32 3.465736 2.890372 0.575364 

Fish2 28 83 4.418841 3.465736 0.953105 

Fish2 35 94 4.543295 4.418841 0.124454 

Fish2 41 224 5.411646 4.543295 0.868351 

Fish2 48 361 5.888878 5.411646 0.477232 

Fish2 55 495 6.204558 5.888878 0.31568 

Fish4 0 5 1.609438   

Fish4 7 5 1.609438 1.609438 0 

Fish4 14 14 2.639057 1.609438 1.029619 

Fish4 21 41 3.713572 2.639057 1.074515 

Fish4 28 84 4.430817 3.713572 0.717245 

Fish4 35 119 4.779123 4.430817 0.348307 

Fish4 41 236 5.463832 4.779123 0.684708 

Fish4 48 472 6.156979 5.463832 0.693147 

Fish4 55 638 6.458338 6.156979 0.301359 



Fish5 0 5 1.609438   

Fish5 7 6 1.791759 1.609438 0.182322 

Fish5 14 15 2.70805 1.791759 0.916291 

Fish5 21 30 3.401197 2.70805 0.693147 

Fish5 28 77 4.343805 3.401197 0.942608 

Fish5 35 121 4.795791 4.343805 0.451985 

Fish5 41 330 5.799093 4.795791 1.003302 

Fish5 48 665 6.499787 5.799093 0.700694 

Fish5 55 772 6.648985 6.499787 0.149198 

Fish7 0 5 1.609438   

Fish7 7 5 1.609438 1.609438 0 

Fish7 14 10 2.302585 1.609438 0.693147 

Fish7 21 19 2.944439 2.302585 0.641854 

Fish7 28 34 3.526361 2.944439 0.581922 

Fish7 35 49 3.89182 3.526361 0.36546 

Fish7 41 87 4.465908 3.89182 0.574088 

Fish7 48 186 5.225747 4.465908 0.759839 

Fish7 55 356 5.874931 5.225747 0.649184 

Fish8 0 5 1.609438   

Fish8 7 11 2.397895 1.609438 0.788457 

Fish8 14 29 3.367296 2.397895 0.969401 

Fish8 21 60 4.094345 3.367296 0.727049 

Fish8 28 115 4.744932 4.094345 0.650588 

Fish8 35 162 5.087596 4.744932 0.342664 

Fish8 41 300 5.703782 5.087596 0.616186 

Fish8 48 449 6.107023 5.703782 0.40324 

Fish8 55 604 6.403574 6.107023 0.296551 

Fish9 0 5 1.609438   

Fish9 7 3 1.098612 1.609438 -0.51083 

Fish9 14 14 2.639057 1.098612 1.540445 

Fish9 21 18 2.890372 2.639057 0.251314 

Fish9 28 33 3.496508 2.890372 0.606136 

Fish9 35 37 3.610918 3.496508 0.11441 

Fish9 41 56 4.025352 3.610918 0.414434 

Fish9 48 102 4.624973 4.025352 0.599621 

Fish9 55 292 5.676754 4.624973 1.051781 

 

 

 

 



Numedalslågen 2 

Fish Days post 
infection 

Number of 
parasites 

Ln Number of 
parasites 

Ln Number of 
parasites at 

Previous date 

Parasite growth 
rate 

Fish10 0 5 1.609438 NA NA 

Fish10 7 4 1.386294 1.609438 -0.22314 

Fish10 14 9 2.197225 1.386294 0.81093 

Fish10 21 12 2.484907 2.197225 0.287682 

Fish10 28 48 3.871201 2.484907 1.386294 

Fish10 35 69 4.234107 3.871201 0.362905 

Fish10 42 140 4.941642 4.234107 0.707536 

Fish10 49 164 5.099866 4.941642 0.158224 

Fish11 0 5 1.609438 NA NA 

Fish11 7 0 NA 1.609438 NA 

Fish11 14 3 1.098612 NA NA 

Fish11 21 3 1.098612 1.098612 0 

Fish11 28 23 3.135494 1.098612 2.036882 

Fish11 35 43 3.7612 3.135494 0.625706 

Fish11 42 114 4.736198 3.7612 0.974998 

Fish12 0 5 1.609438 NA NA 

Fish12 7 3 1.098612 1.609438 -0.51083 

Fish12 14 5 1.609438 1.098612 0.510826 

Fish12 21 11 2.397895 1.609438 0.788457 

Fish12 28 50 3.912023 2.397895 1.514128 

Fish12 35 68 4.219508 3.912023 0.307485 

Fish12 42 137 4.919981 4.219508 0.700473 

Fish13 0 5 1.609438 NA NA 

Fish13 7 0 NA 1.609438 NA 

Fish14 0 5 1.609438 NA NA 

Fish14 7 3 1.098612 1.609438 -0.51083 

Fish14 14 13 2.564949 1.098612 1.466337 

Fish14 21 31 3.433987 2.564949 0.869038 

Fish14 28 60 4.094345 3.433987 0.660357 

Fish14 35 134 4.89784 4.094345 0.803495 

Fish14 42 269 5.594711 4.89784 0.696872 

Fish14 49 171 5.141664 5.594711 -0.45305 

Fish15 0 5 1.609438 NA NA 

Fish15 7 5 1.609438 1.609438 0 

Fish15 14 9 2.197225 1.609438 0.587787 

Fish15 21 22 3.091042 2.197225 0.893818 

Fish15 28 40 3.688879 3.091042 0.597837 

Fish15 35 97 4.574711 3.688879 0.885832 

Fish15 42 35 3.555348 4.574711 -1.01936 

Fish16 0 5 1.609438 NA NA 

Fish16 7 3 1.098612 1.609438 -0.51083 

Fish16 14 4 1.386294 1.098612 0.287682 

Fish16 21 11 2.397895 1.386294 1.011601 

Fish16 28 24 3.178054 2.397895 0.780159 

Fish16 35 46 3.828641 3.178054 0.650588 



Fish16 42 227 5.42495 3.828641 1.596309 

Fish16 49 381 5.942799 5.42495 0.517849 

Fish17 0 5 1.609438 NA NA 

Fish17 7 2 0.693147 1.609438 -0.91629 

Fish17 14 12 2.484907 0.693147 1.791759 

Fish17 21 36 3.583519 2.484907 1.098612 

Fish17 28 40 3.688879 3.583519 0.105361 

Fish17 35 32 3.465736 3.688879 -0.22314 

Fish17 42 65 4.174387 3.465736 0.708651 

Fish18 0 5 1.609438 NA NA 

Fish18 7 1 NA 1.609438 NA 

Fish18 14 8 2.079442 NA NA 

Fish18 21 22 3.091042 2.079442 1.011601 

Fish18 28 43 3.7612 3.091042 0.670158 

Fish18 35 89 4.488636 3.7612 0.727436 

Fish18 42 58 4.060443 4.488636 -0.42819 

 



 

Figur 28: Plots showing mean growth rate plotted against time, indication the inverse trajectories observed. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


