
THE AXIOM OF DETERMINATENESS 

Jens Erik Fenstad 



I. THE G.ANIES. 

We shall consider certain infinite games with perfect infor·­

mation. 

Ilet X be a set, - we are mostly going to consider the case 

where X = N the set of natural numbers, or X= (0,1} • Let 

A be a subset of XN • In the game Gx(A) there are two players 

I and II who successively chooses elements from X , player I 

8tarting. 

A play, x 9 is an element x E XN 9 and I wins the play x 

if x E A , otherwise II wins. 

A strategy cr is a map from finite sequences of X to ele-

ments of X . If player I is using the strategy cr and II is 

using a strategy T 9 let us denote the resulting play by cr*r 

A more formal definition of cr*T is as follows: Let in 

general a
0

(n) = a(2n) and a 1 (n) = a(2n+1) 9 then define induc­

tively 

(cr*T) 0 (n) = cr( (cr*T) 1 jn) 

( cr * T ) 1 ( n) = T ( ( cr -x- T ) 
0 
I n+ 1 ) 

Thus we see that if x E XN is the play produced by I using cr 

and II T , then the element x2n of x is obtained by applying 

cr to the sequence <x1 ,x3, ••• ,x2n_ 1> 9 i.e. to the preceeding 

choices of II (we have perfect information), and x2n+ 1 is 

obtained by applying T to the previous choices of I 9 i.e. to 

the sequence <x ,x2 , .•. ,x2 >. o _ n 

A winning strategy for I in the game Gx(A) is a strategy 

cr such that CY*T E A for all counterstrategies T , and a win­

ning strategy T for II satisfies CY*T I A for all cr • 
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A game Gx(A) is determinate if either I or II has a 

winning strategy~ i.e. if 

A set A is called determinate if the game GN(A) is determinate. 

It is a mathematically interesting problem to decide which 

games are determinate. But the topic has an interest beyond this 

purely mathematical question. On a very general level we can 

make the following remark. 

The assumption (*) involves a non-trivial switch of quanti­

fiers. We may rewrite (*) as 

i.e. the existence of "local" counterstrategies implies the exis­

tence of a "global", i.e. winning, strategy. Usually implications 

of the type VS: -> S:V require some assumptions of finiteness 9 

compactness 9 uniformly boundedness 9 or the like. 

An unrestricted assumption of the type that games Gx(A) are 

always determinate 9 seems like cheating. Instead of provigg the 

existence of a 11 uniformizing" element, we simply ~tulate that 

it exists. 

The assumption is non-trivial. As a first example we shall 

derive the countable axiom of choice from(*). 

Let ]1 = 
(We need only 

show that (*) 

i.e. a map f 

[X19X2, • • • } be a countable family of sets 

assume that card (U[X I X E :&1 }) < 215 °.) We 

implies that there is a choice function for 

such that f(X) E X 9 for all X E F • 

N X. c N • 
l -

shall 

F 9 

The proof follows by considering a suitable game: Player II 

wins if and only if whenever n
0 

is the first choice of I and 



More formally let NN-A = [xl <x19 x 39 ••• > E Xx
0

} • One sees at 

once that 

hence by determinateness we obtain 

But this is nothing but an unfamiliar way of asserting the impli-

cation 

the winning strategy for II is the desired choice function. 

REMARK. We shall on occasions refer to games and 

In games of type G -x- I may choose arbitrary finite (including 

empty) sequences from X and II chooses single elements. In 

games of type G** both I and II may choose arbitrary (non­

empty) finite sequences from X • 

Intinite games of the above type was apparently first con­

sidered in Poland in the 1920 1 s 9 but not much seems to have been 

published on the topic. 

In 1953 GALE and STEWART worte a paper Infinite games with 

perfect information [6] 9 proving among other things that open sets 

(in the games GN) are determined. Using the axiom of choice 

they also produced a fairly simple non-determined game. They also 

gave a series of examples showing that the class of determinate 

sets has very few desireable algebraic closure properties. 

Their work was continued in a game-theoretic context by 

P. WOLFE and M. TIAVIS 9 the latter author showing in a paper [5] 
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from 1964 that every set belonging to the class F
05 

U G
50 

are 

determined~ - this result still being the best obtained, unless 

large cardinal assumptions are added to set theory. 

Independently some work was also done on infinite games in 

Poland. In 1962 a short paper by J. MYCIELSKI and H. STEINHAUS, 

A mathematical axi_om contradictiE,g_~he axiom of choice [ 13] 9 

suggested a new approach. They noted that assumptions of deter­

minateness had remarkable deductive power, and although contra­

dicting the unrestricted axiom of choice, led to a mathematics in 

some respects more satisfying than the usual one, e.g. determina­

teness implies that every subset of the real line is Lebesgue 

measurable. They also noted that analysis when confined to se­

parable spaces, would exist unchanged, i.e. "positive" results 

such as the Hahn-Banach theorem, the compactness of the Hilbert 

cube, etc., would still be true (whereas the general Hahn-Banach 

theorem and the general Tychonoff theorem would fail in the non­

separable case). 

The 1964 paper of MYCIELSKI, On tho axiom of determinateness 

[11], gives a very complete survey of what was known about deter­

minateness at the time. 

Already Mycielski had remarked in [11] 9 using previous work 

of Specker, that theconsistency of ZF (not including AC 9 the 

axiom of choice) and AD (= axiom of determinateness) implies 

the consistency of ZF + AC and tho assumption that strongly 

inaccessible cardinals exists. In 1967 R. SOLOVAY (in a still 

unpublished paper [19])showed that the consistency of ZF + AC +MC 

(where MC = there exists measurable cardinals) follows from the 

consistency of ZF +AD • This result gives an indication of the 

strenght of the axiom of determinateness. 
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In 1967 D. BLACKWELL published a short note 9 .Infinite g_§.me§_ 

and analytic sets [4] 9 where he showed that the reduction principle 

for co~ analytic (i.e. g~ ) sets follows from the basic result of 

Gale an-'l Stewart that open sets are determined. 

His observation was independe11tly extended by D. R~RTIN [7] 

and by J. ADDISON andY. MOSCHOVAKIS [3] in 1968. In these papers 

it was shown that determinateness of certain games had deep conse­

quences for the analytic and projective hierarchies in Bairespace 

and Cantorspace. 

At the same time (but 9 however, first pubpished in 1970) 

D. MARTIN [8] showed that adding MC to ZF implies that every 

analytic set (i.e. f.~ set) is determinate. 

This concludes our brief "historical remarks". The present 

paper is a survey paper. There might be a few refinements to ex-

isting results and some new details added, but the aim has been 

to give a reasonably complete exposition of those parts of the 

theory which lie closer to "ordinary" mathematics (here~ descrip­

tive set theory and real analysis). In this respect we aim at 

bringing the 1964 survey of J. Mycielski [11] up to date. (How-

ever 9 since there is a large "unpublisb.ed literature" on the topic 9 

our survey is probably incomplete.) 

We believe that determinateness is an interesting and impor-

tant topic. As we shall argue in the concluding section of this 

paper 9 some form of determinateness assumption might be a reason-

able addition to the current set theoretic foundation of mathe-

matics. 

REMARK ON NOTATION. Our notation is standard. We assume that the 

reader has some basic knowledge of set theory and real analysis. 
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Example~ We do not explain the Godel notion of "constructible setil. 

But since we are giving very few proofs? only a rudimentary know-

legge of constructibility is necessary for following the exposition. 

From recursion theory we use the standard notation (as e.g. ~ 9 

rr
1 and 61 for sets on the nth level of the projective hierarchy) .....,n "'n 

and occasionally we refer to some basic fact about "finite path 

trees 11
9 or the like. And in discussing the Lebesgue measurability 

of various subsets of the real line we assume that the reader know 

what Lebesgue measure is, but very little beyond that. 



II. DETERMINACY AND THE ANALYTIC AND PROJECTIVE HIERARCHIES. 

Reduction principles play a central role in the study of 

hierarchies. Let us recall the basic definitions. A class Q 

of setssatisfies the £~£~E~io~ princi~l~ if for all X9 Y E Q there 

are sets X19 Y1 E Q such that X1 ~ X 9 Y1 ~ Y9 X1 n Y1 = ¢ 9 and 

= X U Y The main point here is 9 of course 9 that x1 
also belong to Q 9 i.e. is of the same kind of complexity 

as X and Y • 

It is classical that in ZF + AC we have Red(TI~) and 

Red(,~~) 9 where Red ( Q) means that Q satisfies the reduction 

principle. 

Assuming the axiom of constructibility 9 V = L 9 ADDISON [1] 

extended this to for all k ;: 3 • The idea behind the 

proof is quite simple. Using V = L one can show that there is 

a f:.1 
2 

well ordering of NN • Now any set in 2:1 is obtained by 
""'k 

taking a union over NN 
9 which lJy v = L has a "nice" well or-

dering. So given any element in X n Y put it in x1 if it is 

generated "earlier" in X than in Y 9 otherwise put jt in Y1 

Both MARTIN [7] and ADDISON 9 MOSCHOVAKIS [3] obs~ed that 

reduction principles obtains in the higher levels of the hierar-

chies 9 if one adds suitable assumptions of determinateness. We 

shall give a brief exposition of the latter author's work (return­

ing to Martin's ideas in the next section). 

The basic result is a "prewellordering theorem". A prewell-

ordering on a set is a total 9 transitive and well-founded binary 

relation on the set. (Note~ If < is a pre-wellordering 9 then 

we do not assume that x ~ y and y ~ x imply x = y • By 

passing to equivalence classes 9 x ""'y iff x < y and y < x 
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we get a true wellordering and hence an associated ordinal.) 

Obserre the following simple example~ If A E "0 . 
~1 , l. e. 

A= [x I an R(x 9 n)l , where x may be any (finite) sequence of 

function and number variables, then the relation 

is a prewellordering of A 

To explain the general result announced by Addison and 

Moschovakis we need some further terminology. Let E~ be I:~ 

if k is even and n~ if k is odd. A subset C of N x X 9 

where X may be any finite product of N and NN is called 

-., 1 . 1 f X l. f 0 . E 1 d f E 1 b t A J:,k -unl versa or lS k an or every k-su se 

of X there is some n E N such that x E A iff <n,x> E C • 

PREWELLORDERING THEOREM. Let X be as above, let 1 be an even 

number, and let k be 1 or 1+1 • If every 61 
"'1 

subset of NN 

is determinate, then there is a subset Vf k eN X X which is 

E1:-uni versal for X 9 and a prevvellordering < 
-k of wk whose 

initial segments are uniformly 61 
""k . 

We shall briefly indicate the basic ideas of the proof. The 

proof goes by induction. 

above will serve. 

In the basis the simple example < 
-o 

In the induction step one must distinguish between the case 

where k = 1 is even or k = 1+1 is odd. In the former case we 

pass from a IT to a I: class, hence we get by by taking infima 

of wellorderings, just as in the 11 abloluten case, i.e. from n~ 

to I:~ • In detail: let z E Wk iff aa(z,a) E Wk_ 1 and define 

z <k w iff z,w E Wk_ 1 and the < - least -lr-1 

less than the .:::.k_ 1 - least (w,P) • 

is < 1 --k-
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In the odd case one has to go from a E to a IT class. 

This means that one has to take suprema of wellorderings in order 

to get definitions of the segments of <, 
-K 

But this cannot 

be done usin6 ordinary function quantifiers 9 a fact which has ob­

structed the passage from E~ to n; in "absolute" recursion 

theory. Assuming V = L Addison gave one "solution" to the prob­

lem. Assuming determinacy of projective sets gives another, and 

perhaps is some respects, more satisfactory "solution" to the 

problem. 

A required E~-universal set has the form wk = [xI Va,(x,o:.)Ev~c-1}. 
Given x,y E Wk define a set by setting 

B = (ex. E NN x,y 

where 0',0 and 0',1 are defined from a as in the first section 

of this paper. One sees that B x9y E 61 
"'1 ? hence is determinate 

by assumption. The ordering ::k on w 
k is now defined by 

X <k Y = x,y E W k and 3:'1' Va ( CJ-lt'f' E Bx,y) . 
The definition is 11 natural 11 which is seen by considering the case 

k = 1 and 1 = 0 . In this caso w 1 has the form: 

w1 = [x I Va an R(x 9a(n))} 9 and a E Bx
9
y iff ~--tnR(x,a (n)) < 

0 -

!-lmR(y 9a 1 (n)) (Note that in this case B is x?y provably deter-

minate by the main result of Gale, Stewart [6].) 

Consider now the usual sequence trees and associated 

with R , x andy • If x 9 y E w1 9 the trees are well-founded 9 so 

let O(Tx) and O(Ty) denote the corresponding ordinals. The 

so-called "basic tree lemma" (see e.g. Rogers [16]) asserts that 

O(Tx) < O(Ty) iff (except for degenerate cases) there exists a 

branch tree T' of y 

Tx 9 O(T~) < O(Ty) . 

such that for all branch trees 

The existence of a winning strategy 

T' 
X 

of 

'I' 9 as 
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required in the definition of ~1 thus follows from the basic 

tree lemma, and a proof of the prewellordering theorem is easily 

obtained in this case. But in order to generalize one needs a 

proof within a game-theoretic context. 

We shall not prove in detail that ::k has the required pro­

perties. As quite typical for the proof we shall verify that the 

relation is total~ Assume that x,y E Wk and l(x ~k y) , i.e. 

J 3:r Vo(cH-r E Bx,y) • 

By the suitable assumption of determinateness this implies 

which means that 

But since player II always can imitate player I , one easily 

infers that 

i.e. y ,:::1 x • 

Transitivity and well-foundedness is obtained by simultane­

ously playing several games. In the verification of well founded­

ness one also needs the axiom of dependent choices (DC) • 

Using the prewellordering theorem one may now lift all theo­

rems of "abstract"or''generalized" recursion theory to every level 

of the hierarchy. Many of these results are listed in the announce­

ment of Addison and Moschovakis [3]. 

REMARK. Our understanding of the prewellordering theorem has 

greatly benefitted from many discussions with T. OTTESEN, who in 



a seminar at Oslo has worked out the various consequences of the 

pwo theorem, and also added several refinements. 

In conclusion let us return to the reduction principles. 

Assuming V = L one has the series 

The prewellordering theorem gives the series 

DC (= axiom of dependent choices) More precisely one proves that 

and determinateness of ~~k 1 1 
sets imply Red(g2k+ 1) and Red(I2k+2). 

The proof is straight forward since we can use the prewellordering 

theorem to separate elements in the intersection. 

One sees that AD and V = L both give answers, but conf]j_ct-

ing ones. Note that it is AD which continues the pattern of the 

classical, or "absolute 11 case. 

The next topic would be the extension of uniformization 

principles using AD 

A Basis theorem for 

There is one paper by MARTIN and SOLOVAY, 

sets of reals [9] 9 which makes a one-step 

extension (going by way of measurable cardinals), but the field 

seems to be wide open. Reduction principles and "generalized" 

recursion theory seems to need very little beyond the ass::Lgnment 

of ordinals (existence of prewellorderings). Uniformization prin-

ciples seems to lie much deeper. 
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III. DETERMINACY AND THE REAL LINE. 

It is a standard fact of measure theory that there are sub-

sets of the real line which are not Lebesgue measurable. One re-

markable consequence of AD is the following result of MYCIELSKI 

and SWIERCZKOWSKI [14]. 

THEOREM. AD implies that every subset of the real line is 

Lebesgue measurable. 

We shall give a brief sketch of the proof and indicate some 

refinements. Rather than working on the real line we shall con­

sider the space 2N and the usual product measure 11 on 2N 

(i.e. ~((a E 2N I a(n) = 0}) =~([a E 2N I a(n) = 1}) = t for 

all n E N) . 

Let X c 2N and let r = <r > be a sequence of numbers of n 
the form rn = 2-tn where each tn is a natural number and 

2 < t1 < t2 < • • • • Associated with X and r there will be a 

game G(X 9 r) 9 and the assumption that these games are determinate 

will imply that every subset of 2N is ~-measurable. 

Let Jk be the class of subsets S c 2N which satisfy the 

following requirements~ 

(i) Each S is a union of basic neighborhoods. 

(ii) Each S is contained in a basic neighborhood of diameter 

2-k < • 

(iii) The ~-measure of S is 

The game G(X 9 r) is played as follows: 
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Move 1 ~ Player I chooses a set s1 

Move 2 ~ Player II chooses a set s2 

Move 3~ Player I chooses a set s3 

etc. 

Note that because of (i) and (ii) 

point. If the point determined by the 

E J 1 • 

E J2 such that s2 s= s1 

E J3 such that s3 .:::: s2 

CD 

n s 
n=1 n 

reduces to one 

play S 
0 

belongs to X , then I wins. If the point belongs to 2N - X 

then II wins. 

• 

• 

Let f-1* denote the inner measure on 2N associated with f1. 

Mycielski and Swierczkowski obtained the following estimates for 

f-1-x_(X) and f.1*(2N-X) ~ 

(a) If I has a winning strategy in the game G(X,r) , then 
CD 

f.l*(X) ~ r1·n~1(1-2·r2n) . 

(b) If II has a winning strategy in the game G(X,r) 9 then 

N :::o 
l..t*(2 -X)> II (1-2·r2 1). 

- n=1 n-

(To be accurate: Mycielski and Swierczkowski worked with the 

interval [0 9 1] • An analysis of their proof shows that it works 

as well for the space 2N 9 some extra care being needed to obtain 

the sets sj 9 see the sketch below.) 
n 

We indicate how (a) and (b) are proved~ Let I be using a 

strategy cr • Let 

be a position in a play of the gamo. One observes that there is 

a finite number of sets s1
11

, ••• ,s~n E J 2n such that the sets 

&~n = cr(<So, ••• ,s2n-1' 8 ~n>) 
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are disjoint for n = 1, •.• ,m 9 and such that 

m 1\. 

u(i~1S~n) > !J(S2n-1). (1- 2r2n) • 

Let Am be the union of all possible such sets at move 

2m + 1 in plays where I has been using the strategy a and II 
i at each of his moves has picked one of the sets s 2n . One proves 

that Am+1 cAm and, using the above inequality 9 that 

m 
1-l (Am) > r 1 • I1 ( 1 - 2r2 ) • 

- n=1 n 

:::0 
If X E n A 

m=1 m 9 there exists a strategy 'T"x for II such 

that the play a*Tx produces the point X 
' 

viz. II always 

chooses the unique set si 
2n such that X E a(<S

0
, ••• ,s~n>) ' 

the 

latter sets being disjoint, 

If a is a winning strategy for I , then the argument shows 

that nAm c X , hence the estimate above on the 1-1-measure of Am 

gives the inequality of (a) . In a similar way one proves (b) 

The theorem is an immediate consequenceg If there are non-

measurable sets, then by standard measure theory there will be a 

set X c 2N sucn that 1-l.x.(X) = 0 and Jl.~(2N- X) = 0 • But by 

(a) and (b) this is impossible, - if every game G(X,r) is deter-

mined. 

To obtain a refinement we choose a particular type of sequence 

r = <r > n 

and 

viz. we set 

2-(E:On+1) 
r2n-1 = 

= 

for n > 1 , 

for n ~ 0 , 

where K is some natural number > 1 . We then see that 
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co 
11 ( 1 - 2r2 1 ) = 

n=1 n-
TI ( 1 - 2-E:On) 

n=1 

2 
> e-21f.=T 

and we observe that 

2 
- 2K-1 

e t-> 1 from below when 

Assume now that every game G(X 9 r) is determined, where X 

is a Q,~ subset of 2N and r is a sequencE' of the type con·~ 
sidered above. 

To derive a contradiction let X 1 be a non-measurable 

subset of 2N . Standard measure theory (needing nothing more 

than a countable version of the axiom of choice) shows that there 

is a Borel set F ~ x1 such that ~*(X) = ~(F) . Hence if we 

set X = X1 - F 9 then X is Q~ and 1-Lx_(X) = 0 ~ 
Since X also must be non-measurable 9 we see that ~*(2N-X)<1. 

Choose K such that 
2 

- 2K-1 N 
e > ~ 1 .. (2 -X). 

By assumption the game G(X 9 r) is determinate 9 where r is the 

particular sequence determined by K • So either (a) or (b) 

should obtain. But both are impossible 9 hence the given 

b t X f 2N t b b su se . 1 o mus e ~-measura le. 

The game G(X 9 r) is not in standard form. But we see from 

the "effectiveness" of the clauses (i) - (iii) in the definition 

of the class Jk 9 and from the fact that the sequence r depends 

upon a single number parameter K 9 that it can- without too 

much effort - be recast as a game of the type GN , and further 

that determinateness of the associated 11 1 game GN gives the 
"'n 

determinateness of the considered G(X 9 r) game. Thus our analys.B 

yields the following corollary to the theorem of Mycielski and 

Swierczkowski: 
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THEOREM. If the game GN(A) is determined for every 

A 7 then every rr
1 subset of 2N is ~-measurable. 

set 

""n 

REMARK. AD also implies further "nice 11 properties of the real 

line or the space 2N 9 e.g. every non-denumerable subset contains 

a perfect subset and every subset has the property of Baire (i.e. 

there is some open set such that the symmetric difference of the 

given set and the open set is a set of first category). We return 

to these properties in the next section. 

Not every consequence of AD with respect to the real line 

is "nice". From results WFJ have mentioned it follows that the 

uncountable axiom of choice fails. 

of many cardinal numbers 7 e.g. ~ 1 

Further we get incomparability 

d ') ~0 '11 b . an ~ Wl e lncompar-

able. And we may conclude that there is no well-ordering of the 

real line. 

But we can still consider prewellorderings of the continuum. 

Let 

o1 =the least ordinal not the type of a 
'"'"'n 

6 1 prewellordering of the real line. 
'"'"'n 

It is a classical result that Q,~ - w 1 • VTe have the recent re-

sults of MOSCHOVAKIS [10]: 

THEOREM. Assume AD and DC • Then each is a regular car-

dinal and 

It is tempting to formulate the conjecture: o1 
= w 9 which 

""n n 

according to Moschovakis [10] 7 ought to be true on notational 

grotmds alone. D. Martin (unpublished) proved that o1 < w 
'"'"'2 - 2 

is 



- 17 -

a theorem of ZF + AC 9 so that the conjecture is verified for 

n = 1,2 • Recently he is reported to have settled the conjecture 

in the negative by showing that AD implies that w3 is a sin­

gular cardinal. Thus AD gives a rather complicated and unfami-

liar theory of cardinals. The reader must judge for himself 

whether this is an argument for or against AD • In this connec-

tion he may also contemplate the following noteworthy result. 

THEOREM. AD implies that w1 is a measurable cardinal. 

This means that there is a countable additive, two-valued 

measure defined on the powerset of w1 such that w1 has measure 

1 and each point has measure 0 . 

The theorem is due to SOLOVAY [ 19] 9 but it is now possj_ble 

to give a very different and much simpler proof based on a result 

of MARTIN [7]. 

THEOREM. Let D be the set of all degrees of undecidability and 

let E be an arbitrary subset of D • Then there exists a degree 

d such that either d E E for all d > do ? or d E D-E for 
0 -

all d > d • - 0 

The proof is simple and worth repeating~ Let E-:~ be the set 

of all sequences in 2N whose degree belongs to E Assume that 

I has a winning strategy in the game G2 (E 7c) , and let d
0 

be 

its degree. Let d > d 
0 

and let ~ be a sequence of degree d • 

If II plays according to a and I plays according to his win­

ning strategy, the sequence produced will have degree d • Hence 

d E E • 

From this one gets a countably additive 0-1 measure on the 

set of degrees D • Let E ~ D , we define 
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1 
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ow. 

And using the map f~ D -> w 1 defined by f ( d) d wh- d . -l-1, = w 1 ere w1 lS w.1.e 

least (countable) ordinal not recursive in d ~ we get a measure 

!l on w1 by the formula 

for A an arbitrary subset of 8 1 • 

REMARK. Martin in [7] used the measure I. to lift many of the 

results of general recursion theory (such as reduction principles) 

to all levels of the analytic and projective hierarchies. The 

use of to get a measure on t:J 1 was noticed later. 

We have now an immediate proof of the following theorem of 

SOLOVAY [ 1 9] ~ 

TfffiOREM. Con(ZF + AD) implies Con(ZF + AC + MC) . 

Let !l be the measure constructed above. The inner model 1
11 

will then be the required model for Z]1 + MC • 

Stronger results are known. We have e.g. the following 

result of Solovay~ 

THEOREM. Con(ZF + AD + DC) implies Con(ZF + AC + Vo. CiiM ( M is 

an inner transitive model with a. measurable cardinals)). 

We shall conclude this part of our survey by relating AD to 

Souslin hypothesis. 

Let L be a totally ordered set without a first or last 
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element which is connected in the usual interval topology. Sousl::in 

conjectured that if each family of disjoint open intervals in L 

is countable 9 then L is topologically the real line. 

It is well known that if we instead require L to be separ­

able, then it is equivalent to the real line. We can therefore 

rephrase Souolin's conjecture in the following way. We call L 

a Souslin line if we in addition to the properties considered by 

Souslin also require L to be not separable. The conjecture is 

now: There is no Souslin line. 

The conjecture has an equivalent form in terms of trees. A 

Souslin tree is a tree of cardinality w1 such that each chain 

and each antichain of the tree is countable. The basic fact is: 

Souslin lines exist iff Souslin trees exist. (For a proof and an 

elementary survey of the topic 9 see [17].) 

THEOREM. AD implies that there are no Souslin trees. 

The proof uses the fact that t~ 1 is measurable. Assume 

that is a Souslin tree. Since the cardinality of T 

w1 9 we may assume that T also is measurable 9 hence carries 

two-valued measure ll . For p < UJ1 let T p denote the set 

is 

a 

of 

elements in the tree of level p . Since T is a Souslin tree 

and each Tp is an an ti·ohain in T T p is countable. And 

since the cardinality of T is UJ1 7 each Tp is non-empty. 

Let p < w1 Define D = U Ty 9 we see that u(DP) = 0 • p y<p 
Let for t E T 

f(t) = [t' E T I t ~ t'} • 

Then [DP} U (f(t) I t E TP} is a countable partition of T 

hence there is exactly one t E T such that 11 ( f ( t)) = 1 . Thus 
p 
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we may define for each p < w1 

tp = the unique t E TP such that ~(f(t)) = 1 • 

It is not difficult to verify that [tp I p < w1 } is an uncomLt­

able chain in T , which contradicts the assumption that T is 

a Souslin tree. 

Vve would like to conclude from this that AD implies that 

Souslin hypothesis is true. However 9 the construction of a 

Souslin tree from a Souslin line requires the uncountable axiom 

of choice 9 which we know is inconsistent with AD • Hence there 

remains a puzzling problemg Is it consistent with AD to have 

Souslin lines, but not Souslin trees ? 

On the other hand (as we shall point out in the concluding 

section of this paper) a decent mathematics on the basis of 

ZF +AD requires that we impose conditions of separability. And 9 

as seen above, adding separability makes Souslin 1 s conjecture 

trivial. 

REMARK. The reader will have noticed that what we really proved 

above, is that if x. is a measurable cardinal, then there are 

no Aronszajn 1-t- tree (or fake Souslin tree of cardi:nali ty x.). 

This hao been known to the experts on trees for a long time. 
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IV. WHICH GAMES ARE DETERMINATE ? 

We hope to have convinced the reader that assumptions of 

determinateness leads to many interesting results, which have 

great potential importance for mathematics 9 - if we can answer 

the basic questions: Which games are provably determinate? 

Which games can consistently be assumed to be determinate? 

The basic positive result is due to GALE 9 STEWART [6]. 

Their main result is: 

THEOREM. Let X be either N or [0 9 1} • Then the game Gx(A) 

is determinate if A is open or A is closed. 

This result was extended by DAVIS [5], whose main result is~ 

THEOREM. The game GN(A) is determinate if A E F00 U G00 

This is as far as we at present can go within ZF + AC . 

One of the difficulties in extending the result is that the class 

of determinate sets has no nice closure properties, e.g. it is 

not closed under unions, intersections, and complementation. 

Perhaps Davis' result is optimal? The main open problem is, 

of course, whether Borelgames are determinate. Dropping the re­

placement axiom form ZF H. Friedman (unpublished) has produced 

counterexamples. It is also known that 61 represents the limit 
~1 

of what is obtainable in ZF • As we shall indicate below there 

are TI~ non-determinate sets in ZF + V = L . 

The situation is much better understood with respect to 

games of the type Gi(A) and Gio~(A) • We shall first state the 
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known relationships between games G? * and *-)(- To do G , G . 
we :').eed some notation. Let: 

AD :::: Every game GN(A) is determinate 

AD2 :::: Every game G2 (A) (i.e. A ~ 2N) is determinate 

AD-* :::: Every game G-*(A) 
N is determinate 

AD-x-
2 :::: Every game G2(A) is determinate 

AD7:-·>~ = Every game G*-*(A) 
N is determinate 

AD~~!..* 
2 = Every game G2*(A) is determinate 

The following relationships are knovm (see [11]): 

AD2 <-> AD AD* 

AD* 2 

AD''+* <-> AD** 
2 

this 

M. DAVIS [5] has shown that player I has a winning strategy 

in games G2(A) iff A contains a perfect subset 9 and that II 

has a winning strategy iff A is countable. 

In the Banach-Mazur games G~-::-(A) J. OXTOBY [ 15] (building 

on previous work of Banach and Mazur) has proved that II wins 

iff A is of the first category 9 and I wins iff A is of the 

first category in some open subset of NN 

Restating these results one gets (see [11]): 

I. AD; is equivalent to the assertion that every uncountable 

subset of 2N hns n perfect subset. 

II. AD** is equivalent to the asserting that every subset of 

NN has the property of Baire (i.e. is congruent to an open 

set modulo sets of first category). 
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These are the "classical" results, Recently we have the 

following remarkable result of D. MARTIN [8] : 

THEOREM. If measurable cardinals exists, then every set is 

determined, 

Nothing seems to be kno\vn about the determinateness of 6
1 

rv2 

sets. (Note that 6
1 determinateness is the first non-trivial ,-..,2 

assumption of determinateness needed for the prewellordering theorem.) 

Counterexamples are easier to come by. E.g. a non Lebesgue 

measurable subset of the real line must be non-determinate. 

If we work within 

terexample: ZF + V = L 

ZF + V = L we immediately get a 
1 implies Red(rr3 ) • If every 6

1 set 
""'2 

coun-

were determined, the prewellordering theorem would give Red(£~) • 

And as is well known we cannot at the same time have Red(E~) and 

Red(rr 1
) • 

"'n 

The following is a rr 1 counterexample: Using the 6
1 

...... 1 2 

ordering of NN which follows from V = L 9 we may define a 

subset of NN which contains one code a for each ordinal less 

than w1 • This is an uncountable set 9 and we claim that it cannot 

contain a perfect subset. For if so, this subset would also be un­

countable and hence cofinal in the given set, and therefore could 

be used to define a set WO = (a E NN I a is a wellordering ofN~ 

viz. a E WO iff a is a linear ordering of N and there is a 

function in the perfect set (which is a closed set) such that a 

is orderisomorphic to a segment of this function. But this is im-

. bl . HTQ ~ IT 1 "1 poss~ e s~nce vv c rv1 - ~1 • 

1 By the Kondo-Addison uniformization theorem every ~2 set is 

a 1-1 projection of a rr 1 - set. And since a 1-1 continuous ..v1 



image of a perfect set is a perfect set, we get a n1 counter rv1 - -

example. 

We ~hall make some further collinents on the relationship be­

tween AD and MC , In section III we saw that AD implies that 

w1 is measurable, hence that the consistency of ZF + AC + MC 

follows from the consistency of ZF +AD • Further results of 

Solovay were quoted showing that .AD is a much stronger assump-

tion than JY1C • Martin's theorem quoted above is a step in the 

converse direction, MC implies that every 2::1 
rv1 (or TI 1 ) 

"'1 
set is 

determined. This result can be used to obtain different proofs 

of some results which folloNs from the existence of measurable 

cardinals. 

Classically one knows that an uncountable set contains a 

perfect subset. Unrestricted AD extends this to every uncount­

able subset of NN • By Martin's theorem we can conclude that 

every set is determined 9 and looking closer at the character-

ization theorem of M. Davis, it is not dlfficult to conclude that 

every uncountable n1 set contains a perfect subset. Using the rv1 
1 Kondo-Addison uniformization theorem, the result is lifted to f 2 • 

Thus we have obtained a quite different proof a result of Solovay 

and Mansfield (see SOLOVAY [18]). (This proof was also noted by 

Mart in in [ 8] • ) 

The existence of a TI1 
rv1 counterexample, as presented above, 

depended essensially on the fact that ()J 
1 = 

L 
()J1 Assuming MC 

hence determinacy of every TI1 
"'1 

set, we are led to conclude that 

c:J L < 
1 ()J1 9 or more generally that w L [a] 

1 < ()J1 for all a c w . 
(For details see Solovay [18].) Thus we get a rather different 

proof of a theorem of Rowbottom and Gaifman. 

' 
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Consistency of AD still remains unsettled. Concerning 

AD* and AD** the following result is an immediate corollary of 

SOLOVAY [20]: 

THEOREM. Con(ZF + AC + aa (a inaccessible cardinal)) implies 

( * **) Con ZF + DC + AD2 + AD • 

It has been suggested that perhaps L[R] , the minimal model 

of ZF which contains all reals and all ordinals, is a model for 

AD • It is known that DC is true in the model. 
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V. CONCLUDING REMARKS. 

How seriously is AD to be regarded as a new axiom of set 

theory? In their note [13] Mycielski and Steinhaus are rather 

cautious. They note that AD has a remarkable deductive power, 

that it implies many desirable properties such.as Lebesgue measur­

ability of every subset of the real line. (And we may add~ it 

implies the prewellordering theorem.) It does contradict the 

general axiom of choice, but implies a form of the countable 

axiom of choice which is sufficient for many of the most important 

applications to analysis. This is particularily so if one is 

careful to add suitable assumptions of separability and hence 

will have no need for the most general forms of theorems such as 

Hahn - Banach, Tychonoff e to. 

So if one is willing to judge the credibility of an axiom 

by its consequences, there are many arguments in favor of AD • 

However, one may argue that one would like to have a more direct 

insight into the "true" universe of set theory before one committs 

oneself to AD • And above all one would like to have consistency 

results, which are notably lacking in this field. 

Perhaps one has not to go all the way to AD in order to 

obtain a significant strenghtening of the current set theoretic 

foundation. Let PD stand for the asseetion that every projective 

set is determinate, i.e. that the game GN(A) is determinate for 

any A belonging to some class 61 
rvn 9 n E N • The theory 

ZF + AC + PD could be the sought for strenghtening. 

Many constructions of real analysis and probability theory 

are initially carried out within the class of Borelsets, A~ , and 
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one would be perfectly happy to remain there. But the Borelsets 

are not sufficiently closed with respect to operations analysts 

like to perform. The full projective hierarchy seems to be the 

next class beyond the Borelsets which has reasonable closure pro­

perties. But in passing from the Borelsets to all of the projec­

tive hierarchy one is not able at the same time to extend the nice 

properties which hold at the lower levels of the hierarchy. The 

strenght of the theory ZF + AD + PD is that many of the desirable 

properties of the first few levels provably extends to the whole 

hierarcl1y (e.g. Lebesgue measurability 9 reduction and separation 

principles etc.) (And we may add that from this point of view it 

is a defect of ZF + V = L that in this theory we can find counter­

examples to many of these properties within the projective hier­

archy9 even at low levels.) 

Is ZF + AC + PD consistent? It has been suggested that 

large cardinal assumptions will do 9 but not much seems to be knovvn. 

(See Martin [8] for some further remarks.) 
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