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Chapter 1

Introduction

The aim of this thesis is to study the binding energy of atoms. Atoms of interest in this
work are helium, beryllium, neon, magnesium and silicon. The smallest of all atoms, the
hydrogen atom, consists of a nucleus of charge e and one electron with charge −e. The
size of this atom is approximately the famous Bohr radius, a0 ≈ 5 ·10−11 (see [1]). To be
able to describe such small systems, we must utilize the concepts of quantum physics.

Many-particle systems such as atoms, cannot be solved exactly using analytic
methods, and must be solved numerically. The Variational Monte Carlo (VMC) method
is a technique for simulating physical systems numerically, and is used to perform ab

initio calculations on the system. The term “ab initio” means that the method is based on
first principle calculations with strictly controlled approximations being made (e.g. the
Born-Oppenheimer approximation, see section 3.1.4). For our case this means solving
the Schrödinger equation (see e.g. [2]). Our main goal will be to use VMC to solve the
time-independent Schrödinger equation in order to calculate the energy of an atomic
system. We will study the ground state of the atom, which is the state corresponding to
the lowest energy.

Variational Monte Carlo calculations have been performed on atoms on several
occasions (see ref. [3]), but for the atoms magnesium and silicon this is not so common.
In this work we will perform VMC calculations on both well-explored systems such as
helium, beryllium and neon in addition to the less examined magnesium and silicon
atoms. The helium, beryllium and neon calculations from [3] will serve as benchmark
calculations for our VMC machinery, while for silicon and magnesium we have compared
with results from [4].

Chapter 2 in this thesis will cover the quantum mechanics we need in order to
implement a VMC calculation on atoms numerically. We start off by introducing the
basic concepts of single-particle quantum mechanical systems, and move on to describe
the quantum mechanics of many-particle systems in chapter 3. Furthermore, we will
introduce the Variational Monte Carlo method in chapter 4, and a detailed discussion
of how to approximate the ground state of the system by using Slater determinants is
included in chapter 5.

A large part of this thesis will also be devoted to describing the implementation of
the VMC machinery and the implementation of a simple Hartree-Fock method. This
will be discussed in chapters 6 and 7. We will develop a code in the C++ programming
language (see ref. [5]) that is flexible with respect to the size of the system and several
other parameters introduced throughout the discussions.

Chapter 8 and 9 will contain the results produced by the VMC program we have
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developed, as well as a discussion and analysis of the results we have obtained.
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Part I

Theory





Chapter 2

Quantum Physics

In the 1920’s European physicists developed quantum mechanics in order to describe the
physical phenomena they had been discovering for some years. Such phenomena as the
photoelectric effect, compton scattering, x-rays, blackbody radiation and the diffraction
patterns (see ref. [1]) from the double-slit experiment indicated that physicists needed a
new set of tools when handling systems on a very small scale, e.g. the behavior of single
particles and isolated atoms.

This chapter will give an introduction to the relevant topics in quantum physics
needed to describe the atomic systems in this project. Some parts will closely follow the
discussions in the books [2] and [6], while other parts only contain elements from the
sources listed in the bibliography.

2.1 Quantum Mechanics in one dimension

The general idea and goal of quantum mechanics is to solve the complex, time-dependent
Schrödinger-equation (S.E.) for a specific physical system which cannot be described by
classical mechanics. Once solved, the S.E. will give you the quantum mechanical wave
function, Ψ, a mathematical function which contains all information needed about such a
non-classical system. It introduces probabilities and statistical concepts which contradict
with the deterministic properties of systems described by classical mechanics. The full
one-dimensional S.E. for an arbitrary potential, V , reads:

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ VΨ. (2.1)

The Schrödinger equation is the classical analogy to Newton’s second law in classical
physics, and describes the dynamics of virtually any physical system, but is only useable
in small scale systems, quantum systems.

2.1.1 Probability and statistics

The wave function, Ψ, is now a function of both position, x, and time, t. Quantum
mechanics uses the concept of probability and statistics via Ψ, and these solutions of the
S.E. may be complex as the equation Eq. (2.1) is complex itself. To comply with the
statistical interpretation we must have a function that is both real and non-negative. As
described in [2], Born’s statistical interpretation takes care of this problem by introducing
the complex conjugate of the wave function. The product Ψ∗Ψ = |Ψ|2 is interpreted as
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the probability density for the system state. If the system consists of only one particle,
the integral

∫ b

a
|Ψ(x, t)|2 dx, (2.2)

is then interpreted as the probability of finding the particle between positions a and b
at an instance t. To further have a correct correspondence with probability, we need the
total probability of finding the particle anywhere in the universe to be one. That is

∫ ∞

−∞
|Ψ(x, t)|2 dx = 1. (2.3)

In quantum mechanics, operators represent the observables we wish to find, given
a wave function, Ψ. The operator representing the position variable, x̂, is just x itself,
while the momentum operator is p̂ = −i~(∂/∂x). All classical dynamical variables are
expressed in terms of just momentum and position (see [2]). Another important operator
is the Hamilton operator. The Hamilton operator gives the time evolution of the system
and is the sum of the kinetic energy operator T̂ and the potential energy operator V̂,
Ĥ = T̂ + V̂. The operator V̂ is represented by the function V from Eq. (2.1), while the
kinetic energy operator is

T̂ =
p̂2

2m
=

(i~)2

2m

(
∂

∂x

)2

= − ~
2

2m

∂2

∂x2
. (2.4)

For an arbitrary operator, Q̂, the expectation value, 〈Q〉, is found by the formula

〈Q〉 =

∫
Ψ∗Q̂Ψdx. (2.5)

The same goes for expectation values of higher moments, e.g. 〈p2〉:

〈p2〉 =

∫
Ψ∗p̂2Ψdx. (2.6)

The so-called variance of an operator or observable, σ2
Q, can be calculated by the

following formula:
σ2
Q = 〈Q2〉 − 〈Q〉2. (2.7)

This quantity determines the standard deviation, σQ =
√
σ2
Q. The standard deviation

describes the spread around the expectation value. The smaller the standard deviation,
the smaller the variation between the possible values of Q.

The wave functions, Ψ, exist in the so-called Hilbert space, a mathematical vector
space of square-integrable functions.

2.1.2 The time-independent Schrödinger Equation

However, in many cases, we are only interested in a time-independent version of Eq. (2.1).
A crucial point is then to demand the potential, V , to be a time-independent potential
as well, viz. V = V (x) (in one spatial dimension). This equation can be obtained by
the well-known method of separation of variables. The trick is to write our wave
function, Ψ(x, t), as a product of a purely spatial function, ψ(x), and another function,
φ(t), depending only of time. That is, we assume: Ψ(x, t) = ψ(x)φ(t). By inserting

12
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Ψ into the full S.E., Eq. (2.1), remembering that ψ and φ only depend on one variable
each, then dividing by Ψ = ψφ, we get

i~
1

φ

dφ

dt
= − ~

2

2m

1

ψ

d2ψ

dx2
+ V (x). (2.8)

By inspecting Eq. (2.8), we see that the left side of the equation depends on t alone, while
the right side depends only on x. This means that both sides must equal a constant.
By varying t and thereby changing the left side, the right side would change without
varying x. We call this separation constant E, giving us the two equations

dφ

dt
= − iE

~
φ, (2.9)

and

− ~
2

2m

d2ψ

dx2
+ V ψ = Eψ. (2.10)

Equation (2.9) can be solved quite easily, and results in an exponential form for the
time-dependent part,

φ(t) = e−iEt/~. (2.11)

The second equation, Eq. (2.10), is called the time-independent Schrödinger equa-

tion. By inspecting Eq. (2.11), we see that all expectation values will be constant in
time because the time-dependent part from Ψ, φ(t), will only give a factor 1 when it is
multiplied with its complex conjugate from Ψ∗. That is:

e−iEt/~e+iEt/~ = 1. (2.12)

The expectation values depend solely on the spatial parts, ψ. We call these separable
solutions stationary states.

Stationary states and expectation values

Another point about the stationary solutions is the close relation with classical mechan-
ics. The Hamilton function determines the total energy of the system, and is the sum
of the kinetic and potential energy. The classical Hamiltonian function for any system
with a time-independent potential is

H(x, p) =
p2

2m
+ V (x). (2.13)

By using the canonical substitution p → (~/i)(d/dx) for the quantum mechanical
momentum operator, we get

Ĥ = − ~
2

2m

∂2

∂x2
+ V (x). (2.14)

This is identical to the time-independent Schrödinger equation, Eq. (2.10), and we can
then obtain a much simplified Schrödinger equation:

Ĥψ = Eψ. (2.15)

The expectation value of the Hamilton operator, the total energy, is now given as

〈H〉 =

∫
ψ∗Ĥψdx = E

∫
|ψ|2 dx = E

∫
|Ψ|2 dx = E. (2.16)

13
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Calculating 〈H2〉 gives

〈H2〉 =

∫
ψ∗Ĥ2ψdx = E

∫
ψ∗Ĥψdx = E2

∫
|ψ|2 dx = E2

∫
|Ψ|2 dx = E2. (2.17)

This means the variance and standard deviation of Ĥ are both zero

σ2
H = 〈H2〉 − 〈H〉2 = E2 − E2 = 0. (2.18)

For these separable solutions, every measurement of the total energy will return the
same value, E. Thus the spread around the expectation value is exactly zero.

General solutions

The general solution for these systems is a linear combination of different separable
solutions. Different solutions with different separation constants, e.g.

Ψ1(x, t) = ψ1(x)e
−iE1t/~, Ψ2(x, t) = ψ2(x)e

−iE2t/~, (2.19)

which both are solutions of Eq. (2.10), can be used to construct the general solution

Ψ(x, t) =

∞∑

n=1

cnψn(x)e
−iEnt/~ =

∞∑

n=1

cnΨn(x, t), (2.20)

where the factors cn are probability weights for its corresponding stationary state.

Spin

An important, but difficult concept in quantum physics is spin. Spin is an intrinsic
property of every elementary particle. Also composite systems will have a certain value
of spin when imposing addition rules on the single particles that make up such a system.
In this project we will deal with fermions, i.e. half integer spin particles (see section
3.1.1).

A particle will either have spin up or spin down. This is denoted by the spin states

χ+ =↑, (2.21)

and

χ− =↓ . (2.22)

These spin states, χ±, are mutually orthogonal, but exist in another Hilbert space than
the spatial wave functions, Ψ, and will not interfere with the integration

∫
dx.

This presentation of spin is very short due to the fact that we don’t need much
information about spin in this thesis. As shown later, the Hamiltonian will not depend
on spin values, so the spin states, χ±, will only be used as a label to indicate which states
are occupied or not. This will become more apparent in the discussion of many-particle
systems.

14
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2.2 Bra-Ket notation

As we will be dealing a lot with expectation values, which are integrals, it can be smart
to introduce a compact way to describe the wave functions and the integrals. The so-
called ket, |Ψ〉, represents our Ψ, while the bra, 〈Ψ|, represents the complex conjugate,
Ψ∗. The expectation value

〈Ψ| Ĥ |Ψ〉 , (2.23)

is defined as

〈Ψ| Ĥ |Ψ〉 =

∫
Ψ∗Q̂Ψdx, (2.24)

where x now represents all spatial dimensions and quantum numbers. Now we can write
the expectation values of Ĥ as

〈H〉 = 〈Ψ| Ĥ |Ψ〉 . (2.25)

2.3 Quantum Mechanics in three dimensions

While discussing quantum mechanics in one dimension is useful for getting in the ba-
sics, most real life systems occur in three dimensions. This section closely follows the
discussion in [2].

In three dimensions the one-dimensional Hamiltonian, Ĥ(x, px) = p2
x/2me + V (x) is

replaced by

Ĥ(x, y, z, px, py, pz) =
1

2me

(
p2
x + p2

y + p2
z

)
+ V (x, y, z). (2.26)

with me being the electron mass. For quantum mechanical systems the momentum
operators are substituted by

px → ~

i

∂

∂x
, py →

~

i

∂

∂y
, pz →

~

i

∂

∂z
. (2.27)

We can write this in a more compact way on vector form as

p =
~

i
∇. (2.28)

Introducing the Laplacian in Cartesian coordinates, ∇2 = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
, we can write

the full Hamiltonian as

i~
∂Ψ

∂t
= − ~

2

2me
∇2Ψ + VΨ. (2.29)

The normalization integral in three dimensions changes using the infinitesimal volume
element d3r = dx dy dz. We now have

∫
|Ψ(x, y, z, t)|2 dx dy dz =

∫
|Ψ(r, t)|2 d3r = 1. (2.30)

The general solutions in three dimensions can be expressed as

Ψ(r, t) =
∑

cnψn(r)e
−iEnt/~. (2.31)

The spatial wave functions, ψn, satisfy the time-independent Schrödinger equation:

− ~
2

2me
∇2ψ + V ψ = Eψ. (2.32)

15



Chapter 2. Quantum Physics

2.3.1 Separation of variables - quantum numbers l and m

For a central symmetrical potential where the function V only depends on the distance,
V = V (|r|) = V (r), it is common to introduce spherical coordinates, (r, θ, ϕ) (see
figure 2.1), and try the approach of separation of variables. The solutions are on the
form (see [2])

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ). (2.33)

In spherical coordinates the time-independent Schrödinger equation, Eq. (2.32), is

− ~
2

2me

[
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

(
∂2ψ

∂ϕ2

)]
+ V ψ = Eψ.

(2.34)
By performing the same exercise as in section 2.1.2, calling the separation constant
l(l + 1), this will give rise to the radial and angular equations for a single particle in a
three dimensional central symmetrical potential:

1

R

d

dr

(
r2
dR

dr

)
− 2mer

2

~2
[V (r) − E] = l(l + 1), (2.35)

and
1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

]
= −l(l + 1). (2.36)

z

y

x

P

rθ

ϕ

Figure 2.1: Visualizing the spherical coordinates of some point P; radius r, polar angle θ and
azimuthal angle ϕ.

2.3.2 The Angular equation

If we multiply Eq. (2.36) by Y sin2 θ, again using separation of variables, with Y (θ, ϕ) =
T (θ)F (ϕ), and divide by Y = TF , we get

1

T

[
sin θ

d

dθ

(
sin θ

dT

dθ

)]
+ l(l + 1) sin2 θ = − 1

F

d2F

dϕ2
. (2.37)

This time we call the separation constant m2.

16



2.3. Quantum Mechanics in three dimensions

The ϕ equation

The equation for ϕ is calculated quite easily, with

d2F

dϕ2
= −m2F ⇒ F (ϕ) = eimϕ, (2.38)

letting the value m take both positive and negative values. Since the angle ϕ represents
a direction in space, we must require that

F (ϕ+ 2π) = F (ϕ). (2.39)

It then follows that
eim(ϕ+2π) = eimϕ → e2πim = 1. (2.40)

For this to be fulfilled, m has to be an integer. Viz., m = 0,±1,±2, . . . .

The θ equation

The differential equation for the polar angle, θ, reads

sin θ
d

dθ

(
sin θ

dT

dθ

)
+ [l(l + 1) sin2 θ −m2]T = 0. (2.41)

This equation is more diffcult to solve by standard mathematics. In short, the solution
is given by

T (θ) = APml (cos θ), (2.42)

where A is a constant, and Pml is the associated Legendre function (see e.g. [7])

Pml (x) = (1 − x2)|m|/2

(
d

dx

)|m|

Pl(x). (2.43)

Pl(x) is the lth degree Legendre polynomial, defined by the so-called Rodrigues

formula:

Pl(x) =
1

2ll!

(
d

dx

)l (
x2 − 1

)l
. (2.44)

We see that l must be a positive integer for the differentiations to make sense, and
furthermore, |m| must be smaller or equal to l for Pml (x) to be non-zero.

These solutions are the physically acceptable ones from the differential equation
Eq. (2.36). Another set of non-physical solutions also exist, but these are not interesting
for us.

Taking into account the normalization of the angular wave functions, a quite general
expression for the functions Y m

l is then

Y m
l (θ, ϕ) = ǫ

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!e

imϕPml (cos θ). (2.45)

These functions are called the spherical harmonics. Here ǫ = (−1)m for m ≥ 0 and
ǫ = 1 for m ≤ 0. Examples of these are:

Y 0
0 =

(
1

4π

)1/2

, (2.46)

17
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Y 0
1 =

(
3

4π

)1/2

cos θ, (2.47)

and

Y ±1
1 = ±

(
3

8π

)1/2

sin θe±iϕ. (2.48)

The quantum number l is commonly called the azimuthal quantum number, while
m is called the magnetic quantum number. We observe that the spherical harmonics
do not depend on the potential V , but we have required that the potential is spherically
symmetric for the derivations.

2.3.3 The Radial equation and solution for the hydrogen atom

The radial equation reads

d

dr

(
r2
dR

dr

)
− 2mer

2

~2
[V (r) − E]R = l(l + 1)R. (2.49)

The first simple step is to change variables by using

u(r) = rR(r), (2.50)

which will give the radial part of the Schrödinger equation on a much simpler form

− ~
2

2me

d2u

dr2
+

[
V +

~
2

2me

l(l + 1)

r2

]
u = Eu. (2.51)

The only difference between Eq. (2.51) and the one-dimensional Schrödinger equation,
Eq. (2.10), is the potential. Here we have an effective potential

Veff = V +
~

2

2me

l(l + 1)

r2
, (2.52)

as opposed to the simple V in Eq. (2.10). The extra term in Veff

~
2

2me

l(l + 1)

r2
, (2.53)

is called the centrifugal term.

The Hydrogen atom and the principal quantum number - n

An important quantum mechanical system is the hydrogen atom. It consists of an elec-
tron, charged −e, and a proton, charged e. When dealing with atomic systems, it is
common to invoke the Born-Oppenheimer approximation (BOA). The BOA says that
the kinetic energy of the nucleus is so small compared to the kinetic energy of the elec-
tron(s), that we can freeze out the nucleus’ kinetic degrees of freedom. More on the
Born-Oppenheimer approximation in section 3.1.4.

For the hydrogen atom, the potential function is given by Coulomb’s law between charged
particles:

V (r) = − e2

4πǫ0

1

r
, (2.54)
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−e

(proton)
+e

(electron)

r

Figure 2.2: A shell model of the hydrogen atom.

where ǫ0 is the vacuum permittivity. The radial equation for the hydrogen atom is then

− ~2

2me

d2u

dr2
+

[
− e2

4πǫ0

1

r
+

~2

2me

l(l + 1)

r2

]
u = Eu. (2.55)

Figure 2.2 gives a schematic overview of the simple hydrogen atom.
In these derivations we will consentrate on the bound states, viz. E < 0.

The radial differential equation, Eq. (2.55), is quite tedious and difficult to solve, so
in this section I will just state the important results. From solving the equation we will
obtain a certain quantum number, n, also called the principal quantum number.
This number determines the allowed energies for the system given by

E = −
[
me

2~2

(
e2

4πǫ0

)2
]

1

n2
=
E1

n2
(2.56)

for n = 1, 2, 3, . . . . The ground state of hydrogen is then given as

E1 = −
[
me

2~2

(
e2

4πǫ0

)2
]

= −13.6 eV., (2.57)

The radial part of the wave function is now labeled by quantum numbers n and l, giving
the full wave function the form

ψnlm(r, θ, ϕ) = Rnl(r)Y
m
l (θ, ϕ). (2.58)

By solving the equation, we also find a constraint on l, namely

l = 0, 1, 2, . . . , n − 1. (2.59)

The mathematical form of the radial wave function is given in [2] as

Rnl =

√(
2

na

)3 (n− l − 1)!

2n[(n+ l)!]3
e−r/na

(
2r

na

)l [
L2l+1
n−l−1(2r/na)

]
, (2.60)
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where a is the Bohr radius

a ≡ 4πǫ0~
2

mee2
= 0.529 · 10−10m, (2.61)

and

Lpq−p(x) ≡ (−1)p
(
d

dx

)p
Lq(x) (2.62)

is the associated Laguerre polynomial. The function Lq(x) is the qth Laguerre
polynomial and is defined by

Lq(x) ≡ ex
(
d

dx

)q
(e−xxq) (2.63)

with p = 2l + 1 and q = n + l. The radial wave functions needed in this thesis are as
given in [2]

R10 = 2a−3/2e−r/a, (2.64)

R20 =
1√
2
a−3/2

(
1 − 1

2

r

a

)
r

a
e−r/2a, (2.65)

R21 =
1√
24
a−3/2 r

a
e−r/2a, (2.66)

R30 =
2√
27
a−3/2

(
1 − 2

3

r

a
+

2

27

(r
a

)2
)
e−r/3a, (2.67)

R31 =
8

27
√

6
a−3/2

(
1 − 1

6

r

a

)( r
a

)
e−r/3a. (2.68)

In sections 5.4 and 3.1.2 we will see how we can use these functions to construct the
wave functions we need for the numerical calculations.
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Chapter 3

Many-particle Systems

While single-particle systems are instructive and are fine examples to examine the
properties of quantum mechanical systems, most real life systems consist of many
particles that interact with each other and/or an external potential. The aim of this
chapter is to describe the quantum mechanics of such systems, or more precisely, atomic
systems.

The Hamiltonian of the atomic system will be discussed in section 3.1.4. This is the
most important quantity when discussing the energy of a quantum mechanical system.
In this part we will see how we can scale the Hamiltonian to have a much cleaner and
more comfortable setup for our calculations.

We will also present the Hartree-Fock method (HF), a much used technique used
in studies of many-particle systems. The HF method will mainly be used as a way
to improve the single particle wave functions used in the Variational Monte Carlo
calculations, which will be discussed in chapters 4 and 5.

3.1 Atoms

In quantum mechanics an atom can be viewed as a many-particle system. While the wave
function for a single particle system is a function of only the coordinates of that particular
particle and time, Ψ(r, t), a many-particle system will depend on the coordinates of all
the particles.

3.1.1 Two-particle systems

The simplest example of a many-particle system is of course a two-particle system. The
wave function will now be the function

Ψ(r1, r2, t), (3.1)

and the Hamiltonian will take the form

Ĥ = − ~
2

2m1
∇2

1 −
~

2

2m2
∇2

2 + V (r1, r2, t) + Vexternal(r1, r2). (3.2)

where Vexternal depends on the system, e.g. the Coulomb interaction between electrons
and the nucleus when dealing with atoms. The indices on the Laplacian operators
indicate which electron/coordinates the derivative is taken with respect to. The
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normalization integral is now
∫

|Ψ(r1, r2, t)|2 d3r1d
3r2 = 1 (3.3)

with the integrand
|Ψ(r1, r2, t)|2 d3r1d

3r2 (3.4)

being the probability of finding particle 1 in the infinitesimal volume d3r1, and particle
2 in d3r2. For a time-independent potential, this will give the stationary solutions from
separation of variables analogous to the single particle case in section 2.1.2. The full
wave function will be

Ψ(r1, r2, t) = ψ(r1, r2)e
−iEt/~, (3.5)

and the probability distribution function (PDF) will be time-independent

P (r1, r2) = |ψ(r1, r2)|2. (3.6)

Antisymmetry and wavefunctions

For general particles in a composite system, a wave function can be constructed by
using the single particle wave functions the particles currently occupy. An example is
if electron 1 is in state ψa and electron 2 is in state ψb. The wave function can be
constructed as

ψ(r1, r2) = ψa(r1)ψb(r2). (3.7)

The particles that make up an atom are electrons and the nuclei. The nuclei are the
protons and neutrons that the atomic nucleus consists of. As we will see in section 3.1.4,
the interesting parts are the electrons. Electrons and the nuclei are so-called fermions,
that means particles with half integer spin, while particles with integer spin are called
bosons (e.g. photons). An important point with respect to our quantum mechanical
approach is how to construct the wave function for a composite system of particles.
Quantum physics tells us that the particles are identical, and cannot be distinguished
by some classic method like labelling the particles. This is taken care of by constructing
a wave function that opens for the possibility of both electrons being in both states.
That is,

ψ±(r1, r2) = A[ψa(r1)ψb(r2) ± ψb(r1)ψa(r2)], (3.8)

with A being a normalization constant. The plus sign is for bosons, while the minus
sign applies for fermions. This also shows the Pauli exclusion principle which states:
No two identical fermions can occupy the same state at the same time. E.g. if ψa = ψb
the wave function automatically yields zero for fermions, that is

ψ−(r1, r2) = A[ψa(r1)ψa(r2) − ψa(r1)ψa(r2)] = 0, (3.9)

and so the PDF will be zero everywhere. It also tells you that two bosons in can

occupy the same state at the same time. In fact, any number of bosons may occupy the
same state at the same time. Equation (3.8) also underlines an important property of
fermionic wave function. That is the antisymmetric property when interchanging two
particles. By switching particles 1 and 2 in ψ−, you will get −ψ− in return, illustrated
by
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3.1. Atoms

ψ−(r2, r1) = A[ψa(r2)ψb(r1) − ψb(r2)ψa(r1)]

= −A[ψa(r1)ψb(r2) − ψb(r1)ψa(r2)] = −ψ−(r1, r2). (3.10)

In atoms however, two partices are allowed to occupy the same spatial wave function
state, but only if these have different spin states(ref. section 2.1.2). An example is
helium, an atom consisting of two electrons and and a core with charge Z=2. Since we
can’t solve the helium problem, we use an ansatz for the wave function, with the two
electrons occupying the ψ100-functions found when solving the hydrogen problem. The
two electrons in the helium case will have the wave functions

Ψ = 2a−3/2e−r/a
(

1

4π

)1/2

χ±, (3.11)

with χ+ =↑ as the spin up state, and χ− =↓ as the spin down state.

3.1.2 Wave functions for N-particle atoms

The many particle systems of most interest in this thesis are atomic systems. We can
consider both the neutral atom, with the number of electrons equalling the number of
protons in the nucleus, or as an isotope, where some of the outermost electrons have
been excited. Examples which will be dealt with in this thesis are the neutral atoms
helium, beryllium, neon, magnesium and silicon. As mentioned above, we have no closed
form solution to any atomic system other than the hydrogen atom, and we have to make
an ansatz for the wave function.

Slater Determinants

The two-electron wave function

ψ−(r1, r2) = A[ψa(r1)ψb(r2) − ψb(r1)ψa(r2)], (3.12)

can be expressed as a determinant

ψ−(r1, r2) = A

∣∣∣∣
ψa(r1) ψa(r2)
ψb(r1) ψb(r2)

∣∣∣∣ . (3.13)

This is called the Slater determinant for the two particle case where the available
single particle states are ψa and ψb. The factor A is in this case 1/

√
2. The general

expression for a Slater determinant, Φ, with N electrons and N available single particle
states is as given in [8]:

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) · · · ψ1(rN )
ψ2(r1) ψ2(r2) · · · ψ2(rN )

...
...

. . .
...

ψN (r1) ψN (r2) · · · ψN (rN )

∣∣∣∣∣∣∣∣∣

. (3.14)

This will automatically comply with the antisymmetry principle and is suited as a wave
function for a fermionic many-particle system. The general structure is to take the
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Chapter 3. Many-particle Systems

determinant of an N ×N -matrix with available particle states in increasing order in the
columns. The states are functions of the particle coordinates which are in increasing
order in the rows.

More properties of the many-particle Slater determinant will be discussed in section
3.2.

3.1.3 Electron configuration

The electron configuration of an atom describes how the electrons are distributed in the
given orbitals of the system. The rules for quantum numbers obtained in sections 2.3.1
and 2.3.3 give us the allowed combinations for the configuration. As shown, n can be
n = 1, 2, 3, . . . , while l has the allowed values l = 0, 1, . . . , n − 1. The quantum number
m can take the values m = −l,−l + 1, . . . , l − 1, l.

A common way to label the orbitals is to use a notation (see section 5.2.2 in [2]) which
labels states with l = 0 as s-states, l = 1 as p-states and so on. An orbital with n = 1 and
l = 0 is labelled 1s, and an orbital with n = 2 and l = 1 is labelled 2p. Table 3.1 shows
the full list for the azimuthal quantum number, l. The letters s, p, d and f are historical

Quantum number l Spectroscopic notation

0 s

1 p

2 d

3 f

4 g

5 h

6 i

7 k
...

...

Table 3.1: The table shows the spectroscopic notation for the azimuthal quantum number l.

names originating from the words sharp, principal, diffuse and fundamental. From g and
out the letters are just given alphabetically, but actually skipping j for historical reasons.

The neon atom consists of N = 10 electrons and its orbital distribution is given as
follows:

• When n = 1, l (and therefore m) can only assume the value 0. But an electron
can either be in a spin up, or a spin down state. This means that two electrons
can be in the 1s-orbital. This is written as (1s)2.

• For n = 2 and l = 0 there is only m = 0, but again two spin states, i.e. (2s)2.

• For n = 2 and l = 1, we can have m = −1, 0, 1, and both spin states. This means
6 electrons in the 2p-orbital, i.e. (2p)6.

• The electron configuration in neon can then be written short and concise as:
(1s)2(2s)2(2p)6.
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3.1. Atoms

We can now use this notation to describe the distribution of electrons in the different
orbitals for the atoms examined in this thesis. Table 3.2 shows a few important examples.
All this tells us is which orbitals to put our electrons in, but it doesn’t say anything
about what the orbitals in fact are. This is taken care of in sections 5.4 and 5.5.

Atom Full spectroscopic notation

Hydrogen (1s)

Helium (1s)2

Beryllium (1s)2(2s)2

Neon (1s)2(2s)2(2p)6

Magnesium (1s)2(2s)2(2p)6(3s)2

Silicon (1s)2(2s)2(2p)6(3s)2(3p)2

Table 3.2: The table shows the electron configuration for hydrogen, helium, beryllium, neon,
magnesium and silicon.

The spectroscopic notation is needed when dealing with shells that are not closed.
Table 5.1 in [2] shows the configuration, 2S+1L, for the first 36 atoms. Here S is the total
spin of the system and L is the total angular momentum. Closed-orbital systems like
helium, beryllium, neon and magnesium are labelled as 1S (S here represents a state of
zero angular momentum, and is not to be confused with the total spin). This means that
the total spin is zero, corresponding to half of the electrons being in a spin-up state, and
the rest in a spin down state. We also see that the angular momentum is zero, which
simply means that all possible states are occupied. It is also common to denote the
grand total angular momentum as a lower index J , but the values of interest for us are
total spin and total angular momentum.

As an example we can consider neon. The first two electrons are in 1s-states, which
means that they have zero orbital momentum. The sum of the spin up and the spin
down electrons is zero, +1

2 − 1
2 = 0. This is also true for the two electrons in the 2s-

states. For the six remaining electrons in the 2p-state, the sum of the angular momenta
is zero, (+1) + (+1) + 0 + 0 + (−1) + (−1) = 0, corresponding to the six electrons being
distributed in the states with ml = −1, ml = 0 and ml = +1 (we count twice for spin
up and spin down). From this we have that the total spin is zero, 2S + 1 = 1, the
total angular momentum is zero (it is represented by the capital S). This results in a
configuration 1S for neon.

For silicon however, we see that the notation is 3P . This corresponds to the total
spin being one and the total angular momentum being one as well. For the total spin
to be one, the two outermost electrons must both have spin up. Since the total angular
momentum is one, these two electrons can e.g. be in states 3p with ml = 0 and 3p with
ml = +1.

Hund’s rules (see [2]) are constructed to predict the configuration of these systems.

3.1.4 Hamiltonian and scaling

The Hamiltonian, Ĥ, for an N-electron atomic system is subject to the Born-
Oppenheimer approximation (BOA). The BOA effectively freezes out the nucleus’ de-
grees of freedom given the electron mass is small compared to the mass of the nucleus.
As a result, we approximate the kinetic energy of the nucleus to be zero during the
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Chapter 3. Many-particle Systems

calculations. The Hamiltonian consists of only the kinetic energy of electrons in addi-
tion to the potential energy between electrons and the core, and between the electrons
themselves. The Born-Oppenheimer Hamiltonian is given as

Ĥ =

N∑

i

p̂2
i

2me
−

N∑

i

Ze2

4πǫ0ri
+
∑

i<j

e2

4πǫ0rij
. (3.15)

The operator p̂ is the kinetic energy operator, me is the electron mass, Z is the number
of protons in the nucleus (equal to the number of electrons in neutral atoms) and ǫ0
the vacuum permittivity. The variables ri and rij represent the distances between an
electron and the nucleus and the distance between to different electrons respectively.

By substituting p̂ with the quantum mechanical operator p̂ = −i~∇, i being the
imaginary unit and ~ Planck’s original constant divided by 2π, we get

Ĥ = − ~
2

2me

N∑

i

∇2
i −

N∑

i

Ze

4πǫ0ri
+
∑

i<j

e2

4πǫ0rij
. (3.16)

It is more desireable to work with a scaled version of the Hamiltonian. By defining

r0 ≡ 4πǫo~
2

mee2
, (3.17)

and

Ω ≡ mee
4

(4πǫ0~)2
, (3.18)

we can write dimensionless variables such as H ′ = H/Ω, ∇′ = ∇/r0 and r′ = r/r0. The
factors r0 in ∇′ comes from the factors d/dx = d/d(x′r0). By analyzing each term in
Eq. (3.15) and writing out the original variables in terms of constants r0 and Ω, and the
dimensionless quantities r′ and Ĥ′ we get

Ĥ = Ĥ′Ω = − ~
2

2mer20

N∑

i

(∇′
i)

2 +
e2

4πǫ0ro

N∑

i

1

r′i
− Ze2

4πǫ0r0

∑

i<j

1

r′ij
. (3.19)

By inserting Eqs. (3.17) and (3.18) into Eq. (3.19) we obtain

Ĥ′Ω = −Ω

2

N∑

i

(∇′
i)

2 − Ω

N∑

i

Z

r′i
+ Ω

∑

i<j

1

r′ij
, (3.20)

which divided by Ω will give the final dimensionless Hamiltonian

Ĥ = −1

2

N∑

i

∇2
i −

N∑

i

Z

ri
+
∑

i<j

1

rij
. (3.21)

Now the energy will be measured in the units of Hartree, Eh, which converts as,
1Eh = 2 · 13.6 eV. These are also called atomic units. We recognize the number 13, 6 as
the ground state energy of the hydrogen atom (see section 2.3.3).
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3.2. Hartree-Fock Theory

3.2 Hartree-Fock Theory

A popular and well used many-particle method is the Hartree-Fock method. Hartree-
Fock theory assumes the Born-Oppenheimer approximation and can be used to approx-
imate the ground state energy and ground state wave function of a quantum many
body system. In Hartree-Fock theory we assume the wave function, Φ, to be a single
N -particle Slater determinant. A Hartree-Fock calculation will result in obtaining the
single-particle wave functions which minimizes the energy. These wave functions can
then be used as optimized wave functions for a variational Monte Carlo machinery (see
section 4.4). The single particle orbitals for an atom are given as

ψnlmlsms = φnlml
(r)χms(s), (3.22)

where ml is the projection of the quantum number l, given as merely m in section 3.1.3.
The quantum number s represents the intrinsic spin of the electrons, which is s = 1/2.
The quantum number ms now represents the two projection values an electron can have,
namely ms = ±1/2. For a simple description, we label the single particle orbitals as

ψnlmlsms = ψα, (3.23)

with α containing all the quantum numbers to specify the orbital. The N -particle Slater
determinant is given as

Φ(r1, r2, . . . , rN , α, β, . . . , ν) =
1√
N !

∣∣∣∣∣∣∣∣∣

ψα(r1) ψα(r2) · · · ψα(rN )
ψβ(r1) ψβ(r2) · · · ψβ(rN )

...
...

. . .
...

ψν(r1) ψν(r2) · · · ψν(rN )

∣∣∣∣∣∣∣∣∣

. (3.24)

The Hamiltonian (see section 3.1.4) is given as

Ĥ = Ĥ1 + Ĥ2 =
N∑

i=1

(
−1

2
∇2
i −

Z

ri

)
+
∑

i<j

1

rij
. (3.25)

or even as

Ĥ =

N∑

i=1

ĥi +
∑

i<j

1

rij
, (3.26)

with ĥi being the one-body Hamiltonian

ĥi = −1

2
∇2
i −

Z

ri
. (3.27)

The variational principle (section 4.3) tells us that the ground state energy for our
Hamiltonian, E0, is always less or equal to the expectation value of the Hamiltonian
with a chosen trial wave function, Φ. That is

E0 ≤ E[Φ] =

∫
Φ∗ĤΦdτ, (3.28)

where the brackets in E[Φ] tells us that the expectation value is a functional, i.e. a
function of a function, here an integral-function. The label τ represents a shorthand
notation for dτ = dr1dr2 . . . drN . We also assume the trial function Φ is normalized

∫
Φ∗Φdτ = 1. (3.29)
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By introducing the so-called anti-symmetrization operator, A, and the Hartree-function,
ΦH = ψα(r1)ψβ(r2) . . . ψν(rN ), we can write the Slater determinant (Eq. 3.24) more
compactly as

Φ(r1, r2, . . . , rN , α, β, . . . , ν) =
√
N !AΦH . (3.30)

The Hartree-function is as shown a simple product of the available single particles states
and the operator A is given as

A =
1

N !

∑

P

(−)PP, (3.31)

with P being the permutation operator of two particles, and the sum spanning over all
possible permutations of two particles. The operators Ĥ1 and Ĥ2 themselves do not
depend on permutations and will commute with the anti-symmetrization operator A,
namely

[Ĥ1,A] = [Ĥ2,A] = 0. (3.32)

The operator A also has the property

A = A2, (3.33)

which we can use in addition to Eq. (3.32) to show that

∫
Φ∗Ĥ1Φdτ = N !

∫
Φ∗
HAĤ1AΦHdτ (3.34)

= N !

∫
Φ∗
HĤ1AΦHdτ. (3.35)

By using Eq. (3.30) and inserting the expression for Ĥ1 we arrive at

∫
Φ∗Ĥ1Φdτ =

N∑

i=1

∑

P

(−)P
∫

Φ∗
H ĥiPΦHdτ. (3.36)

Orthogonality of the single-particle functions ensures us that we can remove the sum
over P , as the integral will disappear when the two Hartree-Functions, Φ∗

H and ΦH

are permuted differently. As the operator ĥi is a single-particle operator, all factors
in ΦH except one, φµ(ri), will integrate out under orthogonality conditions, and the
expectation value of the H1-operator is written as

∫
Φ∗Ĥ1Φdτ =

N∑

µ=1

∫
ψ∗
µ(ri)ĥiψµ(ri)dri. (3.37)

The two-body Hamiltonian, H2, can be treated similarly:

∫
Φ∗Ĥ2Φdτ = N !

∫
Φ∗
HAĤ2AΦHdτ (3.38)

=

N∑

i<j=1

∑

P

(−)P
∫

Φ∗
H

1

rij
PΦHdτ. (3.39)
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In order to reduce this to a simpler form, we cannot use the same argument as for H1

for get rid of the P -sum, because of the form of the interaction, 1/rij . The permutations
of two electrons will not vanish and must be accounted for by writing

∫
Φ∗Ĥ2Φdτ =

N∑

i<j=1

∫
Φ∗
H

1

rij
(1 − Pij)ΦHdτ. (3.40)

Pij is the operator which permutes electrons i and j. However, by inspecting the
parenthesis (1 − Pij) we can again take advantage of the orthogonality condition in
order to further simplify the expression:

∫
Φ∗Ĥ2Φdτ =

1

2

N∑

µ=1

N∑

ν=1

[ ∫
ψ∗
µ(ri)ψ

∗
ν(rj)

1

rij
ψµ(ri)ψν(rj)dridrj

−
∫
ψ∗
µ(ri)ψ

∗
ν(rj)

1

rij
ψµ(rj)ψν(ri)dridrj

]
. (3.41)

The first term is the Hartree term, while the second term is called the Fock term.
Alternatively they are called the direct and exchange terms. We see the exchange term
has permuted the particles i and j in the ΦH-function. The factor of 1/2 is due to the
fact that we sum freely over µ and ν instead of using

∑
i<j.

Combining the results from Ĥ1 and Ĥ2 you get the full Hartree-Fock energy
functional

E[Φ] =

N∑

µ=1

∫
ψ∗
µ(ri)ĥiψµ(ri)dri+

1

2

N∑

µ

N∑

ν

[∫
ψ∗
µ(ri)ψ

∗
ν(rj)

1

rij
ψµ(ri)ψν(rj)dridrj

−
∫
ψ∗
µ(ri)ψ

∗
ν(rj)

1

rij
ψν(ri)ψν(rj)dridrj

]

(3.42)

where now ĥi are the one body Hamiltonians, that is the sum of the kinetic energy and
the one-body interaction with the nucleus. The states ψµ and ψν are the Hartree-Fock
orbitals which minimizes the energy when we solve the Hartree-Fock equations. Using
Bra-Ket notation (see section 2.2), the energy functional can be written more compactly
as

E[Φ] =

N∑

µ=1

〈µ|h |µ〉 +
1

2

N∑

µ=1

N∑

ν=1

[
〈µν| 1

rij
|µν〉 − 〈µν| 1

rij
|νµ〉

]
. (3.43)

3.2.1 Hartree-Fock equations

There are basically two approaches when it comes to minimizing the energy functional
in Eq. (3.43). The most straight forward, but a bit more demanding method is to vary
the single particle orbitals. The other approach is to expand the single particle orbitals
in a well known basis as

ψa =
∑

λ

Caλψλ, (3.44)

where now the ψλ are in a known orthogonal basis (e.g. hydrogen-like wave functions,
harmonic oscillator functions etc.), and we vary the functions ψa with respect to the
expansion coefficients Caλ.
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Chapter 3. Many-particle Systems

Varying the single particle wave functions

The background for these calculations are the principles of variational calculus as
described in section 18.4.1 in [9]. By introducing so-called Lagrangian multipliers we
can minimize a multivariable-variable functional with constraints. For this particular
problem, we introduce N2 such Lagrange multipliers, ǫµν . The variational equation
(section 18.4.1 in [9]) for the energy functional in Eq. (3.42) is written as

δE −
N∑

µ=1

N∑

ν=1

ǫµνδ

∫
ψ∗
µψν = 0. (3.45)

We still assume the wave functions are orthogonal, so the variational equation can be
written

δE −
N∑

µ=1

ǫµ

∫
ψ∗
µψµ = 0. (3.46)

The next step is to perform variation with respect to the single particle orbitals ψµ,
which gives

N∑

µ

∫
δψ∗

µĥiψµdri +
1

2

N∑

µ=1

N∑

ν=1

[∫
δψ∗

µψ
∗
ν

1

rij
ψµψνdridrj −

∫
δψ∗

µψ
∗
ν

1

rij
ψνψµdridrj

]

+

N∑

µ

∫
ψ∗
µĥiδψµdri +

1

2

N∑

µ=1

N∑

ν=1

[∫
ψ∗
µψ

∗
ν

1

rij
δψµψνdridrj −

∫
ψ∗
µψ

∗
ν

1

rij
δψνψµdridrj

]

−
N∑

µ=1

ǫµ

∫
δψ∗

µψµdri −
N∑

µ=1

ǫµ

∫
ψ∗
µδψµdri = 0. (3.47)

The variations δψ and δψ∗ are obviously not independent as they are only a complex
transformation apart, but they can indeed be treated independently by replacing δψ by
the imaginary iδψ and correspondingly δψ∗ by iδψ∗. The terms depending on δψ and
δψ∗ respectively can now be set equal to zero, yielding two independent sets of equations.
By again combining them we will obtain the Hartree-Fock equations

[
−1

2
∇2
i −

Z

ri
+

N∑

ν=1

∫
ψ∗
ν(rj)

1

rij
ψ∗
ν(rj)drj

]
ψµ(ri)

−
[
N∑

ν=1

∫
ψ∗
ν(rj)

1

rij
ψ∗
µ(rj)drj

]
ψν(ri) = ǫµψµ(ri), (3.48)

where the integral
∫
drj also includes a sum over spin quantum numbers for electron j.

The first two terms in the first square bracket is the one-body Hamiltonian while the
third term is the direct term, representing a mean field of all the other electrons as seen
by electron i. The term in the second square bracket is the exchange term, resulting
from our antisymmetric wave function ansatz. This term also takes care of the so-called
self interaction from the first term by cancellation when i = j. We can now define the
direct and exchange operators

V d
µ (ri) =

∫
ψ∗
µ(ri)

1

rij
ψµ(rj)drj , (3.49)
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3.2. Hartree-Fock Theory

and

V ex
µ (ri)ψν(ri) =

(∫
ψ∗
µ

1

rij
ψν(rj)drj

)
ψµ(ri). (3.50)

Then the Hartree-Fock equations may be written as

HHF
i ψν(ri) = ǫνψν(ri), (3.51)

with

HHF
i = ĥi +

N∑

µ=1

V d
µ (ri) −

N∑

µ=1

V ex
µ (ri), (3.52)

as the Hartree-Fock matrix.
In section 5.5, we will discuss the Roothaan-Hartree-Fock approach, which is based

on the method discussed in this section, with wave functions

ψ =
∑

p

χpCp, (3.53)

where Cp(ξ) are some coefficients and χ are chosen to be the Slater type functions on
the form

χ(r) ∝ rn−1 exp(−ξr). (3.54)

Here ξ is some factor to be determined during the minimization. We see that we must
both vary the parameters and the exponents. The results are given in section 5.5 and
the explicit expressions and results in [10].

Varying the coefficients

We see how the single particle functions in general, e.g. φ, are expressed as an expansion
of known functions, ψ, on the form

φ =
∑

i

Ciψi. (3.55)

In this section we will describe a method where we only vary the coefficients, and let the
actual basis functions remain unchanged. This will in time give us a more time-efficient
way to perform a Hartree-Fock calculation as we will show at a later stage.

The single particle basis functions are here denoted as ψλ, where λ = 1, 2, . . . and
represents the full set of quantum numbers in order to describe a single particle orbital.
Our new single particle orbitals will then be an expansion of these functions ψλ and
will have roman indices a = 1, 2, . . . to distinguish them from the chosen basis functions
with Greek indices. That is

ψa =
∑

λ

Caλψλ, (3.56)

where Caλ are the expansion coefficients that will be varied. By using the Bra-Ket
notation we can introduce a more compact way to write the direct and exchange

terms from the Hartree-Fock energy functional. They are

〈µν|V |µν〉 =

∫
ψ∗
µ(ri)ψ

∗
ν(rj)V (rij)ψµ(ri)ψν(rj)dridrj , (3.57)

and

〈µν|V |νµ〉 =

∫
ψ∗
µ(ri)ψ

∗
ν(rj)V (rij)ψν(ri)ψµ(rj)dridrj , (3.58)
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respectively. We have now only written V as a general potential instead of the explicit
V = 1/rij .

The interaction does not change under a permutation of two particles, which means
that

〈µν|V |µν〉 = 〈νµ|V |νµ〉 . (3.59)

This is also true for the general case

〈µν|V |σρ〉 = 〈νµ|V |ρσ〉 . (3.60)

We can have an even more compact notation by defining an antisymmetrized matrix
element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉 , (3.61)

or for the general case

〈µν|V |σρ〉AS = 〈µν|V |σρ〉 − 〈µν|V |ρσ〉 . (3.62)

The antisymmetrized matrix element has the following symmetry properties:

〈µν|V |σρ〉AS = −〈µν|V |ρσ〉AS = −〈νµ|V |σρ〉AS . (3.63)

It is also hermitian, which means

〈µν|V |σγ〉AS = 〈σγ|V |µν〉AS . (3.64)

Using these definitions we can have a short-hand notation for the expectation value of
the H2 operator (see Eq. (3.41)

∫
Φ∗Ĥ2Φdτ =

1

2

N∑

µ=1

N∑

ν=1

〈µν|V |µν〉AS . (3.65)

which in turn will give the full energy functional

E[Φ] =

N∑

µ=1

〈µ|h |µ〉 +
1

2

N∑

µ=1

N∑

ν=1

〈µν|V |µν〉AS , (3.66)

similar to the one in Eq. (3.43).
The above functional is valid for any choice of single particle functions, so by using

the new single particle orbitals introduced above in Eq. (3.56), and by now calling our
Hartree-Fock Slater determinant, Ψ, we then have

E[Ψ] =
N∑

a=1

〈a| h |a〉 +
1

2

N∑

a=1

N∑

b=1

〈ab|V |ab〉AS . (3.67)

By inserting the expressions for ψa we will then have

E[Ψ] =
N∑

a=1

∑

αβ

C∗
aαCaβ 〈α|h |β〉 +

1

2

N∑

a=1

N∑

b=1

∑

αβγδ

C∗
aαC

∗
bβCaγCbδ 〈αβ| V |γδ〉AS . (3.68)

Similarly as for the previous case where we minimized with respect to the wave functions
themselves, we now introduce N2 Lagrange multipliers. As a consequence of choosing
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3.2. Hartree-Fock Theory

orthogonal basis functions, i.e. 〈α|β〉 = δα,β , where δx,y is the Kronecker delta function,
the new basis functions are orthogonal, and we have

〈a|b〉 = δa,b =
∑

αβ

C∗
aαCaβ 〈α| |β〉 =

∑

α

C∗
aαCaα. (3.69)

The functional to be minimized will now be

E[Ψ] −
∑

a

ǫa
∑

α

C∗
aαCaα (3.70)

giving a variational equation

d

dC∗
kλ

[

E[Ψ] −
∑

a

ǫa
∑

α

C∗
aαCaα

]

= 0, (3.71)

where we have minimized with respect to some coefficient C∗
kλ since C∗

kλ and Ckλ are
independent. Inserting the energy functional from Eq. (3.66) we will get

∑

β

Ckβ 〈λ|h|β〉 − ǫkCkλ+
1

2

N∑

b=1

∑

β,γ,δ

C∗
bβCkγCbδ 〈λβ|V |γδ〉AS

+
1

2

N∑

a=1

∑

α,γ,δ

C∗
aαCaγCkδ 〈αλ|V |γδ〉AS = 0 (3.72)

as

d

dCkλ




N∑

a=1

∑

α,β

C∗
aαCaβ 〈α|h|β〉



 =

N∑

a=1

∑

α,β

Caβ 〈α|h|β〉 δkaδλα (3.73)

=
∑

β

Ckβ 〈λ|h|β〉 . (3.74)

In the last term in Eq. (3.72) we can use that 〈αλ|V |γδ〉AS = −〈λα|V |γδ〉AS =
〈λα|V |δγ〉AS and change summation variable in both sums from b to a which gives

∑

β

Ckβ 〈λ|h|β〉 − ǫkCkλ +

N∑

a=1

∑

α,γ,δ

C∗
aαCkγCaδ 〈λα|V |γδ〉AS = 0, (3.75)

or by using

hHFλγ = 〈λ|h|γ〉 +

N∑

a=1

∑

α,δ

C∗
aαCaδ 〈λα|V |γδ〉AS ,

we can write the Hartree-Fock equations for this particular approach as
∑

γ

hHFλγ Ckγ = ǫkCkλ. (3.76)

This is now a non-linear eigenvalue problem which can be solved by an iterative process,
or a standard eigenvalue method. The advantage of this approach is the fact that we
can calculate the matrix elements 〈α| h |β〉 and 〈αβ| V |γδ〉 once and for all, since we
don’t change the basis functions, but only their coefficients. In the first approach, where
we vary the actual wave functions, we have to calculate these matrix elements for each
iteration. When we just vary the coefficients, we can calculate the matrix elements
and store them in a table before we start the iterative process. This will lead to a
quicker algorithm, but we will see that the method of varying both coefficients and basis
functions actually produces the best results.
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Chapter 4

Quantum Monte Carlo

Monte Carlo methods are designed to simulate a mathematical system, or in our case, a
quantum mechanical system. By using random numbers, these methods are considered
stochastic, i.e. non-deterministic unlike other simulation techniques, such as Hartree

Fock, Coupled Cluster Theory and Configuration Interaction, ref. [11]. Monte Carlo
methods can be used to simulate quantum mechanical systems, but are also well suited
for calculating integrals, especially high-dimensional integrals. There are in fact several
Quantum Monte Carlo techniques such as Diffusion Monte Carlo, Green’s function

Monte Carlo and Variational Monte Carlo, see [3]. In this thesis we will focus on
the Variational Monte Carlo method.

The Quantum Monte Carlo calculations are so called ab initio methods, which are
first principle calculations These methods have their basis on probability and statistics,
and in order to get good expectation values and variances, the quantity in question must
be sampled millions of times. Each such sample is called a Monte Carlo cycle, and can
be mistaken for being linked with the dynamics of the system. However, the systems we
will examine are stationary, meaning that they are time-independent systems.

To use the Quantum Monte Carlo technique, we will need a Probability Distribution
Function (PDF), P (x), to guide our sampling and which characterizes the system, with
x being some set of variables, and of course a quantity to sample, in our case the energy
of the system, E. The expectation value of the quantity of interest, e.g. an operator Q̂,
will now be

〈Q〉 =

∫
P (x)Q̂dx. (4.1)

We will see in section 4.4.1 that the operator we are looking for in our case will be the
local energy operator

ÊL(R;α) =
1

ψT
ĤψT (R;α), (4.2)

where R is the set of all spatial variables, ψT a trial wave function since we don’t have
the exact solution Ψ (if we did, we wouldn’t have to go through all of this), and α a set
of variational parameters which will be discussed in the following section.

Since the Monte Carlo method is a statistical method involving average values etc.,
a certain degree of uncertainty and error will always occur. A method to minimize the
error estimate, the so-called blocking technique, will be discussed as a way to get the
results as correct as possible. In addition to this, we will discuss the Davidon-Fletcher-

Powell-algorithm (DFP), which is an improvement of the Conjugate Gradient Method
(CGM), see [12]. DFP is a method which finds the minimum of a multivariable function.
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This chapter will also discuss the variational principle and the Metropolis algorithm
for the Variational Monte Carlo method. The Metropolis-Hastings algorithm will also be
discussed including importance sampling which will improve the method further, with
more relevant sample points.

4.1 Markov chains

A Markov chain is a way to model a system which evolves in time, and depends solely
on it’s previous state. We can consider a system that is described by its constituents
having different probabilities to occupy some physical state. That is, the system is
described by a PDF, wj(t), at an instance t, where the index j indicates that the system
is discretized (for simplicity). We now have a transition probability, Wij, which gives
us the probability for the system going from a state given by wj(t) to a state wi(t+ ǫ),
where ǫ is a chosen time step. The relation between the PDF’s wi and wj will be

wi(t+ ǫ) =
∑

j

Wijwj(t), (4.3)

where wi and Wij are probabilities and must fulfill

∑

i

wi(t) = 1, (4.4)

and ∑

i

Wij = 1. (4.5)

We can also write this as a matrix equation

w(t+ ǫ) = Ww(t). (4.6)

The equilibrium state of the system can be described by

w(∞) = Ww(∞), (4.7)

which implies a steady state, since the transition matrix now has no effect on the state
vector, w. Eq. (4.7) now reads as an eigenvalue equation. By solving this equation,
the eigenvectors would then be w1,w2,w3, . . . and so on, while the corresponding
eigenvalues would be λ1, λ2, λ3, . . . etc. If the largest eigenvalue is λ1, viz.

λ1 > λ2, λ3, λ4, . . . , (4.8)

the steady state would then be w1, as its eigenvalue would cause this state to dominate
as time progresses.

However, we do not know the form of the transition probability, Wij , and need a way
to examine the conditions at equilibrium. We start with the so-called Master equation,

dwi(t)

dt
=
∑

j

[W (j → i)wj −W (i→ j)wi] , (4.9)

which expresses the time rate of the PDF as a balance between state transitional
probabilities from states j to i and from state i to states j. At equilibrium this time
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derivative is zero, dw(teq)/dt = 0, implying that the sums of the transitions must be
equal, namely ∑

j

W (j → i)wj =
∑

j

W (i→ j)wi. (4.10)

By using Eq. (4.5) on the right-hand side of the equation, we get

wi =
∑

j

W (j → i)wj . (4.11)

We do, however, need an even more stringent requirement to obtain the correct solutions,
which is the so-called detailed balance principle:

W (j → i)wj = W (i→ j)wi, (4.12)

saying that the transition rate between any two states i and j must be equal as well.
This gives the condition

wi
wj

=
W (j → i

W (i→ j)
. (4.13)

The detailed balance principle is imposed on the system to avoid cyclic solutions. This
principle ensures us that once the most probable state is reached, the one corresponding
to the lowest eigenvalue, the system will not traverse back to any state, corresponding
to higher eigenvalues, see ref. [13].

A Markov chain must also comply with the ergodic principle, which has as a criterion
that a system should have a non-zero probability of visiting all possible states during
the process (see [3]). A Markov chain does only depend on its previous step, and will
fulfill this condition of ergodicity. The Metropolis algorithm (see section 4.4.1) is based
on a Markovian process and fulfills this condition of the ergodic principle.

Our physical system, an atom consisting of N electrons, is a system that can be
described by a PDF and which only depends on its previous system state. The PDF
is here the absolute square of the wave function, namely |ψ|2. Since this describes a
Markov process, a wise choice would then be to use the Metropolis algorithm in order
to simulate the system.

4.2 Random numbers

A main component of a Monte Carlo calculation is the use of random numbers. The
most common random number distribution is the uniform distribution, which returns a
random number r between zero and one, that is

r ∈ (0, 1) . (4.14)

The name uniform (chapter 7.1 in [12]) tells us that every number between 0 and 1 could
be returned with equal probability. Another much used distribution is the Gaussian, or
normal distribution (see chapter 7.3.4 in [12]).

As we saw in section 4.1, a Markov chain is a mathematical model which relies only
on it’s previous step in the calculation. The true random numbers used to calculate
i.e. new positions for particles etc., should be uncorrelated. In computers however, we
cannot get true random numbers, and must therefore settle for so-called Pseudo-Random
Number Generators (PRNG), where the numbers are correlated. Another problem with
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these number generators is that they have a certain period, and this sequence of pseudo-
random numbers will repeat itself after completing a cycle of the sequence. However,
the pseudo-random number generators we use have quite large periods, and we will not
suffer because of this.

4.3 The Variational Principle

The main target for us is to solve the time independent Schrödinger equation

ĤΨ = EΨ (4.15)

where Ĥ is the Hamiltonian, the operator representing the energy of the system, Ψ
the quantum mechanical wave function, and E the total energy of the system. The
variational principle tells us that for any given choice of trial wave function, ψT , the
total energy

E =
〈ψT | Ĥ |ψT 〉
〈ψT |ψT 〉

(4.16)

will always be larger or equal to the true ground state energy, E0, for the chosen
Hamiltonian Ĥ,

E0 ≤ 〈ψT | Ĥ |ψT 〉
〈ψT |ψT 〉

. (4.17)

To show this, we exploit the fact that Ĥ is Hermitian, and that the Hamiltonian will
have a set of exact eigenstates forming a complete basis set, |Ψi〉. Our trial function can
then be expanded as

〈ψT | =
∑

i

ci |Ψi〉 , (4.18)

and the expectation value for Ĥ using the trial function ψT will be

E =
〈ψT | Ĥ |ψT 〉
〈ψT |ψT 〉

=

∑
ij c

∗
i cj 〈Ψi| Ĥ |Ψj〉∑
ij c

∗
i cj 〈Ψi|Ψj〉

=
|ci|2Ei 〈Ψi|Ψi〉
|ci|2 〈Ψi|Ψi〉

=

∑
i |ci|2Ei∑
i |ci|2

. (4.19)

The crucial point is to know that every excited state energy, Ei, is greater or equal to
the ground state energy, E0, that is

E =
|ci|2Ei 〈Ψi|Ψi〉
|ci|2 〈Ψi|Ψi〉

=

∑
i |ci|2Ei∑
i |ci|2

≥ |ci|2E0 〈Ψi|Ψi〉
|ci|2 〈Ψi|Ψi〉

=

∑
i |ci|2Ei∑
i |ci|2

= E0. (4.20)

This inequality gives an equality when you find the true ground state wave function, Ψ0,
that is

E0 = 〈Ψ0| Ĥ |Ψ0〉 . (4.21)

As our main goal is to approximate the ground state energy, this is the basis of our
calculations. This gives us an idea to introduce variational parameters to our trial wave
function in search for a good approximation. Instead of just having the wave functions
depending on the spatial coordinates as ψT = ψT (x, y, z), we can write ψT as

ψT = ψT (x, y, z, α, β, . . . ). (4.22)
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Our goal is to find the minimum of functional E in Eq. (4.16), viz. the set of parameters
that gives the lowest energy when calculating E. A common approach in VMC is too
also search for the minimum of the variance. A priori, we know that when the variance
is exactly zero, we have found the true ground state. However, as we have no knowledge
of the true form of the wave function, we must make an ansatz for it. This ansatz will
in general not have a minimum for both the energy and the variance for the same set
of parameters. As mentioned in [14], the most efficient wave function is found if we
use a linear combination of the parameters that minimize the energy and the variance
respectively.

In this work however, I have focused on finding the minimum of the energy only.

4.4 Variational Monte Carlo

The main exercise with the Variational Monte Carlo process for atoms is to move the
particles in the system guided by a probability distribution and sample the energy at
these states in order to calculate various expectation values (mainly 〈E〉 and 〈E2〉).
In our case we have a known Hamiltonian, Ĥ, and a chosen many-particle trial wave
function, ψT . The expectation value of the Hamiltonian is

〈H〉 =

∫
dRψ∗

T (R;α)Ĥ(R)ψT (R;α)∫
dRψ∗

T (R;α)ψT (R;α)
, (4.23)

where R = (R1,R2, . . . ,RN) are all the coordinates for the N particles, and α is the
set of all the variational parameters in question. The general procedure will now be

1. Construct a trial wave function, ψT as a function of the N particles’ coordinates
and the chosen variational parameters

2. Calculate 〈H〉 using Eq. (4.23)

3. Vary the parameters according to some minimization technique

We will first focus on the second item in the list above, with a focus on the Metropolis
algorithm.

4.4.1 VMC and the simple Metropolis algorithm

We assume first that our trial wave function, ψT , is not normalized so the quantum
mechanical probability distribution is then given as

P (R;α) =
|ψT (R;α)|2

∫
|ψT (R;α)|2 dR

. (4.24)

Equation (4.24) gives the PDF for our system. We now define a new operator, called
the local energy operator as

ÊL(R;α) =
1

ψT
ĤψT (R;α), (4.25)

and the expectation value of the local energy is given as

〈EL(α)〉 =

∫
P (R;α)ÊL(R;α)dR. (4.26)
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The dimensionless Hamiltonian in section 3.1.4 is given as

Ĥ = −1

2

N∑

i

∇2
i −

N∑

i

1

ri
+
∑

i<j

1

rij
. (4.27)

Inserting the Hamiltonian from Eq. (4.27) into Eq. (4.25), the local energy operator will
be

ÊL =
1

ψT (R, α)



−1

2

N∑

i

∇2
i −

N∑

i

1

ri
+
∑

i<j

1

rij



ψT (R, α). (4.28)

By observing that the last two terms don’t affect the wave function in any way, we have

ÊL =
1

ψT (R, α)

(
−1

2

N∑

i

∇2
i

)
ψT (R, α) −

N∑

i

1

ri
+
∑

i<j

1

rij
. (4.29)

This will be quantity we sample in each Monte Carlo cycle, following our PDF from
Eq. (4.24). The more we improve the trial wave function the closer the expectation
value of the local energy, 〈EL〉, gets to the exact energy E.

As we sample the local energy EL we also sample E2
L in order to get 〈E2

L〉 for the
variance

σ2
EL

= 〈E2
L〉 − 〈EL〉2. (4.30)

We see from appendix B that we now can calculate the

〈EL〉 =
1

n

n∑

k=1

EL(xk), (4.31)

where xk are the points at which the local energy is sampled, and n are the number of
sample points.

An important note is that in Metropolis algorithm only involves ratios between
probabilities, so the denominator in Eq. (4.24) actually never needs to be calculated.
We will see this in the next section.

The Metropolis algorithm

The Metropolis algorithm uses ratios between probabilities to determine whether or not
a chosen particle is to be moved to a proposed position or not. When an electron is
moved, the set of positions R change to positions R′. The ratio w = P (R′)/P (R) is
now the transition probability from the state with particles being in positions R to a
state where particles are in positions R′. This ratio w will now be

w =

∣∣∣∣
ψT (R′)

ψT (R)

∣∣∣∣
2

. (4.32)

The Metropolis algorithm tells us that if

w > 1, (4.33)

we automatically accept the new positions. If w < 1, we compare w with a random
number r, with r ∈ (0, 1). If

r ≤ w, (4.34)
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4.4. Variational Monte Carlo

we also accept the new positions. If neither of the two inequalities are true, the chosen
electron remains at its position before the proposed move. The most effective way to
use this method is to move one particle at a time before running the tests for w.

We now have enough information to describe the elements needed to calculate the
expectation value for the local energy using the Metropolis algorithm. The specifics of
the implementation will be discussed in the next chapter, but the following points still
show how it’s done.

1. Set all electrons in random positions initially, that is a set of positions R

2. Start a Monte Carlo cycle and a loop over electrons

3. Calculate the new position,
R′

i = Ri + s ∗ r,
for electron i using a uniform random number, r and a finite stepsize, s. This will
change the entire set of positions from R to R.

4. Calculate the ratio
w = |ψT (R′)/ψT (R)|2,

5. Use the checks in Eqs. (4.33) and (4.34) to decide whether to accept new positions,
R = R′, or to stay in initial positions R.

6. If accepted, update positions

7. Repeat steps 3 through 6 for each electron

8. After looping over all particles, calculate the local energy and update 〈EL〉 and
〈E2

L〉.

9. Repeat steps 3 through 8 for the chosen number of Monte Carlo cycles

The transition rules being used here is called a uniform symmetrical transition rule, and
it is common to keep the acceptance ratio around 0.5 (this is achieved by choosing the
step length s ≈ 1). The acceptance ratio is the number of accepted steps divided by
total number of particle moves. However, this simple Metropolis algorithm does not
seem very efficient, due to the way the new positions are calculated. They depend solely
on the previous position and not on any guiding mechanism. In order to make this
method more efficient, we introduce the Metropolis-Hastings algorithm with so-called
importance sampling. With importance sampling we will get a much higher acceptance
ratio since the calculation of new positions and the Metropolis-test will depend on the
gradient of the wave function. Figure 4.1 shows a float chart of the Metropolis method.

4.4.2 Metropolis-Hastings algorithm and importance sampling

As an improvement to our Metropolis algorithm, we introduce the Metropolis-Hastings
algorithm, which involves importance sampling. A new term that has to be implemented
is the quantum force of the system:

F = 2
1

ψT
∇ψT , (4.35)

A physical interpretation of the quantum force, and therefore a good reason to implement
it, is that the gradient of the wavefunction tells us which direction the electrons are
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Figure 4.1: A float chart describing the Metropolis algorithm
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4.4. Variational Monte Carlo

moving. If we rather use the quantum force to steer us in the direction of the electron
movement, rather than sampling random points around the nucleus, the points we sample
will be more relevant and therefore our acceptance ratio increases to about 0.8-0.9.
Despite the fact that computing the quantum force will increase the calculation time
for each cycle, this will in time decrease our thermalization period, the period for the
system to reach a most likely state. This will result in a more efficient algorithm.

Importance sampling

The one-dimensional diffusion equation is written as

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
, (4.36)

and describes how the probability distribution, P , of a random walker evolves in time. D
is the diffusion constant (see chapter 14 in [9] or chapter 1 in [3]). The Green’s function

G(y, x, t) =
1

(4πD∆t)3N/2
exp

(
−(y − x)2/4Dt

)
, (4.37)

is a general solution to the diffusion equation for a single walker which starts off at
position x at time t = 0. By using discrete time steps, it can be shown that a Markov
process models a diffusion process, as the transition probability in a time step ∆t from
position x to position y, G(y, x,∆t), only depends on the previous position, or state.
The Fokker-Planck equation:

∂P

∂t
= D

∂

∂x

(
∂

∂x
− F

)
P (x, t), (4.38)

describes the time evolution of a PDF. As opposed to the diffusion equation, the Fokker-
Planck equation also includes a drift term, F , yielding a solution given as

G(y, x,∆t) =
1

(4πD∆t)3N/2
exp

(
−(y − x−D∆tF (x))2/4D∆t

)
. (4.39)

This is very similar to the solution of the diffusion equation but includes the drift term, or
external force, F . This can be interpreted as a probability distribution of a single random
walker with a drift force term starting off at position x at time t = 0([15]). This Green’s
function serves as a transition probability for an electron when it is under influence of
the drift term, F . This new propability must be multiplied with the probability from
Eq. (4.24) and the ratio of probabilities from Eq. 4.32 is then replaced by the modified
ratio

w =
G(x, y,∆t)|ψT (y)|2
G(y, x,∆t)|ψT (x)|2 , (4.40)

or more explicitly

w =
|ψT (y)|2
|ψT (x)|2 exp

(
−(y − x−D∆tF (x))2 − (x− y −D∆tF (y))2)

)
. (4.41)

The Langevin equation (see [3]) is a stochastic differential equation describing the dy-
namics of random walkers as

∂x(t)

∂t
= DF (x(t)) + η, (4.42)
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where η is a random variable following the uniform distribution between 0 and 1.
Integrating this equation using the concepts of stochastic integration, will yield the
equation

y = x+DF (x)∆t+ ξ
√

∆t, (4.43)

where ξ now is a Gaussian distributed random variable and ∆t is a chosen timestep.
This equation replaces Eq. (3) as the equation that calculates the new position for a
particle. We see that this depends on the drift term, the quantum force, F (x). This
drift term “pushes” the walkers in the direction of more probable states because the
gradient of our PDF will point in the direction of higher values of probability.

By using the Fokker-Planck equation (where P is a time-dependent probability
density),

∂P

∂t
= D

∂

∂x

(
∂

∂x
− F

)
P (x, t), (4.44)

and restraining a system to be in a stationary state, that is ∂P/∂t = 0, we find the form
of F as

F (x) =
1

P

dP

dx
, (4.45)

or

F (r) =
1

P
∇P (4.46)

in three dimension, giving us a constraint for the form of the quantum force. Our
quantum mechanical system has a probability distribution given as

P (r) = |ψT (r)|2, (4.47)

and the quantum force of our system will be

F (x) = 2
1

ψT
∇ψT . (4.48)

This algorithm will speed up the process as more important or relevant states are sampled
(or visited in state space), hence the name, importance sampling.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm can be summarized in the same way as for the simple
Metropolis algorithm:

1. Set all electrons in random positions as an initial point, x

2. Start a Monte Carlo cycle and a loop over electrons

3. Calculate the new position,

yi = xi +DF (x)∆t+ ξ
√

∆t

for the chosen electron i using a Gaussian distributed number, ξ and a chosen
timestep, ∆t

4. Calculate the quantum force for the new set of positions, y, and then the Green’s
function
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4.4. Variational Monte Carlo

5. Calculate the ratio w from equation Eq. (4.41)

6. Use the checks in Eqs. (4.33) and (4.34) to decide whether to accept new positions,
y, or to stay in initial positions x

7. If accepted, update positions and quantum force

8. Repeat steps 3 through 7 for each electron

9. After looping over all particles, calculate the local energy and update 〈EL〉 and
〈E2

L〉.

10. Repeat steps 3 through 9 for the chosen number of Monte Carlo cycles

Figure 4.2 shows a float chart of the Metropolis-Hastings algorithm. The detailed
implementation as a computer program will be discussed in the next chapter.

Both the simple Metropolis and the Metropolis-Hastings algorithms demand 4N
random numbers per Monte Carlo cycle, where N is the number of particles. Per particle
move, we need 3 normal distributed random numbers to make a move in each of the
spatial dimensions. We also need one uniformly distributed random number for the
Metropolis-test itself.
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Figure 4.2: A float chart describing the Metropolis-Hastings algorithm
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Chapter 5

Wave Functions

As the expectation values calculated with VMC depend on the chosen trial function,
the results rely heavily on an educated guess. In this chapter we will examine the wave
functions used for the Variational Monte Carlo method, and why they are good choices.
This chapter will also introduce a correlation part, the Jastrow factor, to our trial wave
function, since a pure Slater determinant is not enough to describe the inter-electronic
correlations in an atomic system.

5.1 Cusp conditions and the Jastrow factor

The cusp conditions are constraints we get on the wave function when considering
our system when distances between an electron and the core and between the electrons
themselves become very small. The problems lie with the Coulomb force which depends
on the inverse of the distance between charged particles. When these distances become
small, we need some way to cancel the divergences that occur.

5.1.1 Single particle cusp conditions

In order to find the cusp conditions for the single particle wave functions, we start by
examining the radial Schrödinger equation

− ~
2

2m

(
1

r2
d

dr
r2
d

dr
− l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r), (5.1)

where R(r) is the radial part of the full wave function. The dimensionless radial equation
can be written as

(
d2

dρ2
+

2

ρ

d

dρ
+

2Z

ρ
− l(l + 1)

ρ2
+ 2E

)
R(ρ) = 0, (5.2)

with Z being the nuclear charge of the core. We now introduce

R(ρ) =
1

ρ
u(ρ) (5.3)

as our radial wave function. This will give the radial equation as

d2u(ρ)

dρ2
+

2Z

ρ
u(ρ) − l(l + 1)

ρ2
u(ρ) + 2Eu(ρ) = 0. (5.4)
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As ρ approaches zero, the terms that dominate will be

d2u(ρ)

dρ2
− l(l + 1)

ρ2
u(ρ) = 0. (5.5)

The general solution of this differential equation is

u(ρ) = Cρl+1 +Dρ−l. (5.6)

As ρ−l will blow up as ρ approaches zero, the only physical solution we can have is then

u(ρ) ∼ ρl+1. (5.7)

In general we must assume that

R(ρ) = ρl+1γ(ρ), (5.8)

where γ(ρ) is just some radial dependence function of ρ with the constraint that γ(0) 6= 0.
For the kinetic energy not to diverge, we also need

lim
ρ→0

d2γ(ρ)

dρ2
= Ω, (5.9)

where Ω is finite. The dimensionless radial equation is now

(
d2

dρ2
+

2

ρ

d

dρ
+

2Z

ρ
− l(l + 1)

ρ2
+ 2E

)
ρlγ(ρ) = 0, (5.10)

By finding the derivatives

d2

dρ2

[
ρlγ(ρ)

]
= (l − 1)lρl−2γ(ρ) + 2lρl−1dγ(ρ)

dρ
+ ρl

d2γ(ρ)

dρ2
, (5.11)

and
2

ρ

d

dρ

[
ρlγ(ρ)

]
= 2lρl−2γ(ρ) + 2ρl−1 dγ(ρ)

dρ
, (5.12)

and inserting them into Eq. (5.10) while taking the limit when ρ→ 0, we will get

γ(ρ)

[
l(l + 1)

ρ2
+

2Z

ρ
− l(l + 1)

ρ2

]
+
dγ(ρ)

dρ

[
2(l + 1)

ρ

]
= 0 (5.13)

as the terms that dominate. The second derivative from Eq. (5.9) is finite, as well as
the term involving the energy E. By further simplification we will then have the cusp
condition as

1

γ(ρ)

dγ(ρ)

dρ
= − Z

l+ 1
, (5.14)

which indicates the exponential behavior a wave function must have. The solution of
equation Eq. (5.14) is

γ(ρ) ∼ e−Zρ/(l+1). (5.15)

The hydrogenic wave functions and the Roothan-Hartree-Fock orbitals both fulfill the
cusp condition.
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5.2. Rewriting the Slater determinant

5.1.2 Correlation cusp conditions

To see how the wave function should behave with respect to correlation, we consider the
helium system when the two electrons are very close, but far away from the core, that is,
r1 6= 0, r2 6= 0 and r12 → 0. Now the electron-nucleus terms in the Hamiltonian will be
finite, while the repulsive electron-electron potential and the kinetic energy of the two
electrons will diverge. When using center of mass coordinates for electron 1 and 2, but
neglecting the center of mass motion since r12 → 0, we will get a cusp condition also for
the correlation part by using much of the same derivations as in section 5.1.1. The cusp
condition for the two-particle part, R(r12), will then be

dR(r12)

dr12
=

1

2(l + 1)
R(r12), (5.16)

as given in [3] and [9].
A correlation function that satisfies this cusp condition is the so-called Padé-Jastrow-

function given by the two-particle functions

f(rij) = exp

(
rij

a(1 + βrij)

)
, (5.17)

where β is a variational parameter. The factor a is a result of whether the intrinsic spins
of particles i and j are parallel or not. That is

a =

{
4 if spins are parallel,

2 if spins are anti-parallel.
(5.18)

The full Padé-Jastrow function, J , for a system of N electrons will then be

J =

N∏

i<j

f(rij) =

N∏

i<j

exp

(
rij

a(1 + βrij)

)
, (5.19)

which also satisfies the cusp condition.

5.2 Rewriting the Slater determinant

A general Slater determinant for an N-electron system will take the form:

Φ(r1, r2, . . . , rN , α, β, . . . , ν) =
1√
N !

∣∣∣∣∣∣∣∣∣

ψα(r1) ψα(r2) · · · ψα(rN )
ψβ(r1) ψβ(r2) · · · ψβ(rN )

...
...

. . .
...

ψν(r1) ψν(r2) · · · ψν(rN )

∣∣∣∣∣∣∣∣∣

, (5.20)

where the ψ’s are the available single particle orbitals. We could examine this more
specifically by using the beryllium atom as an example. The Slater determinant for
beryllium is written as

Φ(r1, r2, r3, r4, α, β, γ, δ) =
1√
4!

∣∣∣∣∣∣∣∣

ψα(r1) ψα(r2) ψα(r3) ψα(r4)
ψβ(r1) ψβ(r2) ψβ(r3) ψβ(r4)
ψγ(r1) ψγ(r2) ψγ(r3) ψγ(r4)
ψδ(r1) ψδ(r2) ψδ(r3) ψδ(r4)

∣∣∣∣∣∣∣∣
, (5.21)
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with the quantum numbers representing different states as

|µ〉 = |n, l,ml, χ±〉 , (5.22)

with |α〉 = |1, 0, 0 ↑〉, |β〉 = |1, 0, 0 ↓〉, |γ〉 = |2, 0, 0 ↑〉 and |δ〉 = |2, 0, 0 ↓〉. The values
χ± are given as χ+ =↑ and χ− =↓ (see section 2.1.2).

By writing out the determinant in Eq. (5.21) explicitly, we would get zero, as the
spatial wave functions for both spin up and spin down states are identical, and all terms
will cancel each other out. We could also try to rewrite the Slater determinant as a
product of a spin up-Slater determinant and a spin down-Slater determinant as

Φ(r1, r2, r3, r4, α, β, γ, δ) = Det ↑ (1, 2)Det ↓ (3, 4) −Det ↑ (1, 3)Det ↓ (2, 4)

−Det ↑ (1, 4)Det ↓ (3, 2) +Det ↑ (2, 3)Det ↓ (1, 4) −Det ↑ (2, 4)Det ↓ (1, 3)

+Det ↑ (3, 4)Det ↓ (1, 2), (5.23)

where we have defined

Det ↑ (1, 2) =
1√
2

∣∣∣∣
ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

∣∣∣∣ , (5.24)

as a spin up-determinant, and

Det ↓ (3, 4) =
1√
2

∣∣∣∣
ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

∣∣∣∣ , (5.25)

as a spin down-determinant. However, writing out all these smaller determinants, will
still give zero, but the strategy of separating the Slater determinant in one spin up and
one spin down determinant is still pursued. The Hamiltonian does not depend on spin,
so we wish to avoid summation over spin variables. As described in [16], we can actually
approximate the Slater determinant for a variational approach with a plain product of
a spin up- and a spin down-Slater determinant

Φ(r1, r2, . . . , rN ) ∝ Det ↑ Det ↓, (5.26)

where the determinants Det ↑ and Det ↓ are (N/2)× (N/2)-matrices for even numbered
electron systems as examined in this project. We place the first N/2 electrons in the
spin up determinant and the rest in the spin down determinant. This ansatz for the
wave function is not antisymmetric under particle exchange as a wave function should
be, but it will give the same expectation value as the correct Slater determinant for such
a spin independent Hamiltonian.

5.3 Variational Monte Carlo wave function

By reviewing the last two sections we can write the full trial wave function for or Monte
Carlo experiment. It can be written

ψT = Φ · J, (5.27)

where the Slater determinant Φ can be approximated by

Φ(r1, r2, . . . , rN ) ∝ Det ↑ Det ↓, (5.28)
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and J is

J =
N∏

i<j

exp

(
rij

a(1 + βrij)

)
. (5.29)

For an N -particle system with M = N/2 possible spatial orbitals, the spin up
determinant, Det ↑, can be written

Det ↑ ∝

∣∣∣∣∣∣∣∣∣

ψ1↑(r1) ψ1↑(r2) · · · ψ1↑(rN/2)

ψ2↑(r1) ψ2↑(r2) · · · ψ2↑(rN/2)
...

...
. . .

...
ψM↑(r1) ψM↑(r2) · · · ψM↑(rN/2)

∣∣∣∣∣∣∣∣∣

, (5.30)

while the spin down determinant can be written

Det ↓ ∝

∣∣∣∣∣∣∣∣∣

ψ1↓(rN/2+1) ψ1↓(rN/2+2) · · · ψ1↓(rN )

ψ2↓(rN/2+1) ψ2↓(rN/2+2) · · · ψ2↓(rN )
...

...
. . .

...
ψM↓(rN/2+1) ψM↓(rN/2+2) · · · ψM↓(rN )

∣∣∣∣∣∣∣∣∣

. (5.31)

These are the expressions needed for our trial wave function. The next two sections
describe the single particle orbitals, the ψ’s, we use in our Slater determinant.

5.4 Orbitals for VMC

In order to construct a trial Slater determinant for the Variational Monte Carlo method,
our first choice is to use the hydrogenic single particle functions obtained when solving
the Schrödinger equation for hydrogen. These functions comply with the cusp conditions
described in section 5.1.1.

5.4.1 S-orbitals

An s-orbital is a spatial wave function with quantum number l = 0. Introducing the
variational parameter α, the s-orbitals needed for calculating up to at least silicon, with
N = 14 electrons, are 1s, 2s and 3s. Here we only need the radial part of the wave
functions because the constant angular parts factor out in the Metropolis algorithm (see
section 4.4.1). The spherical harmonics for l = 0 is

Y 0
0 =

(
1

4π

)1/2

. (5.32)

We now don’t have to consider changing from spherical to Cartesian coordinates because
the expression will remain the same using the simple relation r =

√
x2 + y2 + z2. The

hydrogenic radial functions are found in table 4.7 in [2] where non-vanishing factors(cf.
Metropolis algorithm) 1/a have been replaced by α.

The 1s wave function

For the 1s function we only need the exponential function

φ1s = e−rα, (5.33)
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with the first derivative with respect to an arbitrary coordinate, xi, given as:

∂φ1s

∂xi
= −αxi

r
e−αr. (5.34)

The Laplacian, ∇2 = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
, needed for the kinetic energy is given as

∇2φ1s =
α

r
(αr − 2) e−αr. (5.35)

The 2s wave function

The 2s wave function is given by

φ2s =
(
1 − αr

2

)
e−αr/2, (5.36)

with the first derivative with respect to. xi is

∂φ2s

∂xi
=
αxi
2r

(
2 − αr

2

)
e−αr/2. (5.37)

The second derivative of the 2s function gives the Laplacian of the function:

∇2φ2s =
α

4r

(
5αr − α2r2

2
− 8

)
e−αr/2. (5.38)

The 3s wave function

The final s-function is the 3s wave function. It is

φ3s =

(
1 − 2αr

3
+

2α2r2

27

)
e−αr/3. (5.39)

The first derivative is

∂φ3s

∂xi
=

(
−1 +

10αr

27
− 2α2r2

81

)
αxie

−αr/3, (5.40)

while the second derivative summed up in all three dimensions is

∇2φ3s =

(
−2 +

13αr

9
− 2α2r2

9
+

2α3r3

243

)
α

r
e−αr/3. (5.41)

5.4.2 P-orbitals

The p-orbitals are the single particle functions which have azimuthal quantum num-

ber l = 1. Now the allowed values for the magnetic quantum number are
m = −l,−l + 1, . . . , l − 1, l, i.e. m = −1, 0, 1. This is only possible for functions
with quantum numbers n = 1, 2, 3, . . . . In this thesis we only need s- and p-orbitals.

The angular parts for any p-orbital in spherical coordinates are

Y 0
1 =

(
3

4π

)1/2

cos θ, (5.42)
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Y ±1
1 = ±

(
3

8π

)1/2

sin θe±iϕ. (5.43)

In my program however, I am working with real wave functions and Cartesian coor-
dinates. This is taken care of by introducing real solid harmonics, Slm, as described in
ref. [6]. The single particle wave functions, ψnlm, are written on a separable form with
spherical coordinates as

ψ(r, θ, ϕ)nlm = Rnl(r)Ylm(θ, ϕ). (5.44)

These are general solutions of the one-electron system in a central symmetric potential
field. Our radial functions are on the form Rnl(r) = rlRnl(r). The solid harmonics, Y,
are related to the spherical harmonics by

Ylm(r, θ, ϕ) = rlYlm(θ, ϕ). (5.45)

We can then write the wave function as

ψ(r, θ, ϕ)nlm = Rnl(r)Ylm(θ, ϕ) = Rnl(r)Ylm(r, θ, ϕ). (5.46)

Now there is an r-dependence in the angular part. We will only need the real-valued
solid harmonics, Slm, related to the solid harmonics by

Sl,0 =

√
4π

2l + 1
Yl,0, (5.47)

Sl,m = (−1)m
√

8π

2l + 1
Re Yl,m, (5.48)

and

Sl,−m = (−1)m
√

8π

2l + 1
Im Yl,m. (5.49)

The real solid harmonics needed for us are simply S1,1 = x, S1,0 = z and S1,−1 = y. As
mentioned earlier, the Metropolis algorithm will take care of any multiplicative factors
in front of the wave functions, so we only need to consider one single spatial variable
from the angular part of the wave function.

The 2p wave function

The expression for the 2p wave function in spherical coordinates is proportional to

R21 ∝ re−αr/2. (5.50)

By reviewing Eq. (5.45) and using the results from the real solid harmonics, we see the
factor rl = r is replaced by a coordinate xi. That is, xi = x, y, z depending on the
quantum number m. The general case is then

φ2p(m) = xi(m)e−αr/2. (5.51)

with xi(1) = x, xi(0) = z and xi(−1) = y.
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The first derivative depends on whether the coordinate being differentiated with
respect to matches the coordinate xi of the wave function or not. If these are the same,
e.g. m = 1 → xi = x, the first derivative is

∂φ2p

∂x
=

(
1 − αx2

2r

)
e−αr/2

r
. (5.52)

The expressions are analogous for y and z also.
If these coordinates do not match, e.g. φ2p(1) = x exp−αr/2 and the derivative is

with respect to y, the expression is

∂φ2p(1)

∂y
= −αxy

r
e−αr/2. (5.53)

As for the first derivative, the second derivative also depends on which coordinate we
differentiate with respect to. If the coordinates are the same, e.g. m = 1 → xi = x, the
second derivative is

∂2φ2p

∂x2
=
α

r

(
x3

2r

(
1

r
+
α

2

)
− 3x

2

)
e−αr/2, (5.54)

while for different coordinates, e.g. φ2p(1) = x exp−αr/2 and the second derivative

is with respect to y, the expression is

∂2φ2p(1)

∂y2
=
αx

2r3

(
αry2

2
− r2 + y2

)
e−αr/2. (5.55)

The final Laplacian is a sum of Eqs. (5.54) and (5.55) depending on which l-state is
being used.

The 3p wave function

The 3p radial wave function is proportional to

R31 ∝
(
1 − rα

6

)
αre−αr/3. (5.56)

By using the real solid harmonics for the full single particle wave function, we get our
expression for the 3p wave function;

φ3p(m) = xi(m)
(
1 − αr

6

)
αe−αr/3, (5.57)

with xi(1) = x, xi(0) = z and xi(−1) = y. The first derivative when differentiating
with respect to. to the same coordinate xi, e.g. x, is

∂φ3p(1)

∂x
=

(
−
(
1 − αr

6

)(α2x2

3r
+ α

)
− α2x2

6r

)
e−αr/3, (5.58)

while for different coordinates, e.g. x and y, it is

∂φ3p(1)

∂y
=

(
−
(
1 − αr

6

) α2yx

3r
− α2xy

6r

)
e−αr/3, (5.59)
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and
∂φ3p(1)

∂z
=

(
−
(
1 − αr

6

) α2zx

3r
− α2zx

6r

)
e−αr/3. (5.60)

The second derivative with respect to the coordinate from the solid harmonic, e.g. x,
is

∂2φ3p(1)

∂x2
=

((
1 − αr

6

)( x2

3r2
+
αx2

9r
− 1

)
+
αx2

9r
+

x2

6r2
− 1

2

)
α2x

r
e−αr/3, (5.61)

while the second derivative with respect to a different coordinate is

∂2φ3p(1)

∂y2
=

((
1 − αr

6

)( y2

3r2
+
αy2

9r
− 1

3

)
+
αy2

9r
+

y2

6r2
− 1

6

)
α2x

r
e−αr/3, (5.62)

and

∂2φ3p(1)

∂z2
=

((
1 − αr

6

)( z2

3r2
+
αz2

9r
− 1

3

)
+
αz2

9r
+

z2

6r2
− 1

6

)
α2x

r
e−αr/3. (5.63)

By combining these we get the Laplacian of the wave function, ∇2φ3p(1). The expression
for this particular single partice wave function is

∇2φ3p(1) =
∂2φ3p(1)

∂x2
+
∂2φ3p(1)

∂y2
+
∂2φ3p(1)

∂z2
. (5.64)

These are all the explicit expressions needed for the Slater determinant with hydrogen-
like wave functions.

5.5 Roothaan-Hartree-Fock with Slater-type orbitals

Another approach for the single particle basis is to use the single particle wave
functions obtained using the Hartree-Fock method discussed in section 3.2.1. The Slater
determinant is of the form

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) · · · φ1(rN )
φ2(r1) φ2(r2) · · · φ2(rN )

...
...

. . .
...

φN (r1) φN (r2) · · · φN (rN )

∣∣∣∣∣∣∣∣∣

, (5.65)

where the functions φ are the single particle states. The Roothaan-Hartree-Fock
approach (see [10]) is to choose Slater type orbitals (STO) as the basis functions in
our wave function expansion. The STO are discussed in [6] and in [10]. In this work I
have used the exact form from [10]. These are given as

φiλα =
∑

p

ψpλαCiλp, (5.66)

where λ corresponds to quantum number l. The index i refers to the ith orbital of
symmetry λ, and p to the pth orbital of symmetry λ. The index α corresponds to
quantum number m. The Slater functions, ψ, are on the form

ψpλα(r, θ, ϕ) = Rλp(r)Yλα(θ, ϕ), (5.67)
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where
Rλp = [(2nλp)!]

−1/2(2ξλp)
nλp+1/2 rnλp−1e−ξλpr, (5.68)

and Y are the normalized spherical harmonics. The solutions of this particular approach
are given in appendix A, taken from [10].

By using the idea of real solid harmonics (see section 5.4) and the fact that all basis
functions ψ in φ will have the same index α, hence the same spherical harmonics, we
can ignore the pre-factor from the spherical harmonics (see section 4.4.1). Now the basis
functions ψ will go from the form

ψi = Nir
n−1 exp(−ξr)Yλα, (5.69)

in spherical coordinates, to

ψi = Nixir
n−2 exp(−ξr), (5.70)

in Cartesian coordinates, where the factor Ni is the normalization constant from
Eq. (5.68). The results from helium, beryllium, neon, magnesium and silicon are listed
in appendix A. As an example on how to construct the single particle orbitals from the
tables in appendix A, I use the example given in [10]:

n,λ Exponent, ξ 1s exp.coeff. 2s exp.coeff. n,λ Exponent, ξ 2p exp.coeff.

1S 6.56657 0.19030 0.00754 2P 2.21734 0.21526
1S 4.24927 0.82091 −0.25055 2P 1.00551 0.84052
2S 1.41314 −0.00364 0.87099
2S 0.87564 0.00251 0.18515

Table 5.1: The table shows a possible solution for the boron atom.

Consider table 5.1 as a solution of the boron atom. Boron has five electrons
distributed as (1s)2(2s)2(2p). This means we need 1s-, 2s- and 2p-orbitals. The first
column tells us how many and which s-type Slater functions the 1s- and 2s-orbitals for
the Slater determinant will consist of. In this case it will be two of each type. The second
column gives us the factors, ξ, in the exponents of the exponential functions. These will
be the same for both 1s- and 2s, and will also contribute to the prefactors Ni. The third
column gives the coefficients for the 1s single particle orbital for the Slater determinant,
while the fourth column gives the coefficients for the 2s single particle orbital. The single
particle orbitals for 1s and 2s will then only differ by the constants in front of the Slater
functions (the ψ’s from Eq. (5.66)).

The fifth column indicates that there are only two basis functions needed to describe
the p-orbital, namely the 2p single particle orbital, while the sixth and seventh give the
exponents and 2p-coefficients respectively.

The single particle orbitals are given in table 5.1 as

φ(1s) = 0.19030ψ1 + 0.82091ψ2 − 0.00364ψ3 + 0.00251ψ4 (5.71)

φ(2s) = 0.00754ψ1 − 0.25055ψ2 + 0.87099ψ3 + 0.18515ψ4 (5.72)

φ(2p) = 0.21526ψ5 + 0.84052ψ6, (5.73)
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where now ψ1 and ψ2 are Slater functions of type 1s, ψ3 and ψ4 of type 2s, and ψ5 and
ψ6 Slater functions of type 2p. For larger atoms, the p-orbitals will be linear combina-
tions of different p-type Slater functions. The s- and p-type Slater functions do not mix
at any point, seen from Eq. (5.66).

The Slater functions themselves written in Cartesian coordinates are given as

ψ1 = N1r
0 exp(−6.56657r), (5.74)

ψ2 = N2r
0 exp(−4.24927r), (5.75)

ψ3 = N3r
1 exp(−1.41314r), (5.76)

ψ4 = N4r
1 exp(−0.87564r), (5.77)

ψ5 = N5xi exp(−2.21734r), (5.78)

ψ6 = N6xi exp(−1.00551r), (5.79)

where xi corresponds to either x,y or z as described in section 5.4.2, and the factors Ni

are the normalization factors from Eq. (5.68).

5.5.1 Derivatives of Slater type orbitals

The analytic expressions needed for the Slater type orbitals are of the form

ψ1s ∝ exp(−ar), (5.80)

ψ2s ∝ r exp(−ar), (5.81)

ψ3s ∝ r2 exp(−ar), (5.82)

ψ2p ∝ xi exp(−ar), (5.83)

ψ4p ∝ r2xi exp(−ar), (5.84)

where a is some exponent determined by the Roothan-Hartree-Fock calculations and xi
the coordinate from the real solid harmonics. In order to calculate the quantum force
(see section 4.4.2) and the kinetic energy we need both the first and second derivatives
of the wave functions.

First derivatives

The s-orbitals have first derivatives proportional to

∂ψ1s

∂xi
∝ −axi exp(−ar), (5.85)

∂ψ2s

∂xi
∝ (1 − ar)

xi
r

exp(−ar), (5.86)

∂ψ3s

∂xi
∝ (2xi − raxi) exp(−ar), (5.87)

while the 2p-orbitals are

∂ψ2p(x)

∂x
∝
(

1 − x2a

r

)
exp(−ar), (5.88)

∂ψ2p(x)

∂y
∝ −xya

r
exp(−ar), (5.89)
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where the parenthesis, (x), indicates which real solid harmonics the function depends
on. Equations (5.88) and (5.89) are examples with the solid harmonics being the x-
coordinate, and the derivatives with respect to x and then y (see the discussion in
5.4.2). The 4p-orbitals are proportional to

∂ψ4p(x)

∂x
∝
(
2x2 − r2 − rx2a

)
exp(−ar), (5.90)

∂ψ4p(x)

∂y
∝ (2xy − rxya) exp(−ar), (5.91)

Second derivatives

The Laplacian of the s-orbitals are on the form

∇2ψ1s ∝
a

r
(ar − 2) exp(−ar) (5.92)

∇2ψ2s ∝
(

2

r
+ a2r − 4a

)
exp(−ar) (5.93)

∇2ψ3s ∝
(
6 − 6ar + a2r2

)
exp(−ar), (5.94)

while the Laplacians of the 2p-orbitals consist of the second derivatives

∂2ψ2p(x)

∂x2
∝ ax

r

(
−3 +

x2

r2
+
x2a

r

)
exp(−ar), (5.95)

∂2ψ2p(x)

∂y2
∝ x

r

(
y2

r2
− 1 +

ay2

r

)
exp(−ar). (5.96)

The 4p-orbitals have the second derivatives

∂2ψ4p(x)

∂x2
∝ x

(
6 − 3x2a

r
+ 3ar + x2a2

)
exp(−ar), (5.97)

∂2ψ4p(x)

∂y2
∝ x

(
2 − 3y2a

r
− ar + a2y2

)
exp(−ar). (5.98)

The expressions for ∂2ψ4p(y)/∂y
2, ∂2ψ4p(z)/∂y

2 etc. are identical to the ones above and
are used to construct e.g.

∇2ψ4p(x) =
∂2ψ4p(x)

∂x2
+
∂2ψ4p(x)

∂y2
+
∂2ψ4p(x)

∂z2
. (5.99)

All these expressions are needed for the implementation of the Slater determinant, the
quantum force and the kinetic energy in our VMC calculation.
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Chapter 6

Implementation of the Variational

Monte Carlo Method

The Variational Monte Carlo method was implemented by writing a C++-based code.
The first thing was to implement a brute force code to handle the helium atom, and which
could easily be reduced to solve the simple hydrogen system, with only one atom and
hence no inter-electron potentials. Brute force means here that there was no importance
sampling, so the simple Metropolis algorithm (see figure 4.1) was used. The next step
was to implement importance sampling, in order to make the sampling more efficient,
and hopefully getting better results for both energy and variance. This would mean we
had to replace the simple Metropolis algorithm with the Metropolis-Hastings algorithm,
which includes importance sampling.

However, the code was not efficient at this stage. By calculating the explicit wave
function for each particle move, and using numerical derivatives, there was still room for
improvement. For larger systems like beryllium, neon etc., we would need to implement
a more efficient wave function with closed-form expressions for the Slater determinant
and its derivatives, using the definitions given in section 5.2, in addition to an efficient
computation of the Jastrow factor. By doing this we could improve the efficiency of
each Monte Carlo cycle, resulting in less computation time. If this optimization of the
wave function was made general enough, and we included closed form expressions for the
single particle wave functions and their derivatives, we could easily use the program to
calculate an approximation to the ground state energy for basically any even-numbered
atom.

In this chapter I will describe the optimized version of the program, since this is of
most interest, and the part that has taken the most time to develop. I will also focus
on the Metropolis-Hastings algorithm and not the more simple Metropolis algorithm.

Initially, the code was developed using object-oriented programming (OOP), but
complications and little programming experience prevented me from fully exploiting the
strengths of OOP. However, the main Monte Carlo machinery is built within a single
class, so at least one can argue that this approach has left me with a little more organized
code. I will therefore not emphasize on the code structure, but rather on the key points
of importance for the calculations.

At the end of this chapter I will describe the blocking method used to calculate the
true standard error of the data sets produced by the VMC code. I will also discuss a
way to estimate the true VMC results for ∆t = 0 in the Metropolis-Hastings algorithm
(see sections 4.4.2 and 4.4.2). A brief discussion of parallel computing is also included.
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6.1 Optimizing the calculations

In order to reduce the time of thecalculations, we had to find a way to both rewrite the
Slater determinant and the Jastrow factor. When increasing the system size, calculating
the entire wave function,

ψT = Φ · J = Det ↑ ·Det ↓ ·J, (6.1)

for each particle move, seemed inefficient. The determinants are defined as

Det ↑ ∝

∣∣∣∣∣∣∣∣∣

ψ1↑(r1) ψ1↑(r2) · · · ψ1↑(rN/2)

ψ2↑(r1) ψ2↑(r2) · · · ψ2↑(rN/2)
...

...
. . .

...
ψM↑(r1) ψM↑(r2) · · · ψM↑(rN/2)

∣∣∣∣∣∣∣∣∣

, (6.2)

and

Det ↓ ∝

∣∣∣∣∣∣∣∣∣

ψ1↓(rN/2+1) ψ1↓(rN/2+2) · · · ψ1↓(rN )

ψ2↓(rN/2+1) ψ2↓(rN/2+2) · · · ψ2↓(rN )
...

...
. . .

...
ψM↓(rN/2+1) ψM↓(rN/2+2) · · · ψM↓(rN )

∣∣∣∣∣∣∣∣∣

. (6.3)

for a system of N electrons with M = N/2 possible spatial wave functions. The Jastrow
factor is given as

J =

N∏

i<j

f(rij) =

N∏

i<j

exp

(
rij

a(1 + βrij)

)
, (6.4)

A crucial point is the fact that by moving one electron, as we do in the Metropolis
algorithms (see sections 4.4.1 and 4.4.2), we actually only change one column in only
one of the two Slater determinants. This should lead us to believe that an optimization
should be obtainable.

We use the wave function, ψT , for:

• Calculating the transition probability in the Metropolis-Hastings algorithm as

w =
G(x, y)|ψT (y)|2
G(y, x)|ψT (x)|2 , (6.5)

where y are the new positions, and x are the old ones, and G(y, x) is the Green’s
function in Eq. (4.39).

• Calculating the quantum force,

F (x) = 2
∇ψT
ψT

, (6.6)

needed for the Green’s function involving the gradient of the wave function.

• Calculating the local energy,

EL =
∇2ψT
ψT

− V, (6.7)

involving the Laplacian of the wave function.
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This means that we need to optimize the ratios Φ(rnew)/Φ(rold), ∇Φ(r)/Φ(r), ∇2Φ(r)/Φ(r),
J(rnew)/J(rold), ∇J/J and ∇2J/J .

Since our wave function is on the form

ψT = Φ · J, (6.8)

the total expression for the gradient ratio will be

∇ψT
ψT

=
∇Φ

Φ
+

∇J
J
. (6.9)

For the kinetic energy term in the local energy we will have to calculate the Laplacian
of ψT , divided by ψT itself as

∇2ψT
ψT

=
∇2Φ

Φ
+

∇2J

J
+

(∇Φ

Φ
· ∇J
J

)
. (6.10)

6.1.1 Optimizing the ratio - ΨT (rnew)/ΨT (rold)

When optimizing the wave function part of the transition ratio, it’s a good idea to split
it into a correlation part, and a Slater determinant part. This means

R =
ψT (rnew)

ψT (rold)
= RSDRJ =

Φ(rnew)

Φ(rold)

J(rnew)

J(rold)
, (6.11)

where Φ is the Slater determinant, and J is the correlation part, the Jastrow factor. In
this section I will label the positions of all particles before a particle move as rold, and
the set of particle positions after the move as rnew.

Slater determinant ratio - Φ(rnew)Φ(rold)

We start by defining the so-called Slater matrix, D, the matrix used to calculate the Slater
determinant, and its elements as Dij = φj(ri), where φj(ri) are electrons i occupying
a single particle state j. The inverse of the Slater matrix, D−1, is related to the Slater
determinant, Φ or just |D|, as

D−1 =
adjD
|D| , (6.12)

or as matrix elements as

D−1
ij =

Cji
|D| , (6.13)

where adjD is the so-called adjugate of a matrix. The adjugate of a matrix A is the
transposed of the co-factor matrix of A (indices are interchanged from Eq. (6.12) to
Eq. (6.13)). For the matrix D to be invertible, we must have D−1D = I, where I is the
identity matrix, or written out as

N∑

k=1

DikD
−1
kj = δij . (6.14)

Multiplying Eq. (6.13) with Dji from the left and summing over i, will give

N∑

i=1

DjiD
−1
ij =

∑N
i=1DjiCji
|D| , (6.15)
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resulting in

|D| =

N∑

i=1

DjiCji. (6.16)

We can now express the ratio between the new and old Slater determinants, RSD, as

RSD =

∑N
j=1Dij(r

new)Cij(r
new)

∑N
j=1Dij(rold)Cij(rold)

. (6.17)

When moving a particle i, only the i-th row of the Slater matrix changes, and therefore
only the i-th row of the matrix of co-factors remains unchanged, which means

Cij(r
new) = Cij(r

old). (6.18)

Using Eq. (6.13) gives

RSD =

∑N
j=1Dij(r

new)Cij(r
old)

∑N
j=1Dij(rold)Cij(rold)

=

∑N
j=1Dij(r

new)D−1
ji (rold)

∑N
j=1Dij(rold)Dji(rold)

. (6.19)

This denominator will only give unity, so the ratio can be expressed as

RSD =

N∑

j=1

Dij(r
new)D−1

ji (rold) =

N∑

j=1

φj(r
new
i )D−1

ji (rold). (6.20)

When only moving the i-th particle, we only need to calculate a dot product, φ(rnewi ) ·
D−1
i , where φ(rnewi ) is the vector

φ(rnewi ) = (φ1(r
new
i ), φ2(r

new
i ), ... , φN (rnewi )), (6.21)

and D−1
i is the i-th column of the inverse matrix D−1 where the electron i is at the old

position. We also have splitted the determinants in two separate determinants, so we ac-
tually only change one row in one of the Slater determinants when a particle i is moved.

The following code shows the function that calculates the ratio RSD:

double atom::getRatio(double **D_up, double **D_down, int i, double alpha, double

beta){

double ratio=0;

if(i<no_of_particles/2){

for(int j=0; j<no_of_particles/2; j++){

ratio += phi(r_new,alpha,beta,j,i)*D_up[j][i];

}

return ratio;

}

else{

for(int j=0; j<no_of_particles/2; j++){

ratio += phi(r_new,alpha,beta,j,i)*D_down[j][i-no_of_particles/2];

}

return ratio;

}

}
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Here the function phi(r,alpha,beta,j,i) calculates the single particle wave function
for electron i in orbital j.

As described in [3] we can use an algorithm to update the inverse of the Slater matrix
without calculating the entire Slater matrix again. After moving particle i, and if the
move is accepted, we must for each column j 6= i calculate a quantity

Sj =

N∑

l=1

Dil(r
new)Dlj(r

old). (6.22)

The new elements of D−1 are as given on page 277 in [3]:

D−1
kj (rnew) =

{
D−1
kj (rold) − Sj

RSD
D−1
ki (rold) if j 6= i,

1
RSD

D−1
kj if j = i.

(6.23)

The following code shows how we first update the spin up determinant, and then the
spin down determinant

void atom::update(double **D_up, double **D_down, int i, double ratio, double alpha,

double beta){

//SPIN UP ELECTRONS

if(i<no_of_particles/2){

for(int j=0; j<no_of_particles/2; j++){

if(j!=i){

for(int l=0; l<no_of_particles/2; l++){

s_j[j]+=phi(r_new,alpha,beta,l,i)*D_up[l][j];

}

}

}

for(int j=0; j<no_of_particles/2; j++){

if(j!=i){

for(int k=0; k<no_of_particles/2; k++){

D_up[k][j]=D_up[k][j]-s_j[j]*D_up[k][i]/ratio;

}

}

}

//i'th column, i=j

for(int k=0; k<no_of_particles/2; k++){

D_up[k][i]=D_up[k][i]/ratio;

}

}

//SPIN DOWN ELECTRONS

else{

i=i-no_of_particles/2;//This is because the spin-down matrix have indices 0,1,....,

N/2

for(int j=0; j<no_of_particles/2; j++){

if(j!=i){

for(int l=0; l<no_of_particles/2; l++){

s_j[j]+=phi(r_new,alpha,beta,l,i+no_of_particles/2)*D_down[l][j];

}

}

}

for(int j=0; j<no_of_particles/2; j++){

if(j!=i){

for(int k=0; k<no_of_particles/2; k++){

D_down[k][j]=D_down[k][j]-s_j[j]*D_down[k][i]/ratio;

}
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}

}

//i'th column, i=j

for(int k=0; k<no_of_particles/2; k++){

D_down[k][i]=D_down[k][i]/ratio;

}

i=i+no_of_particles/2;

}

}

Jastrow ratio - J(rnew)/J(rold)

We now have to find a functional way to store the inter-electron distances, or for
simplicity, the individual Jastrow functions,

gi,j = g(rij) = exp

(
rij

a(1 + βrij)

)
, (6.24)

between the different electrons i and j, where a is given by

a =

{
4 if spins are parallel,

2 if spins are anti-parallel.
(6.25)

From section 5.1.2, we have our Jastrow factor, J , on the form

J =
∏

i<j

gi,j. (6.26)

A way to store these functions is to construct a matrix with elements above the diagonal
as:

G =





· g1,2 g1,3 · · · g1,N
· g2,3 · · · g2,N

· . . .
...

· gN−1,N



 . (6.27)

The Jastrow ratio, RJ is

RJ =
J(rnew)

J(rold)
. (6.28)

From section 5.1.2, our Jastrow factor, J , is on the form

J =
∏

i<j

gi,j =
∏

i<j

exp fi,j, (6.29)

and when moving only particle k, only the elements with k as an index will change, that
is N − 1 elements. Because of our exponential form of the correlation part the ratio can
be written

J(rnew)

J(rold)
= e∆J , (6.30)

where the intriguing part is ∆J , given as

∆J =

k−1∑

i=1

(fnewi,k − f oldi,k ) +

N∑

i=k+1

(fnewk,i − f oldk,i ), (6.31)
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with the functions fij given as

fij =
rij

a(1 + βrij)
. (6.32)

The following code shows the calculation of the Jastrow factor ratio:

double atom::getJastrowRatio(double** distance_old, double** distance_new,double beta){

for(int k=0; k<no_of_particles; k++){

for(int l=0; l<k; l++){

jastrowRatio += distance_new[l][k]-distance_old[l][k];

}

}

for(int k=0; k<no_of_particles; k++){

for(int l=k+1; l<no_of_particles; l++){

jastrowRatio += distance_new[l][k]-distance_old[l][k];

}

}

return jastrowRatio;

}

The two-dimensional arrays distance_new and distance_old have been calculated
using:

void atom::getDistance(double** distance, double** r_old, double beta){

for(int k=0; k<no_of_particles; k++){

for(int l=k+1; l<no_of_particles; l++){

temp = diffR(r_old, k,l);

//spin up

if(((k < no_of_particles/2) && (l <no_of_particles/2)) || ((k>=no_of_particles/2

&& l>=no_of_particles/2))){

a=0.25;

distance[k][l] = a*temp/(1+beta*temp);

}

//spin down

else{

a=0.5;

distance[k][l] = a*temp/(1+beta*temp);

}

}

}

}

We see that the names of the arrays are a bit misleading, as we actually store the values
f(rij) (see Eq. (6.32)) and not rij themselves.

6.1.2 Derivative ratios

In order to optimize the calculations, we need to find optimized expressions for the ratios
∇Φ/Φ, ∇2Φ/Φ, ∇J/J and ∇2J/J , as seen in Eqs. (6.9) and (6.10). This will lead to a
more efficient evaluation of the quantum force and the kinetic energy.

Optimizing the ratios - ∇Φ/Φ and ∇2Φ/Φ

We use a similar procedure as in the previous section to get the explicit expressions for
the gradient and Laplacian of the Slater determinant. When differentiating with respect
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to the coordinates of a single particle i, we will get

∇iΦ

Φ
=

N∑

j=1

∇iDij(r)D
−1
ji (r) =

N∑

j=1

∇iφj(ri)D
−1
ji (r), (6.33)

for the gradient, remembering that the operator ∇ actually is a vector

∇ =
∂

∂x
ı̂+

∂

∂y
̂+

∂

∂z
k̂, (6.34)

with ı̂, ̂ and k̂ are the unit vectors for x-, y- and z- dimensions respectively.
For the Laplacian-expression we will obtain

∇iΦ

Φ
=

N∑

j=1

∇2
iDij(r)D

−1
ji (r) =

N∑

j=1

∇2
iφj(ri)D

−1
ji (r), (6.35)

where ∇2 is a scalar

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (6.36)

We see that the expressions only rely on the elements from the inverse Slater matrix,
D−1, and the closed form expressions for the derivatives of the single particle orbitals
(see sections 5.4 and 5.5).

The following code shows the calculation of the ratio ∇2Φ/Φ in the local energy function:

//LAPLACE SLATER-DETERMINANT ANALYTIC

for(int i=0; i<no_of_particles; i++){

if(i<no_of_particles/2){

for(int j=0; j<no_of_particles/2; j++){

E_kinetic -= laplace_phi(r,alpha,beta,j,i)*D_up[j][i];

}

}

else{

for(int j=0; j<no_of_particles/2; j++){

E_kinetic -= laplace_phi(r,alpha,beta,j,i)*D_down[j][i-no_of_particles/2];

}

}

}

The function laplace_phi(r,alpha,beta,j,i) simply returns the Laplacian of the
single particle wave function where electron i is in orbital j.

Optimizing the ratios - ∇J/J and ∇2J/J

The first derivative results for the Padé-Jastrow function (as described in Eq. (6.26))
are taken from chapter 19 in [9] and is for a single coordinate, x, for particle k, given by

1

J

∂J

∂xk
=

k−1∑

i=1

1

gik

∂gik
∂xk

+
N∑

i=k+1

1

gki

∂gki
∂xk

, (6.37)

where gij is some correlation function between two particles. We have

gij = exp f(rij) = exp

(
rij

a(1 + βrij)

)
, (6.38)
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a function of distances between the electrons. We now use the chain rule to get

∂gij
∂xj

=
∂gij
∂rij

∂rij
∂xj

=
xj − xi
rij

∂gij
∂rij

. (6.39)

The exponential form of gij also gives us

∂gij
∂rij

= gij
∂fij
∂rij

, (6.40)

so that

1

J

∂J

∂xk
=

k−1∑

i=1

∂fik
∂xk

+

N∑

i=k+1

∂fki
∂xk

. (6.41)

It is easy to show that
∂fij
∂rij

=
1

a(1 + βrij)2
, (6.42)

and combining these results we will get

1

J

∂J

∂xk
=

k−1∑

i=1

xk − xi
arik(1 + βrik)2

+

N∑

i=k+1

xk − xi
arik(1 + βrik)2

, (6.43)

as the final result for the first derivative with respect to a chosen coordinate x, and
particle k. The quantum force for a given particle k in coordinate x,

F (xk) =
2

J

∂J

∂xk
= 2

(
k−1∑

i=1

xk − xi
arik(1 + βrik)2

+

N∑

i=k+1

xk − xi
arik(1 + βrik)2

)

. (6.44)

The following code shows the calculation of the quantum force with the first part focusing
on the Slater determinant part discussed in the previous section, while the second part
focuses on the correlation part of the quantum force (see Eq. (6.9)):

void atom::quantum_force(double**r,double**qm_force, double **D_up, double **D_down,

double alpha, double beta){

//SLATER PART

for(int p=0; p<no_of_particles; p++){

if(p<no_of_particles/2){

for(int q=0; q<dimension; q++){

for(int l=0; l<no_of_particles/2; l++){

qm_force[p][q] += 2*gradient_phi(r,alpha,q,l,p)*D_up[l][p];

}

}

}

else{

for(int q=0; q<dimension; q++){

for(int l=0; l<no_of_particles/2; l++){

qm_force[p][q] += 2*gradient_phi(r,alpha,q,l,p)*D_down[l][p-no_of_particles/2];

}

}

}

}

//JASTROW PART

for(int p=0; p<no_of_particles; p++){

for(int q=0; q<dimension; q++){

for(int l=p+1; l<no_of_particles; l++){
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qm_force[p][q] += 2*gradient_jastrow(r,p,l,q,beta);

}

for(int l=0; l<p; l++){

qm_force[p][q] += 2*gradient_jastrow(r,p,l,q,beta);

}

}

}

}//end quantum_force

The function gradient_phi(r,alpha,q,l,p) returns the first derivative of the single
particle orbital φl with respect to coordinate q of electron p.
The function gradient_jastrow(r,p,l,q,beta)is given as

double atom::gradient_jastrow(double** r,int p, int l, int d, double beta){

if(((p < no_of_particles/2) && (l <no_of_particles/2)) || ((p>=no_of_particles/2 &&

l>=no_of_particles/2))){

a=0.25;//More efficient to multiply by 0.25 than to divide by 4

temp1 = diffR(r,p,l);

temp2 = 1+beta*temp1;

temp3 = r[p][d]-r[l][d];

return a*temp3/temp1/temp2/temp2;

}

else{

a=0.5;//More efficient to multiply by 0.5 than to divide by 2

temp1 = diffR(r,p,l);

temp2 = 1+beta*temp1;

temp3 = r[p][d]-r[l][d];

return a*temp3/temp1/temp2/temp2;

}

}

The function diffR(r,p,l) simply returns the distance between electrons p and l.

For the second derivative, I refer to [9] where it is shown that for a correlation function
of our form

gij = exp fij, (6.45)

the full expression for the Laplacian of the correlation part can be written as

∇2J

J
=

(∇J
J

)2

+

k−1∑

i=1

(
(d− 1)

rik

∂fik
∂rik

+
∂2fik
∂r2ik

)

+
N∑

i=k+1

(
(d− 1)

rki

∂fki
∂rki

+
∂2fki
∂r2ki

)
, (6.46)

where the first term is just the dot product of the gradient (see the previous section)
with itself, and d is the number of spatial dimensions, i.e. d = 3. We have the explicit
expression for the Padé-Jastrow correlation function

fij =
rij

a(1 + βrij)
, (6.47)

where a is either 2 or 4 depending on the spins of particles i and j. The second derivative
of fij with respect to rij is now

∂2fij
∂r2ij

= − 2β

a(1 + βrij)3
, (6.48)
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since the first derivative is
∂fij
∂rij

=
1

a(1 + βrij)2
, (6.49)

as in the previous section. Inserting Eqs. (6.49) and (6.48) into Eq. (6.46) will then give

∇2J

J
=

(∇J
J

)2

+

k−1∑

i=1

(
2

rik

1

a(1 + βrik)2
− 2β

a(1 + βrik)3

)

+

N∑

i=k+1

(
2

rki

1

a(1 + βrki)2
− 2β

a(1 + βrki)3

)
, (6.50)

which can be reduced to

∇2J

J
=

(∇J
J

)2

+

k−1∑

i=1

2

arik

1

(1 + βrik)3
+

N∑

i=k+1

2

arki

1

(1 + βrki)3
. (6.51)

In the local energy function we need to calculate the cross-term

∇Φ

Φ
· ∇J
J
, (6.52)

and ∇2J/J . The following code shows how I compute these quantities.

The Slater term, ∇Φ/Φ is computed as

//SLATER TERM:

for(int p=0; p<no_of_particles; p++){

if(p<no_of_particles/2){

for(int q=0; q<dimension; q++){

for(int l=0; l<no_of_particles/2; l++){

temp1[p][q] += gradient_phi(r,alpha,q,l,p)*D_up[l][p];

}

}

}

else{

for(int q=0; q<dimension; q++){

for(int l=0; l<no_of_particles/2; l++){

temp1[p][q] += gradient_phi(r,alpha,q,l,p)*D_down[l][p-no_of_particles/2];

}

}

}

}

The following code shows how I compute the Jastrow term, ∇J/J , using the gradient_jastrow-
functions explained previously.

//JASTROW TERM

for(int p=0; p<no_of_particles; p++){

for(int q=0; q<dimension; q++){

for(int l=p+1; l<no_of_particles; l++){

temp2[p][q] += gradient_jastrow(r,p,l,q,beta);

}

for(int l=0; l<p; l++){

temp2[p][q] += gradient_jastrow(r,p,l,q,beta);

}

}

}
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We can now compute the cross-term by a simply dot product calculation using the
following code:

for(int p=0; p<no_of_particles; p++){

for(int q=0; q<dimension; q++){

tempE += temp1[p][q]*temp2[p][q];

}

}

The functions gradient_jastrow(...) and gradient_phi(...) have been explained
earlier. The array temp2[p][q] now contains the ratio ∇J/J and is used to calculate
the ratio ∇2J/J as given in Eq. (6.51). The code for this equation is:

//Gradient ratio squared:

for(int p=0; p<no_of_particles; p++){

for(int q=0; q<dimension; q++){

tempE2 += temp2[p][q]*temp2[p][q];

}

}

//Second term, involving df/dx and d^2f/dx^2

for(int p=0; p<no_of_particles; p++){

for (int k = 0; k < no_of_particles; k++) {

if ( k != p) {

if(((p < no_of_particles/2) && (k <no_of_particles/2)) || ((p>=no_of_particles/2 &&

k>=no_of_particles/2))){

a=0.25;

tempE3 += 2*a/diffR(r,p,k)/pow((1+beta*diffR(r,p,k)),3);

}

else{

a=0.5;

tempE3 += 2*a/diffR(r,p,k)/pow((1+beta*diffR(r,p,k)),3);

}

}

}

}

We now have all the pieces to calculate the local energy with E_kinetic, tempE,tempE2
and tempE3. We only need to multiply the different term by scalar factors, and calculate
the potential energy. The following code shows this.

//KINETIC ENERGY

E_kinetic -= 2*tempE;

E_kinetic -= tempE2;

E_kinetic -= tempE3;

E_kinetic *= 0.5;

//POTENTIAL ENERGY Coulomb potential

//electron-proton-interaction

for(int i=0; i<no_of_particles; i++){

r_single_particle=0;

for(int j=0; j<dimension; j++){

r_single_particle += r[i][j]*r[i][j];//r^2=x^2+y^2+z^2

}

E_potential -=charge/sqrt(r_single_particle);

}

//electron-electron-interaction

for(int i=0; i<no_of_particles-1; i++){

for(int j=i+1; j<no_of_particles; j++){

r_12=0;
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for(int k=0; k<dimension; k++){

r_12 +=(r[i][k]-r[j][k])*(r[i][k]-r[j][k]);

}

E_potential +=1/sqrt(r_12);

}

}//*/

E_local = E_potential + E_kinetic;

return E_local;

6.2 Implementation of Metropolis-Hastings algorithm

We can now use the results from the previous sections to show how the Metropolis-
Hastings algorithm is implemented. This algorithm is discussed in section 4.4.2, and
figure 4.2 sums up the main points quite nicely.

After calculating the initial positions for the electrons, the inverse spin-up and -down
Slater matrices and the quantum force F, I start the first Monte Carlo cycle and move
the first electron as

for(int j=0; j<dimension; j++){

r_new[i][j]=r_old[i][j]+D*time_step*qm_force_old[i][j]

+gaussian_deviate(&idum)*sqrt(time_step)

where the function gaussian_deviate returns a normal distributed random number. I
then calculate the distances between the electrons to find both the Slater- and Jastrow-
ratios for the full ratio of probabilities, ψT (rnew)/ψT (rold) as

//SETTING UP THE DISTANCE MATRIX

getDistance(distance_new, r_new, beta);

//SLATER DETERMINANT RATIO

ratio = getRatio(D_up, D_down, i, alpha, beta);

jastrowRatio = getJastrowRatio(distance_old, distance_new, beta);

jastrowRatio = exp(jastrowRatio);

The next point is to update the inverse Slater matrices, and then calculate the quantum
force for the Green’s function in the Metropolis-Hastings test:

//temporary update for quantum force

update(temp_up, temp_down, i, ratio, alpha, beta);

quantum_force(r_new, qm_force_new, temp_up, temp_down, alpha, beta);

//IMPORTANCE SAMPLING

double greensfunction = 0.0;

for(int k=0; k<no_of_particles; k++){

for(int j=0; j < dimension; j++) {

greensfunction += 0.5*(qm_force_old[k][j]+qm_force_new[k][j])*

(D*time_step*0.5*(qm_force_old[k][j]-qm_force_new[k][j])

-r_new[k][j]+r_old[k][j]);

}

}

greensfunction = exp(greensfunction);

I use temporary arrays in case the Metropolis-Hastings test does not accept the particle
move. The test itself is implemented as
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//METROPOLIS TEST

if(ran1(&idum)<= greensfunction*ratio*ratio*jastrowRatio*jastrowRatio){

for(int k=0; k<no_of_particles; k++){

for(int j=0; j<dimension; j++){

r_old[k][j]=r_new[k][j];

qm_force_old[k][j] = qm_force_new[k][j];

}

}

//UPDATE INVERSE SLATER MATRICES

for(int m=0; m<no_of_particles/2; m++){

for(int n=0; n<no_of_particles/2; n++){

D_up[m][n]=temp_up[m][n];

D_down[m][n]=temp_down[m][n];

}

}

//UPDATE THE DISTANCE MATRIX

for(int m=0; m<no_of_particles; m++){

for(int n=0; n<no_of_particles; n++){

distance_old[m][n]=distance_new[m][n];

}

}

}//end metropolis test

The random number generator ran1 is taken from [12]. If now all particles for the cycle
have been moved, we can go on to sample the local energy for the expectation values
〈EL〉 and 〈E2

L〉:
delta_E = local_energy(r_old, D_up, D_down, alpha, beta);

energy +=delta_E;

energy2 +=delta_E*delta_E;

At the end of the Monte Carlo loop, we then divide the expectation values by the number
of Monte Carlo cycles we have performed.

Furthermore, an important note must be made regarding the calculation of the local
energy. At the beginning of the simulation, the system will in general not be in its
most probable state. By reviewing section 4.1, we see that a system must evolve before
reaching its largest eigenvalue, corresponding to the most probable state. As a result
of this, we must include some thermalization cycles before we start sampling the local
energy. As seen in the algorithm, we initialize the system in random positions. If
we perform a certain number of Monte Carlo cycles before we start sampling the local
energy, the system will hopefully be in its most probable state when we actually do start
sampling the energy. This will improve our results, since we will calculate the energy
where the PDF has greater values, leading to more efficient calculations.

The number of thermalization cycles is not known a priori, and must be dealt with
experimentally. In this thesis we found that by using 200, 000 thermalization cycles, we
will safely start sampling the energy when the system has reached its most probable
state, even for large systems.

6.3 Blocking

The simulation of physical systems using Monte Carlo methods, involve pseudo-random
numbers and will produce correlated results. That is, as the pseudo-random numbers
themselves will show correlated behavior, functions evaluated with respect to variables
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dependent on these pseudo-random numbers will become correlated as well. As discussed
in appendix B, the statistical error for set of correlated stochastic values is given by

err2X =
1

n
Cov(x), (6.53)

while for uncorrelated values this will reduce to

err2X =
1

n
Var(x) =

1

n2

n∑

k=1

(xk − x̄n)
2. (6.54)

As given in appendix B, we can write the error for correlated cases as

err2X =
τ

n
Var(x), (6.55)

where τ is the autocorrelation time

τ = 1 + 2

n−1∑

d=1

κd, (6.56)

describing the correlation between measurements. However, calculating κd, as given in
Eqs. (B.34) and (B.35), will be rather time consuming.

By using the blocking technique, or ’data bunching’, as described in [17] and [18],
we actually have a way to make the measurements ’uncorrelated’. By grouping the
data in equally sized blocks, and treating the mean, or sample mean, of each block as a
measurement, we can find an error estimate by merely plotting the error as a function
of block size as if the data were uncorrelated.

Suppose we have 1000 measurements in our sample. We can then divide these values
into 10 blocks with 100 measurements in each block. Furthermore, we calculate the
mean in each block, and treat them as our measurements. Then we calculate the error
as if the data were uncorrelated using Eq. (6.54), where the block means are our xk’s
and n = 10. The total sample mean,

x̄n =
1

n

n∑

k=1

xk, (6.57)

will of course be identical whether we calculate it directly, that is for block sizes equal
1 and n equal total number of measurements, or if we group them into blocks.

The blocking method tells us that for block sizes smaller than the correlation time,
the distance between correlated measurements, calculating the error using Eq. (6.54)
will underestimate the error. When the block size is larger than the correlation time,
the measurements are no longer correlated, and the error will no longer be affected by
varying the block size. This becomes apparent as there will be a clear plateau when
the data becomes uncorrelated. When the error reaches the plateau we have found an
estimate for the true error,

A possible problem with relying on blocking is if the plateau is reached at a point
where the number of blocks is too small to accurately estimate the variance. In this
thesis we are lucky enough for that not to occur.
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6.4 Time step extrapolation

By applying the Metropolis-Hastings algorithm, which introduces concepts and quan-
tities from diffusion and random walk theory (see section 4.4.2), we are forced to deal
with a time step, ∆t, which for our practical calculations must be non-zero. We can
understand this by inspecting the equation we use in the program for proposing a move
for an electron,

y = x+DF (x)∆t+ ξ
√

∆t, (6.58)

where y is the proposed new position, x is the old position, D is the diffusion constant,
F (x) is the quantum force (see section 4.4.2) and ξ is normal distributed random variable.
By having ∆t = 0, the electrons would never move according to this model. However,
our system is stationary, which means that we must have ∆t = 0 in order to simulate
the system correctly.

As done for the Diffusion Monte Carlo calculations (see e.g. [3]) by Sarsa in [19], it
is possible to extrapolate towards ∆t = 0 by plotting results for non-zero ∆t and fitting
a curve to the data plot.

In this work we have used a linear fitting which also accommodates for the standard
error of the data. This fitting model is based on the method in chapter 15.4 in [12], and
can both estimate the energy for ∆t = 0 and the standard error for ∆t = 0.

6.5 Parallel computing

In this program I have also implemented the possibility of running the code in parallel.
This gives us the opportunity to run the code on several nodes simultaneously in order
to obtain more samples than just one node would give us in the same space of time.

A Monte Carlo calculation is especially easy to program in parallel. We can run the
program separately on different nodes with a thermalization period that ensures us we
have reached the most probable state on all nodes. Furthermore, we can simply collect
the individual mean values from all the nodes into one common mean value, as if the
individual mean values were individual measurements (see section B in appendix B).

In this work I use the Titan cluster for large parallel jobs, such as variation of
silicon, magnesium etc. The Titan computer cluster is described on its homepage
http://hpc.uio.no.
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Chapter 7

Hartree-Fock implementation

The Hartree-Fock method (HF) is discussed in section 3.2, and the results supply a great
improvement to the single particle wave functions. Using HF, we find the optimal single
particle wave functions (SPWF) for our chosen basis functions. By using the optimal
SPWF, we no longer have to vary the Slater determinant in a VMC calculation, and
can consentrate on finding the minimum by varying the parameter(s) in the Jastrow
function. As an example, I have implemented Hartree-Fock for the Beryllium atom
using the method of varying coefficients (see section 3.2.1). The basis functions are here
chosen to be the hydrogen-like s-orbitals.

As seen in section 3.2.1, in order to get our single particle solutions

ψa =
∑

λ

Caλφλ, (7.1)

we have to solve the Hartree-Fock equations

∑

γ

hHFλγ Ckγ = ǫkCkλ, (7.2)

where hHFλγ is

hHFλγ = 〈λ|h|γ〉 +

N∑

a=1

∑

α,δ

C∗
aαCaδ 〈λα|V |γδ〉AS . (7.3)

We see how the coefficients Ckγ are involved on both sides of the equation, and therefore
leading to an non-linear eigenvalue problem.

7.1 Interaction matrix elements

As mentioned in section 3.2.1, this particular Hartree-Fock approach gives us the
advantage of computing the matrix elements 〈λα|V |γδ〉 once and for all. We have
chosen the hydrogenic s-waves as the basis functions φλ from Eq. (7.1).

The interaction is given by the Coulomb force between the electrons, and the matrix
elements are given by

〈λα|V |γδ〉 =

∫
r21dr1

∫
r22dr2R

∗
nα0(r1)R

∗
nβ0(r2)

1

r<
Rnγ0(r1)Rnδ0(r2), (7.4)
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This is the direct term of the interaction piece. By calling the innermost integral over
r2 for I,

I =

∫
r22dr2Rnβ0(r2)

1

r<
Rnδ0(r2),

we can split this up into two pieces. One where r2 < r1 and r< = r1 and one where
r2 > r1 with r< = r2, giving

I =

∫ r1

0
r22dr2Rnβ0(r2)

1

r1
Rnδ0(r2) +

∫ ∞

r1

r2dr2Rnβ0(r2)Rnδ0(r2),

The matrix element 〈λα|V |γδ〉 can then be written as

〈λα|V |γδ〉 =

∫ ∞

0
r21dr1Rnα0(r1)Rnγ0(r1)

[∫ r1

0
r22dr2Rnβ0(r2)

1

r1
Rnδ0(r2)

+

∫ ∞

r1

r2dr2Rnβ0(r2)Rnδ0(r2)

]

. (7.5)

The exchange term 〈λα|V |δγ〉 can be written the same way only by exchanging δ ↔ γ
which gives

〈λα|V |δγ〉 =

∫ ∞

0
r21dr1Rnα0(r1)Rnδ0(r1)

[∫ r1

0
r22dr2Rnβ0(r2)

1

r1
Rnγ0(r2)

+

∫ ∞

r1

r2dr2Rnβ0(r2)Rnγ0(r2)

]
(7.6)

In the equations above the functions Rn0 are defined by the radial part of the s-states,
as

Rn0 =

(
2Z

n

)3/2
√

1

2n2
L1
n−1

(
2Zr

n

)
exp

(
−Zr
n

)
, (7.7)

with L1
n−1

(
2Zr
n

)
being the generalized Laguerre polynomials.

7.2 Algorithm and HF results

The Hartree-Fock program calculates the energy and optimized single particle wave
functions to plug into the VMC machinery. We see from equation 7.2 that we are
dealing with an eigenvalue problem. However, as the hHF -matrix depends on the matrix
elements of C, we have a non-linear problem, and must use an iterative self-consistency
approach.

• The first thing to do is to choose the number basis functions we wish to expand
the functions ψ in Eq. (7.1) with.

• We then calculate the matrix elements from Eq. (7.5). The elements were stored
in a 4-dimensional array, and each integral was calculated using Gauss-Legendre-
quadrature. One should really use Gauss-Laguerre to match the interval, but the
Gauss-Legendre approach seemed to work well.
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• The next step is to start the iteration process. The first thing we need is an ansatz
for the C-matrix and we choose the identity matrix, corresponding to our new basis
functions just being the old hydrogen s-waves. We then calculate the hHF -matrix
from Eq. (7.3) which we then diagonalize using library C++-functions. We now
put the eigenvectors corresponding to the 4 lowest eigenvalues in the 4 first rows
as we only deal with Beryllium. We can now calculate the energy, and use the
modified diagonalized matrix as the C-matrix for next the iteration.

• When the energy difference between two iterations is low enough (determined by
a preset tolerance ∼ 10−6) we stop the iterations and we have reached a desired
set of coefficients for the new basis.

Table 7.1 shows the Hartree-Fock energy results for different number of s-waves included
in the wave function expansion. It also shows the number of iterations needed for
the energy difference between two succeeding iterations to be smaller than the chosen
tolerance. We see from table 7.1 that the ground state energy for 15 s-waves produces
approximately the same result as for 10 and 7 basis functions, but is improved in the
5th digit. The table also presents the exact result as given in [20]. [20]

We can compare the best Hartree-Fock result when only varying coefficients, E =
−14.5185 Eh, with the results from appendix A, E = −14.573021 Eh, where Slater-type
orbitals have been used. If we compare these with the exact result, E0 = −14.6674 Eh,
it can lead us to believe that the Slater-type orbitals in the Roothaan-Hartree-Fock
approach are a better choice for improving the VMC calculations.

In section 6.5.2 in [6], an argument is given for not using hydrogenic functions as
basis functions for larger many-body atomic systems. They do not constitute a complete
set by themselves, since the hydrogenic functions only describe bound states, and will
not describe the unbound continuum states needed for a complete set. They also spread
out quickly and become diffuse because of the 1/n-factors in the polynomials and the
exponentials. The Slater-type orbitals have a more compact exponential radial form,
and we will avoid the problems involving diffuseness and the completeness of the basis
set.

HF basis functions Energy Iterations

2 -13.7159 2

3 -14.5082 9

4 -14.5115 10

5 -14.5141 11

7 -14.5165 10

10 -14.5178 11

15 -14.5185 10

Exact -14.6674 -

Table 7.1: The table shows results from different runs with different number of basis functions
in addition to the exact result. Energies are given in the Hartree unit.
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Chapter 8

VMC Results

In this chapter I will present the results produced by the Variational Monte Carlo code.
The first part shows the variational plots for both sets of single particle orbitals, that
means both hydrogen-like and Roothaan-Hartree-Fock orbitals. The next sections will
be dedicated to finding the optimal parameters using the DFP-algorithm. The third
part will present results of the time step extrapolation discussed in section 6.4 for the
finely tuned parameter(s) produced by the DFP method. These results will also include
the error estimates computed by the blocking method. The final part will compare the
extrapolated results with calculations from [3] and [4].

All calculations are performed by the VMC code with the Metropolis-Hastings
algorithm which includes importance sampling. There is a possibility that the minimum
energy is found using different variational parameters for different time steps when
analyzing the same system. However, by doing a simple check for helium, I could not
find any significant difference for time steps ∆t = 0.05 and ∆t = 0.01. I then assume
that the optimal parameters give the minimum in energy for all time steps within a
reasonable range. Unless something else is stated, all results are calculated with time
step ∆t = 0.05.

8.1 Validation runs

In order to confirm that the Slater determinant is working properly, it is necessary to
test the code. In most cases this means comparing the computed results with some
closed form- or analytic expressions. For the hydrogen-like orbitals, I have compared
with the closed form hydrogen energy solutions, while the Slater-type orbitals have been
compared with the Roothaan-Hartree-Fock calculations (ref. [10]).

8.1.1 Hydrogen-like orbitals

To validate the Slater determinant with hydrogenic single particle orbitals, I run the
program with no electron interaction. In this case this means using a pure Slater
determinant, without the Jastrow factor, as the trial wave function. If we also neglect
the electron-electron interaction energies, we can compare our results with the analytic
results obtained using hydrogenic wave functions.

A hydrogen-like atom, is any atom with charge Z and only one electron. For this
system the energy is given as

ENI = −Z
2

2

1

n2
, (8.1)
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where n is the principle quantum number of the orbital the single electron is occupying,
ψnlm (see chapter 6.5.2 in ref. [6]).

For non-interacting atomic systems, we can use the hydrogen results to get a closed
form expression for the non-interacting energy, ENI . Since the electrons are non-
interacting we can just add the energies of the orbitals as

ENI = −Z
2

2

N∑

i=1

1

n2
i

, (8.2)

where Z is the charge of the nucleus, N is the number of electrons, and ni is the prin-
cipal quantum number for the state occupied by electron i. The energy is in units of
Hartree. Table 8.1 shows how the electrons for our systems of interest are distributed
in the different energy orbitals.

Atom Spectroscopic notation

Hydrogen (1s)

Helium (1s)2

Beryllium (1s)2(2s)2

Neon (1s)2(2s)2(2p)6

Magnesium (1s)2(2s)2(2p)6(3s)2

Silicon (1s)2(2s)2(2p)6(3s)2(3p)2

Table 8.1: The table shows the electron configuration for hydrogen, helium, beryllium, neon,
magnesium and silicon.

As an example we can calculate the analytic non-interacting helium energy as

ENI(He) = −22

2

(
1

12
+

1

12

)
= −4. (8.3)

By running the non-interacting version of the program for helium with, we get the exact
energy

E = −4. (8.4)

Table 8.2 shows that the exact energies calculated using Eq. (8.2) and the VMC results
are identical for all atoms of interest. It is safe to say that the orbitals and the Slater
determinant have been implemented correctly. By running a sufficient number of Monte
Carlo cycles (≈ 108), the variance will reduce to

σ2
E = 10−5 − 10−6 (8.5)

for all such non-interacting systems.

8.1.2 Slater-type orbitals - Hartree Fock results

To validate the Slater-type orbitals (STO) found by using Hartree-Fock in ref. [10], I
ran the code with STO but no Jastrow factor. Then I could compare the computed
energies with the energy results from ref. [10]. Table 8.3 shows this. We see how the
energies correspond quite nicely for the smaller systems, while the deviations increase
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8.2. Variational plots

Atom ENI E

Helium −4.00 −4.00

Beryllium −20.00 −20.00

Neon −200.00 −200.00

Magnesium −304.00 −304.00

Silicon −435.56 −435.56

Table 8.2: The table shows the analytic results, ENI , the computed ground state energies, E,
number of Monte Carlo cycles and the variance, σ2

E
. The energy results are in units of Hartree.

slightly for larger systems. A variational Monte Carlo process should in theory reproduce
the Hartree-Fock energy when using the corresponding Hartree-Fock orbitals. We could
have performed a time step extrapolation to hopefully get even closer to the Hartree-
Fock energies, but the results in table 8.3 make us quite confident that the Slater-type
orbitals form the Roothaan-Hartree-Fock calculations have been implemented correctly.

As an example I time extrapolated the results for neon, and got the value E =
−128.55, which is in very good accordance with the HF energy from table 8.3.

Atom EHF E MC cycles σ2
E

Helium −2.8616799 −2.8617823 3 · 107 0.57097060

Beryllium −14.573021 −14.573862 3 · 107 2.9477341

Neon −128.54705 −128.81981 1 · 108 31.003216

Magnesium −199.61461 −199.84100 1 · 108 41.645320

Silicon −288.85431 −289.11902 5 · 108 58.958016

Table 8.3: The table shows the Roothaan-Hartree-Fock results, EHF (see appendix A and
ref. [10]), compared with the computed energies using the Roothaan STO, E, number of Monte
Carlo cycles and the variance, σ2

E
. The energy results are in units of Hartree.

8.2 Variational plots

This section presents the plots of the variational runs for the different systems. For
the hydrogen-like orbitals in section 8.2.1, the plots will be two-dimensional since the
total wave function consists of two variational parameters. The parameters are α in the
Slater determinant and β from the Jastrow function. For VMC calculations using the
Slater-type orbitals presented in section 5.5, the plots will only be one-dimensional, since
the single particle orbitals have already been optimized by the Roothaan-Hartree-Fock
method. The variational parameter, β, comes from the Jastrow function.

8.2.1 Hydrogen-like orbitals

Figures 8.2, 8.3, 8.4, 8.5 and 8.6 show the variational results for helium, beryllium,
neon, magnesium and silicon respectively. For the different variational calculations I
have used between 10 and 100 million samples per parameter-set depending on the
size of the system (smaller systems demand less computational time and we can more
easily compute smoother plots). However, the main goal with these plots is to find the
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Figure 8.1: A typical variational plot. This plot shows the results for helium with 100 million
samples. The energies are in units of Hartree.

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
−2.9

−2.85

−2.8

−2.75

−2.7

−2.65
Helium variational plot, 100 million samples

α

E
xp

ec
ta

tio
n 

va
lu

e 
of

 e
ne

rg
y,

 <
E

>

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
−2.9

−2.85

−2.8

−2.75

−2.7

−2.65
Helium variational plot, 100 million samples

β

E
xp

ec
ta

tio
n 

va
lu

e 
of

 e
ne

rg
y,

 <
E

>

Figure 8.2: The figures show a variational plot of the helium ground state energy with 100
million samples using hydrogen-like orbitals. The figure on the left shows the variation of the α
parameter, while the figure on the right shows the variation of the β parameter. The energies
are in units of Hartree.
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Figure 8.3: The figures show a variational plot of the beryllium ground state energy with 100
million samples using hydrogen-like orbitals. The figure on the left shows the variation of the α
parameter, while the figure on the right shows the variation of the β parameter. The energies
are in units of Hartree.
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Figure 8.4: The figures show a variational plot of the neon ground state energy with 30 million
samples using hydrogen-like orbitals. The figure on the left shows the variation of the α
parameter, while the figure on the right shows the variation of the β parameter. The energies
are in units of Hartree.
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Figure 8.5: The figures show a variational plot of the magnesium ground state energy with 10
million samples using hydrogen-like orbitals. The figure on the left shows the variation of the α
parameter, while the figure on the right shows the variation of the β parameter. The energies
are in units of Hartree.
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Figure 8.6: The figures show a variational plot of the silicon ground state energy with 10
million samples using hydrogen-like orbitals. The figure on the left shows the variation of the α
parameter, while the figure on the right shows the variation of the β parameter. The energies
are in units of Hartree.
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whereabouts of the optimal parameters, and we are not concerned about precise energy
measurements. The plots does not precise optimal parameters, but by merely looking
at them, and where the energy has its minimum, we should be able to find very good
initial values for the DFP-method (see appendix C). The DFP-method will hopefully
supply us with even better optimal parameters using initial values from table 8.4.

Atom α β MC cycles E

Helium 1.85 0.35 108 ≈ −2.89

Beryllium 3.90 0.12 108 ≈ −14.49

Neon 9.20 0.50 3 · 107 ≈ −127.7

Magnesium 10.8 0.40 107 ≈ −200

Silicon 12.6 0.50 107 ≈ −292

Table 8.4: The table shows the apparent optimal parameters from the variational Monte Carlo
plots. It also shows the number of Monte Carlo cycles and the approximate energy for the
parameter set. The energies are in units of Hartree.

Table 8.4 shows the results for the variational parameters obtained by inspecting
figures 8.2, 8.3, 8.4, 8.5 and 8.6. Some plots are very flat, e.g. the magnesium plot with
respect to the α-parameter (see figure 8.5), and it is hard to determine the minimum by
just inspecting the plots.

We also see that the silicon plot is difficult to read as a function of the α-parameter
(see figure 8.6). It seems as though the minimum lies at about α = 12.6, but this could
be a local minimum since the plot does not show results for α-values less than 12.5.
However, as we will see in section 8.3.1, the DFP-algorithm finds a minimum that lies
within the plotted area.

To obtain smoother plots for both silicon and magnesium, I would have needed more
samples, hence more computational time at the end of this work. These large parallel
jobs tended to crash due to an error in the MPI (Message Passing Interface) system
at Titan. When running the exact same code at a local computer, the program never
crashed. However, the amount of computational time needed to get a smooth variational
plot of such large systems would be very large on a local computer. Due to these time
limitations and parallel jobs crashing at the Titan cluster (http://hpc.uio.no), I was
not able to plot the silicon energy for parameter values lower than α = 12.5. Again,
as mentioned in the previous paragraph, the DFP method does return a minimum for
α-values larger than 12.5, so the range of the plot will not be a problem.

8.2.2 Slater-type orbitals - Hartree Fock results

In this case, the trial wave function is reduced to a one-parameter function, since the
Slater determinant has already been optimized by the Hartree-Fock method. When
presenting the results, I will also include the variance plots to show that the parameters
for minimum in the energy and minimum in the variance in general do not coincide. Since
we have chosen the DFP method to search for the parameter that gives a minimum in
the energy, this parameter value is the one we choose for further calculations.

Figures 8.7, 8.8, 8.9, 8.10 and 8.11 show the variation in the β parameter both for
energy and variance for helium, beryllium, neon, magnesium and silicon respectively. We
see that the minimum in energy and variance does not occur for the same β parameter.
Especially the magnesium and silicon plots (figures 8.10 and 8.11) show this behavior,

87



Chapter 8. VMC Results

with the minimum of variance not even being within the parameter interval we have
plotted.

Again, the time limitation does not allow us to get perfectly smooth plots for larger
systems, but the plots still supply us with good information concerning the parameter
that gives a minimum in energy.
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Figure 8.7: The figures show a variational plot of the helium ground state energy with 150
million samples using Slater type orbitals. The figure on the left shows the energy variation of
the β parameter, while the figure on the right shows the variance variation of the β parameter.
The energy results are in units of Hartree.
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Figure 8.8: The figures show a variational plot of the beryllium ground state energy with 150
million samples using Slater type orbitals. The figure on the left shows the energy variation of
the β parameter, while the figure on the right shows the variance variation of the β parameter.
The energy results are in units of Hartree.

8.3 Optimal parameters with DFP

This section presents the results we get when using the minimization algorithm discussed
in appendix C. The values in table 8.5 and 8.6 are average results of different DFP
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Figure 8.9: The figures show a variational plot of the neon ground state energy with 10 million
samples using Slater type orbitals. The figure on the left shows the energy variation of the β
parameter, while the figure on the right shows the variance variation of the β parameter. The
energy results are in units of Hartree.
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Figure 8.10: The figures show a variational plot of the magnesium ground state energy with 10
million samples using Slater type orbitals. The figure on the left shows the energy variation of
the β parameter, while the figure on the right shows the variance variation of the β parameter.
There is a big difference between energy and variance minimum. The energy results are in units
of Hartree.
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Figure 8.11: The figures show a variational plot of the silicon ground state energy with 10 million
samples using Slater type orbitals. The figure on the left shows the energy variation of the β
parameter, while the figure on the right shows the variance variation of the β parameter. There
is a big difference between energy and variance minimum. The energy results are in units of
Hartree.

minimization runs that all find their minimum for approximately the same parameters.
The parameters usually differ in the second decimal so I decide to include three decimals
in the final optimal parameters.

A problem with the minimization algorithm is that it sometimes makes the calcu-
lation crash. The reason is that the dfpmin-function includes inverting a matrix using
LU-decomposition (see ref. [12]), and for some reason this matrix becomes singular. This
happens more often for larger systems.

In this part I have used 107 Monte Carlo cycles for systems helium, beryllium and
neon. For magnesium and silicon I unfortunately had to reduce this to 106 cycles since
the calculations tended to crash more often due to the singular matrix problem.

8.3.1 Hydrogen-like orbitals

This part presents the results from the DFP algorithm when using hydrogen-like orbitals
in the Slater determinant. All the results are given in table 8.5.

If we compare the apparent optimal parameters from figure 8.5 and the αmin and
βmin in table 8.5

Atom αstart βstart αmin βmin Average 〈E〉
Helium 1.85 0.35 1.839 0.348 −2.891

Beryllium 3.90 0.12 3.925 0.109 −14.493

Neon 9.50 0.20 9.546 0.177 −127.720

Magnesium 10.8 0.40 11.029 0.263 −200.217

Silicon 12.6 0.50 12.787 0.299 −292.319

Table 8.5: The table lists the apparent optimal parameters obtained from the plots in section
8.2.1and the average of the tuned DFP parameters resulting from several different DFP runs.
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8.3.2 Slater-type orbitals - Hartree Fock results

Atom βstart βmin

Helium 0.8 0.811

Beryllium 1.7 1.697

Neon 4.50 4.527

Magnesium 1.20 1.379

Silicon 1.40 1.480

Table 8.6: The table lists the apparent optimal parameters obtained from the plots in section
8.2.2 and the average of the tuned DFP parameters resulting from several different DFP runs.

Table 8.6 shows the optimal parameters found by using the DFP algorithm. A
noticeable thing is that the β parameter for helium, beryllium and neon is not changed
significantly during the DFP minimizing process. For magnesium and silicon however,
the DFP method does in fact find the energy minimum a bit further away from the
minimum in the plots (figures 8.10 and 8.11). A major reason for this could obviously
be that the plots for these systems are not smooth enough.

8.4 Time step analysis - extrapolated results

Through the calculations in the previous sections, we have now hopefully found the
parameters that gives us the minimum in the energy. The final step in the calculations
is then to calculate the energy for different time steps as discussed in section 6.4. These
calculations will also implement the blocking method (see section 6.3) so that we can
extrapolate to ∆t = 0 for both the energy and the standard error of the data set.

Depending on the results of small test calculations on the different systems for
different time steps, I have chosen three ∆t values for each system that appear to produce
sensible results. The values vary for the different systems and have been chosen from the
values ∆t = 0.01, ∆t = 0.025, ∆t = 0.05 and ∆t = 0.1. Figure 8.13 shows all blocking
results for the neon atom, for both hydrogenic wave functions and Slater-type orbitals.

8.4.1 Hydrogenic wave functions

In this part the results for the time step extrapolation is listed using the hydrogenic wave
functions as single particle orbitals in the Slater determinant (see section 5.3). Tables
8.7, 8.8, 8.9, 8.10 and 8.11 shows the results for helium, beryllium, neon, magnesium
and silicon respectively.

8.4.2 Slater-type orbitals

This part presents the time step extrapolated energy results when using Slater-type
orbitals. Tables 8.12, 8.13, 8.14, 8.15 and 8.16 show the results for helium, beryllium,
neon, magnesium and silicon respectively.
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Figure 8.12: This figure shows the time step extrapolation for helium with hydrogenic wave
function with error bars corresponding to the blocking errors.

Helium with hydrogenic wave functions

∆t Energy Standard error

0.10 −2.89057 2.7 · 10−5

0.05 −2.89047 2.9 · 10−5

0.01 −2.89043 4.3 · 10−5

Extrapolated −2.89040 3.9 · 10−5

Table 8.7: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for helium with hydrogen-like wave functions.

Beryllium with hydrogenic wave functions

∆t Energy Standard error

0.05 −14.49349 9.6 · 10−5

0.25 −14.49852 1.2 · 10−4

0.01 −14.49960 1.9 · 10−4

Extrapolated −14.50220 1.8 · 10−4

Table 8.8: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for beryllium with hydrogen-like wave functions.

Neon with hydrogenic wave functions

∆t Energy Standard error

0.05 −127.732 5.4 · 10−3

0.25 −127.437 2.6 · 10−3

0.01 −127.371 1.7 · 10−3

Extrapolated −127.284 2.5 · 10−3

Table 8.9: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for neon with hydrogen-like wave functions.
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Figure 8.13: The figures show the blocking results for neon for both hydrogenic wave functions
(left) and the Slater-type orbitals (right). The standard error as a function of block size is in
units of Hartree.
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Magnesium with hydrogenic wave functions

∆t Energy Standard error

0.05 −199.85 2.1 · 10−2

0.25 −197.530 8.1 · 10−3

0.01 −196.818 3.8 · 10−3

Extrapolated −196.152 6.6 · 10−3

Table 8.10: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for magnesium with hydrogen-like wave functions.

Silicon with hydrogenic wave functions

∆t Energy Standard error

0.1 −298.00 5.9 · 10−2

0.05 −291.87 4.2 · 10−2

0.01 −284.352 6.7 · 10−3

Extrapolated −282.750 9.5 · 10−3

Table 8.11: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for silicon with hydrogen-like wave functions.

Helium with Slater-type orbitals

∆t Energy Standard error

0.1 −2.88876 2.3 · 10−5

0.05 −2.88833 3.1 · 10−5

0.01 −2.88783 6.8 · 10−5

Extrapolated −2.88782 5.0 · 10−5

Table 8.12: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for helium with Slater-type orbitals.

Beryllium with Slater-type orbitals

∆t Energy Standard error

0.1 −14.61260 5.3 · 10−5

0.05 −14.60941 6.0 · 10−5

0.01 −14.6088 1.2 · 10−4

Extrapolated −14.60725 9.5 · 10−5

Table 8.13: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for beryllium with Slater-type orbitals.
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Neon with Slater-type orbitals

∆t Energy Standard error

0.05 −128.9343 7.8 · 10−4

0.025 −128.7021 5.5 · 10−4

0.01 −128.6164 6.4 · 10−4

Extrapolated −128.5187 7.7 · 10−4

Table 8.14: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for neon with Slater-type orbitals.

Magnesium with Slater-type orbitals

∆t Energy Standard error

0.05 −204.174 1.9 · 10−3

0.025 −204.482 1.7 · 10−3

0.01 −204.737 2.1 · 10−3

Extrapolated −204.852 2.3 · 10−3

Table 8.15: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for neon with Slater-type orbitals.

Silicon with Slater-type orbitals

∆t Energy Standard error

0.05 −294.180 2.6 · 10−3

0.025 −294.665 2.2 · 10−3

0.01 −295.131 2.4 · 10−3

Extrapolated −295.315 2.8 · 10−3

Table 8.16: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for silicon with Slater-type orbitals.
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8.5 Discussions

In this section we compare our VMC results for helium, beryllium and neon with the
VMC results from table 2.4 in [3]. For magnesium and silicon we compare with the
results from table I in [4].

Table 8.17 lists the energy results compared to our reference energies. We see how
for our case the helium energy is best calculated with the hydrogenic wave functions,
rather than with the Slater-type orbitals. It seems as though the hydrogenic orbitals
model the helium atom better than the Slater-type orbitals. But as we shall see for
larger systems with more correlation, the Slater-type orbitals gives us an advantage.

For beryllium, the Slater-type orbitals seem to model the correlation between the
electrons more correctly, and produce a more correct ground state energy estimation
than by using hydrogenic wave functions. It seems as though the Jastrow factor is good
for modelling the correlations that the Hartree-Fock optimization of wave functions has
not already taken care of.

If we are to compare with the energies from [4], we clearly see that the Slater
determinants with hydrogenic wave functions do not estimate the silicon energy in a
good way. A good argument for this is the fact that we have chosen a Slater determinant
as if the two outmost electrons were bound to a 3p-state with ml = +1, corresponding
to the real solid harmonics being coordinate x. This is because our Slater determinant
code is restricted to describe atoms with an equal number of spin up electrons as spin
down electrons. Since the Hamiltonian does not interact with spin or orbital momentum,
we simply choose ml = +1, disregarding Hund’s rules (see [2]). As seen in section 3.1.3
however, the two outermost electrons in silicon both have spin up and have a total
angular momentum of one. The electrons could be configured in different ways, e.g. one
in a 3p-orbital with ml = +1 and one in 3p with ml = 0, both with spin up. The
electrons could also be excited into 3d-orbitals etc. To accommodate for this, we would
have needed to implement linear combinations of Slater determinants and also include
more single particle wave functions. Because of this, we see that our wave function
probably is too primitive for this matter.

A troubling aspect however, is the behavior of the the extrapolated energies for
magnesium and silicon using a Slater determinant with the Slater-type orbitals obtained
by the Hartree-Fock calculations by Clementi and Roetti in [10]. Our VMC calculations
actually give too attractive energies compared to the calculations in [4]. But if we

Energy comparison

Atom Reference energy Extr. energy with HWF Extr. energy with STO

Helium −2.903726(4) −2.89040(3.9) −2.88722(5.0)

Beryllium −14.6664(3) −14.50220(1.8) −14.60725(9.5)

Neon −128.884(4) −127.284(2.5) −128.5187(7.7)

Magnesium −200.0002(5) −196.152(6.6) −204.852(2.3)

Silicon −289.1970(10) −282.750(9.5) −295.315(2.8)

Table 8.17: The table shows the energies from the time step extrapolation, and standard errors
from the blocking method for neon with Slater-type orbitals. Helium, beryllium and neon
energies are compared with VMC calculations from [3], while magnesium and silicon energies
have been compared with VMC results from [4]. Energies are in units of Hartree.
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consider the VMC calculations from [4] to be accurate, our results contradict with the
variational principle (see section 4.3). If this is the case, there must be something wrong
with the code that we have developed. However, we have seen in table 8.3 that our Slater
determinant reproduces the Roothaan-Hartree-Fock energies from [10] quite nicely. We
also saw the same when calculating a non-interacting system using a Slater determinant
with hydrogenic orbitals, so we might be wrong to question the Slater determinant at
this point.

By running the code with only a Slater determinant with STO and no Jastrow factor,
we reproduce the Hartree-Fock energies. These energies are already very close to the
results from [4], so we should not expect any significant improvement from an additional
correlation factor. However, the energies are somehow underestimated when including
the Jastrow factor.

We cannot overlook the possibility that the Jastrow function we have chosen
in this work (see 5.1.2) has not been implemented correctly, but this still seems
somewhat unlikely as it produces good improvements when working with hydrogenic
wave functions. With that being said, we see a trend for the larger systems neon,
magnesium and silicon when we include the Jastrow factor. The calculations then tend
to produce less accurate results. For magnesium and silicon the energies are much
too low for our liking, while for neon the Jastrow factor hardly improves the Hartree-
Fock energy. In these three cases, the pure Hartree-Fock (Slater-type orbitals) Slater
determinant without the Jastrow functions produces the best results.
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Chapter 9

Conclusion

In this thesis we have performed Variational Monte Carlo calculations on the helium,
beryllium, neon, magnesium and silicon atoms in order to estimate the ground state
energy of the systems. We have developed a code in C++ that uses either hydrogen-like
wave functions or Slater-type orbitals as single-particle wave functions. The Slater-type
orbitals have been optimized by a Hartree-Fock calculation in [10]. The code uses the
Metropolis-Hastings algorithm (see e.g. [3]) with importance sampling.

We have seen that the code that we have developed produces very good results for
helium and beryllium in addition to sensible results for neon. For magnesium and silicon
however, we have struggled to get good results. We clearly see that when introducing
the Jastrow factor in addition to Slater-type orbitals, the energies are underestimated
compared to the VMC calculations from [4].

Despite the problems we have encountered when dealing with larger systems, we
still see that the Variational Monte Carlo machinery we have developed is working. By
reviewing the results from the pure Slater determinant calculations (without any Jastrow
factor), we see that the results come out perfectly.

In order to improve this model we can examine more closely the Jastrow function
we have used in this work to see whether or not there could be an error in the
implementation. Another approach would be to introduce other Jastrow factors in order
to model the correlation more correctly, such as the ones used in [4].

To improve calculations for silicon and other open-shell systems, we can also
implement the possibility of having linear combinations of Slater determinants. We
see from the discussion in 8.5 that for these systems, the Slater determinant we have
implemented might not be good enough to describe the physics.

When we get our full VMC machinery up and running, with correlations and all, the
next step would be to perform a Green’s function Monte Carlo calculation (see [3]). In
order to perform Green’s function Monte Carlo (GFMC) calculation, the method needs
a starting point for the energy. An optimized Variational Monte Carlo energy is a good
choice for this. A GFMC calculation is in theory an exact method, and will result in us
being able to determine an accurate ground state wave function. With this we can define
the quantum mechanical density, which can be used to construct a density functional
for atoms using the adiabatic-connection method described in [21]. By starting with ab
initio calculations, we can then hopefully improve the density functionals that are used
to model materials.





Appendix A

Roothaan-Hartree-Fock results

In this part I will present Clementi and Roetti’s results from their Roothaan-Hartree-
Fock calculations for atoms helium, beryllium, neon, magnesium and silicon. The tables’
applications are explained in section 5.5.

Helium

Helium consists of 2 electrons and a core of charge 2e and has the electron distribution
(1s)2. Table A.1 shows the Roothaan-Hartree-Fock(RHF) solution for Helium. The

n,λ Exponent, ξ 1s exp.coeff.

1S 1.41714 0.76838
1S 2.37682 0.22356
1S 4.39628 0.04082
1S 6.52699 −0.00994
1S 7.94525 0.00230

Table A.1: The table shows the Roothan-Hartree-Fock results for Helium.

tabulated Roothaan-Hartree-Fock ground state energy for Helium given in [10] is

E = −2.8616799 Eh,

where Eh is the Hartree unit given in section 3.1.4.

Beryllium

Beryllium has 4 electrons with a nucleus charged 4e and has electrons distributed as
(1s)2(2s)2. Table A.2 shows the RHF-solution for beryllium. In [10] the total ground
state energy is calculated as

E = −14.573021 Eh.

Neon

The ten Neon electrons are distributed as (1s)2(2s)2(2p)6. Table A.3 shows the RHF-
solution. The Roothaan-Hartree-Fock energy is

E = −128.54705 Eh.
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n,λ Exponent, ξ 1s exp.coeff. 2s exp.coeff.

1S 3.47116 0.91796 −0.17092
1S 6.36861 0.08724 −0.01455
2S 0.77820 0.00108 0.21186
2S 0.94067 −0.00199 0.62499
2S 1.48725 0.00176 0.26662
2S 2.71830 0.00628 −0.09919

Table A.2: The table shows the Roothan-Hartree-Fock results for Beryllium.

n,λ Exponent, ξ 1s exp.coeff. 2s exp.coeff. n,λ Exponent, ξ 2p exp.coeff.

1S 9.48486 0.93717 −0.23093 2P 1.45208 0.21799
1S 15.56590 0.04899 −0.00635 2P 2.38168 0.53338
2S 1.96184 0.00058 0.18620 2P 4.48489 0.32933
2S 2.86423 −0.00064 0.66899 2P 9.13464 0.01872
2S 4.82530 0.00551 0.30910
2S 7.79242 0.01999 −0.13871

Table A.3: The table shows the Roothan-Hartree-Fock results for Neon.

Magnesium

The Magnesium atom has 12 electrons in orbitals (1s)2(2s)2(2p)6(3s)2. The RHF-
solution is given in table A.4. The RHF-energy is given in [10] as

n,λ Exponent, ξ 1s e.c. 2s e.c. 3s e.c. n,λ Exponent, ξ 2p e.c.

1S 12.01140 0.96430 −0.24357 0.04691 2P 5.92580 0.52391
3S 13.91620 0.03548 −0.00485 0.00144 4P 7.98979 0.07012
3S 9.48612 0.02033 0.08002 −0.01850 4P 5.32964 0.31965
3S 6.72188 −0.00252 0.39902 −0.07964 4P 3.71678 0.20860
3S 4.24466 0.00162 0.57358 −0.13478 4P 2.59986 0.03888
3S 2.53466 −0.00038 0.05156 −0.01906
3S 1.46920 0.00015 −0.00703 0.48239
3S 0.89084 −0.00004 0.00161 0.60221

Table A.4: The table shows the Roothan-Hartree-Fock results for Magnesium.

E = −199.61461 Eh.

Silicon

The silicon atom consists of a nucleus with charge 14e and 14 electrons distributed
in orbitals as (1s)2(2s)2(2p)6(3s)2(3p)2. Table A.5 shows the s-orbitals for the RHF-
solution. Table A.6 shows the RHF results for the p-orbitals. The ground state energy
calculated with the RHF-method gives

E = −288.85431 Eh.
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n,λ Exponent, ξ 1s exp.coeff. 2s exp.coeff. 3s exp.coeff.

1S 14.01420 0.96800 −0.25755 0.06595
3S 16.39320 0.03033 −0.00446 0.00185
3S 10.87950 0.02248 0.11153 −0.03461
3S 7.72709 −0.00617 0.40339 −0.10378
3S 5.16500 0.00326 0.55032 −0.19229
3S 2.97451 −0.00143 0.03381 −0.06561
3S 2.14316 0.00081 −0.00815 0.59732
3S 1.31306 −0.00016 0.00126 0.55390

Table A.5: The table shows the s-orbital Roothan-Hartree-Fock results for Silicon.

n,λ Exponent, ξ 2p exp.coeff. 3p exp.coeff.

2P 7.14360 0.54290 −0.11535
4P 16.25720 0.00234 −0.00189
4P 10.79720 0.04228 −00473
4P 6.89724 0.32155 −0.07552
4P 4.66598 0.22474 0.01041
4P 2.32046 0.00732 0.46075
4P 1.33470 −0.00105 0.57665
4P 0.79318 0.00041 0.06274

Table A.6: The table shows the p-orbital Roothan-Hartree-Fock results for Silicon.
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Appendix B

Statistics

This appendix will give a short introduction to many key aspects regarding the statistical
terms used for calculating expectation values and its statistical error in the Variational
Monte Carlo process. We will follow the work in [22] quite closely in order to get all the
important points across.

A probability distribution function(PDF), p(x), is a function that describes the
frequency of a stochastic value X to occur, that is

p(x) = Prob(X = x). (B.1)

This is for the discrete case.
For the continuous case, p(x) represents a probability distribution, where we must

deal with probabilities of values being within some interval. That is, the probability
of the stochastic variable X taking a value on the finite interval [a, b] is defined by an
integral

Prob(a ≤ X ≤ b) =

∫ b

a
p(x)dx. (B.2)

All PDF’s must take values that are both positive and less or equal to unity, the absolute
maximum for any probability function to make sense. This means

0 ≤ p(x) ≤ 1, (B.3)

In addition to this, both the discrete and continuous PDF’s must be normalized to one
as

∑

i

p(xi) = 1, (B.4)

∫
p(x)dx = 1. (B.5)

Moments and expectation values

Since our wave functions are continuous, our PDF will be so as well, and the expectation
value of a function f(x) is given by

〈f〉 ≡ f(x)p(x)dx. (B.6)

We also have the moments, as special case of expectation values, where the n-th moment
is

〈xn〉 ≡
∫
xnp(x)dx. (B.7)
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The mean, µ, is defined by the first moment, 〈x〉.
The central moments are defined by

〈(x− 〈x〉)n〉 ≡
∫

(x− 〈x〉)np(x)dx. (B.8)

The second central moment is called the variance, σ2
X or Var(X), and can be written as

σ2
X = Var(X) = 〈(x− 〈x〉)2〉

= 〈x2〉 − 〈x〉2. (B.9)

The standard deviation is then σ =
√

〈x2〉 − 〈x〉2.

Correlated measurements

For now, we have been dealing with functions of one stochastic variable, so-called
univariate PDF’s. However, a PDF may as well consist of many variables. These PDF’s
are called multivariate PDF’s. The variables themselves are independent, or uncorrelated

is the multivariate PDF, P (x1, x2, ..., xn) can be factorized as

P (x1, x2, ..., xn) =

n∏

i=1

pi(xi), (B.10)

where pi(xi) are the univariate PDF’s.
The so-called covariance of two stochastic variables, Xi and Xj , is defined as

Cov(Xi,Xj) ≡ 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = 〈xixj〉 − 〈xi〉〈xj〉. (B.11)

We see that for j = i this reduces to the variance of Xi, that is

Cov(Xi,Xi) = Var(Xi) = 〈x2
i 〉 − 〈xi〉2. (B.12)

If the variables Xi and Xj are independent, or uncorrelated, the PDF’s will factorize as
in Eq. (B.10), and we will have 〈xixj〉 = 〈xi〉〈xj〉. This will give Cov(Xi,Xj) = 0, when
i 6= j.

Consider linear combinations of stochastic variables Xi and Yj as

U =
∑

i

aiXi, (B.13)

and
V =

∑

j

bjYj, (B.14)

where ai and bj are scalar coefficients. As given in [23], we will have

Cov(U, V ) =
∑

i,j

aibjCov(Xi, Yj). (B.15)

Since Var(Xi) = Cov(Xi,Xi), the variance of U will be

Var(U) =
∑

i,j

aiajCov(Xi,Xj), (B.16)
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which for uncorrelated variables will be reduced to

Var(U) =
∑

i

a2
iCov(Xi,Xi) =

∑

i

a2
iVar(Xi), (B.17)

and

Var

(
∑

i

aiXi)

)
=
∑

i

a2
iVar(Xi). (B.18)

Approximations for finite data sets

Consider a computational experiment which produces a sequence of n stochastic values

{x1, x2, . . . , xn}, (B.19)

which we will call the n measurements of our sample. We can hereby define the sample

mean as

x̄n ≡ 1

n

n∑

k=1

xk, (B.20)

with the sample variance and sample covariance being

Var(x) ≡ 1

n

n∑

k=1

(xk − x̄n)
2 (B.21)

and

Cov(x) ≡ 1

n

∑

kl

(xk − x̄n)(xl − x̄n), (B.22)

respectively. This sample covariance is a measure of the correlation between succeeding
values in the sample. These values are not the same as the mean µX , Var(X) and
Cov(X) defined by the exact PDF, pX(x), but approximations to these quantities.

In the limit where n→ ∞ it can be shown that the sample mean, x̄n approaches the
true mean µX , that is

lim
n→∞

x̄n = µX , (B.23)

and x̄n can be seen as an estimate of µX . But how good is this approximation? In
order to find this we also need the error estimate of our measurement. We can view
the sample means themselves as measurements in a collection of sample means (several
experiments). To calculate the statistical error, we need the PDF of the sample means,
pX̄n

(x). The exact error will be given by the standard deviation of the sample means,
errX , also called sample error. However, we don’t know the exact PDF, so we can only
calculate an estimate of errX .

The sample mean, x̄n, can be treated as a stochastic variable X̄n, because x̄n is a
linear combination of stochastic variables Xi with 1/n as common coefficients. This
means we can write

X̄n =
1

n

n∑

i=1

Xi. (B.24)

We will now have pX̄(x) as the probability distributions of the sample means X̄n, but
we cannot get a closed form expression for this. However, the central limit theorem (see
[23]) opens for an approximation of pX̄(x) as n→ ∞. It states that

lim
n→∞

pX̄(x) =

(
n

2πV ar(X)

)1/2

e
−

n(x−x̄n)2

2V ar(X) , (B.25)
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Appendix B. Statistics

which means that the PDF will approach a Gaussian distribution. This Gaussian
distribution will have a mean and variance which equal to the true mean and variance,
µX and σ2

X .
The error is given by

err2X = Var(X̄n) =
1

n2

∑

ij

Cov(Xi,Xj). (B.26)

This exact error needs the true means µX in order to be calculated. We will not be able
to do this unless we have the exact PDF’s of the variables Xi. However, we only have
the measurements in a sample, and not the actual PDF.

Instead, we estimate the true means µX by the sample means

µXi
= 〈xi〉 ≈

1

n

n∑

k=1

xk = 〈x〉. (B.27)

The estimate of the covariance will then be

Cov(Xi,Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 ≈ 〈(xi − x̄)(xj − x̄)〉

≈ 1

n

n∑

l

(
1

n

n∑

k

(xk − x̄n)(xl − x̄n)

)

=
1

n

1

n

∑

kl

(xk − x̄n)(xl − x̄n)

=
1

n
Cov(x). (B.28)

The error estimate can be written using Eq. (B.28) as

err2X =
1

n2

∑

ij

Cov(Xi,Xj)

≈ 1

n2

∑

ij

1

n
Cov(x) =

1

n2
n2 1

n
Cov(x)

=
1

n
Cov(x). (B.29)

The same approximation goes for the variance, as

Var(Xi) = = 〈(xi − 〈xi〉)2〉 ≈ 〈(xi − x̄)2〉

=
1

n

n∑

k=1

(xk − x̄n)
2

= Var(x), (B.30)

which for uncorrelated stochastic variables will give an error estimation as

err2X =
1

n2

∑

ij

Cov(Xi,Xj)

=
1

n2

∑

i

Var(Xi) ≈
1

n2

∑

i

Cov(x)

=
1

n
Var(x). (B.31)
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Autocorrelation function and correlation time

As given in [22], we can rewrite the error as

err2X =
1

n
Cov(x) =

1

n
Var(x) +

1

n
(Cov(x) − Var(x))

=
1

n2

n∑

k=1

(xk − x̄n)
2 +

2

n2

∑

k<l

(xk − x̄n)(xl − x̄n). (B.32)

We see the first term is just the variance, so the second term must be the error correction
when the variables are correlated. By now introducing partial sums on the form

fd =
1

n

n−d∑

k=1

(xk − x̄n)(xk+d − x̄n), (B.33)

we can write the correlation term as

2

n2

∑

k<l

(xk − x̄n)(xl − x̄n) =
2

n

n−1∑

d=1

fd, (B.34)

where now fd is a measure of how correlated values separated by a distance d are. By
dividing fd by Var(x), we can define the autocorrelation function:

κd =
fd

Var(x)
. (B.35)

We see that fd equals the sample variance, Var(x), when d = 0, so the autocorrelation
function has a value of 1 for d = 0.

We can now rewrite the sample error as

err2X =
1

n
Var(x) +

2

n
Var(x)

n−1∑

d=1

fd
Var(x)

=

(
1 + 2

n−1∑

d=1

κd

)
1

n
Var(x)

=
τ

n
Var(x), (B.36)

where τ ,

τ = 1 + 2

n−1∑

d=1

κd, (B.37)

is called the autocorrelation time and can be used to define the effective number of
measurements, neff = n/τ , for us to simply approximate the error by the sample
variance.
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Appendix C

DFP and energy minimization

Since we wish to minimize the energy using our Variational Monte Carlo machinery, an
important part is to find the optimal parameters for the wave function. That is, the
parameters for the wave function which minimizes the energy.

A rather brute force first approach is to manually vary the parameters and plot
the results as in section 8.2. This will give a good estimate of what the optimal
parameters are, but will in general not be precise enough for more quantitatively precise
measurements.

The method we use is a so-called quasi-Newton method, the Davidon-Fletcher-

Powell-algorithm (DFP) as given in [12]. This method builds on the conjugate gradient
method (CGM) and the steepest descent method (both are described in [12]). These
techniques however, are respectively too costly numerically, or too brute force for our
liking.

Both CGM and DPF are based on approximating a function of variational parame-
ters, f(x), by a quadratic form, where now x is the set of i variational parameters. This
is done by writing the Taylor series of f(x) at some point P, as

f(x) = f(P) +
∑

i

∂f

∂xi
+

1

2

∂2f

∂xi∂xj
. . .

≈ c− b · x +
1

2
x · A · x (C.1)

where now

c ≡ f(P) b ≡ −∇f |P [A]ij ≡
∂2f

∂xi∂xj

∣∣∣
P

. (C.2)

The matrix A is called the Hessian matrix, the matrix containing all second derivatives.
The gradient can easily be calculated as

∇f = A · x− b. (C.3)

In the DFP method, we don’t have to calculate the exact Hessian, A, which takes a lot
of computation time. The goal is then to iteratively construct a sequence of matrices,
Hi, such that

lim
i→∞

Hi = A−1. (C.4)

By its name, it should be clear that the Newton method for finding the zero of the
gradient of function is similar to the quasi-Newton method. For the Newton method,



Appendix C. DFP and energy minimization

we have to second order, near a current iteration point xi, the following

f(x) = f(xi) + (x − xi) · ∇f(xi) +
1

2
(x − xi) ·A · (x − xi) (C.5)

and
∇f(x) = ∇f(xi) + A · (x − xi). (C.6)

In order to find the next iteration point using Newton’s method, we use that ∇f(x) = 0,
giving

x − xi = −A−1 · ∇f(xi). (C.7)

The quasi-Newton method is introduced since we do not compute the exact Hessian and
its inverse, but an approximation H ≈ A−1. As explained in [12], this approach can
often be better than using the true Hessian, as the matrix H is constructed in such a
way that it is always positive-definite and symmetric. The true Hessian is generally not
always positive-definite when we are far from the minimum, which can lead to moving
towards increasing values of f instead of decreasing values.

If we subtract Eq. (C.7) at xi+1 from the same equation at xi, we get

xi+1 − xi = A−1 · (∇fi+1) −∇fi)), (C.8)

where now fj = f(xj). At the point xi+1 we also have that Hi+1 is a good approximation
for A−1, yielding

xi+1 − xi = Hi+1 · (∇fi+1) −∇fi)). (C.9)

The “outer” product of two vectors, u and v, is given as, u ⊗ v. As opposed to the
“inner” product of two vectors

u · v = uTv (C.10)

which returns a scalar, the “outer” product,

u⊗ v = uvT , (C.11)

returns a matrix. Component (u ⊗ v)ij is simply given as (u⊗ v)ij = uivj .
The DPF updating formula for Hi+1 is given in [12] as

Hi = Hi+1 +
(xi+1 − xi) ⊗ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)

− [Hi · (∇fi+1 −∇fi)] ⊗ [Hi · (∇fi+1 −∇fi)]
(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

. (C.12)

We have used the function dfpmin.c from [12] which uses this quasi-Newton method
for finding a minimum for f(x), while finding an approximation for the inverse Hessian.
This method takes as input a function that returns the mean energy, and a function
that calculates the gradient of the energy.

In this thesis we have a function f = Ē, the mean of the local energy operator, ÊL, as
given in 4.4.1. To use the DFP method we must have the gradient of f , that is the first
derivatives of the energy expectation value with respect to the variational parameters,
xi. The first derivatives of the energy expectation value are given in [14] as

∂Ē

∂xi
= Ēi =

〈
ψi
ψ
EL +

Hψi
ψ

− 2Ē
ψi
ψ

〉

= 2

〈
ψi
ψ

(EL − Ē)

〉
= 2

〈
ψi
ψ
EL

〉
− 2

〈
ψi
ψ

〉
Ē (C.13)
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where ψi = ∂ψ/∂xi. The expectation values in Eq. (C.13) cannot be calculated easily
using closed form expressions, and must be evaluated numerically. In this work we have
just used the simple three-point estimation of the first derivative

f ′(x) ≈ f(x+ h) − f(x− h)

2h
, (C.14)

with h = 0.001.
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