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Abstract

The purpose of this thesis is the investigation of the intratumoural networkghrimmage analysis
of histological sections. Tumour vasculature is characterized by complesétyularities and poorly
regulated growth. Fractal analysis has been used to establish that tuasoutature has a different
network architecture from that of the normal arterio-venous systemeocdpillary network. The
vasculature is responsible for the transportation of oxygen to tumour kelgver its many patho-
logical features results in, among others, the presence of hypoximeegldypoxia is a challenge
to the treatment of cancer, both through its indirect biological effectdy as@ reduced progression
through the cell cycle, but also through direct chemical effects. licoder, the oxygen effeceduces
the effectiveness of radiation therapy. Furthermore, the network rolog relates to many other
parameters as well, such as the angiogenic and the metastatic capability afd¢be G#is raises the
possibility of using image analysis, and fractal analysis in particular, tottfyalifferent aspects of
the network morphology.

The study limits itself to parameters which may be obtained from digitized imagestofdgis
ical sections with endothelial-specific staining. The investigated parametewimarily obtained
through fractal analysis and syntactic structure analysis. A few moearders, such as the number
of vessels, the size of the vessels, the total vascular area, and cumbiatiygrams of distances to
the nearest vessel, were obtained directly from the images. The invedtjgatEmeters depend on
both the number of vessels in the image, and the distribution of the vesselspaRicular areas
have been emphasized, the first is the identification of how strongly thenptees relate to the vessel
distribution, and the second is the implementation of fractal analysis on vascods sections.

Four different CD34-stained immunohistological sections have beensatalyThey were ob-
tained from malignant carcinomas of the breast and exhibited qualitativédyetit vascular patterns.
A routine has been developed to segment out the vessels from the dackgstaining before the
image analysis.

The investigated fractal dimensions include the Box Counting dimension, titb8adimension,
the Correlation dimension, the Mass dimension and the Fourier dimensiore fiéves been applied
to images processed in three different ways. The first contained the gesisel lumens, the second
only the outer vessel wall perimeter and the last only the vessels’ geonegitie of mass. In addition
fractal analysis has been performed on Gabriels’s Graph and the &uclMinimum Spanning Tree,
both of which belong to the Syntactic Structure Analysis graphs. The gliffenethods and images
provided both different dimensions and different curve shapes. $bme curves did not have any
meaningful power-law scaling regions at all, however, most of them dig. Sandbox dimension in
general and the mass centre images in particular, have been consigeradsthpromising of these
methods. Although it may be argued that the telimensiordoes not, in any meaningful way, relate
to most of the parameters obtained through these methods, they do mostycerppear capable of
differentiating various vessel distributions from each other. In addititingdractal analysis methods,
all other investigated methods have been applied to the four cases as well.



In order to identify the relationship between the parameters and the numtessefis in a particu-
lar image, two simulations have been performed. The first simulation genénatedages through a
uniform random distribution probability (10.000 images), while the secord aghree-dimensional
invasion percolation cluster to generate the vessel positions (15.560 indgegnean and standard
deviations of the results at each vessel count have been investigaiteg: dtandard deviations have
been interpreted as a strong dependency on the vessel distributioslophef the mean, on the other
hand, shows the parameters dependency on the number of vesselizédhef the standard devia-
tions are considered relative to the slopes. Most of the analysis parambtred large variations
for low vascular densities. A subset of the parameters had large vasi@ven at very high vascular
densities.

In conclusion, most of the investigated parameters appear to be promisidiglates for further
studies. Fractal analysis may be applied to vascular cross-sectionshadtisver, important to rig-
orously specify how the analysis is performed, as a large number abjesssults may be acquired
through these methods. In particular the Sandbox dimensions of the massiotages, Gabriel's
Graph, and the Euclidean Minimum Spanning Tree, at large sandbox draimate recommended
for further study, with the possible additon of the EMST dimension at small des)eas this re-
quire no extra computation time. At this point in time it is not recommended to exclwdefahe
SSA-parameters from further studies. The next adviceable step weuiad jperform a correlation
study, comparing these parameters to other data of clinical value, relateshtmént, diagnosis or
prognosis.
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Chapter 1

Introduction

Cancer is one of the most common causes of death in the western world $edagd only to car-
diovascular diseases. In spite of the enormous amounts resourcegdniresancer research and
treatment, the mortality rates due to cancer are expected to increase. Thiausdée¢he probabil-
ity of developing cancer increases with age. Although treatments are beromoire effective, the
combination of the changing demographics and a decrease in deathd byusther diseases will
make cancer treatment increasingly important in the coming years. Canagrtieermame of a spe-
cific disease. Rather it is a term which covers a wide range of diseaggl®piag in various organs
throughout the body. The defining feature of a cancerous disease deWelopment of cells which
blatantly disregard the internal rules of the body. Somatic cells dividedksgarof the body’s needs,
developing into a tumour. The tumour is considered cancerous when it tip@rebility to invade
surrounding tissue.

Radiation Therapy is, next to surgery, the most common treatment modality nsshoer. At
least 50 % of all patients are believed to benefit from radiation therapgrdiih curative purposes
or pain relief. In order to cure a cancer, all cancerous cells must bd kiélen a single survivor may
be enough to cause a relapse. The challenge in radiation therapy is to lilrber cells with as
little harm done to the healthy tissue as possible. Conventional radiation yhgmgally considers
the tumour as a uniform target area and attempts to deliver some specifio dssmuch of this area
as possible, without exceeding specified dose limits in the surroundingveitbaspecial regard to
radiosensitive risk organs in the vicinity. The treatment plan represeradadif between the tumour
control probability and the normal tissue complication probability.

The radiosensitivity of a given tumour depends on many factors, onehathws the oxygen
levels in the tumour (section 2.2). Oxygen increases the biological effécésliation, conversely
hypoxic cells, which are cells deprived of oxygen, will have decr@aadiosensitvity and require
higher doses to kill. Hypoxia reduces the effectiveness of chemotherag it is known to increase
the rate of malignant tumour progression and the rate of distant metastassduMours have some
degree of hypoxia. The hypoxic fractions are frequently about 1&%%, but may vary from 0 to
50% [21].

Hypoxia is caused by the vasculatures’ failure to supply the entire tumouroxjthen. As a
tumour grows, regions inside the tumour will soon find themselves furthey &am the existing
vasculature than oxygen is able diffuse. If left deprived of oxygmh rautrients long enough, these
cells will die. In order to continue growing in size, new vasculature musobadd to supply the
tumour. This is a process referred to as angiogenesis and is triggetieel pyoduction of endothelial
growth factors in tumour cells. The networks formed in tumours are, hawgquée different from
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2 CHAPTER 1. INTRODUCTION

the healthy vasculature in the normal tissues, both when it comes to the strattbe network and
the individual vessels (section 2.1).

The tumour networks, in particular, are far more chaotic than normal lsgoe, prompting the
use of fractal analysis as a tool to quantify some aspects of this compleadiofs 2.4). Fractal
analysis has become a powerful tool to classify complex phenomena, taref antroduction to the
subject is given in section 2.3. Based on the fractal analysis of two-dioreigumour models,
invasion percolation has been proposed as a way to model vascularketwtumours.

The study of a full-scale three-dimensional tumour network is difficult. &ree some ways
to do it, but they are generally not applicable in a clinical setting. If the got@l identify clinical
parameters, relevant to the treatment of individual patients, then the sthistaogical daté is the
most promising course of action.

This study is an investigation of parameters obtainable through image analysistaibgical
sections stained with endothelial specific markers. The investigated paraimetade the number of
vessels, the stained area, and the distances to the nearest vessdlaasaveng list of parameters
obtainable through fractal analysis and syntactic structure analysis.e loage of fractal analysis,
several different algorithms have been used and compared.

Two different simulations have been performed, generating and anglssidomly constructed
images. The first uses a uniform probability distribution, and the latter thizakebonds of a non-
trapping three-dimensional bond invasion percolation cluster (section Bi&) simulations investi-
gate the spread in results for the different parameters as a function ofithker of vessels. The
purpose is to identify how strongly these parameters are related to the nofwessels (section 4.1).
This is based on the idea that parameters which have little or no variance wsthitsy have equally
little to add to the much easier obtained number of vessels-parameter.

In addition to the simulation, four histological sections stained with CD-34, dothglial spe-
cific marker, have been analysed (section 4.2). The tumour tissues warddur human invasive
carcinomas of the breast. The study of these cases provides an exdrhple ihe image analysis
may be implemented in a clinical setting. In addition it serves as the source méteriiaé study
of parameters unsuited for the simulation, either due to the large quantity of snoadgke simpli-
fications involved in the simulation. These parameters are primarily related tdffbesiot fractal
analysis algorithms, as well as the fractal analysis of vessels reprédmntiee area or the perimeter
of the vessels, rather than only the mass centre. Fractal analysis a¢iGabraph and the Euclidean
Minimum Spanning Tree is performed as well. The results of these fous emseompared to those
of the simulations. In order to analyse the histological data, a method hasléesloped to remove
the background colour from CD-34-stained sections (section 3.1).

The purpose of this thesis has been to investigate the possible usefulinesgye analysis in
hypoxia and angiogenesis related research, with an emphasis on theftesead analysis. It has
been important to establish whether or not it is meaningful to apply fractdysia to histological
sections. Although one must be careful as to how the resulting dimens®mgenpreted, many of the
fractal parameters do seem quite capable of differentiating differesseVdistribution patterns from
each other, if implemented correctly. From the conlcusions drawn in this,stedyfew parameters
should be excluded completely, although some clear recommendations arasnadehich fractal
parameters and analysis approaches that are best suited for fuutlesss The study, does not in
itself provide any judgement on the final relevance of the parameterstrélaimon study, identifying
how these parameters relate to other parameters of diagnostic, progmdiséicapeutic value, should
be the next step towards finding the true relevance of these methods.

1Cross sections of a tissue sample, stained with antibody markers to higipigtific molecules in the cells



Chapter 2

Theory

2.1 Tumour Vasculature

In order to gain proper understanding of how a tumour’s vasculatuersiifom that of healthy tissue,
it necessary to start with the processaofiogensisthrough which tumour vasculature is developed.
Against this backdrop, a list of the most important pathologicial featureshwdharacterise tumour
vasculature will be presented. The architecture of the network itself @r€plar interest as it relates
directly to the oxygenation of the tumour, and the formation of hypoxic regidhe image-analysis
parameters investigated in this study aim at describing some aspect of thieeroe, through the
analysis of histological sections.

2.1.1 Normal Vascular Formation in the Fetus; Vasculogenés and Remodeling

The process by which the initial vasculature in the embryo develops igedfer asvasculogene-
sis. Endothelial cells within previously avascular tissues differentiate from stdls and proliferate.
Merging together, these new tubes form a single primitive network. Thisegsforms some of the
major vessels in the embryo including the aorta and major veins as well as ychonglike plexus
connecting these.

By a process referred to asgiogenic remodelinghis initial network is modified by both pruning
and vessel enlargement. The results are the branching patterns typitaiuse vascularization. At
the same time the endothelial cells integrate tightly with supporting cells and theadkti@cmatrix,
transforming them into mature vessels.

A third process, referred to as angiogenic sprouting, is the cornergtaihe process angio-
genesis This process is responsible for the vascularization of certain strgctsueh as the retina,
the neural tube during normal development, and most new vessels in theSptouts from existing
vessels vascularize nearby avascular tissue. Vessels formed hyisgrare initially immature and
must develop further. Mature vessels, at least in some cases, mubkefideistabilized in order to
allow subsequent sprouting. [44]

In figure 2.1 most of this is shown graphically according to the angiogeniehmd forward in
reference [44]. Further description of the model and the involved mialesignalling components
are presented in section 2.1.4.
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Figure 2.1: Schematic representation of important steyshiad in vessel formation. These include vasculo-
genesis (A), angiogenic remodeling (B), stabilization amaturation (C), destabilization (D), regression (E)
and sprouting (F). The role of some of the angiogenic mocirivolved in these processes are shown as well.
(Adapted from [44])

2.1.2 Angiogenesis

Angiogenesis is the formation and development of new blood vessels fremxjsting vessels. In
the healthy body angiogenesis is responsible for the vascular remodeting dvulation, as well as
wound healing and weight gain. Apart from this, few or no changes we#pect to growth, remod-
eling or regression of the vascular system are expected in healthy tigsugisgenesis is, however,
involved in a long list of pathological conditions where angiogenesis eithparisof the malignancy
(e.g. cancer, chronic inflammatory conditions, diabetes, psoriasis,sitglipendometriosis), or the
lack thereof is a problem, i.e. where the process of angiogenesis cdpldure the disease (e.g.
tissue damage after reperfusion of ischemic tissue or cardiac failuf&®6]

2.1.3 Angiogenic research

Much of the research of angiogenesis has been motivated by its promiteiri cancer. It has been
known for almost a century that angiogenesis occurs around tumdurstf@ early 1970s, Folkman
hypothesized that angiogenesis at the tumour site was absolutely requiredniour expansion
beyond a spheroid diameter of 1-2 mm. He also postulated that inhibiting angigigevould inhibit
tumour expansion, and that if one could get tumour vasculature to reghessthis could cause
regression of the tumour mass back to the 1-2 mm spheroid diameter.[45][6]

1see Table 1 in [6] for a more complete list.
2Tumour expansion referring to growth in tumour volume, as distinct feethgrowth. Cells proliferate in avascular
tumours as well, but is balanced by cell death, preventing tumour expans
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The possibility of new ways to cure cancer spurred an intensive skangfo- and anti-angiogenic
molecules, hoping to develop anti-angiogenic therapies. Today many madéaye been found and
models for angiogenesis are emerging; much is, however, still unknowrthefmore, the list of
pathologies related to angiogenic research is expanding, and within ggdtdelf it is relevant to
traditional treatment modalities as well as the anti-angiogenic treatment whichatedtihe research.
The vascular system is the main route of cytotoxic delivery in chemothetayhighly related to
various modes of metabolic stress including Ip@,, low pH, and hypoglucaemia, all of which are
important to the evolution of the cancer and the current gene expredsibe mdividual cells, but
also to the outcome of treatment modalities. Lp®-, or hypoxia (see Section 2.2), is especially
important in radiotherapy as it modifies the biological effect of radiation.

2.1.4 The Molecular Biology of Angiogenesis
The Angiogenic Switch

Physiological angiogenesis is only activated in response to ovulatiomdvbealing and growth.
Consequently, endothelial cells have an extremely low mitotic activity in normaleigssOnly 1 in
10000 endothelial cells is in a cell division cycle at any given time [22]. Tursiohaving evolved
from normal tissue, start out without the ability to promote angiogenesi€6 Gullino showed that
cells in pre-cancerous tissue acquire angiogenic capacity on their wagaooiing cancerous.[6] The
onset of angiogenesis marks the transition between a dormant statau{avpbase) and the vascular
phase in which the tumour grows exponentially.[35]

The ability to promote angiogenesis is not controlled by the simple presenieekoof growth
factors, but rather the balance between various pro- and antiangiageftecules. Thus, it is not
necessarily enough for single cancerous cells to activate genes éhadterangiogenesis, but rather
that enough proangiogenic factors must be produced to overcome thé soitdus of inhibitors.
Likewise, not all inhibitors need to be removed from the tissue, they simply toelge suppressed by
the activators. [6]

The mutations required to promote angiogenesis are usually accomplishedubset of the
cancer cells, which then induce new capillaries which converge towarditheur. The angiogenic
phenotype that triggers the vascular phase does not necessarilyngaiolationary advantage as the
new capillaries supply all nearby tumour cells regardless of phenotypgengequence of this is that
although the switch may be on in the primary tumour, small colonies of metastasimedraells
may require a dormant phase before initiating angiogenisis and expaf$ierormant phase is not
a phase in which the cancer cells are inactive, but a phase in whichwslbdiis balanced by cell
death.

A Molecular Model of Angiogenesis

As stated earlier, many molecules involved in the angiogenic signalling pathsweey been found
and models of angiogenesis are emerging. Five members of the VascdlahElml Growth Factor
Family (VEGF-A/B/C/D and PIGF) have been identified, along with 3 recepiE§FR-1/2/3. Four
angiopoietins (Ang1/2/3/4) along with one confirmed receptor (Tie2) aee thirthe Ephrins (Ephrin-
A1/B1/B2) along with its four receptors are involved in vascular growtte fiii effects of all of these
are not understood, and more angiogenic molecules are expected tmble fomodel based on what
was known about the most important of these was presented by Yargspdal. in 2000 [44], see
figure 2.1 and table 2.1.
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<«— On
<«— Off
Activators @ Inhibitors
aFGF Thrombospondin-1
bFGF 16 kD Prolactin
VEGF Interferon a/f
: Platelet factor-4
Angiostatin

Figure 2.2: In theBalance Hypothesiangiogenesis will commence when the balance between trsvand
inhibitors tips in favour of angiogenesis. (Adapted frorference [22])

In this way a healthy angiogenic process requires the presence of &naframgiogenic factors.
All of these contribute in different ways and their concentrations affeetresult. Consequently, it
will be very complicated and demanding to promote angiogenesis througmabautical means.
However, in the case of diseases like cancer where angiogenesiseisingadg at least in some of
the treatment strategies, this brings hope that blocking even a few keysfac&y halt angiogenesis
altogether. This can happen either by preventing the switch to flip, or bywiag¢he ability of
important steps to take place even if the switch is set. Furthermore, this comgerisya long
way to explain the suboptimal characteristics of tumour vasculature. Thisl waatains only a few
factors, but as the roles of the many more identified angiogenic moleculgsaerly understood
and included, angiogenic models can only be expected to increase in cimplSee table 2 in
reference [6] for a more comprehensive list of angiogenic moleculastibns and inhibitors.)

2.1.5 Pathophysiological Angiogenesis in Tumours
Two Models of Pre-Angiogenic Tumours

The tumour growth model at the heart of Folkman'’s theory is a situation in vitheetumour start out
as an avascular mass. The developing tumour will grow at its margins pustssgls further away
from its core, causing the core to be deprived of oxygen and nutrigmissubsequently to die. The
tumour growth will reach a steady state at about 1-2 mm, until the onset wigETgsis.

This is a feasible theory for tumour (and metastasis) development, indeeddtiggbeen thought
to be the only way tumours develop. One of the reasons why this model @éasdfieunchallenged for
so long is probably the nature of many artificial tumour models used in réseByplacing tumour
cells in a space normally devoid of vessels, such as the subcutaneaoes tsgacornea pocket, the
vitreous, or the tumour window, avascular tumours are forcibly creatélalso clear, however, that
many natural tumours arise in this manner. [44]

In recent years, however, another way has been identified, namelg-bpting nearby vessels
into the tumour mass. In this way tumours are able to expand along the vessels)gbeyond
Folkman's spheroid. The vessels respond to this co-option by up-tegukng?2, causing the vessels
to destabilize and regress, and the tumour to be choked off. This leadetordarily avascular tu-
mour, that upon gaining the ability to induce angiogenesis will continue its sigraim the surviving



2.1. TUMOUR VASCULATURE 7

Molecule | Receptor | Description
VEGF-A | VEGFR1/2| The most important molecule promoting vascular forma-
tion. It is required to initiate the formation of immature
vessels by vasculogenesis or angiogenic sprouting. By it-
self it only promotes the formation of leaky, immature and
unstable vessels.
Angl Tie2 Important for remodeling and maturation of initially im
mature vasculature. It also plays a role in maintaining|the
guiescence and stability of mature vasculature.
Ang2 Tie2 Can behave as both agonist and antagonist to Tie2 under
different circumstances. Believed to provide a key de-
stabilizing signal reverting vessels to a more plastic and
tenuous state, allowing for both vascular remodeling and
regression.

Ephirin-B2 EphB4 Is required for remodeling and maturation. In addition
they hold an important role in distinguishing developing
arterial and venous vessels. Furthermore, the presence of
the arterial marker ephrin-B2 in tumour sprouting chal-
lenges the dogma that such sprouting primarily involyes
venous or uncommitted vessels.

Table 2.1: A description of the various roles of the molesuifeYancopoulus’ model [44], cf. figure 2.1.

tumour masses. Both processes are illustrated in figure 2.3. [44],[25].

Processes of Vascular Formation in Tumours

Several qualitatively different processes of vascular formation baes found in tumours, see fig-
ure 2.4. These include angiogenic sprouting, endothelial precursreceigrating from the bone
marrow (vasculogenesis), and intussusceptive growth [6].

Angiogenic Sprouting happens in response to local angiogenic signals. In order for spgotatin
commence, the existing basement membrane and interstitial matrix are dissol&addgand
proteinase mediated changes. Vessels dilate and become leaky in resp@asaF, allowing
endothelial cells to escape the lumen. Endothelial proliferation, migration sseidly are
stimulated by a number of molecules (VEGF, Angl, bFGF). The sproutingelemust then
mature. A new basement membrane is formed, and the new vessels aredimviisgericytes
and smooth muscle cells (PDGF-BB, T@H). See figure 2.5.

Molecules that initially induce angiogenesis are subsequently procgastelqlytically) to an-
giogenesis inhibitors, providing a negative feedback to angiogeniegses. Most angiogene-
sis inhibitors promote endothelial apoptosis. Consequently, the sprouseglsere dependent
on survival factors (VEGF, Angl).

Angiogenic sprouting is recruited from the local endothelium and is exgécigive a growth of
tumour mass proportional to the cube of the time for three-dimensional tumudiesquadratic
growth in time for two-dimensional tumours. In other words, the mass growtfosoptional

to some constant factor multiplied with the time to the power of the tumour dimension, see
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Figure 2.3: Two models of tumour angiogenesisalifie tumour develops in an avascular area in accordance
with Folkman’s hypothesis. Ib the tumour starts growing near vessels, these are co-amtiedhie tumour
mass, but an upregulation of ang2 causes vascular regnemsibsubsequently an avascular hypoxic tumour.
In the final step the onset of angiogenesis causes vascuatigand tumour expansion in both scenarios.
(Reference [44])

reference [26].
M(t) =c-tP

The article did not consider the fractal characteristics of the vascutaorie To reflect this,
it seams reasonable to suggest the replacing of the topological dimendioa fogictal dimen-
sior? in these models.

Vasculogenesisyascular formation from stem cells, is mediated by endothelial precurbe(EPC)
or angioblasts circulating in the blood stream. For a long time all identified posamafi@genic
processes were due to proliferation and sprouting of differentiatentleelcal cells, no postnatal
vasculogenesis had been observed. In 1997 Ashara et.al. publighBidtipaper presenting
clear evidence of postnatal vasculogenesis [1]. These cells havshewed to have the ability
to form endothelial colonieim vitro. [18]

The extent to which vasculogenesis contribute to tumour vessel formatiomexghat disputed.
Conflicting results have been found in different studies and the role ofuurasculogenesis
remains unclear.

The difference between vasculogenesis and angiogenesis is, lipmeve than a semantic one.
Not only can the molecular signalling paths be expected to be different|dmtlae growth
processes of the vasculature and the tumour. The production of vaseuby vasculogenesis
is limited by the production of EPCs in the bone marrow. This process is thestxpto give
a linear growth in time of tumour mass, preceded by a short period of fastettgconsuming
the initial EPC buffer. [26]

3See section 2.3.1 for a description of fractal dimensions.
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Endathelial precursor

Intussusceptive growth

Lymphangiogenesis

Figure 2.4; Cellular mechanisms of (lymph) angiogenesianmours. Vessels are formed in tumours by several
mechanisms: (1) the host vascular network expands intaitheur by forming sprouts or bridges (angiogen-
esis); (2) interstitial tumour tissue columns are into thieén of pre—existing vessels (intussusception); and
(3) endothelial precursor cells, angioblasts, are resduibrm the bone marrow into tumours and contribute to
the endothelial lining of the vessels (vasculogenesignplyatic vessels near the border of the tumour drain of
interstitial fluid and may provide a pathway for metastasjzumour cells. (Reference [6].)
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Figure 2.5: A simplified overview of tumour angiogenesiso-Bngiogenic molecules are released from the
tumour and diffuse to a nearby vessel. Upon activating tligogeenic switch endothelial cells start prolifer-
ating. The basement membrane and the extracellular matixaakened and integrin molecules help pull
the sprouting vessel forward. A new basement membrane nisftimed and supporting cells are attracted to
stabilize the new vessel. (Reference [9])

Intussusceptive Growth is a process in which growth and remodeling is caused by columns of tissue
partitioning the vessel lumen. This gives rise to two different procesisssde the tumour,
loop formation and remodeling give rise to new vasculature. Outside the tusemimentation
expands and remodels the pre-existing network. Loop formation by irdcegtive growth may
also be combined with sprouts superimposed on the loops, indeed thissafgpbarthe case in
the large majority of the loop systems studied by Patan et.al. [34].

Frequent remodeling in tumours by intussusceptive growth causes Retwbitecture changes
on a time scale of minutes. This might explain, or at least be one of the pesdessived in
causing, intermittent blood flow in tumours. [34]

Lymphangiogenesis,the development of new lymphatics, is not found in any manner comparable

to that of angiogenesis in solid tumours. Indeed, hardly any lymphatic Isesse found at

all; this in spite of the fact that both lymphangiogenic molecules (VEGF-C) addtaelial

cells bearing their receptor are found inside tumours. Furthermore, thénlyegsels which
were initially there disappear (no co-option). One hypothesis for this ighledymph vessels
collapse under the pressure of the growing tumour. Tumour cells growphesoids in vitro
have been found to generate a pressure of 45—-120 mmHg. Blood vasseisder the same
stress in a tumour, but they are connected to the high-pressure arteo@isupply.

Although few lymphatic vessels can be found inside solid tumours, therevalenee of en-
larged lymph vessels at the periphery of the tumour. These drain offtitisrBuid from the
tumour and provide a functional network for metastasizing cells.[30]
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Genetic Regulation in Endothelial Cells

The genetic expressions of endothelial cells in tumours are, although gueltaifferent from nor-
mal endothelium, very similar to that of cells involved in wound healing and aegiesjs oftorpus
luteunt [10]. The characteristics of tumour vasculature are, however, viffigreht from that of
vasculature developed by physiological angiogenesis. The diffesethat causes pathological con-
ditions of the vascular network can therefore be assumed to be indepearidee endothelial cells’
gene regulation.[34]

2.1.6 The Characteristics of Tumour Vasculature

Tumour vasculature exhibits a broad range of pathological featurdsunad in healthy vasculature.
Not all of them can be expected to be found in a specific tumour, and sahedes are more ex-
pressed in certain types of cancers than in others. An expresseeuiiffe when compared to normal
vasculature, is, however, the rule rather than the exception. Theeeedifes relate not only to the
makeup of single vessels, but also to the morphol@jyhe network. One consequence of this is that
it is meaningless to categorize tumour vessels as arterioles, capillariesubesieThey simply lack
the structural characteristics of normal vasculature that make these teansgfal. [23]

The Characteristics of Individual Vessels

The vessels themselves exhibit several pathological features thaterd#tuir functionality and/or
increases the tumours’ metastatic potential.

Increased Permeability: Tumour vessel walls are known to have a high permeability causing blood
to leak. In tumours blood flow is not restricted to the vessels, but can hapyiee interstitig
space as well [8]. Macromolecular vessel leakiness correlates cladbiythe histological
tumour grade [11].

Defective Endothelial Cells: In healthy vasculature the vessels are lined with a monolayer of flat
endothelial cells, closely aligned with a smooth, slightly raised contour, seef)6.A. In
a MCa-VI mammary carcinoma, however, the endothelium exhibited a rangatlodlogical
features, see figure 2.6.B-E. These cells are thick and the smooth ckdldbave been replaced
by irregular edges. Where they once had a slightly raised contour, selingocders are no
longer visible. The monolayer is defective and cells have overlappingmagTwo neighbour
cells may even be on top of one another in a different order at diffptanes. Cells are found
with multiple cell projections, some spanning along the wall, others across the.lBa&veen
cells intercellular openings are found and even transcellular holes thtbegells, see figure
2.7. These openings and holes could explain the increased permeabilityafrtuasculature.
(23]

Blood Lakes: In some tumours blood will leak out of the vascular systems and gather upla po
known asblood lakes These blood lakes are surrounded by tumour cells, not endothelig. The

4Corpus luteuma ductless gland developed within the ovary by the reorganization of afi@mafollicle following
ovulation. [Dictionary.com, November 22, 2006]

5Morphology, the branch of biology dealing with the form and structurergénisms. [Dictionary.com, November 23,
2006]

SInterstitial, Anatomy. situated between the cells of a structure or part: interstitial tissue. [Dictimoany November
23, 2006]
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Figure 2.6: Endothelial defects in tumour vasculature. n8tay electron microscopy images of the luminal
surface of endothelial cells in a normal mouse mammary gtanapared to those in MCa—IV tumous: The
endothelial cells in this normal venule are flat, with theepton of the region around the nucleus (arrows), and
have a similar size and shape. The cells form a monolayeharatrders between individual cells (arrowheads)
show very little overlap.B: These cells, in a tumour vessel, are irregular and overl@pamther (arrows).
Some of the cell borders are clearly visible (arrowhea@s)andD: More severely deformed and branched
cells in a tumour. In addition to being abnormally thick, tiedls overlap one another and do not have a normal
connection with other cells. They do, however, have mudtigll projections (arrows) alongside the vessel
walls. F: These abnormal lining cells (arrowheads) partition thedarof a tumour vessel with multiple cell
projections. The scale bar length representsmi§Adapted from reference [23])
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Figure 2.7: Openings in the endothelial layer. The figurenshmultiple intercellular openings (arrows) or tran-
scellular holes (arrowheads) in MCA-IV tumour vesséds an enlargement of the box M. The histograms
shows the distribution of openings and hole sizes of 100 iogenand the holes found in the same vessels
(Adapted from reference [23]).
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Figure 2.8: Blood lakes in pancreatic islet cell tumoursrahsgenic RIP-Tag2 miceA: Brightfield micro-
graph of the whole mount of a smal-(mm) RIP-Tag2 tumour containing blood lakes (arrows, rezhsy.
The remainder of the blood has been washed out by vasculaursper of fixative. B: Histological section
(hematoxylin-and-eosin-stained) of RIP-Tag tumour cioiitg blood lakes. Tumour vessels (black asterisks)
are much smaller than the lakes and are emptied of blood ygien of fixative. C: Scanning electron mi-
croscope image of an extravascular blood lake which conitravasated erythrocytes, lined by tumour cells
(arrowheads) and with multiple small holes between the twrells (arrows). (Adapted from [23])

do not appear to be in direct contact with the vascular system as thecegté® in these
lakes are not washed out by perfusion of fixative. Blood vessels ia-lOmouse mammary
carcinomas are known for being unusually leaky and were used by $hitiane et.al. to make
images of blood lakes, see figure 2.8, [23].

Mosaic Vessels: Tumour cells have been found in the lining of some tumour vessels, known-as mo
saic vessels. In a colon carcinoma xenograft model, Chang et.al. [T that about 4% of the
total vascular surface area consists of cancer cells, see figurerfy91%¥ of the vessels were
mosaic, but in these vessels approximately 25% of the perimeter consistmucef cells.

Several pathways by which a vessel could develop into a mosaic veseelswggested. The
one most consistent with their data, is that the endothelial cells originally liningeteel wall
are shed, consequently exposing the underlying tumour cells.

Mosaic vessels can be expected to contribute to a tumour’s metastatic potgriiailitating
easy access points into the vascular system. Mosaic vessels’ contribuamdsosessel perme-
ability, however, remains unclear as the spore sizes identified in this stugymech smaller
than the areas exposed to cancer cells.

Vascular Mimicry: A phenomenon in which tumour cells develop a phenotype capable of forming
vascular-like systems without endothelial cells has been labelled vasnidagenicry [32].
This process is distinct from that of mosaic vessels, as opposed to b@iogeaxtreme expres-
sion of the same [7].

Channels have been found formimgvitro cultures, obviously without the possibility of en-
dothelial influence, see figure 2.10. In tumour xenografts similar chamaets been found
connected to endothelial vasculature, but without endothelial stainingma{teD31, CD105).

“Erythrocyte: Red blood cell.
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Figure 2.9: Mosaic vessels in tumou(a) Cancer cells (green fluorescence) are directly exposec:todbsel
lumen, note the lack of endothelial cells (red fluoresceat#)e arrowhead. The gap is aboupi@0long. This

is referred to as mosaic vessels. (Adapted from [{f]).Quantification of mosaic vessels. In colon carcinoma
~4% of the total vascular surface area consists of cancey. dkflach cell intravasate in 2 days, a total number
of about 16 cells will be shed per day per gram of tumour (Adapted fron).[6]

The channels did, however, exhibit staining to the vascular-associelledarker laminin, in-
dicating their vascular function, see figure 2.11.B-C. In highly aggressiarian cancer, cells
were found to form tumour cell-lined vessels, figure 2.11.A. These tunshawed minimal
or no signs of necrosis. Less aggressive ovarian tumours with no Bigrscular mimicry, on
the other hand, had necrosis, see figure 2.12. Patients with tumour-ceél/iseulature had a
shorter overall survival [38]. Mind no such correlation was fouoddT3 and pT4 cutaneous
melanoma in a study by Massi et.al. [33]. The correlation cannot be asdionedvalid in
general.

The formation of these fluid-conducting channels is not an angiogenit egethey do not
arise from pre-existing vessels. Nor can the process be descrivad@gdogenesis, the chan-
nels formed, although developeé novg are not blood vessels. Vascular mimicry is, strictly
speaking, not a feature of the vascular system as it is not a part of ikevw, although it
is architecturally different, it does transport plasma and possibly redildetts [14]. From

a functional viewpoint, these systems can be regarded as extensiomssofpiblying vascula-
ture. Furthermore, these systems facilitate a pathway for tumour growth witihvaking the
angiogenic switch, although this process may possibly require a similar switith @vn.

Morphological Characteristics

The morphological characteristics relate to the architecture of the netwWdris. includes e.g. in-
tervessel and interbranch distances, branching angles, vessetefiaaed the network hierarchy
The structure of the network, including the radiuses of the vesselssspensible for the geometrical
flow-resistance of the network. Changes in the morphology is consgygeapable of changing both
flow rates and pathways in local areas. This is the cause of transiatg)Agpoxia (cf. section 2.2.2).
Chronic hypoxia is the result of the network’s failure to supply an entiré gfathe tumour volume

8Network hierarchy: The vascular systems’ functional hierarchytefs, arterioles, capillaries, venules and veins.
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Figure 2.10: Vascular mimicry. Scanning electron micrpiusaof ovarian cancer cell cultures grown on three-
dimensional collagen | matrices. Tubular profiles are avide the low magnification image to the left (A).
When fractured in preparation, the tubes were shown to bewdahd lined by flattened cancer cells (B).

(Reference [39])

Figure 2.11: Vascular mimicnA: Tumour cell-lined (pink) vasculature (red) from a H&E histgical section
of an invasive ovarian cancer (Adapted from reference [BJandC: Serial sections of xenografted Mel157
uveal melanoma cells (bluel is stained for endothelium (red}, is stained for laminin (red). This indicates
the presence of channels outside the endothelium (Adapiedreference [14]).

Highly aggressive

Poorly aggressive §

Tumor cell-lined
vasculature

Angiogenic vessel or
vessel cooption

Figure 2.12: Vascular mimicry. Tumours with tumour celidd vasculature are more aggressive and show little
sign of necrosis in human ovarian carcinoma (copied fron)[38
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Figure 2.13: Logarithmic distributions of the intervesdidtancesA), interbranch distance®), branching
angles C), and vessel diameter®). The data were quantified from image analysis of 3D scaneiegtron
micrographs of corrosion casts of 20 colorectal adenogancas and control mucosa= control mucoseap
= tumour periphenyts = luminal tumour surfaceg = tumour centre, (Reference [28]).

(section 2.2.1).

Corrosion cast studies suggest that the vascular network developsharacteristic way de-
termined by the tumour cells [27]. Although endothelial growth factors, (FE®orrelates to the
amount of new vessel formation the architecture is tumour-type specifis.afthitecture has been
found to be qualitatively and quantitatively the same for all individual tumatnespective of local-
ization and grading, in a study on colorectal cancer. Pre-cancersioageshow architectures similar
to those of invasive carcinomas, however the variability between indivedlemomas is by far higher
than between individual carcinomas. Metastatic tumours only display diffarehitectures within
hot spots [28].

Konerding et. al. investigated the intervessel distances, interbranchatistdranching angle and
vessel diameter, see figure 2.13. Three qualitatively different afghg tumour were investigated
seperately, namely the tumour periphery, luminal surface and centreouklpfirameters were gen-
erally different from the control in all three areas, with the exception efitiberbranch distance at
the tumour periphery. Furthermore, with the exception of the branchinig aihg three areas also
differed from each other. The vessel diameters are in general sedtead the mean branching angle
is decreased. The intervessel distance is decreased at the pedptengcreased in the centre. The
interbranch distance is the same for the control and the tumour periplipcbeased for both the
luminal surface and the tumour centre.

Normal vasculature from a skeletal muscle and subserosal capillatiies gfit are shown in fig-
ure 2.14. These architectures are quite different, yet the vessel dianaegeessentially the same
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Figure 2.14: Scanning electron micrographs of corrosiat specimens of the vascular network in a skeletal
muscle A) and of subserosal capillaries of the gB) @raining into venules. The network morphologies show
few similarities. Bars = 10Qm. (Reference [27])

with respect to both mean and variation. The branching angles are ebbgehéasame as well, in
spite of the dramatic difference in appearance between these netwdnksini€rvessel and inter-
branch distances, however, are different. In figure 2.15 these datampared quantitatively for two
murine carcinomas (CaX, CaNT), a slow growing murine sarcoma (SaS3 andhan endometrial
adenocarcinoma xenograft.

In figure 2.16 scanning electroscope micrographs of the normal muplesals, an adenocar-
cinoma? and an adenom#, are shown. The branching pattern of the normmaicosal plexu$as
disappeared in both the adenomas and carcinomas. The vascular deinsifezgeral, decline from
the tumour periphery to the tumour centre. In areas with low vascular demsityerous vessel com-
pressions and elongated vessel segments are seen. A low or missiaghiessrchy, as well as
blind-ending vessels, is observed in all samples.

9adenocarcinomaathology A malignant tumour arising from secretory epithelium. [Dictionary.ca;12.06]
10adenomapathology A benign tumour orignating in a secretory gland. [Dictionary.com, 4.26]
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Figure 2.15: Cumulative frequency distribution plots (sémgarithmic) of different parameters describing the
vascular architecture in different tumours and normaltiss The following tumours were used:= CaX,

A = CaNT,Hl = SaS,4 = HEC-1B. And for comparisom = musculature{) = subserosal gut vessels (see
figure 2.14). The parameters are the inter-vessel dista(ggsnter-branch distance$B); vessel diameters,
(C); variation in percent of vessel diamete®); and the branching angle®). Different distribution patterns
are observed for most of the parameters, either as a chastmpmor a horizontal shift of the 50% value. With
the exception of the branching angles and the inter-brarsthrete of the gut serosa, the tumour vessel value
distributions are clearly different from the normal tisslistributions. (Reference [27])
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Figure 2.16: Scanning electron micrographs of corrosiatscaf the colorectal vascularity in normal mucosa
(A, B), carcinoma (C, D) and adenoma (E, F). The charactetisineycomb resembling pattern around the
crypts in the normal mucosa (A), with ascending arteriolggpsying (B,a) and descending veins (B,v) draining
the network, is very different from the vascular networksried by angiogenesis in the carcinoma and adeno-
mas. The carcinoma have highly expressed variations irulesdensity (C), numerous blind ending vessels
(D,circle) and great variations in vessel diameter withiors distances (D,arrows). Furthermore, there is no
expressed vascular hierarchy, that is a distinction betweegillaries, veins and arterioles. The adenoma (E)
has a high vascular density on the luminal surface formioghfvascular networks in the centre (F). Again,
there is a loss of vascular hierarchy. Bars in A, C, E = 1 mns baB, D, F = 100um. (Reference [28])
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2.2 Hypoxia

Hypoxia can loosely be described as oxygen deficient tissue. It is arrtammp@arameter for the de-
scription of tumours for at least two reasons. Oxygen was discoveiadrease the biological effect
of ionizing radiation as early as in 1932 Although many other substances that modify radiosensitiv-
ity have been discovered, none are as powerful as oxygen. [2tHdfmore, the presence of hypoxia
will have consequences for a cell's metabolism and cell cycle progreteed cell division may be
halted altogether until oxygen is resupplied. Oxygen therefore hasfaupib effect, especially on
radiotherapy, but also on all treatment forms utilizing the increased cd#é gyogression of cancer
cells. Furthermore, hypoxia has been found to correlate with malignant tymnogression.

It is useful to differentiate between two types of hypoxia, chronic antieaclhe difference is in
part a functional one, acute hypoxic tissue will in time be reoxygenated witteaiment, chronic will
not. This offers two different challenges to treatment and warrants theatitiation. Furthermore,
the two different types are created by different biological mechanismis difference is especially
important when it comes to treatments trying to circumvent hypoxia or at leastidiniia effects.

2.2.1 Chronic Hypoxia

Chronic hypoxia is found in cells too far away from any vessel capdliaroying flow, either because
there are no vessels close enough or because these vessels doynsaftiaient flow to oxygenize
the tissue. Both cases are results of the suboptimal arteriovenous systedhifi most tumours,
where a branch may be so tortuous that the increased geometrical i@sikieses the flow to go
elsewhere. Tissue completely bereft of oxygen will in time die and formatiedissue. If necrotic
tissue in a specific tumour has died from oxygen deprivation, there willyadwe a layer of hypoxic
tissue between the necrotic and normoxic regions, where normoxic isdefmeormally oxygenized
tissue. For this reason, although the dead tumour cells are of no consedodhe patient, necrosis
indicates a more severe diagnosis. This is not only due to the complicatirgsedfiehypoxia on
treatment, but also due to its role in malignant tumour progression. In sumrhaopic hypoxia is
diffusion limited, ie. the hypoxic tissue is out of oxygens diffusion ranpeua 7qum with respect to
the closest vessel. [21]

2.2.2 Acute Hypoxia

Acute hypoxia is a result of blood carrying vessels being temporarily dediicollapsed or otherwise
incapable of distributing oxygen to the surrounding tissue. Tumour cell&©tobey by the normal
cell cycle regulation mechanisms and grow uncontrollably, this is one of theirdgfeatures of a
malignant tumour. This unrestrained growth can cause the pressurddroptire tumour to rise and
become larger than the local blood pressure, resulting in the collapsesefihassels. A tumour is a
dynamic system and subsequent changes in the pressure may caeteteagpen up again. Although
a long-term closing is conceivable, such a vessel would be incapablmying flow and result in
chronic hypoxia.

Another mechanism closing vessels is blockage. Normal capillaries areaepw, only a single
column of red blood cells are able to pass through. In a tumour, capillariebensy small that they
are roughly the same size as the red blood cells. Cells, either red blood rcelfeaur cells which
have broken into the vascular system, may then get stuck and later beeakgain. This causes a

111t was discovered by Swartz in Germany, but only became known in tiggidh speaking world after Mottram's
research in the 1930s
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Figure 2.17: The dependence of radiosensitivity on oxygercentration. Anoxic conditions are set to 1 and
different oxygen levels are compared to this. (Referent§ [2

transient hypoxia in the supplied tissue. Even capillaries normally largegénman be constricted
and clog, or hamper flow due to spontaneous vasomotoric activity. [12]

Dewhirst et.al investigated acute hypoxia and found several diffeypes in his study. [12] The
first was usually confined to single vessels and was characterizedunstable flow magnitude and
direction. In this type total vascular stasis occurs for a few second$iraea The second observed
type affected groups of vessels in a cyclic pattern with intervals rangomy #0—-60 minutes. Total
stasis did not occur, but there were large fluctuations in the red cell #tsy and corresponding
fluctuations in the vascular oxygen content. Finally, 9% of the investigateskisehad plasma flow,
but very low or absent red blood cell flux over periods of many minutes.

In summary, acute hypoxia is perfusion limited. Although a vascular systeresemt, for tran-
sient periods of time, it does not supply the surrounding tissue with oxygen

2.2.3 Effects of Hypoxia; Radiotherapy
The Oxygen Effect

Oxygen'’s ability to increase the biological damage of radiation is knowheaexygen effector the
sake of quantification, thexygen enhancement ratiOER, has been defined as the ratio between the
doses needed to produce the same biological effect in anoxic and exigrenents respectively.

Because of the way the OER is defined, it does not depend on the anfouxyigen present.
The biological effect, however, does, and it has been measurecést,ybacteria and mammalian
cells in culture. Figure 2.17 shows an illustration of the results of theseiengmais. The curve has,
initially, a very steep climb indicating how little oxygen is needed to produce tleetefAt 3 mmHg
half of the effect is achieved and at 30 mmHg little more is to be gained. Undesplranc pressure
this corresponds to 0.5 and 5 % of a 100 % oxygenated environment, and. a6 of the oxygen
tension in air, respectively.

The most important hypothesis as to the cause of this effect mxygen fixation hypothesighis
theory states that oxygen reacts with the free radicals formed from amimmzand fixes the damage,
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thereby preventing radicals to recombine. The oxygen needs to benpdesing the irradiation, or
within the lifetime of the free radicals (18s). The oxygen effect can be said to be a direct chemical
effect, rather than an indirect biological one. It is not the result oficed cell cycle progression or
gene expressions.

The OER has been found to have a dependence on both doses &néahenergy transfer_LET,
of the radiation. At high doses the OER is about 3, but at doses lowelathaut 2 Gy, the OER is
only about 2. The OER decreases as the LET increases, and at & BBdud 160 keypm it reaches
unity, i.e. no oxygen effect.

Effects of Hypoxia; Chemotherapy

There is no chemical reaction, similar to that of the/gen fixation hypothesithat makes hypoxic
cells less respondent to cytostatica, and oxygen concentrations dassanoto affect cells vitro.
In vivo hypoxia will, however, still reduce the effect of most chemotherapiesayMatostatica take
advantage of the cancer cells increased mitotic activity. Hypoxia redetlesycle progression, or
in extreme cases halts all together, reducing the effect of such treatnfemteermore, hypoxia is
caused by the insufficient transportation of oxygen in the vascularmsysidie same mechanisms
will interfere with the delivery of other blood carried agents, including batirition and drugs.
Anticancer drugs are usually highly reactive and will in many cases h#ffusidn ranges shorter than
that of oxygen, effectively causing the effected area to be evenrltdrge the hypoxic. In this way,
hypoxia increases cytotoxic drug resistance through indirect biologftedts, and correlates with
drug resistance obtained through other mechanisms. [5]

Effects of Hypoxia; Malignant Tumour Progression

Hypoxia has been shown to destabalize the genome, resulting in an irtreataion rate which
increases the survival advantage of cells in adverse conditions. Gellsaduced apoptotic activity,
possibly through the inactivation of tumour-suppressor genes, symbBasr overexpression of anti-
apoptotic genes such as bcl-2, will have a survival advantage in lggesxenvironments. [21] In
particular hypoxia is known to influence the expression ohiyygoxia-inducible factor IHIF-1. This
molecule affect the expression of a large number of proteins, includingidoellar endothelial growth
factor, VEGF, affecting angiogenesis, molecules promoting metabolic didegpi@nd genes that play
a role in tumour progression, such as proliferation, invasion, and mesgstasoting genes, thereby
contributing to tumour aggressiveness. [40]

Clinical studies, on advanced carcinoma of the cervix, show that loc&taidn patients treated
with radiotherapy or surgery was easier obtained in patients with oxy@dre pneasurements higher
than 10 mm Hg, compared to those with lowerp®Burthermore, the frequency of distant metastases,
in patients receiving radiotherapy for soft-tissue sarcoma, were ftounel 70% in patients with p£3
less than 10mm Hg, compared to 35% for patients with higher oxygen ten8ign. [
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2.3 Fractal Theory

Fractals, a term coined by Benoit Mandelbrot in his 1967 pkjoev long is the coast of Britaif31],
has received ever growing attention over the last decades. Althougdlevbopment of fractal theory
and dimensions started in the late nineteenth century, it is the developmemhpfiters capable of
visualising fractal sets that has made this field so popular, not only in thecssiebut also in the
public sphere. By the public, simply because they are pretty to look at, and scibnces, because
of the way fractal theory can be used either to model complex sets or gtigeljtaneasuring certain
aspects of a set's complexity.

Fractal geometry is a method of characterizing objects that traditional ggoiseinsuited to
describe. The Euclidean geometry along with calculus describes mangsstsach as parabolas,
circles, triangles or ellipsoids. Many natural objects may be approximatedse ghapes with great
accuracy, e.g. the earth as a sphere. When it comes to more compleg, shagteas that of a snow
crystal, most plants or even coastlines, traditional geometry’s shortcoiméogsne obvious. Indeed,
the computer games industry readily illustrates the challenge of animating a rdabikiitg tree.

Fractal geometry offers not only a way of constructing many complex pattbut also a way of
characterizing a certain type of regularity in an otherwise complicated pattterfractal dimension.
It describes how the amount of details at one size-scale relates to théthe@msoales. If no such
relation exists in an object, the various algorithms will report this as well, asahegly on the
existence of a precise linear fit to a curve.

The concept of the fractal dimensions will be explained along with seagaiithms used to esti-
mate the fractal dimension of images, and different approaches to ficigd analysis. Percolation
theory, a method used to mathematically construct structures with fractalotbastics, is discussed
at the end of the section, and will be applied later in a simulation of the fradtabrie

2.3.1 Dimensions
Euclidean Dimension

The Euclidean dimensiolecjig, COrresponds to the intuitive notion of the term, as used in everyday
speech. The Euclidean dimension directly relates to the type of the objecteibigar points, one for
curves, two for planar objects and three for volumes. To put it anothgritis the minimum number

of independent coordinates required to mathematically describe the figure.

Lebesgue Covering Dimension

The Lebesgue covering dimension, also known as the topological dimemsianmore stringently
defined form of dimension. An object may be covered by any number df spen'? sets. In order
to completely cover the object, the open sets must overlap. Given thatentffismall covering sets
are used, the dimension of the object is one less than the least possible maximmip@r of circles
covering any one point on the object, see figure 2.18. It is clear thatefiisttbn results in integer
dimensions in accordance with the euclidean dimension.

Classical Fractals

At the end of the nineteenth century several mathematical monsters, begimitinPeanos curve,
were constructed. These were objects that could not be classified bglibegue Covering Dimen-

120pen SetmathematicsAn open set includes all points inside the set's boundary, but not tivedaoy itself.
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Figure 2.18: Covering sets illustrating the Lebesgue déogedimension. On the curved line a maximum of
only two circles need to overlap at any one point in order t@cthe entire line. The two-dimensional circle on
the other hand, requires at least three circles to overlaprime areas. The covering sets need to be sufficiently
small, lest a single set could cover higher dimensionakparthe object, or even the entire figure.

sion, effectively revealing the shortcomings of the traditional integer dimaensA similar curve
constructed by Hilbert is shown in the top row of figure 2.19 to illustrates this.wih the other
sets shown here, the Hilbert curve has a recursive definition and is theolijeitt achieved when
the iterations are carried on to infinity. In mathematics this is calleiteasted function systenFS.
The result is a curve that visits all points in the plane without crossing ohiogdtself. The curve
provides a one-to-one mapping between the plane, which requires twdirtates to represent, and a
line.

The object is a curve and one would intuitively attribute it to the dimension ometh® other
hand, the object visits every point in the plane, a quality that usually is attdlbatehe dimension
two. Using the Lebesgue covering dimension, the same conclusion must lkee mamtder to make
the result become one, infinitley small sets must be used. However, infimtigly gpen sets do not
overlap at all, and consequently do not cover the curve. The notiort tiead the type of object (point,
curve, etc.) that determined its dimension, rather than its shape, had toayfermnew ideas.

Fractal dimension

To deal with these new monsters Hausdorff developed the first fraotehdion. Hausdorff's dimen-
sion, Dy, can be calculated directly from the definitions of the IFS. The dimensionretarsive
object is the logarithm of the number of copies, from the previous step hvene united to form the
current figure, divided by the factor by which these copies are schleah, see figure 2.19. In the
case of Hilberts curve the dimension is lggdg2 = 2.13

An object’s fractal dimension should not be considered to be a qualitattensent about what
kind of objectit is (points, lines, areas, etc.), but rather a quantitativeuneaf the object’s behaviour
across different size-scales. The fractal dimension does not relateeto such as length, area and
volume. These terms are all connected to the integer dimensions, the friawtasibn is rather a
recognition of the fact that some objects (i.e. fractals) do not fit thesgarégs. The Koch Island
for instance, has a finite area, but an infinite perimeter, as shown in eg@atiovheredy andP, are

13There is a formal rigorous definition of the Hausdorff dimension as wellyever the informal version used here is
sufficient for this explanation, cf. http://mathworld.wolfram.com/Haug®imension.html for more information.
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Figure 2.19: Classical fractal sets. These sets have ade@ited Hausdorff dimension (mind the set is de-
fined as the attractor after infinitley many iterations), aliwhich are greater than their topological dimen-
sion: The Hilbert Curve, B=log4/log2 = 2. The Koch Curve, D= log4log3 ~ 1.2619. The Cantor
Set, D=log2log3/ = 0.6309. The Sierpinski Gasket, B log3/log2~ 1.5850. The Sierpinski Carpet,
D =log8/log3~ 1.8928.
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area and the perimeter of the initial triangle.

n—1

00 4 00
Ao =Ao+3A0 H & = 25R Po=Po+ Py 1/3=00 (2.1)
n=1

Sierpinski’'s Gasket and Carpet have no areas at all, but likewise aitargerimeter. A straight line
will always have an area of zero no matter how long it is. However, if it mgiacated and tortuous
enough, caving in on itself across all length scales, such as the Hilberé Guican indeed fill the
entire plane. The fractal dimension, can loosely be said to refer to how afachigher dimensional
space a lower dimensional object occupies.

2.3.2 Self-Similarity

The term fractal is closely linked with that of self-similarity. Enlarging a setigr object will
reveal that it consists of many smaller objects of some smaller size that are soriharobject as a
whole. For instance, all the objects in figure 2.19 are strictly self-similargsnstructed by putting
together smaller parts of itself. Less strict forms of self-similarity have alsn lbefined, such as
self-affiné* sets and statistical self-similarity. Self-affine sets allow all affine operatimbnot just
linear operations, to be used when constructing the iterated function syseemstations are allowed
as well. The vaguer term, statistical self-similarity, refers to objects whichatreade up by smaller
exact copies of itself, but never the less behave in a similar manner. Thédreamtal dimension was
indeed first used about coastlines, stating that:

Seacoast shapes are examples of highly involved curves with the tyrdipar — in a
statistical sense — each portion can be considered a reduced-scaleointagevhole.
This property will be referred to as “statistical self-similarity”.

B. Mandelbrot [31]

A seacoast is obviously not made up by smaller parts of itself in any literaésgat it is impossible,
from looking at a drawn outline of some coast, to see what scale the codmstiirien drawn at. It is
this type of self-similarity that warrants the use of fractal models for natjaicts.

2.3.3 Natural Fractals

To satisfy strict mathematical definitions of a fractal, an object must satiséxact fractal scaling
pattern all the way down to an infinitesimal scale. Never the less, it is commotigarto call natural
objectsfractals even if they are only statistically self-similar over a finite range of length scales
Although natural objects may not be true fractals, it seems reasonable tbne@mldEbjects as fractals

in much the same way as a perfect circle may be used to represent theamtias of an artery — with
full knowledge of the fact that the model is a mere approximation. [3]

2.3.4 Finding the Fractal Dimension of a Natural Fractal

Hausdorff’s dimension provides a way to calculate the fractal dimensltndefinition is, however,
only applicable to mathematically defined functions. In order to quantify thetdraimension of
statistically self-similar sets, i.e. natural fractals, other methods must befsetthis purpose several
algorithms have been developed.

14affine mathematics Of or pertaining to a transformation that maps parallel lines to parallel &ndfinite points to
finite points. [Dictionary.com, January 16, 2007]
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These methods all produce dimensions similar to the Hausdorff-dimensictagsical fractals,
although not necessarily identical. Furthermore, the methods do notsalyiag similar results for
all conceivable image styles. Due to this and the uncertainty of the methodsritbes/dimensions
should be denoted by the methods used to calculate them.

2.3.5 Box-Counting Dimension

The standard box-counting algorithm is the most straight forward wawleitating the fractal di-
mension. While the Lebesgue covering dimension considers the numbesrtdpping open sets, the
box-counting dimension considers the number of closed square setspies, lwhich are needed to
cover the object, as a function of the box size.[16]

When a given object is covered by boxes of a given s¥z#,0, it requires some finite number,
N, of boxes to cover it. For many objedtbis related toS according to a simple power relation. For
instance, if a straight line is covered By boxes of siz&5;, the same line would require three times as
many boxes if the width of the boxes is reduced to a thit®; /3) = 3N(S;) = N 0 S~1. Would the
same be done to a square, nine times as many boxes would be rel(Bet8) = IN(S;) == NS 2.
Recognizing the exponential as the negative of the dimension, onesaatitiee formula

_ logN/c
~ log1/S’

NOSP=D where c is a constant. (2.2)

The procedure may seem simple. Applying the same procedure to the dléssitals, however,
results in dimensions similar to the Hausdorff dimension. This can most easily sieatked by the
Sierpinski Carpet where reducing the box-size by a factor of thesellts in a formula identical to
Hausdorff's,Dy = log(8) /log(3).

The somewhat arbitrary choice of what factor the box-size shoulddeceel by, cannot be al-
lowed to require a lucky guess. If you start out with a single box covehiagntire carpet and reduce
the box-size by a factor two, then no boxes at all would be emptybagd?. Reducing by a factor
four will produce sixteen boxes and a size that is smaller than the empty atteanmddle, but the
boxes are stacked wrongly so that no boxes are empty. Shifting the &imwesd, however, will allow
one of the boxes to be empty and the dimension chand@sttog(15)/log(4) ~ 1.95, which is still
much higher thaiby ~ 1.89. To overcome these challenges the Box-Counting dimension needs to
be averaged over different box-sizes, and for each box-sizeakesineed to be shifted around to
find the configuration with the maximum number of empty boxes. The averagaug@snplished by
rewriting equation 2.2 to

logN = Dpoxlog 1/S+logc (2.3)

The dimension can now be found as the slope of a linear fit to a curve in Eedmgarithmic
environment.

2.3.6 Sandbox Dimension

The sandbox dimension considers the amount of vacant pixels within aboeidiood around occu-
pied pixels. Each occupied pixel is surrounded by boxes ofSjze S,. The number of occupied
pixelsm(S;) inside each square of si& is averaged over the squares around all occupied pixels, to
produce the mean number of occupied piXdIsS;). M(S;) obeys a power law relation 1§

M(Sj) 0 S’ = logM(S;) = DlogS; + logc, (2.4)
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allowing the fractal dimensiorDsp, to be found as the slope of a linear fit in a loglog plot(S;)
againstS;. [16]

This method has the additional advantage that, rather than calculating thedjiobasion from
the mean occupancy of each box-size, a local fractal dimenBiggy, may be calculated for each
occupied pixel.

m(SJ) D S'J?sb,local

2.3.7 Fourier Dimension
Fourier Transformation

The Fourier transformation of a function is defined by:

F(f(x)) =F(w) def \/lZTT/Zf(X)eindX’ for every real numbeu. (2.5)
F(fn) =FKk & NZ:f(n)ez&"'k” k=0,...N-1 (2.6)

F Y F(w)=f(x) = leTT/mF(w)e“*’xdw, for every real numbex. (2.7)
FUFK) = f(n) = ltNZlF(k)ezﬁ“k” n=0,...,N-1 2.8)
K=0

The variable change in the exponential of the discrete version comessibsiituting the angle
frequencyw, with the corresponding frequenay= 21tf, when f is discrete f = k/N, whereN is the
length of f (n). The discrete transform contains the frequency rang¢N—1), and requires at least
2N — 1 points to accurately describe the function. Both the zero-frequeyagdfthe N-frequencyyf
applies to all points in the function. Likewise a frequency slightly abgwenti slightly below § will
both cover almost all points. Because of this, half the frequencies@uadant, the DFT is symmetric
and only(n+ 1) frequencies are required. The phase of each frequency detemnwtiigspoints are
included and which are excluded. The DFT returns one complex nhumbealgelated point (usually
(2N —1)). |F (k)| is the strength of th&-th frequency component, and arctéf(F (k))/.# (F (k))) is
the phase-shift of this frequency.

Calculation of the Fourier Power Spectrum Dimension
The power spectrum of the Fourier transform is given by [41]
Sk 0|7 (k) (2.9)

where.Z (k) is the Fourier coefficients of(x,y) in the space of frequendy= (kx,ky). If there are
no characteristic lengths on the image, féx,y) is a random scaling fractal function, then the power
spectrum averaged over all angles is related to the frequency by ther fmaw

(ke O o (2.10)
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The authors of reference [24] provide a formula to nBajp the fractal dimension, the mapping
does, however, not provide meaningful results for many figures efosvk dimension, nor does it
provide meaningful results for their own images, which end up with fraétaédsions between two
and three when this mapping is applieddoThe mapping fron to D+ourier is further discussed in
section 3.5.2, where the relation betweenfhend the fractal dimensions of a series of test shapes is
investigated. For most shapes it appears that a direct mappinDb@ier = |B| gives the best results.
This approach does, however, fail when applied to two-dimensiontacas.

2.3.8 Mass Dimension and Correlation Dimension
Pair-correlation, Autocorrelation and Convolution

The continuous and discrete pair-correlation functions are respigaiiened as:

(Frg)(r) & /f*(x)g(r+x)dx

(fxg)(m Zf g(m+n) (2.11)

where f*(x) is the complex conjugate df(x). The pair-correlation of a function with itself is called
the autocorrelation. The autocorrelatigfix f), is a quantitative measure of how the fluctuations of
f(x) are related at andx+t, i.e. how well the function match a shifted version of itself, as a function
of the amount it is shifted. Put in another way, the normalized autocorreliatitre probability of
finding another mass point within a distancigom an existing point.

The pair-correlation is related to the convolution of two functions, defised a

(t+g)r) & / f(9q(r -

(fxg)(m zf (2.12)

by
f(X)+g(x) = £7(=x) *g(x).
If either of the two functions are evé&hthe operations are the same.

If the two functionsf andg are the probability distributions of the two independent variable distri-
butions,X andY, then the correlation and the convolution correspond to the probability distiis
of the difference { X 4+ Y) and the sumX +Y) of the variables respectively.

For a finite function one must choose a way to handle the start of a convglatiche end of
a pair-correlation. There are essentially two approaches to this, a linda ayclic. In the linear
convolution/correlation the function is expanded with zeros at all extrapoeeded in the algorithm.
In the cyclic approach the function is regarded to be repetitive. The limgaroach will be used
here. [41]

The Convolution Theorem

The Convolution theorem states that the Fourier transform of a convolstamual to the multiplica-
tion of the respective Fourier transforms of the two functions,

F (txg) = (1) 7(g).

15Even function: A function is even if (x) = f(—x) and odd iff (x) = — f (—x).
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This property is exploited for large discrete functions by using the FastiétroTransform,FFT,
algorithm to quickly calculate the convolution of two functions.

Wiener-Khintchine Theorem

The Wiener-Khintchine relations apply to most cases and state that the paatral densityg(k) =
.7 (£(n))|?, is the Fourier transform of the corresponding autocorrelation.

Sw - /jo(f*f)meiwfdr

For a real functionf, the exponential simplifies to a cosine. For a real and discrete fundt{omn,
the theorem takes the form:

00

Sk) = Z (f*f)(m)cos(zﬁnkm). (2.13)

k=—o00

and the inverse transformation:

(fxf)(m Z S(k) cos(—km) (2.14)
Rewriting the theorem to a more general form gives
= 7 HF (NP
F(txf) = F(f)- Z(f) (2.15)

which corresponds to the convolution theorem, but applies to autocorrdatarthermore, for real
functions(f = f) = (f = f), allowing both convolution and correlation algorithms to be used in the
calculation.

Computation of the Mass and Correlation Dimensions

In the two dimensional case, IE{r) denote the autocorrelation,

C(F) = C(rx, ry) = (M(x,y) - m(X+rx, y+Ty)) = (M y) xm(x,y))

wherem(x,y) denotes the local mass density, i.e. the image, and the brgckéetdenote an ensemble
averageC(r) represents the average@(r) over all angles such thaf = rZ +rJ.

Keeping in mind thaC(r) is the probability of finding another mass-point within a distanéem

an existing one, the conditional total average miK®), is defined. The total number of points, in a
statistical sense, within a distanBdrom an existing point, is closely related to the dimension of the
set.

R
— / C(r)rPewia=1) g [ RPmass (2.16)
0

Where 0< D < Dgyglig, andDeyclig €quals 2 for 2-D images. Note that equation 2.16 is analogous to
equation 2.4, showing the power-law relation of the Sandbox dimension.
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By differentiation of equation 2.16, the correlation dimension relation is oldaine
C(I’) ] rP—Deuciid ] 1/rDeucIid—Dcor 0 1/[’” (2.17)

which for two-dimensional images is
C(r) 0 1/r? Deor (2.18)

The 2-D FFT algorithms provide an efficient way of computing the 8@ from f(x,y) and from
this C(F) may be calculated with the 2-D Wiener Kintchine theorem. Averagifig to produceS(k)
and then using the 1-D Wiener-Kintchine theorem to prodi{c¢ may introduce errors, consequently
the angle average should be the last step in the procedure. [41]

Local Mass Dimension

Equation (2.16), representing the global averagi! R) over all positions that have mass (i.e. non-
zero), calculates the global fractal dimensionM(R) may also be studied around a particular point
o

R
M, (R) O / m(Fo + F)d2r 0 RO(O) (2.19)
0

providing the local mass dimensi@,cq = D(Tp) around the poiniy. [41]

2.3.9 Analysing Images

A suitable image may be considered a natural fractal. An image represeatasetl and datasets
of any dimension may be analyzed by adapting these methods. One-dimépsadriams are of
particular interest in signal-processing and statistics. Two-dimensioisahs&ide all images and are
of particular interest here. Three-dimensional datasets allow the truesegyiation of e.g. vascular
structures throughout a tumour. They are, however, not easily olltaimgkrequire a large amount of
computer memory to process.

A digitized (uncompressed) greyscale image is usually stored as an intengity ifvay). There
are several different ways of storing colour images, however,usectne fractal methods all operate
on a single matrix, colour images must be mapped to an intensity matrix beforsianaly

There are many ways of characterizing an image by fractal analysis omMiptwill any image
manipulation technique used prior to the analysis affect the result, butareeseveral different ways
of analysing the image.

Defining a Measure

The fractal methods described above all apply to some meagurg). This measure must be chosen
and the choice obviously directly affects the result. This makes it importargfinedthe measure
rigorously.

The simplest box-counting and sandbox algorithms require that a pixel meudéfined as ei-
ther empty or occupied, i.e. it requires a black-and-white measure. Fs¥ #igorithms, threshold
techniques are likely key-parts of the measure definition. Other imagegsiogetechniques may
be applied as well, such as identifying border pixels between some foriistofglishable areas or
calculating mass centres.

For the methods capable of handling grayscale measopey) may equal (x,y). This is, how-
ever, usually undesirable because non-zero background sengitigitges across the image, or sharp
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edges, may effect the result, in particular they can seriously coﬁ(ll_ipiandc(?). The major diffi-
culties in usingdl (x,y) as the image measure may be eliminated by replacing it wittods image
gradient|0I (x,y)|*¢, which emphasizes the edges in an image.[41]

For colour images unconventional mappings from colour to grayscale enaydd as a part of the
measure definition, for instance, specific colours can be extracted.

Global Dimension

The global dimension is a characterization of a measure across the entie imagsingle fractal
dimension. This ishefractal dimension and will consequently be denoted simplipby

Local Dimension

Local dimensions provide another way of characterizing images. Thalglothension may be inap-
propriate when studying features that represent a subset of theabiigage. TheéD¢4 is calculated
around (all) individual occupied pointg. The global distribution oD,oc5 Mmay be represented either
by a histogram or a transformed intensity image, where the occupied plyekaave been replaced
by their local dimensionD)cq is not strictly a dimension and may take values outside of the usual
range, O< D < 2. The Sandbox and the Mass dimensions provide means for calculatingcttie 1o
dimension.

Locally Connected Fractal Dimension

By only including connected pixels to the local measumé;p + 1), aroundry, the local connected
fractal dimension may be calculated. The difference betvilzgh, andDqcq is clarified by consid-
ering an image of closely spaced, but disconnected parallel lines. &orglarger than the spacing
between the columns, the image behaves like a textur®gpg ~ 2. The local connected dimension,
on the other hand, only includes the pixels on single linesygh~ 1. This dimension is important
in percolation theory. [41]

2.3.10 Percolation Theory

Percolation theory offers several mathematical models that have bekedaggpdescribe complex

phenomena, such as liquid draining through porous media or the electiststince across compli-
cated networks consisting of, or modelled as, large numbers of intertwenadlgd and serial con-

nections of varying resistance. Percolation clusters have sevectd!fcharacteristics and invasion
percolation in particular has been suggested as a mechanism involved tmgiagenesis, or at the
very least a way to model it.

Random Percolation

In the random percolation model, RP, all positions on a grid are assigreettlam value,, € (0,1),

and the percolation threshold,e (0,1), is chosen. A percolation cluster is defined as a network of
connected cells with valueg < p. The clusters are located by planting a seed, i.e. choosing one or
more cells as the initial cluster, and iteratively adding all neighbours thdiedogv the threshold of

the cluster.

16|01 (x,y)| may be estimated by a local fit bfx,y) in the neighbourhood of,y to the formaAx+ bAy + 1 (x,y). This
gives|Ol (x,y)| = (a2 +b?)1/2.
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Bond percolation Site percolation

Figure 2.20: Bond and site percolation: In bond percolatianlattice is randomly open or closed. In site
percolation the vertices are randomly open or closed. Bbthese networks were generated wjith- 0.3.

lattice pc — bond percolation [exact] pc — site percolation [exact]
square 0.50000 1/2 0.592746

triangular 0.34729 2sir{5) 0.500000 112
honeycomb | 0.65271 1-2sin({g) | 0.6962

cubic (simple)| 0.2488 0.3116

Table 2.2: List of critical percolation thresholds for a Han of common lattices.

There are two types of percolation that need to be distinguished, namelypborolation and site
percolation. Bond percolation considers the lattice edges to be the ramditiese Site percolation,
on the other hand, considers the vertices as such, see figure 2.20.

This method has been used to model the propagation of Huidsough porous media. If a fluid
is added to one side of a porous media (the seed), and some percenjtafehe subvolumes in
the medium have pores that the fluid potentially can propagate through, gagmabability of the
existence of a continuous network through the medium, allowing the fluid td tbecother side,
depends omp. For large lattices and high valuespthere will, almost certainly, be a cluster spanning
the network, and for low values gf there is almost certainly not. A continuous network spanning
across the lattice from side to side is called a spanning cluster. At some arétinalp, the network
morphology changes drastically.

The values ofp. varies for different lattices and for bond and site percolation. A feweshre
known exactly, but most of them have been approximated numerically. Cpgceolation values for
a few common lattices have been listed in table 2.2.

Random percolation spanning clusters have been shown to have d $tzape at the critical
percolation threshold. Future references to random percolation duwgileassume a critical cluster.
All occupied sites belong to some cluster within the network, possibly consistiagingle site. For
this reason it is important to use the locally connected fractal dimension fordbobal and local
calculations. Usually it is the single largest cluster that is of interest.

17Fluid: the model works for both liquids and gases.
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Figure 2.21: Random site-percolation cluster, 200x20@IpixThe concept of local connectivity is important
in percolation theory. While the lattice itself is 'white sei (left), fractal shapes are embedded in connected
clusters throughout the grid. There are typically many §naalew medium sized, and one very large cluster
spanning the lattice (right). This cluster is sometimegedzhn infinite cluster, even on finite lattices, because it
is analogous to a cluster, which at the percolation limisescivith some probability, and spans infinite lattices.

Figure 2.22: Left: The Transport Backbone (tan), Elastick@ne (black) and Dangling Ends (blue) are shown
for the largest percolation cluster. Right: The chemicatatice, measured as the length of the shortest travel
path to the inlet side on the left. Note that cluster site$ éinea geometrically close may be distant in terms of

chemical distance.



2.3. FRACTAL THEORY 35

Invasion Percolation

Invasion percolation, IP, is a model describing a situation where an iny#ldid propagates through
a porous medium filled with a defending fluid. In this model each site (or bisrasigned a random
valuer € (0,1). A set of points is defined as the invasion front@atThis is often one of the lattice
walls, but may also be a single point, depending on the situation being moddiledhvision front is
defined as all defending sites that are neighbours of an invading sitsachttime step, the invading
fluid invades the single site at the invasion front with lowest

Two different situations arise depending on whether or not the defeffidid is compressible. In
non-trapping invasion percolation, NTIP, the defender is compressidléha invader can potentially
enter any region on the interface. In trapping invasion percolationphlthe other hand, the defender
is incompressible and is trapped if a region of defenders is completelyusuied by the invading
fluid.

The propagation of a fluid through a porous material is dependent oruttiis fbility to wet the
internal surface of the medium. For a wetting fluid, the capillary pressursgis éand negative, pulling
the fluid into the smallest pores first, but giving it more trouble with larger cajg@fiaA non-wetting
fluid, on the other hand, will have the most trouble with the smallest capillafiespdrous material
is modelled by a network of pores (sites) connected by throats (bondish Wwave smaller radii than
the pores, then a wetting fluid is best modelled by a site percolation while a ettimgvfluid is best
modelled by bond percolation.[37][15]

Invasion percolation differs from random percolation in at least twoswvayhere is no parallel
to the percolation thresholdg, determining the morphology of random percolation. Furthermore,
random percolation is a static model and invasion percolation is a dynamidloweig not only the
final cluster to be studied, but also the propagation of the invader thitbeghedium.

IP-clusters obey fractal scaling laws and the dimensions of the varioas tyfplP are listed in
table 2.3.

Fractal Characteristics of Percolation Clusters and Universality

Both random percolation and invasion clusters exhibit several fractding properties. Not only
are the spanning clusters fractals, but also the transport backbtme dfister and the shortest path
across the cluster. The backbone consists of all possible paths frersidm of the cluster to the
other, with the one constraint that no site is visited more than once. The dralkb obtained by
removing all dangling ends from the cluster. It is sometimes called the trarsukbone because it
consists of all points that may participate in the transport across the netWwekninimum path, also
known as the shortest path or the elastic backbone, consists of the paatitshie possible shortest
routes between two points at opposite sides of the cluster. Thus, the etwedn the two points is a
minimum route across the cluster. The elastic backbone is a part of thedrabapkbone.

Many complicated systems will, when approaching criticality (phase transitiehgve in some
scale-invariant manner. Different systems are said to belong to the saweesaiity class if they
behave according to the same power-scaling laws. For instance, ewghttiere are two types of
random percolation and numerous different 2-dimensional lattices, wirgift phase transitions,
pe, see table 2.2, they all have the same fractal dimenBipa- 91/48. Furthermore, NTIP is in
the same universality class as well. For two-dimensional square lattices ateeonly two different
universality classes, one for RP and NTIP, and another for TIP.reetdimensional simple cubic
lattices, there are two classes as well. This time one for RP, NTIP and sitaridR different one
for bond TIP. While there is a single universality class for random paticn, this is not the case for



36 CHAPTER 2. THEORY
2-dimensional square lattices
Model D — spanning cluster | Dy — backbone Dpjn, — minimum path
RP 1.89583 exact: 91/48 1.6432 1.1307
NTIP 1.89499 1.6422 1.1293
TIP site | 1.825 1.217 1.214
TIP bond| 1.825 1.217 1.2170
3-dimensional simple cubic lattices
Model D — spanning cluster | Dy — backbone Dy, — minimum path
RP 2.523 1.87 1.374
NTIP 2.528 1.868 1.3697
TIP site | 2.528 1.861 1.3697
TIP bond | 2.528 1.458 1.458

Table 2.3: Dimensions of percolation clusters. The fraditaension of the spanning clustér, the backbone,
Dp and the minimum pattni, for random percolation, RP, non-trapping invasion petiata NTIP, and
trapping invasion percolation, TIP for square latticestiMie exception ob for RP, which is exact and valid
for all 2-D lattices, the values are numerically calculat€de various numbers of digits reflect the uncertainty
of the calculations. See reference [37] for further infotioraon algorithms and uncertainties.

invasion percolation, nor is it true for trapping invasion percolation in aetidienensional space, see

table 2.3. [37]
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2.4 Fractals and Cancer

Complexity, irregularities and poorly regulated growth are among the defohiagacteristics of can-
cer. Tumour vasculature, in particular, defies the optimized growth pattérimsalthy vasculature
and is known to contain many tortuous vessels, shunts, vascular loogdy wattiable intervascular
distances and large avascular areas, see sections 2.1.5 and 2.1.6. [2]

The vascular features are, however, not the only interesting morpbalagpect of solid tumours.
The growth patterns of both the cancer cells and the tumour-parenchyntrpthe latter being a
highly involved surface, are both tumour-type dependent. Fractahtipgovides means of character-
izing complex structures and phenomena. In this respect, fractal analgspomising new tool for
gquantitative description of tumours. In the words of Baish and Jain:

“By focusing on the irregularity of tumor growth rather than on a single nreasisize
such as diameter or volume, fractal geometry is well suited to quantify thogghimor
logical characteristics that pathologists have long used in a qualitative sedgscribe
malignancies—their ragged border with the host tissue and their seeminglynauat-
terns of vascular growth. (...)

A more quantitative and hopefully more reproducible approach, which reae @s a
useful adjunct to trained observers, is to analyze images with computatiofal Herein
lies the potential of fractal analysis as a morphometric measure of the ireuletures
typical of tumor growth.”

James W. Baish and Rakesh K. Jain [3]

2.4.1 Fractal Quantification of Tumour Vasculature

Vasculature is in general not readily accessible to morphological studliigaour vasculature is in
most cases a three-dimensional network embedded in tumour and host.ti€sueosion casting or
the reconstruction of numerous immunohistochemically tissue slices, sampledtbra a tumour
and stained by endothelial specific markers, may be used to study the kehegohology. The
challenges of fractal studies of the network are, however, not jlsteceto data access, but also
to the required computations. Both computation time and memory usage increashendtiae of
the system. The jump from two- to three-dimensional systems effectivelyresga reduction of
lattice resolution so thdgp = I§é3 in order to maintain the same number of lattice points. So far
the combination of these two aspects has resulted in most studies havingdoeed out on two-
dimensional vessel systems (retina, dorsal skinfold chamber etc.), @ urs¢hof immunohistological
essays. The amount of work and computer power required to reconatrd analyze a complete
three-dimensional network has so-far limited the immunohistological studiesgie silices.

2.4.2 Analysis of Two-Dimensional Tumour Models
Expected Results

Tumour vasculature is characterized by a different morphology thartthe#rteriovenous system and
the capillaries. It is not a superposition of the two, nor a network initially ey these, but with
areas of various sizes removed. Due to tumour vasculature’s high tityfuissfractal dimension is
expected to be higher than the arteriovenous system, yet by no meank as thg capillaries filling
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(a) (b)

Figure 2.23: Skeletonized images of vascular netwofgsNormal subcutaneous arteriovenous netwdtX.
Normal subcutaneous capillary netwolk) LS147T tumour network. The minimum paths across the images
are shown in bold and the bars are ptlong. (Reference [17])
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Box Dimension

Figure 2.24: Box Counting dimensions of skeletonized viascnetworks. The networks behaved scale-
invariant over box-sizes ranging from approximately 5@-8f. Sandbox dimensions were found to be simi-
lar.The tumour cell lines were LS174T, a human colon adermouama; MCalV, murine mammary carcinoma,;
Sal, murine sarcoma; SCC7, murine squamous cell carcirah@d;which were implanted into dorsal cham-
ber preparations. The bone-induced arteriovenous systenaghieved by implanting whole femora into dorsal
chamber preparations. (Reference [17])

the entire Euclidean space in which they are embedded. Furthermore, utitizingnimum path di-
mension from percolation theory (see section 2.3.10), the increasedsitytoicthe individual vessels
should account for an increasB". Although insights into tumour angiogenesis and morphology
allow some qualitative assumptions, they do not help in determining the size ottease.

This is true with one exception. If the statistical growth process that pesdine network could
be identified, if indeed there is one, then the fractal characteristics obrieshiould correspond to the
process. What has been done is, however, exactly the opposite. ftagitad analysis on the networks,
all processes with markedly different fractal properties (universalityses) can be eliminated. In this
way fractal analysis has been used to give insight into the underlyinglymrocess.

Gazit et.al. 1995 [17]—The Fractal Properties of Two-Dimensional ¥ssel Systems

This study investigated the fractal properties of two-dimensional vegs&dras, see figure 2.23.
The dimension of normal arteriovenous networks were found to be irecowith two-dimensional
diffusion-limited aggregate$)= 1.71,D™" = 1.00). This seems to be consistent with an angiogenic
process promoted by growth factors diffusing from hypoxic regiorzpilaries were found to have a
dimension consistent with a space-filling cur@=£ 2.00, D™" = 1.00). The minimum-path dimen-
sion, D™MN s in biological terms, a measure of the tortuosity of the vessels in the netwonlas
found to be significantly highem(< 0.0001) for tumours than normal networks. From figure 2.24
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network tissue Dpox Dsand pmin

. subcutaneous 1.70+0.03 | 1.70+0.03
normal arteriovenous | 1 Gnduced 1.6540.04 | 1.66+ 0,05 | 29+ 002
normal capillary subcutaneous 1.99+0.01 | 1.97+0.01 | 1.00+0.02
tumour networks LS174T 1.88+0.04 | 1.89+0.04 | 1.10+0.04

Table 2.4: Fractal dimensions calculated from skeletahizeages of vascular networks in reference [17], see
figure 2.23.
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Figure 2.25: Spillman et.al. studied H&E stained immuntiiisgical sections. The sections were processed
into black and white pictures by thresholding a greyscakegenat 50% of max intensity. (Reference [42])

it is, however, also clear that the dimensions of individual tumours takerange of values. Fur-
thermore, the observed fractal dimensiobs= 1.88+40.04, D™" = 1.10+ 0.04) coincide with the
dimensions of random percolation and non-trapping invasion percolagertable 2.3

2.4.3 Analysis of Tissue Sections
Spillman et.al. 2004 [42]—Fractal Analysis of H&E Sections

This group did not study the vasculature, but rather H&&ained sections of Morris 7777 hep-
atoma?® xenografts. Low resolution (600x400) images were further reducsizéto 468x351, con-
verted to greyscale, and a threshold was performed at 50% of max integestfigure 2.25. The
image foreground and background were then both analyzed (i.e. theedN®ack and white images
were analyzed as well as the original), for fractal characteristics wittbdxecounting algorithm.
This double analysis is based on the assumption that the Box Counting cuelagesl to the distribu-
tion of voids within the analyzed image, and conversely, analysis of thet@a/anage relates to the
distribution of the points themselves.

The fractal dimensions were compared to relative qualitative cell diffietean. A panel of four
pathologists arranged nine H&E sections in ascending order from less tadifferentiated, and the
mean score was used as a measure of how differentiated the tumoursTweressult is shown in
figure 2.26. This suggests that the fractal dimensions of H&E sections@agihian extremum as the
tumour progresses towards higher differentiation.

Sabo et.al. 2001 [36]—Fractal Dimension and Patient Survival

Forty-nine patients with low-stage clear cell localized renal cell carcinoera @wssessed in a nine-
year follow-up retrospective study. Correlation between microvessdity, microvessel fractal di-

18H&E sectionjmmunohistochemistryiaematoxylin-Eosin staining, also known as HE or H+E. This methodtafedy
stains red blood cells red, cell nuclei blue-purple, and other cellulaeztndcellular material pink.
19Hepatomapathology Hepatocellular carcinoma, a cancer of the liver.
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Figure 2.26: Fractal dimension of H&E sections compareditodur cell differentiation as scored by a panel
of four pathologists. The abscissa is constructed by thenredering of sections from the least to the most
differentiated of the nine sections, making 1 the lowest&@tite highest possible score. (Reference [42])

mension, histological grade, extent of necrosis and patient survised vested by uni- and multi-
variate analysis. The microvessel densities and fractal dimensions taieed from computerized
fields of tumour sections immunohistologically stained for CD34. Microvessesity was calcu-
lated as the ratio between vascular and avascular areas in the sectior dratthl dimensions by
the box-counting algorithm. A high fractal dimension was found to correlate avlower tumour
grade, a higher five year survival rate and a lower incidence of highdé>25%) of necrosis, see ta-
ble 2.5. Multivariate analysis revealed that the fractal dimension was therwelstigated parameter
to correlate significantly to necrosis, and that necrosis was the only indepepredictor of patient
survival.

Grizzi et.al. 2005 [20]—Random Vessel Simulation

In this study a total of ten thousand random simulations of vessel distributieressmade to investi-
gate the behaviour of the fractal dimension as a function of vessel nungbenicrovascular density.
A fixed number of vessels (ranging from five to fifty for different gosywere placed randomly in
an area without touching each other, and the fractal dimension was ¢attibhathe box-counting
method, see figure 2.28. Not surprisingly the configuration, of vesffelsted the resulting dimen-
sion and the dimension increased with an increasing number of vessels.

Heymans et.al. 1999 [24]—Fractal Analysis obllex Europaeus by the Fourier Method

This group used a Fourier algorithm to calculate the power law scaling ofpthetral densityf3,
of primary cutaneous melanoma vascular patterns. The three qualitatiielsedtfscaling patterns
shown in figure 2.29 were observed. In the first (left), a power law witlexponenf3 = 1.70 is
obtained at intermediate and low frequencies (large scales) while at litighaencies (small scales)
a different scaling is observed for a short frequency span béieaking down. This is interpreted
as the characteristic distribution of vessels at large scales and thetehiaticsize of the vessels at
smaller scales. In the second (middle), the same scaling pattern is obskenesd @cross the entire
region withf = 2.10. In the last pattern (right), two consecutive power laws are obtaira@dhigh
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MVD3(meantSD) | P | MFDP(meantSD) | P
Tumour grade
Low 115+ 3.5% 0.12| 1.55+0.11 0.03
High 9.4+ 52% 145+ 0.15
Tumour necrosf
No 109+ 4.4% 0.03| 1.52+0.12 0.01
Yes 7.1+ 4.6% 1.38+0.17
Survival
>5yrs 108+ 4.7% 0.03| 1.56+0.11 0.02
<5yrs 6.4+ 3.7% 146+ 0.15

a Expressed as the mean percentage of the vessel area per migrakgapmputerized field.
b Expressed in absolute units.

¢ Low grade tumours, Fuhrman grade | and II; high grade tumouts;fran grade Ill and IV.
d Tumours were considered necrotic if they exhibited >25% macroscepimses.

Table 2.5: Relationship between tumour grade, necrosigmaurvival, and vascular parameters in the renal
cell carcinoma study of Sabo et.al. (Reference [36])
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Figure 2.27: Renal cell carcinoma immunohistochemicayned for CD34 by Sabo et.al. The vasculature
is clearly stained and there is some, but not much backgrstaiding (cell nuclei). It is worth noting that
the background is different in the two sections, and thaiathihors make no comment as to having removed
the background before analysis. The fractal dimensionb@two images are shown in the top left corners.
(Adapted from reference [36])
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Figure 2.28: Grizzi et.al. carried out 1000 simulationsdach vessel density from five to fifty with the number

being increased by five for each group, and calculated tetadrdimension by the box-counting algorithm. The

result is shown to the left. An example of a simulation witketwy vessels is shown to the right. An illustration

of how the simulations relate to the network, is shown at tipe The dimension increases with an increasing
number of vessels, however it is also dependent on the gesskltive distributions giving rise to a standard

deviation within each group. (Adapted from [20])

Figure 2.29: Primary cutaneous melanoma sections immainest withUlex Europaeusagglutinin-1 were
scanned optically at x125 magnification to 512x512 imagegradient technique was applied to the images
to enhance the edges and the Fourier dimension was caltulBite authors report the finding of these three
qualitatively different scaling patterns. (Adapted fro24])
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colorectal carcinoma malignant mesothelioma inv. cehdascinoma
— 250 75 — 1000 - 857 — 143
Confusion Matrix (%) 6.3 500 438 — 917 83 9.1 819 143
32 65 903 - 111 889 — 167 833
Correctly classified cases using:
all parameters: 76% 864% 833%
microvascular density: R 0.2) 569% (P: <0.001) 609% (P: 0.4) 250%
fractal dimension: R: 0.2) 569% (P: 0.4) 609% (P: 0.8) 292%

Table 2.6: Top: Confusion Matrices showing the actual posggion the vertical axis and identified prog-
nosis using a panel of all good parametd?s<{1). Below: Correctly classified cases using all parameters,
or only intervascular density or fractal dimension. Thessification is done by using a panel of cases as a
reference for the set of parameters measured and placihgcaae in the same class as the closest reference
point.(Reference [43])

frequencies (small scales) a power scaling coefficiefft ©f1.64 is obtained and interpreted as the
scaling of the dense structure of vessel profiles with a large size distribditie other region (large
scales) has a high exponefit= 2.92, corresponding to a uniform texture; at large scales the grey
level variations are seen as small fluctuations on a smooth surface.

Weyn et.al. 2004 [43]—Fractal and Syntactic Structure Analysis—€orrelation with Prognosis

This study investigated correlations between prognosis and parametgreedifrom Syntactic Struc-
ture Analysis (SSA), fractal analysis, vessel numbers, area amugier, as well as set of clinical
parameters. They investigated multiple cases of three different tumour, tgdesectal carcinoma,
malignant mesothelioma and invasive cervical carcinoma. The SSA wasmped similar to that
described in section 3.3, with the exception that the distances to the furtigkbaurs in the graph
were not investigated. The fractal analysis was performed using the&€CBorting method, and the
images were obtained by applying a threshold to CD31 stained sections.rébledld was done by a
house written macro and manually inspected for errors which, if founte wanually corrected.

The correlations with prognosis was determined by constructing threealohasses. The middle
survival class spanned survival longer than the mean minus one slateldation, but shorter than the
mean plus one standard deviation. The other two survival classeseshtratwo regions that were
further away than one standard deviations. Predictions were then nuexde#fch of the parameters
using a K-nearest neighbour classifier obtained through direct casopawith survival in a subset of
the cases. Confusion matrices evaluating the groups of parameters’ abidlhstify cases into the
correct survival classes are shown in table?.6.

For all three cancers, the predictions based on SSA generally pravideld higher recognition
scores compared to those obtained through the fractal dimension or theesgebdensity. Survival
of cervical carcinoma was best predicted by clinical data. Coloreat@lecacorrelated best with SSA
complemented by the microvessel density. Mesothelioma showed a stroatatomrwith SSA.

20Note that the percentages in two of the cases are the same for both mifavadensity and fractal dimension. At
least one of these numbers is quoted differently in the article text suggdistinthe authors may have misqouted some of
the numbers in the original article.
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Figure 2.30: Gazit et.al. suggested two different ways #hgtadient sensitive growth can be modified into
producing uniform capillary beds rather than perfusioniiéd aggregate patterns. The structure is grown from
a seed in the middle, all network sites exposed to growthofguarticles will with some probabilityp; be
recorded as ’hit’ and grow at the end of the time step. Growtdrs are produced at distant sites (hypoxic
model). Left: A low interaction probability between the gith factors and the growing vasculature would
cause the growth factor levels to increase throughout gseidi and mask the diffusion field by a uniform
gradient. Right: If the growing structure itself produceswgth factors in response to the diffused growth
factors, then this local amplification would, provided itléasge enough, cause the formation of a compact
uniform vasculature. [17]

2.4.4 Invasion Percolation Tumour Vasculature Model

Gazit et.al. 1995 [17]—Capillary Beds and Fractal Scaling Tumour Vasglature by Modified
Invasion Percolation.

Gazit et.al. observed that the arteriovenous networks’ fractal dieaistics (in two dimensions) are
similar to that of diffusion-limited aggregates. This is in accordance with the mialemodels of
angiogenesis, where growth factors diffuse from distant sites to theorlemd initiate growth, see
figure 2.5. In experimental set-ups, however, vascular growth s@ithe capillary or postcapillary
level. These structures grow like a compact mesh rather than a tree-likeustrucontrary to what
would be expected from diffusion limited growth. Finally, it was shown that wmasculature
exhibit fractal characteristics similar to that of random and non-trappirasian percolation clusters.

A simple model for network formation was proposed in which the first two Magiens could be
brought together in one of two ways. A low interaction probability betweegtbeing structure and
the growth factors would cause the growth factors to arrive faster tiegratie removed, causing a near
uniform diffusion field to form. The other way is by introducing a local ampdificn of the growth
factor gradients. This can be achieved biologically by the autocrine eetd#fagrowth factors from
the growing structure, i.e. a positive feedback system. Both ways aréodisdensform a hierarchical
arterivenous network into a compact capillary mesh by adjusting a singdenpéer, see figure 2.30.
The latter model will, however, initiate a much faster growth (mass/time) for conmedworks and
is therefore regarded as the best of the two models, see 2.31-left.

The networks’ fractal similarity with a percolation cluster introduces the idatattie growing
structure is disturbed by some locally random perturbation. The localrpation is hypothesized to
be inhomogeneity in the extracellular matrix. The fractal dimensions of nesngydwn for different
fractions of usable growth sites is shown in figure 2.31—right. In this moddbttmation of different
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Figure 2.31: Left: The two suggested possible ways of angadi normal capillary bed in the presence of a
diffusion field are shown to fasilitate different growth eéfincies (mass/time) for compact growth. The local
amplification model is chosen as the most appealing duertauith higher growth efficiency. Right: To produce
tumour-type vasculature random values are assigned tatéseresulting in these curves for different random
percolation thresholds(). At low local amplification factors the model is insensitito the percolation param-
eters and produce similar patterns/dimensions, at higHificagion, however, a compact capillary structure is
transformed into a percolation cluster-type network. (fted from [17])

types of vascular networks are dependant on two parameters onlyctietaplification factor and
the matrix inhomogeneity.

Baish et.al. 1996 [2]—Invasion Percolation Tumour Vasculature Modl

Based on the observations of Gazit et.al [17], that the fractal dimensiotveo-dimensional net-
works were similar to those of invasion percolation clusters, Baish et.al.eMdldped an invasion
percolation-based network model for angiogenesis. Invasion péoolaffers a simple rule-based
way of generating network structures. This was used as an alternatileteoministic geometrical
models which were unavailable as they require detailed anatomical data.

The interpretation of tumour angiogenesis as an invasion percolationsgraoglies that the
growth occurs in response to a locally random heterogeneity in the tunadlberrthan a global re-
sponse to physiological stimulus. The locally random property may be eitbendmical or me-
chanical in origin. The correspondence of the fractal dimensions ofuurasculature and invasion
percolation does not prove that that these processes are relatdéte taitthors conclude that it is
strongly suggestive.

Percolation networks were used to calculate the surrounding oxygds, lsge figure 2.32. The
networks were generated by an invasion percolation algorithm that isestoppen the desired oc-
cupancy is reached (not when the outlet point/side is reached as in tlsgoimysercolation models
discussed in section 2.3.10). In lack of detailed information on the diametemaiutuvessels, the
assumption was made that all vessels are of identical diameter. FurtheamBoéseuille flow of
constant-viscosity blood through rigid, impermeable vessels is assumed.

This is a gross oversimplification of what is known today about these pseesnén sections 2.1.6
and 2.2.2 (transient local hematocrit changes), all of these assumptéigsavn to be wrong. The
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Locally Flow
Limited Transport

Figure 2.32: A 3% 32 bond invasion percolation backbone formed on a squaiedatnd iterated until the
cluster reached the desired 60% occupancy. The contoune oliative oxygenatiorpQz/ pPOzarteria) IS SUper-
imposed on the network. The inlet oxygenation is 1, and thiebwas found to be 0.57. In spite of the fact that
less than half of the inlet oxygen is consumed by the netwibdee exists vascularized regions without blood
flow or oxygen, see lower right hand corner. (Reference [2])

construction of simple models is all the same necessary, both to make it mathematdadiyle,
but also to provide a simple example of the potential of this kind of modelling to simidateu-
mour characteristics, such as oxygen distribution patterns. Furthertherauthors show that the
introduction of more realistic assumptions would only increase the heteribgehthe flow.

2.4.5 Cellular Automaton Tumour Vasculature Model

Bartha, Rieger and Lee have recently (2006) proposed a hybrichlpitidbic cellular automaton
model [4][29]. This is a Monte Carlo simulation defined on a square lattice eretss time and
space. Cellular Automata refers to a way of generating patterns, in whibhcedl is given a value in
the next iteration based on the value of the neighbours in the previous iteratio

The Model

Each lattice point is defined by the variables in table 2.7. A set of six evergs igpsn figure 2.33.
Each event is dependent on both a logical condition, as in normal cellizmata, and a probabilistic
parameter determining the rate at which the event occurs. In this way mahg ekperimentally
observed phenomena are included in the model. The tumour starts out all emassaon a regular
grid, co-opting vessels as it grows. The tumour produces growth faatatthe vessels supply oxygen
at a constant rate. Oxygen and growth factor distributions are apprtedrbg a piecewise linear and
normalized form, reaching out from its source to a specified maximum diffusitius. Each vessel is
specified by a diameter and carries a hydrodynamic blood flow exertingga &rce upon the vessel
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Variable Range Description

e 0/1 endothelial cell or vessel absent/present

& € [0,rmay radius of vessel

€Q >0 blood flow rate through vessel segment

ef >0 shear stress on vessel wall

t 0/1 tumour cell absent/present

tuo €10, Tmay] time of tumour cell in underoxygenated state
o)) >0 oxygen concentration field

GF >0 growth factor concentration field

Table 2.7: Each lattice cell in Bartha et.al.'s model is dediby these variables at sitat timet. [4]

4 OA7)> C oxy tuo(7) > tmax
P—Pg“ P-Flgath

GF (7) > ¢4 GF(e)>c 4

T 1{8)<= Imax d(e) <dmax
f { ) newjr ° dl g { )dil
Pec ! Pec

(f)
fle)
T f0_<n°., 7 _9(e)=0
e peese | 27 1

Figure 2.33: Cellular Automaton rules for Bartha et.alfswging tumour vasculature model. The expression
over the arrows represents the cellular automaton rule. rilineber below the arrow is the probability that
the event occurs if the rule is fulfilled. This is a hybrid mbd@) If the oxygen concentration is higher than
some critical value at a given site, then that site becomespded by a tumour cell. (b) If a tumour cell is

in an underoxygenated state longer thag, it is removed. (c) Vessel sprouting begins at sitethe growth
factor concentration is greater than some threshold andittence to the nearest vessel is smaller than the
maximum sprouting distance. (d) Vessel dilation can ocduemthe growth factor concentration is higher than
the threshold and the vessel is not already at maximum deam() A vessel can collapse if more than 80%
of its surface area is covered by tumour cells and its sheee fdrops below a threshold. (f) All uncirculated
vessels collapse.
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walls. The flow is assumed to be incompressible, laminar, and stationargqergly the flow can
be calculated by Poiseuille’s law, where the blood pressure in the noglEse(yunctions) is computed
using Kirchhoff’s law. With these assumptions, the vessel flow, sheee fand gradient fields can be
calculated at each time step and the network updated according to the mil@®babilities.

Model Results

With this model both two— (figure 2.34) and three—dimensional (figure 2.851purs have been
simulated. In figure 2.35.1I the radial (or angular) distribution of tumour eglil$ vasculature specific
parameters throughout three-dimensional tumour-simulations are shdwenfractal characteristics
of this network model have been calculated. Two dimensional simulationsaHesetal dimension of
D = 1.85+0.05, close to the measured dimension &9t 0.05. In three-dimensional simulations
a dimension oD = 2.5240.05 have been measured. As indicated by figure 2.35, the network is by
no means uniform and most parameters vary with the distance from the tuerdte ¢he 1P varies
with 6 as well, due to the direction bias of the model). This is true for the fractal dioeas welli,
which when measured for the peritumoural plexus exclusively, meafi®d"eY= 1.60+ 0.05 in
the two dimensional case. In the three dimensional case it decrease®.#4iin the outer periphery
(125< R< 145) to 1.68 further in (65 R < 85).

This vasculature model is able to generate vasculature with fractal dimertdase to the exper-
imental values without incorporating any locally random variable. Furthexnibey make notice of
the notion that, although the tumour network dimensions correspond to rapelmwmlation in both
two- and three dimensions, they do not correspond to invasion percol&tierauthors have, however,
failed to realize that there are two types of invasion percolation. Nonitrgppvasion percolation
is in the same universality class as random percolation in both two- anddimesasional systems
(see table 2.3). Nevertheless, this model removes the need for hypotgekiat tumour vascular
morphology is determined by local substrate properties such as the dxteagmatrix.

Furthermore the authors emphesize that tumours usually have an elevatedastatar density
near its edges, where it is growing, but a reduced density in its corg. grbpose that the vascular
network is driven to criticality, not by the vascular growth process, luthle network remodeling
process that causes this reduction in vessel density.
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Figure 2.34: Two-dimensional networks produced by Bartted.s model of angiogenesis and tumour growth.
The direction bias of the vessels is a result of how the afisbear force relates to the flow, which again relates
to a vascular pressure gradient. The blood pressure is gitta homogeneous flow distribution in the orignal
network. The boundary pressureHgax in the top left cornerPy,;, in the bottom right, and half the difference
in the two remaining corners with a linear distribution inween. (adapted from [4].)

()  The time evolution of Bartha’s tumour growth model in tdomensions at time steps 1, 50, 100 and
200 for figures (a-d) respectively. The blue grid far from themour is the initial capillary bed. The colour of
the blood vessels indicate their flow, blue is normal, redgh tand yellow indicates low flow. The thickness
of the lines indicate vessel diameters. The tumour cellsal@ured from light to dark green, darker colours
indicating higher age. White regions are empty sites, enifig siside the tumour indicate necrosis. (a-b) New
vessels are being formed, tumour grows. (c) Vessels ink@léimour have started to collapse, thicker vessels
have started to form. (d) Necrotic areas have formed duede Bvascular areas. Thick vessels run through the
tumour, the tumour periphery is still characterized by ameased microvascular density.

(I (Left): The state of the system in (l) after t=1000 tintes. The size of the system is 5.1 mm. (Middle):
Rgr is increased from 2Q0mto 40Qum, but all other parameters are as in (I). (Right): All paraenetare the
same as in (middle), except the critical shear stress whittitreased from 0.5 to 0.7. Whereas the morphology
in (middle) is relatively stable even for high collapse pablities, small changes in the critical shear force
causes a rapid increase in collapses, producing large tiecegions and decreased microvascular density
within the tumour.
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Figure 2.35:(1): The time evolution of the tumour or vessel system at t=0,200 400. Top: tumour cells.
Middle: vasculature. Bottom: cross section of tumo(ly) : Data averaged over all sites with same R @pr
(@) Tumour densitprc(R). (b) Microvascular density MVER). (c) Vessel diameted(R). (d) Blood pressure
gradientT]P(R). (e) Blood pressure gradientP(8). (f) shear forcef. The colours, red, magenta, green, black
and blue represent the tumour at t=0, 100, 200, 300 and 4f8cteely.



Chapter 3

Materials and Methods

3.1 CD-34 Image Processing

Histological cross sections of four breast carciniomas were includedsiimtrestigation. They were
all obtained after informed consent by the patients.

3.1.1 Scanning of Images

The images are scanned with a Leica DFC320 digital camera for micros¢bpysensitive area of
the sensor is 7.25.35mm, the full resolution is 20881550 pixels (3.3Mpixel) and the pixel size is
3.45x3.45um. The camera is attached to the microscope witi® video adapter. The magnification
is determined by the microscope alone, resulting in the field of view valuessindgable 3.1 for each
of the magnifications. The images were exported as 24-bit RGB files in tiffdor

Magnification Field of View Field of View per Pixel
x1 | 7.2mm x 5.35mm| 3.45um x 3.45um
x25 | 288um x 214pm 138 nm x 138 nm
x50 | 144pm x 1074um 69.0 nm x 69.0 nm
x100 | 72.0pm x 53.5um 34.5 nm x 34.5 nm

Table 3.1: Field of View at Different Magnifications

3.1.2 Applying Thresholds to Image Sections

This part of the process is of high importance to the outcome. Poor thrasha&thniques may
result in high levels of false positives and/or negatives, or most likely aenapel mixture of the
two. Consequently, it has been deemed important to develop not only aeientffioutine, but a
mathematically defined one that does not require the scientist to make gdodsbbparameters on
an image to image basis. This has the added benefit that a script may automptimedlys images
without the need for manual labour. The results, however, should &éekel in case any images
somehow have eluded the routines. A routine based on the following stejpeéa used on the CD-
34 sections. Note that this method has been chosen with these sections inndimdl] anost likely
have to be adapted for other purposes. The images are procesggthadimllowing steps:

1. The image is transformed to grayscale.

51
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2. The histogram is expanded by a non-linear function working on a pixglixel basis through-
out the image, increasing the contrast on the middle half of the histogram.

3. An average filter subtraction is applied to correct for uneven bacikgt light intensity. A copy
of this image is kept for further processing.

4. Edge detection using Sobel's method estimates the image gradients in theyxdmaction.
The magnitude of the slope is used for further processing.

5. A grayscale threshold applying Otsu’s method to compute the global tideishapplied to a
copy of the image from before the edge detection and the result of thdidatec

6. The two binary images are combined to give precise information on the edfée keeping
information on the highly stained uniform areas on the interior of vessels.

Step 1 — Grayscale Conversion

The standard rghto grayscale mapping is based on the colour sensitivity of the retina. Isjasen,
primarily at the expense of blue.

Red
[Grayscalg= [0.2989 05870 0114( - |Gree
Blue

A different approach is taken here. Because the positive CD34 staimelured in a red hue, in
effect the lack of green and blue, the red channel is disregardeareR3g2 shows the different colour
channels of the sample case at this point in the process. Red offers she lea
contrast and blue the most. A crop from the original image is enlarged as
showing the difference in resolving power for these channels. Thengrean-
nel offers about twice the linear resolution as that of the other cofolmmge
sensors are designed to resolve this channel best, as a responseeyesu
affinity to the colour. Most sensors use the Bayer pattehown in figure 3.1.
An interpolation algorithm is then applied to the raw-data to produce a reg
rgb-image, interpolating the missing two colours from nearby sensor ele
into the current to achieve an rgb-image of almost the same pixel-count agifife 3.1: The Bayer
number of individual photosensitive areas in the sensor. This is alspalihyimage sensor pattern.
though not clearly shown in this figure, the blue layer is shifted one pixel up
and the red layer one pixel to the left, both relative to the green layer.

The aim of the grayscale conversion is to differentiate between the sta@ssdls and the sur-
rounding tissue. Although the blue layer appears to have slightly betterasgntine difference in
resolving power is so great that the green layer is used by itself. If,ntrast, the standard conver-
sion rule is used, excluding the red channel, then the green channlel acmount for 83% and the

1Rgb-image, i.e. a colour image stored as a set of red, green, anihtelnsity images.

2This is visible because these images have been exported in a losslegsrtit.ftf on the other hand jpgs were used,
then camera digital filters would mask this, creating the appearance thatableur channels contain information as highly
detailed as the green layer, although in reality the colour values are intexghédam the nearby region

3|t is hard to organize a square lattice in a way that does not bias one aflthes. The colour response of the retina,
makes this a good choice.
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Red

Figure 3.2: Top: The three colour channels of the image pttete. The red channel offers the least amount of
contrast. The blue channel has slightly more contrast theigteen, and is a bit darker. Below: Enlarged crops
of a single vessel from the original image. This clearly sktiat although blue offers more contrast, green has
four times the resolving power.

blue for 17% of the information in the grayscale image. Even at this ratio thefaail appears to
outweigh the gain in contrast. Consequently the following rule is used:

[Grayscalé= [Green

This implementation suffers from one shortcoming, it is prone to false pasitiMaighly stained blue
regions. Given the low background of the sections this is not a big probledthe 17%, or even 33%
(the effective blue sensor area ratio when the red channel is exgjugewbt necessarily enough to
eliminate the problem. One way to compensate for this, although not applied indHiswould be
to first use the green channel to identify possible vessels, and theneatdlewmpare the blue colour
levels in these regions to remove false positives.

Step 2 — Histogram Expansion

An image overlay function is defined as the combination of two images, on alpyxgixel basis,
treating each colour layer independently, in the following way: The backat is inverted, multi-
plied®by two times the foreground and added to the background again.

| = (B.x(B+(2.%F. % (255— B))./255)./255);

This is performed five consecutive times, each time using the original image sdiground and the
result of the previous overlay as the background, or, in the case @if¢heun, the original image as
both foreground and background. This operation reduces the intefisigyk areas and increases the
intensity of light areas in a non-linear way, see figure 3.3. The operaticariged out until at least
0.1%o of the total area is either above 90% or below 10% of the maximum luminosity.

“Note that the inverse of an image is the image with opposite luminosity, in éffeage— 255 in an 8-bit integer
colour representation, arjinage— 1| in the floating point colour representation

5In the 8-bit integer colour space multiplication is defined asB. x F./255 to preserve the pixel values within the valid
range(0,255). This is not nessesary for floating point colour representgtioh).
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0.75

0.25

Figure 3.3: The effect of the overlay function. A: The fulb8-grayscale spectre from 0 initensity to 255. B:
The result of the overlay function. C: The effect of the oagrfunction (difference between A and B). Dark

areas have become darker and bright areas brighter. Theaggag in each end and the middle change little
during the transformation.

10°
10"
10°
10°

Figure 3.4: Top: The overlay function applied until the bgglam hit the edges of the colour space, in this case
three times.

C

Step 3 — Average Filter

For each pixel, the average value of a 50 pixels wide neighbourhoam@ibis calculated, pixels
outside the image edge are disregarded (not treated as zero). The irtesptyris then subtracted
from the local average image. Furthermore, to get an image coveringltharfge of the histogram,
the minimum intensity value is subtracted from the image before normalizing to thafgié of the

intensity space (0,1). See figure 3.5 for an example of the result. Thagavélter is handled by a
MATLAB function.

%1 is the intensity image matrix;

ws = 50;
mM=infilter(l,fspecial ('average',ws), replicate’);
SIM=mMMI;

sIM= (sIMmin(nin(siM));
sIM= sIM/mx(mx(sIM);

Step 4 — Edge Detection

Edge detection is performed using Sobel's method. The image gradientpamximated by the
convolutions

-1 0 +1 +1 +2 +1
-1 0 +1 -1 -2 -1

These directional gradients can be combined to give the gradient maguoginde

G=4/Gx.2+Gy.2
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Figure 3.5: The resulting images after the overlay, avefitge and edge detection steps.

See figure 3.5 for an example of the resultaMAB provides a function to handle this operation.

%1 is the image matrix, gv and gh are the vertical
% and horizontal gradient respectively

[Isobel, thresh, gv, gh] = edge(l,’ sobel");

grad = sqgrt(gh.”2+gv."2);

Step 5 — Global Threshold

A global threshold is performed to one copy of the image at the end of ste@fal one at the end
of step five. The global threshold is determined byarLAB function using Otsu’s method, which
chooses the threshold to minimize the intraclass variance of the black and weite @ he result,
superimposed on the original RGB-image, is shown in figure 3.6.

% gl obal threshold of the gradient inmage
| evel = graythresh(grad);
| bw=i n2bw( gr ad, | evel );

Step 6 — Combining the Thresholds of Gradient and the Intensity Imag

The black and white images from step 5 are combined by accepting any gjgektas a vessel from
either one of the images as a vessel pixel. This is done wsNTgAB s logical or operator] .

% lbwis fromthe gradient inmage and I1bw2 is fromthe intensity inage.
lbw = Ibw | Ibw;

Step 7 — Filling in Closed Lumens and the Removal of Exceedingly Small Bitive Areas

Any vessels containing an empty interior is filled in to give an image of the entsseVéumens
including unstained interior, rather than just the edges. Before this lgstasteeries of three mor-
phologicalclosingsare performed. A morphologicalosingis adilation, the adding of extra pixels
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Figure 3.6: Global Threshold: The black and white resulaotgd from the intensity image at step 3, and the

gradient image at step 4, superimposed on the original imagehe right the perimeter of the final result is
shown. Uncropped final images (not just the perimeter) avevstin figure 4.14

around the boundaries of all objects, followed byesiosion the removal of all pixels at the bound-
aries of the objects. The closing fills inn any single pixel openings in betieeobject borders. This
causes nearby objects (separated by one pixel) to merge. This maysegpasate vessels to merge
if they are very close to each other. In the vast majority of cases suchvglifpe within the same
vessel, and they have become separate regions due to insufficentgséaidior shortcomings of the
algorithm. The merging of two vessels located very close to each other isleet better than the
splitting of single vessels into multiple.

All holes, i.e. empty pixel regions unconnected with the image edge are fileszhiBe the image
gradients are centred on the boundaries of objects their outer perimetétlesgreater than that of
the vessel itself. To account for this arosionis performed. Finally to remove specks of noise in
the image all objects with less than 64 pixels are removed. 64 pixels is equit@l@bout 20 ppm
of the entire image area, or in the case of #25 magnified images, a square coveringutr2 This
removes most of the false positives, due to noise. It may remove very soséllply stained regions
as well, thus creating false negatives, however, such stains mustysmwal in order to be removed
this way, justifying the operation.

| bw = bwror ph(1 bw, 'close’, 3);

lbw = infill(lbw " holes);
| bw = bwnor ph( 1 bw,’ erode’);
I bw = bwar eaopen(| bw, 64) ;

3.2 Basic Image Statistics

Four different parameters were obtained directly from the black and \héges. The first was the
number of vessels, found by counting the number of individual 4-ottederegions in the image. The
second is the mean area of the vessels and the standard deviation, ahé@abaté pixels angun?.
The relative vascular density, that is (stained area and lumens) / (te&| & calculated.

L=bw abel (BW mage) ;

area = regionprops(L, area’);

area = cel | 2mat (struct2cel | (stats));

meanCOf Area = nean(area);

stdOf Area = std(area);

nunber Of Vessel s = nunel (area);

rel ativeVascul arDensity = sun(sum BW mage)) ./ nunel (BW mage) *100;

Finally, histograms of the non-vessel pixels’ distance to the nearesthegscalculated. The
distances are calculated by adding together successively dilated bwsiicte vessels.
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Figure 3.7: The distance histogram displays the numben@ip(y-axis) at a given distance (x-axis) from the
closest vessel. The cumulative histogram shows the totabeu of pixels that aréurther away than the given
distance. The vertical bars from left to right shows theatises at which at least 90%, 50% and 10% of the
non-vessel pixels respectively, are further away. Allatises are measured in the units of the pixel width which
is 138m

D = int16(BW mage);
whi | e any(any(D==0))
C = bwnorph(C,'dilate);
D=D+int16(C;
end
Dmax = doubl e(max(max(D)));
di st anceToNear est Vessel = - D+Dmax;

Resulting histograms from one of the case images is shown in figure 3.7. tReocumulative
histogram three parameters are extracted, namely the distances at whigtdgeam is at 10%, 50%
and 90%. This corresponds to the distances where the given pereéntag maximum number of
pixels that are further away.

3.3 Syntactic Structure Analysis

Syntactic Structure Analysis (SSA) is here used in the context of refergt8] and concerns the
parameters derivable from the Voronoi Diagram, Gabriel's Graph (&@@)the Euclidean Minimum
Spanning Tree (EMST), see figure 3.8. From the set of parameterstigated, in each of these
methods, histograms are obtained and the mean value, standard deviatiwnesk and kurtosis
are calculated. All sizes are in the unitpikels The SSA-graphs themselves are calculated from
a list of themass centref each vessel. The shape and size of the vessels do not effect Ahe SS
only their number and relative positions. The mass centre images are ohitaioegh a black and
white morphological thinning. The completeaTLAB code used to calculate the SSA—parameters is
included in appendix B.2.

massCent rel mage = bwnor ph(bl ackAndWi t el nage, ’ shrink’,inf);

3.3.1 Voronoi Diagram

The Voronoi Diagram is a set of polygons covering an area aroucid wessel. The Polygons are
drawn so that the area inside a polygon is closer to the vessel inside thepdigm any other vessel.
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The polygons at the edge of the image do not have a proper boundang onitside and have been
removed. Three histograms are obtained from this graph, the area distribfithe polygons, their
shape, and their form. The form of the polygon is defined as 4pesimetef and the shape as the
smallest polygonal diameter divided by the largest. A polygonal diametefirsedeas the distance
from one corner to another corner that is not its direct neighbour.

3.3.2 Gabriel's Graph

The shortest distance (branch) between two nodes (vessel masstantquely defines the diameter
of a circle. Gabriel's Graph is defined as the set of all branches sgaempty circles. If there
is another node in a circle spanned by the branch, then it is not a paritwieBs Graph. Only
the branches to the closest nodes in each direction can possibly fulfilritigan. To speed up
computation time the Delauney Triangulation is first calculated. It contains thaf beanches not
intersected by a shorter branch. Gabriel's Graph is a subset of theriggldriangulation.

From this graph the histograms of the branch lengths, the number of lespeh node and the
distances to the nearest and the furthest neighbour are calculated.

The branches per node parameter is reduced as a consequencedf¢heodes having fewer
neighbours. If desired, this could be accounted for by not includinghtitees removed from the
Voronoi when counting the branches per node. The other parametgralatabe affected by the
edge. This will happen if there is a vessel beyond the edge that wouldveeanbranch from the
network. This can be corrected by not considering the branchesisgaa circle which in part cover
a region outside the map. For a single node this would cause some of its ésdndbe kept, while
others are excluded for the purpose of calculating the branch lengthsaction is taken towards
reducing the edge effects. The reason for this is twofold, the complexioivied is high and the
effects are expected to be small, certainly much smaller than that of the Vondrere polygons by
the edge may diverge to infinite areas. The size of the edge effects balieen investigated. This
applies to the EMST as well.

3.3.3 Euclidean Minimum Spanning Tree

The Euclidean Minimum Spanning Tree is the set of branches so that & m@mwd connected by the
tree in the configuration providing the minimum possible total length of the tremradiag to the
euclidean norm. The EMST is a subset of Gabriel's Graph, and the samagtars are obtained, as
from GG. The nearest neighbour data are the same for the two gradikthee shortest GG-branches
are included in EMST. The mean number of branches per node is a(®ays- 1) /n, where n is the
number of nodes, making this particular parameter redundant. The otberhistogram parameters
from the branches per node histogram are, however, not.

3.4 Linear Fitting and Graphs from the Fractal Algorithms

3.4.1 Linear Fitting

All of the fractal analysis methods uses a linear fit to a double-logarithmiaidentify the fractal

dimensions. The curves are, however, not linear across the entge cdithe plot. The analysis of
images restricts the curves from two sides. On one end, the investigates approach the size of
the image, and on the other the size of a single pixel. Furthermore, natactdlf need not have
fractal behaviour across all scales, and may consist of differemplaw scalings at different scales.
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©  ‘essel Mass Center

Delauney Triangluation
Gabriel's graph
Euclidean Minimurm Spanning Tree

Figure 3.8: Top:Voronoi Diagramof a CD34 immunohistological section (background, caseT2e vessel
mass centres are drawn in as black dots. The diagram polygemandomly coloured. Théoronoi Diagramis

the complementary graph of tizelauney Triangulatiorfbelow), the polygon surrounding a vessel shares one
side with each other vessel it is connected to byDleéauney TriangulationBelow: The vessel mass-centres
in this section are marked by black circles. The black limemftheEuclidean Minimum Spanning Treéhich

is a subset oGabriel’'s Graph(blue), which is a subset of thizelauney Triangulatiorfcyan). Consequently all
the lines (cyan, blue and black) are part of Bedlauney Triangulationbut only the black lines are a part of the
Minimum Spanning Tree.
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Figure 3.9: Contour lines of thQuality of fitfunction.

To find the linear areas in the image a criteria is set for what is considereddifif). Linear fits are
then calculated across all continuous regions of the graph, and thiit ieeselected according to the
criteria. Remaining areas of the graph, on the condition that they are thejesome minimum size,
are then recursively scanned for more linear areas.

The fit is aleast squares fiand the norm of the residuals is used as an indicator of how accurate
the fit is® In addition to accuracy, the size of the linear region is used as the seoamboent in
determining how good a given fit is. The size is measured as the fraction titti logarithmic with
the linear portion spans. The quality of the fit is then defined as

Quality = Width. (1 — NormOfResidualg.

The width is here weighed linearly, in effect a region twice as wide is coreid®vice as good. The

Norm of Residuals is subtracted from 1 so that the good fits will have a eébse to one, and bad

fits lower, possibly negative values. These values are then taken tows pbfive to increase the

differences. Good fits are close to one, and relatively little changes. Safadis on the other hand
drop considerably. The choices of factors and powers in this formplgsents a trade off between
the importance of the two.

A function recursively searches through all valid fits. These includsuddfegions with at least
five data points and spanning at least 15% of the logarithmic width. The fanitten selects the
best fit and goes on to search all remaining subregions spanningt208asf the logarithmic width
using the same search criteria for these as well.

3.4.2 The Graph Set-Up

Two examples of the graph set-up is displayed in figure 3.10, one of the faagfafunction, slightly
shifted to the right, and one actual result from the analysis of a histolaggcéibn. The curve itself is
plotted in black and the fits are plotted onto the same figure. To make the aeedsyuhe algorithm
more visible, colour patches matching the linear fits are drawn beneath thee (ot the fit). The
colours themselves do not contain any informatioim. addition the gradient is plotted in a separate

6The lower the norm is, the better the fit. An exact fit has a norm of 0.

"They are chosen from the hue-colour representation based on thauothkr of regions in the plot, with the aim to
achieve a decent amount of contrast without getting colours that dmatzh next to each other, and to avoid the use of
complementary colours in the same graph.
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Figure 3.10: Two examples of the linear fit graph set-up. Bddffi the familiar cosine function is plotted from
0 to 1.2mand shifted a bit to the right. In the right hand plot the refouim a sandbox-dimension analysis of a
histological section slide is shown. A description of thifedtent parts of the graph is found in section 3.4.2

smaller figure beside it. Here the linear fits are represented by horizonwhtiatching the slope of
the fit. If more than one fit has the same slope, as is the case here, onmafithbe plotted on top,
hiding the others from view.

Beneath the gradient a table shows the slope of the linear fits, the normsidfiaks of the fit
labelled asNormR and the fraction of the logarithmic area covered by the fit, labelled\adth The
bottom part of the table shows the borders of the region. Many times thditvarisom one scaling
pattern to another is adequately represented by the start and end pasigach region. Some times,
however, especially if there is an open region between two linear, theantens of the linear fits may
better locate the transition. At other times this method gives misleading resultsgplheitransition
outside the gap. Consequently, both approaches are necessar:cdbtiainate of the intersections
are listed in thd-itint-column. The intersection in a given row is between the current fit andetkie n
region, consequently the bottom cell is always empty. These intersectmnspgesented in the main
graph by vertical dashed black lines with cyan filling in the gaps. MNeLAB code used to generate
these graphs is listed along with the fractal algorithms in appendix B.4.

3.4.3 Interpreting the Results

An example of the resulting curve from a fractal analysis of a histologlichd & shown in the right
part of figure 3.10. In this case the sandbox algorithm is used on a bidaktasite image, showing the
entire lumen of the vessels, as produced by the image processing dé$crieetion 3.1. The curve
has three different power-scaling regions, all with a relatively low noirresiduals. It is wise to check
theNormRcolumn for a given fit because the algorithm is not set to suppress gaudts, but rather to
show how poor they are. There is one exception, if the best region fistamaller than the specified
minimum logarithmic width, it will be removed. This width is usually 15% in these calculation
the case of the sandbox method, the slope of the graph is identical to itd fisotnsion, so no
conversion is required. The highest fractal dimension is found, fdiit$taegion stretching from 1 to
17 pixels wide (the sandbox diameter). This corresponds to the vessamisealves. The vessels are,
at sufficiently small scales, two dimensional surfaces. The smallestlyesse however, although
at least 64 pixels large, but small dots contributing to a reduced dimensi@aviascular areas are
ignored at these small sandbox sizes, as all sandboxes are cengegssel pixel. The linear fits of
the blue and the magenta regions meet at 17.6. This, being the width of & scor@esponds to an
area of 310 pixels.



62 CHAPTER 3. MATERIALS AND METHODS

The next region stretches from 17 to 143 pixels large diameters. Thisrbg®ma dimension a
little smaller than 1 and corresponds to the size scales in which the vesselgrammded by avascular
areas. The sizes of the vessels themselves resemble small points moretbksélyo dimensional
surfaces.

In the third region, starting at 143 pixels wide diameter, we are at a scalee e sandboxes
encompass multiple vessels. This part has a scaling of 1.56 and continuess @lrtiee edge of the
graph, though not quite.

Although the first part of the curve relates to the size of the vessels arsthaéipe of their bound-
aries, this is better studied at higher magnifications. The most interesting isdiy far the third,
especially with regard to the fractal dimension. The transition points betweardgions are of sig-
nificance in addition to the fractal dimension.

3.5 Accuracy of the Fractal Algorithms

The theory of the fractal methods is provided in sections 2.3.5-2.3.8, amththe\B implementa-
tions are listed in appendix B.4. The quality of each of the algorithms, as impledhiesite, needs to
be tested to acquire some sense of their accuracy.

3.5.1 Description of the Test

The various algorithms calculating the fractal dimensions need to be testedtagall defined im-

ages of established fractal dimensions. The chosen shapes are tiinsRigbasket, the Sierpinski
Carpet, previously shown in figure 2.19, a circle and a square, both id &ille unfilled versions.
The accuracy of the calculation will not only depend on the algorithm, botalsthe resolution of
the tested figures. Although these figures are mathematically well definedirgjlooordinates to
be calculated with high precision, the images that will be analysed later dee gaaphics of finite

resolution. Raster graphics will therefore be used in these tests as well.

In addition to the classical mathematical fractals, percolation clusters, tiaegland elastic back-
bones will be used to test the algorithms as well. These have the advantatieeyhare not regular
and deterministic. The Box Counting Algorithm may for instance produce thet eimension of the
Sierpinski Gasket, provided that the investigated box-sizes all areathiédby 3. In other words lucky
choices of box sizes may give the impression that this method is better thalyiise®n the other
hand the percolation clusters have a drawback as well, precisely leenfaheir deterministic nature.
A finite cluster is never guaranteed to have the exact same fractal scafirtge infinite cluster is
proven to have. A deviance from the exact value, may therefore eitheedause of the algorithm or
the cluster. Two rather large clusters at 1024x1024 are used in this tasy. tibre clusters could be
used. Due to the long computation times involved in calculating the backboneyefdarsters{10
hours) many smaller clusters may be preferred over a few larger, buetted cluster can be expected
to deviate further from the infinite cluster values. Thus, if this method is usadahmean of all the
smaller clusters should be used. This would also prevent the final rese#in( of all errors) from
being dominated by the percolation tests. An approach with two large clustbrsowghly the same
size as the other test-shapes has been used here. Furthermore, tibis tha slope of the widest
linear region detected for each test and algorithm that has been usedearctraparisons.

Finally, it should be pointed out that these test images are quite diffeimmnttfie histological
images. The error estimates found here should not be directly applied to thesyrathough they
certainly indicate the relative quality of the methods and provide a rough itlda anagnitude.
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Method Mean of Error  Std. Dev. of Errar
Box Counting 0.00008 0.04287
Sandbox 0.00105 0.02300
Correlation -0.01097 0.03231
Mass 0.00642 0.03360
Fourier 0.00458 0.05856

Table 3.2: Accuracy test of the Algorithms. The algorithmsrevtested on a number of known geometrical
shapes as well as a random site percolation cluster, seeAablfor the full results from the dimension cal-
culations and figures A.2-A.7 for the power scaling graphsauth test for algorithm, and the shapes (images)
themselves in figure A.1. Note that the error data for the iBoatgorithm excludes the results from the filled
square and circle.

Knowledge about the sizes of the errors is useful when determining ahedhiations in the di-
mension is the result of the images’ dependency on some parameter, or simplgdburacy of the
methods used to determine them.

3.5.2 Evaluation of the Algorithms

The errors in these tests are not assumed to scale with the size of the dim@hs@bsolute error is
therefore used in the comparisons. The result of these tests are shtabieiB.2. Note that contrary
to convention, the box counting curves are plotted versus the box sizesather than their linear
number (1/L). The effect of this in a log—log plot is to reverse the x—axksis | done to make it
easier to compare with the other methods, as the large area contrastscaengew to the right.

Local Amplitude Variations: The Fourier method and to a much lesser extent, the Correlation method,
exhibits huge local amplitude variations. These Curves still have a loglogrlgiebal trend,
but local variations obscures this. To remedy this a 10-point moving gedésapplied twice to
the Fourier data, and a 5-point moving average is applied once to théatiomelata.

Mapping From Slope to Dimension: The Fourier power law scaling, although fairly well mapped
for most dimensions by the norm of the slope, cannot be mapped to fit bofilebdesurfaces
(square and circle) and the other test-shapes. The choice is then madertotlgese two data
points and use the other eleven for the purpose of this test. Furthermoreapysng is used
for the fractal analysis with this method, see figure 3.11.

Computation Time: The five algorithms fall into two groups with respect to computation time. The
Correlation, Mass and Fourier estimates utilises the Fast Fourier Tran@&iT) for the main
part of the work load. Consequently, there are few ways to affectdthgpatation time of these
methods, with the exception of one, the FFT-method which is faster for snrak gactorials.
The studied images are 20881550 with factorialg 23 - 32 - 29) x (2-5?- 31), suggesting that
these routines will be somewhat faster if cropped down to the neareseneonsisting of only
small factors (2s and 3s), i.e. 2048526= (21 x 2°.3). Tests on such crops show, however,
that the effect is rather small. The number of points used to draw the gimfesse methods
may be freely chosen, here 100 points have been used, but this dagienbthe computation
time. Data is calculated for all discrete distances in the transformed imagesemded into
the plotted data points.
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Figure 3.11: The Fourier scaling paramedg(slope of curve) versus the fractal dimension of the tesgigsa
The two-dimensional images (circle and square) will notriibithe same linear approximation as the other
points.

The Box Counting and the Sandbox algorithms are different in this resaedtsomewhat
different from each other. The Box Counting algorithm is by far the sgtwgthe five, requiring
six—seven times as long to compute (with thirty sampled box-sizes) as the otbethaics.
Apart from scaling down the size of the image, which works on all algorithrtiteeeexpense of
the information contained in the image, this method has one parameter controllirgktsad,
the number of different box-sizes used in the calculations. The numbeimtpn the graphs
from these two methods are the only sampled distances in the image, they dpnmeserd
averages of the surrounding region.

The Sandbox method is faster than the Box Counting Method to begin with asdfifty
sampled sandbox diameters. Furthermore, it has an additional way aingdbe workload.
Both the number of the sampled sandbox diameters and the number of pouttiesasiwhich
are calculated around may be adjusted. The Sandbox algorithm usedstesisshave been run
with thirty sampled sandbox sizes and in images with more than 30.000 lit pixelsythieen
of sandbox centres has been reduced to no less than 18.000.

Resolution at High Values: The box counting method has a very limited resolution at the largest
box sizes. For instance, for boxes #0J00 pixels large there is only room for<32 boxes,
so in effect, this box—size only has 7 theoretical values. Furthermoreskatxthese sizes are
almostguaranteed to contain a vessel, reducing the possible values furtheGezrtainly is
not an option. For this reason, in addition to the slow computation speed abbigbounts,
the largest box sizes used are one fifth of the shortest axis, in effexk 310 pixels for the
histological images.

Accuracy: An overview of the results from the analysis of the test shapes is showhln32. The
Sandbox method has performed best at these tests. Although the Botim@ouethod has the
the lowest mean of error the Sandbox method has a far lower standaatiaevOf these two
values the standard deviation should be considered more important. A small coegpled
with a large standard deviation, simply indicates that the method is as likely tostiveate
the dimension as it is to underestimate it. The Sandbox method may possibly be eaprov

8Note that the histological images may contain less than 15.000 points to bithjrespecially the ones where each
vessel is represented by its perimeter or centre of mass.
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somewhat by increasing the number of sampled sandbox-sizes. Within the fimitsasonable
computation time, although much is not expected to be gained.

Different Dimensions and Fractal Transitions: Although the Sandbox method appears to be the
most accurate in these implementations the other methods are not necesstegg.usll the
tests were performed on fractal scaling figures. Although this may edgetigathe same
situation as when one is investigating two-dimensional vascular systemseaorastructed (or
otherwise obtained) three-dimensional system, it is not the same as analyassgsections
of three dimensional systems. The cross sections cannot be expeciibibfeactal scaling
across large regions of the loglog-plot.

For this reason they may not yield the same values, keeping in mind the slighéisedifimean-
ing of the different dimensions. Furthermore, the fractal dimension is mobttiy piece of
information these methods present, they also show the transitions from wee-laav scaling
region to the next and at which size-scales these transitions occur.

3.6 Random Simulations

Grizzi et.al. simulated histological sections and calculated the fractal dimsnaga function of
the total number of vessels in each image. They used relatively large cidnitato represent the
vessels and vessel counts ranging from five to fifty in steps of five wi@i® Bimulations for each,
see figure 2.28. The result was a curve increasing with higher vemsetscand plotted with corre-
sponding standard deviations. The conclusion drawn was that not enlyetisel count, but also the
vessels relative positions contributed to the fractal dimension, a conclsisjported by the fractal
theory. The standard deviations are, however, quite small, especialgs$sel counts higher than
fifteen. Estimating their sizes from the graph they would appear to be at n@§ at these vessel
counts. This is roughly the same as the standard deviation of the errors sanldbox-method, as
implemented here. In effect, these results imply that fractal analysis (with thiermeptation of the
sandbox algorithm) applied to histological slides is nothing more than an inexdd¢ime consuming
method for counting vessels.

The concept of such a test is good. Parameters with little or no variatiorss gawen number
of vessels will have little information to add to the vessel count. Consequentiynly the fractal
characteristics are calculated for randomly generated vessel catitgg; but also most of the other
investigated parameters. Some parameters such as the relative vesseearet considered because
they are completely determined by the number of vessels in these simulations.

The terms of the random generation should be carefully chosen, intorteras relevant to real
image slides as possible. The time required to analyse large numbers aitgdrnierages calls for a
reduction in resolution of the generated images. A five fold reduction inu#so has been chosen
for these tests. The cases in section 4.2, dednigulvascularby a pathologist had vessel counts
ranging from 187 to 321. Counts up to these numbers and with a solid margweio higher vascular
counts should be used.

The size and shape of the dots are also important. Most of these casagreah area a little
higher than 300 pixels. When scaled down to the new grid size, this is éeptita roughly 12 pixels.
One must also consider whether to use the dots themselves, the perimetedofsiue only the
centre of mass. In the case of centre of mass the smallest possible sizgisadneorresponding to

9This is in part a qualitative assessment, no quantitative measure of evsiitates low and high vascular is defined/a-
greed upon by the pathological community.
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25 pixels in full size images, and the placed dots need not be expanddtivies&el areas. In order
to avoid the inclusion of more variables all vessels should be of the same ahdsize.

Finally, the distribution of points must be taken into account. The most obvippsach is
to let each lattice point hold an equal probability of being a vessel. How#hvisrsimple random
approach does not do justice to tumour vasculature’s ability to form alesegions. The second
approach is to take advantage of tumour vasculature’s percolation likegscExtrapolating Gazit
et.al.’s results[17] from two to three dimensions, a percolation model magdxtto generate three-
dimensional networks and extract cross-sections from these.

3.6.1 Implementation of the Simple Random Simulation

Single pixels (vessel mass centres) are randomly placed on-a3@Dlattice at intervals of 10 vessels
between 10 and 500 vessels. For each vessel count 200 repetitiopsrfsrmed, and the values
plotted at each vessel count represents the mean of these two hugpkegtions, with corresponding
standard deviations, indicated by vertical bars. Two vessels may ndabedpat the same location,
however they are allowed to be direct neighbours. For the purpoyetaittic structure analysis direct
neighbours are regarded as separate vessels. An example of an enagated in this way is shown
in figure 3.13 along with an image from the percolation simulation. The resultesétsimulations
are shown in section 4.1.1.

3.6.2 Implementation of the Percolation Simulation

Non-trapping invasion bond percolation on a simple cubic lattice has
been chosen to generate the three-dimensional systems. An illus-
tration of this type of cluster is shown in figure 3.12. The black:— 1 ——F——
lines represent bonds that belong to the cluster, and the coloured line
are unoccupied bonds, where blue represents weak bonds (easily fn-— =
vaded), and red represents strong bonds. In this model the bonds 4
develop in three separate directions, one of these is extracted to form ||
the cross-sections. A lattice of 4358 in the(x,y)—plane has been ~*+—{~
found to generate vascular densities of a relevant magnitude. AN
additional margin of two lattice points is added on all four sides to
reduce edge effects. In tlzedirection 100 lattice points are used to -
generate 100 cross sections for each simulation. In total, for all three
directions, the lattice spans roughly 870.000 bolda.single point i~ -
located in the middle of th& y—plane atz= 0 is used as the inlet y
point1

Only the bonds going in the-direction are used to simulate th&igure 3.12: lllustration of a 3D
cross sections. Symbolic matrices showing which of the bonds fitd invasion percolation cluster.
belong to the cluster are extracted at eaetoordinate. The lattice
constant, i.e. the distance between each bond, is set to 7 relative to the singenrimage slides,
resulting in images 30% 406 pixels large. To achieve this, empty rows and columns are inserted
into the image increasing the minimum distance between two vessels from 1 pixel syribolic

10The exact number i646 x 62 x 101) + (47 x 61 x 101) + (47 x 62 x 100) = 869019.

11The bottom and top end of the cluster (in theirection) could potentially be excluded from the simulation results to
reduce the edge effects of the inlet source and the stop condition (aleatdres end of lattice). They are not excluded in
this simulation.
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Random Simulation Percolation Simulation

Figure 3.13: Simulated Vessel Slides. Left: Image prodweitl the simple random simulation. Right: Image
produced with the percolation simulation. Both images havessel count of 160, on a grid size of 30800
and 301x 406 respectively. The vessels have been enlargectd Bixels to make them more visible.

matrices, to 8 pixels in the resulting image. At this point only one in forty-ninelpizan possibly
contain a vessel, with the empty rows and columns scaling the lattice. This iné®dugyidness to
the image, causing the 9@ngles between the vessels’ positions to be grossly overrepreseatdd. E
vessel is then randomly shifted between zero and three pixels alongxdadck andy), causing it to
occupy each of the forty-nine pixels surrounding the bond with equaddgiility. As in the simple
random simulation, this allows pixels from neighbouring bonds to end up gida&lb, but not on top
of each other.

The minimum spacing between vessels with this method is larger than that of the samgden
simulation. In neighbourhoods smaller thar 7—pixels no more than four pixels can possibly contain
a vessel, and in most such neighbourhoods the maximum number3 Bnéarging these images up
by a factor of five, to bring them up to par with the histological sections, thenrdistéance between
two vessels in a fully occupied cross-section from this simulation is 35 pixedsa éomparison the
mean branch lengths of the Euclidean minimum spanning trees of the founsaetimes from 57 to
73 pixels, subtracting one standard deviation this turns into the range 14 #t 2 e-scales larger
than the lattice factor the percolation method should, however, contributer&asing the odds that
vessels are located close to each other. On these scales cross-sertibagexpected to contain both
vascular and avascular areas in accordance with the observed dataaur vascular morphology.

Another important difference between the two simulation methods is that thelggso method
does not allow the number of vessels in a section to be specified. Insteag: alanber of clusters
is generated, and the number of vessels in each section is counted. Fwgohanplications. The
first being that the vessel count can take any integer value, not jyst sfden. The second that,
unless a subset of a very large quantity of data is used, one canremtt éghave an equal amount
of data for each vessel count. Consequently, this data may be better fsuitszhtter plots than
the errorbar representation used in the simple random simulation, howévenadkes the results
harder to compare. Averaging of the data into a curve with data points éoy &0 vessels, i.e. a
histogram drawn as an errorbar plot, makes this easier. The resultsifesamsimulations are shown
in section 4.1.2

120ne way to change this would be to use Gaussian probability distributions witftadble standard deviation, for
instance somewhere between one half and one lattice constant. This tstrivould replace the uniform displacement
probability when modifying the vessel positions. A further step in this diraatiould be to let the percolation network
determine a probability distribution function and then place a specific nuofberssels randomly throughout the lattice
according to this distribution.
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Chapter 4

Results

4.1 Vessel Section Simulations

Two sets of random simulations were performed to generate a large qudiptitysible vessel config-
urations. A variety of parameters that can be calculated from immunohistdistjdes are investi-
gated in this thesis. These simulations were performed to find out how closeratious parameters
are related to the number of vessels in the slide. Although the shape of treiswf interest, the
main point is the behaviour of the standard deviations. The size of the stiatheldation is used to
evaluate how dependent the parameter is on the positions of the vess#igrifore, the size of the
standard deviation is considered relative to the size of the mean. Many péhtameters have curves
with local variations, small peaks and valleys. This is, most likely, causdtidfact that only two
hundred samplings are performed for each point. The overall shape ofirve and the standard de-
viations should, however, be sufficiently accurat. The simple random siondaand the percolation
simulations both generate randomly distributed vessel patterns, but thenpatterexpected to have
somewhat different characteristics. The resulting figures from thesdagions are shown in the fol-
lowing subsections, along with brief descriptions of any relevant detdils.cdloured circles (usually
red) andxes (black and blue) in figures 4.2, 4.3 and 4.6—4.13 are the data fromuthki$tological
samples, see section 4.2.4 for further description and comment on thessrsnark

4.1.1 Simple Random Simulations
Cumulative Histogram Characteristics

The results from the cumulative histograms of the distances to the neassst wee shown in fig-
ure 4.2. Both the values and the standard deviations drop fairly quickly to athble value. The
10% curve has the largest variations and they are quite substantial bgpoexenately 50 vessels.
All the deviations drop to below 2 pixels.@8um) within the 100 vessels mark.

Fractal Characteristics

The variations of the fractal dimensions are of particular interest bed¢hassarious methods calcu-
lating them are approximations. The sandbox algorithm, for instance, toumel the most stable in
section 3.5.2, has a standard deviation of errors made equal to 0.023@at{ke3.2). If the variations
in fractal dimensions are not sufficiently high, then it would be impossible dockewhether it was
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the fractal approximation or the differences in the distributions that catimsedariations of the re-
sult. The sandbox algorithm is the only fractal estimation tested in these simuldtiaceses where
multiple linear regions are found, the region spanning the highest sanlifooeters is used .

At the top of figure 4.6 the results of the fractal analysis of the simulated ini@gs are shown.
The fractal dimension increases rapidly at the start and hits a shouldeigily 70 vessels. It appears
to be slowly increasing even at the highest vessel counts, albeit not rniihehstandard deviations
steadily decrease throughout the range. When approaching 5@syelse deviations are still a small
margin above the errorlevel of the test (see table 3.2).

The position and size of the fitted region varies throughout the range.applges especialley to
the region’s largest diameter, i.e. its end coordinate. The mean increasdly for small values, and
standard deviations are quite large even at high vessel counts. All imakMer, the combined region
is quite significant above fifty vessels, spanning at least a third of trelppe@dinear values, and two
thirds at the long end.

The fractal analysis of Gabriel's Graph displays the same basic pattérthebvalues are some-
what different. The dimension is higher throughout the range, espeaialhe start. The standard
deviations are much smaller and appear to flatten out at a value well belowgthéha’s 0.0230
test error deviation, with an average value of 0.0164 for the rangeb®@0+essels region. This is the
graph that uses the widest regions in its fits.

The Euclidean Minimum Spanning Tree has the slowest climb up to the shoadeTpe stan-
dard deviations are large all the way up to 300 vessels. At the lowesthasmts, the image slide
analysis has by far the greatest standard deviations. In the rangegstaidimd 100 vessels and up to
around 300, vessels the EMST has the largest deviations.

For all three cases the deviations in the largest sandbox diameter upedsao relate to the
deviations of the fractal dimension.

Syntactic Structure Analysis

The syntactic structure analysis includes histogram parameters from tbedvaiagram, Gabriel's

Graph and Euclidean Minimum Spanning Tree, in total a set of 44 paramdtersall three sets

the skewness and kurtosis parameters show large standard deviatistigerfore, all parameters,
with exception of the branches per node for the EMST, have significaigtions below 50 vessels.
The following descriptions of the individual parameters will only apply to theumend the standard
deviations, especially for vessel counts larger than 50. The fracblsis of Gabriel’'s Graph and the
EMST is categorized into the Fractal Characteristics section.

When the simulations were performed, a small error in the code generatiid/t8& caused an
error in some graphs. The bug was in the initialization of the network ane:dauree of the potential
branches, connected to the second node added, to be excluded &quotéimtial branch list under
certain circumstances. This caused some of the EMST’s to be generatagpwihwo suboptimal
branches. This is not expected to have compromised the results, ancetié thie effects are readily
observable by comparing the distance to the nearest neighbour pafreteGGG and EMST, which
should have been identical. Subtle differences in the error bars azevabte below 30 vessels.

Voronoi Diagram: The Voronoi diagram parameters are shown in figure 4.8. As usuabthiggns
with sides exeeding the bounds of the image matrix are ignored to avoid ddgis efVhile the
mean standard deviation of the area have quite small deviations for all bsintkest vessel
counts, the shape and form of the polygons have notable deviationglttmaithe range.
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Gabriel's Graph: The branches per node measure is the only parameter with large variatmngth
out the range, see figure 4.10. Comparing the distances to the neatekednrthest neigh-
bours in the graph, the latter appears to have somewhat larger variatidresstandard devi-
ations. The variations in the means are similar, but the furthest neighbsuar tmaich steeper
curve (note the different y-axis).

Euclidean Minimum Spanning Tree: These results resemble those of Gabriel's Graph. There are
some differences though, see figure 4.12. The mean number of bsapehaode are com-
pletely determined by the number of vessels and takes the yalie?)/n, this is the only
parameter without deviations. The standard deviations around the mean,agilven sample,
does, however, vary, and this parameter has by far the highest vasiadisregarding the skew-
ness and kurtosis. The transformation from Gabriel's Graph to EMST tnvay ¢he longest
branches, keeping all the shortest branches between nodes. Fealog, the variations in the
furthest neighbour distances are reduced, and the data on thetmeagbdour is essentially
identical to that of Gabriel’s Graph.

4.1.2 Percolation Simulation

As shown in section 3.6.2, the images produced by the percolation algorithri@loa any integer
number of vessels between 1 and 2580. The number of vessels pdadst®wn in figure 4.1, trun-
cated at 100 images and 500 vessels. Imageslesgthan 10 vessels (or more than 500) were not
used, nor were data points with fewer than 10 images. In total, 15.560 imagesised in the analy-
sis, originating from 168 percolation clusters. By comparison, 10.000inha@iges were produced in
the random simulation. The percolation plots make for a somewhat diffegerathappearance, due to
the tenfold increase in data point density. The number of images usedhadaacpoint is, however,
greatly reduced and the plots should be read against the backgrotireddi$tribution in figure 4.1

Cumulative Histogram

The cumulative histograms show large variations, especially for images witlvdssels, see fig-
ure 4.3 At vessel numbers larger than 200, the deviations are small lagibkeg Both the distances
and the deviations are much greater than in the random simulation. At the #ites V50, 78 and
97, both the mean value and the standard deviations drop suddenly. Fmatbem all three cases
the standard deviations rapidly increase again to a value about one tHiet higlative to the initial
drop. After the two first and largest peaks, the deviation drops, onlipwdysincrease again until it
reaches the next drop. This behaviour is investigated further in figdrétre the mean and standard
deviations are plotted together with the number of images at each vesselmdrmbeédottom graph
has been smoothed to emphasize the trends in the curves. At the third dnepijstta significant
increase in the image material. At the second drop, there is a local increasdl athough not very
large. At the position of the first and largest drop, however, there@aseich changes in the material.
There is a small increase nearby, it is, however, located after the thljaickly drops back down
again. The shapes of the three parameters’ curves are strongliatetreshowing many of the same
local trends, with respect to slope and local extrema.

1Close examinations reveal small differences, especially in the stadewiations at very low vessel counts. This is due
to an error in the code at the time of the simulation. The error has been idéntifi
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Fractal Analysis

The fractal dimensions of the images, GG and EMST all show patterns similarde ¢t the random
simulation. However, the standard deviations are somewhat larger, amaetine values are lower.
The pattern of the linear regions used is very similar to those in the random sonul@he fractal
dimension of Gabriel's Graph is larger than those of the image and the EutNiiaanum Spanning
Tree, which are fairly similar below 200 vessels, although the EMST appesaGG at high vessel
counts, and is larger at the very lowest. This in contrary to the random diotulghere EMST has
a dimension lower than that of the images below 150 vessels, see figuret4aB.vassels, all three
fractal dimensions increase suddenly. This matches the first suddemdhe cumulative histogram.
The curves appear to have a reduced increase in dimensions leadinghepstadden jump. Then,
in one big leap between 0.1 and 0.2 large, it changes into a higher dimengiattethat appears to
extrapolate well down to the start of the curve. As the dimension increasesatiations are roughly
halved, aligning the top of the standard deviations, but causing a leagsatale big as that of the
mean, at the lower end. The other two leaps in the cumulative histogram, at @Bavessels, leave
no similar changes in the dimension or in the variance. If at all affected hidwege is hidden by the
“noise” produced by the low sampling rate.

Syntactic Structure Analysis

No plainly observable changes occur at any of the three leap pointsaftiaative histogram for any
of the SSA parameters. As with the random simulation, all the skewness eodikyparameters have
large variations. The variations in these parameters are, yet agaitergten those of the random
simulation images. When comparing with the random simulation, keep in mind thatdkis ys
in general different. Most of the means are similarly shaped as their simpi®mracounterparts,
however, the values may be different. The variations of mean and sthdelgations of many of the
SSA parameters are substantial beneath 100 vessels.

Voronoi Diagram: The mean and the standard deviations of the area are smaller in this simulation
than in the random. The difference is substantial, a factor 2 for the medn%fat the standard
deviations. The variations are, however, much greater here. The ahdform parameters are
very similar, the noticeable difference being that the mean of the form leasegrdependence
on the number of vessels, steadily increasing throughout the range.

Gabriel's Graph: The mean branch length is shorter in the percolation images, but the variaténs
greater. This is in accordance with the area distribution of the Voronogpaly. The relatively
few longer branches created by an increase in the number of shochiesare not able to hold
the mean length up; this causes lower means and higher deviations. The samefds the
nearest and furthest neighbour parameters. Furthermore, for edl the difference between
these and those of the random simulation again appears to be roughlyraféfor the mean
and 1.5 for the deviations. The branches per node distributions aresiveitgr between the
two. The variations of the skewness and kurtosis of the Gabriel's Graganeters are larger
for the percolation simulation than the random simulation, with the exception o thfohe
branches per node which are very similar.

EMST: The EMST parameters mostly follow the same pattern as those of Gabriel's,Grajuding
the factor of 2 and 1.5. The mean of the branches per node is an exception



4.1. VESSEL SECTION SIMULATIONS

Number of Images
N w B o (o2} ~ (o]
o o o o o o o

[
o
T

73

Number of Generated Images

0

100

200

300 400 500

Number of Vessels

Figure 4.1: Percolation Simulation — The Number of SlideEath Vessel Number: The percolation method
does not allow the number of vessels generated in an imadgtslibe controlled. The number of images at
each vessel count were found to have this distribution.
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Figure 4.4: Percolation Simulation — Cumulative Histog@arameters and the Number of Images: The two
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graphs show the same curves, but the plots in the bottom draphbeen smoothed with a five point moving

average, the image number has been smoothed twice. Thelirmtnaean and standard deviations of the three
cumulative histogram parameters are plotted with cormedipg normalized values at the left hand axis. In the
background the number of images containing that particulanber of vessels are plotted in light green, the

values are shown in the axis to the right.
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Figure 4.5: The Mean Fractal Dimension of Each Image/Graph Both Methods: The dimension of the
image is much lower for the percolation images, comparetheéostmple random images. Furthermore, the
Euclidean Minimum Spanning Tree does not appear to havewceeddimension compared with the image,
this is, however, the case in the random simulation. Theesuend near the dimensions 1.89,1.93, 1.94, 1.93,
1.95 and 1.95 in the order of the legend from top to bottom. griagh is truncated at 400 vessels, after which
the percolation data becomes sparse.
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Fractal Dimensions at Large Sandbox Sizes StDev of Dimension
2 _ ° 0.1
1.8r T % § 0.06
B L] § 0.04
5 8
‘0 1.6f B 0.02]
@ i
S _
-§ 140V O e orvees
_>8< Upper Fractal Region
212
s 1
n s
g
1r 2
0 .8 L L L L L L
0 100 200 300 400 500
Number of Vessels
Fractal Dimensions of Gabriel's Graph StDev of Dimension
2 _ 0.1
Eﬂmggﬁ}}}}ﬁﬂﬁﬂ o
1 .8 B :E; 0.06
E 0.04f
g &
‘0 1.6f 002
c
()
-§ 1.4+ R i Sty S
_>8< woor Upper Fractal Region
212 s
n 3 200)
£
1r
.KE 100}
0.8] ‘ ‘ ‘ ‘ L ]
0 100 200 300 400 500 —
Number of Vessels ’ 0 wimberarvidtes 0%
Fractal Dimensions of EMST StDev of Dimension
2 _ 0.1
WH/HEH
1 8 B ;E; 0.06
E 0.04
g &
‘0 1.6f 002
c
(O]
-§ 1.4+ i Sy
_>8< 200 Upper Fractal Region
% 1.2r 250 I I % H—H } i
n % 200 il
H il
1r
E 100}
0 '8 L L L L L L 50
0 100 200 300 400 500
Number of Vessels 0 ieronvesees ‘%

Figure 4.6: Random Simulation — The Fractal Parameterstdépnce on the number of vessels in the slide.
From top to bottom: the fractal characteristics of the vissations, Gabriel’'s Graph and the Euclidean Mini-
mum Spanning Tree. For each of the three cases the fractahdions along with the corresponding standard
deviations are shown in the left graph, note that the y—axisuincated at 0.75. The standard deviations are
plotted by themself in the top right graph, truncated at 6.&rhphasize the smallest values. In the lower right
hand graph the smallest and largest sandbox diameter usiegl linear fit is shown (linear scale).
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Figure 4.7: Percolation Simulation — The Fractal Paranséependence on the number of vessels in the
slide. From top to bottom: the fractal characteristics ef¥hssel locations, Gabriel's Graph and the Euclidean
Minimum Spanning Tree. For each of the three cases the frditcteensions along with the corresponding
standard deviations are shown in the left graph, note tleat-thxis is truncated at 0.75. The standard deviations
are plotted by themself in the top right graph, truncated. at® emphasize the smallest values. In the lower
right hand graph the smallest and largest sandbox diamsgerin the linear fit is shown (linear scale).
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Figure 4.8: Random Simulation — Voronoi Diagram: Althougtriations of the mean and standard deviation
of the area quickly diminish for higher vessel counts, thegpehand form of the polygons show variations even
for the very high vascular slides. Skewness and kurtosig#targe variations for all vessel counts.
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Figure 4.9: Percolation Simulation — Voronoi Diagram: Altlgh variations of the mean and standard deviation
of the area quickly diminish for higher vessel counts, thapshand form of the polygons show variations even
for the very high vascular slides. Skewness and kurtosibixarge variations for all vessel counts.
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Figure 4.10: Random Vessel Simulation — Gabriel's Graple déviations of the branch lengths and distance
to nearest and furthest neighbour all decrease rapidly witteasing vessel count. The Branches per Node
count on the other hand shows much larger differences. Téersss and kurtosis have large deviations for
all investigated parameters. When comparing the distancé®tnearest and furthest neighbour, note that the

y-axis limits are different.
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Figure 4.11: Percolation Simulation — Gabriel's Graph: Tewiations of the branch lengths and distance
to nearest and furthest neighbour all decrease rapidly witteasing vessel count. The Branches per Node
count on the other hand shows much larger differences. Téersss and kurtosis have large deviations for
all investigated parameters. When comparing the distancé®tnearest and furthest neighbour, note that the
y-axis limits are different.
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Figure 4.12: Random Vessel Simulation — Euclidean Minimyparging Tree: These results are quite similar
to those of Gabriel's Graph, with one exception, the meanbarmof branches per node is completely deter-
mined by the vessel count. The standard deviation of branghenode, on the other hand, still have variations
on an order similar to that of Gabriel's Graph. The Kurtosisl &kewness of all four parameters have large

deviations.
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Figure 4.13: Percolation Simulation — Euclidean Minimuna8ping Tree: These results are quite similar to
those of Gabriels Graph, with one exception, the mean nuofd@anches per node is completely determined

by the vessel count. The standard deviation of branchesqukr, on the other hand, still have variations on an
order similar to that of Gabriel's Graph. The Kurtosis anéwkess of all four parameters have large deviations.
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caselx25 case2x25 case3x25 case4dx?
Number of Vessels 329 187 221 219
Area of Vessels 312.6 377.4 314.0-625.3 185.6+173.9 308.8+ 379.3
to scale unr?) 5.95+ 7.19 5.98+ 11.91 3.53+3.31 5.88+ 7.22
Relative Vascular Density (area) 3.18% 1.81% 1.27% 2.09%
Cumulative Histogram at 90% 9.0 13.3 13.0 11.3
to scale um) 1.24 1.83 1.79 1.56
Cumulative Histogram at 50% 33.2 45.3 40.0 43.4
to scale pm) 458 6.25 5.52 5.98
Cumulative Histogram at 10% 75.5 89.6 76.5 97.1
to scale m) 10.42 12.36 10.56 13.40

Table 4.1: Basic image statistical parameters for eachefdhr cases. The rows labeld scaleshow the
corresponding values ipm, rather than pixels. The25in the case name refer to magnification the images
were acquired at.

4.2 Analysis of Histological Sections

Sections of four invasive carcinomas of the breast stained for CD34 amalysed at 25x magnifi-
cation by fractal analysis and syntactic structure analysis, as well as mdee parameters relating
to the number of vessels, the vascular areas and the distances to ttat messel throughout the
image. The images were pre-processed in accordance with section ite base, number 4, the
section had an artifact, a small black area. Even though there were, fopod close examination,
signs of staining at the edge of the black region, the entire area hasdesdered non-vascular and
manually removed in an image editor. The removal was done by replacingethevdh textures from
the surrounding region, this to prevent it from leaving a noticeable edgEhwvould be picked up by
the gradient image.

Both the sections themselves and the imaged regions were chosen by agsthdlbey are
all high-vascular and exhibit somewhat different distribution patternise dases before and after
thresholding are shown in figure 4.14.

4.2.1 Image Statistics

Using the methods described in section 3.2, the number of vessels, the reaaf Hre vessels, the
relative vascular density, and the three cumulative histogram valuescatkndated for each case.
These data are shown in table 4.1. Case three is by far the one containinighbst mumber of
vessels, while case two has the lowest number.

Cases 3 and 4 have almost the same number of vessels, but both theizessahd the distribution
patterns are very different between the two, see figure 4.14. Theettiffes in the areas are clearly
reflected in both the area of the vessels and the relative vascular atedsrighe table. Cases 1, 2
and 4 all have a mean vessel area close to 310 pixels, case 2, hoasarmuch higher standard
deviation.

The influence of the mean vessel area on the cumulative histogram parasoaies as the square
root of the area, and is consequently quite small. For instance, the diffeyén the area distributions
between cases 3 and 4 should decrease the distances to the neassh\wse 4 by approximately
2.2 pixels compared to case 3. The different distribution patterns, howesalt in an increase of 20.6
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Case 1

Case 2

Case 3

Case 4

Figure 4.14: Images of the four cases. The unprocessed aageshown in the left column and the black and
white results of the threshold proceedure in the right.
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pixels or 26.9%. Compared to thepfl long diffusion range of oxygen, the cumulative histogram
values are relatively small for all cases.

4.2.2 Syntactic Structure Analysis

The results of the syntactic structure analysis of the four cases arenshaables 4.3-4.5. The
standard deviations of the various parameters relative to the mean vauisteat in table 4.2.

Voronoi Diagram

The mean area is closely and inversely related to the number of vessels iagheent The standard
deviation of the area reflects, however, the spread of the distributidnyaaies greatly between the
four cases. The skewness and kurtosis show large differenctefarea histograms, and somewhat
less for the form and shape of the polygons. There is also less sprehd mean and standard
deviations of these parameters. The size of the standard deviation ofaibe, sbughly 70% of the
mean, suggests that this is not a highly sensitive parameter where charbessecond and third
decimal are important. The form has, however, a much lower standaiatidayin the order of 10%
and relatively small differences may be of some value. The number of sauspleowever, far too
limited to make any conclusions.

Gabriel's Graph

The mean branch length decreases for larger vessel numbers gaseekl he skewness and kurtosis
of the mean and the distances to nearest and furthest neighbour, sgewdaiations. The number
of branches per node and their standard deviations are fairly largeatechip the simulation results,
case three in particular appears to be at least two standard deviatiaterghan the mean of the
simulation. The standard deviations are consistent with the simulation resuksdigtance to the
furthest neighbour appears to be dependent on the number of vassels like the mean branch
length. The standard deviations, however, varies greatly and doshmwtthe same correlation. The
values range from 47-78 pixels and 29-47% of the mean. These vakiéisoge of cases 3 and
4 respectively, two cases with almost the same number of vessels (2211@nhdVZhile the mean
distance to the furthest neighbour is similar for cases 3 and 4, the distatigertearest neighbour is
not.

Euclidean Minimum Spanning Tree

The mean branch lengths of the EMST are 67.5, 67.7, 73.1 and 67.9% of émetmanch length in
GG. The third case also have a much smaller (relative) standard deviatigraced to the other cases.
Case four has the highest deviations. The two cases with the least mlifieirevessel numbers end
up at each end of the spectre again. The branches per node pasaanet&irly similar in all cases.
The differences in the skewness is less pronounced than in Gabrief$Gmhe differences in the
kurtosis is, however, slightly larger. The relative deviations of this par@mnage fairly similar from
case to case, with case four having a slightly smaller deviation than the otber ffine distance to
nearest neighbour parameters are identical to those in Gabriel's GFaphldistances to the furthest
neighbour are 55.1, 36.8, 62.6 and 57.7% of the corresponding G@etarespectively. The
relative deviations in this parameter are reduced comapred to those of rG@ses 1 and 2, but
increased for case 3 and fairly similar for case 4. Case 3 has the smelster deviations in the
distances to both the nearest and furthest neighbour for both GG a8d EM
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Casel Case?2 Case3 Case4d

S| Area of polygons 64.0% 56.2% 41.1% 53.4%
g Shape of polygons 70.4% 69.5% 69.4% 67.9%
=| Form of polygons 12.4% 10.5% 10.0% 14.2%

Branch Length 58.1% 52.1% 41.3% 59.5%
| Branches per Node | 26.3% 30.2% 36.5% 29.6%
O| Nearest Neighbour | 47.7% 50.3% 39.9% 53.5%

Furthest Neighbour | 45.7% 42.6% 29.0% 47.5%
. Branch Length 46.0% 44.8% 36.1% 51.4%
n| Branches per Node | 35.3% 36.2% 35.7% 33.2%
E Nearest Neighbour | 48.2% 50.3% 40.0% 53.5%

Furthest Neighbour | 39.9% 36.8% 32.0% 45.3%

Table 4.2: The size of the standard deviations of the syiotsitticture analysis parameters relative to the mean.
The size of the standard deviations are dependent on thefsihke mean, which in turn is dependent on the
number of vessels. This table shows the standard deviatitats/e to the mean, to better facilitate comparisons
between the cases.

4.2.3 Fractal Analysis

The five fractal algorithms have been applied to each of the five diffemeade representations; the
full cross sections of the vessels, the perimeter of the vessels, théwessecentres, Gabriel's Graph
and the EMST, in total one hundred analyses. An overview of the dimens@hown in table 4.6.
The results of all the analyses are shown in figures A.8—A.17 in the append

The termdimensions not well defined for cross sections of networks, the real investigeteim-
eters are the power law scaling at various parts of the graphs. The taontlseless used, although,
in a less strict sense, for ease of nomenclature. That being said, mosdsetiovide a large spread
of values between the different cases, much more so than the simulatiastsigg

While the Correlation, Mass and Sandbox algorithms behave similarly, the Bomtidg method
is listed in the table with much lower dimensions. It is, however, the method thatdflests the
fractal dimensionof the images, in the true meaning of the words. The Fourier dimensions listed
there, are even less compatible with the other dimensions as they may deegpgdlsewhere other
dimensions increase or vice versa. For this reason, the three categerggsnmented separately. The
dimensions in the table are selected, based on the result, as the partsreghigidenost interesting
of the given method and image type. The same selection criteria have beekn al cases.

Box Counting: This method produces two linear regions for most of the images, the excepgorg
the EMST curves and two of the cases in the perimeter analysis. The dimerfdtoe first
region corresponds to the fine details in the image, and the second to thdéatgees. In the
Cross Section, analysis the first region has values around 1.5 ardponds to the shapes of
the vessels themselves (fine details), the values listed in table 4.6 are froectme gegion
corresponding to less fine details, and are affected by the relative pesitiche vessels. The
first value is affected by the area of the vessels which increases tor highes for larger
vessels, and by the vessel shape which increases with the complexity rarabity of the
vessel perimeter. The first of these is directly measurable from the imadjehealatter is better
measured by the dimension of the vessel perimeter. The values in table 4o& areflecting
the dot-like appearance of the vessels at large box-sizes.
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Voronoi Diagram
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Table 4.3: Voronoi Diagrams and Histograms
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Table 4.4: Gabriel's Graph Histograms
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The Box Counting dimensions of the vessel perimeter are chosen as tfigtdidsregion, two
of the cases have only one region and this provides consistency fremtaaase. This value
reflects the tortuosity of the vessel perimeter.

For the vessel centres, the first region has a slope near zero refietiihe vessels have been
reduced to points. At larger sizes, however, a box containing evermgke siessel accounts for
a large area. This results in a higher dimension (between 0.88 and 1.213ffadied by the
relative positions of the vessels. These are the values shown in the tathle fierimeter.

For Gabriel's Graph and EMST, the highest dimension in a region whichdaslboxes larger
than 100 pixels is used. These dimensions reflect the scaling of the sitesstafles and the
tortuosity of the graphs.

Correlation, Mass and Sandbox Dimensions:

Cross Section: While the three dimensions are fairly similar in some of the cases they diverge
in others. For instance, the sandbox dimension of case 3 and the corréliatiension of
case three. The mass dimension has the smallest changes from caséatitoasgh quite
large) and is in general the smallest of the three. The shape of the euevpsetty con-
sistent, with the exception of the correlation curves of cases 3 and 4 Havindifferent
regions.

Perimeter: These values follow the same pattern as that of the cross section, buglaee h
The smallest values tend to have increased the most, however there is modiagan
between the cross section dimensions and the perimeter dimensions.

Centre: In this category the sandbox dimension produces the most consisteatstiape. For
all cases it consisists of three regions, the first with a dimension closedptherlatter
being a well defined linear region, and the third is the slope of a transitiaorreégtween
the two. The Correlation curve shape varies from case to case, [imgdetween two and
four regions of varying linearity. The Mass curve, being calculatethftioe correlation
curve, is affected by this as well. It is far better defined than the correlatiove, and
contains three regions (two in case 4, however, a possible third regioo ssall to be
included). The first of these regions has a very high slope (2.11-2I&8)second region
is the one included in the table. The third region has a lower slope than thedsacd
starts at radiuses larger than 220 pixels.

Gabriel's Graph: The relative size of the dimensions is consistent regardless of the method,
as the mass dimension is the smallest in all cases and the sandbox dimensieatbstgr
The size of the difference is also fairly consistent. Furthermore, the m&tbod/es have
similar shapes in all the cases, in spite of the varying number of linear refporise
correlation curves, which are a result of variations within the same caorve f

EMST: In addition to the long range correlations shown in table 4.6, the short @orgela-
tions are shown in table 4.7. The short range correlations are likely to lemaid by
the number of branches per node, the angle between these, and tble leragths. The
long range correlations of the EMST show larger variations in the resuttedlifferent
methods than Gabriel's Graph does, as well as somewhat larger varitbangase to
case.

Fourier: The Fourier algorithm proves to be unsuited for this task. It producega tamber of lin-
ear regions when applied to the vessel areas or perimeter, i.e. the conotsvisll approximated
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by linear regions. The regions of the second largest frequencidsekadisted in the table, the
highest frequency slope being outside the mappable region (slope #i8)sdems to provide
a value within a sensible area and one with variation from case to case thdyoarever, far
from well defined.

For the vessel centres the curve is flat, or even increasing for all edbwhfrequencies. In
this case the lowest frequency fit is inserted into the table, this covergvieovavery narrow
frequency interval, and is again poorly defined.

The curve shape is far better defined for GG and EMST. The regiorecfdbond largest fre-
guency is large and well fitted by a linear curve. The values are notlgimmparable to the
other dimensions, but not necessarily useless. For instance, the galhesGabriel’s Graph
fits show a decent spread between 1.33 and 1.56.

4.2.4 Comparison with the Simulation Data

In order to provide a proper comparison with the simulated images, the mass teages were
reduced to 30& 400 pixels, by assigning the value 1 to any of the new pixels that contained the
centre of at least one mass centre pixel. This operation is similar to the rgsdalie in the box
counting method. The smaller images were then run through the same scriptsasised in the
simulation and the results are plotted as coloured (mostly red) circles in thedigu2—4.13. The
case names are only indicated by the number of vessels at the x—axisleframright, the order is
case 2,4,3and 1.

The four cases spread out well for most parameters. In some cagest two of them are even
far outside the standard deviations. The spread suggests that real Sewgms may provide an
even wider spread in results than the simulations indicate, although fowrisdasufficient to make
conclusions.

The fractal dimensions require some further comments. As shown in tabledng,of the fractal
dimensions have changed significantly. To illustrate this furtheg have been placed in figures 4.6
and 4.7, to represent the dimensions of the full resolution images. Thbmadémeters have been
devided by 516 to achieve comparative numbers, the conversion is, however, act. eXhe two
ratios between the two image dimensions are approximately 1.347, not 4/3etfruotle, 50 different
sandbox sizes are used in both cases, this provides a higher relatiaticn in sandboxes for the
smaller images. The maximum sandbox size of the larger image is 1357 whicmé®@63 in the
reduced resolution image. All of the full resolution linear fits includes thedgghandbox diameter,
see table 4.15. Consequently, all tkes are aligned along this value in thied coordinateglot. This
value is, however, significantly smaller than the maximum value of the reducegenahich is 273.
Both values are a little higher than the mean end coordinate and well insidendarstaleviation of
the simulated images. It should be pointed out that as these values are dioseipper boundary,
the standard deviations are most likely related more strongly to the negatiatiales, shifting the
mean towards lower values, than the positive deviations.

The linear regions that start and end close to the equivalent coordiofatee full resolution
images, have very similar fractal dimensions. The dimensions with non-ppéarta markers, that
is large differences between the two resolutions, also have at leastoorevarlapping marker in
the start-end coordinate plot. One case with non-overlapping markers icotrdinate plot still
has overlapping markers in the dimension plot. The overall impression frsntinttited material
is that linear fits across the equivalent regions result in similar dimensidiikg fits from different
regions may, or may not, result in large differences. The curve skapeshown in table 4.15 for
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c Case 1 Case 2 Case 3 Case 4
2 Dim Num Dim Num Dim Num Dim Num
8| Box Counting 1.0577 2 0.8616 2 0.7991 2 0.9942 23
®| correlaton 15837 3 14433 3 19369 4 14614 4
81 Mass 1.5081 3 1.3423 3 1.6594 3 1.5381 3
G| Sandbox 1.5605 3 1.4232 3 1.8080 3 1.9066 3
Fourier 1.8464 5 1.7620 5 1.2304 5 1.3992 4
| Box Counting 1.0676 1 1.0692 2 1.0619 2 1.0703 il
g Correlation 1.6714 4 1.5995 3 1.9474 4 1.7666 B
‘S| Mass 1.5483 3 1.5241 3 1.7000 3 1.6097 3
0| sandbox 1.6171 3 1.7221 3 1.8540 3 1.9195 3
Fourier 1.5503 5 1.6151 5 1.7398 5 1.5512 5
° Box Counting 1.2187 2 0.8839 2 1.0195 2 0.8891 P
= Correlation 1.7484 2 1.5571 3 1.6393 3 1.8890 A
8 Mass 1.7681 3 1.8472 3 2.0418 3 1.7682 P
Sandbox 1.7684 3 1.8296 3 1.8947 3 1.9126 3
Fourier 1.5195 4 1.5380 3 1.5902 4 1.5912 4
¢ | Box Counting 1.6965 2 1.6389 2 1.6782 2 1.5987 P
2| Correlation 1.8153 3 1.7945 3 1.8544 4 1.7268 2
% Mass 1.7655 2 1.7447 2 1.8060 2 1.6894 P
8 Sandbox 1.8969 3 1.9410 3 1.9695 3 1.8359 3
Fourier 1.5663 5 1.3259 5 1.4649 5 1.4182 4
Box Counting 1.0906 1 1.0702 1 1.0744 1 1.0812 L
| Correlation 1.7183 2 1.6668 2 1.8969 3 1.5264 3
g Mass 1.6415 2 1.5950 2 1.7238 2 1.6307 P
Wi Sandbox 1.8852 3 1.8020 2 1.9306 2 1.9067 3
Fourier 1.3446 5 1.3225 4 1.3964 5 1.3447 4

Table 4.6: Fractal dimensions of the four cases: These diibes were automatically selected, one for each
image and method, from the possible linearly fitted regimes figures A.8—A.17. The number of linearly
fitted regions are shown next to the dimension. The seledtitaria were in general different for the box
counting method and the Fourier method, compared to thatingbe three other methods. See descripions in
section 4.2.3.

comparison. The non-linearity of the double logarithmic plots gives widerdirezdons at the large
sandbox diameter for the smaller resolution. These regions do not aglyedwowever, occupy a
larger portion of the linear range. The linear width is dominated by the hidgbgatithmic values.
Provided that both regions include these values, the linear range oacipylar percentage.
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Reduced Resolution (383100)
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Figure 4.15: Comparison of the sandbox dimensions of thes westre images at two different resolutions
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Case 1l Case 2 Case 3 Case 4

Dim Num Dim Num Dim Num Dim Num
— Box Counting 1.0906 1 1.0702 1 1.0744 1 1.0812 il
»| Correlation 1.0893 2 1.0648 2 1.0641 3 1.0771 3
E Mass 1.1608 2 1.1311 2 1.1357 2 1.1385 P
Sandbox 1.0726 3 1.0549 2 1.0576 2 1.0626 3

Table 4.7: Short range / high detail scaling of the Euclidbnimum Spanning Tree. These values were
obtained from the short radius / small boxes side of the graph

Centre of Mass| Gabriel's Graph EMST

Full Red. Full Red. Full Red.
Casel| 1.7684 1.6856 1.8969 1.9177 1.8852 1.8602
Case 2| 1.8296 1.9796 1.9410 1.9248 1.8020 1.9297
Case 3| 1.8947 1.9046 1.9695 1.9672 1.9306 1.9382
Case 4| 1.9126 1.8496 1.8359 1.8546 1.9067 1.8911

Table 4.8: The investigated fractal dimensions of the fotl ¢he reduced resolution images.
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Chapter 5

Discussion

5.1 Fractal Properties of the Vascular System

The fractal characteristics of tumour vasculature have been investigasetsteral studies, see sec-
tion 2.4. Images of two-dimensional tumour set-ups appear to be well-suitédefuse of fractal
analysis. Three-dimensional systems should work equally well, althoughatkemore difficult to
obtain, and will demand much more computational power to process. Thremsional network
information should be most easily obtained through one of two routes. Eitbastacan be made
by injecting a liquid substance, which subsequently turns into plastic, into gwikea system, and
then corrode away the surrounding tissue with acid. This is an establisitaddneee examples in
figure 2.14 and 2.16 (reference [27] and [28]). These studies penfermed on mice and human
hemicolectomi samples from patients undergoing surgery. The method ha$iroi¢ations in its use
on human tumours. In these studies, the desired information was extractegttihe use of photog-
raphy from different angles. For the purpose of fractal analysistieer approach may provide more
accessible information about the network. If a suitable contrast agettecapplied to the plastinat-
ing liquid, a high-resolution micro-CT scanner may be able to extract thelesshe solid vessel
casting allows the use of extremely long exposures, increasing the wdfeetiolution and contrast
of the result. Another approach is to use histological sections, samplednaalg regular interval
throughout the tumour. The network can then be reconstructed on a complossfirst of these ap-
proaches is most likely practically difficult, and the latter requires an en@raoount of work, due
to the extremely large quantity of sections and images.

Through work on two-dimensional tumour models, Gazit et.al. [17][16] Baigh et.al. [2] ob-
served fractal dimension similar to that of invasion percolation. They megbthat some form of
percolation process, possibly linked to the extra-cellular matrix, might ponsible for the abnor-
mal network morphology (see sections 2.4.2 and 2.4.4). Bartha et.al. [@}&eently developed what
they call a hybrid probabilistic cellular automaton tumour model. In this model theyose that it
is the pruning of vessels within the tumour that gives rise to the avascul&etsocThe border of
the tumour is highly vascularized, but as the tumour grows some of theselsveeiapse or other-
wise disappear, resulting in hypoxic and necrotic regions. Their mogelas networks of a similar
fractal dimension as that of invasion percolation, without resorting to azglljorandom substrate
property, (see section 2.4.5).

Too much may have been made of the notion that tumour vasculature pointd$@yaercolation-
like process in the development of blood vessels, especially considedrgptiad in fractal dimen-
sions observed in some of the investigated tumours, see figure 2.24tiddess, invasion percolation

97
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offers a fairly simple model to work with, at least compared to Bartha et.al&emdt is recognized

that it may not be a process completely representative of the formation wdskalar network. Gazit
et.al.'s results do, however, show that as a model used to describesthdatare morphology in tu-
mours, it works fairly well, at least in the two-dimensional cases. Extrépglghese results to three
dimensions, this thesis hypothesizes that three-dimensional percolatiterslsisould produce two-
dimensional cross sections with attributes closer to that of real netwokks iy simply assigning

vessel locations at random throughout an image.

Regardless of which models are best suited to generate a network, dted ealing of tumour
networks provides some very interesting implications. If the networks tr@yfractal across some
significant size-scales, then this is equivalent to asserting a poweelationship between the vas-
cular and avascular regions across these scales. In other wordsntiber of avascular pockets aif
leasta given size relates to that of other sizes. This will be investigated furieg the formulas of
the box counting method from section 2.3.5:

log(N) = Dlog(1/S) +logc (2.3)

where c is the intercept of the box counting curve. That is, the numbenxaisbwith content when the
box size is maximal, this number is one for all but empty sets. Consequently,nitithber of boxes
of linear sizeS, is found to beN;, then this means that the number of boxes half the N;@, and

twice the sizeN,, will be 5 5
2 1

The avascular fractions would thenAg; = 1—N; - = 1—- 52D and
Af12=1-2PS?P and A;p,=1-2"P.5%PD) (5.2)

Although great care must be exercised in interpreting these fractionsnfieations are clear.
Within the fractal scaling region, the number of avascular pockets of st ¢eee size relates to that
of other sizes. At the dimension of the Sierpinski Carpet for instanecfigere 2.19, which is very
close to that of two-dimensional percolation clusters, the number of deagmckets that are at least
one third of some arbitrary unit in size, is eight times higher than those of ettde& unit in size.
There will, in other words, be a few large and an increasing number of snaatescular regions.
The number of hypoxic regions is the same as the number of avasculanggegiith the exception
that there are no hypoxic regions for avascular regions smaller thami48urthermore, their size
is smaller and given as a function of the diffusion distance of oxygen anditie and shape of the
avascular pocket itself.

In this way the existence of large avascular regions predicts the existésogaller ones. Fur-
thermore, and perhaps more interestingly, the quantification of small d&aasegions within small
samples may predict the probability of finding larger ones. In each casle,psedictions would be
based on a number of extrapolations of data. The two most important argtthpatations of the
linear loglog-region and that of the fractal behaviour. The first is tsaragtion that the fractal scal-
ing is the same at other size scales than the one investigated. The secondsisuimgtion that the
fractal behaviour is the same throughout the tumour. The available lite@iuhe subject is not con-
sidered sufficient to make claims towards the validity of these predictions.vdtification of such
behaviour would require the analysis of the complete vascular systenafsoifficiently large number
of tumours, and obviously the data must be verified for each tumour typehisipoint, they are but
interesting speculations based on the properties of mathematical fractals.



5.2. HISTOLOGICAL IMAGES 99

5.2 Histological Images

5.2.1 Image Magnification

The four images used in this work were all digitized>@5 magnification. In addition, images at
x50 andx 100 were acquired from the same samples. The resolution of the imag@% ditas been
deemed sufficient to successfully extract the vessels from the imagy afehtify the vessel centre
in particular. The outline of the vessels can also be established at thisti@sofuoviding sufficient
information about the size, area, and shape of the vessels. If theahthperessel wall itself is to be
studied, higher magnifications should be used.

5.2.2 Image Processing

In order to achieve a well defined replicable measure, some effortdes fut into the process of
the black and white conversion. The over all goal has been achiewwdltisteps in the processes
should be mathematically defined, so that it is not necessary for an aptrateiude a personal
judgement into the process. The added benefit is that the process aatob®ted to a better degree.
The quality of the method has not been quantitatively investigated for eitlser pasitives or false
negatives. Visual inspection does, however, confirm that theyegresentativdor the images in
question, or at the very least possible images of this tumour type. For thegauof this thesis, the
developed method has been considered sufficient.

5.3 The Studied Parameters

The studied parameters are those available through image analysis of tuoeshisections. The
most obvious of these are the ones categorizdobag image statisticsThese parameters provide
the most basic and easily interpreted results. In particular the numbersgfisesd vascular density
is of interest as it provides means for the comparison to current parameted by pathologists.
The histograms of the distances to the nearest vessels were done almtbgsdiectly to hypoxia.
Syntactic Structure Analysis provides a large set of parameters easligdafpthis type of images.
Furthermore, Gabriel's Graph and the Euclidean Minimum Spanning Teeeelt suited for fractal
analysis. Fractal Analysis of histological images has been the main emphésistbis thesis. The
large number of SSA-parameters should not be allowed to obscure this.

5.3.1 Fractal Analysis

There are a small, but growing, number of published papers that in oneneaother applies fractal
analysis to tissue sections (references [42][36][20][24][43& section 2.4.3. Although the use of
fractal analysis on tumour vasculature appears to be well founded inateeaf two-dimensional
tumour models, or, if obtainable, three-dimensional tumour vascular neswbik relevance of these
methods to tissue sections is less clear.

Defining the Measure

Before discussing the usefulness of the method, there is one pitfall thiitee commenting. The
feature of the image that is to be analysed must be rigorously defined. $tande, in the study of
Spillman et.al. [42] H&E stained sections were converted to greyscale andshthd was applied at
50% luminosity. This raises the question of how consistent the contrast iteiheng is. Especially
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because the sample image only appears to occupy a part of the intensityansttuere are no dark-
grey to black pixels. Any changes in the overall luminance in the image willlgladect the densities
of both black and white pixels. The same applies to Sabo et.al. [36], who dpdietal analysis to
CD34 stained images. The paper does not specify if, or how, a threghajaplied, however, the
box counting method used requires a threshold. Furthermore, the gieyswages shown in the
paper has different amounts of background staining of what appeéescell nuclei. In one image
it is almost as dark as the vessels, while in another they are barely visiblégeee 2.27. In either
case, it raises the question of whether or not this staining is included in thedumting. In yet
another study, this one by Heymans et.al. [24], the Fourier method is applg@yscale images
stained withUlex Europaeus Although no threshold was required here, any changes in the overall
luminance in the image are still likely to cause non-trivial changes in the dimersgersection 2.3.9
and reference [41]. For further information on these papers, stiers.4.3.

To avoid any uncertainties as to how the image material is processed ansezhahe method in
section3.1 has been implemented. No greyscale images have been usedacttieahalysis, only
black and white. See section 5.2.2 for further discussion of the method.

The Study of Tissue Sections

The meaningfulness of applying fractal analysis to tissue sections recainee debating. The rele-
vance of the other parameters is far more evident as these methods arer fessedesigned for this
purpose. The discussion will be limited to the study of images where a thredsh®ldeen applied to
remove all pixels but those of the vasculature. It applies to all forms ¢f sBoages, regardless of the
staining used to highlight the vasculature. The difficulties involved in extrgtkia vessel informa-
tion, and the means to do it, will, however, vary greatly for different staipnogocols. A cross section
of a tumour’s vascular network is essentially a series of dots of vari@meshdistributed throughout
an image. Although the overlaying structure is the sum of all the cross sgctios not clear how
useful the information from a rather limited number of sections is, when it cémdsscribing the
overall network characteristics. It is clear that any single cross sectiorbe a part of a variety of
different network morphologies. Parameters such as the vessel diaandtdre intervessel distance
should correlate with similar parameters in the cross sections. Other morgablogrameters, how-
ever, such as the branching angles and interbranch distancesdgee 2€1.6), are not obtainable at
all. This suggests that networks with large variations in these parametersesalyin similar cross
sections. On the other hand, it is also evident that the overall networkhwmlogy will affect the
distributions of vessels in the cross section. Although the fractal scalitieecfections may, or may
not, correlate directly to the fractal dimension of the network, it seems maneothasible that it does
relate to the overall morphology.

The Different Approaches to Fractal Analysis

The fractal analysis may be implemented in a number of different ways. ié®iavestigated here,
see section 4.2.3, are the analyses of the combined vessel lumina and weatiateh perimeter of
the vessel walls, and the centre of mass. In addition the fractal dimendi@abael's Graph and
the Euclidean Minimum Spanning Tree were calculated. There is a varietiffefedt algorithms
available for these purposes, five of which have been investigatedTadre 4.6, showing the fractal
analysis results of the four cases, clearly illustrates the large varietysoltseobtainable by these
methods.
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It should be pointed out that these cross sections are not fractalsméteds may, neverthe-
less, still be of value, provided that the curves have well defined ptameobeying regions. As
figures A.8—-A.17 show, this certainly appears to be the case. The bahaf¥ithe curves are, how-
ever, very different for each method and image type. Each power lalingaegion occupy some
20-40% of the curves. This makes the terminoléggtal dimensiorimprecise. None of these num-
bers can be said to be the dimension of the image as a whole. The measur&ty ¢gihe power law
behaviour of thaparticular region. Nonetheless, the teximensioris still used of these parameters,
as the alternative is an unnecessarily complicated terminology. It is, hoviey®rtant to bear these
distinctions in mind.

For each image, twenty-five different curves have been obtainedsdrabox dimension of the
vessels’ mass centres at large sandbox sizes has been considemsuktlatractive of these. The
sandbox method was found to be the most precise for the given test imagesion 3.5. It has a
reasonable execution time and a well defined curve shape for the mass icgsges. The use of
images that only contain the mass centre, ignores the shape and sizes e$dbis vleaving their
numbers and relative positions as the only involved parameters.

The fractal characteristics of the vessels themselves have not bestigated in particular, al-
though the data is readily available from figures A.8—-A.11. The left harel gfidhe curves would
be the interesting region for this purpose. To reduce the effect oéhvsizes, which is easier mea-
sured by the vessel area parameter, the perimeter data would be lpeefétistograms of the locally
connected fractal dimension, see section 2.3.9, of the vessels may besbiét@ifor this characteri-
zation. They would show the distribution of fractal dimensions of the diffevessels. Furthermore,
higher magnification images should prove to be a better source of inform&@msection 3.1 for a
list of the different area coverages and resolutions at different ifieagions.

The fractal dimensions of Gabriel’s Graph and the Euclidean Minimum Sipaiiinee may also
prove to be valuable parameters. In case of the EMST, the low regions gfaph may be considered
in addition to the high, although the latter seems more promising and the differareeertainly a
lot more pronounced.

Changes in the Resolution of an Image

The relative size of the pixels representing the mass centres is impossiblestrnaacross different
image resolutions. Changes in image resolution will, however, cause chéorgall methods and
images. Lowering the resolution, increases the size of the smallest fedtigrg®ssible to obtain
information from, and, perhaps more importantly, it reduces the numberfefatit low resolutions,
or in the context of sandbox analysis of the mass centre images, it retiheceamber of different
large diameters. The effect of resolution changes at large sandbmetdizs should, however, not
cause any large effects on the result, although some is certainly present.

The effect of resizing the images has not been studied here in partiSolae data are, however,
available from the comparison between the results of the simulations and theditsibsections.
These are, however, limited to the sandbox dimension of the mass centrgeaddadbox diameters.
The large deviations in these results serve to illustrate that further develibsmeeeded in order to
reproduce the results at different resolutions. The differences irethdts are reasonably small for
many of the values, but varies greatly for others. The size and sign dliffeeence in value varies
a lot, suggesting that the effect is not caused by the reduced resokidrihe good correlation of
differences in start and end coordinates points toward the routine tioabatically selected the linear
regions, see figures 4.6—4.7 and section 4.2.4.

It is apparent that this method requires further development with respecbustness. Two
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suggestions for ways to improve this will be provided. 1) The power olitrenRfactor in the quality
of fit function can be increased to further emphasize good fits overdaeges. 2) The selection criteria
with respect to the sandbox method applied to mass centres can be modifiedr tRan using the
highest, automatically selected region, a region at high dimensions can dasiserequirement in
the algorithm. Another possibility is to specify at least one of the sides (esthding point) of the
linear region. Other approaches to tinglity of fitfunction may be considered as well.

Although the lack of robustness at a five-fold resolution change daesenessarily imply that
the routine lacks robustness at high resolutions, it should certainly bessgdi. Different institutions
cannot be expected to have similar digital sensors. Furthermore, if staletitiebn the high and low
resolution images can be obtained, then low resolution images will be an agedaataomputation
speed when large quantities of images are processed.

5.3.2 Cumulative Histograms of the Distance to the Nearestégsel

These histograms offer the most straight forward approach of estimagngadhnitude of avascular
pockets in a tissue section. Keep in mind, however, that these distancg#uterthe maximum
distance to the nearest vessel, a closer vessel may easily be founa dlésichage plane. All four
sections investigated here, are highly vascularized. This results in distahces to the vessels.
The investigated areas of histological sections, at least in the conteasofilature parameters, are
typically chosen from the most vascular areas in the section. Theseae&sown as vascular
hot-spots. The relevance of this parameter depends highly on how thecgistestribution within a
hot-spot relate to those outside hot-spots. These parameters may additiensilydied outside the
hot-spots, however, parameters that can be obtained within the same datalpeaee more likely
to be used. In addition, the area to be studied should be chosen acctrdeqroducible criteria.
The vascular hot-spots represent such a criterion, and it is well estdblfer histological studies.
Using the same areas for all parameters, allows for correlations betwesmgters to be more easily
established, as the additional variable of second area selection is reritneeldope is, however, that
a parameter that relates directly to hypoxic fractions, or similar quantities, maptained. This
must be established irrespective of the correlation with other parameters.

5.3.3 Syntactic Structure Analysis

The Syntactic Structure Analysis offers a broad panel of parametgpscially when each of the
four histogram parameters are considered. Many of these parametatisegctly dependent on the
number of vessels in the image. The total length of the tree, the area of tbheodVquolygons, or
the distances to the nearest neighbour are good examples. Other pasareteot, for instance the
number of branches per node, or the shape of the Voronoi polyg@tsause the number of vessels is
established by counting them, the main interest of the SSA-parameters is timedtiém they contain
with respect to the morphology of the vessels. The relationship between phesmeters and the
number of vessels is shown, at least to some extent, in the simulation reselfggwses 4.8-4.13.
The dependencies on the number of vessels are non-linear, espetiallyea vessel counts, and
the size of the standard deviations and the mean value generally haverdiffiependencies on the
number of vessels.

In addition to the SSA-parameters used by Weyn et.al.[43], the distance tarthest neighbour
has been investigated. The distance to the nearest neighbour is idenBedriel's Graph and the Eu-
clidean Minimum Spanning Tree. This makes it redundant to calculate it fardgraphs, suggesting
that one of them should be removed, or possibly replaced by the distattoe firthest neighbour.
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Although the two parameters certainly relate to each other, they relate to thed déestribution as
well. The ratio between them are 1.49, 1.46, 1.36 and 1.57 for each ofithedses respectively. At
this point it is recommended to the keep both parameters for further studies.

5.4 \essel Simulations

Grizzi et.al. [20] performed a simulation where circular vessels of a fixeel were distributed

throughout an image, according to a uniform probability distribution, with te restraint that no
vessels were allowed to overlap, see section 2.4.3. They investigatedhtigestof the box counting
dimension as a function of the number of vessels, for vessel couniagaingm 5 to 50. They found

that the fractal dimensions increased with the number of vessels and tteatvids® a non-zero vari-
ance for most data points. Two similar simulations have been performedjgates) the dependency
of all used image analysis parameters on the number of vessels. Thecedoand in Grizzi et.al.'s

results was quite small. The ones found in these simulations have, howaxem po be significantly

larger, increasing the potential clinical value of the parameters beyohdfttiee vessel density.

5.4.1 The Purpose of the Vessel Simulations

The vessel simulations have served a two-fold purpose. The first iht#hashow which of the inves-
tigated parameters that strongly depend on image information other than themofiwiessels. The
size of the standard deviations is considered to relate to this dependéhdgrge values suggesting
a strong link to the relative positions of the vessels. This was the main rearstarfying out the sim-
ulations. The purpose of this study at this point is to evaluate how well theusgparameters may
be suited for further studies. Any parameter that relates solely to the nwhbessels is redundant.
The mean number of branches per node in the Euclidean Minimum SpanmiagsTan example of
this, albeit not a good one, as this was already known from theory. aywather parameters come
close, especially when the number of vessels exceeds 200.

The second benefit is the obvious, that the dependency of the paramoaise number of vessels
is revealed. These relationships are important for two reasons, the fimestandard deviations must
be considered in relation to the slope of the curve. It is hard to avoid sooestamty in the image
processing, and false positives or negatives may affect the andiyagds. If the slope is large com-
pared to the standard deviation, then this uncertainty renders any infonnadiiat the morphology
of the vessel distribution useless. The second potential use of thesenstdps becomes important
once the parameters are used to classify the morphology histological sec@ipnulations, such as
these, although at larger volumes, may provide the necessary cuee@sdi® remove the informa-
tion that relates to the number of vessels rather than their relative positionthe.enorphology. The
parameters may, for instance, be replaced by their distance to the meanegiressed in absolute
values, or perhaps better, as the number of standard deviations thedteeihe data point from the
mean. Relating it to the number of standard deviations may be an advantageddte sizes of these
deviations have been found to vary with respect to the vessel countdny of the parameters. In
effect, the deviations from the mean are expected to be smaller in images withvessa}s, at least
for most parameters.

Two series of simulations were performed, the first based on a unifardona probability dis-
tribution and the last on the cross sections of three-dimensional percataigiars. The simplest of
these approaches offers a method that is easy to understand and implendefaist to execute. It
was, however, hypothesized that variations in results from such a sippteach are not represen-
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tative for real distributions. A second approach, based on three-diorei percolation theory, was
implemented with the following hypotheses:

a) The results from the two approaches should be different.

b) The percolation approach should, in particular, give somewhategreariations for many of
the parameters, especially the cumulative histogram parameters.

c) The percolation method is a better model for the vascular network. Uihoonsequently,
correlate better to the results from tissue section analysis than the rangomactpdoes.

The two first have been confirmed, but the last requires a much lar¢ggemuzterial than the four
sections used here. More data from simulations must be gathered as waltfigular the fractal

dimensions of the percolation simulation are far from smooth. The limited mateddhble does,

however, certainly suggest that the variations in real samples may béaegenfor real sections than
either of the simulations suggest, at least for some parameters.

5.4.2 The Simple Random Simulation

The main strength of this simulation is its simplicity, and it has been named accordlitgdysimple
rules of the simulation implies that very few assumption are made, this is, hqweigading. To
assume that vessel cross sections are well approximated by unifolbaaiity distributions, is fairly
naive. Even more so, when the entire process of angiogenesis, elaoginowth factor diffusion
fields, hypoxia inducible factors and the available morphological data, &tadko consideration.
This is in principle no less an assumption than the assertion made of the othettisimulamely that
the vessel images are well approximated by percolation theory. The magfitbefrthis method is
that it places very few restrictions on the output and it is easily understdednd implementable.

5.4.3 The Percolation Simulation

This simulation is based on an extrapolation of Gazit et.al.’s [17] find, thatdiwensional net-
work models have a similar fractal behaviour as that of invasion percolafioe assumption is then
made that a similar behaviour is present in three-dimensional systems.arbavays of implement-
ing a three-dimensional percolation model. As shown in table 2.3 there ambkdifferent three-
dimensional percolation models in the same universality class; site and badahrgercolation, site
and bond non-trapping invasion percolation, and trapping site invasiaonlpgon. In addition there
are several lattice-related parameters that must be specified, includisigape of the lattice and its
size. The computation time involved increases rapidly for larger lattices, ancbtihplexity of the
code is higher for more complicated lattices, for example a hexagonal lattice.

The choice was made to use the non-trapping bond invasion percolatiosiropla cubic lattice.
Bond percolation on a cubic lattice consists of directional bonds and dhes# directions can easily
be extracted as a cross section. This gives the appearance of a sisiraflanto that in a histological
section. The similarity is, however, superficial. In a real section, allelesgossing a plane are
included. Because the sections are extremely thin, the odds of a vassielgalongside the plane is
close to zero. In the invasion bond percolation model, however, two thirtteoessels will never
cross the image plane.

The model was chosen over a site percolation model, in part becauseubkrgjgresentations of
bond clusters bear a closer resemblance to a vessel network, anchteptis consequently easier
to communicate, but primarily because the horizontal bonds serve to réueidecal dependence
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between one cross section and the next. This may be achieved by other aseaall, for instance,
through the site percolation method by only utilizing every other section, bubond model it is a
built in effect. The choice between bond and site percolation is not redaslimportant to the model
outcome. Trapping invasion percolation has, however, been ruledsong physical equivalence of
thetrapping process exists in the system, and random percolation introduces a pierctieeshold
to the model.

The local dependence of one section on the next may be consideretkaess in the percolation
model. Each section does not represent an independent image. Elisceffild be reduced by only
sampling the possible sections at some set interval. This effect is, hqvotysely related to the
strength of the model, that the probability of finding a vessel is greater iri¢haty of other vessels.
This is expected to increase the probability of avascular areas and thedikhat patterns such as
those observed in case four are generated. The network morphoilhgs general, be different from
that of the uniform distribution. Only 169 different clusters were usedeénsimulation, as the great
variations in the mean show, it would have benefited greatly from a larg@mnaksterial. The general
outline of the behaviour of the parameters is, however, expected to bieellaepresentative.

5.4.4 Evaluating the Two Simulations

The predictions of the hypothesis was confirmed, the percolation modetipblarger, and in part
much larger, deviations for many of the observed parameters. More imggridhas been estab-
lished that the distribution used in the simulations has a large impact on some R @beit less
so for others. This implies that if real data material is to be classified acgptdliis deviation from

a simulation curve, as suggested above, then the model of the simulation éabfrgportance.

Sudden Value Changes at Specific Vessel Numbers

The sudden changes at specific values in some of the parameters ofdbkafien simulation were
unexpected, i.e. the sudden drops in the cumulative histogram parante’@rs/& and 97 vessels,
as well as the sudden increase in the fractal dimension at 50 vesselsadd$e of these effects are
unknown. However, they do not appear to affect any of the SSA-dditparameters were calculated
by the same script for each vessel count, thus removing the possibility that-ap of data files
could affect some parameters without effecting all of them. The shape afuttves also contradict
this possibility. The images near these transitions have not been inspectalivand the cause may
very well be found there. The sections containing few vessels are mebt tik be found near the
end of the cluster, edge effects may consequently be involved. Hovibeesharp transitions at no
less than three places would still be unexpected. Another possible catlhed, iby chance, some
clusters with very low occupation may have been generated, in effec thate with relatively little
resistance has been found from one side to the other in these clustésswolhd cause relatively
many sections with few vessels to be generated throughout the clustsingausingle simulation
to obtain a high percentage of the sections at these vessel counts. Atathmitober of clusters is
as low as 169, this is possible, but not likely, leaving the possibility that this mttaibute of the
three-dimensional percolation cluster in some way. In addition, a hew simulzdiatiaining a far
higher number of clusters would be a good follow-up study, in order tarobetter defined curves.
This should also reveal if these features have appeared by chanmgethe nature of the percolation
cluster.
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Cumulative Histograms

As expected, these values are far higher than those of the random simulEtiese are perhaps the
parameters with the largest differences. The mean is increased by adfivto and the deviation by
at least a factor of four.

Fractal Dimension

The fractal dimensions are, as expected, different for these two simmdatonfirming that this
dimension, the sandbox dimension at high diameters for the mass centrdse oard to classify
morphology. The fractal dimension of the percolation simulation is lower thasetbbthe random
simulation, even at peaks of the uneven percolation curve.

SSA-Parameters

Many of these values have much greater variations for the percolation sonulban the random
simulation, especially at large vessel numbers. The curve shape isydrogenerally quite similar.

5.5 Relevance to Clinical Data

There are a few published papers investigating the relevance of feawbisis to clinical data. De
Felice et.al. [13] investigated and found an increased fractal dimensitwe @fral vasculature in pa-
tients withLynch cancer family syndromdndll compared to the control group. Weyn et.al. [43]
investigated the correlation of fractal analysis, syntactic structure analyd the microvessel den-
sity’s ability to predict tumour prognosis using a K-nearest neighbour Tésty concluded that the
SSA-parameters in particular may be useful as a prognosticator in §eisgyaostic pathology, but
found only a mediocre prognostic value for the fractal parameters. &adlo[36] investigated the
microvessel density and fractal dimension of renal cell carcinoma ssciioth concluded that the
fractal dimension was inversely associated with tumour necrosis, and thatitinecrosis was the
only investigated parameter with significant independent prognostic vehgeliterature on the other
parameters, the microvessel density in particular, is more extensiveditioadhere is some limited
material on other uses of fractal analysis in cancer research (e.g. Sp#lnad’'s[42] study of H&E
sections, or Craciunescu et.al.'s [8] study of dynamic contrast-eelddanagnetic resonance images)

This thesis shows the dependency of the investigated image analysis pasasndte number of
vessels. It also provides an estimate of the size of the variance that eapdaged for a given number
of vessels. Furthermore, it provides concrete examples of what @nadgsilts of real histological
data may look like. This provides a basis for evaluating which of the parasntttat should be
included if a smaller panel of parameters is to be preferred. The studyohasowever, investigated
how these parameters relate to other clinical or tumour specific data. Althtbagh certainly are
ways to improve the methods used in this study, some of which have beerssefilré seems more
important to establish the relevancy of the parameters themselves. If thesegpers, or at least some
subset of them, do indeed correlate to clinical data, either patient specifigprognosis, survival,
metastasis incidence, treatment response, or tumour specific, e.g. turadey lgypoxic or necrotic
fractions, or established vascular parameters, then the correlationkl sf®identifiable with the
current implementation of the methods.
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5.6 Suggestions for Further Studies

This section provides suggestions for further studies within this areadlmsthis thesis. Some of
them relate to possible improvements of the methods developed here, whilgaltierto further
investigations regarding the possible applications of these results.

5.6.1 Correlation Studies

A correlation study should be performed, investigating how these parawetate to other clinical
parameters. These may be parameters relevant to a wide range osaokeas prognosis, diagnosis,
metastatic potential, parameters relevant to specific treatments, in particutidyygnd most likely
other areas as well. This is considered the most important step in the contimastigation of these
methods, and, consequently, the most important of the follow-up suggestions

5.6.2 Segmentation of the Images

Other possible approaches, as to how the threshold is applied to the imagdse maestigated for
some or all steps of the process. For the selected method, the numbee gidsisve and false nega-
tive vessels should be investigated. All parameters should be investigatedfistness with respect
to false negatives and positives. This can be done by randomly removiadding vessels to the
image and to investigate the effects on the parameters. This should proveds andication of how
well the segmentation routine, as a minimum requirement, needs to perfornméf @oall param-
eters show an exceedingly large sensitivity with respect to the segmenthimimdicates that the
results of the segmentations need to be manually inspected and correctyceofaas. Furthermore,
and far more importantly, it may suggest that the relevant parameter is dg Hggpendent on the
vessel distribution and/or number, that it for all practical purposes reagobsidered chaotic, and,
subsequently, quite possibly of little use, although correlation studies sheulged to confirm this.

5.6.3 Fractal Analysis

A histogram of the fractal dimensions of each vessel perimeter can be, mideugh images at
higher magnifications are recommended. This would be relevant as aptiescof the individual
vessel characteristics.

The effect of different image resolutions on the different dimensiodsimages may be studied
further. Limited information for sandbox dimension of large diameters of thes wergtre is available
from the four cases, the other dimensions have not been investigatikdFairshermore, this is the
only dimension that has been investigated in the simulations.

5.6.4 \Vessel Simulation

Both simulations may be performed for more images in order to better establisirtieesbapes. The
odd behaviour of some of the percolation parameters at specific vessgsmmay be investigated
further in a larger simulation. The other fractal algorithms can, if desiredhdduded in simulations
as well, although this will significantly increase the computation time of the simulation.
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Chapter 6

Conclusion

This thesis provides the initial investigation of a broad panel of image anaigsasneters which may
be used to quantify vessel distribution patterns in vascular cross secliblescomputer programs
required to calculate the paramters have been written as a part of the émeksike analysis methods
have been tested on four cases. These methods are now establisiheldated to the study of histo-
logical images. In this way, the thesis provides a basis for further invéistigaincluding correlation
studies.

It has been important to establish whether or not it is meaningful to peffaotal analysis on ves-
sel cross-sections. Although one must be careful with how any resuliingnsionsare interpreted,
fractal analysis algorithm do appear to be able to differentiate betweemadiffvessel distributions.
The different fractal methods investigated, all produce differentligsand it is, with the possible
exception of the Fourier method, difficult to completely exclude any of thamaters from further
studies.

The Box Counting method provides the results that best representfthetal dimensiorof the im-
ages. The method results in well defined curve shapes for many of the iy@ege but it
requires an exceedingly long computation time, limiting its usefulness.

The Correlation method provides some mixed results, for some of the image types it produces well
defined power law scaling regions, whilst for others, the mass centre smaggrticular, it
fails.

The Mass method is based on the correlation method. In spite of this, it does appear to hate a b
ter defined curve shape, in particular it does not require a five poartage smoothing. This
method is recommended over the Correlation dimension, and is the most pronfabimthoee
algorithms utilising the Fast Fourier Transform. It is somewhat faster thasahebox algo-
rithm, and should be given extra consideration for very large image siztw®ee-dimensional
studies.

The Sandbox methodis considered the most promising of these methods, providing well defined
curve shapes for all the image types.

The Fourier method has a long list of problematic features, in addition to the fact that it only pro-
vides power law scaling regions for Gabriel's Graph and the Euclideaimyiim Spanning
Tree, not for the images.
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Taking all algorithms and images types into consideration, the recommendsal frarameters are
the Sandbox dimensions of the mass centre images, Gabriel's Graph andclide&n Minimum
Spanning Tree, at large sandbox diameters. In addition the EMST dimeatssamall diameters may
be investigated. At this point in time it is not recommended to exclude any of tAep@fameters
from the Syntactic Structure Analysis.

The vessel simulations provides a framework for further researdhegsgive an indication to-
wards which results one can expect from histological sections. Theyeidside a clear demonstra-
tion of how such simulations may be used to map analysis results to a linear scaderiddet of
the number of vessels in the image. This is important if one whishes to find p@raménich solely
depends on the vessel distribution pattern.

The simulations and the analysis of the four cases provide good reasdresrfg optimistic about
the possible use of these parameters. Based on these results, it is recmdr@proceed with
comparative studies, as this is the only way the real usefulness of thragtara can be identified.
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Box Countinig Algorithm with 30 points
Shape Norm of Res.  Slope Dimension True Dimension Absoltrar &
Sierpinski Carpet 0.1646 -1.8616 1.8616 1.8929 -0.0313
Sierpinski Gasket 0.0499 -1.6235 1.6235 1.5850 0.0385
Percolation Cluster 1 0.0588 -1.8426 1.8426 1.8958 -0.0532
Percolation Cluster 2 0.0540 -1.8371 1.8371 1.8958 -0.0587
Percolation Backbone 1 0.0583 -1.6490 1.6490 1.6432 0.0058
Percolation Backbone 2 0.0540 -1.6472 1.6472 1.6432 0.0040
Perc. Elastic Backbone 1 0.1135 -1.1874 1.1874 1.1307 0.056
Perc. Elastic Backbone 2 0.1274 -1.1568 1.1568 1.1307 0.026
Circle Perimeter 0.0842 -1.0725 1.0725 1.0000 0.0725
Circle 0.0484 -1.9571 1.9571 2.0000 -0.0429
Square Perimeter 0.0132 -1.0038 1.0038 1.0000 0.0034
Square 0.0413 -1.9797 1.9797 2.0000 -0.0203
Mean of Error 0.0001\ Standard Deviation of Error 0.0429
Correlation Algorithm (smoothed)
Shape Norm of Res. Slope Dimension True Dimension Absoluier B
Sierpinski Carpet 0.0575 -0.1423 1.8577 1.8929 -0.0352
Sierpinski Gasket 0.0870 -0.4280 1.5720 1.5850 -0.013d
Percolation Cluster 1 0.0245 -0.1152 1.8848 1.8958 -0.011¢
Percolation Cluster 2 0.0275 -0.1190 1.8810 1.8958 -0.0148
Percolation Backbone 1 0.0602 -0.3302 1.6698 1.6432 0.0266
Percolation Backbone 2 0.0515 -0.3519 1.6481 1.6432 0.0049
Perc. Elastic Backbone 1 0.0703 -0.9023 1.0977 1.1307 30.03
Perc. Elastic Backbone 2 0.0727 -0.9394 1.0606 1.1307 00.07
Circle Perimeter 0.0436 -0.9982 1.0018 1.0000 0.0018
Circle 0.0361 -0.0231 1.9769 2.0000 -0.0231
Square Perimeter 0.0906 -0.9419 1.0581 1.0000 0.0581
Square 0.0351 -0.0228 1.9772 2.0000 -0.0228
Mean of Error —0.011q Standard Deviation of Error 0.0323
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APPENDIX
Mass Algorithm
Shape Norm of Res. Slope Dimension True Dimension Absoltiesr B
Sierpinski Carpet 0.0545 1.8624 1.8624 1.8929 -0.0305
Sierpinski Gasket 0.0440 1.5848 1.5848 1.5850 -0.0004
Percolation Cluster 1 0.0485 1.8943 1.8943 1.8958 -0.0015
Percolation Cluster 2 0.0567 1.8881 1.8881 1.8958 -0.0077
Percolation Backbone 1 0.0536 1.6892 1.6892 1.6432 0.0460
Percolation Backbone 2 0.0697 1.6574 1.6574 1.6432 0.0142
Perc. Elastic Backbone 1 0.0495 1.1887 1.1887 1.1307 0.0580
Perc. Elastic Backbone 2 0.0498 1.0928 1.0928 1.1307 -0.037
Circle Perimeter 0.0393 1.0304 1.0304 1.0000 0.0304
Circle 0.0570 1.9763 1.9763 2.0000 -0.0237
Square Perimeter 0.0457 1.0528 1.0528 1.0000 0.0529
Square 0.0556 1.9770 1.9770 2.0000 -0.0230
Mean of Error 0.0064{ Standard Deviation of Error 0.0336
Sandbox Algorithm with 50 points
Shape Norm of Res. Slope Dimension True Dimension AbsoltiesrE
Sierpinski Carpet 0.0203 1.8817 1.8817 1.8929 -0.0112
Sierpinski Gasket 0.0434 1.5670 1.5670 1.5850 -0.018d
Percolation Cluster 1 0.0568 1.9076 1.9076 1.8958 0.0118
Percolation Cluster 2 0.0357 1.8949 1.8949 1.8958 -0.0009
Percolation Backbone 1 0.0419 1.6852 1.6852 1.6432 0.0420
Percolation Backbone 2 0.0374 1.6543 1.6543 1.6432 0.0111
Perc. Elastic Backbone 1 0.0432 1.1613 1.1613 1.1307 0.0306
Perc. Elastic Backbone 2 0.0536 1.1072 1.1072 1.1307 -6.023
Circle Perimeter 0.0164 1.0034 1.0034 1.0000 0.0034
Circle 0.0323 1.9746 1.9746 2.0000 -0.0254
Square Perimeter 0.0370 1.0207 1.0207 1.0000 0.0207
Square 0.0377 1.9720 1.9720 2.0000 -0.0280
Mean of Error o.oo1q Standard Deviation of Error 0.0230
Fourier Algorithm (smoothed)
Shape Norm of Res.  Slope Dimension True Dimension Absoluier B
Sierpinski Carpet 0.6984 -1.9503 1.9503 1.8929 0.0574
Sierpinski Gasket 0.0855 -1.5682 1.5682 1.5850 -0.0168
Percolation Cluster 1 0.5202 -1.7977 1.7977 1.8958 -0.0981
Percolation Cluster 2 0.6759 -1.9838 1.9838 1.8958 0.088(Q
Percolation Backbone 1 0.1041 -1.6001 1.6001 1.6432 -0.043
Percolation Backbone 2 0.0745 -1.6051 1.6051 1.6432 -0.038
Perc. Elastic Backbone 1 0.2393 -1.2122 1.2122 1.1307 B.081
Perc. Elastic Backbone 2 0.1474 -1.1371 1.1371 1.1307 8.006
Circle Perimeter 0.0721 -1.0112 1.0112 1.0000 0.0112
Circle 0.0999 -2.9984 2.9984 2.0000 0.9984
Square Perimeter 0.0262 -0.9976 0.9976 1.0000 -0.0024
Square 0.1053 -2.9666 2.9666 2.0000 0.9666
Mean of Error 0.0046\ Standard Deviation of Error 0.0586

Table A.1: Data tables from the testing of the fractal aldponis. See figures A.2-A.7 for graphs and further
information on the power law scaling of the individual shape
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Figure A.1: The test shapes of the fractal algorithms
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Mass Gradient Mass Gradient
Mass Mass
10*
10
v 103 3 10" 10" 10"
1 Slope| NormR[ LWidth 1 Slope_l NormR| LWidth
* 2.1228| 0.0370| 0.1532 2.4245) 0.2048| 0.1533
b 1.8624| 0.0545 0.4433| N 1.5848[ 0.0440 0.5493
o 1.5477| 0.0905| 0.2606 10 13507 0.0394 0.1604
Start End Fitint . Start End Fitint
o 20 55 6.0 10 14 41 36
55 101.0 108.7 5.0 223.1 222.2
W o e 101.0| 560.5 - 10 Ao 223.1| 6763 -
Sandbox Sandbox .
10° Sandbox Gradient L Sandbox Gradient
10} 1)
10% 15}
1 . k3 107 . . 10" 0’ .
Region| Slope| NormR| LWidth Region| Slope| NormR| LWidth
[ 1.8819] 0.0179| 0.8802 [ 15678 0.0354| 1.0000|
10' Region|  Start End Fitint Region|  Start End Fitint
o e 30 | 2250 B o 0 30 | 833.0 B
Fourier Fourer Gradient Fourier Fourier Gradient
j 10" i
107 N ]
i 1072
" E 10° A
Region|  Slope [ NormR| LWidth 107 Region|  Slope | NormR| LWidth
=) —1.9503| 0.6984| 0.6017| =) —1.5682| 0.0855 0.6014]
10° Region| Start End Fitint 10° Region| Start End Fitint
10° 10 107 == 9.0 472.7 - 10° 10° == 7.7 493.7 -

Figure A.2: Testing the algorithms on the Sierpinski Cagoet the Sierpinski Gasket
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Percolation Cluster 1
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Percolation Cluster 2

Box Counting Box Counting
Box Counting Gradient Box Counting Gradient
10% ;:
10} o
10
Region| Slope | NormR| LWidth Region| Slope | NormR| LWidth
10° mm | —1.8426] 0.0588 0.7970 mm | -1.8371] 0.0540] 0.7970
Region| Start End Fitint Region| Start End Fitint
10° 10" 102 [ ] 2.0 121.0 - 10° 100 102 -] 2.0 121.0 -
Correlation Gradient Correlation Gradient
Correlation Correlation
10" 10" 10" 10" 10" 10"
Region|  Slope | NormR| LWidth Region|  Slope | NormR| LWidth
=} —0.1152| 0.0245 0.6625| =} —0.1190] 0.0275 0.6123
| -0.3802] 0.0589] 0.1905] | —0.3438] 0.0535 0.2506|
Region| Start End Fitint i Start End Fitint
1] 1.0 97.6 106.1 1.0 69.0 74.7
10° I == 97.6 364.2 - 69.0 390.3 -
Mass Gradient Mass Gradient
- E
Slope| NormR| LWidth Slope| NormR| LWidth
24719 0.0920] 0.1533] 2.4721] 0.0921] 0.1533]
1.8943| 0.0485 0.5153| 1.8881| 0.0567| 0.4852
1.6124| 0.0502| 0.1804 1.6561| 0.0383| 0.2105|
Start End Fitint Start End FitInt
14 41 38 14 41 3.9
4.5 157.8 159.8 4.5 128.1 121.0
157.8 549.3 - 128.1 549.3 -
Sandbox Sandbox
Sandbox Gradient - Sandbox Gradient
Region| Slope| NormR| LWidth Region| Slope| NormR| LWidth
| 1.9055 0.0495] 1.0000] | 1.8934] 0.0318] 0.9631]]
Region|  Start End Fitint Region|  Start End Fitint
10" 10° [ ] 3.0 833.0 - 100 10° [ ] 3.0 677.0 -
Fourier Fourier Gradient Fourier Fourier Gradient
) 4 ) M
10° 107
Region|  Slope | NormR| LWidth Region|  Slope | NormR| LWidth
mm | -1.7977] 05202 0.6016| | 19838 0.6759 0.6052]
10 Region| Start End Fitint 10 Region| Start End Fitint
10° 102 -] 6.3 401.0 - 10° 107 -] 43 283.6 -

Figure A.3: Testing the algorithms on two 1024x1024 randemcplation clusters



Percolation Backbone 1 Percolation Backbone 2
Box Counting Box Counting
5 Box Counting Gradient Box Counting Gradient
10 124
) ﬂ
10% i
| Region|  Slope | NormR| LWidth Region|  Slope | NormR[ LWidth
10 B | 16490, 00583 0.752]] B | 16472 00540, 0.752]]
Region Start End Fitint Region Start End Fitint
100 0 10 =] 3.0 144.0 - o o 10 =] 3.0 144.0 -
Correlation Gradient Correlation Gradient
Correlation Correlation
Region|  Slope | NormR| LWidth Region|  Slope | NormR| LWidth
[ —0.3302| 0.0602| 0.7627| [ —0.3519] 0.0515 0.7527|
) —0.8844| 0.0855 0.1504 =) —0.5476| 0.0597| 0.1504
Region|  Start End Fitint Region  Start End Fitlnt
== 1.0 195.1 213.7 == 1.0 182.1 184.4
10° 0 E== | 1951 | 5519 - E== | 1821 | 5150 -
Mass Gradient
Mass Gradient
Mass
10*
10° |
Region| Slope| NormR| LWidth 10° . & © ©
[ 2.3083| 0.0988 0.1533 Region Slope| NormR| LWidth
) 1.6892| 0.0536| 0.5755| 10 [ 2.1784] 0.1250[ 0.1826
=) 1.3360| 0.0510] 0.1504 =) 1.6574] 0.0697| 0.6126
Region| Start End Fitint 10° Region| ~ Start End Fitint
=] 1.4 4.1 3.8 E= 1.4 5.0 4.6
E== | 45 | 239.1| 2446 W o == 52 | 3624 -
== 239.1| 676.3 -
Sandbox Sandbox
Sandbox Gradient Sandbox Gradient
Region| Slope| NormR| LWidth Region| Slope| NormR| LWidth
=) 1.6857| 0.0424| 0.8155 =) 1.6695 0.0269| 0.9259
Region|  Start End Fitint Region|  Start End Fitint
10" 10° [ 1) 3.0 295.0 - 10" 10° = 3.0 549.0 -
Fourier Fourier
Fourier Gradient Fourier Gradient
10" 12 107 7,
107 71; 107 N
107 z: 107 N
W W v o | 0w W W
107 10
Region| Slope | NormR| LWidth Region| Slope | NormR| LWidth
10° =) —1.6001] 0.1041] 0.6041 10 =) —1.6051] 0.0745] 0.6041]
Region|  Start End Fitnt Region  Start End Fitnt
10° 0 =] 155 | 1006.7 E o 0 =] 155 | 1006.7 -

Figure A.4: Testing the algorithms on 1024x1024 percotatiackbones
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Percolation Elastic Backbone 2

Box Counting

-ast
10

Box Counting Gradient

o

0

Box Counting

Box Counting Gradient

0 0 0

10

10"

Region|  Slope | NormR| LWidth Region|  Slope | NormR| LWidth
10 mm | 11874 0.1135 0.9655) 10 mm | 11568 0.1274] 0.9317

Region Start End Fitint Region Start End Fitint
10° 10" 10° [ ] 1.0 144.0 - 10° 100 10° == 1.0 121.0 -

Correlation Gradient
Correlation Gradient
Correlation
Correlation

o 10" 10" 0

Region|  Slope | NormR| LWidth
[ —0.9023] 0.0703| 0.4719 Region| Slope | NormR| LWidth
=] —1.0886| 0.0879 0.3209 [ —0.9394] 0.0727| 0.7427
[ —2.1109| 0.2237| 0.1504 [ —1.4752| 0.0579] 0.1504
Region| Start End Fitint Region Start End Fitint
== 1.0 26.1 81.3 == 1.0 169.9 179.1
== 32.2 295.8 305.9 == 169.9 480.5 -
== 295.8 836.6 -
Mass Gradient Mass Gradient
Mass Mass
10°
Region| Slope| NormR[ LWidth Region| Slope| NormR[ LWidth
10t ] 1.8956| 0.1824| 0.1826 | 1.3976] 0.0504| 0.2047|
=] 1.1887| 0.0495 0.4222 =] 1.0928| 0.0498 0.4710
[ 0.9433| 0.0377| 0.2205| [ 0.7121| 0.0573] 0.1704
10° Region|  Start End Fitnt Region|  Start End Fitnt
— 1.4 5.0 4.5 [ | 2.2 9.2 9.1
== 5.2 97.1 83.3 E== 9.2 239.1 243.6
W I = | 971 | 4462 - W I = | 239.1] 77638 -
Sandbox Gradient
Sandbox “ Sandbox . Sandbox Gradient
10° 10
1 o 0 10°
Region| Slope| NormR| LWidth g w
- iéggg 888;; 322‘7‘3 Region| Slope| NormR| LWidth
" TR B B T R 10 Em | 10929 00411 08126
egion saor 15’; 5 1'15” . Region| Start| End | Fitint
e e Emm | 1500| 5490| - o w == 70 60l -
Fourier Fourier
Fourier Gradient 100 Fourier Gradient
107 N
107 7
Region|  Slope [ NormR| LWidth 107 Region|  Slope | NormR[ LWidth
[ —1.2122| 0.2393] 0.7324 [ —1.1371] 0.1474] 0.6007
Region Start End Fitint 107 Region Start End Fitint
W e == 15 230.3 B B e == 36 230.3 B

Figure A.5: Testing the algorithms on the elastic backbdrtevo 1024x1024 percolation clusters



Circle Square
. Box Counting Gradient
Box Counting Box Counting Gradient . Box Counting
= = Region|  Slope | NormR| LWidth
Regiol  Slope | NormR| LWidth mm | 19797 0.0413] 0.7954
mmm | 14626/ 0.0379 0.1705
mm | -1.9571] 0.0484] 0.8279 = -
- - Start End Fitint
Region| Start End Fitint
1.0 69.0 81.8
0’ 10 10’ == | 10 62.0 - 7 e s 69.0 | 171.0| -
Correlation Gradient Correlation Gradient
Correlation Correlation
Slope | NormR| LWidth Region|  Slope | NormR| LWidth
—0.0231] 0.0361] 0.6178| mmm | 00228 0.0351] 0.5866
—0.2676| 0.0547| 0.2128] mm | 02564 00551 02121
—2.2350 0.5370| 0.1590| mm | —18032 03639 0.1515
Start End Fitint Region| Start End Fitint
1.0 62.3 65.1 == 1.0 62.3 65.5
62.3 258.5| 3028 == 62.3 277.6| 3183
258.5 749.0 - 10° 10 E= 277.6 806.9 -
Mass Gradient Mass Gradient
Mass Mass 1o
10 10* o
10° 107 10" 10" 107 10"
Region| Slope| NormR[ LWidth Region| Slope| NormR| LWidth
mm | 24862 0.1003 0.1721 mmm | 24865 0.1005 0.1634
10° mm | 19763 0.0570, 0.4889 10° mm | 19770, 0.0556| 0.4642
B | 1.6809] 0.0518 0.1915 mm | 1.7002] 0.0513 0.1919
Region|  Start End Fitint Region|  Start End Fitint
) 14 4.5 4.3 ) E== 14 4.5 43
10 45 117.6| 116.8 0 === 45 1176| 1171
10° o8 10 117.6| 4232 - 10° 10 E= 117.6| 4544 -
Sandbox Gradient Sandbox Gradient
Sandbox Sandbox
10%
10%
10" 10}
10° Region| Slope| NormR| LWidth Region| Slope| NormR| LWidth
=} 19717 0.0368 0.7426 =} 19717 0.0362| 0.7426
10 [ 17934/ 0.0081| 0.2208| 10° [ 1.8747| 0.0424| 0.2574]
Region|  Start End Fitint Region|  Start End Fitint
10* ] 3.0 2230| 169.3 == 3.0 2230| 1244
10° 10° E=E | 223.0] 803.0 - o 10° EEmm | 223.0] 993.0 -
Fourier Fourier Gradient Fourier Fourier Gradient
10° 10°
107 10°
10" 10
10° i 10°
Region|  Slope | NormR| LWidth Region|  Slope | NormR| LWidth
10° | —29984] 0.0999 0.6121]] 10° mm | —2.9666] 0.1053] 0.6016|
Region Start End Fitint Region Start End Fitint
10° 10° == 7.0 541.8 - 10° 107 == 8.1 581.8 -

Figure A.6: Testing the algorithm on a filled circle and a éikgquare
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Box Counting Gradient .
Box Counting Box Counting Box Counting Gradient
Slope | NormR| LWidth = =
—1.97971 00413 0.7954 Region|  Slope | NormR| LWidth
—1.4626| 0.0379] 0.1705|
- mm | -1.9571] 0.0484] 0.8279
Start End Fitnt - -
Region Start End Fitint
1.0 69.0 81.8 . S 5 10 8.0
10° 10 10° 69.0 171.0 - 10 10 10 - . . :
Correlation Gradient Correlation Gradient
Correlation Correlation ; -
Slope | NormR| LWidth Region| Slope | NormR| LWidth
mmm | 00228 0.0351] 0.5866 mmm | 00231 0.0361] 06178
mm | 02564 00551 02121 mm | 02676 0.0547| 0.2128
mm | —18032 0.3639 0.1515 mmm | 22350, 05370/ 0.1590
Region| Start End Fitnt i Start End Fitnt
== 1.0 62.3 65.5 1.0 62.3 65.1
== 62.3 277.6| 3183 62.3 2585| 3028
10 0 == 277.6 806.9 - 10° o 07 258.5 749.0 -
Mass Gradient Mass Gradient
Mass Mass
10" 10*
10" 10° 10° " 10° 107
Region| Slope| NormR| LWidth Region| Slope| NormR[ LWidth
mmm | 24865 0.1005 0.1634 mm | 24862 0.1003 0.1721
10° mm | 19770, 0.0556| 0.4642 10° @ | 19763 0.0570| 0.4889)
mm | 1.7002] 0.0513] 0.1919 B | 1.6809] 0.0518 0.1915
Region| ~Start End Fitint Region| Start End Fitint
) 1.4 4.5 4.3 ) == 14 4.5 43
10 45 1176| 1171 10 == 45 117.6| 116.8
100 0 117.6| 4544 - 10° o 107 E== 117.6| 4232 -
Sandbox Gradient Sandbox Gradient
. Sandbox Sandbox
10
10%)
10} 10
Region| Slope| NormR| LWidth 10° Region| Slope| NormR| LWidth
=} 19717 0.0362| 0.7426 =} 19717 0.0368 0.7426
10 | 1.8747| 0.0424| 0.2574 10° | 1.7934] 0.0081] 0.2208
Region|  Start End Fitint Region|  Start End Fitint
E== 3.0 2230| 1244 10 === 3.0 2230| 169.3
10° 10° EEE | 223.0] 9930 - o 10° Emm | 223.0] 803.0 -
Fourier Fourier Gradient Fourier Fourier Gradient
10° 10°
10° 10°
10" 10
10° B 10°
Region|  Slope | NormR| LWidth Region|  Slope | NormR| LWidth
10° mm | —2.9666) 0.1053] 0.6016| 10° mm | —29984] 0.0999 0.6121]]
Region Start End Fitint 0 Region Start End Fitint
10° 0 [==] 8.1 581.8 - 10° 107 == 7.0 541.8 -

Figure A.7: Testing the algorithms on a circle and a squarienater
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Casel Case 2
. Box Counting Gradient . Box Counting Gradient
Box Counting 03 Box Counting
Slope_l NormR| LWidth Slope | NormR| LWidth
—1.5778] 0.0699] 0.3960 [ —1.5522| 0.0755] 0.4149
—1.0577| 0.0685 0.5009 =] —0.8616| 0.0250, 0.3760|
Start End Fitint Region| Start End Fitint
1 o o == 1.0 9.0 8.5 W 5 ] 1.0 10.0 12.1
Box Size (pixel) E= 9.0 145.0 - Box Size (pixel) [==] 18.0 145.0 -
Correlation Gradient Correlation Gradient
. 77 @ -
Region|  Slope | NormR| LWidth Slope | NormR| L[Width
| —0.2393] 0.0479| 0.2297 —0.2551] 0.0521] 0.2297
==} —1.4736| 0.0533| 0.1799 —1.0094| 0.0918 0.4612
- —0.4163| 0.1144| 0.3909 —0.5567| 0.0949| 0.2406
Region|  Start End Fitint Start End Fitint
— 05 2.7 3.7 == 05 2.7 2.8
== 4.6 17.1 17.7 == 2.9 86.1 70.2
T (pixe) E== 171 300.2 - T (pixe) E== 86.1 502.0 -
Mass Gradient Mass Gradient
Mass
10* 10*
o k 10*
10 h Region| Slope| NormR| LWidth 10° Slope| NormR| LWidth
| [ ] 1.8353| 0.0809 0.1915] 1.8175[ 0.0825 0.1915]
2 f i === 0.9167| 0.0660| 0.2602 10t 1.0502| 0.0376] 0.4010|
1 i ! mm | 15081 0.0406] 0.3107 13423 0.0301] 0.2105
) i ' Region|  Start End Fitint ) Start End Fitint
10 | i E==d 11 45 5.0 10 E== 11 45 5.0
" 7 =] 5.7 382 | 417 5 = == 7.0 | 1331| 117.8
t (pixel) E== 55.1 537.4 -  (pixel) == 133.1| 622.4 -
Sandbox Gradient Sandbox Gradient
Sandbox Sandbox
Slope| NormR| LWidth Slope| NormR| LWidth
1.7213] 0.0507] 0.2837 | 1.7066] 0.0517] 0.2837
0.9511] 0.0739 0.3483| (=] 11365/ 0.0505| 0.5210
15605/ 0.0652| 0.3028 - 1.4232| 0.0751] 0.1953
Start End Fitlnt Region|  Start End Fitlnt
== 3.0 17.0 17.6 | ] 3.0 17.0 16.5
o == 17.0 143.0 142.1 o == 17.0 411.0 297.1
Sandbox Diameter (pixel) B 143.0 911.0 - Sandbox Diameter (pixel) = 411.0( 1357.0 -
Fourier Gradient Fourier Gradient
Fourier Fourier
LWidth LWidth
0.1497| 0.1497|
0.1152] 0.1578|
0.3115| 0.2205|
0.1203| 0.1203|
0.2205| 0.1905|
Fitint Fitint
== 2.3 == 11.7
== 6.8 == 19.6
; == 70.8 == 733
B e == 68.3 165.0| 162.2 B 7 == 735 177.5| 189.2
frequency (U/pixel) 165.0 830.3 - frequency (U/pixel) 205.6 830.3 -

Figure A.8: Different analysis applied to the full crosstimtof cases 1 & 2
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Case 3 Case 4
R Box Counting Gradient R Box Counting Gradient
Box Counting . Box Counting -0
Slope | NormR| LWidth Slope | NormR| LWidth
[ —1.4572| 0.0857| 0.4149 —15111] 0.0789 0.4149
[ —0.7991] 0.0749 0.4819 —0.9942| 0.0489] 0.4819
Region|  Start End Fitnt Start End Fitnt
o == 1.0 10.0 10.0 W e E== 1.0 10.0 9.8
Box Size (pixel) == 10.0 145.0 - Box Size (pixel) == 10.0 145.0 -
Correlation Gradient Correlation Gradient
Correlation Correlation
Slope | NormR| LWidth Slope | NormR| LWidth
—0.3091] 0.0506] 0.2053 —0.2861] 0.0522] 0.2182
—1.9110] 0.0441] 0.2303 —1.3867| 0.0548/ 0.2503
—0.0631| 0.0983 0.2808 —0.5958| 0.0330, 0.1905
—0.6920] 0.0984| 0.1504 —0.5386| 0.0315| 0.1704
Start End Fitint Start End FitInt
[ 0.5 2.3 3.1 E= 0.5 25 3.1
E== 4.2 22.9 234 E= 3.9 24.7 23.2
B 229 179.5 180.6 === 247 99.7 0.7
© (pixel) 179.5 | 540.3 - © (pixel) 133.8 | 466.5 -
Mass Gradient B Mass Gradient
Mass
10
10° 100
10° NormR| LWidth 10° Region| Slope| NormR| LWidth
0.0809] 0.1722| [ | 1.8067| 0.0707] 0.1722
10t 0.0529) 0.2508 10t =) 0.8863 0.0743] 0.3203|
0.0526| 0.2707| [ 1.5381] 0.0502| 0.2707|
. End Fitint ) Region  Start End Fitint
10 == 240 47 10 == 11 40 46
== . 411 51.2 == 57 59.3 68.5
T (pixel) [==] 63.8 463.9 - 1 (pixel) = 79.6 578.3 -
Sandbox Gradient Sandbox Gradient
Sandbox Sandbox ﬂ
Region| Slope| NormR| LWidth Slope| NormR| LWidth
| 1.6182| 0.0610[ 0.2632 1.6477| 0.0624] 0.2837
(=] 0.6114| 0.0881) 0.3697| 09165 0.0738 0.4775|
- 1.8080| 0.0721| 0.3044 1.9066| 0.0421| 0.2175
Region|  Start End Fitint Start End Fitint
[ | 3.0 15.0 16.4 [} 3.0 17.0 16.9
5 E= 17.0 163.0 192.0 ;] == 17.0 315.0 339.6
Sandbox Diameter (pixel) E== 211.0 1357.0 - Sandbox Diameter (pixel) == 359.0| 1357.0] -
Fourier Gradient
Fourier Gradient
) f Fourier
Fourier = = _
Slope LWidth w0
—15917] 0.1116] 0.1497 Slope NormR| LWidth
—0.0294| 0.0801) 0.1117 —1.5204] 0.0982| 0.1497
—0.3627| 0.0520, 0.1804 —0.6145| 0.1144| 0.3058
—1.2304] 0.0645| 0.1404 —1.3992| 0.0790| 0.1504
—3.2276| 0.0671| 0.1704] —3.0206/ 0.1141] 0.2649
Start End Fitint Start End Fitint
[T 1.0 3.0 14.4 == 1.0 3.0 13.2
E= 6.4 14.6 20.1 == 5.0 47.3 48.1
E= 14.6 54.8 54.9 W 7 == 47.3 142.4 172.6
— e 54.8 153.3| 191.1 requency (Lipixel) 205.6 | 1432.6 -
frequency (1/pixel) 238.2 830.3 -

Figure A.9: Different analysis applied to the full crosstsmt of cases 3 & 4
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Case 2

Box Counting

N Box Counting Gradient
Box Counting
Box Counting Gradient
_ _ Slope | NormR| LWidth
"’ ’ —1.0692) 0.1117] 0.6900
Region|  Slope | NormR| LWidth —0.9761| 0.0688 0.2754
mm | -1.0676] 0.1099 0.8969 Start End Fitint
100 o e Region  Start End Fitint . - . == 10 76.0 91
Box Size (pixe) == 1.0 145.0 - 1 Box Size (pixel) == 46.0 | 2120 -
Correlation Gradient
Correlation Gradient
Correlation "
Correlation N
Slope [ NormR[ LWidth )
—0.9826] 0.0480] 0.2182 Region| Slope | NormR| LWidth
—1.2955( 0.0414] 0.1700 mmm | 09893 0.0402] 0.1911]
—0.3286/ 0.0892| 0.3508 @mm | 14705 0.0540/ 0.2103
—0.9584| 0.1637| 0.1590] @ | 04005 01352 04211
Start End Fitint Region|  Start End Fitint
0.5 25 15.9 == 0.5 2.0 10.1
4.9 17.1 17.8 == 4.2 19.8 20.2
17.1 223.8 235.8 T (pixel) EE 19.8 433.4 -
r (pixel) 223.8 717.3 -
Mass Gradient Mass Gradient
Mass Mass
10° 10’
10 B T 10? e
NormR| LWidth Region| Slope| NormR| LWidth
10t 0.0418) 0.2615 10" mmm | 15040 0.0309] 0.2216
0.0249 0.1901 @mm | 08766 0.0637| 0.2802
. 0.0707| 0.3910 ) @ | 15241 0.0521] 0.3308
10 End Fitint 10 Region|  Start End Fitint
7.6 7.1 E= 11 5.7 5.8
30.6 32.2 = 5.7 44.2 47.8
" (pixel) 537.4 - T (pixel) == 512 | 5783 -
Sandbox Gradient Sandbox Gradient
Sandbox g Sandbox
Region| Slope| NormR| LWidth Region| Slope| NormR| LWidth
mmm | 1.2004] 0.0348 0.4195 @ | 12109 0.0467| 0.3922
@ | 09871 0.0210, 0.1681 @ | 09295 0.0715 0.2819
[ 1.6171] 0.0678 0.3472| [ 1.7221f 0.0710] 0.3044
Region|  Start End Fitint Region|  Start End Fitint
E== 3.0 39.0 30.8 [ ] 3.0 33.0 22.7
; ===| 39.0 109.0| 116.6 3 =) 33.0 185.0| 200.3
Sandbox Diameter (pixel) === 109.0| 911.0 - Sandbox Diameter (pixel) == 211.0| 1357.0 -
Fourier Gradient Fourier Gradient
Fourier E @ Fourier . ﬁ
Region  Slope LWidth Slope NormR| LWidth
- —1.4736] 0.0916] 0.1497 —1.5442 0.1051] 0.1497
mm | 25688 0.0930, 0.1257| —1.1254| 0.0594| 0.1179
mm | 07245 0.0807| 0.3010 —0.6709| 0.0482| 0.2105|
mm | 15503 0.0168 0.1203 —1.6151] 0.0669] 0.1905|
= | —1.0541] 0.0665 0.2305 —0.9599| 0.0635/ 0.1503|
Region| Start End Fitint Start End Fitint
[ ] 1.0 3.0 25 1.0 3.0 46.6
=== 3.0 7.5 7.4 4.6 10.9 5.8
== 75 68.3 65.8 13.6 63.5 68.9
W 3 E= 68.3 165.0| 189.1 735 296.9| 256.4
frequency (Upixel) 165.0 893.3 - frequency (Upixel) 296.9 893.3 -

Figure A.10: Different analysis applied to the vessel petans of cases 1 & 2
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Case 3 Case 4

Box Counting Gradient

Box Counting Box Counting
; E Box Counting Gradient

10 107

Slope | NormR| LWidth

1

== | —10619 00889 05871
== | -07383] 00240 0.2756 Regior] __ Siope | NormR| LWidth
Region  Start | End | Fmnt == | —10703 01448 1.0000
5 T 2 [ ] 1.0 26.0 20.8 e o 7 Region Start End Fitint
0 Box Size (pixel) == 260 | 1200 - Box Size (pixe) == 10 257.0 B

Correlation Gradient

Correlation Gradient

Correlation
Correlation

Slope | NormR| LWidth
—0.9510] 0.0457] 0.1911
—2.0260| 0.0485 0.1799
—0.0526| 0.0810| 0.2808
—0.6324] 0.0790| 0.1504]

Start End Fitint

10 10

Slope | NormR| LWidth
—0.9381] 0.0433] 0.1911
—1.2607| 0.0702| 0.2504
—0.2334] 0.0983| 0.2406

Start End Fitint

== 0.5 2.0 6.1 == 0.5 2.0 111
== 4.6 17.1 19.2 == 3.7 229 30.3
== 21.3 166.8| 166.9 T (pivel) == 47.8 278.9 -

T (pixel) 166.8 502.0 -

Mass Gradient Mass Gradient

24
Mass
10°
107 T v

NormR| LWidth
0.0437] 0.2114 .
0.0585 0.2503

Region| Slope| NormR| LWidth
mm | 15579 0.0252] 0.2016

=) 0.9871| 0.0828 0.3403
) 0.0563| 0.2807| [ 1.6097| 0.0602 0.2807|
10 End Fitint 10° Region|  Start End Fitint
== 53 5.7 == 1.1 4.9 5.2
== 38.2 44.2 == 4.9 59.3 63.7
1 (pixel) E= 55.1 431.1 - 1 (pixel) E= 68.7 537.4 -

‘Sandbox Gradient

‘Sandbox Gradient

Sandbox

Sandbox

0

Region| Slope| NormR| LWidth

@ | 12278 0.0339] 0.3331

0.5907| 0.0414| 0.2769

@ | 1.8540, 0.0522 0.3044

Region|  Start End Fitint

] 3.0 23.0 23.1
==
==

[

Region| Slope| NormR| LWidth

mmm | 12383 0.0449 0.3922
0.9910, 0.0593 0.3252
19195 0.0299| 0.2389
Region|  Start End Fitint

[ ] 3.0 33.0 22.4
> 23.0 125.0| 160.1 7 =) 33.0 241.0| 2758
Sandbox Diameter (pixel) 211.0 1357.0 - Sandbox Diameter (pixel) = 315.0| 1357.0 -
Fourier Gradient Fourier Gradient
Fourier ﬁ Fourier - ﬁ

Slope LWidth
—1.5985 0.1139] 0.1497
—0.1103 0.1064| 0.1117

Region| Slope | NormR| LWidth
- —1.5755 0.1090] 0.1497

mm | -0.3787| 0.0612] 0.1125
—0.3053| 0.0565| 0.1804 mm | 08363 0.0438 0.2205
—1.7398 0.0786| 0.1804 mm | 15512 0.0550, 0.2105
—0.9214] 0.0632] 0.1303 = | -0.9932] 0.0414] 0.1501
Start End Fitint Region| Start End Fitint
[ ] 1.0 3.0 18.4 [ ] 1.0 3.0 15.2
=] 6.4 14.6 29.0 = 5.9 13.6 15.7
== 14.6 54.8 72.0 == 13.6 68.3 68.7
> EE 91.7 3439| 2945 o > EE 68.3 319.5| 286.7
frequency (1/pixel) 343.9 893.3 -

frequency (1/pixel) 319.5 959.9 -

Figure A.11: Different analysis applied to the vessel petars of cases 3 & 4
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Case 1l Case 2

Box Counting Gradient

Box Counting

Box Counting Gradient

Box Counting

Slope | NormR| LWidth
—0.1230] 0.0576] 0.5274
—1.2187| 0.0530| 0.2059

Start End FitInt

10

Slope_l NormR| LWidth
=} —0.1076| 0.0641] 0.5962
=] —0.8839| 0.0601] 0.2059
Region| Start End Fitint
==
==

W s 7 -] 3.0 56.0 731 & e 3.0 82.0 845
Box Size (pixel) EEE 82.0 257.0 - Box Size (pixel) 82.0 257.0 -
Correlation Gradient
Correlation Gradient
Correlation
Correlation

Slope | NormR| LWidth
—0.2516] 0.1259] 0.5786
—0.7412| 0.0431 0.2042

Start End Fitnt

Slope Nom LWidth
0.4457| 0.2585| 0.1522|
0.1447| 0.1644| 0.2511]
—0.4429, 0.0751| 0.4351
Start End Fitint

e == 18.4 223.8 205.2 [==]) 9.4 18.4 2.3
1 (pixel) E== 223.8 540.3 - o 7 == 21.3 64.2 76.0
r (pixel) == 64.2 433.4 -
Mass Gradient Mass Gradient
Mass
10"
Slope| NormR| LWidth 10° Region| Slope| NormR| LWidth
2.3052| 0.0572] 0.2379 - 21132 0.1177| 0.1503
1.7681] 0.0569] 0.4765| == 1.8472| 0.1110] 0.5522
1.3420] 0.0435] 0.2168| 107" [ | 1.4141] 0.0535] 0.2343]
Start End FitInt Region  Start End FitInt
=] 13.7 38.2 40.0 == 11.8 22.8 115
e == 38.2 298.6| 286.4 e e == 22.8 257.8| 239.3
r (pixel) E== 298.6 761.1 -  (pixel) == 257.8 720.9 -
Sandbox Gradient

‘Sandbox Gradient
2

19
14
Sandbox Sandbox 12
4
102 08
o
10 o o4
o
4

o W o

Region Slope| NormR| LWidth 10t Region| Slope| NormR| LWidth
10" mm | 00018 0.0048 0.3922 mm | 0.0052] 0.0073 0.4355
@ | 07133 0.0694] 0.1954

== | 05253 00595 0.1965
/| == | 17684 00722 0.3259 =
i

o W w

1.8296] 0.0215/ 0.2826|
Region|  Start End Fitnt

Region|  Start End Fitnt

10 == 3.0 33.0 36.1 10° == 3.0 43.0 46.2
> == 33.0 109.0 128.9 - == 43.0 143.0 173.9
Sandbox Diameter (pixel) == 185.0 1357.0 - Sandbox Diameter (pixel) == 241.0| 1357.0 -
Fourier Gradient

Fourier Gradient

il

Fourier
Fourier 29
10 Region|  Slope [ NormR| LWidth 107
] —1.5195 0.0991| 0.1497| Region  Slope | NormR| LWidth
B | 28030 0.1056| 0.1152 mmm | 15380 0.1026] 0.1497
mm | 05712 0.0404| 0.1507| @mm | 15601 01288 0.1109
. — 0.0255 0.0729| 0.5739 " (] 0.0165) 0.0543| 0.6840
0 Region| Start End Fitint 10 Region| Start End Fitint
== 1.0 3.0 25 [ ] 1.0 3.0 0.0
E== 3.0 7.0 7.1 W 7 == 4.2 9.4 9.1
W I == 7.5 22.7 22.0 frequency (L/pixel) == 10.1 1522.2 -
frequency (1/pixel) 22.7 1522.2 -

Figure A.12: Different analysis applied to the mass certérases 1 & 2
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Case 3

Box Counting Gradient

Case 4
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Box Counting

Box Counting

Box Counting Gradient

) 10" 107 ,
10 Slope [ NormR[ LWidth 0 Slope [ NormR[ LWidth
—0.0981] 0.0478 0.5962 —0.1202| 0.0591f 0.5624
—1.0195] 0.0684] 0.2059 —0.8891| 0.0693| 0.2396
Start End Fitnt Start End Fitint
R o [ 3.0 82.0 86.1 W e == 3.0 68.0 69.4
Box Size (pixel) B 82.0 257.0 - Box Size (pixel) == 68.0 257.0 -
Correlation Gradient
Correlation Gradient :
Correlation -
Correlation E
o Region]  Slope [ NormR[ LWidth
Slope | NormR| LWidth - 0.3251] 0.2411] 0.1543
0.5022| 0.1470] 0.2722 =) —0.3353] 0.0763] 0.1975
—0.3607| 0.0688| 0.3590 ] —0.1110[ 0.0640, 0.3126
—1.4261| 0.0852| 0.1605 — —0.6043| 0.0355| 0.1810
Start End Fitint Region| Start End Fitint
[===] 16.9 515 62.7 E= 9.9 19.8 28.0
e === 80.0 347.7 351.4 E= 19.8 47.8 103.8
T (pixel) == 347.7 670.5 - o 2 = 51.5 207.9 184.4
b * pixeh 207.9 | 4665| -
Mass Gradient
55 Mass Gradient
Mass
Mass
10"
o 10°
Slope[ NormR[ LWidth ' B
2.8366| 0.0602] 0.2336| 10t Region| Slope| NormR| LWidth
2.0418| 0.0689| 0.3770 =) 2.7395 0.1036] 0.2636|
15051 0.0444| 0.2513| =] 17682 0.0760| 0.5594
Start End Fitint 107 Region| Start End Fitint
=] 18.3 47.6 51.7 T 2 = 10.2 33.0 31.6
— == | 476 | 2226 2121 1 + (pinel) == | 330 4006 -
 (pixel) == 222.6| 6224 -
Sandbox Gradient Sandbox Gradient
Sandbox 1 Sandbox "
10° o4 10° o4
Region| Slope| NormR[ LWidth . Region| Slope| NormR[ LWidth
10! [ | 0.0000[ 0.0000[ 0.4355 10 [ | 0.0080 0.0140, 0.4195|
=) 0.3809| 0.0351 0.1521 =) 1.2518| 0.0521| 0.2181
[ 1.8947| 0.0548 0.3466| [ 1.9126| 0.0254| 0.2389
Region|  Start End Fitint Region|  Start End Fitint
10° L E=E= 3.0 43.0 46.5 10° | 3.0 39.0 63.3
n == 43.0 109.0 129.7 o E= 83.0 315.0 307.3
Sandbox Diameter (pixel) EEEl 163.0| 1357.0 - Sandbox Diameter (pixel) == 315.0( 1357.0 -
Fourier Gradient Fourier Gradient
;” 10" 107 10 - :u" 10 10° 107
Region  Slope | NormR| L[Width Region  Slope | NormR| LWidth
=] —1.5902 0.1152] 0.1497 ] —15912] 0.1130] 0.1497
=) —3.7437| 0.1764| 0.1152 =] —2.8861] 0.2214 0.1152
] 0.3257| 0.0344| 0.2305 B | 02505 0.0855 0.2613]
— 0.0062| 0.0228| 0.4837| — 0.0038] 0.0151| 0.4135|
Region Start End Fitint Region| Start End Fitint
EE 1.0 3.0 2.7 == 1.0 3.0 2.3
== 3.0 7.0 7.1 == 3.0 7.0 6.4
g v == 8.1 44.0 43.3 B o = 7.0 47.3 24.7
1 frequency (Upiel) 440 | 15222 - frequency (Upie) 735 | 15222 -
Figure A.13:

Different analysis applied to the mass cergfesses 3 & 4



Casel Case 2
N Box Counting Gradient N Box Counting Gradient
Box Counting -0 Box Counting
Region Slopil NormR| LWidth Slope | NormR| LWidth
=} —1.1855| 0.0475 0.4266 =} —1.1474] 0.0531] 0.4920
B | 16965 0.0708 0.3754] | 16389 0.0567] 0.3100]
Region Start End Fitint Region| Start End Fitint
0 e == 3.0 32.0 32.6 & e o == 3.0 46.0 45.6
Box Size (pixel) === 32.0 257.0 - Box Size (pixel) E== 46.0 257.0 -
Correlation Gradient Correlation Gradient
Correlation ‘Sﬁ Correlation
4‘1;“_‘:;’__:;‘__ o e
Region| Slope | NormR| LWidth Slope | NormR| LWidth
mm | -0.7227] 0.0679 0.2588 —0.8005/ 0.0717| 0.2790|
@mm | -0.1847| 0.0573| 0.3507 —0.2055/ 0.0881| 0.3509
[ —0.6324| 0.0534| 0.1504 —1.3059] 0.2608| 0.1570
Region| Start End Fitint Start End Fitint
E== 1.3 8.8 10.3 [ ] 13 10.2 13.9
== 12.8 166.8 | 163.7 == 18.4 2408 | 2752
 (pixel) E== 166.8 502.0 -  (pixel) == 240.8 761.1 -
Mass Gradient Mass Gradient
Mass “ Mass o
10t A 10*
10° N 10°
10° o 10°
10' Region Slope| NormR| LWidth 10* Slope| NormR| LWidth
=} 1.3595( 0.0460] 0.3494 =} 1.2902] 0.0552| 0.3895|
10° B | 1.7655 0.0571] 0.3710 10° mm | 1.7447] 0.0654| 0.3509
Region  Start End Fitint Region|  Start End Fitint
== 1.4 18.3 19.0 == 1.4 245 27.7
 (pixel) BE= 19.7 298.6 - t (pixel) == 30.6 400.6 -
Sandbox Gradient Sandbox Gradient
Region| Slope| NormR| LWidth Slope| NormR| LWidth
- 1.1862| 0.0502 0.4195| 11264 0.0328 0.4195|
== 1.5371f 0.0200, 0.1681] 1.4670] 0.0442] 0.2546|
[} 1.8969| 0.0347| 0.4124 1.9410{ 0.0271] 0.3259
Region  Start End FitInt Start End FitInt
== 3.0 39.0 34.8 [ ] 3.0 39.0 39.2
e == 39.0 109.0| 1154 e == 39.0 185.0| 1822
Sandbox Diameter (pixel) == 109.0 1357.0 - Sandbox Diameter (pixel) E==1 185.0 1357.0 -
Fourier Gradient Fourier Gradient
Fourier = - = = Fourier
Region|  Slope | NormR| LWidth LWidth
mmm | 15664 0.1092] 0.1497| 0.1497|
| 34984 0.1189] 0.1360] 0.1152]
[} —0.7691] 0.0290| 0.1803| 0.1100|
mmm | —1.0375 0.0426] 0.3609 0.4311]
= —1.5663 0.0734| 0.1228 0.1186|
Region Start End Fitint Fitint
[==] 1.0 3.0 2.7 =] 2.7
= 3.0 8.1 9.1 == 76
== 11.7 44.0 50.8 = 21.6
W o7 EE 44.0 6189 | 642.6 == 491.1
frequency (L/pixel) 6189 | 1522.2 - frequency (U/pixel) 496.5 | 1184.4 -

Figure A.14: Different analysis applied to the Gabriel'sa@n of cases 1 & 2
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Case 3

Case 4
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Box Counting Gradient

Box Counting

Slope | NormR| LWidth

Box Counting

Box Counting Gradient

NormR| LWidth

=) —1.1692| 0.0628 0.4920 =) 0.0590] 0.4920|
=) —1.6782| 0.0524| 0.3100 =) 0.0467| 0.3100|
Region|  Start End Fitnt Region| End Fitnt
10° 0 [ 3.0 46.0 43.2 W e == 3.0 46.0 42.6
Box Size (pixel) B 46.0 257.0 - Box Size (pixel) B 46.0 257.0 -
Correlation Gradient
Correlation Gradient
Correlation
Correlation
Slope | NormR| LWidth
—0.9870] 0.0790| 0.2818 ]
—0.5935 0.0471 0.2102| SIOPe_| NormR| LWidth
—0.1456| 0.0696| 0.3408 =) —0.7555] 0.0722| 0.2790
—1.3053 0.2761] 0.1590 =) —0.2732| 0.0688 0.3908
Start End FitInt Region|  Start End Fitint
0.5 3.9 3.7 == 13 10.2 11.8
3.9 18.4 18.8 r (pixel) == 14.8 259.2 -
> 18.4 223.8 256.6
o) 2238 | 717.3 -
Mass Gradient Mass Gradient
Mass j: Mass
10 10*
10° 10°
10° 10°
10' Slope[ NormR[ LWidth 10' Slope[ NormR[ LWidth
=) 1.3023] 0.0497| 0.3695| 1.3037| 0.0470[ 0.3594
10° ) 1.8060] 0.0469 0.3309 10° 1.6894] 0.0636] 0.3911
Region|  Start End Fitint Start End Fitint
(=] 1.4 21.2 25.8 | 1.4 19.7 22.4
" (pixel) === 30.6 | 345.8 - © (pixe) = 245 | 431.1 -
Sandbox Gradient Sandbox Gradient
Sandbox ¥ Sandbox
Slope| NormR| LWidth Slope| NormR| LWidth
1.1435[ 0.0371] 0.4195| 1.1534] 0.0402| 0.4195|
1.4785[ 0.0337| 0.2125| 1.4717| 0.0212 0.1905|
1.9695( 0.0324| 0.3680 1.8359| 0.0632] 0.3900
Start End Fitint Start End Fitint
== 3.0 39.0 37.4 == 3.0 39.0 358
107 [ ] 39.0 143.0 144.6 7 == 39.0 125.0 1421
Sandbox Diameter (pixel) E=m | 143.0] 1357.0 - Sandbox Diameter (pixel) B | 125.0] 1357.0 -
Fourier Gradient
B Fourier Gradient
z Fourier
Fourier E
Region|  Slope | NormR| LWidth _
=] —1.6137] 0.1223] 0.1497 Slope | NormR| LWidth
—4.4043| 0.2554| 0.1152 —15919] 0.1163] 0.1497
) —0.8494] 0.0494| 0.1410 —3.4247| 0.2209| 0.1152
) —1.0392] 0.0372| 0.4010 —1.0295 0.0512] 0.5817
—1.4649| 0.0535 0.1160| —1.4182| 0.0437] 0.1173
Region| Start End Fitint Start End FitInt
EE 1.0 3.0 2.8 1.0 3.0 25
== 3.0 7.0 6.6 3.0 7.0 6.6
== 7.0 19.6 164.7 75 534.4 534.7
W o7 == 30.5 575.1 589.1 frequency (1/pixel) 534.4 1262.4 -
frequency (1/pixel) 575.1 1345.2 -

Figure A.15: Different analysis methods of Gabriel's Graplcases 3 & 4
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Case 2

10

10

Box Counting

Box Counting Gradient

e 10 07

Box Counting

10

10

Box Counting Gradient

10 107

1 Region| Slope | NormR| LWidth 107 Region| Slope | NormR| LWidth
=) —1.0906| 0.0460[ 0.6301 =) —1.0702| 0.0359] 0.6989
W T 102 Region Start End Fitint o o 5 Region Start End Fitint
Box Size (pixel) === 3.0 99.0 - Box Size (pixel) [ ] 3.0 145.0 -
Correlation Gradient Correlation Gradient
Correlation Correlation
107 107 10° 107
Slope | NormR| LWidth Slope | NormR| LWidth
—0.9107| 0.0653| 0.3394 —0.9352 0.0670| 0.3793
—0.2817| 0.1073| 0.3209 —0.3332] 0.0811 0.3208
Start End Fitnt Start End Fitnt
E= 1.3 15.9 22.1 == 1.3 21.3 30.1
T (pive) == 26.6 278.9 - T (pixe) == 35.7 374.2 -
Mass Gradient Mass Gradient
Mass 24 Mass 24
100 10° Iy
10? 10° ‘j
' Slope_l NormR| LWidth 10 Region] Slope| NormR| LWidth
=) 1.1608/ 0.0423| 0.4066 ) =) 1.1311] 0.0476| 0.4567
10° =) 1.6415 0.0720[ 0.3308 10 =) 1.5950/ 0.0491] 0.3008|
Region|  Start End Fitint Region| Start End Fitint
== 1.8 355 41.4 o E= 1.8 51.2 57.4
© (pixel) | 442 | 4993 - © (pixel) mmm | 59.3| 537.4 -
Sandbox Gradient
Sandbox Gradient
A Sandbox F
Sandbox B 14
10} 14 1
1()3 ! 10 10° 10" o
Region| Slope[ NormR[ LWidth o © B
" [ 1.0726| 0.0386] 0.5430 Region| Slope| NormR| LWidth
10 =) 1.3728| 0.0206| 0.1743| =) 1.0549 0.0320] 0.5876
[ 1.8852| 0.0499 0.2826 =) 1.8020 0.0651] 0.2826
10 Region|  Start End Fitint Region| Start End Fitint
== 3.0 83.0 76.1 7 = 3.0 109.0 196.5
o7 = 83.0 | 241.0| 2589 Sandbox Diameter (pixel) B | 241.0] 1357.0 -
Sandbox Diameter (pixel) == 241.0| 1357.0 -
Fourier Gradient
Fourier Gradient
Fourier
Fourier
LWidth N
0.1497| Region|  Slope | NormR| LWidth
0.1152 ] —1.5863] 0.1103] 0.1497
0.1511 =) —0.7764] 0.0704| 0.1555
0.4311 ] —1.0137| 0.0388] 0.4612
0.1186| — —1.3225| 0.0349 0.1287
Fitint \ Region| _ Start End | Fitint
B 25 = 1.0 3.0 20.4
== 6.7 == 5.0 15.7 22.1
== 21.7 5 > == 15.7 461.4 454.2
e = e 211 | 4965| 479.0 e frequency (Lpixel) 4614 | 1184.4 -
frequency (1/pixel) 496.5 1184.4 -

Figure A.16: Different analysis applied to the EMST of cabés?2



Case 3 Case 4
Box Counting Box Counting
Box Counting Gradient Box Counting Gradient
. 10" by
i % o i
e W M e e
Region  Slope | NormR| LWidth 100 Region  Slope | NormR| LWidth
mmm | —1.0744] 0.0471] 0.6989 mmm | 10812 0.0406] 0.6648
0 - S Region Start End Fitint & s e Region Start End Fitint
Box Size (pixel) E== 3.0 145.0 - Box Size (pixel) == 3.0 120.0 -
Correlation Gradient Correlation Gradient
Correlation Correlation
107
10" 107 10" 10"
Slope | NormR| LWidth Region| Slope | NormR| LWidth
—0.9359] 0.0646| 0.3693] . mm | 09229 0.0723] 0.3693
—0.1031] 0.0835| 0.2306| 10 @mm | 05812 0.0439] 0.2005
—1.1465 0.2361| 0.1590 [ —0.4736 0.0472| 0.1704
Start End FitInt Region| Start End Fitint
= 13 19.8 35.1 10° = 13 19.8 18.9
== 41.3 2238 | 2459 e e == 19.8 86.1 4.8
 (pixel) E== 223.8 717.3 - T (pixel) == 1243 433.4 -
Mass Gradient Mass Gradient
Mass EZ Mass ]
10° 10°
10° 10°
10 Slope| NormR| LWidth 10 Slope| NormR| LWidth
5 1.1357] 0.0508] 0.4667| 1.1385] 0.0454| 0.4366|
10 1.7238 0.0566| 0.2707| 10° 1.6307| 0.0646| 0.2907|
Start End Fitint Start End Fitint
E= 1.8 55.1 58.5 == 1.8 442 57.3
 (pixel) E= 59.3 431.1 - t (pixel) E= 63.8 537.4 -
Sandbox Gradient
Sandbox Gradient 2
Sandbox ] 14
N Sandbox
1 10} 1
] 107 Y
B Region] Slope| NormR| LWidth
Region Slope| NormR| LWidth e ] 1.0626| 0.0364| 0.5651
mm | 1.0576] 0.0366] 0.5876] @ | 1.3224| 0.0193 0.1960
B | 1.9306] 0.0370, 0.2826 @ | 1.9067| 0.0343 0.2389
Region  Start End Fitint 10! Region|  Start End Fitint
7 == 3.0 109.0| 1949 == 3.0 95.0 87.1
Sandbox Diameter (pixel) | 241.0| 1357.0 - 7 == 95.0 315.0 330.3
Sandbox Diameter (pixel) ] 315.0| 1357.0 -
Fourier Gradient
Fourier Gradient
Fourier
Fourier
Region| Slope [ NormR| LWidth _
mm | 16147 01185 0.1497 Slope | NormR| LWidth
mm | 34725 0.2397] 0.1152 —1.6005 01139 0.1497]
(=] 0.0875/ 0.0507| 0.1210] —0.6478/ 0.0979| 0.1355|
mm | -1.0299 0.0410] 0.4712 —1.0187] 0.0494| 04912
= | —1.3964/ 0.0417| 0.1173 —1.3447] 0.0321] 0.1186
Region Start End Fitint Start End Fitint
E== 1.0 3.0 25 == 1.0 3.0 20.3
E== 3.0 7.0 6.6 == 5.0 13.6 17.1
== 7.0 16.9 16.5 100 0 == 13.6 496.5 484.2
RO 7 == 16.9 534.4| 5375 frequency (Lpixel) 496.5 | 1184.4 -
frequency (1/pixel) 534.4 1262.4 -

Figure A.17: Different analysis applied to the EMST of ca3&s4
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B.15 Random Site Percolation — Shortest Path Across Cl(fsteetion) . . . . . . . . ... .. .. B-23
B.16 Random Site Percolation — Direct Paths Across Clusitection) . . .. ... ... ... .. B-24
B.17 Random Site Percolation — Legal Neighbours (function). . . . . . .. ... .. ... ... B-25
B.18 Random Site Percolation — Lookup Table IdentifyingdBding Pixels (function) . . . . . .. B-25
B.19 Random Site Percolation — Lookup Table IdentifyingiSpinels (function) . . . . . . . . .. B-26
B.20 Fractal Analysis — Resize Image and Count Pixels for 8omnting (function) . . . . .. .. B-27
B.21 Fractal Analysis — Count Number of Pixels for Sandbogo#ithm (function) . . . .. .. .. B-28
B.22 Fractal Analysis — Mass and Correlation Estimate fiony . . . . . ... ... ... .. .. B-29
B.23 Fractal Analysis — Fourier Estimate (function) . . . . ... .. ... ... ... ...... B-31
B.24 Fractal Analysis — Angle Average for Mass, Correlaami Fourier Estimate (function) . . . B-33
B.25 Fractal Analysis — Linear Fit of the Most Linear Regifunction) . . . . . . ... ... ... B-34
B.26 Fractal Analysis — Recursive Linear Fit (function) . . . . . . ... ... ... ... .... B-36
B.27 Fractal Analysis — Plot Graphs and Data Table of Linezgiés (function) . . . ... .. .. B-37
B.28 Simulation — Random Simulation (script) . . . . . . . . .. ... o o . B-42
B.29 Simulation — 3D Bond Invasion Percolation (script) . . .. . . .. .. ... .. ...... B-45
B.30 Simulation — 3D Percolation Cross Section Processagpt) . . . . . . . . . . . ... ... B-47
B.31 Simulation — Sort Out Nested Cell Array Entries in thgeshlmage Stacks (function) . . . . . B-49
B.32 Simulation — Merge Image Analysis Data Files of the &#int VVessel Counts (script) . . . . . B-50

B.33 Simulation — Export Graphs of Percolation Simulatiod &listological Data Points (script) . . B-55

B Matlab Scripts and Functions

B.1 Image Processing
1. Extract Vessels from RGB-image ......... ... B-2

2. Image Combine Functions (floating point) ..........ceee i B-3
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3. Prodcue Raster Image from Graph or Image of DifferentRésa ............................ B-5

Function: extractvessels — Extract Vessels

function Ibw = extractvessels (A)

% lbw = extractvessels(I)

% This function extracts the vessels out of CD34 images, bysfi

% extracting the green layer, then expanding the histgram image overlay.
% A subtraction of an average filtered image is then used lrefo

% thresholding this image for a BWimage based on luminance.

% The grayscale image is further processed by edge detectamd

% thresholding to provide a BWmage of the edges in the image. These two
% BW images is then combined before the the lumens are fillendand the

% image cleaned up by removeing areas smaller than 64 pixels.

A=single (A);

% RGB to grayscale, using green layer due to superior resaobut
if size(A,3)==3

A=A(:,:,2);
end

12=A;

% IMAGECOMBINE

% Perform image overlays until at least 100 ppm of the imageearis either

% above 90% luminance or belowe 10%

I = imcombinefp (12,12 overlay’ ,1);

i =1;

while sum(sum(sum(l>=.90)))<.000% numel(l) &&...
sum(sum(sum(l<=.10)))<.000% numel (1)

i = i+1;

I = imcombinefp (12,1, overlay’ ,1);
end
disp ([’ Number of overlays = ' num2str(i)]);
I=single (1);

% AVERAGE FILTER

% average filter

ws=50; % width of averaging area
miM=imfilter (I, fspecial ( average’ ,ws), replicate’);
% | equals the subtraction image

I=mIM—1 ;

% Calculating the threshold of the luminance image.
level = graythresh(l);
Ibwlum=im2bw (I, level);

%% EDGE DETECTION

[Isobel, thresh, gv, gh] = edge(l sobel’);
grad = sqrt(gh."2+gv."2);

grad = grad-min(min(grad));

grad = grad.max(max(grad));

% thresholding edge image
level = graythresh(grad);
Ibw=im2bw(grad , level);

%% Keeping all pixels recognized by either luminance or edgeresholds
Ibw = Ibw | lbwlum;

%% FIND ENTIRE LUMEN

% Merge areas very close to each other by morphological clogs .
Ibw = bwmorph(lbw, ' close’ ,3);

% Close lumens by filling in holes

Ibw = imfill (lbw, ' holes’);
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B. MATLAB SCRIPTS AND FUNCTIONS

% Erode off a onepixel-thick layer at the perimeter to account for the

% edge function overestimates the width of the edges.

Ibw = bwmorph(lbw, erode’);

% Remove all "vessels" smaller than 64 pixels at x25 magmdfion this is
% roughly translates into an area of (1.168m)"2, i.e. false positives due
% to noise.

Ibw = bwareaopen(lbw,64);

Listing B.1: extractvessels.m

Function: imcombinefp — Image Layer Combine (floating point)

function | = imcombinefp(varargin);

% IMAGE = imcombinefp (Foreground, Backbround, mode, n)

% Imcombinefp works with floating point images.

% These operations are based on the layerodes of

% the Gnu-Image Manipulation Program— GIMP

%

% n > 1 applies the forground multiple times, replacing the dkground with
% the result of last iteration.

%

% the mode can take any of the following values:

%

% SIMPLE FILTER ‘addition’
% "subtract’
% "difference’
% "multiply’
% "divide’

%
% COMPOSITE FILTER'dodge’

% "burn’

% ‘screen’

% ‘overlay’

% "hardlight’

% "softlight’

% "darkenonly’
% ‘lightenonly’
% 'grainextract’
% 'grainmerge’
%

% HSV FILTER "hue’

% ‘colour’

% "saturation’
% 'value’

%

%

% %% skipping unused image combine functions ...
%

% OVERLAY

% B is inverted, multiplied by two times F, added to B, and thewnultiplied
% by B

%

% parse input arguments
switch 1
case numel(varargin) == 1 & isnumeric(varargin{1})
F=varargin {1};
B=F;
cmode= overlay' ;
n=1,
case numel(varargin) == 2 & isnumeric(varargin{l}) &&...
isnumeric (varargin{2})
F=varargin{1};
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B=varargin{2};
cmode= overlay’ ;
n=1;
case numel(varargin) == 3 & isnumeric(varargin{l}) &&...
isnumeric (varargin{2}) & ischar(varargin{3})
F=varargin{1};
B=varargin {2};
cmode=varargin {3};
n=1;
case numel(varargin) == 4 & isnumeric(varargin{1}) &&...
isnumeric (varargin{2})...
&% ischar(varargin{3}) & isscalar (varargin{4})
F=varargin{1};
B=varargin {2};
cmode=varargin {3};
n=varargin{4};
otherwise
disp(’ ERROR in immode incorrect input arguments’)
I=[1;
return
end
cmodedower (cmode);

% convert to single if uint8
if isequal(class(F),uint8")
F = single (F);
elseif (isequal(class(F),single’) || isequal(class(F),double’
max(max(max(F))) <=1
F = single (255+F);

end
if isequal(class(B),uint8")
B = single(B);
elseif (isequal(class(B),single’) || isequal(class(B),double’
max(max(max(B))) <=1
B = single (255#B);

0]
>
o

F=single (F);
B=single (B);

%% IMAGE MODES %%
switch 1
%% skipping unused image combine functions

% OVERLAY
% B is inverted, multiplied by two times F, added to B,
% multiplied by B
case isequal(cmode pverlay’)
| = (B.»(B+(2.xF.x(255—-B)) ./ 255) ./ 255);

otherwise
disp(’ mode not recognized’)
end
if n>1
n=n-1;
| = imcombine(F,|,cmode,n);
end

I= single(l ./255);
\

) &&...

) &&...

and then

APPENDIX

Listing B.2: imcombinefp.m
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Function: rasterim — Produce Image Matrices from Graphs or Change the Resolution of Black
and White Images
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function A = rasterim(xa,xb,ya,yb,siz)

% A = rasterim(xa,xb,ya,yb,siz)

% rasterim produces an image matrix of size siz, where the edsx entered
% or exited by the vectors [(xa,ya),(xb,yb)] are 1, and thesteO.

% This is used to produce raster images of Gabriel's Graph attde

% Euclidean Minimum Spanning Tree for Fractal Analysis.

% The function can also be used to cange the resolution in amge to siz
% by provding the row and column indices: rasterim(C,C,RsRz)

A = false(siz);

xmax = max(max([xa (:);xb(:)]));
ymax = max(max([ya (:);yb(:)]))

xa = double(xa)./xmax;
xb = double(xb)./xmax;
ya = double(ya)./ymax;
yb = double(yb)./ymax;
for i = 1l:numel(xa)
x1 round (xa(i)*siz (2));

%

x2 = round (xb(i)*siz (2));

= round(ya(i)*siz (1));
y2 = round (yb(i)*siz (1));
fromx = floor (min(x1,x2));

tox = ceil(max(x1,x2));
fromy = floor (min(yl,y2));
toy = ceil(max(yl,y2));
if (x2—x1)==0

a = inf;
else

a = (y2-yl)/(x2—x1);
end
b = yl-axx1;
% assigning start and stop pixels
A(yl,x1) =1;

A(y2,x2) = 1;

%% checking intersects with—gridlines

ygrid = fromy+.5:toy—.5;

if isfinite (a)
x = (ygrid-b)/a;

else
X
b

= xlxones(size(ygrid));

= 0;

end

% keeping pixels visited in two diagonal corners

I = ((x+.5)—fix (x+.5)<1e-10);

lc = I(1:numel(1)-1) & I (2:numel(l));
xc = x(lc)+.5;
yc = ygrid(lc)+.5+sign(a);

% removing pixels only visited in one corner (pixels are neveisited in
% two horisontaly or verticaly aligned corners, because aploints start in
% integer positions.)

x(1) = [I;

ygrid (1) = [I;

ym = [ygrid —.5,ygrid +.5];
ym = [ym,yc];

xm = round ([x,Xx,xc]);

Xxm = [xm, xc]

%% checking intersects with-ogridlines

xgrid = fromx+.5:tox—.5;

y = ax(xgrid)+b;

% keeping pixels visited in two diagonal corners
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I = ((y+.5)—fix (y+.5)<1le-10);

Ic I(L:numel(l)-1) & I (2:numel(l));

yc y(lc)+.5« sign(a);

XC xgrid(lc)+.5;

% removing pixels only visited in one corner
y(h) = [1;

xgrid (1) = [1;

xn = [xgrid —.5,xgrid +.5,xc];

yn=round ([y,y.yc]);

% assign new pixel values
| = sub2ind(size(A) ,[ym,yn],[xm,xn]);
A(l)y = 1;

end

A=rot90 (rot90(A));
-

APPENDIX

Listing B.3: rasterim.m

Syntactic Structure Analysis

N o o s w N e N

Script: runallSSA.m — Script Queueing SSA-Analysis

Script for queueing SSA-analysis of multiple files .. ... ...l
Script running SSA-analysisonasinglefile ............... ... ... ... . ...
Gabriels Graph . ...
Euclidean Minimum Spanning Tree ...........oo it
GG and EMST StatiStiCs .. ..o vttt et et e e
VOroNOoi SEatiStICS . ... ..o e
Statistics tOATEX WHEE . ... e e e

-
clear, close all

% Script used to queue different files for syntactic strucéuanalysis
% DEPENDENCIES: scriptGetGraphs.m, ggstats.m, voronaisin, stattex.m

% gg = 3-7

fidtotal = fopen(’../analyse/images/prelim total.tex' ,”w );

fidbl = fopen(’../analyse/imges/prelim branchlength.tex’ ,”w );

fidbpn = fopen(’../ analyse/images/ prelim branchpernode.tex’ ,"w );

fidnn = fopen('../analyse/images/prelim distnn.tex' ,”w );

fidfn = fopen('../analyse/images/prelim distfn.tex' ,”w );

% emst = 8-12

fidemsttotal = fopen(’../analyse/imges/prelim emsttotal.tex' ,”w );
fidemstbl = fopen('../analyse/imges/prelim emstbranchlength.tex’ ,”w );
fidemstbpn =fopen(’ ../ analyse/images/ prelim emstbranchpernode.tex’ ,”w );
fidemstnn =fopen(’../analyse/imges/prelim emstdistnn.tex' ,”w );
fidemstfn = fopen(’../analyse/images/prelim emstdistfn.tex' ,"w );

% voronoi = 13-15

fidarea = fopen('../analyse/images/prelim vorarea.tex' ,"w );

fidarea = fopen(’../analyse/images/prelim vorshape.tex’ ,”w );

fidarea = fopen(’'../analyse/imges/prelim vorformtex’' ,'w );

casestr ='caselx25’;
scriptGetGraphs

casestr ='case2x25’;
scriptGetGraphs;
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B. MATLAB SCRIPTS AND FUNCTIONS B-7
casestr ='case3x25’;

scriptGetGraphs;

casestr ='case4x25’ ;

scriptGetGraphs;

fclose('all’);

close all

U

Listing B.4: runallSSA.m

Script: scriptGetGraphs.m — Script Running SSA-Analysis on Image

(% Script for finding the voronoi diagram, gabriels graph anthe euclidean
% minimum spanning tree. Note the files output is written taistn be opened
% in another script, furthermore casestr must be specified another

% scritp .

%

% This script is used together with the runallSSA script.

% Other dependencies: gabrielsgraph, emst, ggstats, varichat.

titlefont = 26;
axisfont = 18;

IM = imread(strcat(../analyse/imges/’ ,casestr bw.tif’));
IM = single (IM);
IM = IM./ max(max(IM)); % transform possible input bw from (0,255) to (0,1)

K2=IM;

%% preprossessing image

% removing any holes and reducing areas to the center of mass.
K2 = imfill (K2, holes’);

K2 = bwmorph (K2, "shrink’ ,inf);

%% locating all vessels

[R,C] = find (K2");

xmin=min (R); xmax = max(R); ymin=min(C); ymax=max(C);
x=[R,C];

%% Voronoi
[v,c]=voronoin (x);
% making random colordistribution for patches
[r,l1]=sort(rand (1,length(c)));
cdist=1; % colordistribution
figure (1), clf, hold on,
% plotting all polygons that have all corners inside the immago avoid
% edge
isinside = false gize(c));
for i = 1l:length(c)
%% only use polygons inside image
if all(c{i}~=1) & all(v(c{i},1)>=xmin) & all(v(c{i},1)<=xmax) && ...
all (v(c{i},2)>=ymin) & all (v(c{i},2)<=ymax)
isinside (i)=1;
% plot polygon
patch(v(c{i},1),v(c{i},2),cdist(i)); % use random color cdist(i).

end

D
o

n
c=c(isinside);

% format and export figure

axis([1 size(IM,2) 1 size(IM,1)])

axis on; axis tight;

axis([1 size(IM,2) 1 size(IM,1)])
set(gca,'ydir' ,"reverse’ ,’ FontSize' ,axisfont);
title (' Voronoi Diagram ,' fontsize’ ,titlefont);
hold off
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hgexport(@cf, strcat(../analyse/imges/’' 6 casestr ,...
"]’ ,casestr jvoronoi.eps’))
%% Delauney triangulation
TRl = delaunay (x(:,1),x(:,2));
%% Gabriels graph
xind = x(:,1); yind=x(:,2);
[x1,x2,yl,y2]=gabrielsgraph (TRI,xind ,yind);
figure (2), clf,
hold on,
for i=1:numel(x1)
plot ([x1(i),x2(i)],[y1(i),y2(i)], k"),
end
hold off
% format and export figure
daspect([1 1 1]),
set(gca,'ydir' ,"reverse’ ,’ FontSize' ,axisfont);
axis on; axis tight
axis([1 size(IM,2) 1 size(IM,1)])
title (' Gabriel''s Graph' , fontsize' ,titlefont)
hgexport(@cf, strcat(../analysel/imges/’ , casestr ,...
"I ,casestr jgabrielsgraph.eps’'))
%% Euclidean Minimum Spanning Tree
figure (8), clf ,
[xa,ya,xb,yb] = emst(x1l,yl,x2,y2);
hold on,
for i=1:numel(xa)
plot ([xa(i),xb(i)],[ya(i), yb(i)]," k"),
end
hold off
% format and export figure
axis tight, axis on, daspect([1 1 1]),
axis([1 size(IM,2) 1 size(IM,1)])
set(gca,'ydir’' ,"reverse’ ,’ FontSize' ,axisfont),
title (' Euclidean M nimum Spanning Tree' , fontsize' ,titlefont —5);
hgexport(cf, strcat(../analyse/imges/’ , casestr,/’' ,casestr’emst.eps’))
ggstats (x1,x2,yl,y2,casesttgg’)
ggstats (xa,xb,ya,yb,casestremst’)
voronoistat(v,c, casestr)
%close all figures
close all
\

Listing B.5: scriptGetGraphs.m

Function: gabrielsgraph.m — Gabriels Graph

rfunction [x1,x2,yl,y2] = gabrielsgraph (TRI,x,y)

% [x1,x2,yl,y2] = gabrielsgraph(TRI,x_indices ,y_indisg

% TRI is the Delauney triangulation.

% The function calculates Gabriels Graph from the delauney
% triangulation.

%
% Gabriels Graph is determined by keeping all branches bedtwenodes
% that fullfill the following criterium:

% Each branch between two nodes uniquely deterimnes a cireligh this
% branch as the diameter. If there are no other nodes insideisttcircle ,
% then the branch is a part of Gabriels Graph, otherwise it isotn

%% turn the list of triangles into a list of braches/edges
S=cat(1,TRI(:,1:2),TRI(:,[1,3]),TRI(:,[2,3]));
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S=unique (S,rows’ );
X1=x(S(:,1)); x2=x(S(:,2));
yl=y(S(:,1)); y2=y(S(:,2));

%% testing all branches for the gabriels graph criterium
I=zeros(length(x1),1);
for i=1:numel(x1),

dx=abs(x1(i)-x2(i));

dy=abs(yl(i)—y2(i));

r = sqgrt(dx”"2+dy~2)./2;
xctr = min(x1(i),x2(i)) + dx/2;
yctr = min(y1(i),y2(i)) + dy/2;
%% check the nodes that has a branch to (x1,yl) or (x2,y2);
% alle punkter som gar til eller fra
Ifrom = find ( ((x1==x1(i)) & (yl==y1(i))) );
Ito = find ( ((x2==x2(i)) & (y2==y2(i))) )

I=cat(1,!from,Ito);
XN= unique ( [[x1(1), y1(1)]:[x2(1),y2(1)]], rows’ );

%% checking the distance to the centre of the cirlce
distToCtr=sqgrt ((xctr—=xXN(:,1)).72 + (yctr—XN(:,2))."2);
if all( distToCtr >= r),

1(i)=1;

else
1(i)=0;

end
end

%% removing all branches that does not meet the criterium.
xl=nonzeros(x1l.x1);
x2=nonzeros(x2.x1);
yl=nonzeros(yl.x1);
y2=nonzeros(y2.x |);

Listing B.6: gabrielsgraph.m

Function: emst.m — Euclidean Minimum Spanning Tree

function [x1,yl,x2,y2] = emst(x1l,yl,x2,y2)

% Funtion [x1,yl,x2,y2] = EMST(x1,yl,x2,y2)

%

% Euclidean Minimum Spanning Tree

% The Tree is euclidean because the weights on each branch pecsfied by
% the euclidean distance between the endpoints. The mininspanning tree
% is a tree reaching all points in a graph in such a way that thams of
% the weights of all individual branches is minimized.

%

% (x1,yl),(x2,y2) specify the two endpoints of the lines tthrmake up

% the graph and the EMST.

siz=[max([yl;y2]) ,max([x1;x2])];

%% Make list of all nodes [Nodeindice, {neighbourindices},
%% {distanceToNeighbours}]

A cat(2,sub2ind(siz ,yl,x1),sub2ind(siz ,y2,x2)% all arcs
N unique ([yl,x1;y2,x2]rows’ ); % all nodes

N = sub2ind(siz ,N(:,1) ,N(:,2));

Neigh = cell(size(N));

Dist=cell (size(N));
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% find neighours

for i=1:length(N),
Ifrom = find ( A(:,1)==N(i) );
Ito = find (A(:,2)==N(i));

neigh = [A(Ito ,1);A(lfrom,2)];

[neigh] unique (neigh);

[m1,n1] ind2sub (siz ,N(i));

[m2,n2] = ind2sub(siz ,neigh);

dist = sqrt( (m2-ml1).~2 + (n2nl1).72); % euclidean norm

Neigh{i}=neigh;
Dist{i}=dist;
end

%% Initializing network variables.
first = 1; % indice of the first node added to network

Tree = N(first)91 % The current euclidean minmum spanning
AddedTo = N(first) %l
Fringe = [];

FringeDist = [];

FringeConnTo = [];

ConnTo = cell(1,numel(N));

% weight to the neighbour node that connects this node to theet
ConnToWeight = cell (1,numel(N));

lastadded = first;% starting with first node

%% Specifying the first arc between the startnode and the seEst
neigh = Neigh{lastadded};
dist = Dist{lastadded};

Fringe = [Fringe;neigh];
FringeDist = [FringeDist;dist];
FringeConnTo = [FringeConnTo; ones(numel(dist)slxastadded];

[val ,ind] = min(FringeDist);

Tree = [Tree;Fringe(ind)];
addedto = FringeConnTo(ind);
AddedTo = [AddedTo; Tree (1)];
lastadded =find (N==Fringe(ind));

ConnTo{first} = lastadded;
ConnToWeight{first} = FringeDist(ind);

ConnTo{lastadded} = first;
ConnToWeight{lastadded} = FringeDist(ind);

Fringe (ind) = []; % deleting row
FringeDist(ind) = []; % deleting row
FringeConnTo(ind) = []% deleting row

%% lterating the rest of the network
for i=1:length(N)-1,

% updating fringe

neigh = Neigh{lastadded};
dist = Dist{lastadded};

%% Checking if the new neighbours are in Fringe already.

APPENDIX

tree

neighbour

% if any neigh already is in Fringe it should be kept with the a&ltest

% of the two weights, rather than added again
removeind =[];
for j=1:numel(neigh)
| = find (Fringe==neigh(j));% never more than one indice,
if ~isempty(l)
removeind = [removeind; j];

I is a scalar




B. MATLAB SCRIPTS AND FUNCTIONS B-11

89 if FringeDist(l)>dist(j)

90 FringeDist(1l) = dist(j);

91 FringeConnTo (1) = lastadded;
92 end

93 end

94 end

9 neigh(removeind) = [];

97 dist(removeind) = [];

99 |%% Checking if any new neighbours are in the network already.

100 % if any neigh already is in Tree it should be removed from thestl
101 removeind =[];

102 for j=1:numel(neigh)

103 I=find (Tree==neigh(j));

104 if ~isempty(l)

105 removeind=[removeind;j];

106 end

107 end

108 neigh(removeind)=[];

109 dist(removeind)=[];

111 | %% Adding neighbours to Fringe

112 Fringe = [Fringe;neigh];

113 FringeDist = [FringeDist;dist];

114 FringeConnTo = [FringeConnTo; ones(numel(dist)+slastadded];
116 % if Fringe is emtpy, all done

117 if isempty(Fringe)

118 break; % stop loop

119 end

121 % find the fringe node with smallest weight(s) and add to tree
122 [val ,ind] = min(FringeDist);

123 lastadded =find (N==Fringe (ind));

124 addedto = FringeConnTo(ind);

125 Tree = [Tree;Fringe(ind)];

126 AddedTo = [AddedTo;N(addedto)];

128 | %% Adding the new connection to the node

129 % if this is not the first connection then earlier connecti®nmust be
130 % kept.

131 if isempty(ConnTo{addedto})

132 ConnTo{addedto} = lastadded;

133 ConnToWeight{addedto} = FringeDist(ind);

134 else

135 ConnTo{addedto} = [ConnTo{addedto};lastadded];

136 ConnToWeight{addedto} = [ConnToWeight{addedto}; Frin®est(ind)];
137 end

139 | %% Removing added fringe

140 Fringe(ind) = []; % deleting row
141 FringeDist(ind) = []; % deleting row
142 FringeConnTo(ind) = []% deleting row
143 | end

145 | %% Calculating coordinates of start and end of all branches
16 | xto=[]; yto=[]; xfrom=[]; yfrom=[]; %

147 | n=0;

148 | for i = 1l:length(ConnTo)

149 if ~isempty(ConnTo{i})

150 connto = ConnTo{i};

151 for j=1:length(connto);

152 n=n+1;

153 [yfrom(n), xfrom(n)] ind2sub (siz, N(connto(j)));

154 [yto(n),xto(n)] ind2sub (siz, N(i));
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end
end
end

%% Parsing output

%% Removing Multiple Vertice Added at the Connection of thersk Node
x1=xfrom (:);

x2=xto (:);

yl=yfrom (:);

y2=yto (:);
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Listing B.7: emst.m

Function: ggstat.m — Gabriels Graph and EMST Statistics

(function ggstats (varargin)

% ggstats(x1l,x2,yl,y2,casestr,graphstr ,[texsortwr]}le

% Calculates gabriels graph or euclidean minimum spanninged statistics.
% x1,yl and x2,y2 are the start and end coordinates respeetyv of all
% branches in the network. casestr and graphstr are used toecipy

% filenames for the unsorted writings to file.

%

% The default value for writing sorted to tex is 1.

% Writing sorted to tex assumes that the output fids are numabdefrom
% 3—7 in the case of gabriels graph

% 8-12 in the case of euclidean minimum spanning tree

% see runallSSA ...

titlefont = 26;
axisfont = 18;

x1 = varargin{1};
X2 = varargin{2};
yl = varargin{1};
y2 = varargin{2};

casestr = varargin{5};

graphstr= varargin{6};

texsortwrite=1;

if numel(varargin)>6
texsortwrite = varargin{7};

end

siz (1) = max(max([x1;x2]));

siz (2) = max(max([yl,y2]));

%% Branch Length Parameters

numbranch =length(x1);

branchLengths =sqrt ((x2—x1).72 + (y2-yl)."2);
totalLength =sum(branchLengths);
meanBranchLength smean(branchLengths);
stdBranchLength =std(branchLengths);

skewnessBranchLength= skewness(branchLengths);
kurtosisBranchLength= kurtosis (branchLengths);

figure (14), hist(branchLengths ,50),
title (' Branch Length’ ,"fontsize' ,... titlefont)
set(gca,’ FontSize' ,axisfont)
if strcmp(graphstr, emst’)
set(gca,’ XLim ,[0,300], YLim ,[0,25])
else
set(gca,’ XLim ,[0,500], YLim ,[0,60])
end
hgexport(@cf, strcat(../analysel/imges/’  h casestr ,...
"I ,casestr hist’ ,graphstr;brl.eps’))
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%% Branches/Node Parameters

% number of nodes

nodes = unique ([x1,yl;x2,y2Trows’ );
numnodes =size(nodes ,h1);

branches sortrows ([x1 y1; x2 y2],1);
nodeind = sub2ind(siz ,nodes(:,1),nodes(:,2));
branchind = sub2ind(siz ,branches(:,1),branches(:,2));

% numbranchespernode— numbpn
numbpn = zeros(size(nodes,1),1);
for i=1l:numel(nodeind)

numbpn (i) =sum(sum(nodeind (i) == branchind));
end
meanbpn =mean(numbpn);
stdbpn = std (numbpn);
skewnesshpn skewness (numbpn);

kurtosisbpn = kurtosis (numbpn);
figure (11), bar(histc (numbpn,1max(max(numbpn)))),
title (' Branches Per Node' ,’ fontsize' ,titlefont)
set(gca,’ FontSize' ,axisfont/ XLim ,[0,10.5])
if strcmp(graphstr, emst’)
set(gca,’ YLim ,[0,200])
else
set(gca,’ YLim ,[0,150])
end
hgexport(@cf, strcat(../analyse/imges/’ ,casestr ,...
"/’ ,casestr jhist’ ,graphstr ; bpn.eps’))

%% Distance to nearest and furthtest neighbours
% nodennd— node nearest neighbour distance
nodennd = infxones(size(nodes,1),1);

% nodefnd— node furthest neighbour distance
nodefnd =zeros(size(nodes,1),1);

for i=1:numel(x1)

nodeA = sub2ind(siz ,x1(i),y1(i));
nodeB = sub2ind(siz ,x2(i),y2(i));
indA = find (nodeind == nodeA);
indB = find (nodeind == nodeB);

if branchLengths (i) < nodennd(indA)
nodennd (indA) = branchLengths (i);

end

if branchLengths (i) < nodennd(indB)
nodennd(indB) = branchLengths(i);

D

end
if branchLengths(i) > nodefnd(indA)
nodefnd (indA) = branchLengths(i);

D

end
if branchLengths (i) > nodefnd(indB)
nodefnd (indB) = branchLengths (i);

[¢]

n
en

% nearest neighbour

meannn =mean(nodennd);
stdnn = std(nodennd);
skewnessnn = skewness(nodennd);
kurtosisnn = kurtosis(nodennd);

% furthest neighbour

meanfn =mean(nodefnd);

stdfn = std(nodefnd);
skewnessfn = skewness(nodefnd);
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kurtosisfn = kurtosis(nodefnd);

figure (13), hist(nodennd, 30),
title (' Distance to Nearest Neighbour' , fontsize' ,titlefont)
set(gca,’ FontSize' ,axisfont)
if strcmp(graphstr; emst’)
set(gca,’ XLim ,[0,300], YLim' ,[0 50])
else
set(gca,’ XLim ,[0,200], YLim' ,[0 50])
end
hgexport(@cf, strcat(../analysel/imges/’ ,h casestr ,...
"I’ ,casestr jhist’ ,graphstr;dnn.eps’))

figure (16), hist(nodefnd, 50),
title (' Distance to Furthest Neighbour' , fontsize' ,titlefont)
set(gca,’ FontSize' ,axisfont)
if strcmp(graphstr, emst’)
set(gca,’ XLim ,[0,300], YLim ,[0 30])
else
set(gca,’ XLim ,[0,500], YLim ,[0 40])
end
hgexport(@cf, strcat(../analyse/imges/’ ,h casestr’,/' ,...
casestr ;hist’ ,graphstr ;dfn.eps’))

filewrite =1;
if filewrite
% casestr = 'case3x25’;
fid = fopen(strcat(../analyse/imges/’ 6 casestr’/’  casestr,
graphstr ) stat.txt’),"w );
fprintf (fid ,’ Number of nodes: \t\t\t\t % \n' ,numnodes)
fprintf (fid ,’ Number of branches: \t\t\t\t % \n’ ,numbranch);
fprintf (fid ,’ Total length: \t\t\t\t\t 9%. 4f \n' ,totalLength);
fprintf (fid ,” Mean branch length: \t\t\t\t %3.4f \n’ ,meanBranchLength)
fprintf (fid ,’ Standard deviation of branch lengths: \t\t 93.3f \n' ,...
stdBranchLength)
fprintf (fid ,” Skewness of branch lengths: \t\t\t 93.4f \n' ,...
skewnessBranchLength)
fprintf (fid ,’ Kurtosis of branch lengths: \t\t\t 98.4f \n' ,...
kurtosisBranchLength)
fprintf (fid ,’ Mean number of branches per node: \t\t 9%3.4f \n' ,meanbpn)
fprintf (fid ,’ Standard deviation of branches per node: \t 93.4f \n’ , stdbpn)
fprintf (fid ,’ Skewness of branches per node: \t\t\t %3.4f \n' 6 skewnessbpn)
fprintf (fid ,’ Kurtosis of branches per node: \t\t\t 93.4f \n' ,kurtosisbpn)
fprintf (fid ,’ Mean distance to nearest neighbour: \t\t %3.4f \n' ,meannn)
fprintf (fid ,” St.dev. of distance to nearest neighbour: \t 93.4f \n’ K stdnn)
fprintf (fid ,’ Skewness of distance to nearest neighbour: \t 93.4f \n' ,...
skewnessnn)
fprintf (fid ,’ Kurtosis of distance to nearest neighbour: \t 93.4f \n' ,...
kurtosisnn)
fprintf (fid ,’ Mean distance to furthest neighbour: \t\t %3.4f \n’ ,meanfn)
fprintf (fid ,” St.dev. of distance to furthest neighbour: \t 93.4f \n' , 6 stdfn)
fprintf (fid ,” Skewness of distance to furthest neighbour: \t 93.4f \n' ,...
skewnessfn)
fprintf (fid ,’ Kurtosis of distance to furthest neighbour: \t 93.4f \n' ,...
kurtosisfn)

fclose(fid)
end

%% Write to tex
texwrite = 1;
if texwrite
texformatl ='2";
numformat %6, 2d" ;
fid = fopen(strcat(../analyse/imges/’ , casestr’/' ,casestr ,...
graphstr [ stat.tex' ), w );

APPENDIX
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stattex (fid ;| %06i' ,” 0’ ,”\\# nodes:’ ,numnodes’\\# branches’ ,...
numbranchtotal length’ ,...
round (totalLength))
stattex (fid ,numformat , texformatl Mean:’' ,meanBranchLength’ ,SD:’ ,...
stdBranchLength’,Skew' ...
skewnessBranchLength Kurt' ,kurtosisBranchLength);
stattex (fid ,numformat , texformatl Mean:' ,meanbpn’ SD:’' ,stdbpn/ Skew' ,...
skewnessbpn’,Kurt' ,kurtosisbpn);
stattex (fid ,numformat, texformatl Mean:' ,meannn; SD:’ ,stdnn ; Skew' ...
skewnessnn’,Kurt' ,kurtosisnn);
stattex (fid ,numformat, texformatl Mean:’' ,meanfn, SD:’ ,stdfn ,” Skew ...
skewnessfn' Kurt' ,kurtosisfn);
fclose(fid)
end
%% Write sorted to tex

if texsortwrite
texformatl ='2";
texformat2 ='0";
numformatl ='96.2f" ;
numformat2 ='9%d’ ;
if strcmp(graphstr;gg')
fid1=3;
elseif strcmp(graphstr, emst’)
fid1=8;
end
fprintf (fidl, strcat( % ,casestri\n’));
stattex (fidl ,numformat2 ,texformat2 \\# nodes:’ ,numnodes’\\# branches:’
numbranch} $\\ Sigma$ |ength:’ ,round(totalLength))
fprintf (fidl1+1,strcat( %6 ,casestr’\n’));
stattex (fidl1+1,numformatl ,texformatl Mean:' ,meanBranchLength’,SD:’ ,...
stdBranchLength’,Skew: ' ,skewnessBranchLength Kurt:' ,...
kurtosisBranchLength);
fprintf (fid1+2,strcat( %6 ,casestr’\n’));
stattex (fidl+2,numformatl , texformatl Mean:' ,meanbpn’ SD:’' ,stdbpn, Skew:’
skewnessbpn’,Kurt:' ,kurtosisbpn);
fprintf (fid1+3,strcat( %6 ,casestr’\n"));
stattex (fidl1+3,numformatl , texformatl Mean:' ,meannn; SD:’ ,stdnn ] Skew:' ,...
skewnessnn’,Kurt:’' ,kurtosisnn);
fprintf (fidl1+4,strcat( %46 ,casestr’\n’));
stattex (fidl+4,numformatl ,texformatl Mean:' ,meanfn, SD:’ ,stdfn , Skew:' ,...
skewnessfn ' Kurt:' ,kurtosisfn);
for i=0:4
if strcmp(casestr jcase4x25')
fprintf (fidl+i,"\\\\");
else
fprintf (fidl+i,’ & );
end
end
end
end % end function

yees
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Listing B.8: ggstats.m
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B-16 APPENDIX

Function: voronoistat.m — \oronoi statistics

(function voronoistat(varargin)

% voronoistat(v,c,casestr ,[filwrite],[texwrite],[texortwrite])

% calculates voronoi statistics from the voronoi verticesv, and cells, c,
% which may be obtained using the voronoin function.

% Default values for filewrite and texwrite is 1

% To manually override default all three writelogicals must be specified.
%

% NB: texsortwrite assumes that outputfiles for area, shapand form have the
% numerical values of 13, 14 and 15 respectively. Texsortwriis used to
% write data from all different cases into the same tables.

%

% filewrite produces ascii text output.

% texwrite formats output to latex tabular code for use witlmpiut.

% texsortwrite , same formatting as texwrite.

titlefont=26;

axisfont=18;

%% Parse input

v=varargin {1};

c=varargin{2};

casestr = varargin{3};

if numel(varargin)>=6
filewrite=varargin {4}
texwrite = varargin{5}
texsortwrite = varargin{6}

else % default
filewrite = 1;
texwrite = 1,
texsortwrite =1;

end

%% area of the polygons
for i=1:length(c)
%% area of polygons
area (i) = polyarea(v(c{i},1),v(c{i},2));
%% perimeter of the polygons
xtmp = v(c{i},1);
ytmp = v(c{i},2);
dxtmp2 = diff ([xtmp;xtmp(1)]).72;
dytmp2 = diff ([ytmp;ytmp (1)])."2;
perimeter (i) =sum(sqrt (dxtmp2+dytmp2));
%% number of sides
nsides (i)dength(c{i});

end

% format and export output

figure (21), bar((0:.1:5)+10000, histc (area ,(0:.1:5310000)),

title ("area’ ,’ fontsize' ,titlefont)

set(gca,’ XLim ,[0,50000], Font Si ze' ,axisfont)

hgexport(cf, strcat(../analyse/imges/’ ,casestr,/’  casestr’histvarea.eps’'))

%% area

meanarea =mean(area)
stdarea =std(area)
skarea = skewness(area)
kuarea = kurtosis(area)

%% perimeter

figure (22), hist(perimeter ,30), title (' perimeter’)

%% number of sides

figure (23), bar(1:max(nsides), histc(nsides ,.5:tmax(nsides))),
title (' number of sides’, fontsize' ,titlefont)

%% polygonal form
polyform = 4 area./(perimeter)."2;
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figure (24), hist(polyform,30), title (' polygonal form ,’fontsize' ,titlefont)
set(gca,’ XLim ,[0,0.3], FontSize’ ,axisfont)
hgexport(@cf, strcat(../analyse/imges/’' , casestr,/’'  f casestr’histvform eps’'))

meanform =mean(polyform)
stdform = std(polyform)
skform = skewness(polyform)
kuform = kurtosis (polyform)

%% polygonal shape
maxdist = zeros(length(c),1);
mindist = inf(length(c),1);
for i=1:length(c)
% finding the length between the vertices
ccurrent = c{i};
vxcurrent = v(ccurrent ,1);
vycurrent = v(ccurrent ,2);
for j=1:length(ccurrent)
for k = 1:length(ccurrent)
% the other node must not be the same as or next to j.
if k~=j & k ~= mod(j—1,numel(ccurrent)) &&...
k~=mod(j+1,numel(ccurrent))
distance =sgrt((vxcurrent(j)vxcurrent(k)).~2 +...
(vycurrent(jyrvycurrent(k)).n2);

if distance > maxdist(i), maxdist(i)=distanceend
if distance < mindist(i), mindist(i)=distanceend
end
end
end
end

Hyshape = mindist ./ maxdist;

figure (25), hist(polyshape ,30),title (' polygon shape’ ,’ fontsize' ,titlefont)
set(gca,’ XLim ,[0,1]," FontSize' ,axisfont)
hgexport(@cf, strcat(../analyse/imges/’ , casestr’,/’' ,casestr’histvshape.eps’))

meanshape =mean(polyshape);
stdshape =std(polyshape);
skshape skewness (polyshape);
kushape kurtosis (polyshape);

%% Write to file

if filewrite
fid = fopen(strcat(../analyse/imges/’ ,casestr’/’' ,casestr ,...

‘voronoistat.txt'),'w);

fprintf (fid ,” Mean area of polygon'’'s: \t\t %.4f \n’ ,meanarea);
fprintf (fid ,’ Standard Deviation of area: \t\t %8.4f \n' ,f stdarea);
fprintf (fid ,” Skewness of area distribution: \t\t 9%8.4f \n', skarea);
fprintf (fid ,’ Kurtosis of area distribution: \t\t 98.4f \n', kuarea);
fprintf (fid ,” Mean of polygonal shape: \t\t %8.4f \n’', meanshape);
fprintf (fid ,’ Standard diviation of polygonal shape: \t %8.4f \n’, stdshape);
fprintf (fid ,’ Skewness of polygonal shape: \t\t 9%8.4f \n', skshape);
fprintf (fid ,” Kurtosis of polygonal shape: \t\t %8.4f \n', kushape);
fprintf (fid ,’ Mean of polygonal form \t\t 98.4f \n', meanform);
fprintf (fid ,’ Standard diviation of polygonal form \t %8.4f \n', stdform);
fprintf (fid ,’ Skewness of polygonal form \t\t 9%8.4f \n', skform);
fprintf (fid ,” Kurtosis of polygonal form \t\t %8.4f \n', kuform);
fclose(fid)
varargout = {};

end

%% Write to tex
if texwrite
texformatl ='2";
numformat %6, 2d" ;
fid = fopen(strcat(../analyse/imges/’ , casestr’/' ,casestr ,...
‘voronoistat.tex' ), w );
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stattex (fid ,numformat, texformatl Mean:’' ,meanarea’,SD:’ ,stdarea ) Skew:' ,...

skarea ; Kurt:' ,kuarea);

stattex (fid ,numformat, texformatl Mean:' ,meanshape’,SD:’' ,stdshape’,Skew:' ,...

skshape ', Kurt:' ,kushape);

stattex (fid ,numformat, texformatl Mean:' ,meanform; SD:' ,stdform , Skew:'’
skform ,” Kurt:' ,kuform);

fclose(fid)

end

%% Write sorted to tex

if texsortwrite
texformatl ='2";
texformat2 ='0’
numformatl ='9%5.2f" ;
numformat2 ='9%d’ ;
fid1=13;

fprintf (fidl, strcat( %9 ,casestri\n’));

stattex (fidl ,numformatl ,texformatl Mean:’' ,meanarea’,SD:’ ,stdarea’Skew:’' ,...

skarea ; Kurt:' ,kuarea);

fprintf (fidl1+1,strcat( %46 ,casestr’\n’));

stattex (fidl1+1,numformatl ,texformatl Mean:' ,meanshape’,SD:" ,...
stdshape’ Skew:’ , skshape ' Kurt:'  kushape);

fprintf (fidl1+2,strcat( %6 ,casestr’\n"));

stattex (fidl1+2,numformatl ,texformatl Mean:' ,meanform, SD:"' ,...
stdform ; Skew: ' ,skform , Kurt:' ,kuform);

for i=0:2
if strcmp(casestr )case4x25')
fprintf (fidl+i," \\\\");
else

fprintf (fidl+i,’ & );
end
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Listing B.9: voronoistat.m

Function: stattex.m

-
function stattex (varargin)

% StatTex(fid ,numformat,texformat, String 1, Num 1, ...tri8g n, Num n)
% function to simplify the tex formatting. Each string and mmer pair is
% written on a separate line in a latex tabular

%

% Example: stattex (fid, %6.2d’,’2’, Mean’,meannum);

fid = varargin {1},
numformat = varargin{2};
texformat = varargin{3};
fprintf (fid ,['\\begin{tabular}{ID{.}{.}{" ,texformat,/}} \n'])
for i=4:2:(numel(varargin))

str = varargin{i};

chum = varargin{i+1};

fprintf (fid,cell2mat(strcat ({str},{ & '},{numformat},{" \\\\ \n’})),cnum);

end

fprintf (fid ,"\\end{tabular}\n’);

Listing B.10: stattex
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B. Random Site Percolation
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Script: sitepercscript.m — Generate and Process a Random Percolan Cluster

Script for Generating and Processing a Random Percol@ligster ...................
Largest Cluster in Percolation MatriX ............«.ooiiiinnnneiiiiiiiannn..
Sort Cluster By DISTANCE . .. ... e
Backbone Of CIUSTEr . . ... ..o e e
Shortest Path ACross CIUSTEr . ... .o e
Direct Paths ACross CIUSTEr . ... ...t e
Locate Neighbouring Pixels that are Inside the Matrix.............................
Lookup Table Identifying Bridgeing Pixels ... i,
Lookup Table Identifying Spur PiXels . ..... ... e

B-19

-
% random site percolation at percolation threshold.

% A percolation matrix and; the largest (infinite) clusterthe transport
% backbone and the elastic backbone of the cluster are caatatl.
% The results are plotted to figures and the matrices saved.

clear all;

% set parameters
p=.592747; % critical threshold
siz=[1 1]x256; % size of network

% Make new clusters until spanning cluster ococupying mobhart 0.3 is
% obtained
notdone=1;
while notdone
m=siz (1); n=siz (2);
A=rand (m,n); % percolation network
A=im2bw (A,1-p); % threshold
% Extract largest cluster
N = largestcluster (A);
if any(N(:,1)) & any(N(:,size(N,2))) & sum(sum(N))>numel(N}).3,
notdone =0;
end
end
save 512fig2 /A. mat A

%% Find Elastic Backbone

tic % store time at start

D = sortcluster (N);

figure (2), cla, images¢D), daspect([1 1 1]),colormap(—gray(256)+1),
[EBall, EBclose] = shortestpath (D);

disp(’ El astic Backbone')

toc % report time used

% plot largest cluster and elastic backbone
EB=EBall (:,:,1);

EB=max(max(EB))—-EB;

EB(find (EB))=1;

figure (4), cla, imagesoN.x.8+ EB(:,:,1)),
daspect([1 1 1]),colormap(—gray(256)+1);

disp(’ Transport Backbone’)
tic
%% Calculate transport backbone
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BB=backbone (N);
toc
D=sortcluster (N);
D(D<10)=10;
D(D==max(max(D)))=0;
%% Plot all different clusters
L = bwlabeln(A,4);
RGB = label2rgb (L, lines’ ,”w ,’shuffle’);
map=[ 1 1 1,

4 .4 .7,

.7 .5 .5;

00 O;

I;
figure (1)
subplot(1,2,1), cla, imagesc(A), colormap(—gray+1),
daspect([1 1 1]),axis off
subplot(1,2,2), cla, imagesc(RGB), daspect([1 1 1]),
daspect([1 1 1]),axis off
figure (2)
%% Plot Largest Cluster along with backbone and elastic blcke
subplot(1,2,1), cla, image(2*N+BB+EB); colormap(map);
daspect([1 1 1]);,axis off
subplot(1,2,2), cla, imagescD), colormap([map;[jet(245)]]),
daspect([1 1 1]),axis off, colorbar
%% save the results
save 512fig2/ matrices.mat A BB D EB EBall N
U

Listing B.11: sitepercscript.m

Function: largestcluster.m — Largest Cluster in a Random Percolatia Matrix
function N = largestcluster (A)
% Remove all except largest cluster
N=bwlabeln (A,4);
S=regionprops(N,’ Area’ );
N=ismember (N, find ([S. Area]==max(max([S.Areal))));

Listing B.12: largestcluster.m

Function: sortcluster.m — Sort Cluster by Distance

(function D = sortcluster(varargin);

% D = sortcluster (N,[1]);

% D is a matrix of same size as N. N is a-bmatrix with ones at cluster
% location and zeros outside. D is a distance matrix with alluster sites
% containing a value equal to the distance to the left edge.l Al

% non-cluster sites contain a value one greater than the longeststdnce.
%

% The optional second input parameter |, is a list of the ind& the

% distances will be calculated relative to. The default valus all

% cluster sites on the left edge.

% initializing
N=varargin {1};
F=logical (zeros(size(N))); % percolation front
D=zeros(size(N)); % distance matrix
if numel(varargin) ==

I = find ([varargin {2}]);
else
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I=find (N(:,1));
end
F(l)=1; % in case
Done=false size(D));

% Tracking Network
while any(any(F))

%Adding new sites to network;
I=find (F);

Done (find (D))=1,;

D(1)=D(1)+1;

D=D+Done;

neighbour = legalngize(N),1);

Flast=F;
F(neighbour) = N(neighbour}~Done(neighbour);
F = F & ~Flast;

end

% transform counter to distance and label all nenluster sites with
% maximum value +1

Dmax=max(max(D))+1;

D= DmaxD;

N

B-21

Listing B.13: sortcluster.m

Function: backbone — Backbone of the Cluster

rfunction N2 = backbone (N)

% BB = backbone (N)

% Calculates the transport backbone of the infinite clusteratrix N.

%

% The backbone consists of all cluster parts that will not Bkeaway from
% the cluster by the removal of a single pixel. This algorithincates all
% pixels with the potential to break up the cluster from a loayp table.
% These pixels are then, one by one, removed and the new numbeareas
% with more than one pixel is counted. If the cluster broke apahen the
% pixel is removed along with any region not in conntact with ddrect

% route across the cluster. The pixels closest to a direct twuhas the
% highest potential for breaking off large regions which ssdguently need
% not be checked furter, these pixels are therefor checkedsfi

% Finally , because this approach doesnt find "spyrixels", i.e. the end
% point of lines, all 4connected spurs are removed by a localp table.

% It is assumed that any part removed in this way is smaller nthkept part
% containing the direct path.

N2=N;
% Find all direct paths across the cluster
DP=directpaths (N);

% removing briding pixels using the liberal hbreakrule fution (custom
% made) in a lookuptable.

lut=makelut (@Ilhbreak ,3);

L = applylut(N, lut);

% Making a list of those pixels that were found not to break upetregion
L=N & ~L;

I=find (L);

% Sorting the cluster with the direct paths as startpoints etaurning the
% distance from each cluster site to the closest direct pathhe list of
% removable pixels is then sorted according to this.

D=sortcluster (N,DP);

[Y,ld]=sort(D(1));
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B-22 APPENDIX
I=1(Id);
for i=1:numel(l)
if N2(1(i))
N(I1(i))=0;
Lbw=bwlabeln (N, 4);
S=regionprops (Lbw’,Area’ );
nclusters =find ([S.Area] > 1);
% proceed if the cluster has been split into parts
if numel(nclusters) > 1
L2(1(i))=1;
% checking if the the pixel removed lies on a direct path if
% not it can safely be removed.
it ~DP(1(i))
N2= N2 & largestcluster (N);
else
% cluster has been split in three on DP, the direct path
% parts are to be replaced and any remaining parts
% unnattached to the direct path will be removed.
Il = legaln(size(N),I(i));
Il' = nonzeros(I1 (N(Il') & N(I1)));
Ildp = nonzeros(ll( (DP(Il) & DP(I1)) ));
ondp=Lbw(lldp);
Il = nonzeros(Il (~(DP(I1l) & DP(I11))));
offdp = Lbw(I1);
| = ~ismember (offdp ,ondp);
% cluster to be removed
offdp = unique (honzeros(offdp(1)));
if ~isempty(offdp)
for tmp=21:numel(offdp)
Itmp = find (Lbw==o0offdp (tmp));
N2(Itmp)=0;
end
end
end
end
end
N2(1(i))=1;
N(I(i))=1;
end
% only keeping the largest cluster
N2 = largestcluster (N2);
% adding any removed pixels from the direct path.
N2 = N2 | DP;
% Continously removing fourconnected spurpixels untill all single pixel
% lines are removed.
lut=makelut (@Ispur , 3);
Ll=false (size(N2));
L2=L1;
L1 = applylut(N2, lut);
while ~isequal (L2,L1)
L2=L1;
L1 = applylut(Ll, lut);
L1 = L1 | DP;
end
% Removing spurs form N2
N2 = N2 & L1;
\

Listing B.14: backbone.m
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Function: shortestpath.m — Shortest Paths Across the Cluster

(function varargout = shortestpath (D)

% [EBall, EBclose, EBbin] = shortestpath (D)

% D is a sorted matrix of the cluster with values assigned amtiog to the
% distance form the left side.

%

% EBall is a matrix containing all the shortest routes throlugthe matrix,
% with the different routes found on the indices of the thirdmeénsion.

% The routes are labeled with values according to the distanto the

% start.

%

% EBclose is a matrix of the nearest neighbours to EBall lab&l according
% to the distance to the start. This may be used in certain aligloms used
% to find the transport backbone.

% EBbin is a logical image of EB containing no distance infoathon.

% Finds the shortest path in a sorted cluster

% The algorithm floods the matrix from one side and backtrackhrough the
% cluster once a path leads to the other side. This is a widthrst

% routine checking all possible paths simultainously andoats when a

% route reaches the other side.

% NOTE all non-cluster sites must be assigned value Dmax (not 0)

% FINDING ALL SHORTEST HORIZONTAL PATHS
Dmax=max(max(D))+1;

Dmin=min (D(: ,size(D,2)));

ID=find (D(:,size(D,2))==Dmin);

EB=ones(size(D))*Dmax+1; % initilizing elastic backbone matrix- EB
EBall=zeros(size(D,1),size(D,2),numel(ID));
EBclose =zeros(size(D));

for i=1:numel(ID)
m=ID(i); n=size(D,2);
EB(m,n)=Dmin;
EBclose (m,n)=1;

[m+1 m-1];
((m<=size(D,1)).x (m>=1) );

m
|
m = m(find (1));

EBclose (m,n)=Dmin;

or 1:Dmin-1
fi

nd (EB==min (min (EB)));

%adding legal neighbour cells.

r = legaln(size(D),I);
Dval=D(r);

% removing nomminimum cells
I= (Dval==min (min(Dval)));
r=r(find (r.x1));

Dval=min (min (Dval));

if ~isempty(r);
EB(r)=Dval;
EBclose(r)=—1;
end

% MAKING LIST FOR Backbone CALCULATION
[m,n] = ind2sub(size(D),r);
m = cat(l, m+l, ml, m, m);
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n = cat(l, n, n, n+l, rl);
Itmp=[find (n<1);find (n>size(EBclose ,2))];
if ~isempty(Iltmp),

n(ltmp)=0; m(Iltmp)=0;

m=m(find (m)); n=n(find (n));
end
Itmp=[find (m<1);find (m>size(EBclose ,1))];
if ~isempty(Iltmp),

n(ltmp)=0; m(Iltmp)=0;

m=m(find (m)); n=n(find (n));

o

en

r2=sub2ind (size(EBclose), m,n);
temp=false Gize(r2));
r=cat(1,r(:) .find (EBclose==1));
for teller = 1:numel(r)

Ir= find (r2==r(teller));

if ~isempty(Ir),

temp(Ir)=1;
end

o

en

r2=r2 (find (r2 .x~temp));
EBclose (r2)=Dminj;

end
EBall (:,:,i)=EB;
tmp = EB;
tmp (tmp==max(max(tmp)))=0;
tmp = tmp&tmp;
EBbin (:,:,i)=tmp;
end

% parsing output
varargout{l}=EBall;
varargout{2}=EBclose;
varargout{3}=EBbin;

\

APPENDIX

Listing B.15: shortestpath.m

Function: directpaths.m — Locate All Direct Paths Across the Cluser

(function DP = directpaths (N)

% DP = directpaths (N)

% Finds all direct horizontal paths in a sorted cluster. Tlesoutes need
% not be the globally shortest route, only the shortest roufrem the

% individual start locations at both sides and to the closepbint on the
% other.

%

% NOTE all non-cluster sites must have value 0 in N;

% initialize
siz=size(N);
DP=false (siz);

% FINDING ALL SHORTEST HORIZONTAL PATHS
for j=1:2;
% Flip left/right to locate the shortest paths from both sigle
N=fliplr (N);
D=sortcluster fliplr (N));
% Changing norcluster distance values from max to O.
D(D==max(max(D)))=0;
start = D(: ,size(D,2));
% start values are indices in a single column, calculating tdobal

% indice values.
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Istart=find (start)+siz (1)*(siz(2)-1);
% Iterating from each start location
for i=1:numel(Istart)
current=Istart(i);
DP(current)=1;
while ~isempty(current)
% finding legal neighbours
In=legaln(siz ,current);
% removing neighbours not on network, or on direct path
In=nonzeros( In.»(D(In)&D(In)) );
% using the minimal route, removing repetitions
In = unique (In(D(In)==min(D(In))));
current =nonzeros(In.«(~(DP(In)&DP(In))));
DP(current)=1;
end

end
% Flippinig the directpath matrix back
DP=fliplr (DP);

end

Listing B.16: directpaths.m

Function: legaln.m — Locate Legal Neighbours (inside matrix)

-
function neighbour = legaln(siz,I)

% | = legaln(siz,1)

% Returns all indices in | that are legel, i.e. inside the baup siz.

[m,n]=ind2sub(siz ,1);

m = [m+1l m-1 m m];

n=1[nn n+tl n-1];

I= ((m<=siz (1)) & (m>=1) ) & ((n<=siz(2)) & (n>=1));
m=nonzeros(m.x | ); n=nonzeros(n.x|);

neighbour = sub2ind(siz ,m,n);

N

Listing B.17: legaln.m

Function: Ihbreak.m — Lookup Table identifying Bridgeing Pixels

function r = lhbreak(x);

% r = Ihbreak (x)

% liberal (i.e. 4-connected) break rule breaking-tonnected regions for
% lookup table. The input x is a 3x3 binary matrix of some cayuration.
% If the middle element can be changed from 1 to 0 without breakup a
% 4-connected region then this is done. Otherwise the originadlue is
% kept.

X1=x;
x2=rot90(x1);
x3=rot90 (x2);
x4=rot90(x3);
switch 1
% all zeros stay
case x(5)==0, r=0;
% x(5) == 1 FOR REMAINING CASES

% non bridging pixels are kept.
% NOT
0% * * *x * 1 *
%111 1 1=
0 * x * % % *
case ~(...
isequal (x(4:6),[1 1 1]) ...
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isequal (x([2,5,8]),[1 1 1]) ...
(x(2) && x(4)) [l
(x(2) && x(6)) ...
(x(4) && x(8)) [
) (x(6) && x(8)) )
r=1;

% if 8 or more pixels are 1 r cannot break a path

%110
%111
%111
case sum(x(:))>=8, r=1;

% if one complete side is 1, and the middle oposite is 0 then mroat
% break a path
%111
% 111
% * 0 =
case any( ...
[sum(x1(1:6)) sum(x2(1:6)) sum(x3(1:6)) sum(x4(1:6))]==6
& [x1(8)==0 x2(8)== x3(8)== x4 (8)==0]
)
r=1,

% if x is on a corner it cannot break path
%« 11
%011
% * 0 =
case ( x1(2) & x1(3) && x1(6) && ~x1(4) && ~x1(8) ) |]|...
( x2(2) &% x2(3) && x2(6) && ~x2(4) && ~x2(8) ) |]|...
( x3(2) &% x3(3) & x3(6) && ~x3(4) && ~x3(8) ) |]...
( x4(2) &% x4(3) && x4(6) && ~x4(4) && ~x4(8) )
r=1;
otherwise
r=0;
end
U

APPENDIX

Listing B.18: lhbreak.m

Function: Ispur.m — Lookup Table identifying Spur Pixels

(function r = Ispur(x);

% liberal (i.e. 4-connected) spur removing function for lut, makelut and aplpit
% this removes the end points of {4onnected) lines without removing small

% objects completely.

switch 1
% all zeros stay
case x(5)==0, r=0;
% x(5) == 1 FOR REMAINING CASES

case x(2)+x(4)+x(6)+x(8)==1
r=0;

otherwise
r=1,;
end
U

Listing B.19: Ispur.m




© ® N OO M WN P

11
12
13
14
15

17
18
19

21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40

42
43
44

B. MATLAB SCRIPTS AND FUNCTIONS B-27

B.4 Fractal Analysis

Regrid Image and Count Pixels for Box Counting Algorithm ... ............................
Count Number of Pixels for Sandbox Algortihm . ...... oo
Mass and Correlation EStimate . ............ oo
FOUNEr EStIMate ... .ttt s e e e e e e
Angleaverage for Mass, Correlation and FourierEstimate................. ...
Linear Fit of the Most Linear Region . ... e

Recursive Linear Fit of All Linear Regions Using Autofit............. ... oot

© N o o A~ N e P

Plot Linear Fit Graphs and Datatable ............ ... i i

Function: regridboxcountpix.m — Count Number Occupied Pixels in Resied Image for Box

Count Method

rfunction [num] = regridboxcountpix (A, siz)

% num = REGRIDBOXCOUNTPIX (A, size);

% regridboxcountpix maps the matrix A over to a new matrix M.heTsize of
% new pixels in M is determined by the scalar size, siz, confag the

% number old pixles each new pixel is covering along each axisny cell in
% M that maps to a cell, or part of a cell in A, that contains a ra@ero
% entry is set to 1. The function then counts all non empty cell

% repositions the grid and counts again, compairs all posdblpositions and
% returns the minimum number of neempty boxes

% If matrix is in non-logical format, all nonzero entries are converted to
% 1 in the conversion to logical.
if ~islogical (A)
A=logical (A);
end

% Matrix dimensions
x=size(A,1); y=size(A,2);
m=ceil(x./siz); n=ceil(y./siz);

% Permutations with a displacement along either row or colundirection ,

% will require a matrix one size larger for that direction. T is because
% these displaced grids have the last cell split between thw tsides of

% the matrix is not joined back togheter as one, a 'wrappingf ohe image
% across the edge is not wanted. This is handled by leaving tlst row or
% column as an altzero vector, wich will therefor not contribute to the

% sum of nomrempty cells.

k = siz-1;

I = siz—-1;

% Preallocating memory

M=zeros(m+1,n+1 ceil(x./m-1),"single’);

% Using the logical bit-format to save memory.

M=logical (M);

%loops through the new matrix.

for i=1:m+1;
% calculate the indices of the first and last cells of the oldatmix wich
% are contained in the new cells. Cells outside the matrix aimenored.
% from/to—x and from/to-y are vectors containg all the displaced
% versions as well as the original.

fromx = fix
tox = ceil(
for j=1:n+1

*x/m) —(0:k); I = find (tox > x); tox(1)=x;

((i —1)x*x/m+1)—(0:k); | = find (fromx < 1); fromx(1)=1;
i
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fromy = fix ((j —1)xy/n+1)—(0:1); | = find (fromy < 1); fromy(l)=1;

toy = ceil(j*y/n)—(0:1); I = find (toy > y); toy(l)=y;

% loop through the different displacements

dkdl = 1;

for dk=1:k+1

for di=1:1+1

% Checking if any of the cells in the old matrix, that is
% (partially) contained in a given cell in the new matrix,
% is non-zero. If so the corresponding entry in the new
% matrix is set to 1.
M(i,j,dkdl)=any(any( A(fromx(dk):tox (dk),fromy(dl):toy(dl)) ));
dkdl = dkdl+1;

end
end
end
end

% Find lowest possible number of neempty cells.
num=min (sum(sum(M)));

APPENDIX

Listing B.20: .m

Function: sandboxnumber.m — Count Number of Pixels For Sandbox Agorithm

function [num,r] = sandboxnumber(varargin)

% [NUM] = SANDBOXNUMBER (IMAGE, INDEX, NPOINTS)

% Used for calculating the sandbox dimension of IMAGE

%

% Calculates the number of occupied positions around INDEX the image
% matrix A and returns an nx2 vector, where n is the number ofdiices in
% INDEX, containing the sum of the number of occupied posmntsoover all
% indices in INDEX and in the second column the number of imgkcin INDEX
% that has contributed to this sum.

%

% INDEX may be a nxl1 vector contaning the indices or a nx2 matdontaning
% the subscripts of the points.

% Optional argument NPOINTS reduces the list of possible ghdiourhoods to
% check to a list of logarithmicly distributed subset. Defauvalue (0)
% skips this redistribution and uses the full data range.

% PARSE INPUT

A=varargin {1};

Index=varargin{2};

% log reduction

if numel(varargin)>2
nL = varargin{3};

Lmax = min(round(size(A)./2));
if nL >0
% logartihmic distribution of neighbourhood widths
logL = log10(1) : logl0O(Lmax)/nL : logl0(Lmax);
pLs = unique found (10.7logL));
else
% all possible neighbourhood widths
pLs = 1:Lmax;

o

en

% if indices are suplied, transform to subscripts
if size(Ilndex,2)==
[templ,temp2]=ind2subgize(A),Index);
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Index=cat(2,templ,temp2);

elseif size(Index,2)~=
disp (' ERROR: Input, wrong format')
return

end

% Initialize
I=Index;
num=[0 O0];
for i=1:size(l,1)
temp=1(i);
m=1(i,1);
n=I1(i,2);
% locate disitance to nearest edge
edge=min( min ([m-1,size(A,1)-m]) , min([n-1,size(A,2)-n]) );
% all posible widths inside the matrix
Ltmp = pLs(pLs<=edge);
for j=1:numel(Ltmp)
L = Ltmp(j);
% subset of matrix containing only sandbox
subA=A(m-L:m+L,n-L:n+L);
% adding sum of this sandbox to the other sandboxes of same siz
if (size(num,1)>=L)
num(L,1)=sum(sum(subA))+num(L,1);
num(L,2)=1+num(L,2);
else
num(L,1)=sum(sum(subA));
num(L,2)=1;
end
end
end

% parse output
r = pLs;
-
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Listing B.21: sandboxnumber.m

Function: massestimate.m — Mass and Correlation Estimate

(function varargout = massestimate (varargin)

% [Dim, normr, S, k] = massestimate (IMAGE, nk, kmin, fmoddstribution)

% [DimM, normrM, SM, kM, DimC, normrC, Sc, kc] = ...

% massestimate (IMAGE, nk, kmin, fmode, distribution)
%

% Calculate fractal dimension by the mass estimate

% Because calculation of the mass estimate goes a long way adcuwlate the
% correlation estimate as well another optional set of outpparameters is
% available for the correlation estimate output.

%

% NK is the number of different frequency bins the spectralndigy is

% averaged into. KMIN is the smallest frequency allowed torpaipate in
% the calculation. FMODE specifies properties of the fourie

% transform of the supplied image. FMODE takes the followirvglues which
% specify transforms to be done before the matrix is transfied into the
% autocorrelation .

%

% 0o - apply fourier transform with padding

% 1 - apply fourier transform without padding

% 2 - IMAGE is transformed, apply convertion to spectral

% density

% 3 - IMAGE is transformed and converted to spectral density,
% no further transformation required before calculation.

%
% DIM is the power law scaling of the spectral density, i.e.ethfourier
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% estimate of the fractal dimension.
% NORMR is the norm of the residuals of the loglog linear fit.
% S is the angle averaged spectral density as a function of K.

% DEFAULTS: nk =20
% kmin =10
% mode = 3 (spectral density is supplied)

%% parse input

if numel(varargin)==0

% error (' fourier:wronginput’, strcat ('Wrong number of iputs in
‘\n[Dim,normr,S,r]=fourierestimate (F,[nk],[kmin],[padding])’))

B3

end
if numel(varargin) >= 5
distr = varargin{5};
else

distr ='logarithmc’;
end
if numel(varargin) >= 4
fmode = varargin {4},
else

fmode=2;
end
if numel(varargin) >= 3
kmin = varargin{3};
e
kmin = 10;

(e
n

end

if numel(varargin) >=2

nk = varargin{2};

if nk==0,
nk=ceil(min(size(varargin{1}))./2);

end
e
nk = 20;

0]
0

end
if numel(varargin) >=1
F = varargin{1};
Ise

% F=rand (1024);

n

(0]

D
o

%% apply remaining transforms according to fmode
switch 1
case fmode == 0
F = fft2 (F,2«~size(F,1)-1,2xsize(F,2)-1);
S = Fxconj(F);
case fmode ==
F = fft2 (F);
S = Fxconj(F);
case fmode ==
S = Fxconj(F);
case fmode ==
S = F;
end

%% autocorrelation— calculate, shift and normalize

C=ifft2 (S);

C=fftshift (C);

C=real (C);

C=C./max(max(C));

o %% cropping off randoff errors

% C(C<(.00001))=0;

o figure (1), imagesc(loglO(abs(real((C))))), colorbarcolormap(jet)
% pause

X

XX
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B. MATLAB SCRIPTS AND FUNCTIONS

%% angle averageing

% f(x,y)—=> f(r)

% [C,r] = angleaverage(C,nk, 'logarithmic ");

[C,r] = angleaverage (C,nk, distr ,kmin);

%% cropping off rand-off errors

I= (abs(C) < 10.7(-10));

c(l) = II:

r¢l) = I[I;

% CORRELEATION DIMENSION

% Because the calculation of the mass dimension have done hhed work
% necessary to calculate the correlation dimension this isturned as well
%% loglog fitting

IC = 1log10(C);

Ir = logl10(r);

[P,s]=polyfit (Ir,IC,1);

% extracting norm of residuals

s=struct2cell(s);

normr=s (3);

%% parsing output for correlation dimension
varargout{5}=P; % Slope over entire range of Correlation estimate
varargout{6}=normr; % norm of residulas from the regression
varargout{7}=C; % Angle averaged spectral density
varargout{8}=r; % frequency bins

%% integrate by piecewise cubic spline initerpolation

CR = Cuxr;

ftype = fittype (' spline’);

fitl = fit(r’,CR’, ftype);

inty = integrate (fitl ,r,r(1));

M = inty (1:numel(inty))—inty (1);

%% transforming column to row vector

MEM( 1)

r=r(:);

%% loglog fitting

IM = logl0(M);

Ir = log10(r);

[P,s]=polyfit (Ir,IM,1);

% extracting norm of residuals

s=struct2cell(s);

normr=s (3);

%% parsing output

varargout{1}=P; % Slope of entire range of Mass estimate
varargout{2}=normr; % norm of residulas from the regression
varargout{3}=M; % Angle averaged spectral density
varargout{4}=r; % frequency bins

\
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Listing B.22: massestimate.m

Function: fourierestimate.m — Fourier Estimate

function varargout

= fourierestimate (varargin)
% [Dim, normr, S, k] =

fourierestimate (IMAGE, nk, kmin, fmel

% Calculate fractal dimension by the fourier estimate
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% NK (num) is the number of different frequency bins the spattdensity is
% averaged into. KMIN (num) is the smallest frequency alladwéo participate
% the calculation. FMODE (num) specifies properties of theufier

% transform of the supplied image. FMODE takes the followivglues

%

% 0o - apply fourier transform with padding

% 1 - apply fourier transform without padding

% 2 - IMAGE is transformed, apply convertion to spectral

% density

% 3 - IMAGE is transformed and converted to spectral density,
% no further transformation required.

%

% DIM is the power law scaling of the spectral density, i.e.ethfourier

% estimate of the fractal dimension.

% NORMR is the norm of the residuals of the loglog linear fit.

% S is the angle averaged spectral density as a function of K.

%

% DEFAULTS: nk =20

% kmin =10

% mode = 3 (spectral density is supplied)

% distribution = logarithmic

%% parse input

if numel(varargin)==

% error(’'fourier:wronginput’, strcat ('Wrong number of iputs in ...
‘\n[Dim,normr,S,r]=fourierestimate (F,[nk],[kmin],[padding])’))

=S

end
if numel(varargin) >= 5
distr = varargin{5};
else

distr =
end
if

"logarithmec’;

numel(varargin) >= 4
fmode = varargin{4};
e

fmode=2;

(e
n

end
if numel(varargin) >= 3
kmin = varargin {3};
|

@
[%)]
@

end
if numel(varargin) >=2
nk = varargin{2};
e

nk =

(]
(%]

20;
end
if numel(varargin) >=1
F = varargin{1};

e

F=rand (1024);

0]
0

0]
o

n

%% apply remaining transforms according to fmode
switch 1

case fmode

F = fft2 (F,2~size(F,1)-1,2xsize(F,2)—-1);

S = Fxconj(F);
case fmode ==

F = fft2 (F);

S = Fxconj(F);
case fmode ==

S = Fxconj(F);
case fmode ==

S = F;

0]
>
o

in
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B. MATLAB SCRIPTS AND FUNCTIONS

%% spectral density— shift and normalize
S=fftshift (S);
S=S./max(max(S));

%% angle averageing
% f(x,y)—=> f(r)
[S,r] = angleaverage (S,nk, distr ,kmin);

%% loglog fitting

IS = 10g10(S);

Ir = logl10(r);

[P,s]=polyfit (Ir,IS,1);

% extracting norm of residuals
s=struct2cell(s);

normr=s (3);

%% parsing output

varargout{1}=P; % Slope of entire range
varargout{2}=normr; % norm of residulas from the regression
varargout{3}=S; % Angle averaged spectral density
varargout{4}=r; % frequency bins

\
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Listing B.23: fourierestimate.m

Function: angleaverage.m — Angle Average for Mass, Correlation athFourier Estimate

rfunction [F,r] = angleaverage (F,nk, style ,kmin)
% [F,r] = angleaverage (M, nk)

% [F,r] = angleaverage (M, nk, style)

% [F,r] = angleaverage (M,nk, style ,kmin)

% Returns a vector of M values avaraged over nk circles arouitd centre
% style takes the following values:

% "logarithmic’

% ‘arithmetic’

% default value is logarithmic

% kmin>0 specifies an inner radius, all points within this Mibe ignored.

if isempty(style)
style=logarithmc’

end

if isempty(kmin)
kmin=0;

[¢]
o

n

%% angle averaging

% locating centre pixel and finding shortest distance fronendtre to edge
mctr = ceil((size(F,1)+1)/2);

nctr = ceil((size(F,2)+1)/2);

kmax = min(mctr, nctr);

% initilizing the positions of the bins the data is avaragedto
if isequal(style logarithmc’)
logk = logl0(kmax)/nk : logl0(kmax)/nk : logl0(kmax);

k = 10."Mlogk;
elseif isequal(style jarithmetic’)
% k = kmax/nk : kmax/nk : kmax;
k = kmin : kmax/nk : kmax;

else
error (" angl eaverage: unknownstyle' ,...
"ERROR: unrrecognized style in angleaverage’')

end
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B-34 APPENDIX
k=k (k>=kmin);
%% initilizing the positions of the bins the data is avaragedto
logk=log10(k);
%% initialize angle average
% counter array for the number of entries in each bin
Frc = zeros(1,numel(k));
% bins for storing F with reduced resolution
Fr = zeros(1,numel(k));
% bins for storing the mean distance of the entries in each bin
Frr = zeros(1,numel(k));
for m=1:size(F,1)
dm = mctr-m;
for n=1:size(F,2)
dn = nctr—-n;
r = sgrt(dm”2+dn”2);
% centre item is out of bounds and values > kmax are only defline
% in corners
if r ~= 0 & r<=kmax && r>=kmin
% finding the nearest k (the v value is required in syntax)
[v,rk] = min(abs(logk—log10(r)));
Frc(rk) = Frc(rk) + 1;
Fr(rk) = Fr(rk) + (F(m,n));
Frr(rk) = Frr(rk) + (r);
end
en
end
% removing empty bins
| = Frc & Frc;
Fr = Fr(l);
Frr = Frr(l);
Frc = Frc(l);
k = k(1);
% dividing sum to mean
F = Fr./Frc;
r = Frr./Frc;
Listing B.24: angleaverage.m
Function: autofit.m — Linear Fit of the Most Linear Region
function varargout = autofit(varargin)
% [P, from, to, normr, quality] = autofit(x,y)
% [P, from, to, normr, quality] = autofit(x,y,dxmin)
% [P, from, to, normr, quality] = autofit(x,y,dxmin,Imin nax)
% [P, from, to, normr, quality] = autofit(x,y,dxmin,Imin max, minfindwidth)
%
% Where dxmin is the minimum number of indices considered jnlmnd Imax
% are the bounds of the search, points outside this range agmored and
% minfindwidth is the smallest continous region scanned farfit, measured
% as the fraction of the number of the logarithmic width.
%
% Default values: dxmin = 0.20+ numel(x)
% Imin =1
% Imax = numel(x)
% minfindwidth = 0.20
%
% This algorithm finds the single subregion of the functionxy that can
% best be described by a linear fit. A fit is considered bettaith
% increasing logarithmic width multiplied by @normR)"5.

%
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B. MATLAB SCRIPTS AND FUNCTIONS

% This is brute force solution to the problem testing all lelgaubregions,
% according to its optional arguments, and comparing them tind the best
% one.

%% Parse input

x = varargin{1};

F = varargin{2};

if numel(varargin)>=3
dxmin=varargin {3};

else
dxmin=round (.20 .x numel(x));

end
if numel(varargin)>=5
Imin = varargin{4};

Imax varargin {5};
else

Imin = 1;

Imax = numel(x);
end
if numel(varargin) >= 6

minfindwidth = varargin{6};
else
minfindwidth = .20;

end

if Imax — Imin < dxmin
disp(' ERROR: (lmax - Imn) < dxmn')
return

end

%% Calculate all possible continous linear fits
for i=Imin:Imax—dxmin
for j=i+dxmin:Imax
[Pn,sn]=polyfit ((x(i:j)),(F(i:j)). 1);

Pj(j)=Pn(1); % slope
sn=struct2cell(sn);
normrj(j)=sn{3}; % norm of residuals

if isnan(normrj(j))
normrj(j)=inf;

end

xmaxj (j—i—dxmin+1)=j;
end
P{i}=Pj;
normr{i}=normrj(normrj&normrj);
xmin(i)=i;

xmax{i}=xmaxj;
clear Pj normrj xminj xmaxj
end

%% Compare the quality of each fit to find the best within eacange
for i=Imin:numel(P)
from=i;%xmin(i);
to =xmax{i};
norm=normr{i};
for j=1:numel(orm)
% xfactor is percentage of total range
xfactor = ((x(to(j)))—(x(from)))./(x(numel(x)}x(1));
nfactor = (1.—norm(j))."5;
% checking if current location meats requriements
if xfactor >= minfindwidth
qual(j) = xfactor =« nfactor;
else
qual(j) = 0;
end
I(j)=norm(j)<.05;
end
clear val ind
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APPENDIX

[val ,ind]=max(qual);
gval{i}=val;
gfrom{i}=i;
gto{i}=to(ind);
qual=[];
end
%% Find the best fit comparing all ranges
[quality ,ind] = max(cell2mat(qval));
% adjust for any empty cells being removed before max(...)
ind = ind + Imin — 1;
from=qgfrom{ind};
to=qto{ind};
[P,s]=polyfit (x(from:to),F(from:to) ,1);
s = struct2cell(s);
normr = s{3};
%% Parse output
if (x(to)—=x(from)) >= minfindwidthx(x(numel(x))—-x(1))
varargout{l} = P;
varargout{2} = from;
varargout{3} = to;
varargout{4} = normr;
varargout{s5} = quality;
else
varargout{1} = [];
varargout{2} = [];
varargout{3} = [];
varargout{4} = [];
varargout{5} = [];
end
end % end autofit
-
Listing B.25: autofit.m
Function: reclinfit.m — Recursive Linear Fit of all Regions (starting with the best)
-
function [fits] = reclinfit(x,y,fromx,tox,sp, fits)
% Recursive Linear Fit
%
% {fits} = reclinfit(x,y,from_ind ,to_ind, searchcrite@d)
%
% This function recursively finds all linear fits in the regm of FROMX to
% TOX within the bounds of the searchcriteria.
%
% searchcriteria = [minn, minsw, minfw];
%
% MINN is the minimum number of points allowed in a fit, defaw 5.
% MINSW is the minimum search width, only regions wider thahist
% fraction of the total width is searched, default = 0.20.
% MINFW is the minimum accepted region a fit can be made acrossgain
% measured in fraction of total width, default = 0.15.
%
% The output is a onedimensional cell vector were each index contains the
% following 7 matrices:
%
% fits{i} = {slope, intercept, from_ind, to_ind, norm of réduals ,...
% width , quality of fit};
%% Declare and parse input
if exist('fits’) ~=1
fits = {};
end
if exist('sp’) ~= 1 || isempty(sp)
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B. MATLAB SCRIPTS AND FUNCTIONS

% use defaults

minn = 5;
minsw = .2 x ((x(numel(x)))—(x(1)));
minfw = .15;
sp = [minn, minsw, minfw];
else

minn = sp(1);
if numel(sp) >= 2

minsw = sp (2)#* (x(numel(x))—-x(1));
else

minsw = .2 x» ((x(numel(x)))—(x(1)));

end
if numel(sp) == 3;
minfw = sp(3);
Ise

minfw = .15;

]

n

@
o

end

%% Run autofit recursively to find all linear regions in agement with the

%% search criteria vector.
[P,from,to,normr,qual] = autofit(x,y,minn,fromx,tox ,imfw);
if ~isempty(P)
fits{numel(fits)+1} = {P(1) P(2) from to normr...
[(x(to)—x(from))/(x(numel(x))}x(1))] qual};

if ((from — fromx) > minsw) && ((from — fromx) >minn)

fits = reclinfit(x,y,fromx, from,sp, fits);

end

if ((tox — to > minsw)) & ((tox — to) > minn)
fits = reclinfit(x,y,to,tox,sp, fits);

end

end

%% END FUNCTION RECLINFIT
end

B-37

Listing B.26: reclinfit.m

Function: linfitplot — Plot Graphs and Data Table of Linear Regions

function [fh1l fh2] = linfitplot(x,y,mode, fits ,fid)

% [figurehandlel figurehandle2] = linfitplot(x,y,modejfs)

% [figurehandlel figurehandle2] = linfitplot(x,y,modeiffs , fid)
%

% mode = 'normal’ or ’'log’

% mode specifies if the data should be plotted onto logtggaphs or not.

%

% This function plots all linear fits along with the functiony(x), in
% single figure, and draws patches beneath each linear regjoand

% specifies where the fits intersects. The handle of this ufig is

% returned in fhl.

%

% Furthermore the gradient of the function, with the same dnhation

% represented in that figure is returned in fh2.

%

% If the optional parameter fid is specified the legend of tipdot is
% written , formatted to the latex tabular environment, toethfile with
% identification fid. Otherwise a smaller legend is writteto screen.

%% parse input and set flags
if exist('fid ,Jvar’) ~= 1
fid =[];

a
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X X %->column form
y y %->column form

if strcmp(mode, log’)

% remove negative values, they are outside the real range of.l
realind =y >= 0;

x = x(realind);

(1)
(1)

y y(realind);
Ix = 1logl0(x);
ly = log10(y);
end
if  exist('fid ,var’) == 1 & ~isempty(fid)
if fid ~= 1
writelegendtofile = 1;
writelegendtoscreen = 0;
else
writelegendtoscreen = 1;
writelegendtofile = 0;
end
else
writelegendtofile = 0;
writelegendtoscreen = 0;
end

thl = figure; clf , hold on
2 = figure; clf, hold o

=}

%% define colormap

% Use the middle portion of the hue part of the hewolor representation
% achieve a colormap without complementary colors.

numf = numel(fits);

if numf == 1,
cmap = [.969,.2,.2];
else
cmap = fftshift (hsv(2*numf) ,1);

cmap = cmap./1.3;

cmap = cmap+.2;

cmap(cmap>1) = 1;

cmap(cmap<0) = 0;

cmap=cmapfloor (numf./2)+1:floor (3*xnumf./2) ,:);
end

colormap(cmap);

%% sort fits
sortvec =zeros(numel(fits), 1);
for i=1:numel(fits)

sortvec (i) = fits{i}{3};
end
[tmp sortind] = sort(sortvec);
fits = fits(sortind);

%% determining min legal function values, cropping at 0
miny = min(y);
if miny < 10~3 & & strcmp(mode, | 0og’)

if (miny == —inf)
ytmp = y;
ytmp (ytmp==-inf) = [];

miny = min(y);
elseif ((miny == 0) & strcmp(mode, log’))
ytmp =y,
ytmp (ytmp==0) = [];
miny = min (ytmp);

=3
il
o

miny < 10°~10
miny = 10"-10;

D
>
o

0]
>
o

to
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B. MATLAB SCRIPTS AND FUNCTIONS

%% plot patch regions

figure (fh1)

for i=1:numel(fits)
from = fits{i}{3};
to fits{i}{4};

px = ([x(from);x(from:to);x(to)]);

py = ([miny;y(from:to);miny]);

regionid (i) = patch(px,py,cmap(i,:));
end

%% plot slopes

for i=1:numel(fits)
slope = fits{i}{1};
intercept = fits{i}{2};

if strcmp(mode, |l og’)
fitid (i) = plot(x,10.~(Ix.xslope+intercept)’color’ ,...
cmap(i,:), LinewWdth' ,1.5);
plot(x,10.~(Ix . slope+intercept)’k:");
elseif strcmp(mode, normal ')
fitid (i) = plot(x,(x.»slope+intercept)’,color’ ,...
cmap(i,:), LineWdth' ,1.5);
plot(x,(x.»slope+intercept).,k:");

end
end

96 locate fit intersections
% if upperflag
for i=1l:numel(fits)1
slope = fits{i}{1};
intercept = fits{i}{2};
slope2 = fits{i+1}{1};
intercept2= fits{i+1}{2};
interx (i) = (intercept2intercept)/(slopeslope2);
intery = sloperinterx(i)+intercept;
if strcmp(mode, log’)
interx (i)=10.~interx (i);
intery=10."intery;
end
plot ([interx (i) interx(i)],[miny intery], -." ,’color’ ,[O O O],...
"LineWdth' ,2);
end

%% plot function
plot(x,y, k', Linewidth' ,1.5);

%% format figure
hold off
% scales
axis square
if strcmp(mode, log’)
set(gca, 'XScale' ,"log’ , YScale' ,"log" ,...
"YLim' ,[miny./10.7(.2) max(y).*10.7(.2)]," XLim ,[min(x) max(x)],...
"XM norTic' ,”on’ ,”YMnorTic' ,”on’ ,”XMnorTic', on’);
elseif strcmp(mode, normal ')
set(gca,’ YLim ,[miny—.2 max(y)+.2]," XLim' ,[min(x) max(x)]);
end

% GRADIENT
figure (fh2), clIf , hold on

if strcmp(mode, log’)
grad = gradient(ly,Ix);
elseif strcmp(mode, normal ')
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grad = gradient(y,x);
end
%% finding min and max noninf gradient values
mingrad =min(grad);
if mingrad ==-inf,
grad2 = grad;
grad2 (grad==inf) = [];
mingrad=min (grad2);

end

maxgrad =max(grad);

if maxgrad == inf,
grad2 = grad;

grad2 (grad==inf) = [];
maxgradmax(grad2);

o

en

%% plot patch regions
figure (fh2)
for i=1:numel(fits)
from = fits{i}{3};
to = fits{i}{4};
px = ([x(from);x(from:to);x(to)]);
py = ([mingrad;grad(from:to); mingrad]);
regionid (i) = patch(px,py,cmap(i,:));

%% plot slopes
for i=1:numel(fits)
slope = fits{i}{1};
plot ([x(1) x(numel(x))],[slope, slope],.-", color’ ,...
cmap(i,:), LineWdth' ,1.5)
plot ([x(1) x(numel(x))],[slope, slope],k’)

o

en

%% plot gradient
plot(x,grad /b’ ,”LineWdth’ ,1.5)

%% format gradient plot
if strcmp(mode, log’)
set(gca,’ XScale’ ,"log" " XLim' ,([min(x) max(x)]) ....
"YLim ,[mingrad—.1, maxgrad+.1],...
"YM norTic’ ,”on’ ,” XM norTic’ , on");
elseif strcmp(mode, normal ')
set(gca,’ XLim ,([min(x) max(x)]),’ YLim ,[mingrad—.1, maxgrad+.1]);

o

en

%% write legend data to file
if writelegendtofile
fprintf (fid ,”\\ newcol umtype{e}{c@ }} \n");
fprintf (fid ,”\\ newcol umtype{d}[1]{D{.}{.}{#1}@ }} \n');
for i=1:numel(fits)
fprintf (fid ,"\\ definecolor{c%d}{rgb}{%.4g, %t. 4g, %} 4g}\n’ ,i,...
cmap(i,1),cmap(i,2),cmap(i,3));

(o}

en

fprintf (fid ,"\\begin{tabular}{| @ }e|d{4}|d{4}|d{4}|}\\hline\n");

fprintf (fid,strcat(\\multicolum{1}{| @ }e|}{Region} & ,...
"\\multicolum{1}{e|}{Slope} & \\multicolum{1l}{e|}{NormR} & ,...
"\\'mul ticolum{1}{e|}{LW dth} \\\\ \\hline \n"));

for i=1:numel(fits)
fprintf (fid, strcat( {\\setlength\\fboxsep{Ommi\\" ...
"fbox{\\raisebox{\\depth}%an ,...
' {{\\ col orbox{cod}{\\rul e{Omm}{3pt}~~~~~~ PRy oL
AN & Yb. Af &Y. 4f & Y. 4f\\\\\n' ), ...
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i, fits{iH1}, fits{i}5}, fits{i}{6}):

(o}

en

%% write region borders

fprintf (fid,strcat(\\hline\m\\multicolum{1}{| @ }e|}{Region} & ,
"\\mul ticolum{1}{e|}{Start} & \\multicolum{1}{e|}{End} & ,

"\M\multicolum{1}{e|}{Fitint} \\\\ \\hline \n"));

for i=1l:numel(fits)-1
fprintf (fid,strcat( {\\setlength\\fboxsep{Omm}\\"' |
"fbox{\\raisebox{\\depth}%an ,...
' {{\\col orbox{co%d}{\\rul e{Omm}{3pt}-$\\cdot$-}}%an ,...
{\\col orbox{cud}{\\rul e{Omm}{3pt}$\\cdot$-$\\cdot$}}%Wan" ,
"1} WA n & \\multicolum{1}{e|}{%. 1f} & \\multicolum{1}" ,
"{el}{w. 1f} & \\nulticolum{1}{e|}{%. 1f}\\\\\n" ), ...
i, x(fits{iH3}) ., x(fits{i}{4}),interx(i));

o

en

i = numel(fits);

fprintf (fid, strcat( {\\setlength\\fboxsep{Omm}\\"' |
"fbox{\\raisebox{\\depth}%an ,...
' {{\\colorbox{cud}{\\rul e{Omm}{3pt}-$\\cdot$-}}%bn" ,...

{\\colorbox{c%d}{\\rule{Omm}{3pt}$\\cdot$-$\\cdot$}}%Wbn" ,

"11} WA n & \\multicolum{1}{e|}{%. 1f} & \multicolum{1}{e|}’ ,...
{1} & \\multicolum{1}{e|}{-}\\\\\n" ), ...
iyi,x(fits{iH3}) ., x(fits{i}{4}));

if numel(fits)>1,

fprintf (fid ,"\\hline’);
end
fprintf (fid ,”\n\\end{tabular} \\\\\n');

end

%% write legend to screen
if writelegendtoscreen
fprintf (fid,” Slope \t\t NormR \t\t LWdth \n");
for i = 1l:numel(fits)
fprintf (fid, 9%b.4f \t %.4f \t 9%b.4f \n' , fits{i}{1},...
fits{i}{5}, fits{i}{6});
end

fprintf (fid,” End \t\t Start \t\t Fitlnt \n');
for i = l:numel(fits)-1
fprintf (fid, 9%, 1f \t\t 9. 1f \t\t 9. 1f \n' ,x(fits{i}{4})....
x(fits{i+1}{3}),interx (i));
end
end

%% end linfitplot

end
-

Listing B.27: linfitplot.m

B.5 Random and Percolation Vessel Simulations

1. Perform Random Simulation Using a Uniform Probabilitg@bution ........................ B-42
2. Calculate one 3D Invasion Bond Percolation CIUSIEr ... o vvv v i B-45
3. Process and Save Sections from the 3D Percolation Cluster . ..................... ... ... B-47
4. Modify Exported Image Cell Vector Produced by the Borigrocessing Script ............... B-49
5. Merge Data from Different Data Files from each Simulat®fore Exporting ................. B-50
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Script: randomsimulation — Perform Random Simulation of Histological Sections

Note: The section of this program that handles the acquoiis@f image analysis paramters, are used in similar
scripts for the percolation simulation and the downscalstblogical images. These scripts will not be included

again.

APPENDIX

(. . . .
% script randomsimulation .

% This script simulates immunohistological
% vessels on an empty image. The various

data by randgmplacing
image analysis patans are

% calculated for each of the simulated images.
clear
nfactor = 10;
t0 = cputime;
nimages = 200;% number of images at each vessel count
% k may be changed to a subset, e.g. 1:10, to divide
% workload among several computers, output is written to efil
for k=1:50;
% initialize for each vessel count
vareastat = [I;
vformstat = [1;
vshapestat = [1;
fshapestat = [1;
ggnumbstat = [1;
ggblstat = [1;
ggbpnstat = [1;
ggnnstat = [I;
ggfnstat = [1;
emstnumbstat = [1;
emstblstat = [1;
emstbpnstat = [1;
emstnnstat = [1;
emstfnstat = [1;
for i = 1l:nimages
tic
A = false (300,400);
I = 1:numel(A);
for tmp=1:nfactork
n = round ((numel(l)—1)~rand)+1;
I(n) = []; % delete selected so it will not be chosen again.
A(n) = 1;
end
%% CUMULATIVE HISTOGRAM
ch = cumhist(A,[.1,.5,.9]);
ch10(i) = ch(1);
ch50(i) = ch(2);
ch90(i) = ch(3);
%% SSA

[vstat ,ggstat ,emststat ,GG,EMST] = randomsimSSA(A);

%
%
%
%

g

format of stat vectors:

vstat
gg/emststat

gblstat

= {areaparams ,formparams , shapeparams};
= {numbranch, blparams , bpnparams, ...
nnparams , fnparams};

% add voronoi statistics

if ~isempty(vstat)
vareastat = [vareastat;single(vstat{1l})];
vformstat = [vformstat;single(vstat{2})];
vshapestat = [vshapestat;single(vstat{3})];

end

% add gg statistics

ggnumbstat = [ggnumbstat; single (ggstat{1})];

= [ggblstat;single(ggstat{2})];
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ggbpnstat = [ggbpnstat;single(ggstat{3})];
ggnnstat = [ggnnstat;single (ggstat{4})];
ggfnstat = [ggfnstat;single(ggstat{5})];

% add emst statistics

emstnumbstat = [emstnumbstat; single (emststat{1})];

emstblstat [emstblstat;single (emststat{2})];

emstbpnstat = [emstbpnstat;single (emststat{3})];
emstnnstat = [emstnnstat;single (emststat{4})];
emstfnstat = [emstfnstat;single (emststat{5})];

%% FRACTAL ANALYSIS

%% of image slide

sp = [5,.2,.15];

[P,s,X,Y] = getfracdim (A, sand’ ,50);

fits = reclinfit(logl0(X),log10(Y),1,numel(X),sp);

%% sort fits
sortvec =zeros(numel(fits),1);
for n=1:numel(fits)

sortvec(n) = fits{n}{3};
end
[tmp sortind] = sort(sortvec);
fits = fits(sortind);

dim = cell2Zmat(fits{numel(fits)}(1));

Dim(i) = dim;
epsind = cell2mat(fits{numel(fits)}(3));
epsilon = X(epsind);

Eps(i) = epsilon;
omegaind = cell2mat(fits{numel(fits)}(4));

omega = X(omegaind);

Omega(i) = omega;

normrind = cell2mat(fits{numel(fits)}(4));
normr = X(normrind);

Normr(i) = normr;

%% of GG

sp = [5,.3,.25];

[P,s,X,Y] = getfracdim (GG, sand’ ,50);

fits = reclinfit(log10(X),log10(Y),1,numel(X),sp);

%% sort fits
sortvec = zeros(numel(fits),1);
for n=1:numel(fits)

sortvec (n) = fits{n}{3};
end
[tmp sortind] = sort(sortvec);
fits = fits(sortind);

dim = cell2Zmat(fits{numel(fits)}(1));
DImGG(i) = dim;

epsind = cell2mat(fits{numel(fits)}(3));
epsilon = X(epsind);

EpsGG(i) = epsilon;

omegaind = cell2mat(fits{numel(fits)}(4));
OmegaGG (i) = X(omegaind);

NormrGG (i) = cell2mat(fits{numel(fits)}(5));

%% of EMST

sp = [5,.3,.25];

[P,s,X,Y] = getfracdim (EMST,sand’ ,50);

fits = reclinfit(logl0(X),log10(Y),1,numel(X),sp);

%% sort fits
sortvec = zeros(numel(fits),1);
for n=1:numel(fits)
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sortvec(n) = fits{n}{3};
end
[tmp sortind] = sort(sortvec);
fits = fits(sortind);

dim = cell2mat(fits{numel(fits)}(1));

DIMEMST(i) = dim;

epsind = cell2mat(fits{numel(fits)}(3));

epsilon = X(epsind);

EpsEMST(i) = epsilon;

omegaind = cell2mat(fits{numel(fits)}(4));

OmegaEMST (i) = X(omegaind);

NormrEMST (i) = cell2mat(fits{numel(fits )}(5));
end

%% MEAN AND STANDARD DEVIANCE OF THE PERMUTATIONS
%% AT CONSTANT VESSEL COUNT.

%% Cumulative Histogram Parameters

mch10 (k) =mean(chl10);

stdch10 (k) =std(ch10);

mch50 (k) =mean(ch50);

stdch50 (k) =std(ch50);

mch90 (k) =mean(ch90);

stdch90 (k) =std(ch90);

%% SSA

mvarea (k,:) =mean(vareastat ,1);
stdvarea(k,:) =std(vareastat ,1);
mvform(k,:) = mean(vformstat ,1);
stdvform(k,:) = std(vformstat ,1);
mvshape (k,:) =mean(vshapestat ,1);
stdvshape (k,:) =std(vshapestat ,1);
mggnumb (k, 1) =mean(ggnumbstat);
stdggnumb (k, :) =std(ggnumbstat);
mggbl(k,:) = mean(ggblstat ,1);
stdggbl(k,:) =std(ggblstat ,1);
mggbpn (k, ) =mean(ggbpnstat ,1);
stdggbpn (k,:) =std(ggbpnstat ,1);
mggnn(k, :) =mean(ggnnstat ,1);
stdggnn (k,:) =std(ggnnstat ,1);
mggfn(k,:) = mean(ggfnstat ,1);
stdggfn (k,:) =std(ggfnstat ,1);
memstnumb (k, :) =mean(emstnumbstat);
stdemstnumb (k,:) =std(emstnumbstat);
memstbl(k,:) =mean(emstblstat ,1);
stdemstbl (k,:) =std(emstblstat ,1);
memstbpn(k,:) =mean(emstbpnstat ,1);
stdemstbpn (k,:) =std(emstbpnstat ,1);
memstnn (k,:) =mean(emstnnstat ,1);
stdemstnn (k,:) =std(emstnnstat ,1);
memstfn(k,:) =mean(emstfnstat ,1);
stdemstfn (k,:) =std(emstfnstat ,1);

%% Fractal Parameters
mDim(k) = mean(Dim);
stdDim (k) = std(Dim);
mEps (k) = mean(Eps);
stdEps (k) =std(Eps);
mOmega(k) =mean(Omega);
stdOmega(k) =std(Omega);

mDIMGG (k) = mean(DimGG);
stdDImGG (k) = std (DimGG);

APPENDIX
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mMEpsGG (k) =mean(EpsGG);
stdEpsGG (k) =std (EpsGG);
mOmegaGG (k) =mean(OmegaGG);
stdOmegaGG (k) =std (OmegaGG);
mNormrGG (k) = mean(NormrGG);
stdNormrGG (k) =std(NormGG);

mDIMEMST (k) = mean(DIimEMST);
stdDImMEMST (k) = std (DImEMST);
MEpPSEMST (k) =mean(EpsEMST);
StdEpSEMST (k) =std (EpsEMST);
mOmegaEMST (k) =mean(OmegaEMST);
stdOmegaEMST (k) =std (OmegaEMST);
mNormrEMST (k) = mean(NormrEMST);
stdNormrEMST (k) = std (NormEMST);

end

clear |

totaltime = cputime—tO;

save '../ analyse/test/randomsim/ | astrunworkspace. mat’
end

B-45

Listing B.28: randomsimulation.m

Script: bondpercolation3d — Calculate one 3D Invasion Bond Percol#on Cluster

% Script producing one three dimensional invasion bond pelation
% cluster. The vertical bonds are stored in the matrix P3 ateth
% end of the script.

% initialize
siz=[46 61 100];

Al = rand(siz(1),siz(2)+1,siz(3)+1);
A2 = rand(siz(1)+1,siz(2),siz(3)+1);
A3 = rand(siz(1)+1,siz(2)+1,siz(3));
P1 = false(size(Al));% cluster

P2 = false(size(A2));

P3 = false (size(A3));

N1 = false(size(Al));% neighbour

N2 = false (size(A2));

N3 = false (size(A3));

% Inlet = single point at the middle of bottom layer
N3(round (siz (1)./2) yound(siz (2)./2),1)=1;

counter = 0;
while ~any(P3(:,:,siz(3)))
counter = counter +1;

% Find weakest bond for each direction; x, y and z.
11 = find (N1);

[minl,ind1] = min(A1(I1));

minl = min([minl,inf]);

[m1,n1,pl] = ind2subgize(Al),I1(indl));

12 = find (N2);

[min2,ind2] = min(A2(12));

min2 = min([min2,inf]);

[m2,n2,p2] = ind2subgize(A2),12(ind2));

13 = find (N3);
[min3,ind3] = min(A3(13));
min3 = min ([min3,inf]);




39

41
42

44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

89
90
91
92
93
94
95
96
97
98
99
100
101
102

104

B-46

[m3,n3,p3] =

% Select the weakest bond,

ind2sub 6ize(A3),

13(ind3)):

comparing the three directions

[minval , minind] = min ([minl,min2,min31]);

% Add bond to the cluster and update neighbours list

if minind == 1
P1(ml,nl,pl) = 1;
if mil<siz (1),
if mi>1,
if nl <=siz (2)
N2(ml,nl,pl) = 1;
N2(mi1+1,nl,pl) =
end
if n1 >1
N2(ml,nl1-1,p1) = 1;
N2(ml+1,nl-1,pl) =
end
if pl <=siz(3)
N3(ml1,nl,pl)

=1,
N3(ml+1,nl,pl) =

N3(m1,nl,p+1) = 1;
N3(ml+1,nl,pt1) =

D
>
o

end

if minind == 2
P2(m2,n2,p2) =
if n2<siz (2),
if n2>1,
if m2 <=siz (1)
N1(m2,n2,p2) = 1;
N1(m2,n2+1,p2) =
end
if m2 > 1
N1(m2-1,n2,p2) = 1;
N1(m2-1,n2+1,p2) =
end
if p2 <=siz(3)
N3(m2,n2,p2) = 1;
N3(m2,n2+1,p2) =
end
if p2 > 1
N3(m2,n2,p2-1) = 1;
N3(m2,n2+1,p2-1) =

D
>
o

end

if minind == 3
P3(m3,n3,p3) = 1;
if p3<siz(2),
if p3>1,
if m3 <=siz (1)

N1(m3,n3,p3) = 1;
N1(m3,n3,p3+1) =

D
>
o

—h

m3 > 1
N1(m3-1,n3,p3) = 1;
N1(m3-1,n3,p3+1) =

end
if n3 <=siz (2)

N2(m3,n3,p3) = 1;
N2(m3,n3,p3+1) =

D
>
o

N1(ml+1,nl,pl) =
N1(mt1,nl1,pl) =

D [(D
35S
o

N2(m2,n2+1,p2) = 1gend
N2(m2,n2-1,p2) = 1; en

N3(m3,n3,p3+1) = 1lgend
N3(m3,n3,

p31) = 1; en

APPENDIX
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if n3 >1
N2(m3,n3-1,p3) = 1;
N2(m3,n3-1,p3+1) =
end
end

1;

% Remove cluster values from neighbour list

N1 = N1 & ~P1;
N2 = N2 & ~P2;
N3 = N3 & ~P3;

% Print progress indicator to screen
% find highest layer of P along -zaxis
tmp = sum(sum(P3,2),1);
[tmpval , tmpind] = find (tmp);
fprintf (1,”\b\b\b\b\b\b\b\b\b\b\bTop=0Rd/%®d" ,max(tmpind),siz(3))
switch mod(counter ,4)
case 0
fprintf (1,']")
case 1
fprintf (1,"/")
case 2
fprintf (1,"-")
case 3

fprintf (1,°\\")

end

end

fprintf (1,"\r \r");
toc
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Listing B.29: bondpercolation3d.m

Script: bondslideprocessing — Process and Save Sections from tBP Percolation Cluster

% Script processing 3d invasion bond percolatin cluster.

% This script uses the bondpercolation3d script to generae

% percolation cluster (the vertical bonds in the resultingluster

% is stored in matrix P3).

% The script then loops through all the different cross sexts of
% of the matrix, removes two pixel rows/columns from all fosides,
% reducing the the resolution from 47x62 to 43x58. The imaga®e then
% enlarged to 301x406 (multply by 7), and each vessel is ranbo

% shifted within a 7x7 square of its original position (unifo

% probability distribution).

% The image is then added to a cell array stored in a file,

% sorted by the number of vessels in the image.

% This array stores all images found at the specific vesselurio

clear
runnr = 1; % used in filename when the cluster is stored
while 1
runnr = runnr+1;
% display progress to screen
fprintf (1, Run Number: % \r\n ,runnr)
% produce invasion bond percolation cluster by invoking sgtr
bondpercolation3d

% save resulting cluster
folder = '47x62x100" ;
save([folder '/ bpercz’ ,num2str(runnr),.mat’ ], P3")

% PRODUCE CELL ARRAY OF IMAGES SORTED BY NUMBER OF VESSELS
Imstack=cell (1,1)
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%% Without expansion and randomisation
% count number of vessels and add to stack
for n=1:size(P3,3)
currentsum =sum(sum(P3(:,:,n)));
if currentsum <= numel(Imstack) & isempty(Imstack{currentsum})
Imstack (currentsum) = {[Imstack(currentsum) {P3(:,:)1};
else
Imstack (currentsum) = {P3(:,:,n)};
end
end

% write to file
for n=1:length(Imstack)
if ~isempty(Imstack{n})
filename = [folder ;\originalstack\vc' ,num2str(n), .mt’];
if exist(filename  file')==2,
stack = struct2cellfoad(filename));
stack = stack{1};

else
stack = [];
end
for i = 1l:numel(Imstack(n))
stack = [stack, Imstack(n)];
end

save(filename , stack’)
end
end

%% With Expansion and randomization
fprintf (1,°\r\r\r ")
%% Plotting Section
% resetting Imstack to emtpy cell array
Imstack = cell (0);
for n = 1:size(P3,3)
Im0 = P3(:,:,n);
% removing border 2x2 pixels
Im0 = Im0(3:size(Im0,1)-2, 3:size(Im0,2)-2);

% increase resolution of image by adding empty rows and caism

Im2 = ImO;
expandf = 7;
for i = 1:1
Im = Im2;
Im2 [Im; false (size(Im,1)* (expandf—1),size(Im,2))];

Im2 = reshape(lm2,size(Im,1),size(Ilm,2)* expandf);

Im2 = rot90(Im2);

Im2 = [Im2; false (size(Im2,1)* (expandf-1),size(Im2,2))];
Im2 = reshape(lm2,size(lm,1)x expandf, size(Im,2)x expandf);
Im2 = rot90(Im2,-1);

end

% randomizing witin 7x7 square

rdx = (ceil(rand (sum(sum(Im0)),1)*(expandf))-ceil(expandf/2));
rdy = (ceil(rand (sum(sum(Im0)),1)* (expandf))ceil(expandf/2));
[Y,X] = ind2sub(size(Im2),find (Im2));

X = X + rdx; X(X<1) = 1; X(X>size(Im2,2))
Y =Y + rdy; Y(Y<1l) = 1; Y(Y>size(Im2,1))
Im = false (size(Im2));
Im(sub2ind(size(Im2),Y,X)) = 1;

size(lm2,2);
size(lm2,1);

% adding to imagestack
currentsum =sum(sum(im));
if currentsum > 0
if currentsum <= numel(Imstack) &&...
~isempty(Imstack{currentsum})
Imstack (currentsum) = {[Imstack(currentsum), {Im}]};
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96 else

97 Imstack (currentsum) = {Im};
98 end

99 end

100 end

101 %% Export

102 for n=1:length(Imstack)

103 if ~isempty(Imstack{n})

104 filename = [folder ;\random zedstack\vc' ,num2str(n),’ . mt’];
105 if exist(filename  file' )==2,

106 stack = struct2cellfoad(filename));
107 stack = stack{1};

108 else

109 stack = [];

110 end

111 for i = 1l:numel(Imstack(n))

112 stack = [stack, Imstack(n)];
113 end

114 save(filename ;| stack’)

115 end

116 end

118 | end % while

Listing B.30: bondslideprocessing.m

Function: sortslides — Further Process Saved Image Slide Arrayslm the Percolation Clusters
by Removing Nested Cell Array Entries

Note: After this step the images are analysed, code is sitoilénat of the randomsimulation at page B-42 (in
appendix B).

(function stack2 = sortslides ()

% Function reading cell arrays containg images of a specifnumber of

% vessels, and sort them to become one dimensional. Perdohatcluster

% containing several sections with the same number of vesskave produced
% a cell array of varying number of images at each entry.

% Furthermore, the vessel counts the number of images at eselssel count
% and stores the result in a file.

N o g M~ wWwN P

9 | for vc=1:500

10 filename = [ random zedstack/vc' ,num2str(vc),’ .mt’ ];
11 % check if file exists

12 if exist(filename [ file’)==2

13 stack = struct2cellfoad(filename));
14 stack = stack {:}(:);

15 stack = restack(stack ,{});

16 save(filename ; stack’)

17 slidec (vc) = numel(stack);

18 else

19 slidec (vc) = 0;

20 end

21 vesselc(vc) = vc;

22 | end

23 | logfile = '"numberofslides. mt’;

24 | save(logfile ," vesselc’ ," slidec’);

25 | end

28 | function stack2 = restack(stack, stack2)

29 for i=1:numel(stack)
30 if islogical(stack{i});
31 stack2{numel(stack2)+1} = stack{i};

32 else
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stack2 = restack(stack{i},stack2);
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Listing B.31: sortslides.m

Script: randomsimstitch — Merge the Data in the Different Stored \essel Count Files for the

Random and the Percolation Simulation

% script gathering the image analysis parameters from eacéssel count
% file and add them to a single vector for plotting. The perabion

% simulation has one file per vessel count, the random sintida has five
% different files containg intervalls of different vesselownts.

if ~exist('tmchl0’ " var’)

%% declare variables
% fractal
tmDim
tstdDim
tmEps
tstdEps
tmOmega
tstdOmega

tmDImMGG
tstdDImGG
tmEpsGG
tstdEpsGG
tmOmegaGG
tstdOmegaGG

tmDIMEMST
tstdDIimMEMST
tmEpSEMST
tstdEpsEMST
tmOmegaEMST
tstdOmegaEMST

% cumhist
tmch10
tstdch10
tmch50
tstdch50
tmch90
tstdch90

Wt opgn
—_— —— — —
. s S

% SSA
tmvarea
tstdvarea
tmvform
tstdvform
tmvshape
tstdvshape

—_——
— —_——
e ]

tmggnumb
tstdggnumb
tmggbl
tstdgghbl
tmggbpn
tstdggbpn
tmggnn
tstdggnn
tmggfn

—_——
e —

—

—_————

— e

—
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57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
7
78

80
81
82
83
84
85
86
87
88

90
91
92

94
95
96
97
98
99
100

102
103
104
105
106
107
108
109

111
112
113
114
115
116

118
119
120
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tstdggfn

1
—

tmemstnumb
tstdemstnumb
tmemstbl
tstdemstbl
tmemstbpn
tstdemstbpn
tmemstnn
tstdemstnn
tmemstfn
tstdemstfn
end

if isequal(folder ;percsim ),

readfile ='47x62x100/resul ts/ percsinmvc’;

numparts = 9;

partstep = 50;

parts = 1:9;

froms = partstep(parts—1)+1; froms(1l) = 10;

tos = partstep(parts); tos (numel(tos)) = 479;

load (' 47x62x100/ number of sl i des. mat’')
| = ~(slidec >=10);
I = I(froms(1):tos(numel(tos)));

elseif isequal(folder ;randomsim ),
readfile ='randomsi m300x400/ | astrunworkspace’ ;
numparts 5;
partstep 10;
parts = 1:5;
froms = partstep(parts—1)+1;
tos = partstep(parts);
| = false(size(parts));

D
>
o

—
o
=

part=1:numel(parts)
from = froms(part);
to = tos(part);

%8

%% Remove zero rows, i.e. vessel counts without any images

if isequal(folder ;percsim)
filename = [readfile pum2str(to), ws. mat’ ];
elseif isequal (folder ;randomsim )

filename = [readfile pum2str(from), to’ ,num2str(to),’ . mat’

end

load(filename)
%% Fractal Parameters

mDim = mDim(from:to);
stdDim = stdDim(from:to);
mEps = mEps(from:to);
stdEps = stdEps(from:to);
mOmega = mOmega(from:to);
stdOmega = stdOmega(from:to);
mDImGG = mDImGG(from:to);
stdDImGG = stdDimGG (from:to);
mMEpsGG = mEpsGG(from:to);
stdEpsGG = stdEpsGG (from:to);
mOmegaGG = mOmegaGG(from:to);
stdOmegaGG = stdOmegaGG (from:to);
mDIMEMST mDIMEMST (from :to);

stdDImMEMST = stdDIMEMST (from:to);
MEpPSEMST = mEpsEMST (from:to);

]
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140
141

143
144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162
163

165
166

168
169
170
171
172
173
174

176
177
178
179
180
181

183
184

186
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StdEpSEMST
mOmegaEMST
stdOmegaEMST

%% Cumulative

mch10 = mch10(from:to);
stdch10 = stdch10(from:to);
mch50 = mch50(from:to);
stdch50 = stdch50(from:to);
mch90 = mch90(from:to);
stdch90 = stdch90(from:to);

9% SSA=

mvarea = mvarea(from:to,:);
stdvarea = stdvarea (from:to,:);
mvform = mvform(from:to ,:);
stdvform = stdvform (from:to ,:);
mvshape = mvshape(from:to ,:);
stdvshape = stdvshape (from:to ,:);
mggnumb = mggnumb(from:to);
stdggnumb = stdggnumb (from:to);
mggbl = mggbl(from:to ,:);
stdggbl = stdggbl(from:to ,:);
mggbpn = mggbpn(from:to ,:);
stdggbpn = stdggbpn(from:to ,:);
mggnn = mggnn(from:to ,:);
stdggnn = stdggnn(from:to ,:);
mggfn = mggfn(from:to ,:);
stdggfn = stdggfn(from:to,:);
memstnumb = memstnumb (from:to);
stdemstnumb = stdemstnumb (from:to);
memstbl = memstbl(from:to ,:);
stdemsthbl = stdemstbl(from:to,:);
memstbpn = memstbpn(from:to ,:);
stdemstbpn = stdemstbpn(from:to,:);
memstnn = memstnn(from:to,:);
stdemstnn = stdemstnn(from:to,:);
memstfn = memstfn(from:to ,:);
stdemstfn = stdemstfn(from:to,:);
9%

StdEpSEMST (from:to);
mOmegaEMST (from: to);
stdOmegaEMST (from:to);

Histogram Parameters;

%% Stitch them together

%% Fractal Parameters

tmDim
tstdDim
tmEps
tstdEps
tmOmega
tstdOmega

tmDImGG
tstdDimGG
tmEpsGG
tstdEpsGG
tmOmegaGG
tstdOmegaGG

tmDImMEMST
tstdDImMEMST
tmMEpSEMST
tstdEpsEMST

= [tmDim,mDim];
[tstdDim , stdDim];
[tmEps, mEps];
[tstdEps , stdEps];
[tmOmega,mOmega];

—

tmDIMGG ,mDIMGG 1 ;

—_——

tmEpsGG , mEpsGG];

—_—r——

[tmDIMEMST , mDImEMST ] ;

[tstdOmega ,stdOmegal;

tstdDimGG , stdDIimGG ];

tstdEpsGG , stdEpsGG];
tmOmegaGG , mOmegaGG];
tstdOmegaGG , stdOmegaGG ];

[tstdDIMEMST , stdDImEMST];
[tmEpSEMST , mEpsEMST];
[tstdEpSEMST , sStdEpSEMST ];
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188

190
191
192
193
194
195

198
199
200
201
202

204

206
207
208
209
210
211
212
213
214
215

217
218
219
220
221
222
223
224
225
226

228

230
231
232
233
234
235
236
237

239
240
241
242
243
244

246
247
248
249
250
251
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tmOmegaEMST
tstdOmegaEMST

[tmOmegaEMST , mOmegaEMST | ;
[tstdOmegaEMST , stdOmegaEMST];

%% Cumulative Histogram Parameters

tmch10 = [tmch10,mchl0];
tstdch10 = [tstdch10 ,stdch10];
tmch50 = [tmch50,mch50];
tstdch50 = [tstdch50 ,stdch50];
tmch90 = [tmch90,mch90];
tstdch90 = [tstdch90 ,stdch90];
%% SSA
tmvarea = [tmvarea;mvareal;
tstdvarea = [tstdvarea;stdvareal;
tmvform = [tmvform; mvform];
tstdvform = [tstdvform;stdvform];
tmvshape = [tmvshape; mvshape];
tstdvshape = [tstdvshape;stdvshape];
tmggnumb = [tmggnumb ; mggnumb];
tstdggnumb = [tstdggnumb;stdggnumb];
tmggbl = [tmggbl;mggbl];
tstdggbl = [tstdggbl;stdggbl];
tmggbpn = [tmggbpn;mggbpn];
tstdggbpn = [tstdggbpn;stdggbpn];
tmggnn = [tmggnn;mggnn];
tstdggnn = [tstdggnn;stdggnn];
tmggfn = [tmggfn;mggfn];
tstdggfn = [tstdggfn;stdggfn];
tmemstnumb = [tmemstnumb;memstnumb];
tstdemstnumb = [tstdemstnumb ;stdemstnumb];
tmemstbl = [tmemstbl; memstbl];
tstdemstbl = [tstdemstbl;stdemstbl];
tmemstbpn = [tmemstbpn; memstbpn];
tstdemstbpn = [tstdemstbpn;stdemstbpn];
tmemstnn = [tmemstnn; memstnn];
tstdemstnn = [tstdemstnn;stdemstnn];
tmemstfn = [tmemstfn; memstfn];

= [

tstdemstfn tstdemstfn;stdemstfn];

end

%% Replace non slide indices with nan (from 0),
% this so they will not be plotted

tmDim(1) = nan;

tstdDim (1) = nan;

tmEps(l) = nan;

tstdEps(l) = nan;

tmOmega(l) = nan;

tstdOmega(l) = nan;

tmDIMGG(1) = nan;
tstdDIimMGG(l) = nan;
tmEpsGG (1) = nan;

tstdEpsGG (1) = nan;
tmOmegaGG (1) = nan;
tstdOmegaGG (1) = nan;

tmDIMEMST (1) = nan
tstdDImMEMST (1) =
tmEpSEMST (1) = nan;
tstdEpsEMST (1) =
tmOmegaEMST (1) =
tstdOmegaEMST (1) = nan;
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tmch10(l) = nan;
tstdch10(l) = nan;
tmch50(1) = nan;
tstdch50 (1) = nan;
tmch90 (1) = nan;
tstdch90 (1) = nan;

9% SSA
tmvarea(l,:) = nan;
tstdvarea(l,:) = nan;

tmvform (I ,:) =
tstdvform (1 ,:)

n
= nan;
tmvshape(l,:) = nan;
tstdvshape (I ,:) = nan
tmggnumb (1 ,:) = nan;
tstdggnumb (1 ,:) = nan;
tmggbl(l,:) = nan;
tstdggbl (I ,:) = nan;
tmggbpn(l,:) = nan;
tstdggbpn(l,:) = nan;
tmggnn(l,:) = nan;
tstdggnn(l,:) = nan
tmggfn(l,:) = nan;

tstdggfn (l,:) = nan;

tmemstnumb (1 ,:) =
tstdemstnumb (I ,:) = nan;
n

tmemstbl(l,:) = nan;
tstdemstbl (I ,:) nan
tmemstbpn(l,:) = nan;
tstdemstbpn (1,:) nan;

tmemstnn(l,:) = n
tstdemstnn(l,:) =
tmemstfn(l,:) = nan;
tstdemstfn(l,:) =

%% Rename all variables
% fractal analysis

mDim = tmDim;

stdDim = tstdDim;
mEps = tmEps;
stdEps = tstdEps;
mOmega = tmOmega;
stdOmega = tstdOmega;
mDImGG = tmDIMGG;
stdDImMGG = tstdDimGG;
mMEpsGG = tmEpsGG;
StdEpsGG = tstdEpsGG;
mOmegaGG = tmOmegaGG;
stdOmegaGG = tstdOmegaGG;
mDImMEMST = tmDImMEMST;
stdDImMEMST = tstdDImMEMST ;
MEpPsSEMST = tmEpsSEMST;
StdEpSEMST = tstdEpsSEMST;
mOmegaEMST = tmOmegaEMST ;
stdOmegaEMST = tstdOmegaEMST;
%% cumulative histogram
mch10 = tmch10;
stdch10 = tstdch10;
mch50 = tmch50;
stdch50 = tstdch50;
mch90 = tmch90;
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stdch90 = tstdch90;
%% SSA %% SSA
mvarea = tmvarea;
stdvarea = tstdvarea;
mvform = tmvform;
stdvform = tstdvform;
mvshape = tmvshape;
stdvshape = tstdvshape;
mggnumb = tmggnumb;
stdggnumb = tstdggnumb;
mggbl = tmggbl;
stdgghbl = tstdggbl;
mggbpn = tmggbpn;
stdggbpn = tstdggbpn;
mggnn = tmggnn;
stdggnn = tstdggnn;
mggfn = tmggfn;
stdggfn = tstdggfn;
memstnumb = tmemstnumb;
stdemstnumb = tstdemstnumb;
memstbl = tmemstbl;
stdemstbl = tstdemstbl;
memstbpn = tmemstbpn;
stdemstbpn = tstdemstbpn;
memstnn = tmemstnn;
stdemstnn = tstdemstnn;
memstfn = tmemstfn;
stdemstfn = tstdemstfn;
\

-
% Script exporting the results from the downscaled histoiogl
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Listing B.32: randomsimstitch.m

Script: plotcasesandperccomparison — Export Graphs of the Imag Analysis Parameters of the
Percolation Simulation and the Data Points of the Histological Sections

Note: A similar script (not included) exports the graphsirthe random simulation.

% data and the percolation script.

clear

folder = 'percsim ;

% call randomsimstitch script

randomsimstitch

% load the downscaled histological image analysis data
load '../analyse/test/randomsi m/ caseparanms2. mat’
exportflag = 1;

fullresfraccomp = 1;

%% Export Section
titlefs = 22;
axisfs = 18;

folder = [folder , comp’ ];
linewidthnuml = 3;
linewidthnum2 = 2;

if exportflag

%% Number of sections

figure (1), clf , plot(vesselc,slidec),

set(gcf,” windowstyle’ ,” docked’ ),

title (' Number of Generated Images’ , fontsize' , titlefs)
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set(gca,’ fontsize' ,axisfs /xlim , [0,500], box' ,"off" ,"ylim ,[0 80])
ylabel(' Number of |mages’), xlabel(’ Number of Vessels')
print (gcf, '-depsc2’, ['../analyse/test/', folder, '/ numberofslides.eps’])
%% Fractal Dimension
%% FD of image
figure (2), clf , errorbar (froms(1):tos(numel(tos)),mDim, stdDim)
hold on, plot(froms(1):tos(numel(tos)),mDinmik’ ); hold off
set(gcf,” windowstyle’ ,” docked’ ),
title (' Fractal Di mensions at Large Sandbox Sizes’' , fontsize' , titlefs)
set(gca,’ fontsize' ,axisfs /xlim , [0,500], box" ,”off" ,"ylim ,[.75,2])
ylabel (' Sandbox Dimension’), xlabel(’ Number of Vessels')
if fullresfraccomp
hold on, plot(numvessels ,Dim2,kx’ ," linewi dth’ ,linewidthnuml ,...
"markersize' ,16, markeredgecolor’ ,"k’ ,” markerfacecolor’ ,...
"none’ ), hold off
end
hold on, plot(numvessels ,Dim,ro’ ,’linewidth’ ,2,...
"mar keredgecol or’ ,'r’ ,” markerfacecolor’ ,’r'), hold off
print (gcf, '-depsc2’, ['../analyse/test/’ , folder, '/fractaldim eps’])
figure (1), clf , plot(froms(1):tos(numel(tos)),stdDim), ylim([0 .1])
set(gca,’ fontsize' ,axisfs /xlim , [0,500], box" , off")
title (' St. Dev of Dimension’ ,’ fontsize' , titlefs)
ylabel (' Standard Deviation' ), xlabel(’ Number of Vessels')
print (gcf, '-depsc2’, ['../analyse/test/’ , folder, '/fractalstd.eps’])
figure (1), clf
hold on
errorbar (froms(1):tos (numel(tos)),mOmega, stdOmega’,)
plot (froms (1):tos(numel(tos)),mOmegah’ )
errorbar (froms (1):tos(numel(tos)),mEps, stdEps)
plot (froms (1):tos (numel(tos)),mEpsk’)
set(gcf,” windowstyle’ ,” docked' ), title (' Upper Fractal Region’ , fontsize' 6 titlefs)
set(gca,’ fontsize' ,axisfs /xlim , [0,500], box" ,” off")
legend(’ End Di ameter’ ,” Start Diameter’ ,’ Location',6’ East’')
ylabel(’ Sandbox Di ameter’ ), xlabel(’ Number of Vessels')
if fullresfraccomp
hold on, plot(numvessels ,Eps2./5.16kx" ,"linewi dth’ , linewidthnuml ,...
"markersize' ,22, markeredgecolor’ ,"k’ ,” markerfacecolor’ ,”none’ ), hold off
hold on, plot(numvessels ,Omega2./5.16hx’ ," linewidth' ,linewidthnuml ,...
"markersize' ,22, markeredgecolor’ ,”b’ ," markerfacecolor’ ,”none’ ), hold off
end
hold on, plot(numvessels ,Epsfo’,’linewidth’ ,2,...

"markersize' ,10, markeredgecolor’ ,'r’' " markerfacecolor’ , r’'), hold off
hold on, plot(numvessels ,Omegato’ ,’linewidth' ,2,...

"markersize’' ,10, markeredgecolor’ ,’r’' " markerfacecolor’ ,'r'), hold off
print (gcf, '-depsc2’, ['../analyse/test/' , folder, '/fractalregion.eps’])
hold off
% Script continues to plot graphs for all parameters, in tdt®18 lines.
close all

end
-

Listing B.33: plotcasesandperccomparison.m



