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Abstract

The purpose of this thesis is the investigation of the intratumoural network through image analysis
of histological sections. Tumour vasculature is characterized by complexity, irregularities and poorly
regulated growth. Fractal analysis has been used to establish that tumour vasculature has a different
network architecture from that of the normal arterio-venous system or the capillary network. The
vasculature is responsible for the transportation of oxygen to tumour cells,however its many patho-
logical features results in, among others, the presence of hypoxic regions. Hypoxia is a challenge
to the treatment of cancer, both through its indirect biological effects, such as a reduced progression
through the cell cycle, but also through direct chemical effects. In particular, the oxygen effectreduces
the effectiveness of radiation therapy. Furthermore, the network morphology relates to many other
parameters as well, such as the angiogenic and the metastatic capability of the cancer. This raises the
possibility of using image analysis, and fractal analysis in particular, to quantify different aspects of
the network morphology.

The study limits itself to parameters which may be obtained from digitized images of histolog-
ical sections with endothelial-specific staining. The investigated parameters are primarily obtained
through fractal analysis and syntactic structure analysis. A few more parameters, such as the number
of vessels, the size of the vessels, the total vascular area, and cumulative histograms of distances to
the nearest vessel, were obtained directly from the images. The investigated parameters depend on
both the number of vessels in the image, and the distribution of the vessels. Twoparticular areas
have been emphasized, the first is the identification of how strongly the parameters relate to the vessel
distribution, and the second is the implementation of fractal analysis on vascular cross sections.

Four different CD34-stained immunohistological sections have been analysed. They were ob-
tained from malignant carcinomas of the breast and exhibited qualitatively different vascular patterns.
A routine has been developed to segment out the vessels from the background staining before the
image analysis.

The investigated fractal dimensions include the Box Counting dimension, the Sandbox dimension,
the Correlation dimension, the Mass dimension and the Fourier dimension. These have been applied
to images processed in three different ways. The first contained the entire vessel lumens, the second
only the outer vessel wall perimeter and the last only the vessels’ geometric centre of mass. In addition
fractal analysis has been performed on Gabriels’s Graph and the Euclidean Minimum Spanning Tree,
both of which belong to the Syntactic Structure Analysis graphs. The different methods and images
provided both different dimensions and different curve shapes. Someof the curves did not have any
meaningful power-law scaling regions at all, however, most of them did. The Sandbox dimension in
general and the mass centre images in particular, have been considered the most promising of these
methods. Although it may be argued that the termdimensiondoes not, in any meaningful way, relate
to most of the parameters obtained through these methods, they do most certainly appear capable of
differentiating various vessel distributions from each other. In addition tothe fractal analysis methods,
all other investigated methods have been applied to the four cases as well.
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In order to identify the relationship between the parameters and the number of vessels in a particu-
lar image, two simulations have been performed. The first simulation generatedthe images through a
uniform random distribution probability (10.000 images), while the second used a three-dimensional
invasion percolation cluster to generate the vessel positions (15.560 images). The mean and standard
deviations of the results at each vessel count have been investigated. Large standard deviations have
been interpreted as a strong dependency on the vessel distribution. Theslope of the mean, on the other
hand, shows the parameters dependency on the number of vessels. Thesizes of the standard devia-
tions are considered relative to the slopes. Most of the analysis parameters showed large variations
for low vascular densities. A subset of the parameters had large variations even at very high vascular
densities.

In conclusion, most of the investigated parameters appear to be promising candidates for further
studies. Fractal analysis may be applied to vascular cross-sections. It is, however, important to rig-
orously specify how the analysis is performed, as a large number of possible results may be acquired
through these methods. In particular the Sandbox dimensions of the mass centre images, Gabriel’s
Graph, and the Euclidean Minimum Spanning Tree, at large sandbox diameters, are recommended
for further study, with the possible additon of the EMST dimension at small diameters, as this re-
quire no extra computation time. At this point in time it is not recommended to exclude any of the
SSA-parameters from further studies. The next adviceable step would be to perform a correlation
study, comparing these parameters to other data of clinical value, related to treatment, diagnosis or
prognosis.
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Chapter 1

Introduction

Cancer is one of the most common causes of death in the western world today,second only to car-
diovascular diseases. In spite of the enormous amounts resources invested in cancer research and
treatment, the mortality rates due to cancer are expected to increase. This is because the probabil-
ity of developing cancer increases with age. Although treatments are becoming more effective, the
combination of the changing demographics and a decrease in deaths caused by other diseases will
make cancer treatment increasingly important in the coming years. Cancer is not the name of a spe-
cific disease. Rather it is a term which covers a wide range of diseases developing in various organs
throughout the body. The defining feature of a cancerous disease is the development of cells which
blatantly disregard the internal rules of the body. Somatic cells divide regardless of the body’s needs,
developing into a tumour. The tumour is considered cancerous when it gainsthe ability to invade
surrounding tissue.

Radiation Therapy is, next to surgery, the most common treatment modality used on cancer. At
least 50 % of all patients are believed to benefit from radiation therapy, either for curative purposes
or pain relief. In order to cure a cancer, all cancerous cells must be killed, even a single survivor may
be enough to cause a relapse. The challenge in radiation therapy is to kill thecancer cells with as
little harm done to the healthy tissue as possible. Conventional radiation therapy typically considers
the tumour as a uniform target area and attempts to deliver some specific doseto as much of this area
as possible, without exceeding specified dose limits in the surrounding area, with special regard to
radiosensitive risk organs in the vicinity. The treatment plan represents a trade off between the tumour
control probability and the normal tissue complication probability.

The radiosensitivity of a given tumour depends on many factors, one of which is the oxygen
levels in the tumour (section 2.2). Oxygen increases the biological effects of radiation, conversely
hypoxic cells, which are cells deprived of oxygen, will have decreased radiosensitvity and require
higher doses to kill. Hypoxia reduces the effectiveness of chemotherapy, and it is known to increase
the rate of malignant tumour progression and the rate of distant metastases. Most tumours have some
degree of hypoxia. The hypoxic fractions are frequently about 10 to 15%, but may vary from 0 to
50% [21].

Hypoxia is caused by the vasculatures’ failure to supply the entire tumour withoxygen. As a
tumour grows, regions inside the tumour will soon find themselves further away from the existing
vasculature than oxygen is able diffuse. If left deprived of oxygen and nutrients long enough, these
cells will die. In order to continue growing in size, new vasculature must be formed to supply the
tumour. This is a process referred to as angiogenesis and is triggered bythe production of endothelial
growth factors in tumour cells. The networks formed in tumours are, however, quite different from
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2 CHAPTER 1. INTRODUCTION

the healthy vasculature in the normal tissues, both when it comes to the structure of the network and
the individual vessels (section 2.1).

The tumour networks, in particular, are far more chaotic than normal vasculature, prompting the
use of fractal analysis as a tool to quantify some aspects of this complexity (section 2.4). Fractal
analysis has become a powerful tool to classify complex phenomena, and abrief introduction to the
subject is given in section 2.3. Based on the fractal analysis of two-dimensional tumour models,
invasion percolation has been proposed as a way to model vascular networks in tumours.

The study of a full-scale three-dimensional tumour network is difficult. There are some ways
to do it, but they are generally not applicable in a clinical setting. If the goal isto identify clinical
parameters, relevant to the treatment of individual patients, then the study of histological data1 is the
most promising course of action.

This study is an investigation of parameters obtainable through image analysis ofhistological
sections stained with endothelial specific markers. The investigated parameters include the number of
vessels, the stained area, and the distances to the nearest vessel, as well as a long list of parameters
obtainable through fractal analysis and syntactic structure analysis. In the case of fractal analysis,
several different algorithms have been used and compared.

Two different simulations have been performed, generating and analysing randomly constructed
images. The first uses a uniform probability distribution, and the latter the vertical bonds of a non-
trapping three-dimensional bond invasion percolation cluster (section 3.6). The simulations investi-
gate the spread in results for the different parameters as a function of thenumber of vessels. The
purpose is to identify how strongly these parameters are related to the numberof vessels (section 4.1).
This is based on the idea that parameters which have little or no variance in the results, have equally
little to add to the much easier obtained number of vessels-parameter.

In addition to the simulation, four histological sections stained with CD-34, an endothelial spe-
cific marker, have been analysed (section 4.2). The tumour tissues were from four human invasive
carcinomas of the breast. The study of these cases provides an example of how the image analysis
may be implemented in a clinical setting. In addition it serves as the source materialfor the study
of parameters unsuited for the simulation, either due to the large quantity of images or the simpli-
fications involved in the simulation. These parameters are primarily related to the different fractal
analysis algorithms, as well as the fractal analysis of vessels represented by the area or the perimeter
of the vessels, rather than only the mass centre. Fractal analysis of Gabriel’s Graph and the Euclidean
Minimum Spanning Tree is performed as well. The results of these four cases are compared to those
of the simulations. In order to analyse the histological data, a method has beendeveloped to remove
the background colour from CD-34-stained sections (section 3.1).

The purpose of this thesis has been to investigate the possible usefulness of image analysis in
hypoxia and angiogenesis related research, with an emphasis on the use of fractal analysis. It has
been important to establish whether or not it is meaningful to apply fractal analysis to histological
sections. Although one must be careful as to how the resulting dimensions are interpreted, many of the
fractal parameters do seem quite capable of differentiating different vessel distribution patterns from
each other, if implemented correctly. From the conlcusions drawn in this study, very few parameters
should be excluded completely, although some clear recommendations are madeas to which fractal
parameters and analysis approaches that are best suited for further studies. The study, does not in
itself provide any judgement on the final relevance of the parameters. A correlation study, identifying
how these parameters relate to other parameters of diagnostic, prognostic or therapeutic value, should
be the next step towards finding the true relevance of these methods.

1Cross sections of a tissue sample, stained with antibody markers to highlightspecific molecules in the cells



Chapter 2

Theory

2.1 Tumour Vasculature

In order to gain proper understanding of how a tumour’s vasculature differs from that of healthy tissue,
it necessary to start with the process ofangiogensis, through which tumour vasculature is developed.
Against this backdrop, a list of the most important pathologicial features which characterise tumour
vasculature will be presented. The architecture of the network itself is of particular interest as it relates
directly to the oxygenation of the tumour, and the formation of hypoxic regions. The image-analysis
parameters investigated in this study aim at describing some aspect of this architecture, through the
analysis of histological sections.

2.1.1 Normal Vascular Formation in the Fetus; Vasculogenesis and Remodeling

The process by which the initial vasculature in the embryo develops is referred to asvasculogene-
sis. Endothelial cells within previously avascular tissues differentiate from stem cells and proliferate.
Merging together, these new tubes form a single primitive network. This process forms some of the
major vessels in the embryo including the aorta and major veins as well as a honeycomb-like plexus
connecting these.

By a process referred to asangiogenic remodeling, this initial network is modified by both pruning
and vessel enlargement. The results are the branching patterns typical of mature vascularization. At
the same time the endothelial cells integrate tightly with supporting cells and the extracellular matrix,
transforming them into mature vessels.

A third process, referred to as angiogenic sprouting, is the cornerstone in the process ofangio-
genesis. This process is responsible for the vascularization of certain structures, such as the retina,
the neural tube during normal development, and most new vessels in the adult. Sprouts from existing
vessels vascularize nearby avascular tissue. Vessels formed by sprouting are initially immature and
must develop further. Mature vessels, at least in some cases, must firstbe destabilized in order to
allow subsequent sprouting. [44]

In figure 2.1 most of this is shown graphically according to the angiogenic model put forward in
reference [44]. Further description of the model and the involved molecular signalling components
are presented in section 2.1.4.

3



4 CHAPTER 2. THEORY

Figure 2.1: Schematic representation of important steps involved in vessel formation. These include vasculo-
genesis (A), angiogenic remodeling (B), stabilization andmaturation (C), destabilization (D), regression (E)
and sprouting (F). The role of some of the angiogenic molecules involved in these processes are shown as well.
(Adapted from [44])

2.1.2 Angiogenesis

Angiogenesis is the formation and development of new blood vessels from pre-existing vessels. In
the healthy body angiogenesis is responsible for the vascular remodeling during ovulation, as well as
wound healing and weight gain. Apart from this, few or no changes with respect to growth, remod-
eling or regression of the vascular system are expected in healthy tissues. Angiogenesis is, however,
involved in a long list of pathological conditions where angiogenesis either ispart of the malignancy
(e.g. cancer, chronic inflammatory conditions, diabetes, psoriasis, adiposity, endometriosis), or the
lack thereof is a problem, i.e. where the process of angiogenesis could help cure the disease (e.g.
tissue damage after reperfusion of ischemic tissue or cardiac failure).[6][19]1

2.1.3 Angiogenic research

Much of the research of angiogenesis has been motivated by its prominentrole in cancer. It has been
known for almost a century that angiogenesis occurs around tumours.[6] In the early 1970s, Folkman
hypothesized that angiogenesis at the tumour site was absolutely required for tumour expansion2

beyond a spheroid diameter of 1-2 mm. He also postulated that inhibiting angiogenesis would inhibit
tumour expansion, and that if one could get tumour vasculature to regress, then this could cause
regression of the tumour mass back to the 1-2 mm spheroid diameter.[45][6]

1See Table 1 in [6] for a more complete list.
2Tumour expansion referring to growth in tumour volume, as distinct fromcell growth. Cells proliferate in avascular

tumours as well, but is balanced by cell death, preventing tumour expansion.
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The possibility of new ways to cure cancer spurred an intensive searchfor pro- and anti-angiogenic
molecules, hoping to develop anti-angiogenic therapies. Today many molecules have been found and
models for angiogenesis are emerging; much is, however, still unknown. Furthermore, the list of
pathologies related to angiogenic research is expanding, and within oncology itself it is relevant to
traditional treatment modalities as well as the anti-angiogenic treatment which motivated the research.
The vascular system is the main route of cytotoxic delivery in chemotherapy.It is highly related to
various modes of metabolic stress including lowpO2, low pH, and hypoglucaemia, all of which are
important to the evolution of the cancer and the current gene expression of the individual cells, but
also to the outcome of treatment modalities. LowpO2, or hypoxia (see Section 2.2), is especially
important in radiotherapy as it modifies the biological effect of radiation.

2.1.4 The Molecular Biology of Angiogenesis

The Angiogenic Switch

Physiological angiogenesis is only activated in response to ovulation, wound healing and growth.
Consequently, endothelial cells have an extremely low mitotic activity in normal tissues. Only 1 in
10000 endothelial cells is in a cell division cycle at any given time [22]. Tumours, having evolved
from normal tissue, start out without the ability to promote angiogenesis. In 1976 Gullino showed that
cells in pre-cancerous tissue acquire angiogenic capacity on their way to becoming cancerous.[6] The
onset of angiogenesis marks the transition between a dormant state (avascular phase) and the vascular
phase in which the tumour grows exponentially.[35]

The ability to promote angiogenesis is not controlled by the simple presence, orlack, of growth
factors, but rather the balance between various pro- and antiangiogenic molecules. Thus, it is not
necessarily enough for single cancerous cells to activate genes that promote angiogenesis, but rather
that enough proangiogenic factors must be produced to overcome the initial surplus of inhibitors.
Likewise, not all inhibitors need to be removed from the tissue, they simply need to be suppressed by
the activators. [6]

The mutations required to promote angiogenesis are usually accomplished by asubset of the
cancer cells, which then induce new capillaries which converge toward thetumour. The angiogenic
phenotype that triggers the vascular phase does not necessarily gain an evolutionary advantage as the
new capillaries supply all nearby tumour cells regardless of phenotype. Aconsequence of this is that
although the switch may be on in the primary tumour, small colonies of metastasized cancer cells
may require a dormant phase before initiating angiogenisis and expansion.The dormant phase is not
a phase in which the cancer cells are inactive, but a phase in which cell division is balanced by cell
death.

A Molecular Model of Angiogenesis

As stated earlier, many molecules involved in the angiogenic signalling pathway have been found
and models of angiogenesis are emerging. Five members of the Vascular Endothelial Growth Factor
Family (VEGF-A/B/C/D and PlGF) have been identified, along with 3 receptors,VEGFR-1/2/3. Four
angiopoietins (Ang1/2/3/4) along with one confirmed receptor (Tie2) and three of the Ephrins (Ephrin-
A1/B1/B2) along with its four receptors are involved in vascular growth. The full effects of all of these
are not understood, and more angiogenic molecules are expected to be found. A model based on what
was known about the most important of these was presented by Yancopoulus et.al. in 2000 [44], see
figure 2.1 and table 2.1.
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Figure 2.2: In theBalance Hypothesisangiogenesis will commence when the balance between activators and
inhibitors tips in favour of angiogenesis. (Adapted from reference [22])

In this way a healthy angiogenic process requires the presence of a number of angiogenic factors.
All of these contribute in different ways and their concentrations affectthe result. Consequently, it
will be very complicated and demanding to promote angiogenesis through pharmaceutical means.
However, in the case of diseases like cancer where angiogenesis is undesired, at least in some of
the treatment strategies, this brings hope that blocking even a few key factors may halt angiogenesis
altogether. This can happen either by preventing the switch to flip, or by removing the ability of
important steps to take place even if the switch is set. Furthermore, this complexitygoes a long
way to explain the suboptimal characteristics of tumour vasculature. This model contains only a few
factors, but as the roles of the many more identified angiogenic molecules areproperly understood
and included, angiogenic models can only be expected to increase in complexity. (See table 2 in
reference [6] for a more comprehensive list of angiogenic molecules, functions and inhibitors.)

2.1.5 Pathophysiological Angiogenesis in Tumours

Two Models of Pre-Angiogenic Tumours

The tumour growth model at the heart of Folkman’s theory is a situation in whichthe tumour start out
as an avascular mass. The developing tumour will grow at its margins pushingvessels further away
from its core, causing the core to be deprived of oxygen and nutrients,and subsequently to die. The
tumour growth will reach a steady state at about 1-2 mm, until the onset of angiogenesis.

This is a feasible theory for tumour (and metastasis) development, indeed it has long been thought
to be the only way tumours develop. One of the reasons why this model has been left unchallenged for
so long is probably the nature of many artificial tumour models used in research. By placing tumour
cells in a space normally devoid of vessels, such as the subcutaneous space, the cornea pocket, the
vitreous, or the tumour window, avascular tumours are forcibly created. It is also clear, however, that
many natural tumours arise in this manner. [44]

In recent years, however, another way has been identified, namely byco-opting nearby vessels
into the tumour mass. In this way tumours are able to expand along the vessels, growing beyond
Folkman’s spheroid. The vessels respond to this co-option by up-regulating Ang2, causing the vessels
to destabilize and regress, and the tumour to be choked off. This leads to a secondarily avascular tu-
mour, that upon gaining the ability to induce angiogenesis will continue its expansion in the surviving
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Molecule Receptor Description
VEGF-A VEGFR1/2 The most important molecule promoting vascular forma-

tion. It is required to initiate the formation of immature
vessels by vasculogenesis or angiogenic sprouting. By it-
self it only promotes the formation of leaky, immature and
unstable vessels.

Ang1 Tie2 Important for remodeling and maturation of initially im-
mature vasculature. It also plays a role in maintaining the
quiescence and stability of mature vasculature.

Ang2 Tie2 Can behave as both agonist and antagonist to Tie2 under
different circumstances. Believed to provide a key de-
stabilizing signal reverting vessels to a more plastic and
tenuous state, allowing for both vascular remodeling and
regression.

Ephirin-B2 EphB4 Is required for remodeling and maturation. In addition
they hold an important role in distinguishing developing
arterial and venous vessels. Furthermore, the presence of
the arterial marker ephrin-B2 in tumour sprouting chal-
lenges the dogma that such sprouting primarily involves
venous or uncommitted vessels.

Table 2.1: A description of the various roles of the molecules in Yancopoulus’ model [44], cf. figure 2.1.

tumour masses. Both processes are illustrated in figure 2.3. [44],[25].

Processes of Vascular Formation in Tumours

Several qualitatively different processes of vascular formation havebeen found in tumours, see fig-
ure 2.4. These include angiogenic sprouting, endothelial precursor cells emigrating from the bone
marrow (vasculogenesis), and intussusceptive growth [6].

Angiogenic Sprouting happens in response to local angiogenic signals. In order for sprouting to
commence, the existing basement membrane and interstitial matrix are dissolved byAng2 and
proteinase mediated changes. Vessels dilate and become leaky in responseto VEGF, allowing
endothelial cells to escape the lumen. Endothelial proliferation, migration and assembly are
stimulated by a number of molecules (VEGF, Ang1, bFGF). The sprouting vessels must then
mature. A new basement membrane is formed, and the new vessels are invested with pericytes
and smooth muscle cells (PDGF-BB, TGF-β1). See figure 2.5.

Molecules that initially induce angiogenesis are subsequently processed (proteolytically) to an-
giogenesis inhibitors, providing a negative feedback to angiogenic processes. Most angiogene-
sis inhibitors promote endothelial apoptosis. Consequently, the sprouting vessels are dependent
on survival factors (VEGF, Ang1).

Angiogenic sprouting is recruited from the local endothelium and is expected to give a growth of
tumour mass proportional to the cube of the time for three-dimensional tumours and a quadratic
growth in time for two-dimensional tumours. In other words, the mass growth is proportional
to some constant factor multiplied with the time to the power of the tumour dimension, see
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Figure 2.3: Two models of tumour angiogenesis. Ina the tumour develops in an avascular area in accordance
with Folkman’s hypothesis. Inb the tumour starts growing near vessels, these are co-opted into the tumour
mass, but an upregulation of ang2 causes vascular regression and subsequently an avascular hypoxic tumour.
In the final step the onset of angiogenesis causes vascular growth and tumour expansion in both scenarios.
(Reference [44])

reference [26].
M(t) = c· tD

The article did not consider the fractal characteristics of the vascular network. To reflect this,
it seams reasonable to suggest the replacing of the topological dimension bythe fractal dimen-
sion3 in these models.

Vasculogenesis,vascular formation from stem cells, is mediated by endothelial precursor cells (EPC)
or angioblasts circulating in the blood stream. For a long time all identified postnatal angiogenic
processes were due to proliferation and sprouting of differentiated endothelial cells, no postnatal
vasculogenesis had been observed. In 1997 Ashara et.al. published the first paper presenting
clear evidence of postnatal vasculogenesis [1]. These cells have been showed to have the ability
to form endothelial coloniesin vitro. [18]

The extent to which vasculogenesis contribute to tumour vessel formation is somewhat disputed.
Conflicting results have been found in different studies and the role of tumour vasculogenesis
remains unclear.

The difference between vasculogenesis and angiogenesis is, however, more than a semantic one.
Not only can the molecular signalling paths be expected to be different, but also the growth
processes of the vasculature and the tumour. The production of vasculature by vasculogenesis
is limited by the production of EPCs in the bone marrow. This process is thus expected to give
a linear growth in time of tumour mass, preceded by a short period of faster growth consuming
the initial EPC buffer. [26]

3See section 2.3.1 for a description of fractal dimensions.
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Figure 2.4: Cellular mechanisms of (lymph) angiogenesis intumours. Vessels are formed in tumours by several
mechanisms: (1) the host vascular network expands into the tumour by forming sprouts or bridges (angiogen-
esis); (2) interstitial tumour tissue columns are into the lumen of pre–existing vessels (intussusception); and
(3) endothelial precursor cells, angioblasts, are recruited form the bone marrow into tumours and contribute to
the endothelial lining of the vessels (vasculogenesis); Lymphatic vessels near the border of the tumour drain of
interstitial fluid and may provide a pathway for metastasizing tumour cells. (Reference [6].)
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Figure 2.5: A simplified overview of tumour angiogenesis. Pro-angiogenic molecules are released from the
tumour and diffuse to a nearby vessel. Upon activating the angiogenic switch endothelial cells start prolifer-
ating. The basement membrane and the extracellular matrix are weakened and integrin molecules help pull
the sprouting vessel forward. A new basement membrane is then formed and supporting cells are attracted to
stabilize the new vessel. (Reference [9])

Intussusceptive Growth is a process in which growth and remodeling is caused by columns of tissue
partitioning the vessel lumen. This gives rise to two different processes.Inside the tumour,
loop formation and remodeling give rise to new vasculature. Outside the tumour, segmentation
expands and remodels the pre-existing network. Loop formation by intussusceptive growth may
also be combined with sprouts superimposed on the loops, indeed this appears to be the case in
the large majority of the loop systems studied by Patan et.al. [34].

Frequent remodeling in tumours by intussusceptive growth causes network architecture changes
on a time scale of minutes. This might explain, or at least be one of the processes involved in
causing, intermittent blood flow in tumours. [34]

Lymphangiogenesis,the development of new lymphatics, is not found in any manner comparable
to that of angiogenesis in solid tumours. Indeed, hardly any lymphatic vessels are found at
all; this in spite of the fact that both lymphangiogenic molecules (VEGF-C) and endothelial
cells bearing their receptor are found inside tumours. Furthermore, the lymph vessels which
were initially there disappear (no co-option). One hypothesis for this is thatthe lymph vessels
collapse under the pressure of the growing tumour. Tumour cells grown asspheroids in vitro
have been found to generate a pressure of 45–120 mmHg. Blood vesselsare under the same
stress in a tumour, but they are connected to the high-pressure arterial blood supply.

Although few lymphatic vessels can be found inside solid tumours, there are evidence of en-
larged lymph vessels at the periphery of the tumour. These drain off interstitial fluid from the
tumour and provide a functional network for metastasizing cells.[30]
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Genetic Regulation in Endothelial Cells

The genetic expressions of endothelial cells in tumours are, although qualitatively different from nor-
mal endothelium, very similar to that of cells involved in wound healing and angiogenesis ofcorpus
luteum4 [10]. The characteristics of tumour vasculature are, however, very different from that of
vasculature developed by physiological angiogenesis. The differences that causes pathological con-
ditions of the vascular network can therefore be assumed to be independent of the endothelial cells’
gene regulation.[34]

2.1.6 The Characteristics of Tumour Vasculature

Tumour vasculature exhibits a broad range of pathological features notfound in healthy vasculature.
Not all of them can be expected to be found in a specific tumour, and some features are more ex-
pressed in certain types of cancers than in others. An expressed difference, when compared to normal
vasculature, is, however, the rule rather than the exception. These differences relate not only to the
makeup of single vessels, but also to the morphology5 of the network. One consequence of this is that
it is meaningless to categorize tumour vessels as arterioles, capillaries, or venules. They simply lack
the structural characteristics of normal vasculature that make these terms meaningful. [23]

The Characteristics of Individual Vessels

The vessels themselves exhibit several pathological features that reduce their functionality and/or
increases the tumours’ metastatic potential.

Increased Permeability: Tumour vessel walls are known to have a high permeability causing blood
to leak. In tumours blood flow is not restricted to the vessels, but can happen in the interstitial6

space as well [8]. Macromolecular vessel leakiness correlates closelywith the histological
tumour grade [11].

Defective Endothelial Cells: In healthy vasculature the vessels are lined with a monolayer of flat
endothelial cells, closely aligned with a smooth, slightly raised contour, see figure 2.6.A. In
a MCa-VI mammary carcinoma, however, the endothelium exhibited a range ofpathological
features, see figure 2.6.B-E. These cells are thick and the smooth cell borders have been replaced
by irregular edges. Where they once had a slightly raised contour, some cell borders are no
longer visible. The monolayer is defective and cells have overlapping regions. Two neighbour
cells may even be on top of one another in a different order at differentplaces. Cells are found
with multiple cell projections, some spanning along the wall, others across the lumen. Between
cells intercellular openings are found and even transcellular holes through the cells, see figure
2.7. These openings and holes could explain the increased permeability of tumour vasculature.
[23]

Blood Lakes: In some tumours blood will leak out of the vascular systems and gather up in pools
known asblood lakes. These blood lakes are surrounded by tumour cells, not endothelia. They

4Corpus luteum, a ductless gland developed within the ovary by the reorganization of a Graafian follicle following
ovulation. [Dictionary.com, November 22, 2006]

5Morphology, the branch of biology dealing with the form and structure of organisms. [Dictionary.com, November 23,
2006]

6Interstitial,Anatomy.situated between the cells of a structure or part: interstitial tissue. [Dictionary.com, November
23, 2006]
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Figure 2.6: Endothelial defects in tumour vasculature. Scanning electron microscopy images of the luminal
surface of endothelial cells in a normal mouse mammary glandcompared to those in MCa–IV tumours.A: The
endothelial cells in this normal venule are flat, with the exception of the region around the nucleus (arrows), and
have a similar size and shape. The cells form a monolayer and the borders between individual cells (arrowheads)
show very little overlap.B: These cells, in a tumour vessel, are irregular and overlap one another (arrows).
Some of the cell borders are clearly visible (arrowheads).C: andD: More severely deformed and branched
cells in a tumour. In addition to being abnormally thick, thecells overlap one another and do not have a normal
connection with other cells. They do, however, have multiple cell projections (arrows) alongside the vessel
walls. F: These abnormal lining cells (arrowheads) partition the lumen of a tumour vessel with multiple cell
projections. The scale bar length represents 15µm. (Adapted from reference [23])

Figure 2.7: Openings in the endothelial layer. The figure shows multiple intercellular openings (arrows) or tran-
scellular holes (arrowheads) in MCA-IV tumour vessels.B is an enlargement of the box inA. The histograms
shows the distribution of openings and hole sizes of 100 openings and the holes found in the same vessels
(Adapted from reference [23]).
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Figure 2.8: Blood lakes in pancreatic islet cell tumours of transgenic RIP-Tag2 mice.A: Brightfield micro-
graph of the whole mount of a small (∼1mm) RIP-Tag2 tumour containing blood lakes (arrows, red areas).
The remainder of the blood has been washed out by vascular perfusion of fixative. B: Histological section
(hematoxylin-and-eosin-stained) of RIP-Tag tumour containing blood lakes. Tumour vessels (black asterisks)
are much smaller than the lakes and are emptied of blood by perfusion of fixative. C: Scanning electron mi-
croscope image of an extravascular blood lake which contains extravasated erythrocytes, lined by tumour cells
(arrowheads) and with multiple small holes between the tumour cells (arrows). (Adapted from [23])

do not appear to be in direct contact with the vascular system as the erythrocytes7 in these
lakes are not washed out by perfusion of fixative. Blood vessels in MCa-IV mouse mammary
carcinomas are known for being unusually leaky and were used by H. Hashizume et.al. to make
images of blood lakes, see figure 2.8, [23].

Mosaic Vessels:Tumour cells have been found in the lining of some tumour vessels, known as mo-
saic vessels. In a colon carcinoma xenograft model, Chang et.al. [7] found that about 4% of the
total vascular surface area consists of cancer cells, see figure 2.9. Only 15% of the vessels were
mosaic, but in these vessels approximately 25% of the perimeter consisted of cancer cells.

Several pathways by which a vessel could develop into a mosaic vessel were suggested. The
one most consistent with their data, is that the endothelial cells originally lining thevessel wall
are shed, consequently exposing the underlying tumour cells.

Mosaic vessels can be expected to contribute to a tumour’s metastatic potential by facilitating
easy access points into the vascular system. Mosaic vessels’ contribution towards vessel perme-
ability, however, remains unclear as the spore sizes identified in this study were much smaller
than the areas exposed to cancer cells.

Vascular Mimicry: A phenomenon in which tumour cells develop a phenotype capable of forming
vascular-like systems without endothelial cells has been labelled vasculogenic mimicry [32].
This process is distinct from that of mosaic vessels, as opposed to being amore extreme expres-
sion of the same [7].

Channels have been found formingin vitro cultures, obviously without the possibility of en-
dothelial influence, see figure 2.10. In tumour xenografts similar channelshave been found
connected to endothelial vasculature, but without endothelial staining patterns (CD31, CD105).

7Erythrocyte: Red blood cell.
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(a) (b)

Figure 2.9: Mosaic vessels in tumours.(a) Cancer cells (green fluorescence) are directly exposed to the vessel
lumen, note the lack of endothelial cells (red fluorescence)at the arrowhead. The gap is about 20µm long. This
is referred to as mosaic vessels. (Adapted from [7]).(b) Quantification of mosaic vessels. In colon carcinoma
∼4% of the total vascular surface area consists of cancer cells. If each cell intravasate in 2 days, a total number
of about 106 cells will be shed per day per gram of tumour (Adapted from [6]).

The channels did, however, exhibit staining to the vascular-associated cell marker laminin, in-
dicating their vascular function, see figure 2.11.B-C. In highly aggressive ovarian cancer, cells
were found to form tumour cell-lined vessels, figure 2.11.A. These tumoursshowed minimal
or no signs of necrosis. Less aggressive ovarian tumours with no sign of vascular mimicry, on
the other hand, had necrosis, see figure 2.12. Patients with tumour-cell lined vasculature had a
shorter overall survival [38]. Mind no such correlation was found for pT3 and pT4 cutaneous
melanoma in a study by Massi et.al. [33]. The correlation cannot be assumedto be valid in
general.

The formation of these fluid-conducting channels is not an angiogenic event as they do not
arise from pre-existing vessels. Nor can the process be described asvasculogenesis, the chan-
nels formed, although developedde novo, are not blood vessels. Vascular mimicry is, strictly
speaking, not a feature of the vascular system as it is not a part of it. However, although it
is architecturally different, it does transport plasma and possibly red blood cells [14]. From
a functional viewpoint, these systems can be regarded as extensions of the supplying vascula-
ture. Furthermore, these systems facilitate a pathway for tumour growth without invoking the
angiogenic switch, although this process may possibly require a similar switch on its own.

Morphological Characteristics

The morphological characteristics relate to the architecture of the network.This includes e.g. in-
tervessel and interbranch distances, branching angles, vessel diameters and the network hierarchy8.
The structure of the network, including the radiuses of the vessels, are responsible for the geometrical
flow-resistance of the network. Changes in the morphology is consequently capable of changing both
flow rates and pathways in local areas. This is the cause of transient (acute) hypoxia (cf. section 2.2.2).
Chronic hypoxia is the result of the network’s failure to supply an entire part of the tumour volume

8Network hierarchy: The vascular systems’ functional hierarchy of arteries, arterioles, capillaries, venules and veins.
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Figure 2.10: Vascular mimicry. Scanning electron micrographs of ovarian cancer cell cultures grown on three-
dimensional collagen I matrices. Tubular profiles are evident in the low magnification image to the left (A).
When fractured in preparation, the tubes were shown to be hollow and lined by flattened cancer cells (B).
(Reference [39] )

Figure 2.11: Vascular mimicry.A: Tumour cell-lined (pink) vasculature (red) from a H&E histological section
of an invasive ovarian cancer (Adapted from reference [38]). B andC: Serial sections of xenografted Mel157
uveal melanoma cells (blue).B is stained for endothelium (red),C is stained for laminin (red). This indicates
the presence of channels outside the endothelium (Adapted from reference [14]).

Figure 2.12: Vascular mimicry. Tumours with tumour cell-lined vasculature are more aggressive and show little
sign of necrosis in human ovarian carcinoma (copied from [38]).



16 CHAPTER 2. THEORY

Figure 2.13: Logarithmic distributions of the intervesseldistances (A), interbranch distances (B), branching
angles (C), and vessel diameters (D). The data were quantified from image analysis of 3D scanningelectron
micrographs of corrosion casts of 20 colorectal adenocarcinomas and control mucosa.c = control mucosea,tp
= tumour periphery,lts = luminal tumour surface,tc = tumour centre, (Reference [28]).

(section 2.2.1).
Corrosion cast studies suggest that the vascular network develops in acharacteristic way de-

termined by the tumour cells [27]. Although endothelial growth factors, (VEGF), correlates to the
amount of new vessel formation the architecture is tumour-type specific. This architecture has been
found to be qualitatively and quantitatively the same for all individual tumours, irrespective of local-
ization and grading, in a study on colorectal cancer. Pre-cancerous lesions show architectures similar
to those of invasive carcinomas, however the variability between individual adenomas is by far higher
than between individual carcinomas. Metastatic tumours only display different architectures within
hot spots [28].

Konerding et. al. investigated the intervessel distances, interbranch distances, branching angle and
vessel diameter, see figure 2.13. Three qualitatively different areas of the tumour were investigated
seperately, namely the tumour periphery, luminal surface and centre. All four parameters were gen-
erally different from the control in all three areas, with the exception of the interbranch distance at
the tumour periphery. Furthermore, with the exception of the branching angle, the three areas also
differed from each other. The vessel diameters are in general increased and the mean branching angle
is decreased. The intervessel distance is decreased at the peripheryand increased in the centre. The
interbranch distance is the same for the control and the tumour periphery, but increased for both the
luminal surface and the tumour centre.

Normal vasculature from a skeletal muscle and subserosal capillaries ofthe gut are shown in fig-
ure 2.14. These architectures are quite different, yet the vessel diameters are essentially the same
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Figure 2.14: Scanning electron micrographs of corrosion cast specimens of the vascular network in a skeletal
muscle (A) and of subserosal capillaries of the gut (B) draining into venules. The network morphologies show
few similarities. Bars = 100µm. (Reference [27])

with respect to both mean and variation. The branching angles are essentially the same as well, in
spite of the dramatic difference in appearance between these networks. The intervessel and inter-
branch distances, however, are different. In figure 2.15 these data are compared quantitatively for two
murine carcinomas (CaX, CaNT), a slow growing murine sarcoma (SaS) anda human endometrial
adenocarcinoma xenograft.

In figure 2.16 scanning electroscope micrographs of the normal mucosalplexus, an adenocar-
cinoma,9 and an adenoma,10 are shown. The branching pattern of the normalmucosal plexushas
disappeared in both the adenomas and carcinomas. The vascular densities, in general, decline from
the tumour periphery to the tumour centre. In areas with low vascular density,numerous vessel com-
pressions and elongated vessel segments are seen. A low or missing vessel hierarchy, as well as
blind-ending vessels, is observed in all samples.

9adenocarcinoma,pathology: A malignant tumour arising from secretory epithelium. [Dictionary.com,14.12.06]
10adenoma,pathology: A benign tumour orignating in a secretory gland. [Dictionary.com, 12.14.06]



18 CHAPTER 2. THEORY

Figure 2.15: Cumulative frequency distribution plots (semi-logarithmic) of different parameters describing the
vascular architecture in different tumours and normal tissues. The following tumours were used:• = CaX,
N = CaNT, � = SaS,� = HEC-1B. And for comparison◦ = musculature,♦ = subserosal gut vessels (see
figure 2.14). The parameters are the inter-vessel distances, (A); inter-branch distances,(B); vessel diameters,
(C); variation in percent of vessel diameters,(D); and the branching angles,(E). Different distribution patterns
are observed for most of the parameters, either as a change inslope or a horizontal shift of the 50% value. With
the exception of the branching angles and the inter-branch distance of the gut serosa, the tumour vessel value
distributions are clearly different from the normal tissuedistributions. (Reference [27])
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Figure 2.16: Scanning electron micrographs of corrosion casts of the colorectal vascularity in normal mucosa
(A, B), carcinoma (C, D) and adenoma (E, F). The characteristic honeycomb resembling pattern around the
crypts in the normal mucosa (A), with ascending arterioles supplying (B,a) and descending veins (B,v) draining
the network, is very different from the vascular networks formed by angiogenesis in the carcinoma and adeno-
mas. The carcinoma have highly expressed variations in vascular density (C), numerous blind ending vessels
(D,circle) and great variations in vessel diameter within short distances (D,arrows). Furthermore, there is no
expressed vascular hierarchy, that is a distinction between capillaries, veins and arterioles. The adenoma (E)
has a high vascular density on the luminal surface forming from vascular networks in the centre (F). Again,
there is a loss of vascular hierarchy. Bars in A, C, E = 1 mm, bars in B, D, F = 100µm. (Reference [28])
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2.2 Hypoxia

Hypoxia can loosely be described as oxygen deficient tissue. It is an important parameter for the de-
scription of tumours for at least two reasons. Oxygen was discovered toincrease the biological effect
of ionizing radiation as early as in 191211. Although many other substances that modify radiosensitiv-
ity have been discovered, none are as powerful as oxygen. [21] Furthermore, the presence of hypoxia
will have consequences for a cell’s metabolism and cell cycle progress,indeed cell division may be
halted altogether until oxygen is resupplied. Oxygen therefore has a profound effect, especially on
radiotherapy, but also on all treatment forms utilizing the increased cell cycle progression of cancer
cells. Furthermore, hypoxia has been found to correlate with malignant tumour progression.

It is useful to differentiate between two types of hypoxia, chronic and acute. The difference is in
part a functional one, acute hypoxic tissue will in time be reoxygenated without treatment, chronic will
not. This offers two different challenges to treatment and warrants the differentiation. Furthermore,
the two different types are created by different biological mechanisms. This difference is especially
important when it comes to treatments trying to circumvent hypoxia or at least diminish its effects.

2.2.1 Chronic Hypoxia

Chronic hypoxia is found in cells too far away from any vessel capable of carrying flow, either because
there are no vessels close enough or because these vessels do not carry sufficient flow to oxygenize
the tissue. Both cases are results of the suboptimal arteriovenous system found in most tumours,
where a branch may be so tortuous that the increased geometrical resistance forces the flow to go
elsewhere. Tissue completely bereft of oxygen will in time die and form necrotic tissue. If necrotic
tissue in a specific tumour has died from oxygen deprivation, there will always be a layer of hypoxic
tissue between the necrotic and normoxic regions, where normoxic is defined as normally oxygenized
tissue. For this reason, although the dead tumour cells are of no consequence to the patient, necrosis
indicates a more severe diagnosis. This is not only due to the complicating effects of hypoxia on
treatment, but also due to its role in malignant tumour progression. In summary, chronic hypoxia is
diffusion limited, ie. the hypoxic tissue is out of oxygens diffusion range, about 70µm, with respect to
the closest vessel. [21]

2.2.2 Acute Hypoxia

Acute hypoxia is a result of blood carrying vessels being temporarily occluded, collapsed or otherwise
incapable of distributing oxygen to the surrounding tissue. Tumour cells do not obey by the normal
cell cycle regulation mechanisms and grow uncontrollably, this is one of the defining features of a
malignant tumour. This unrestrained growth can cause the pressure in parts of the tumour to rise and
become larger than the local blood pressure, resulting in the collapse of these vessels. A tumour is a
dynamic system and subsequent changes in the pressure may cause vessels to open up again. Although
a long-term closing is conceivable, such a vessel would be incapable ofcarrying flow and result in
chronic hypoxia.

Another mechanism closing vessels is blockage. Normal capillaries are very narrow, only a single
column of red blood cells are able to pass through. In a tumour, capillaries maybe so small that they
are roughly the same size as the red blood cells. Cells, either red blood cells or tumour cells which
have broken into the vascular system, may then get stuck and later break free again. This causes a

11It was discovered by Swartz in Germany, but only became known in the English speaking world after Mottram’s
research in the 1930s
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Figure 2.17: The dependence of radiosensitivity on oxygen concentration. Anoxic conditions are set to 1 and
different oxygen levels are compared to this. (Reference [21])

transient hypoxia in the supplied tissue. Even capillaries normally large enough can be constricted
and clog, or hamper flow due to spontaneous vasomotoric activity. [12]

Dewhirst et.al investigated acute hypoxia and found several differenttypes in his study. [12] The
first was usually confined to single vessels and was characterized by anunstable flow magnitude and
direction. In this type total vascular stasis occurs for a few seconds at atime. The second observed
type affected groups of vessels in a cyclic pattern with intervals ranging from 20–60 minutes. Total
stasis did not occur, but there were large fluctuations in the red cell flow rate, and corresponding
fluctuations in the vascular oxygen content. Finally, 9% of the investigated vessels had plasma flow,
but very low or absent red blood cell flux over periods of many minutes.

In summary, acute hypoxia is perfusion limited. Although a vascular system is present, for tran-
sient periods of time, it does not supply the surrounding tissue with oxygen.

2.2.3 Effects of Hypoxia; Radiotherapy

The Oxygen Effect

Oxygen’s ability to increase the biological damage of radiation is known asthe oxygen effect. For the
sake of quantification, theoxygen enhancement ratio, OER, has been defined as the ratio between the
doses needed to produce the same biological effect in anoxic and oxic environments respectively.

Because of the way the OER is defined, it does not depend on the amount of oxygen present.
The biological effect, however, does, and it has been measured for yeast, bacteria and mammalian
cells in culture. Figure 2.17 shows an illustration of the results of these experiments. The curve has,
initially, a very steep climb indicating how little oxygen is needed to produce the effect. At 3 mmHg
half of the effect is achieved and at 30 mmHg little more is to be gained. Under atmospheric pressure
this corresponds to 0.5 and 5 % of a 100 % oxygenated environment, or 1.9 and 19 % of the oxygen
tension in air, respectively.

The most important hypothesis as to the cause of this effect is theoxygen fixation hypothesis. This
theory states that oxygen reacts with the free radicals formed from an ionization and fixes the damage,
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thereby preventing radicals to recombine. The oxygen needs to be present during the irradiation, or
within the lifetime of the free radicals (10−5s). The oxygen effect can be said to be a direct chemical
effect, rather than an indirect biological one. It is not the result of reduced cell cycle progression or
gene expressions.

The OER has been found to have a dependence on both doses and thelinear energy transfer, LET,
of the radiation. At high doses the OER is about 3, but at doses lower thanabout 2 Gy, the OER is
only about 2. The OER decreases as the LET increases, and at a LET of about 160 keV/µm it reaches
unity, i.e. no oxygen effect.

Effects of Hypoxia; Chemotherapy

There is no chemical reaction, similar to that of theoxygen fixation hypothesis, that makes hypoxic
cells less respondent to cytostatica, and oxygen concentrations does not seam to affect cellsin vitro.
In vivo hypoxia will, however, still reduce the effect of most chemotherapies. Many cytostatica take
advantage of the cancer cells increased mitotic activity. Hypoxia reduces cell cycle progression, or
in extreme cases halts all together, reducing the effect of such treatments.Furthermore, hypoxia is
caused by the insufficient transportation of oxygen in the vascular system. The same mechanisms
will interfere with the delivery of other blood carried agents, including bothnutrition and drugs.
Anticancer drugs are usually highly reactive and will in many cases have diffusion ranges shorter than
that of oxygen, effectively causing the effected area to be even larger than the hypoxic. In this way,
hypoxia increases cytotoxic drug resistance through indirect biologicaleffects, and correlates with
drug resistance obtained through other mechanisms. [5]

Effects of Hypoxia; Malignant Tumour Progression

Hypoxia has been shown to destabalize the genome, resulting in an increased mutation rate which
increases the survival advantage of cells in adverse conditions. Cells with reduced apoptotic activity,
possibly through the inactivation of tumour-suppressor genes, such asp53, or overexpression of anti-
apoptotic genes such as bcl-2, will have a survival advantage in low-oxygen environments. [21] In
particular hypoxia is known to influence the expression of thehypoxia-inducible factor 1, HIF-1. This
molecule affect the expression of a large number of proteins, including thevascular endothelial growth
factor, VEGF, affecting angiogenesis, molecules promoting metabolic adaptation, and genes that play
a role in tumour progression, such as proliferation, invasion, and metastasis promoting genes, thereby
contributing to tumour aggressiveness. [40]

Clinical studies, on advanced carcinoma of the cervix, show that local control in patients treated
with radiotherapy or surgery was easier obtained in patients with oxygen probe measurements higher
than 10 mm Hg, compared to those with lower pO2. Furthermore, the frequency of distant metastases,
in patients receiving radiotherapy for soft-tissue sarcoma, were foundto be 70% in patients with pO2s
less than 10mm Hg, compared to 35% for patients with higher oxygen tension. [21]
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2.3 Fractal Theory

Fractals, a term coined by Benoit Mandelbrot in his 1967 paperHow long is the coast of Britain?[31],
has received ever growing attention over the last decades. Although thedevelopment of fractal theory
and dimensions started in the late nineteenth century, it is the development of computers capable of
visualising fractal sets that has made this field so popular, not only in the sciences, but also in the
public sphere. By the public, simply because they are pretty to look at, and in the sciences, because
of the way fractal theory can be used either to model complex sets or quantitatively measuring certain
aspects of a set’s complexity.

Fractal geometry is a method of characterizing objects that traditional geometry is unsuited to
describe. The Euclidean geometry along with calculus describes many shapes, such as parabolas,
circles, triangles or ellipsoids. Many natural objects may be approximated to these shapes with great
accuracy, e.g. the earth as a sphere. When it comes to more complex shapes, such as that of a snow
crystal, most plants or even coastlines, traditional geometry’s shortcomingsbecome obvious. Indeed,
the computer games industry readily illustrates the challenge of animating a realisticlooking tree.

Fractal geometry offers not only a way of constructing many complex patterns, but also a way of
characterizing a certain type of regularity in an otherwise complicated pattern, the fractal dimension.
It describes how the amount of details at one size-scale relates to that on other scales. If no such
relation exists in an object, the various algorithms will report this as well, as theyall rely on the
existence of a precise linear fit to a curve.

The concept of the fractal dimensions will be explained along with severalalgorithms used to esti-
mate the fractal dimension of images, and different approaches to fractalimage analysis. Percolation
theory, a method used to mathematically construct structures with fractal characteristics, is discussed
at the end of the section, and will be applied later in a simulation of the fractal network.

2.3.1 Dimensions

Euclidean Dimension

The Euclidean dimension,Deuclid, corresponds to the intuitive notion of the term, as used in everyday
speech. The Euclidean dimension directly relates to the type of the object; it is zero for points, one for
curves, two for planar objects and three for volumes. To put it another way, it is the minimum number
of independent coordinates required to mathematically describe the figure.

Lebesgue Covering Dimension

The Lebesgue covering dimension, also known as the topological dimension, is a more stringently
defined form of dimension. An object may be covered by any number of small open12 sets. In order
to completely cover the object, the open sets must overlap. Given that sufficiently small covering sets
are used, the dimension of the object is one less than the least possible maximumnumber of circles
covering any one point on the object, see figure 2.18. It is clear that this definition results in integer
dimensions in accordance with the euclidean dimension.

Classical Fractals

At the end of the nineteenth century several mathematical monsters, beginning with Peanos curve,
were constructed. These were objects that could not be classified by theLebesgue Covering Dimen-

12Open Set,mathematics: An open set includes all points inside the set’s boundary, but not the boundary itself.
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Figure 2.18: Covering sets illustrating the Lebesgue covering dimension. On the curved line a maximum of
only two circles need to overlap at any one point in order to cover the entire line. The two-dimensional circle on
the other hand, requires at least three circles to overlap insome areas. The covering sets need to be sufficiently
small, lest a single set could cover higher dimensional parts of the object, or even the entire figure.

sion, effectively revealing the shortcomings of the traditional integer dimension. A similar curve
constructed by Hilbert is shown in the top row of figure 2.19 to illustrates this. As with the other
sets shown here, the Hilbert curve has a recursive definition and is the limit-object achieved when
the iterations are carried on to infinity. In mathematics this is called aniterated function system, IFS.
The result is a curve that visits all points in the plane without crossing or touching itself. The curve
provides a one-to-one mapping between the plane, which requires two coordinates to represent, and a
line.

The object is a curve and one would intuitively attribute it to the dimension one. On the other
hand, the object visits every point in the plane, a quality that usually is attributed to the dimension
two. Using the Lebesgue covering dimension, the same conclusion must be made. In order to make
the result become one, infinitley small sets must be used. However, infinitley small open sets do not
overlap at all, and consequently do not cover the curve. The notion thatit was the type of object (point,
curve, etc.) that determined its dimension, rather than its shape, had to give way for new ideas.

Fractal dimension

To deal with these new monsters Hausdorff developed the first fractal dimension. Hausdorff’s dimen-
sion, DH, can be calculated directly from the definitions of the IFS. The dimension of arecursive
object is the logarithm of the number of copies, from the previous step, which are united to form the
current figure, divided by the factor by which these copies are scaleddown, see figure 2.19. In the
case of Hilberts curve the dimension is log4/ log2= 2.13

An object’s fractal dimension should not be considered to be a qualitative statement about what
kind of object it is (points, lines, areas, etc.), but rather a quantitative measure of the object’s behaviour
across different size-scales. The fractal dimension does not relate tosizes such as length, area and
volume. These terms are all connected to the integer dimensions, the fractal dimension is rather a
recognition of the fact that some objects (i.e. fractals) do not fit these categories. The Koch Island
for instance, has a finite area, but an infinite perimeter, as shown in equation 2.1, whereA0 andP0 are

13There is a formal rigorous definition of the Hausdorff dimension as well,however the informal version used here is
sufficient for this explanation, cf. http://mathworld.wolfram.com/HausdorffDimension.html for more information.
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Figure 2.19: Classical fractal sets. These sets have a well-defined Hausdorff dimension (mind the set is de-
fined as the attractor after infinitley many iterations), allof which are greater than their topological dimen-
sion: The Hilbert Curve, D= log4/ log2 = 2. The Koch Curve, D= log4 log3/ ≈ 1.2619. The Cantor
Set, D= log2 log3/ ≈ 0.6309. The Sierpinski Gasket, D= log3/ log2≈ 1.5850. The Sierpinski Carpet,
D = log8/ log3≈ 1.8928.
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area and the perimeter of the initial triangle.

A∞ = A0 +3A0

∞

∑
n=1

4n−1

6n = 2.5A0 P∞ = P0 +P0

∞

∑1/3 = ∞ (2.1)

Sierpinski’s Gasket and Carpet have no areas at all, but likewise an infinite perimeter. A straight line
will always have an area of zero no matter how long it is. However, if it is complicated and tortuous
enough, caving in on itself across all length scales, such as the Hilbert Curve, it can indeed fill the
entire plane. The fractal dimension, can loosely be said to refer to how muchof a higher dimensional
space a lower dimensional object occupies.

2.3.2 Self-Similarity

The term fractal is closely linked with that of self-similarity. Enlarging a self-similar object will
reveal that it consists of many smaller objects of some smaller size that are similarto the object as a
whole. For instance, all the objects in figure 2.19 are strictly self-similar, being constructed by putting
together smaller parts of itself. Less strict forms of self-similarity have also been defined, such as
self-affine14 sets and statistical self-similarity. Self-affine sets allow all affine operations,and not just
linear operations, to be used when constructing the iterated function systems, i.e. rotations are allowed
as well. The vaguer term, statistical self-similarity, refers to objects which arenot made up by smaller
exact copies of itself, but never the less behave in a similar manner. The term fractal dimension was
indeed first used about coastlines, stating that:

Seacoast shapes are examples of highly involved curves with the property that – in a
statistical sense – each portion can be considered a reduced-scale imageof the whole.
This property will be referred to as “statistical self-similarity”.

B. Mandelbrot [31]

A seacoast is obviously not made up by smaller parts of itself in any literal sense, yet it is impossible,
from looking at a drawn outline of some coast, to see what scale the coastlinehas been drawn at. It is
this type of self-similarity that warrants the use of fractal models for naturalobjects.

2.3.3 Natural Fractals

To satisfy strict mathematical definitions of a fractal, an object must satisfy anexact fractal scaling
pattern all the way down to an infinitesimal scale. Never the less, it is common practice to call natural
objectsfractals even if they are only statistically self-similar over a finite range of length scales.
Although natural objects may not be true fractals, it seems reasonable to model real objects as fractals
in much the same way as a perfect circle may be used to represent the crosssection of an artery – with
full knowledge of the fact that the model is a mere approximation. [3]

2.3.4 Finding the Fractal Dimension of a Natural Fractal

Hausdorff’s dimension provides a way to calculate the fractal dimensions.Its definition is, however,
only applicable to mathematically defined functions. In order to quantify the fractal dimension of
statistically self-similar sets, i.e. natural fractals, other methods must be used.For this purpose several
algorithms have been developed.

14Affine mathematics: Of or pertaining to a transformation that maps parallel lines to parallel linesand finite points to
finite points. [Dictionary.com, January 16, 2007]
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These methods all produce dimensions similar to the Hausdorff-dimension forclassical fractals,
although not necessarily identical. Furthermore, the methods do not always give similar results for
all conceivable image styles. Due to this and the uncertainty of the methods, the various dimensions
should be denoted by the methods used to calculate them.

2.3.5 Box-Counting Dimension

The standard box-counting algorithm is the most straight forward way of calculating the fractal di-
mension. While the Lebesgue covering dimension considers the number of overlapping open sets, the
box-counting dimension considers the number of closed square sets, i.e. boxes, which are needed to
cover the object, as a function of the box size.[16]

When a given object is covered by boxes of a given size,S> 0, it requires some finite number,
N, of boxes to cover it. For many objectsN is related toSaccording to a simple power relation. For
instance, if a straight line is covered byN1 boxes of sizeS1, the same line would require three times as
many boxes if the width of the boxes is reduced to a third,N(S1/3) = 3N(S1) ⇒ N ∝ S−1. Would the
same be done to a square, nine times as many boxes would be required,N(S1/3) = 9N(S1)⇒N ∝ S−2.
Recognizing the exponential as the negative of the dimension, one arrives at the formula

N ∝ S−D ⇒ D =
logN/c
log1/S

, where c is a constant. (2.2)

The procedure may seem simple. Applying the same procedure to the classical fractals, however,
results in dimensions similar to the Hausdorff dimension. This can most easily be illustrated by the
Sierpinski Carpet where reducing the box-size by a factor of three, results in a formula identical to
Hausdorff’s,DH = log(8)/ log(3).

The somewhat arbitrary choice of what factor the box-size should be reduced by, cannot be al-
lowed to require a lucky guess. If you start out with a single box coveringthe entire carpet and reduce
the box-size by a factor two, then no boxes at all would be empty andD = 2. Reducing by a factor
four will produce sixteen boxes and a size that is smaller than the empty area inthe middle, but the
boxes are stacked wrongly so that no boxes are empty. Shifting the boxesaround, however, will allow
one of the boxes to be empty and the dimension changes toD = log(15)/ log(4) ≈ 1.95, which is still
much higher thanDH ≈ 1.89. To overcome these challenges the Box-Counting dimension needs to
be averaged over different box-sizes, and for each box-size the boxes need to be shifted around to
find the configuration with the maximum number of empty boxes. The averaging isaccomplished by
rewriting equation 2.2 to

logN = Dboxlog1/S+ logc (2.3)

The dimension can now be found as the slope of a linear fit to a curve in a double-logarithmic
environment.

2.3.6 Sandbox Dimension

The sandbox dimension considers the amount of vacant pixels within a neighbourhood around occu-
pied pixels. Each occupied pixel is surrounded by boxes of sizeS1 . . .Sn. The number of occupied
pixelsm(Sj) inside each square of sizeSj is averaged over the squares around all occupied pixels, to
produce the mean number of occupied pixelsM(Sj). M(Sj) obeys a power law relation toSj

M(Sj) ∝ SD
j ⇒ logM(Sj) = D logSj + logc, (2.4)
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allowing the fractal dimension,Dsb, to be found as the slope of a linear fit in a loglog plot ofM(Sj)
againstSj . [16]

This method has the additional advantage that, rather than calculating the global dimension from
the mean occupancy of each box-size, a local fractal dimension,Dlocal, may be calculated for each
occupied pixel.

m(Sj) ∝ S
Dsb,local
j

2.3.7 Fourier Dimension

Fourier Transformation

The Fourier transformation of a function is defined by:

F ( f (x)) = F(ω)
def
=

1√
2π

Z ∞

−∞
f (x)eiωxdx, for every real numberω. (2.5)

F ( f (n)) = F(k)
def
=

N−1

∑
n=0

f (n)e
2πi
N kn k = 0, . . . ,N−1 (2.6)

and its inverse function by

F
−1(F(ω)) = f (x) =

1√
2π

Z ∞

−∞
F(ω)eiωxdω, for every real numberx. (2.7)

F
−1(F(k)) = f (n) =

1
N

N−1

∑
k=0

F(k)e
2πi
N kn n = 0, . . . ,N−1 (2.8)

The variable change in the exponential of the discrete version comes fromsubstituting the angle
frequency,ω, with the corresponding frequency:ω = 2πf, when f is discrete fk = k/N, whereN is the
length of f (n). The discrete transform contains the frequency range 0 –(N−1), and requires at least
2N−1 points to accurately describe the function. Both the zero-frequency, f0 and the N-frequency, fN,
applies to all points in the function. Likewise a frequency slightly above f0 and slightly below fN will
both cover almost all points. Because of this, half the frequencies are redundant, the DFT is symmetric
and only(n+1) frequencies are required. The phase of each frequency determineswhich points are
included and which are excluded. The DFT returns one complex number per calculated point (usually
(2N−1)). |F(k)| is the strength of thek-th frequency component, and arctan(R(F(k))/I (F(k))) is
the phase-shift of this frequency.

Calculation of the Fourier Power Spectrum Dimension

The power spectrum of the Fourier transform is given by [41]

S(~k) ∝ |F (~k)|2 (2.9)

whereF (~k) is the Fourier coefficients off (x,y) in the space of frequency~k = (kx,ky). If there are
no characteristic lengths on the image, i.e.f (x,y) is a random scaling fractal function, then the power
spectrum averaged over all angles is related to the frequency by the power law

〈S(k)〉θ ∝
1

kβ (2.10)
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The authors of reference [24] provide a formula to mapβ to the fractal dimension, the mapping
does, however, not provide meaningful results for many figures of a known dimension, nor does it
provide meaningful results for their own images, which end up with fractal dimensions between two
and three when this mapping is applied toβ. The mapping fromβ to D f ourier is further discussed in
section 3.5.2, where the relation between theβ and the fractal dimensions of a series of test shapes is
investigated. For most shapes it appears that a direct mapping, i.e.D f ourier = |β| gives the best results.
This approach does, however, fail when applied to two-dimensional surfaces.

2.3.8 Mass Dimension and Correlation Dimension

Pair-correlation, Autocorrelation and Convolution

The continuous and discrete pair-correlation functions are respectively defined as:

( f ⋆g)(r)
def
=

Z

f ∗(x)g(r +x) dx

( f ⋆g)(m)
def
= ∑

n
f ∗(n)g(m+n) (2.11)

where f ∗(x) is the complex conjugate off (x). The pair-correlation of a function with itself is called
the autocorrelation. The autocorrelation,( f ⋆ f ), is a quantitative measure of how the fluctuations of
f (x) are related atx andx+ t, i.e. how well the function match a shifted version of itself, as a function
of the amount it is shifted. Put in another way, the normalized autocorrelationis the probability of
finding another mass point within a distancer from an existing point.

The pair-correlation is related to the convolution of two functions, defined as

( f ∗g)(r)
def
=

Z

f (x)g(r −x) dx

( f ∗g)(m)
def
= ∑

n
f (n)g(m−n) (2.12)

by
f (x)⋆g(x) = f ∗(−x)∗g(x).

If either of the two functions are even15 the operations are the same.
If the two functionsf andg are the probability distributions of the two independent variable distri-

butions,X andY, then the correlation and the convolution correspond to the probability distributions
of the difference (−X +Y) and the sum (X +Y) of the variables respectively.

For a finite function one must choose a way to handle the start of a convolution, or the end of
a pair-correlation. There are essentially two approaches to this, a linear and a cyclic. In the linear
convolution/correlation the function is expanded with zeros at all extra points needed in the algorithm.
In the cyclic approach the function is regarded to be repetitive. The linearapproach will be used
here. [41]

The Convolution Theorem

The Convolution theorem states that the Fourier transform of a convolutionis equal to the multiplica-
tion of the respective Fourier transforms of the two functions,

F ( f ∗g) = F ( f ) ·F (g).

15Even function: A function is even iff (x) = f (−x) and odd if f (x) = − f (−x).
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This property is exploited for large discrete functions by using the Fast Fourier Transform,FFT,
algorithm to quickly calculate the convolution of two functions.

Wiener-Khintchine Theorem

The Wiener-Khintchine relations apply to most cases and state that the powerspectral density,S(k) =
|F ( f (n))|2, is the Fourier transform of the corresponding autocorrelation.

S(ω) =
Z ∞

−∞
( f ⋆ f )(r)eiωrdr

For a real function,f , the exponential simplifies to a cosine. For a real and discrete function,f (n),
the theorem takes the form:

S(k) =
∞

∑
k=−∞

( f ⋆ f )(m)cos(
2π
N

km). (2.13)

and the inverse transformation:

( f ⋆ f )(m) =
∞

∑
k=−∞

S(k)cos(
2π
N

km). (2.14)

Rewriting the theorem to a more general form gives

( f ⋆ f ) = F
−1(|F ( f )|2)

F ( f ⋆ f ) = F ( f ) ·F ( f ) (2.15)

which corresponds to the convolution theorem, but applies to autocorrelations. Furthermore, for real
functions( f ⋆ f ) = ( f ∗ f ), allowing both convolution and correlation algorithms to be used in the
calculation.

Computation of the Mass and Correlation Dimensions

In the two dimensional case, letC(~r) denote the autocorrelation,

C(~r) = C(rx, ry) ≡ 〈m(x,y) ·m(x+ rx,y+ ry)〉 = (m(x,y)⋆m(x,y))

wherem(x,y) denotes the local mass density, i.e. the image, and the brackets〈. . .〉 denote an ensemble
average.C(r) represents the average ofC(~r) over all angles such thatr2 = r2

x + r2
y.

C(r) = 〈C(~r)〉θ

Keeping in mind thatC(r) is the probability of finding another mass-point within a distancer from
an existing one, the conditional total average mass,M(R), is defined. The total number of points, in a
statistical sense, within a distanceR from an existing point, is closely related to the dimension of the
set.

M(R) =
Z R

0
C(r)r(Deuclid−1) dr ∝ RDmass (2.16)

Where 0< D < Deuclid, andDeuclid equals 2 for 2-D images. Note that equation 2.16 is analogous to
equation 2.4, showing the power-law relation of the Sandbox dimension.
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By differentiation of equation 2.16, the correlation dimension relation is obtained

C(r) ∝ rD−Deuclid ∝ 1/rDeuclid−Dcor ∝ 1/rη (2.17)

which for two-dimensional images is
C(r) ∝ 1/r2−Dcor (2.18)

The 2-D FFT algorithms provide an efficient way of computing the 2-DS(~k) from f(x,y) and from
thisC(~r) may be calculated with the 2-D Wiener Kintchine theorem. AveragingS(~k) to produceS(k)
and then using the 1-D Wiener-Kintchine theorem to produceC(r) may introduce errors, consequently
the angle average should be the last step in the procedure. [41]

Local Mass Dimension

Equation (2.16), representing the global average ofM(R) over all positions that have mass (i.e. non-
zero), calculates the global fractal dimensionD. M(R) may also be studied around a particular point
~r0

M~r0(R) ∝
Z R

0
m(~r0 +~r)d2~r ∝ RD(~r0) (2.19)

providing the local mass dimensionDlocal = D(~r0) around the point~r0. [41]

2.3.9 Analysing Images

A suitable image may be considered a natural fractal. An image represents a dataset, and datasets
of any dimension may be analyzed by adapting these methods. One-dimensional problems are of
particular interest in signal-processing and statistics. Two-dimensional sets include all images and are
of particular interest here. Three-dimensional datasets allow the true representation of e.g. vascular
structures throughout a tumour. They are, however, not easily obtained and require a large amount of
computer memory to process.

A digitized (uncompressed) greyscale image is usually stored as an intensity matrix I(x,y). There
are several different ways of storing colour images, however, because the fractal methods all operate
on a single matrix, colour images must be mapped to an intensity matrix before analysis.

There are many ways of characterizing an image by fractal analysis. Notonly will any image
manipulation technique used prior to the analysis affect the result, but thereare several different ways
of analysing the image.

Defining a Measure

The fractal methods described above all apply to some measurem(x,y). This measure must be chosen
and the choice obviously directly affects the result. This makes it important to define the measure
rigorously.

The simplest box-counting and sandbox algorithms require that a pixel mustbe defined as ei-
ther empty or occupied, i.e. it requires a black-and-white measure. For these algorithms, threshold
techniques are likely key-parts of the measure definition. Other image processing techniques may
be applied as well, such as identifying border pixels between some form of distinguishable areas or
calculating mass centres.

For the methods capable of handling grayscale measuresm(x,y) may equalI(x,y). This is, how-
ever, usually undesirable because non-zero background sensitivitychanges across the image, or sharp
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edges, may effect the result, in particular they can seriously corruptS(~k) andC(~r). The major diffi-
culties in usingI(x,y) as the image measure may be eliminated by replacing it with thelocal image
gradient|∇I(x,y)|16, which emphasizes the edges in an image.[41]

For colour images unconventional mappings from colour to grayscale may be used as a part of the
measure definition, for instance, specific colours can be extracted.

Global Dimension

The global dimension is a characterization of a measure across the entire image by a single fractal
dimension. This isthefractal dimension and will consequently be denoted simply byD.

Local Dimension

Local dimensions provide another way of characterizing images. The global dimension may be inap-
propriate when studying features that represent a subset of the original image. TheDlocal is calculated
around (all) individual occupied points~r0. The global distribution ofDlocal may be represented either
by a histogram or a transformed intensity image, where the occupied pixel values have been replaced
by their local dimension.Dlocal is not strictly a dimension and may take values outside of the usual
range, 0< D < 2. The Sandbox and the Mass dimensions provide means for calculating the local
dimension.

Locally Connected Fractal Dimension

By only including connected pixels to the local measure,m(~r0 +~r), around~r0, the local connected
fractal dimension may be calculated. The difference betweenDconn andDlocal is clarified by consid-
ering an image of closely spaced, but disconnected parallel lines. For scalings larger than the spacing
between the columns, the image behaves like a texture andDlocal ≈ 2. The local connected dimension,
on the other hand, only includes the pixels on single lines andDconn≈ 1. This dimension is important
in percolation theory. [41]

2.3.10 Percolation Theory

Percolation theory offers several mathematical models that have been applied to describe complex
phenomena, such as liquid draining through porous media or the electrical resistance across compli-
cated networks consisting of, or modelled as, large numbers of intertwined parallel and serial con-
nections of varying resistance. Percolation clusters have several fractal characteristics and invasion
percolation in particular has been suggested as a mechanism involved tumourangiogenesis, or at the
very least a way to model it.

Random Percolation

In the random percolation model, RP, all positions on a grid are assigned a random valuern ∈ (0,1),
and the percolation threshold,p∈ (0,1), is chosen. A percolation cluster is defined as a network of
connected cells with valuesrn < p. The clusters are located by planting a seed, i.e. choosing one or
more cells as the initial cluster, and iteratively adding all neighbours that arebelow the threshold of
the cluster.

16|∇I(x,y)| may be estimated by a local fit ofI(x,y) in the neighbourhood ofx,y to the forma∆x+ b∆y+ I(x,y). This
gives|∇I(x,y)| = (a2 +b2)1/2.
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Figure 2.20: Bond and site percolation: In bond percolationthe lattice is randomly open or closed. In site
percolation the vertices are randomly open or closed. Both of these networks were generated withp = 0.3.

lattice pc – bond percolation [exact] pc – site percolation [exact]
square 0.50000 1/2 0.592746
triangular 0.34729 2sin

( π
18

)

0.500000 1/2
honeycomb 0.65271 1−2sin

( π
18

)

0.6962
cubic (simple) 0.2488 0.3116

Table 2.2: List of critical percolation thresholds for a handful of common lattices.

There are two types of percolation that need to be distinguished, namely bond percolation and site
percolation. Bond percolation considers the lattice edges to be the random entities. Site percolation,
on the other hand, considers the vertices as such, see figure 2.20.

This method has been used to model the propagation of fluids17 through porous media. If a fluid
is added to one side of a porous media (the seed), and some percentage (p) of the subvolumes in
the medium have pores that the fluid potentially can propagate through, then the probability of the
existence of a continuous network through the medium, allowing the fluid to reach the other side,
depends onp. For large lattices and high values ofp there will, almost certainly, be a cluster spanning
the network, and for low values ofp there is almost certainly not. A continuous network spanning
across the lattice from side to side is called a spanning cluster. At some criticalvaluepc, the network
morphology changes drastically.

The values ofpc varies for different lattices and for bond and site percolation. A few values are
known exactly, but most of them have been approximated numerically. Critical percolation values for
a few common lattices have been listed in table 2.2.

Random percolation spanning clusters have been shown to have a fractal shape at the critical
percolation threshold. Future references to random percolation clusters will assume a critical cluster.
All occupied sites belong to some cluster within the network, possibly consistingof a single site. For
this reason it is important to use the locally connected fractal dimension for both global and local
calculations. Usually it is the single largest cluster that is of interest.

17Fluid: the model works for both liquids and gases.
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Figure 2.21: Random site-percolation cluster, 200x200 pixels. The concept of local connectivity is important
in percolation theory. While the lattice itself is ’white noise’ (left), fractal shapes are embedded in connected
clusters throughout the grid. There are typically many small, a few medium sized, and one very large cluster
spanning the lattice (right). This cluster is sometimes called an infinite cluster, even on finite lattices, because it
is analogous to a cluster, which at the percolation limit exists with some probability, and spans infinite lattices.

Figure 2.22: Left: The Transport Backbone (tan), Elastic Backbone (black) and Dangling Ends (blue) are shown
for the largest percolation cluster. Right: The chemical distance, measured as the length of the shortest travel
path to the inlet side on the left. Note that cluster sites that are geometrically close may be distant in terms of
chemical distance.



2.3. FRACTAL THEORY 35

Invasion Percolation

Invasion percolation, IP, is a model describing a situation where an invading fluid propagates through
a porous medium filled with a defending fluid. In this model each site (or bond)is assigned a random
valuer ∈ (0,1). A set of points is defined as the invasion front att0. This is often one of the lattice
walls, but may also be a single point, depending on the situation being modelled. The invasion front is
defined as all defending sites that are neighbours of an invading site. Ateach time step, the invading
fluid invades the single site at the invasion front with lowestr.

Two different situations arise depending on whether or not the defending fluid is compressible. In
non-trapping invasion percolation, NTIP, the defender is compressible and the invader can potentially
enter any region on the interface. In trapping invasion percolation, TIP,on the other hand, the defender
is incompressible and is trapped if a region of defenders is completely surrounded by the invading
fluid.

The propagation of a fluid through a porous material is dependent on the fluid’s ability to wet the
internal surface of the medium. For a wetting fluid, the capillary pressure is large and negative, pulling
the fluid into the smallest pores first, but giving it more trouble with larger capillaries. A non-wetting
fluid, on the other hand, will have the most trouble with the smallest capillaries. If a porous material
is modelled by a network of pores (sites) connected by throats (bonds) which have smaller radii than
the pores, then a wetting fluid is best modelled by a site percolation while a non-wetting fluid is best
modelled by bond percolation.[37][15]

Invasion percolation differs from random percolation in at least two ways. There is no parallel
to the percolation threshold,p, determining the morphology of random percolation. Furthermore,
random percolation is a static model and invasion percolation is a dynamic one allowing not only the
final cluster to be studied, but also the propagation of the invader throughthe medium.

IP-clusters obey fractal scaling laws and the dimensions of the various types of IP are listed in
table 2.3.

Fractal Characteristics of Percolation Clusters and Universality

Both random percolation and invasion clusters exhibit several fractal scaling properties. Not only
are the spanning clusters fractals, but also the transport backbone ofthe cluster and the shortest path
across the cluster. The backbone consists of all possible paths from one side of the cluster to the
other, with the one constraint that no site is visited more than once. The backbone is obtained by
removing all dangling ends from the cluster. It is sometimes called the transport backbone because it
consists of all points that may participate in the transport across the network. The minimum path, also
known as the shortest path or the elastic backbone, consists of the points inall the possible shortest
routes between two points at opposite sides of the cluster. Thus, the route between the two points is a
minimum route across the cluster. The elastic backbone is a part of the transport backbone.

Many complicated systems will, when approaching criticality (phase transition),behave in some
scale-invariant manner. Different systems are said to belong to the same universality class if they
behave according to the same power-scaling laws. For instance, even though there are two types of
random percolation and numerous different 2-dimensional lattices, with different phase transitions,
pc, see table 2.2, they all have the same fractal dimensionD f = 91/48. Furthermore, NTIP is in
the same universality class as well. For two-dimensional square lattices, there are only two different
universality classes, one for RP and NTIP, and another for TIP. In three-dimensional simple cubic
lattices, there are two classes as well. This time one for RP, NTIP and site TIP,and a different one
for bond TIP. While there is a single universality class for random percolation, this is not the case for
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2-dimensional square lattices
Model D – spanning cluster Db – backbone Dmin – minimum path
RP 1.89583 exact: 91/48 1.6432 1.1307
NTIP 1.89499 1.6422 1.1293
TIP site 1.825 1.217 1.214
TIP bond 1.825 1.217 1.2170

3-dimensional simple cubic lattices
Model D – spanning cluster Db – backbone Dmin – minimum path
RP 2.523 1.87 1.374
NTIP 2.528 1.868 1.3697
TIP site 2.528 1.861 1.3697
TIP bond 2.528 1.458 1.458

Table 2.3: Dimensions of percolation clusters. The fractaldimension of the spanning cluster,D, the backbone,
Db and the minimum pathDmin for random percolation, RP, non-trapping invasion percolation, NTIP, and
trapping invasion percolation, TIP for square lattices. With the exception ofD for RP, which is exact and valid
for all 2-D lattices, the values are numerically calculated. The various numbers of digits reflect the uncertainty
of the calculations. See reference [37] for further information on algorithms and uncertainties.

invasion percolation, nor is it true for trapping invasion percolation in a three-dimensional space, see
table 2.3. [37]
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2.4 Fractals and Cancer

Complexity, irregularities and poorly regulated growth are among the definingcharacteristics of can-
cer. Tumour vasculature, in particular, defies the optimized growth patternsof healthy vasculature
and is known to contain many tortuous vessels, shunts, vascular loops, widely variable intervascular
distances and large avascular areas, see sections 2.1.5 and 2.1.6. [2]

The vascular features are, however, not the only interesting morphological aspect of solid tumours.
The growth patterns of both the cancer cells and the tumour-parenchymal border, the latter being a
highly involved surface, are both tumour-type dependent. Fractal theory provides means of character-
izing complex structures and phenomena. In this respect, fractal analysisis a promising new tool for
quantitative description of tumours. In the words of Baish and Jain:

“By focusing on the irregularity of tumor growth rather than on a single measure of size
such as diameter or volume, fractal geometry is well suited to quantify those morpho-
logical characteristics that pathologists have long used in a qualitative sense to describe
malignancies—their ragged border with the host tissue and their seemingly random pat-
terns of vascular growth. (. . . )

A more quantitative and hopefully more reproducible approach, which may serve as a
useful adjunct to trained observers, is to analyze images with computationaltools. Herein
lies the potential of fractal analysis as a morphometric measure of the irregular structures
typical of tumor growth.”

James W. Baish and Rakesh K. Jain [3]

2.4.1 Fractal Quantification of Tumour Vasculature

Vasculature is in general not readily accessible to morphological studies.Tumour vasculature is in
most cases a three-dimensional network embedded in tumour and host tissues. Corrosion casting or
the reconstruction of numerous immunohistochemically tissue slices, sampled throughout a tumour
and stained by endothelial specific markers, may be used to study the network morphology. The
challenges of fractal studies of the network are, however, not just related to data access, but also
to the required computations. Both computation time and memory usage increase withthe size of
the system. The jump from two- to three-dimensional systems effectively requires a reduction of
lattice resolution so thatl3D = l2/3

2D in order to maintain the same number of lattice points. So far
the combination of these two aspects has resulted in most studies having been carried out on two-
dimensional vessel systems (retina, dorsal skinfold chamber etc.), or in the use of immunohistological
essays. The amount of work and computer power required to reconstruct and analyze a complete
three-dimensional network has so-far limited the immunohistological studies to single slices.

2.4.2 Analysis of Two-Dimensional Tumour Models

Expected Results

Tumour vasculature is characterized by a different morphology than boththe arteriovenous system and
the capillaries. It is not a superposition of the two, nor a network initially covered by these, but with
areas of various sizes removed. Due to tumour vasculature’s high tortuosity, its fractal dimension is
expected to be higher than the arteriovenous system, yet by no means as high as the capillaries filling
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Figure 2.23: Skeletonized images of vascular networks.(a) Normal subcutaneous arteriovenous network.(b)
Normal subcutaneous capillary network.(c) LS147T tumour network. The minimum paths across the images
are shown in bold and the bars are 500µmlong. (Reference [17])

Figure 2.24: Box Counting dimensions of skeletonized vascular networks. The networks behaved scale-
invariant over box-sizes ranging from approximately 50-900 µm. Sandbox dimensions were found to be simi-
lar.The tumour cell lines were LS174T, a human colon adenocarcinoma; MCaIV, murine mammary carcinoma;
Sa1, murine sarcoma; SCC7, murine squamous cell carcinoma;all of which were implanted into dorsal cham-
ber preparations. The bone-induced arteriovenous system was achieved by implanting whole femora into dorsal
chamber preparations. (Reference [17])

the entire Euclidean space in which they are embedded. Furthermore, utilizingthe minimum path di-
mension from percolation theory (see section 2.3.10), the increased tortuosity of the individual vessels
should account for an increasedDmin. Although insights into tumour angiogenesis and morphology
allow some qualitative assumptions, they do not help in determining the size of the increase.

This is true with one exception. If the statistical growth process that produces the network could
be identified, if indeed there is one, then the fractal characteristics of network should correspond to the
process. What has been done is, however, exactly the opposite. Usingfractal analysis on the networks,
all processes with markedly different fractal properties (universalityclasses) can be eliminated. In this
way fractal analysis has been used to give insight into the underlying growth process.

Gazit et.al. 1995 [17]—The Fractal Properties of Two-Dimensional Vessel Systems

This study investigated the fractal properties of two-dimensional vessel systems, see figure 2.23.
The dimension of normal arteriovenous networks were found to be in concert with two-dimensional
diffusion-limited aggregates (D = 1.71,Dmin = 1.00). This seems to be consistent with an angiogenic
process promoted by growth factors diffusing from hypoxic regions. Capillaries were found to have a
dimension consistent with a space-filling curve (D = 2.00,Dmin = 1.00). The minimum-path dimen-
sion, Dmin, is in biological terms, a measure of the tortuosity of the vessels in the network.It was
found to be significantly higher (p < 0.0001) for tumours than normal networks. From figure 2.24
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network tissue Dbox Dsand Dmin

normal arteriovenous
subcutaneous 1.70±0.03 1.70±0.03

0.99±0.02
bone-induced 1.65±0.04 1.66±0.05

normal capillary subcutaneous 1.99±0.01 1.97±0.01 1.00±0.02
tumour networks LS174T 1.88±0.04 1.89±0.04 1.10±0.04

Table 2.4: Fractal dimensions calculated from skeletonized images of vascular networks in reference [17], see
figure 2.23.

Figure 2.25: Spillman et.al. studied H&E stained immunohistological sections. The sections were processed
into black and white pictures by thresholding a greyscale image at 50% of max intensity. (Reference [42])

it is, however, also clear that the dimensions of individual tumours take on arange of values. Fur-
thermore, the observed fractal dimensions (D = 1.88±0.04, Dmin = 1.10±0.04) coincide with the
dimensions of random percolation and non-trapping invasion percolation,see table 2.3

2.4.3 Analysis of Tissue Sections

Spillman et.al. 2004 [42]—Fractal Analysis of H&E Sections

This group did not study the vasculature, but rather H&E18 stained sections of Morris 7777 hep-
atoma19 xenografts. Low resolution (600x400) images were further reduced insize to 468x351, con-
verted to greyscale, and a threshold was performed at 50% of max intensity, see figure 2.25. The
image foreground and background were then both analyzed (i.e. the inverted black and white images
were analyzed as well as the original), for fractal characteristics with thebox-counting algorithm.
This double analysis is based on the assumption that the Box Counting curve isrelated to the distribu-
tion of voids within the analyzed image, and conversely, analysis of the inverted image relates to the
distribution of the points themselves.

The fractal dimensions were compared to relative qualitative cell differentiation. A panel of four
pathologists arranged nine H&E sections in ascending order from less to moredifferentiated, and the
mean score was used as a measure of how differentiated the tumours were.The result is shown in
figure 2.26. This suggests that the fractal dimensions of H&E sections go through an extremum as the
tumour progresses towards higher differentiation.

Sabo et.al. 2001 [36]—Fractal Dimension and Patient Survival

Forty-nine patients with low-stage clear cell localized renal cell carcinoma were assessed in a nine-
year follow-up retrospective study. Correlation between microvessel density, microvessel fractal di-

18H&E section,immunohistochemistry: Haematoxylin-Eosin staining, also known as HE or H+E. This method effectively
stains red blood cells red, cell nuclei blue-purple, and other cellular andextracellular material pink.

19Hepatoma,pathology: Hepatocellular carcinoma, a cancer of the liver.
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Figure 2.26: Fractal dimension of H&E sections compared to tumour cell differentiation as scored by a panel
of four pathologists. The abscissa is constructed by the mean ordering of sections from the least to the most
differentiated of the nine sections, making 1 the lowest and9 the highest possible score. (Reference [42])

mension, histological grade, extent of necrosis and patient survival were tested by uni- and multi-
variate analysis. The microvessel densities and fractal dimensions were obtained from computerized
fields of tumour sections immunohistologically stained for CD34. Microvessel density was calcu-
lated as the ratio between vascular and avascular areas in the section and the fractal dimensions by
the box-counting algorithm. A high fractal dimension was found to correlate with a lower tumour
grade, a higher five year survival rate and a lower incidence of high levels (>25%) of necrosis, see ta-
ble 2.5. Multivariate analysis revealed that the fractal dimension was the onlyinvestigated parameter
to correlate significantly to necrosis, and that necrosis was the only independent predictor of patient
survival.

Grizzi et.al. 2005 [20]—Random Vessel Simulation

In this study a total of ten thousand random simulations of vessel distributions were made to investi-
gate the behaviour of the fractal dimension as a function of vessel number, i.e. microvascular density.
A fixed number of vessels (ranging from five to fifty for different groups) were placed randomly in
an area without touching each other, and the fractal dimension was calculated by the box-counting
method, see figure 2.28. Not surprisingly the configuration, of vessels affected the resulting dimen-
sion and the dimension increased with an increasing number of vessels.

Heymans et.al. 1999 [24]—Fractal Analysis ofUlex Europaeus by the Fourier Method

This group used a Fourier algorithm to calculate the power law scaling of the spectral density,β,
of primary cutaneous melanoma vascular patterns. The three qualitatively different scaling patterns
shown in figure 2.29 were observed. In the first (left), a power law with an exponentβ = 1.70 is
obtained at intermediate and low frequencies (large scales) while at higherfrequencies (small scales)
a different scaling is observed for a short frequency span beforebreaking down. This is interpreted
as the characteristic distribution of vessels at large scales and the characteristic size of the vessels at
smaller scales. In the second (middle), the same scaling pattern is observed almost across the entire
region withβ = 2.10. In the last pattern (right), two consecutive power laws are obtained.For high
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MVDa(mean±SD) P MFDb(mean±SD) P
Tumour gradec

Low 11.5± 3.5% 0.12 1.55± 0.11 0.03
High 9.4± 5.2% 1.45± 0.15

Tumour necrosisd

No 10.9± 4.4% 0.03 1.52± 0.12 0.01
Yes 7.1± 4.6% 1.38± 0.17

Survival
≥ 5 yrs 10.8± 4.7% 0.03 1.56± 0.11 0.02
< 5 yrs 6.4± 3.7% 1.46± 0.15

a Expressed as the mean percentage of the vessel area per microscopically computerized field.
b Expressed in absolute units.
c Low grade tumours, Fuhrman grade I and II; high grade tumours, Fuhrman grade III and IV.
d Tumours were considered necrotic if they exhibited >25% macroscopic necroses.

Table 2.5: Relationship between tumour grade, necrosis, patient survival, and vascular parameters in the renal
cell carcinoma study of Sabo et.al. (Reference [36])

Figure 2.27: Renal cell carcinoma immunohistochemically stained for CD34 by Sabo et.al. The vasculature
is clearly stained and there is some, but not much backgroundstaining (cell nuclei). It is worth noting that
the background is different in the two sections, and that theauthors make no comment as to having removed
the background before analysis. The fractal dimensions of the two images are shown in the top left corners.
(Adapted from reference [36])
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Figure 2.28: Grizzi et.al. carried out 1000 simulations foreach vessel density from five to fifty with the number
being increased by five for each group, and calculated the fractal dimension by the box-counting algorithm. The
result is shown to the left. An example of a simulation with twenty vessels is shown to the right. An illustration
of how the simulations relate to the network, is shown at the top. The dimension increases with an increasing
number of vessels, however it is also dependent on the vessels’ relative distributions giving rise to a standard
deviation within each group. (Adapted from [20])

Figure 2.29: Primary cutaneous melanoma sections immunostained withUlex Europaeusagglutinin-I were
scanned optically at x125 magnification to 512x512 images. Agradient technique was applied to the images
to enhance the edges and the Fourier dimension was calculated. The authors report the finding of these three
qualitatively different scaling patterns. (Adapted from [24])
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colorectal carcinoma malignant mesothelioma inv. cervical carcinoma

Confusion Matrix (%)
− 25.0 75
6.3 50.0 43.8
3.2 6.5 90.3

− 100.0 −
− 91.7 8.3
− 11.1 88.9

85.7 − 14.3
9.1 81.9 14.3
− 16.7 83.3

Correctly classified cases using:
all parameters: 70.6% 86.4% 83.3%
microvascular density: (P: 0.2) 56.9% (P: < 0.001) 60.9% (P: 0.4) 25.0%
fractal dimension: (P: 0.2) 56.9% (P: 0.4) 60.9% (P: 0.8) 29.2%

Table 2.6: Top: Confusion Matrices showing the actual prognosis on the vertical axis and identified prog-
nosis using a panel of all good parameters (P < 1). Below: Correctly classified cases using all parameters,
or only intervascular density or fractal dimension. The classification is done by using a panel of cases as a
reference for the set of parameters measured and placing each case in the same class as the closest reference
point.(Reference [43])

frequencies (small scales) a power scaling coefficient ofβ = 1.64 is obtained and interpreted as the
scaling of the dense structure of vessel profiles with a large size distribution. The other region (large
scales) has a high exponent,β = 2.92, corresponding to a uniform texture; at large scales the grey
level variations are seen as small fluctuations on a smooth surface.

Weyn et.al. 2004 [43]—Fractal and Syntactic Structure Analysis—Correlation with Prognosis

This study investigated correlations between prognosis and parameters obtained from Syntactic Struc-
ture Analysis (SSA), fractal analysis, vessel numbers, area and perimeter, as well as set of clinical
parameters. They investigated multiple cases of three different tumour types; colorectal carcinoma,
malignant mesothelioma and invasive cervical carcinoma. The SSA was performed similar to that
described in section 3.3, with the exception that the distances to the furthest neighbours in the graph
were not investigated. The fractal analysis was performed using the BoxCounting method, and the
images were obtained by applying a threshold to CD31 stained sections. The threshold was done by a
house written macro and manually inspected for errors which, if found, were manually corrected.

The correlations with prognosis was determined by constructing three survival classes. The middle
survival class spanned survival longer than the mean minus one standard deviation, but shorter than the
mean plus one standard deviation. The other two survival classes spanned the two regions that were
further away than one standard deviations. Predictions were then made from each of the parameters
using a K-nearest neighbour classifier obtained through direct comparison with survival in a subset of
the cases. Confusion matrices evaluating the groups of parameters’ ability toclassify cases into the
correct survival classes are shown in table 2.6.20

For all three cancers, the predictions based on SSA generally providedmuch higher recognition
scores compared to those obtained through the fractal dimension or the microvessel density. Survival
of cervical carcinoma was best predicted by clinical data. Colorectal cancer correlated best with SSA
complemented by the microvessel density. Mesothelioma showed a strong correlation with SSA.

20Note that the percentages in two of the cases are the same for both microvascular density and fractal dimension. At
least one of these numbers is quoted differently in the article text suggesting that the authors may have misqouted some of
the numbers in the original article.
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Figure 2.30: Gazit et.al. suggested two different ways thata gradient sensitive growth can be modified into
producing uniform capillary beds rather than perfusion-limited aggregate patterns. The structure is grown from
a seed in the middle, all network sites exposed to growth factor particles will with some probability,pi be
recorded as ’hit’ and grow at the end of the time step. Growth factors are produced at distant sites (hypoxic
model). Left: A low interaction probability between the growth factors and the growing vasculature would
cause the growth factor levels to increase throughout the tissue and mask the diffusion field by a uniform
gradient. Right: If the growing structure itself produces growth factors in response to the diffused growth
factors, then this local amplification would, provided it islarge enough, cause the formation of a compact
uniform vasculature. [17]

2.4.4 Invasion Percolation Tumour Vasculature Model

Gazit et.al. 1995 [17]—Capillary Beds and Fractal Scaling Tumour Vasculature by Modified
Invasion Percolation.

Gazit et.al. observed that the arteriovenous networks’ fractal characteristics (in two dimensions) are
similar to that of diffusion-limited aggregates. This is in accordance with the molecular models of
angiogenesis, where growth factors diffuse from distant sites to the network and initiate growth, see
figure 2.5. In experimental set-ups, however, vascular growth occurs at the capillary or postcapillary
level. These structures grow like a compact mesh rather than a tree-like structure, contrary to what
would be expected from diffusion limited growth. Finally, it was shown that tumour vasculature
exhibit fractal characteristics similar to that of random and non-trapping invasion percolation clusters.

A simple model for network formation was proposed in which the first two observations could be
brought together in one of two ways. A low interaction probability between thegrowing structure and
the growth factors would cause the growth factors to arrive faster than they are removed, causing a near
uniform diffusion field to form. The other way is by introducing a local amplification of the growth
factor gradients. This can be achieved biologically by the autocrine release of growth factors from
the growing structure, i.e. a positive feedback system. Both ways are ableto transform a hierarchical
arterivenous network into a compact capillary mesh by adjusting a single parameter, see figure 2.30.
The latter model will, however, initiate a much faster growth (mass/time) for compact networks and
is therefore regarded as the best of the two models, see 2.31–left.

The networks’ fractal similarity with a percolation cluster introduces the idea that the growing
structure is disturbed by some locally random perturbation. The local perturbation is hypothesized to
be inhomogeneity in the extracellular matrix. The fractal dimensions of networks grown for different
fractions of usable growth sites is shown in figure 2.31–right. In this model the formation of different
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Figure 2.31: Left: The two suggested possible ways of creating a normal capillary bed in the presence of a
diffusion field are shown to fasilitate different growth efficencies (mass/time) for compact growth. The local
amplification model is chosen as the most appealing due to itsmuch higher growth efficiency. Right: To produce
tumour-type vasculature random values are assigned to the sites resulting in these curves for different random
percolation thresholds (T). At low local amplification factors the model is insensitive to the percolation param-
eters and produce similar patterns/dimensions, at high amplification, however, a compact capillary structure is
transformed into a percolation cluster-type network. (Adapted from [17])

types of vascular networks are dependant on two parameters only, the local amplification factor and
the matrix inhomogeneity.

Baish et.al. 1996 [2]—Invasion Percolation Tumour Vasculature Model

Based on the observations of Gazit et.al [17], that the fractal dimensionsof two-dimensional net-
works were similar to those of invasion percolation clusters, Baish et.al. [2] developed an invasion
percolation-based network model for angiogenesis. Invasion percolation offers a simple rule-based
way of generating network structures. This was used as an alternative todeterministic geometrical
models which were unavailable as they require detailed anatomical data.

The interpretation of tumour angiogenesis as an invasion percolation process implies that the
growth occurs in response to a locally random heterogeneity in the tumour, rather than a global re-
sponse to physiological stimulus. The locally random property may be either biochemical or me-
chanical in origin. The correspondence of the fractal dimensions of tumour vasculature and invasion
percolation does not prove that that these processes are related, butthe authors conclude that it is
strongly suggestive.

Percolation networks were used to calculate the surrounding oxygen levels, see figure 2.32. The
networks were generated by an invasion percolation algorithm that is stopped when the desired oc-
cupancy is reached (not when the outlet point/side is reached as in the invasion percolation models
discussed in section 2.3.10). In lack of detailed information on the diameter of tumour vessels, the
assumption was made that all vessels are of identical diameter. Furthermore,a Poiseuille flow of
constant-viscosity blood through rigid, impermeable vessels is assumed.

This is a gross oversimplification of what is known today about these parameters. In sections 2.1.6
and 2.2.2 (transient local hematocrit changes), all of these assumptions are shown to be wrong. The



46 CHAPTER 2. THEORY

Figure 2.32: A 32×32 bond invasion percolation backbone formed on a square lattice and iterated until the
cluster reached the desired 60% occupancy. The contours of the relative oxygenation (pO2/pO2arterial) is super-
imposed on the network. The inlet oxygenation is 1, and the outlet was found to be 0.57. In spite of the fact that
less than half of the inlet oxygen is consumed by the network,there exists vascularized regions without blood
flow or oxygen, see lower right hand corner. (Reference [2])

construction of simple models is all the same necessary, both to make it mathematicallysolvable,
but also to provide a simple example of the potential of this kind of modelling to simulatereal tu-
mour characteristics, such as oxygen distribution patterns. Furthermore,the authors show that the
introduction of more realistic assumptions would only increase the heterogeneity of the flow.

2.4.5 Cellular Automaton Tumour Vasculature Model

Bartha, Rieger and Lee have recently (2006) proposed a hybrid probabilistic cellular automaton
model [4][29]. This is a Monte Carlo simulation defined on a square lattice in discrete time and
space. Cellular Automata refers to a way of generating patterns, in which each cell is given a value in
the next iteration based on the value of the neighbours in the previous iteration.

The Model

Each lattice point is defined by the variables in table 2.7. A set of six events is set up in figure 2.33.
Each event is dependent on both a logical condition, as in normal cellular automata, and a probabilistic
parameter determining the rate at which the event occurs. In this way many ofthe experimentally
observed phenomena are included in the model. The tumour starts out as a small mass on a regular
grid, co-opting vessels as it grows. The tumour produces growth factors and the vessels supply oxygen
at a constant rate. Oxygen and growth factor distributions are approximated by a piecewise linear and
normalized form, reaching out from its source to a specified maximum diffusion radius. Each vessel is
specified by a diameter and carries a hydrodynamic blood flow exerting a shear force upon the vessel



2.4. FRACTALS AND CANCER 47

Variable Range Description
e 0/1 endothelial cell or vessel absent/present
er ∈ [0, rmax] radius of vessel
eQ ≥ 0 blood flow rate through vessel segment
ef ≥ 0 shear stress on vessel wall
t 0/1 tumour cell absent/present
tuO ∈ [0,Tmax] time of tumour cell in underoxygenated state
O2 ≥ 0 oxygen concentration field
GF ≥ 0 growth factor concentration field

Table 2.7: Each lattice cell in Bartha et.al.’s model is defined by these variables at siter at timeτ. [4]

Figure 2.33: Cellular Automaton rules for Bartha et.al.’s growing tumour vasculature model. The expression
over the arrows represents the cellular automaton rule. Thenumber below the arrow is the probability that
the event occurs if the rule is fulfilled. This is a hybrid model. (a) If the oxygen concentration is higher than
some critical value at a given site, then that site becomes occupied by a tumour cell. (b) If a tumour cell is
in an underoxygenated state longer thantmax, it is removed. (c) Vessel sprouting begins at siter if the growth
factor concentration is greater than some threshold and thedistance to the nearest vessel is smaller than the
maximum sprouting distance. (d) Vessel dilation can occur when the growth factor concentration is higher than
the threshold and the vessel is not already at maximum diameter. (e) A vessel can collapse if more than 80%
of its surface area is covered by tumour cells and its shear force drops below a threshold. (f) All uncirculated
vessels collapse.
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walls. The flow is assumed to be incompressible, laminar, and stationary, consequently the flow can
be calculated by Poiseuille’s law, where the blood pressure in the nodes (vessel junctions) is computed
using Kirchhoff’s law. With these assumptions, the vessel flow, shear force, and gradient fields can be
calculated at each time step and the network updated according to the rules and probabilities.

Model Results

With this model both two– (figure 2.34) and three–dimensional (figure 2.35.I)tumours have been
simulated. In figure 2.35.II the radial (or angular) distribution of tumour cellsand vasculature specific
parameters throughout three-dimensional tumour-simulations are shown. The fractal characteristics
of this network model have been calculated. Two dimensional simulations havea fractal dimension of
D = 1.85±0.05, close to the measured dimension of 1.89±0.05. In three-dimensional simulations
a dimension ofD = 2.52±0.05 have been measured. As indicated by figure 2.35, the network is by
no means uniform and most parameters vary with the distance from the tumour centre (the∇P varies
with θ as well, due to the direction bias of the model). This is true for the fractal dimension as welli,
which when measured for the peritumoural plexus exclusively, measuredDperiphery= 1.60±0.05 in
the two dimensional case. In the three dimensional case it decreases from2.24 in the outer periphery
(125≤ R≤ 145) to 1.68 further in (65≤ R≤ 85).

This vasculature model is able to generate vasculature with fractal dimensions close to the exper-
imental values without incorporating any locally random variable. Furthermore, they make notice of
the notion that, although the tumour network dimensions correspond to randompercolation in both
two- and three dimensions, they do not correspond to invasion percolation. The authors have, however,
failed to realize that there are two types of invasion percolation. Non-trapping invasion percolation
is in the same universality class as random percolation in both two- and three-dimensional systems
(see table 2.3). Nevertheless, this model removes the need for hypothesizing that tumour vascular
morphology is determined by local substrate properties such as the extracellular matrix.

Furthermore the authors emphesize that tumours usually have an elevated microvascular density
near its edges, where it is growing, but a reduced density in its core. They propose that the vascular
network is driven to criticality, not by the vascular growth process, but by the network remodeling
process that causes this reduction in vessel density.
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(I)

(II)

Figure 2.34: Two-dimensional networks produced by Bartha et.al.’s model of angiogenesis and tumour growth.
The direction bias of the vessels is a result of how the critical shear force relates to the flow, which again relates
to a vascular pressure gradient. The blood pressure is set togive a homogeneous flow distribution in the orignal
network. The boundary pressure isPmax in the top left corner,Pmin in the bottom right, and half the difference
in the two remaining corners with a linear distribution in between. (adapted from [4].)

(I) The time evolution of Bartha’s tumour growth model in two-dimensions at time steps 1, 50, 100 and
200 for figures (a-d) respectively. The blue grid far from thetumour is the initial capillary bed. The colour of
the blood vessels indicate their flow, blue is normal, red is high and yellow indicates low flow. The thickness
of the lines indicate vessel diameters. The tumour cells arecoloured from light to dark green, darker colours
indicating higher age. White regions are empty sites, empty sites inside the tumour indicate necrosis. (a-b) New
vessels are being formed, tumour grows. (c) Vessels inside the tumour have started to collapse, thicker vessels
have started to form. (d) Necrotic areas have formed due to large avascular areas. Thick vessels run through the
tumour, the tumour periphery is still characterized by an increased microvascular density.

(II) (Left): The state of the system in (I) after t=1000 time steps. The size of the system is 5.1 mm. (Middle):
RGF is increased from 200µm to 400µm, but all other parameters are as in (I). (Right): All parameters are the
same as in (middle), except the critical shear stress which is increased from 0.5 to 0.7. Whereas the morphology
in (middle) is relatively stable even for high collapse probabilities, small changes in the critical shear force
causes a rapid increase in collapses, producing large necrotic regions and decreased microvascular density
within the tumour.
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(I) (II)

Figure 2.35:(I) : The time evolution of the tumour or vessel system at t=0,200and 400. Top: tumour cells.
Middle: vasculature. Bottom: cross section of tumour.(II) : Data averaged over all sites with same R (orθ).
(a) Tumour densityρTC(R). (b) Microvascular density MVD(R). (c) Vessel diameterd(R). (d) Blood pressure
gradient∇P(R). (e) Blood pressure gradient∇P(θ). (f) shear forcef . The colours, red, magenta, green, black
and blue represent the tumour at t=0, 100, 200, 300 and 400 respectively.



Chapter 3

Materials and Methods

3.1 CD-34 Image Processing

Histological cross sections of four breast carciniomas were included in this investigation. They were
all obtained after informed consent by the patients.

3.1.1 Scanning of Images

The images are scanned with a Leica DFC320 digital camera for microscopy.The sensitive area of
the sensor is 7.2×5.35mm, the full resolution is 2088×1550 pixels (3.3Mpixel) and the pixel size is
3.45×3.45µm. The camera is attached to the microscope with a×1.0 video adapter. The magnification
is determined by the microscope alone, resulting in the field of view values shown in table 3.1 for each
of the magnifications. The images were exported as 24-bit RGB files in tiff format.

Magnification Field of View Field of View per Pixel
×1 7.2mm x 5.35mm 3.45µm x 3.45µm
×25 288µm x 214µm 138 nm x 138 nm
×50 144µm x 107µm 69.0 nm x 69.0 nm
×100 72.0µm x 53.5µm 34.5 nm x 34.5 nm

Table 3.1: Field of View at Different Magnifications

3.1.2 Applying Thresholds to Image Sections

This part of the process is of high importance to the outcome. Poor thresholding techniques may
result in high levels of false positives and/or negatives, or most likely a moderate mixture of the
two. Consequently, it has been deemed important to develop not only a sufficient routine, but a
mathematically defined one that does not require the scientist to make good choices of parameters on
an image to image basis. This has the added benefit that a script may automaticallyprocess images
without the need for manual labour. The results, however, should be checked in case any images
somehow have eluded the routines. A routine based on the following steps has been used on the CD-
34 sections. Note that this method has been chosen with these sections in mind, and will most likely
have to be adapted for other purposes. The images are processed using the following steps:

1. The image is transformed to grayscale.

51
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2. The histogram is expanded by a non-linear function working on a pixel-by-pixel basis through-
out the image, increasing the contrast on the middle half of the histogram.

3. An average filter subtraction is applied to correct for uneven background light intensity. A copy
of this image is kept for further processing.

4. Edge detection using Sobel’s method estimates the image gradients in the x- andy-direction.
The magnitude of the slope is used for further processing.

5. A grayscale threshold applying Otsu’s method to compute the global threshold is applied to a
copy of the image from before the edge detection and the result of the detection.

6. The two binary images are combined to give precise information on the edges, while keeping
information on the highly stained uniform areas on the interior of vessels.

Step 1 – Grayscale Conversion

The standard rgb1 to grayscale mapping is based on the colour sensitivity of the retina. It biases green,
primarily at the expense of blue.

[Grayscale] =
[

0.2989 0.5870 0.1140
]

·





Red
Green
Blue





A different approach is taken here. Because the positive CD34 stains are coloured in a red hue, in
effect the lack of green and blue, the red channel is disregarded. Figure 3.2 shows the different colour

Figure 3.1: The Bayer
image sensor pattern.

channels of the sample case at this point in the process. Red offers the least
contrast and blue the most. A crop from the original image is enlarged as well,
showing the difference in resolving power for these channels. The green chan-
nel offers about twice the linear resolution as that of the other colours.2 Image
sensors are designed to resolve this channel best, as a response to our eyes’
affinity to the colour. Most sensors use the Bayer pattern3 shown in figure 3.1.
An interpolation algorithm is then applied to the raw-data to produce a regular
rgb-image, interpolating the missing two colours from nearby sensor elements
into the current to achieve an rgb-image of almost the same pixel-count as the
number of individual photosensitive areas in the sensor. This is also why, al-
though not clearly shown in this figure, the blue layer is shifted one pixel up
and the red layer one pixel to the left, both relative to the green layer.

The aim of the grayscale conversion is to differentiate between the stained vessels and the sur-
rounding tissue. Although the blue layer appears to have slightly better contrast, the difference in
resolving power is so great that the green layer is used by itself. If, in contrast, the standard conver-
sion rule is used, excluding the red channel, then the green channel would account for 83% and the

1Rgb-image, i.e. a colour image stored as a set of red, green, and blueintensity images.
2This is visible because these images have been exported in a lossless tiff format. If on the other hand jpgs were used,

then camera digital filters would mask this, creating the appearance that these colour channels contain information as highly
detailed as the green layer, although in reality the colour values are interpolated from the nearby region

3It is hard to organize a square lattice in a way that does not bias one of the colours. The colour response of the retina,
makes this a good choice.
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Red Green Blue

Figure 3.2: Top: The three colour channels of the image at step two. The red channel offers the least amount of
contrast. The blue channel has slightly more contrast than the green, and is a bit darker. Below: Enlarged crops
of a single vessel from the original image. This clearly shows that although blue offers more contrast, green has
four times the resolving power.

blue for 17% of the information in the grayscale image. Even at this ratio the lossof detail appears to
outweigh the gain in contrast. Consequently the following rule is used:

[Grayscale] = [Green]

This implementation suffers from one shortcoming, it is prone to false positives in highly stained blue
regions. Given the low background of the sections this is not a big problem,and the 17%, or even 33%
(the effective blue sensor area ratio when the red channel is excluded), is not necessarily enough to
eliminate the problem. One way to compensate for this, although not applied in this work, would be
to first use the green channel to identify possible vessels, and then at theend compare the blue colour
levels in these regions to remove false positives.

Step 2 – Histogram Expansion

An image overlay function is defined as the combination of two images, on a pixelby pixel basis,
treating each colour layer independently, in the following way: The background is inverted,4 multi-
plied5by two times the foreground and added to the background again.

I = (B.∗ (B+(2.∗F.∗ (255−B))./255)./255);

This is performed five consecutive times, each time using the original image as the foreground and the
result of the previous overlay as the background, or, in the case of thefirst run, the original image as
both foreground and background. This operation reduces the intensityof dark areas and increases the
intensity of light areas in a non-linear way, see figure 3.3. The operation iscarried out until at least
0.1‰ of the total area is either above 90% or below 10% of the maximum luminosity.

4Note that the inverse of an image is the image with opposite luminosity, in effect|Image− 255| in an 8-bit integer
colour representation, and|Image−1| in the floating point colour representation

5In the 8-bit integer colour space multiplication is defined asI = B.∗F./255 to preserve the pixel values within the valid
range(0,255). This is not nessesary for floating point colour representation(0,1).
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Figure 3.3: The effect of the overlay function. A: The full 8-bit grayscale spectre from 0 initensity to 255. B:
The result of the overlay function. C: The effect of the overlay-function (difference between A and B). Dark
areas have become darker and bright areas brighter. The grayareas in each end and the middle change little
during the transformation.
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Figure 3.4: Top: The overlay function applied until the histogram hit the edges of the colour space, in this case
three times.

Step 3 – Average Filter

For each pixel, the average value of a 50 pixels wide neighbourhood around it is calculated, pixels
outside the image edge are disregarded (not treated as zero). The image intensity is then subtracted
from the local average image. Furthermore, to get an image covering the full range of the histogram,
the minimum intensity value is subtracted from the image before normalizing to the fullrange of the
intensity space (0,1). See figure 3.5 for an example of the result. The average filter is handled by a
MATLAB function.

% I is the intensity image matrix;
ws = 50;
mIM = imfilter(I,fspecial(’average’,ws),’replicate’);
sIM = mIM-I;
sIM = (sIM-min(min(sIM)));
sIM = sIM./max(max(sIM));

Step 4 – Edge Detection

Edge detection is performed using Sobel’s method. The image gradients are approximated by the
convolutions

Gx =





−1 0 +1
−2 0 +2
−1 0 +1



∗ I and Gy =





+1 +2 +1
0 0 0
−1 −2 −1



∗ I

These directional gradients can be combined to give the gradient magnitudeusing

G =
√

Gx.2 +Gy.2.
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Overlay Average Filter Edge Detection

Figure 3.5: The resulting images after the overlay, averagefilter and edge detection steps.

See figure 3.5 for an example of the result. MATLAB provides a function to handle this operation.

% I is the image matrix, gv and gh are the vertical
% and horizontal gradient respectively
[Isobel, thresh, gv, gh] = edge(I,’sobel’);
grad = sqrt(gh.^2+gv.^2);

Step 5 – Global Threshold

A global threshold is performed to one copy of the image at the end of step four and one at the end
of step five. The global threshold is determined by aMATLAB function using Otsu’s method, which
chooses the threshold to minimize the intraclass variance of the black and white pixels. The result,
superimposed on the original RGB-image, is shown in figure 3.6.

% global threshold of the gradient image
level = graythresh(grad);
Ibw=im2bw(grad,level);

Step 6 – Combining the Thresholds of Gradient and the Intensity Image

The black and white images from step 5 are combined by accepting any pixel tagged as a vessel from
either one of the images as a vessel pixel. This is done usingMATLAB ’s logicalor operator,|.

% Ibw is from the gradient image and Ibw2 is from the intensity image.
Ibw = Ibw | Ibw2;

Step 7 – Filling in Closed Lumens and the Removal of Exceedingly Small Positive Areas

Any vessels containing an empty interior is filled in to give an image of the entire vessel lumens
including unstained interior, rather than just the edges. Before this last step, a series of three mor-
phologicalclosingsare performed. A morphologicalclosing is adilation, the adding of extra pixels
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Original Intensity Edge Result

Figure 3.6: Global Threshold: The black and white result obtained from the intensity image at step 3, and the
gradient image at step 4, superimposed on the original image. To the right the perimeter of the final result is
shown. Uncropped final images (not just the perimeter) are shown in figure 4.14

around the boundaries of all objects, followed by anerosion, the removal of all pixels at the bound-
aries of the objects. The closing fills inn any single pixel openings in betweenthe object borders. This
causes nearby objects (separated by one pixel) to merge. This may causeseparate vessels to merge
if they are very close to each other. In the vast majority of cases such gaps will be within the same
vessel, and they have become separate regions due to insufficent staining and/or shortcomings of the
algorithm. The merging of two vessels located very close to each other is considered better than the
splitting of single vessels into multiple.

All holes, i.e. empty pixel regions unconnected with the image edge are filled. Because the image
gradients are centred on the boundaries of objects their outer perimeter is alittle greater than that of
the vessel itself. To account for this anerosionis performed. Finally to remove specks of noise in
the image all objects with less than 64 pixels are removed. 64 pixels is equivalent to about 20 ppm
of the entire image area, or in the case of the×25 magnified images, a square covering 1.2µm2. This
removes most of the false positives, due to noise. It may remove very small positively stained regions
as well, thus creating false negatives, however, such stains must be very small in order to be removed
this way, justifying the operation.

Ibw = bwmorph(Ibw, ’close’,3);
Ibw = imfill(Ibw,’holes’);
Ibw = bwmorph(Ibw,’erode’);
Ibw = bwareaopen(Ibw,64);

3.2 Basic Image Statistics

Four different parameters were obtained directly from the black and whiteimages. The first was the
number of vessels, found by counting the number of individual 4-connected regions in the image. The
second is the mean area of the vessels and the standard deviation, measured in both pixels andµm2.
The relative vascular density, that is (stained area and lumens) / (total area), is calculated.

L=bwlabel(BWimage);
area = regionprops(L,’area’);
area = cell2mat(struct2cell(stats));
meanOfArea = mean(area);
stdOfArea = std(area);
numberOfVessels = numel(area);
relativeVascularDensity = sum(sum(BWimage))./numel(BWimage)*100;

Finally, histograms of the non-vessel pixels’ distance to the nearest vessel are calculated. The
distances are calculated by adding together successively dilated bw-images of the vessels.
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Figure 3.7: The distance histogram displays the number of pixels (y-axis) at a given distance (x-axis) from the
closest vessel. The cumulative histogram shows the total number of pixels that arefurther away than the given
distance. The vertical bars from left to right shows the distances at which at least 90%, 50% and 10% of the
non-vessel pixels respectively, are further away. All distances are measured in the units of the pixel width which
is 138nm.

D = int16(BWimage);
while any(any(D==0))

C = bwmorph(C,’dilate’);
D = D + int16(C);

end
Dmax = double(max(max(D)));
distanceToNearestVessel = -D+Dmax;

Resulting histograms from one of the case images is shown in figure 3.7. Fromthe cumulative
histogram three parameters are extracted, namely the distances at which thehistogram is at 10%, 50%
and 90%. This corresponds to the distances where the given percentage is the maximum number of
pixels that are further away.

3.3 Syntactic Structure Analysis

Syntactic Structure Analysis (SSA) is here used in the context of reference [43] and concerns the
parameters derivable from the Voronoi Diagram, Gabriel’s Graph (GG)and the Euclidean Minimum
Spanning Tree (EMST), see figure 3.8. From the set of parameters investigated, in each of these
methods, histograms are obtained and the mean value, standard deviation, skewness and kurtosis
are calculated. All sizes are in the unit ofpixels. The SSA-graphs themselves are calculated from
a list of themass centreof each vessel. The shape and size of the vessels do not effect the SSA,
only their number and relative positions. The mass centre images are obtainedthrough a black and
white morphological thinning. The completeMATLAB code used to calculate the SSA–parameters is
included in appendix B.2.

massCentreImage = bwmorph(blackAndWhiteImage,’shrink’,inf);

3.3.1 Voronoi Diagram

The Voronoi Diagram is a set of polygons covering an area around each vessel. The Polygons are
drawn so that the area inside a polygon is closer to the vessel inside the polygon than any other vessel.
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The polygons at the edge of the image do not have a proper boundary onthe outside and have been
removed. Three histograms are obtained from this graph, the area distribution of the polygons, their
shape, and their form. The form of the polygon is defined as 4area/perimeter2 and the shape as the
smallest polygonal diameter divided by the largest. A polygonal diameter is defined as the distance
from one corner to another corner that is not its direct neighbour.

3.3.2 Gabriel’s Graph

The shortest distance (branch) between two nodes (vessel mass centres) uniquely defines the diameter
of a circle. Gabriel’s Graph is defined as the set of all branches spanning empty circles. If there
is another node in a circle spanned by the branch, then it is not a part of Gabriel’s Graph. Only
the branches to the closest nodes in each direction can possibly fulfil this criterion. To speed up
computation time the Delauney Triangulation is first calculated. It contains the set of branches not
intersected by a shorter branch. Gabriel’s Graph is a subset of the Delauney Triangulation.

From this graph the histograms of the branch lengths, the number of branches per node and the
distances to the nearest and the furthest neighbour are calculated.

The branches per node parameter is reduced as a consequence of theedge nodes having fewer
neighbours. If desired, this could be accounted for by not including thenodes removed from the
Voronoi when counting the branches per node. The other parameters may also be affected by the
edge. This will happen if there is a vessel beyond the edge that would remove a branch from the
network. This can be corrected by not considering the branches spanning a circle which in part cover
a region outside the map. For a single node this would cause some of its branches to be kept, while
others are excluded for the purpose of calculating the branch lengths. No action is taken towards
reducing the edge effects. The reason for this is twofold, the complexity involved is high and the
effects are expected to be small, certainly much smaller than that of the Voronoi, where polygons by
the edge may diverge to infinite areas. The size of the edge effects have not been investigated. This
applies to the EMST as well.

3.3.3 Euclidean Minimum Spanning Tree

The Euclidean Minimum Spanning Tree is the set of branches so that all nodes are connected by the
tree in the configuration providing the minimum possible total length of the tree, according to the
euclidean norm. The EMST is a subset of Gabriel’s Graph, and the same parameters are obtained, as
from GG. The nearest neighbour data are the same for the two graphs, as all the shortest GG–branches
are included in EMST. The mean number of branches per node is always(2 ·n−1)/n, where n is the
number of nodes, making this particular parameter redundant. The other three histogram parameters
from the branches per node histogram are, however, not.

3.4 Linear Fitting and Graphs from the Fractal Algorithms

3.4.1 Linear Fitting

All of the fractal analysis methods uses a linear fit to a double-logarithmic plotto identify the fractal
dimensions. The curves are, however, not linear across the entire range of the plot. The analysis of
images restricts the curves from two sides. On one end, the investigated scales approach the size of
the image, and on the other the size of a single pixel. Furthermore, natural fractals need not have
fractal behaviour across all scales, and may consist of different power-law scalings at different scales.
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Figure 3.8: Top:Voronoi Diagramof a CD34 immunohistological section (background, case 2).The vessel
mass centres are drawn in as black dots. The diagram polygonsare randomly coloured. TheVoronoi Diagramis
the complementary graph of theDelauney Triangulation(below), the polygon surrounding a vessel shares one
side with each other vessel it is connected to by theDelauney Triangulation. Below: The vessel mass-centres
in this section are marked by black circles. The black lines form theEuclidean Minimum Spanning Treewhich
is a subset ofGabriel’s Graph(blue), which is a subset of theDelauney Triangulation(cyan). Consequently all
the lines (cyan, blue and black) are part of theDelauney Triangulation, but only the black lines are a part of the
Minimum Spanning Tree.
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Figure 3.9: Contour lines of theQuality of fit function.

To find the linear areas in the image a criteria is set for what is considered a good fit. Linear fits are
then calculated across all continuous regions of the graph, and the bestfit is selected according to the
criteria. Remaining areas of the graph, on the condition that they are largerthan some minimum size,
are then recursively scanned for more linear areas.

The fit is aleast squares fitand the norm of the residuals is used as an indicator of how accurate
the fit is.6 In addition to accuracy, the size of the linear region is used as the second component in
determining how good a given fit is. The size is measured as the fraction of the total logarithmic with
the linear portion spans. The quality of the fit is then defined as

Quality= Width· (1−NormO f Residuals)5.

The width is here weighed linearly, in effect a region twice as wide is considered twice as good. The
Norm of Residuals is subtracted from 1 so that the good fits will have a valueclose to one, and bad
fits lower, possibly negative values. These values are then taken to the power of five to increase the
differences. Good fits are close to one, and relatively little changes. Smallvalues on the other hand
drop considerably. The choices of factors and powers in this formula represents a trade off between
the importance of the two.

A function recursively searches through all valid fits. These include allsubregions with at least
five data points and spanning at least 15% of the logarithmic width. The function then selects the
best fit and goes on to search all remaining subregions spanning at least 20% of the logarithmic width
using the same search criteria for these as well.

3.4.2 The Graph Set-Up

Two examples of the graph set-up is displayed in figure 3.10, one of the familiar cos–function, slightly
shifted to the right, and one actual result from the analysis of a histologicalsection. The curve itself is
plotted in black and the fits are plotted onto the same figure. To make the areas used by the algorithm
more visible, colour patches matching the linear fits are drawn beneath the curve (not the fit). The
colours themselves do not contain any information.7 In addition the gradient is plotted in a separate

6The lower the norm is, the better the fit. An exact fit has a norm of 0.
7They are chosen from the hue-colour representation based on the totalnumber of regions in the plot, with the aim to

achieve a decent amount of contrast without getting colours that do notmatch next to each other, and to avoid the use of
complementary colours in the same graph.
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Figure 3.10: Two examples of the linear fit graph set-up. To the left the familiar cosine function is plotted from
0 to 1.2π and shifted a bit to the right. In the right hand plot the result from a sandbox-dimension analysis of a
histological section slide is shown. A description of the different parts of the graph is found in section 3.4.2

smaller figure beside it. Here the linear fits are represented by horizontal lines matching the slope of
the fit. If more than one fit has the same slope, as is the case here, one of them will be plotted on top,
hiding the others from view.

Beneath the gradient a table shows the slope of the linear fits, the norm of residuals of the fit
labelled asNormR, and the fraction of the logarithmic area covered by the fit, labelled asLWidth. The
bottom part of the table shows the borders of the region. Many times the transition from one scaling
pattern to another is adequately represented by the start and end positionsof each region. Some times,
however, especially if there is an open region between two linear, the intersection of the linear fits may
better locate the transition. At other times this method gives misleading results placing the transition
outside the gap. Consequently, both approaches are necessary. Thex-coordinate of the intersections
are listed in theFitInt-column. The intersection in a given row is between the current fit and the next
region, consequently the bottom cell is always empty. These intersections are represented in the main
graph by vertical dashed black lines with cyan filling in the gaps. TheMATLAB code used to generate
these graphs is listed along with the fractal algorithms in appendix B.4.

3.4.3 Interpreting the Results

An example of the resulting curve from a fractal analysis of a histological slide is shown in the right
part of figure 3.10. In this case the sandbox algorithm is used on a black and white image, showing the
entire lumen of the vessels, as produced by the image processing described in section 3.1. The curve
has three different power-scaling regions, all with a relatively low normof residuals. It is wise to check
theNormRcolumn for a given fit because the algorithm is not set to suppress poor results, but rather to
show how poor they are. There is one exception, if the best region found is smaller than the specified
minimum logarithmic width, it will be removed. This width is usually 15% in these calculations. In
the case of the sandbox method, the slope of the graph is identical to its fractal dimension, so no
conversion is required. The highest fractal dimension is found, for thefirst region stretching from 1 to
17 pixels wide (the sandbox diameter). This corresponds to the vessels themselves. The vessels are,
at sufficiently small scales, two dimensional surfaces. The smallest vessels are, however, although
at least 64 pixels large, but small dots contributing to a reduced dimension. The avascular areas are
ignored at these small sandbox sizes, as all sandboxes are centred ona vessel pixel. The linear fits of
the blue and the magenta regions meet at 17.6. This, being the width of a square, corresponds to an
area of 310 pixels.
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The next region stretches from 17 to 143 pixels large diameters. This region has a dimension a
little smaller than 1 and corresponds to the size scales in which the vessels are surrounded by avascular
areas. The sizes of the vessels themselves resemble small points more closelythan two dimensional
surfaces.

In the third region, starting at 143 pixels wide diameter, we are at a scale where the sandboxes
encompass multiple vessels. This part has a scaling of 1.56 and continues almost to the edge of the
graph, though not quite.

Although the first part of the curve relates to the size of the vessels and theshape of their bound-
aries, this is better studied at higher magnifications. The most interesting region is by far the third,
especially with regard to the fractal dimension. The transition points between the regions are of sig-
nificance in addition to the fractal dimension.

3.5 Accuracy of the Fractal Algorithms

The theory of the fractal methods is provided in sections 2.3.5–2.3.8, and theMATLAB implementa-
tions are listed in appendix B.4. The quality of each of the algorithms, as implemented here, needs to
be tested to acquire some sense of their accuracy.

3.5.1 Description of the Test

The various algorithms calculating the fractal dimensions need to be tested against well defined im-
ages of established fractal dimensions. The chosen shapes are the Sierpinski Gasket, the Sierpinski
Carpet, previously shown in figure 2.19, a circle and a square, both in filled and unfilled versions.
The accuracy of the calculation will not only depend on the algorithm, but also on the resolution of
the tested figures. Although these figures are mathematically well defined, allowing coordinates to
be calculated with high precision, the images that will be analysed later are raster graphics of finite
resolution. Raster graphics will therefore be used in these tests as well.

In addition to the classical mathematical fractals, percolation clusters, backbones and elastic back-
bones will be used to test the algorithms as well. These have the advantage that they are not regular
and deterministic. The Box Counting Algorithm may for instance produce the exact dimension of the
Sierpinski Gasket, provided that the investigated box-sizes all are dividable by 3. In other words lucky
choices of box sizes may give the impression that this method is better than it really is. On the other
hand the percolation clusters have a drawback as well, precisely because of their deterministic nature.
A finite cluster is never guaranteed to have the exact same fractal scalingsas the infinite cluster is
proven to have. A deviance from the exact value, may therefore either be because of the algorithm or
the cluster. Two rather large clusters at 1024x1024 are used in this test. Many more clusters could be
used. Due to the long computation times involved in calculating the backbone of large clusters (∼10
hours) many smaller clusters may be preferred over a few larger, but then each cluster can be expected
to deviate further from the infinite cluster values. Thus, if this method is used then a mean of all the
smaller clusters should be used. This would also prevent the final result (mean of all errors) from
being dominated by the percolation tests. An approach with two large clusters with roughly the same
size as the other test-shapes has been used here. Furthermore, note that it is the slope of the widest
linear region detected for each test and algorithm that has been used in these comparisons.

Finally, it should be pointed out that these test images are quite different from the histological
images. The error estimates found here should not be directly applied to the images, although they
certainly indicate the relative quality of the methods and provide a rough idea of the magnitude.



3.5. ACCURACY OF THE FRACTAL ALGORITHMS 63

Method Mean of Error Std. Dev. of Error
Box Counting 0.00008 0.04287
Sandbox 0.00105 0.02300
Correlation -0.01097 0.03231
Mass 0.00642 0.03360
Fourier 0.00458 0.05856

Table 3.2: Accuracy test of the Algorithms. The algorithms were tested on a number of known geometrical
shapes as well as a random site percolation cluster, see table A.1 for the full results from the dimension cal-
culations and figures A.2-A.7 for the power scaling graphs ofeach test for algorithm, and the shapes (images)
themselves in figure A.1. Note that the error data for the Fourier algorithm excludes the results from the filled
square and circle.

Knowledge about the sizes of the errors is useful when determining whether variations in the di-
mension is the result of the images’ dependency on some parameter, or simply the inaccuracy of the
methods used to determine them.

3.5.2 Evaluation of the Algorithms

The errors in these tests are not assumed to scale with the size of the dimension. The absolute error is
therefore used in the comparisons. The result of these tests are shown intable 3.2. Note that contrary
to convention, the box counting curves are plotted versus the box sizes (L), rather than their linear
number (1/L). The effect of this in a log–log plot is to reverse the x–axis. This is done to make it
easier to compare with the other methods, as the large area contrast changes are now to the right.

Local Amplitude Variations: The Fourier method and to a much lesser extent, the Correlation method,
exhibits huge local amplitude variations. These Curves still have a loglog-linear global trend,
but local variations obscures this. To remedy this a 10-point moving average is applied twice to
the Fourier data, and a 5-point moving average is applied once to the correlation data.

Mapping From Slope to Dimension: The Fourier power law scaling, although fairly well mapped
for most dimensions by the norm of the slope, cannot be mapped to fit both thefilled surfaces
(square and circle) and the other test-shapes. The choice is then made to ignore these two data
points and use the other eleven for the purpose of this test. Furthermore thismapping is used
for the fractal analysis with this method, see figure 3.11.

Computation Time: The five algorithms fall into two groups with respect to computation time. The
Correlation, Mass and Fourier estimates utilises the Fast Fourier Transform (FFT) for the main
part of the work load. Consequently, there are few ways to affect the computation time of these
methods, with the exception of one, the FFT-method which is faster for small prime factorials.
The studied images are 2088×1550 with factorials(23 ·32 ·29)× (2 ·52 ·31), suggesting that
these routines will be somewhat faster if cropped down to the nearest number consisting of only
small factors (2s and 3s), i.e. 2048×1526= (211×29 ·3). Tests on such crops show, however,
that the effect is rather small. The number of points used to draw the graphsin these methods
may be freely chosen, here 100 points have been used, but this does not affect the computation
time. Data is calculated for all discrete distances in the transformed images and averaged into
the plotted data points.
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Figure 3.11: The Fourier scaling parameterβ (slope of curve) versus the fractal dimension of the test images.
The two-dimensional images (circle and square) will not fit into the same linear approximation as the other
points.

The Box Counting and the Sandbox algorithms are different in this respect,and somewhat
different from each other. The Box Counting algorithm is by far the slowest of the five, requiring
six–seven times as long to compute (with thirty sampled box-sizes) as the other algorithms.
Apart from scaling down the size of the image, which works on all algorithms at the expense of
the information contained in the image, this method has one parameter controlling its workload,
the number of different box-sizes used in the calculations. The number of points in the graphs
from these two methods are the only sampled distances in the image, they do not represent
averages of the surrounding region.

The Sandbox method is faster than the Box Counting Method to begin with and uses fifty
sampled sandbox diameters. Furthermore, it has an additional way of reducing the workload.
Both the number of the sampled sandbox diameters and the number of points sandboxes which
are calculated around may be adjusted. The Sandbox algorithm used in these tests have been run
with thirty sampled sandbox sizes and in images with more than 30.000 lit pixels, the number
of sandbox centres has been reduced to no less than 15.000.8

Resolution at High Values: The box counting method has a very limited resolution at the largest
box sizes. For instance, for boxes 700×700 pixels large there is only room for 3×2 boxes,
so in effect, this box–size only has 7 theoretical values. Furthermore boxes at these sizes are
almostguaranteed to contain a vessel, reducing the possible values further, zero certainly is
not an option. For this reason, in addition to the slow computation speed at highbox-counts,
the largest box sizes used are one fifth of the shortest axis, in effect, 310×310 pixels for the
histological images.

Accuracy: An overview of the results from the analysis of the test shapes is shown in table 3.2. The
Sandbox method has performed best at these tests. Although the Box Counting method has the
the lowest mean of error the Sandbox method has a far lower standard deviation. Of these two
values the standard deviation should be considered more important. A small mean, coupled
with a large standard deviation, simply indicates that the method is as likely to overestimate
the dimension as it is to underestimate it. The Sandbox method may possibly be improved

8Note that the histological images may contain less than 15.000 points to begin with, especially the ones where each
vessel is represented by its perimeter or centre of mass.
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somewhat by increasing the number of sampled sandbox-sizes. Within the limits of a reasonable
computation time, although much is not expected to be gained.

Different Dimensions and Fractal Transitions: Although the Sandbox method appears to be the
most accurate in these implementations the other methods are not necessarily useless. All the
tests were performed on fractal scaling figures. Although this may essentially be the same
situation as when one is investigating two-dimensional vascular systems, or a reconstructed (or
otherwise obtained) three-dimensional system, it is not the same as analyzingcross sections
of three dimensional systems. The cross sections cannot be expected to exhibit fractal scaling
across large regions of the log log-plot.

For this reason they may not yield the same values, keeping in mind the slightly different mean-
ing of the different dimensions. Furthermore, the fractal dimension is not the only piece of
information these methods present, they also show the transitions from one power-law scaling
region to the next and at which size-scales these transitions occur.

3.6 Random Simulations

Grizzi et.al. simulated histological sections and calculated the fractal dimensions as a function of
the total number of vessels in each image. They used relatively large circular dots to represent the
vessels and vessel counts ranging from five to fifty in steps of five with 1000 simulations for each,
see figure 2.28. The result was a curve increasing with higher vessel counts and plotted with corre-
sponding standard deviations. The conclusion drawn was that not only the vessel count, but also the
vessels relative positions contributed to the fractal dimension, a conclusionsupported by the fractal
theory. The standard deviations are, however, quite small, especially forvessel counts higher than
fifteen. Estimating their sizes from the graph they would appear to be at most 0.025 at these vessel
counts. This is roughly the same as the standard deviation of the errors of the sandbox-method, as
implemented here. In effect, these results imply that fractal analysis (with this implementation of the
sandbox algorithm) applied to histological slides is nothing more than an inexactand time consuming
method for counting vessels.

The concept of such a test is good. Parameters with little or no variations fora given number
of vessels will have little information to add to the vessel count. Consequently,not only the fractal
characteristics are calculated for randomly generated vessel configurations, but also most of the other
investigated parameters. Some parameters such as the relative vessel area are not considered because
they are completely determined by the number of vessels in these simulations.

The terms of the random generation should be carefully chosen, in orderto be as relevant to real
image slides as possible. The time required to analyse large numbers of generated images calls for a
reduction in resolution of the generated images. A five fold reduction in resolution has been chosen
for these tests. The cases in section 4.2, deemedhigh vascularby a pathologist9, had vessel counts
ranging from 187 to 321. Counts up to these numbers and with a solid margin for even higher vascular
counts should be used.

The size and shape of the dots are also important. Most of these cases hada mean area a little
higher than 300 pixels. When scaled down to the new grid size, this is equivalent to roughly 12 pixels.
One must also consider whether to use the dots themselves, the perimeter of thedots or only the
centre of mass. In the case of centre of mass the smallest possible size is onepixel, corresponding to

9This is in part a qualitative assessment, no quantitative measure of what constitutes low and high vascular is defined/a-
greed upon by the pathological community.
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25 pixels in full size images, and the placed dots need not be expanded to full vessel areas. In order
to avoid the inclusion of more variables all vessels should be of the same shape and size.

Finally, the distribution of points must be taken into account. The most obvious approach is
to let each lattice point hold an equal probability of being a vessel. However, this simple random
approach does not do justice to tumour vasculature’s ability to form avascular regions. The second
approach is to take advantage of tumour vasculature’s percolation like scaling. Extrapolating Gazit
et.al.’s results[17] from two to three dimensions, a percolation model may be used to generate three-
dimensional networks and extract cross-sections from these.

3.6.1 Implementation of the Simple Random Simulation

Single pixels (vessel mass centres) are randomly placed on a 400×300 lattice at intervals of 10 vessels
between 10 and 500 vessels. For each vessel count 200 repetitions are performed, and the values
plotted at each vessel count represents the mean of these two hundred repetitions, with corresponding
standard deviations, indicated by vertical bars. Two vessels may not be placed at the same location,
however they are allowed to be direct neighbours. For the purpose of syntactic structure analysis direct
neighbours are regarded as separate vessels. An example of an image generated in this way is shown
in figure 3.13 along with an image from the percolation simulation. The results of these simulations
are shown in section 4.1.1.

3.6.2 Implementation of the Percolation Simulation
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Figure 3.12: Illustration of a 3D
bond invasion percolation cluster.

Non-trapping invasion bond percolation on a simple cubic lattice has
been chosen to generate the three-dimensional systems. An illus-
tration of this type of cluster is shown in figure 3.12. The black
lines represent bonds that belong to the cluster, and the coloured lines
are unoccupied bonds, where blue represents weak bonds (easily in-
vaded), and red represents strong bonds. In this model the bonds
develop in three separate directions, one of these is extracted to form
the cross-sections. A lattice of 43×58 in the(x,y)–plane has been
found to generate vascular densities of a relevant magnitude. An
additional margin of two lattice points is added on all four sides to
reduce edge effects. In thez–direction 100 lattice points are used to
generate 100 cross sections for each simulation. In total, for all three
directions, the lattice spans roughly 870.000 bonds.10 A single point
located in the middle of thex,y–plane atz = 0 is used as the inlet
point.11

Only the bonds going in thez–direction are used to simulate the
cross sections. Symbolic matrices showing which of the bonds that
belong to the cluster are extracted at eachz–coordinate. The lattice
constant, i.e. the distance between each bond, is set to 7 relative to the simple random image slides,
resulting in images 301× 406 pixels large. To achieve this, empty rows and columns are inserted
into the image increasing the minimum distance between two vessels from 1 pixel in the symbolic

10The exact number is(46×62×101)+(47×61×101)+(47×62×100) = 869019.
11The bottom and top end of the cluster (in thez-direction) could potentially be excluded from the simulation results to

reduce the edge effects of the inlet source and the stop condition (clusterreaches end of lattice). They are not excluded in
this simulation.



3.6. RANDOM SIMULATIONS 67

Random Simulation Percolation Simulation

Figure 3.13: Simulated Vessel Slides. Left: Image producedwith the simple random simulation. Right: Image
produced with the percolation simulation. Both images havea vessel count of 160, on a grid size of 300×400
and 301×406 respectively. The vessels have been enlarged to 3×3 pixels to make them more visible.

matrices, to 8 pixels in the resulting image. At this point only one in forty-nine pixels can possibly
contain a vessel, with the empty rows and columns scaling the lattice. This introduces a rigidness to
the image, causing the 90◦ angles between the vessels’ positions to be grossly overrepresented. Each
vessel is then randomly shifted between zero and three pixels along each axis (x andy), causing it to
occupy each of the forty-nine pixels surrounding the bond with equal probability. As in the simple
random simulation, this allows pixels from neighbouring bonds to end up side by side, but not on top
of each other.

The minimum spacing between vessels with this method is larger than that of the simplerandom
simulation. In neighbourhoods smaller than 7×7–pixels no more than four pixels can possibly contain
a vessel, and in most such neighbourhoods the maximum number is one.12 Enlarging these images up
by a factor of five, to bring them up to par with the histological sections, the mean distance between
two vessels in a fully occupied cross-section from this simulation is 35 pixels. As a comparison the
mean branch lengths of the Euclidean minimum spanning trees of the four sections ranges from 57 to
73 pixels, subtracting one standard deviation this turns into the range 14 to 24. At size-scales larger
than the lattice factor the percolation method should, however, contribute to increasing the odds that
vessels are located close to each other. On these scales cross-sectionscan be expected to contain both
vascular and avascular areas in accordance with the observed data ontumour vascular morphology.

Another important difference between the two simulation methods is that the percolation method
does not allow the number of vessels in a section to be specified. Instead a large number of clusters
is generated, and the number of vessels in each section is counted. This has two implications. The
first being that the vessel count can take any integer value, not just steps of ten. The second that,
unless a subset of a very large quantity of data is used, one cannot expect to have an equal amount
of data for each vessel count. Consequently, this data may be better suitedfor scatter plots than
the errorbar representation used in the simple random simulation, however this makes the results
harder to compare. Averaging of the data into a curve with data points for every 10 vessels, i.e. a
histogram drawn as an errorbar plot, makes this easier. The results fromthese simulations are shown
in section 4.1.2

12One way to change this would be to use Gaussian probability distributions with a suitable standard deviation, for
instance somewhere between one half and one lattice constant. This distribution would replace the uniform displacement
probability when modifying the vessel positions. A further step in this direction could be to let the percolation network
determine a probability distribution function and then place a specific numberof vessels randomly throughout the lattice
according to this distribution.
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Chapter 4

Results

4.1 Vessel Section Simulations

Two sets of random simulations were performed to generate a large quantity of possible vessel config-
urations. A variety of parameters that can be calculated from immunohistological slides are investi-
gated in this thesis. These simulations were performed to find out how closely the various parameters
are related to the number of vessels in the slide. Although the shape of the curve is of interest, the
main point is the behaviour of the standard deviations. The size of the standard deviation is used to
evaluate how dependent the parameter is on the positions of the vessels. Furthermore, the size of the
standard deviation is considered relative to the size of the mean. Many of theparameters have curves
with local variations, small peaks and valleys. This is, most likely, caused bythe fact that only two
hundred samplings are performed for each point. The overall shape ofthe curve and the standard de-
viations should, however, be sufficiently accurat. The simple random simulations and the percolation
simulations both generate randomly distributed vessel patterns, but the patterns are expected to have
somewhat different characteristics. The resulting figures from these simulations are shown in the fol-
lowing subsections, along with brief descriptions of any relevant details. The coloured circles (usually
red) and×es (black and blue) in figures 4.2, 4.3 and 4.6–4.13 are the data from the four histological
samples, see section 4.2.4 for further description and comment on these markers.

4.1.1 Simple Random Simulations

Cumulative Histogram Characteristics

The results from the cumulative histograms of the distances to the nearest vessel are shown in fig-
ure 4.2. Both the values and the standard deviations drop fairly quickly to a low stable value. The
10% curve has the largest variations and they are quite substantial below approximately 50 vessels.
All the deviations drop to below 2 pixels (1.38µm) within the 100 vessels mark.

Fractal Characteristics

The variations of the fractal dimensions are of particular interest because the various methods calcu-
lating them are approximations. The sandbox algorithm, for instance, foundto be the most stable in
section 3.5.2, has a standard deviation of errors made equal to 0.0230 (see table 3.2). If the variations
in fractal dimensions are not sufficiently high, then it would be impossible to deduce whether it was

69
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the fractal approximation or the differences in the distributions that causedthe variations of the re-
sult. The sandbox algorithm is the only fractal estimation tested in these simulations. In cases where
multiple linear regions are found, the region spanning the highest sandboxdiameters is used .

At the top of figure 4.6 the results of the fractal analysis of the simulated image slides are shown.
The fractal dimension increases rapidly at the start and hits a shoulder atroughly 70 vessels. It appears
to be slowly increasing even at the highest vessel counts, albeit not much. The standard deviations
steadily decrease throughout the range. When approaching 500 vessels, the deviations are still a small
margin above the errorlevel of the test (see table 3.2).

The position and size of the fitted region varies throughout the range. Thisapplies especialley to
the region’s largest diameter, i.e. its end coordinate. The mean increases rapidly for small values, and
standard deviations are quite large even at high vessel counts. All in all, however, the combined region
is quite significant above fifty vessels, spanning at least a third of the possible linear values, and two
thirds at the long end.

The fractal analysis of Gabriel’s Graph displays the same basic pattern, but the values are some-
what different. The dimension is higher throughout the range, especiallyat the start. The standard
deviations are much smaller and appear to flatten out at a value well below the algorithm’s 0.0230
test error deviation, with an average value of 0.0164 for the range 400–500 vessels region. This is the
graph that uses the widest regions in its fits.

The Euclidean Minimum Spanning Tree has the slowest climb up to the shoulder part. The stan-
dard deviations are large all the way up to 300 vessels. At the lowest vessel counts, the image slide
analysis has by far the greatest standard deviations. In the range starting around 100 vessels and up to
around 300, vessels the EMST has the largest deviations.

For all three cases the deviations in the largest sandbox diameter used, appears to relate to the
deviations of the fractal dimension.

Syntactic Structure Analysis

The syntactic structure analysis includes histogram parameters from the Voronoi diagram, Gabriel’s
Graph and Euclidean Minimum Spanning Tree, in total a set of 44 parameters. For all three sets
the skewness and kurtosis parameters show large standard deviations. Furthermore, all parameters,
with exception of the branches per node for the EMST, have significant variations below 50 vessels.
The following descriptions of the individual parameters will only apply to the mean and the standard
deviations, especially for vessel counts larger than 50. The fractal analysis of Gabriel’s Graph and the
EMST is categorized into the Fractal Characteristics section.

When the simulations were performed, a small error in the code generating theEMST caused an
error in some graphs. The bug was in the initialization of the network and caused one of the potential
branches, connected to the second node added, to be excluded from the potential branch list under
certain circumstances. This caused some of the EMST’s to be generated withup to two suboptimal
branches. This is not expected to have compromised the results, and the size of the effects are readily
observable by comparing the distance to the nearest neighbour parameters from GG and EMST, which
should have been identical. Subtle differences in the error bars are observable below 30 vessels.

Voronoi Diagram: The Voronoi diagram parameters are shown in figure 4.8. As usual the polygons
with sides exeeding the bounds of the image matrix are ignored to avoid edge effects. While the
mean standard deviation of the area have quite small deviations for all but thesmallest vessel
counts, the shape and form of the polygons have notable deviations throughout the range.
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Gabriel’s Graph: The branches per node measure is the only parameter with large variations through-
out the range, see figure 4.10. Comparing the distances to the nearest and the furthest neigh-
bours in the graph, the latter appears to have somewhat larger variations inthe standard devi-
ations. The variations in the means are similar, but the furthest neighbour has a much steeper
curve (note the different y-axis).

Euclidean Minimum Spanning Tree: These results resemble those of Gabriel’s Graph. There are
some differences though, see figure 4.12. The mean number of branches per node are com-
pletely determined by the number of vessels and takes the value(n− 2)/n, this is the only
parameter without deviations. The standard deviations around the mean, within a given sample,
does, however, vary, and this parameter has by far the highest variations, disregarding the skew-
ness and kurtosis. The transformation from Gabriel’s Graph to EMST trims away the longest
branches, keeping all the shortest branches between nodes. For thisreason, the variations in the
furthest neighbour distances are reduced, and the data on the nearest neighbour is essentially
identical1 to that of Gabriel’s Graph.

4.1.2 Percolation Simulation

As shown in section 3.6.2, the images produced by the percolation algorithm can take any integer
number of vessels between 1 and 2580. The number of vessels produced is shown in figure 4.1, trun-
cated at 100 images and 500 vessels. Images withlessthan 10 vessels (or more than 500) were not
used, nor were data points with fewer than 10 images. In total, 15.560 images were used in the analy-
sis, originating from 168 percolation clusters. By comparison, 10.000 dataimages were produced in
the random simulation. The percolation plots make for a somewhat different visual appearance, due to
the tenfold increase in data point density. The number of images used at each data point is, however,
greatly reduced and the plots should be read against the background ofthe distribution in figure 4.1

Cumulative Histogram

The cumulative histograms show large variations, especially for images with few vessels, see fig-
ure 4.3 At vessel numbers larger than 200, the deviations are small or negligible. Both the distances
and the deviations are much greater than in the random simulation. At the three values, 50, 78 and
97, both the mean value and the standard deviations drop suddenly. Furthermore, in all three cases
the standard deviations rapidly increase again to a value about one third higher, relative to the initial
drop. After the two first and largest peaks, the deviation drops, only to slowly increase again until it
reaches the next drop. This behaviour is investigated further in figure 4.4. Here the mean and standard
deviations are plotted together with the number of images at each vessel number. The bottom graph
has been smoothed to emphasize the trends in the curves. At the third drop, there is a significant
increase in the image material. At the second drop, there is a local increase as well, though not very
large. At the position of the first and largest drop, however, there areno such changes in the material.
There is a small increase nearby, it is, however, located after the fall and quickly drops back down
again. The shapes of the three parameters’ curves are strongly correlated, showing many of the same
local trends, with respect to slope and local extrema.

1Close examinations reveal small differences, especially in the standarddeviations at very low vessel counts. This is due
to an error in the code at the time of the simulation. The error has been identified
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Fractal Analysis

The fractal dimensions of the images, GG and EMST all show patterns similar to those of the random
simulation. However, the standard deviations are somewhat larger, and themean values are lower.
The pattern of the linear regions used is very similar to those in the random simulation. The fractal
dimension of Gabriel’s Graph is larger than those of the image and the Euclidean Minimum Spanning
Tree, which are fairly similar below 200 vessels, although the EMST approaches GG at high vessel
counts, and is larger at the very lowest. This in contrary to the random simulation where EMST has
a dimension lower than that of the images below 150 vessels, see figure 4.5. At 50 vessels, all three
fractal dimensions increase suddenly. This matches the first sudden drop in the cumulative histogram.
The curves appear to have a reduced increase in dimensions leading up tothe sudden jump. Then,
in one big leap between 0.1 and 0.2 large, it changes into a higher dimensionedpath that appears to
extrapolate well down to the start of the curve. As the dimension increases the variations are roughly
halved, aligning the top of the standard deviations, but causing a leap, at least as big as that of the
mean, at the lower end. The other two leaps in the cumulative histogram, at 79 and 98 vessels, leave
no similar changes in the dimension or in the variance. If at all affected, the change is hidden by the
“noise” produced by the low sampling rate.

Syntactic Structure Analysis

No plainly observable changes occur at any of the three leap points of thecumulative histogram for any
of the SSA parameters. As with the random simulation, all the skewness and kurtosis parameters have
large variations. The variations in these parameters are, yet again, greater than those of the random
simulation images. When comparing with the random simulation, keep in mind that the y-axis is
in general different. Most of the means are similarly shaped as their simple random counterparts,
however, the values may be different. The variations of mean and standard deviations of many of the
SSA parameters are substantial beneath 100 vessels.

Voronoi Diagram: The mean and the standard deviations of the area are smaller in this simulation
than in the random. The difference is substantial, a factor 2 for the mean and1.5 for the standard
deviations. The variations are, however, much greater here. The shape and form parameters are
very similar, the noticeable difference being that the mean of the form has greater dependence
on the number of vessels, steadily increasing throughout the range.

Gabriel’s Graph: The mean branch length is shorter in the percolation images, but the variationsare
greater. This is in accordance with the area distribution of the Voronoi polygons. The relatively
few longer branches created by an increase in the number of short branches are not able to hold
the mean length up; this causes lower means and higher deviations. The same istrue for the
nearest and furthest neighbour parameters. Furthermore, for all three the difference between
these and those of the random simulation again appears to be roughly a factor of 2 for the mean
and 1.5 for the deviations. The branches per node distributions are verysimilar between the
two. The variations of the skewness and kurtosis of the Gabriel’s Graph parameters are larger
for the percolation simulation than the random simulation, with the exception of those of the
branches per node which are very similar.

EMST: The EMST parameters mostly follow the same pattern as those of Gabriel’s Graph, including
the factor of 2 and 1.5. The mean of the branches per node is an exception.
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Figure 4.1: Percolation Simulation — The Number of Slides atEach Vessel Number: The percolation method
does not allow the number of vessels generated in an image slide to be controlled. The number of images at
each vessel count were found to have this distribution.
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Figure 4.2: Random Simulation — Cumulative Histogram Parameters: Left, the mean of the 10%, 50% and
90% cumulative histogram values, with corresponding standard deviations. Right, the size of the standard
deviations.
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Figure 4.3: Percolation Simulation — Cumulative HistogramParameters: Left, the mean of the 10%, 50%
and 90% cumulative histogram values, with corresponding standard deviations. Right, the size of the standard
deviations.
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Figure 4.4: Percolation Simulation — Cumulative HistogramParameters and the Number of Images: The two
graphs show the same curves, but the plots in the bottom graphhave been smoothed with a five point moving
average, the image number has been smoothed twice. The normalized mean and standard deviations of the three
cumulative histogram parameters are plotted with corresponding normalized values at the left hand axis. In the
background the number of images containing that particularnumber of vessels are plotted in light green, the
values are shown in the axis to the right.
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Figure 4.5: The Mean Fractal Dimension of Each Image/Graph and Both Methods: The dimension of the
image is much lower for the percolation images, compared to the simple random images. Furthermore, the
Euclidean Minimum Spanning Tree does not appear to have a reduced dimension compared with the image,
this is, however, the case in the random simulation. The curves end near the dimensions 1.89,1.93, 1.94, 1.93,
1.95 and 1.95 in the order of the legend from top to bottom. Thegraph is truncated at 400 vessels, after which
the percolation data becomes sparse.
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Figure 4.6: Random Simulation — The Fractal Parameters’ dependence on the number of vessels in the slide.
From top to bottom: the fractal characteristics of the vessel locations, Gabriel’s Graph and the Euclidean Mini-
mum Spanning Tree. For each of the three cases the fractal dimensions along with the corresponding standard
deviations are shown in the left graph, note that the y–axis is truncated at 0.75. The standard deviations are
plotted by themself in the top right graph, truncated at 0.1 to emphasize the smallest values. In the lower right
hand graph the smallest and largest sandbox diameter used inthe linear fit is shown (linear scale).
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Figure 4.7: Percolation Simulation — The Fractal Parameters’ dependence on the number of vessels in the
slide. From top to bottom: the fractal characteristics of the vessel locations, Gabriel’s Graph and the Euclidean
Minimum Spanning Tree. For each of the three cases the fractal dimensions along with the corresponding
standard deviations are shown in the left graph, note that the y–axis is truncated at 0.75. The standard deviations
are plotted by themself in the top right graph, truncated at 0.1 to emphasize the smallest values. In the lower
right hand graph the smallest and largest sandbox diameter used in the linear fit is shown (linear scale).
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Figure 4.8: Random Simulation – Voronoi Diagram: Although variations of the mean and standard deviation
of the area quickly diminish for higher vessel counts, the shape and form of the polygons show variations even
for the very high vascular slides. Skewness and kurtosis exhibit large variations for all vessel counts.
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Figure 4.9: Percolation Simulation – Voronoi Diagram: Although variations of the mean and standard deviation
of the area quickly diminish for higher vessel counts, the shape and form of the polygons show variations even
for the very high vascular slides. Skewness and kurtosis exhibit large variations for all vessel counts.
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Figure 4.10: Random Vessel Simulation — Gabriel’s Graph: The deviations of the branch lengths and distance
to nearest and furthest neighbour all decrease rapidly withincreasing vessel count. The Branches per Node
count on the other hand shows much larger differences. The skewness and kurtosis have large deviations for
all investigated parameters. When comparing the distances to the nearest and furthest neighbour, note that the
y-axis limits are different.
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Figure 4.11: Percolation Simulation — Gabriel’s Graph: Thedeviations of the branch lengths and distance
to nearest and furthest neighbour all decrease rapidly withincreasing vessel count. The Branches per Node
count on the other hand shows much larger differences. The skewness and kurtosis have large deviations for
all investigated parameters. When comparing the distances to the nearest and furthest neighbour, note that the
y-axis limits are different.
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Figure 4.12: Random Vessel Simulation — Euclidean Minimum Spanning Tree: These results are quite similar
to those of Gabriel’s Graph, with one exception, the mean number of branches per node is completely deter-
mined by the vessel count. The standard deviation of branches per node, on the other hand, still have variations
on an order similar to that of Gabriel’s Graph. The Kurtosis and Skewness of all four parameters have large
deviations.
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Figure 4.13: Percolation Simulation — Euclidean Minimum Spanning Tree: These results are quite similar to
those of Gabriels Graph, with one exception, the mean numberof branches per node is completely determined
by the vessel count. The standard deviation of branches per node, on the other hand, still have variations on an
order similar to that of Gabriel’s Graph. The Kurtosis and Skewness of all four parameters have large deviations.
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case1x25 case2x25 case3x25 case4x25

Number of Vessels 329 187 221 219

Area of Vessels 312.6± 377.4 314.0± 625.3 185.6± 173.9 308.8± 379.3
to scale (µm2) 5.95± 7.19 5.98± 11.91 3.53± 3.31 5.88± 7.22

Relative Vascular Density (area) 3.18% 1.81% 1.27% 2.09%

Cumulative Histogram at 90% 9.0 13.3 13.0 11.3
to scale (µm) 1.24 1.83 1.79 1.56

Cumulative Histogram at 50% 33.2 45.3 40.0 43.4
to scale (µm) 4.58 6.25 5.52 5.98

Cumulative Histogram at 10% 75.5 89.6 76.5 97.1
to scale (µm) 10.42 12.36 10.56 13.40

Table 4.1: Basic image statistical parameters for each of the four cases. The rows labeldto scaleshow the
corresponding values inµm, rather than pixels. Thex25 in the case name refer to magnification the images
were acquired at.

4.2 Analysis of Histological Sections

Sections of four invasive carcinomas of the breast stained for CD34 were analysed at 25x magnifi-
cation by fractal analysis and syntactic structure analysis, as well as a few more parameters relating
to the number of vessels, the vascular areas and the distances to the nearest vessel throughout the
image. The images were pre-processed in accordance with section 3.1. Inone case, number 4, the
section had an artifact, a small black area. Even though there were found, upon close examination,
signs of staining at the edge of the black region, the entire area has been considered non-vascular and
manually removed in an image editor. The removal was done by replacing the area with textures from
the surrounding region, this to prevent it from leaving a noticeable edge which would be picked up by
the gradient image.

Both the sections themselves and the imaged regions were chosen by a pathologist. They are
all high-vascular and exhibit somewhat different distribution patterns. The cases before and after
thresholding are shown in figure 4.14.

4.2.1 Image Statistics

Using the methods described in section 3.2, the number of vessels, the mean area of the vessels, the
relative vascular density, and the three cumulative histogram values werecalculated for each case.
These data are shown in table 4.1. Case three is by far the one containing the highest number of
vessels, while case two has the lowest number.

Cases 3 and 4 have almost the same number of vessels, but both the vesselsizes and the distribution
patterns are very different between the two, see figure 4.14. The differences in the areas are clearly
reflected in both the area of the vessels and the relative vascular areas listed in the table. Cases 1, 2
and 4 all have a mean vessel area close to 310 pixels, case 2, however,has a much higher standard
deviation.

The influence of the mean vessel area on the cumulative histogram parameters scales as the square
root of the area, and is consequently quite small. For instance, the differences in the area distributions
between cases 3 and 4 should decrease the distances to the nearest vessel in case 4 by approximately
2.2 pixels compared to case 3. The different distribution patterns, however, result in an increase of 20.6
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Figure 4.14: Images of the four cases. The unprocessed images are shown in the left column and the black and
white results of the threshold proceedure in the right.
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pixels or 26.9%. Compared to the 70µm long diffusion range of oxygen, the cumulative histogram
values are relatively small for all cases.

4.2.2 Syntactic Structure Analysis

The results of the syntactic structure analysis of the four cases are shown in tables 4.3–4.5. The
standard deviations of the various parameters relative to the mean values are listed in table 4.2.

Voronoi Diagram

The mean area is closely and inversely related to the number of vessels in the diagram. The standard
deviation of the area reflects, however, the spread of the distribution, and varies greatly between the
four cases. The skewness and kurtosis show large differences forthe area histograms, and somewhat
less for the form and shape of the polygons. There is also less spread inthe mean and standard
deviations of these parameters. The size of the standard deviation of the shape, roughly 70% of the
mean, suggests that this is not a highly sensitive parameter where changesin the second and third
decimal are important. The form has, however, a much lower standard deviation, in the order of 10%
and relatively small differences may be of some value. The number of samples is, however, far too
limited to make any conclusions.

Gabriel’s Graph

The mean branch length decreases for larger vessel numbers, as expected. The skewness and kurtosis
of the mean and the distances to nearest and furthest neighbour, show large variations. The number
of branches per node and their standard deviations are fairly large compared to the simulation results,
case three in particular appears to be at least two standard deviations greater than the mean of the
simulation. The standard deviations are consistent with the simulation results. The distance to the
furthest neighbour appears to be dependent on the number of vessels, much like the mean branch
length. The standard deviations, however, varies greatly and does notshow the same correlation. The
values range from 47–78 pixels and 29–47% of the mean. These values are those of cases 3 and
4 respectively, two cases with almost the same number of vessels (221 and 219). While the mean
distance to the furthest neighbour is similar for cases 3 and 4, the distance tothe nearest neighbour is
not.

Euclidean Minimum Spanning Tree

The mean branch lengths of the EMST are 67.5, 67.7, 73.1 and 67.9% of the mean branch length in
GG. The third case also have a much smaller (relative) standard deviation compared to the other cases.
Case four has the highest deviations. The two cases with the least difference in vessel numbers end
up at each end of the spectre again. The branches per node parameters are fairly similar in all cases.
The differences in the skewness is less pronounced than in Gabriel’s Graph. The differences in the
kurtosis is, however, slightly larger. The relative deviations of this parameter are fairly similar from
case to case, with case four having a slightly smaller deviation than the other three. The distance to
nearest neighbour parameters are identical to those in Gabriel’s Graph.The distances to the furthest
neighbour are 55.1, 36.8, 62.6 and 57.7% of the corresponding GG parameter respectively. The
relative deviations in this parameter are reduced comapred to those of GG for cases 1 and 2, but
increased for case 3 and fairly similar for case 4. Case 3 has the smallest relative deviations in the
distances to both the nearest and furthest neighbour for both GG and EMST.
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Case 1 Case 2 Case 3 Case 4

Vo
ro

no
i

Area of polygons 64.0% 56.2% 41.1% 53.4%
Shape of polygons 70.4% 69.5% 69.4% 67.9%
Form of polygons 12.4% 10.5% 10.0% 14.2%

G
G

Branch Length 58.1% 52.1% 41.3 % 59.5%
Branches per Node 26.3% 30.2% 36.5 % 29.6%
Nearest Neighbour 47.7% 50.3% 39.9 % 53.5%
Furthest Neighbour 45.7% 42.6% 29.0 % 47.5%

E
M

S
T

Branch Length 46.0% 44.8% 36.1% 51.4%
Branches per Node 35.3% 36.2% 35.7% 33.2%
Nearest Neighbour 48.2% 50.3% 40.0% 53.5%
Furthest Neighbour 39.9% 36.8% 32.0% 45.3%

Table 4.2: The size of the standard deviations of the syntactic structure analysis parameters relative to the mean.
The size of the standard deviations are dependent on the sizeof the mean, which in turn is dependent on the
number of vessels. This table shows the standard deviationsrelative to the mean, to better facilitate comparisons
between the cases.

4.2.3 Fractal Analysis

The five fractal algorithms have been applied to each of the five differentimage representations; the
full cross sections of the vessels, the perimeter of the vessels, the vessel mass centres, Gabriel’s Graph
and the EMST, in total one hundred analyses. An overview of the dimensions is shown in table 4.6.
The results of all the analyses are shown in figures A.8–A.17 in the appendix.

The termdimensionis not well defined for cross sections of networks, the real investigatedparam-
eters are the power law scaling at various parts of the graphs. The term isnontheless used, although,
in a less strict sense, for ease of nomenclature. That being said, most methods provide a large spread
of values between the different cases, much more so than the simulation suggests.

While the Correlation, Mass and Sandbox algorithms behave similarly, the Box Counting method
is listed in the table with much lower dimensions. It is, however, the method that best reflects the
fractal dimensionof the images, in the true meaning of the words. The Fourier dimensions listed
there, are even less compatible with the other dimensions as they may decreaserapidly where other
dimensions increase or vice versa. For this reason, the three categoriesare commented separately. The
dimensions in the table are selected, based on the result, as the parts considered the most interesting
of the given method and image type. The same selection criteria have beeen used in all cases.

Box Counting: This method produces two linear regions for most of the images, the exceptions being
the EMST curves and two of the cases in the perimeter analysis. The dimensionof the first
region corresponds to the fine details in the image, and the second to the larger features. In the
Cross Section, analysis the first region has values around 1.5 and corresponds to the shapes of
the vessels themselves (fine details), the values listed in table 4.6 are from the second region
corresponding to less fine details, and are affected by the relative positions of the vessels. The
first value is affected by the area of the vessels which increases to higher values for larger
vessels, and by the vessel shape which increases with the complexity and tortuosity of the
vessel perimeter. The first of these is directly measurable from the image, and the latter is better
measured by the dimension of the vessel perimeter. The values in table 4.6 arelow, reflecting
the dot-like appearance of the vessels at large box-sizes.
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Table 4.3: Voronoi Diagrams and Histograms
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Table 4.4: Gabriel’s Graph Histograms
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Table 4.5: Euclidean Minimum Spanning Tree Histograms
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The Box Counting dimensions of the vessel perimeter are chosen as the first fitted region, two
of the cases have only one region and this provides consistency from case to case. This value
reflects the tortuosity of the vessel perimeter.

For the vessel centres, the first region has a slope near zero reflecting that the vessels have been
reduced to points. At larger sizes, however, a box containing even a single vessel accounts for
a large area. This results in a higher dimension (between 0.88 and 1.21) onlyaffected by the
relative positions of the vessels. These are the values shown in the table for the perimeter.

For Gabriel’s Graph and EMST, the highest dimension in a region which includes boxes larger
than 100 pixels is used. These dimensions reflect the scaling of the sizes ofthe holes and the
tortuosity of the graphs.

Correlation, Mass and Sandbox Dimensions:

Cross Section: While the three dimensions are fairly similar in some of the cases they diverge
in others. For instance, the sandbox dimension of case 3 and the correlation dimension of
case three. The mass dimension has the smallest changes from case to case(although quite
large) and is in general the smallest of the three. The shape of the curvesare pretty con-
sistent, with the exception of the correlation curves of cases 3 and 4 havingfour different
regions.

Perimeter: These values follow the same pattern as that of the cross section, but are higher.
The smallest values tend to have increased the most, however there is no linear relation
between the cross section dimensions and the perimeter dimensions.

Centre: In this category the sandbox dimension produces the most consistent curve shape. For
all cases it consisists of three regions, the first with a dimension close to zero, the latter
being a well defined linear region, and the third is the slope of a transition region between
the two. The Correlation curve shape varies from case to case, producing between two and
four regions of varying linearity. The Mass curve, being calculated from the correlation
curve, is affected by this as well. It is far better defined than the correlation curve, and
contains three regions (two in case 4, however, a possible third region is too small to be
included). The first of these regions has a very high slope (2.11–2.83). The second region
is the one included in the table. The third region has a lower slope than the second and
starts at radiuses larger than 220 pixels.

Gabriel’s Graph: The relative size of the dimensions is consistent regardless of the method,
as the mass dimension is the smallest in all cases and the sandbox dimension the greatest.
The size of the difference is also fairly consistent. Furthermore, the methods’ curves have
similar shapes in all the cases, in spite of the varying number of linear regionsfor the
correlation curves, which are a result of variations within the same curve form.

EMST: In addition to the long range correlations shown in table 4.6, the short rangecorrela-
tions are shown in table 4.7. The short range correlations are likely to be influenced by
the number of branches per node, the angle between these, and the branch lengths. The
long range correlations of the EMST show larger variations in the results ofthe different
methods than Gabriel’s Graph does, as well as somewhat larger variationsfrom case to
case.

Fourier: The Fourier algorithm proves to be unsuited for this task. It produces a large number of lin-
ear regions when applied to the vessel areas or perimeter, i.e. the curve isnot well approximated
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by linear regions. The regions of the second largest frequencies hasbeen listed in the table, the
highest frequency slope being outside the mappable region (slope > 3). This seems to provide
a value within a sensible area and one with variation from case to case they are, however, far
from well defined.

For the vessel centres the curve is flat, or even increasing for all but the low frequencies. In
this case the lowest frequency fit is inserted into the table, this covers, however, averynarrow
frequency interval, and is again poorly defined.

The curve shape is far better defined for GG and EMST. The region of the second largest fre-
quency is large and well fitted by a linear curve. The values are not directly comparable to the
other dimensions, but not necessarily useless. For instance, the valuesof the Gabriel’s Graph
fits show a decent spread between 1.33 and 1.56.

4.2.4 Comparison with the Simulation Data

In order to provide a proper comparison with the simulated images, the mass centre images were
reduced to 300× 400 pixels, by assigning the value 1 to any of the new pixels that contained the
centre of at least one mass centre pixel. This operation is similar to the rescaling done in the box
counting method. The smaller images were then run through the same scripts as those used in the
simulation and the results are plotted as coloured (mostly red) circles in the figures 4.2–4.13. The
case names are only indicated by the number of vessels at the x–axis. Fromleft to right, the order is
case 2, 4, 3 and 1.

The four cases spread out well for most parameters. In some cases, one or two of them are even
far outside the standard deviations. The spread suggests that real imagesections may provide an
even wider spread in results than the simulations indicate, although four cases is insufficient to make
conclusions.

The fractal dimensions require some further comments. As shown in table 4.8,many of the fractal
dimensions have changed significantly. To illustrate this further,×es have been placed in figures 4.6
and 4.7, to represent the dimensions of the full resolution images. The sandbox diameters have been
devided by 5.16 to achieve comparative numbers, the conversion is, however, not exact. The two
ratios between the two image dimensions are approximately 1.347, not 4/3. Furthermore, 50 different
sandbox sizes are used in both cases, this provides a higher relative resolution in sandboxes for the
smaller images. The maximum sandbox size of the larger image is 1357 which becomes 263 in the
reduced resolution image. All of the full resolution linear fits includes the highest sandbox diameter,
see table 4.15. Consequently, all the×es are aligned along this value in theend coordinateplot. This
value is, however, significantly smaller than the maximum value of the reduced images, which is 273.
Both values are a little higher than the mean end coordinate and well inside the standard deviation of
the simulated images. It should be pointed out that as these values are close tothe upper boundary,
the standard deviations are most likely related more strongly to the negative deviations, shifting the
mean towards lower values, than the positive deviations.

The linear regions that start and end close to the equivalent coordinatesof the full resolution
images, have very similar fractal dimensions. The dimensions with non-overlapping markers, that
is large differences between the two resolutions, also have at least one non-overlapping marker in
the start-end coordinate plot. One case with non-overlapping markers in thecoordinate plot still
has overlapping markers in the dimension plot. The overall impression from this limited material
is that linear fits across the equivalent regions result in similar dimensions, while fits from different
regions may, or may not, result in large differences. The curve shapesare shown in table 4.15 for
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n Case 1 Case 2 Case 3 Case 4
Dim Num Dim Num Dim Num Dim Num

Box Counting 1.0577 2 0.8616 2 0.7991 2 0.9942 2
Correlation 1.5837 3 1.4433 3 1.9369 4 1.4614 4
Mass 1.5081 3 1.3423 3 1.6594 3 1.5381 3
Sandbox 1.5605 3 1.4232 3 1.8080 3 1.9066 3
Fourier 1.8464 5 1.7620 5 1.2304 5 1.3992 4
Box Counting 1.0676 1 1.0692 2 1.0619 2 1.0703 1
Correlation 1.6714 4 1.5995 3 1.9474 4 1.7666 3
Mass 1.5483 3 1.5241 3 1.7000 3 1.6097 3
Sandbox 1.6171 3 1.7221 3 1.8540 3 1.9195 3
Fourier 1.5503 5 1.6151 5 1.7398 5 1.5512 5
Box Counting 1.2187 2 0.8839 2 1.0195 2 0.8891 2
Correlation 1.7484 2 1.5571 3 1.6393 3 1.8890 4
Mass 1.7681 3 1.8472 3 2.0418 3 1.7682 2
Sandbox 1.7684 3 1.8296 3 1.8947 3 1.9126 3
Fourier 1.5195 4 1.5380 3 1.5902 4 1.5912 4
Box Counting 1.6965 2 1.6389 2 1.6782 2 1.5987 2
Correlation 1.8153 3 1.7945 3 1.8544 4 1.7268 2
Mass 1.7655 2 1.7447 2 1.8060 2 1.6894 2
Sandbox 1.8969 3 1.9410 3 1.9695 3 1.8359 3
Fourier 1.5663 5 1.3259 5 1.4649 5 1.4182 4
Box Counting 1.0906 1 1.0702 1 1.0744 1 1.0812 1
Correlation 1.7183 2 1.6668 2 1.8969 3 1.5264 3
Mass 1.6415 2 1.5950 2 1.7238 2 1.6307 2
Sandbox 1.8852 3 1.8020 2 1.9306 2 1.9067 3
Fourier 1.3446 5 1.3225 4 1.3964 5 1.3447 4

Table 4.6: Fractal dimensions of the four cases: These dimensions were automatically selected, one for each
image and method, from the possible linearly fitted regions,see figures A.8–A.17. The number of linearly
fitted regions are shown next to the dimension. The selectioncriteria were in general different for the box
counting method and the Fourier method, compared to that used in the three other methods. See descripions in
section 4.2.3.

comparison. The non-linearity of the double logarithmic plots gives wider linear regions at the large
sandbox diameter for the smaller resolution. These regions do not necessarily, however, occupy a
larger portion of the linear range. The linear width is dominated by the highestlogarithmic values.
Provided that both regions include these values, the linear range occupya similar percentage.
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Figure 4.15: Comparison of the sandbox dimensions of the mass centre images at two different resolutions
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Case 1 Case 2 Case 3 Case 4
Dim Num Dim Num Dim Num Dim Num

Box Counting 1.0906 1 1.0702 1 1.0744 1 1.0812 1
Correlation 1.0893 2 1.0648 2 1.0641 3 1.0771 3
Mass 1.1608 2 1.1311 2 1.1357 2 1.1385 2
Sandbox 1.0726 3 1.0549 2 1.0576 2 1.0626 3

Table 4.7: Short range / high detail scaling of the EuclideanMinimum Spanning Tree. These values were
obtained from the short radius / small boxes side of the graphs.

Centre of Mass Gabriel’s Graph EMST
Full Red. Full Red. Full Red.

Case 1 1.7684 1.6856 1.8969 1.9177 1.8852 1.8602
Case 2 1.8296 1.9796 1.9410 1.9248 1.8020 1.9297
Case 3 1.8947 1.9046 1.9695 1.9672 1.9306 1.9382
Case 4 1.9126 1.8496 1.8359 1.8546 1.9067 1.8911

Table 4.8: The investigated fractal dimensions of the full and the reduced resolution images.
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Chapter 5

Discussion

5.1 Fractal Properties of the Vascular System

The fractal characteristics of tumour vasculature have been investigatedin several studies, see sec-
tion 2.4. Images of two-dimensional tumour set-ups appear to be well-suited for the use of fractal
analysis. Three-dimensional systems should work equally well, although they are more difficult to
obtain, and will demand much more computational power to process. Three-dimensional network
information should be most easily obtained through one of two routes. Either acast can be made
by injecting a liquid substance, which subsequently turns into plastic, into the vascular system, and
then corrode away the surrounding tissue with acid. This is an established method, see examples in
figure 2.14 and 2.16 (reference [27] and [28]). These studies wereperformed on mice and human
hemicolectomi samples from patients undergoing surgery. The method has clear limitations in its use
on human tumours. In these studies, the desired information was extracted through the use of photog-
raphy from different angles. For the purpose of fractal analysis, another approach may provide more
accessible information about the network. If a suitable contrast agent can be applied to the plastinat-
ing liquid, a high-resolution micro-CT scanner may be able to extract the vessels. The solid vessel
casting allows the use of extremely long exposures, increasing the effective resolution and contrast
of the result. Another approach is to use histological sections, sampled at asmall, regular interval
throughout the tumour. The network can then be reconstructed on a computer. The first of these ap-
proaches is most likely practically difficult, and the latter requires an enormous amount of work, due
to the extremely large quantity of sections and images.

Through work on two-dimensional tumour models, Gazit et.al. [17][16] andBaish et.al. [2] ob-
served fractal dimension similar to that of invasion percolation. They proposed that some form of
percolation process, possibly linked to the extra-cellular matrix, might be responsible for the abnor-
mal network morphology (see sections 2.4.2 and 2.4.4). Bartha et.al. [4] have recently developed what
they call a hybrid probabilistic cellular automaton tumour model. In this model they propose that it
is the pruning of vessels within the tumour that gives rise to the avascular pockets. The border of
the tumour is highly vascularized, but as the tumour grows some of these vessels collapse or other-
wise disappear, resulting in hypoxic and necrotic regions. Their model develops networks of a similar
fractal dimension as that of invasion percolation, without resorting to any locally random substrate
property, (see section 2.4.5).

Too much may have been made of the notion that tumour vasculature points towards a percolation-
like process in the development of blood vessels, especially considering the spread in fractal dimen-
sions observed in some of the investigated tumours, see figure 2.24. Nevertheless, invasion percolation

97
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offers a fairly simple model to work with, at least compared to Bartha et.al.’s model. It is recognized
that it may not be a process completely representative of the formation of thevascular network. Gazit
et.al.’s results do, however, show that as a model used to describe the vasculature morphology in tu-
mours, it works fairly well, at least in the two-dimensional cases. Extrapolating these results to three
dimensions, this thesis hypothesizes that three-dimensional percolation clusters should produce two-
dimensional cross sections with attributes closer to that of real networks, than by simply assigning
vessel locations at random throughout an image.

Regardless of which models are best suited to generate a network, the fractal scaling of tumour
networks provides some very interesting implications. If the networks truly are fractal across some
significant size-scales, then this is equivalent to asserting a power-law relationship between the vas-
cular and avascular regions across these scales. In other words, thenumber of avascular pockets ofat
leasta given size relates to that of other sizes. This will be investigated further using the formulas of
the box counting method from section 2.3.5:

log(N) = D log(1/S)+ logc (2.3)

where c is the intercept of the box counting curve. That is, the number of boxes with content when the
box size is maximal, this number is one for all but empty sets. Consequently, if thenumber of boxes
of linear sizeS1 is found to beN1, then this means that the number of boxes half the size,N1/2, and
twice the size,N2, will be

N1/2 =

(

2
S1

)D

and N2 =

(

1
2S1

)D

(5.1)

The avascular fractions would then beAf 1 = 1−N1 ·S2
1 = 1−S(2−D), and

Af 1/2 = 1−2DS(2−D) and Af 2 = 1−2−D ·S(2−D) (5.2)

Although great care must be exercised in interpreting these fractions, theimplications are clear.
Within the fractal scaling region, the number of avascular pockets of at least one size relates to that
of other sizes. At the dimension of the Sierpinski Carpet for instance, see figure 2.19, which is very
close to that of two-dimensional percolation clusters, the number of avascular pockets that are at least
one third of some arbitrary unit in size, is eight times higher than those of at least one unit in size.
There will, in other words, be a few large and an increasing number of smaller avascular regions.
The number of hypoxic regions is the same as the number of avascular regions, with the exception
that there are no hypoxic regions for avascular regions smaller than 140µm. Furthermore, their size
is smaller and given as a function of the diffusion distance of oxygen and the size and shape of the
avascular pocket itself.

In this way the existence of large avascular regions predicts the existenceof smaller ones. Fur-
thermore, and perhaps more interestingly, the quantification of small avascular regions within small
samples may predict the probability of finding larger ones. In each case, such predictions would be
based on a number of extrapolations of data. The two most important are the extrapolations of the
linear loglog-region and that of the fractal behaviour. The first is the assumption that the fractal scal-
ing is the same at other size scales than the one investigated. The second is theassumption that the
fractal behaviour is the same throughout the tumour. The available literatureon the subject is not con-
sidered sufficient to make claims towards the validity of these predictions. Theverification of such
behaviour would require the analysis of the complete vascular system froma sufficiently large number
of tumours, and obviously the data must be verified for each tumour type. Atthis point, they are but
interesting speculations based on the properties of mathematical fractals.
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5.2 Histological Images

5.2.1 Image Magnification

The four images used in this work were all digitized at×25 magnification. In addition, images at
×50 and×100 were acquired from the same samples. The resolution of the images at×25 has been
deemed sufficient to successfully extract the vessels from the image, andto identify the vessel centre
in particular. The outline of the vessels can also be established at this resolution, providing sufficient
information about the size, area, and shape of the vessels. If the shapeof the vessel wall itself is to be
studied, higher magnifications should be used.

5.2.2 Image Processing

In order to achieve a well defined replicable measure, some effort has been put into the process of
the black and white conversion. The over all goal has been achieved, that all steps in the processes
should be mathematically defined, so that it is not necessary for an operator to include a personal
judgement into the process. The added benefit is that the process can beautomated to a better degree.
The quality of the method has not been quantitatively investigated for either false positives or false
negatives. Visual inspection does, however, confirm that they arerepresentativefor the images in
question, or at the very least possible images of this tumour type. For the purpose of this thesis, the
developed method has been considered sufficient.

5.3 The Studied Parameters

The studied parameters are those available through image analysis of tumour cross-sections. The
most obvious of these are the ones categorized asbasic image statistics. These parameters provide
the most basic and easily interpreted results. In particular the number of vessels and vascular density
is of interest as it provides means for the comparison to current parameters used by pathologists.
The histograms of the distances to the nearest vessels were done as this relates directly to hypoxia.
Syntactic Structure Analysis provides a large set of parameters easily applied to this type of images.
Furthermore, Gabriel’s Graph and the Euclidean Minimum Spanning Tree are well suited for fractal
analysis. Fractal Analysis of histological images has been the main emphasis of the this thesis. The
large number of SSA-parameters should not be allowed to obscure this.

5.3.1 Fractal Analysis

There are a small, but growing, number of published papers that in one way or another applies fractal
analysis to tissue sections (references [42][36][20][24][43]), see section 2.4.3. Although the use of
fractal analysis on tumour vasculature appears to be well founded in the case of two-dimensional
tumour models, or, if obtainable, three-dimensional tumour vascular networks, the relevance of these
methods to tissue sections is less clear.

Defining the Measure

Before discussing the usefulness of the method, there is one pitfall that requires commenting. The
feature of the image that is to be analysed must be rigorously defined. For instance, in the study of
Spillman et.al. [42] H&E stained sections were converted to greyscale and a threshold was applied at
50% luminosity. This raises the question of how consistent the contrast in the staining is. Especially
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because the sample image only appears to occupy a part of the intensity histogram, there are no dark-
grey to black pixels. Any changes in the overall luminance in the image will clearly affect the densities
of both black and white pixels. The same applies to Sabo et.al. [36], who applied fractal analysis to
CD34 stained images. The paper does not specify if, or how, a thresholdis applied, however, the
box counting method used requires a threshold. Furthermore, the greyscale images shown in the
paper has different amounts of background staining of what appearsto be cell nuclei. In one image
it is almost as dark as the vessels, while in another they are barely visible, see figure 2.27. In either
case, it raises the question of whether or not this staining is included in the box counting. In yet
another study, this one by Heymans et.al. [24], the Fourier method is applied togreyscale images
stained withUlex Europaeus. Although no threshold was required here, any changes in the overall
luminance in the image are still likely to cause non-trivial changes in the dimension, see section 2.3.9
and reference [41]. For further information on these papers, see section 2.4.3.

To avoid any uncertainties as to how the image material is processed and analysed, the method in
section3.1 has been implemented. No greyscale images have been used in the fractal analysis, only
black and white. See section 5.2.2 for further discussion of the method.

The Study of Tissue Sections

The meaningfulness of applying fractal analysis to tissue sections requires some debating. The rele-
vance of the other parameters is far more evident as these methods are moreor less designed for this
purpose. The discussion will be limited to the study of images where a thresholdhas been applied to
remove all pixels but those of the vasculature. It applies to all forms of such images, regardless of the
staining used to highlight the vasculature. The difficulties involved in extracting the vessel informa-
tion, and the means to do it, will, however, vary greatly for different stainingprotocols. A cross section
of a tumour’s vascular network is essentially a series of dots of various shapes, distributed throughout
an image. Although the overlaying structure is the sum of all the cross sections, it is not clear how
useful the information from a rather limited number of sections is, when it comesto describing the
overall network characteristics. It is clear that any single cross sectioncan be a part of a variety of
different network morphologies. Parameters such as the vessel diameterand the intervessel distance
should correlate with similar parameters in the cross sections. Other morphological parameters, how-
ever, such as the branching angles and interbranch distances (see section 2.1.6), are not obtainable at
all. This suggests that networks with large variations in these parameters may result in similar cross
sections. On the other hand, it is also evident that the overall network morphology will affect the
distributions of vessels in the cross section. Although the fractal scaling ofthe sections may, or may
not, correlate directly to the fractal dimension of the network, it seems more than plausible that it does
relate to the overall morphology.

The Different Approaches to Fractal Analysis

The fractal analysis may be implemented in a number of different ways. The ones investigated here,
see section 4.2.3, are the analyses of the combined vessel lumina and walls, the outer perimeter of
the vessel walls, and the centre of mass. In addition the fractal dimensions of Gabriel’s Graph and
the Euclidean Minimum Spanning Tree were calculated. There is a variety of different algorithms
available for these purposes, five of which have been investigated here. Table 4.6, showing the fractal
analysis results of the four cases, clearly illustrates the large variety of results obtainable by these
methods.
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It should be pointed out that these cross sections are not fractals. Themethods may, neverthe-
less, still be of value, provided that the curves have well defined powerlaw obeying regions. As
figures A.8–A.17 show, this certainly appears to be the case. The behaviour of the curves are, how-
ever, very different for each method and image type. Each power law scaling region occupy some
20–40% of the curves. This makes the terminologyfractal dimensionimprecise. None of these num-
bers can be said to be the dimension of the image as a whole. The measured quantity is the power law
behaviour of thatparticular region. Nonetheless, the termdimensionis still used of these parameters,
as the alternative is an unnecessarily complicated terminology. It is, however, important to bear these
distinctions in mind.

For each image, twenty-five different curves have been obtained. Thesandbox dimension of the
vessels’ mass centres at large sandbox sizes has been considered themost attractive of these. The
sandbox method was found to be the most precise for the given test images insection 3.5. It has a
reasonable execution time and a well defined curve shape for the mass centre images. The use of
images that only contain the mass centre, ignores the shape and sizes of the vessels, leaving their
numbers and relative positions as the only involved parameters.

The fractal characteristics of the vessels themselves have not been investigated in particular, al-
though the data is readily available from figures A.8–A.11. The left hand side of the curves would
be the interesting region for this purpose. To reduce the effect of vessel sizes, which is easier mea-
sured by the vessel area parameter, the perimeter data would be preferable. Histograms of the locally
connected fractal dimension, see section 2.3.9, of the vessels may be bettersuited for this characteri-
zation. They would show the distribution of fractal dimensions of the different vessels. Furthermore,
higher magnification images should prove to be a better source of information.See section 3.1 for a
list of the different area coverages and resolutions at different magnifications.

The fractal dimensions of Gabriel’s Graph and the Euclidean Minimum Spanning Tree may also
prove to be valuable parameters. In case of the EMST, the low regions of the graph may be considered
in addition to the high, although the latter seems more promising and the differences are certainly a
lot more pronounced.

Changes in the Resolution of an Image

The relative size of the pixels representing the mass centres is impossible to conserve across different
image resolutions. Changes in image resolution will, however, cause changes for all methods and
images. Lowering the resolution, increases the size of the smallest featuresit is possible to obtain
information from, and, perhaps more importantly, it reduces the number of different low resolutions,
or in the context of sandbox analysis of the mass centre images, it reducesthe number of different
large diameters. The effect of resolution changes at large sandbox diameters should, however, not
cause any large effects on the result, although some is certainly present.

The effect of resizing the images has not been studied here in particular.Some data are, however,
available from the comparison between the results of the simulations and the histological sections.
These are, however, limited to the sandbox dimension of the mass centre at large sandbox diameters.
The large deviations in these results serve to illustrate that further development is needed in order to
reproduce the results at different resolutions. The differences in theresults are reasonably small for
many of the values, but varies greatly for others. The size and sign of thedifference in value varies
a lot, suggesting that the effect is not caused by the reduced resolution,and the good correlation of
differences in start and end coordinates points toward the routine that automatically selected the linear
regions, see figures 4.6–4.7 and section 4.2.4.

It is apparent that this method requires further development with respectto robustness. Two
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suggestions for ways to improve this will be provided. 1) The power of theNormRfactor in the quality
of fit function can be increased to further emphasize good fits over largeareas. 2) The selection criteria
with respect to the sandbox method applied to mass centres can be modified. Rather than using the
highest, automatically selected region, a region at high dimensions can be used as a requirement in
the algorithm. Another possibility is to specify at least one of the sides (end orstarting point) of the
linear region. Other approaches to thequality of fit function may be considered as well.

Although the lack of robustness at a five-fold resolution change does not necessarily imply that
the routine lacks robustness at high resolutions, it should certainly be addressed. Different institutions
cannot be expected to have similar digital sensors. Furthermore, if stability between the high and low
resolution images can be obtained, then low resolution images will be an advantage to computation
speed when large quantities of images are processed.

5.3.2 Cumulative Histograms of the Distance to the Nearest Vessel

These histograms offer the most straight forward approach of estimating the magnitude of avascular
pockets in a tissue section. Keep in mind, however, that these distances constitute the maximum
distance to the nearest vessel, a closer vessel may easily be found outside the image plane. All four
sections investigated here, are highly vascularized. This results in shortdistances to the vessels.
The investigated areas of histological sections, at least in the context of vasculature parameters, are
typically chosen from the most vascular areas in the section. These areasare known as vascular
hot-spots. The relevance of this parameter depends highly on how the distance distribution within a
hot-spot relate to those outside hot-spots. These parameters may additionallybe studied outside the
hot-spots, however, parameters that can be obtained within the same data material, are more likely
to be used. In addition, the area to be studied should be chosen accordingto reproducible criteria.
The vascular hot-spots represent such a criterion, and it is well established for histological studies.
Using the same areas for all parameters, allows for correlations between parameters to be more easily
established, as the additional variable of second area selection is removed. The hope is, however, that
a parameter that relates directly to hypoxic fractions, or similar quantities, may be obtained. This
must be established irrespective of the correlation with other parameters.

5.3.3 Syntactic Structure Analysis

The Syntactic Structure Analysis offers a broad panel of parameters, especially when each of the
four histogram parameters are considered. Many of these parameters are directly dependent on the
number of vessels in the image. The total length of the tree, the area of the Voronoi polygons, or
the distances to the nearest neighbour are good examples. Other parameters are not, for instance the
number of branches per node, or the shape of the Voronoi polygons.Because the number of vessels is
established by counting them, the main interest of the SSA-parameters is the information they contain
with respect to the morphology of the vessels. The relationship between these parameters and the
number of vessels is shown, at least to some extent, in the simulation results, see figures 4.8–4.13.
The dependencies on the number of vessels are non-linear, especially at lower vessel counts, and
the size of the standard deviations and the mean value generally have different dependencies on the
number of vessels.

In addition to the SSA-parameters used by Weyn et.al.[43], the distance to the furthest neighbour
has been investigated. The distance to the nearest neighbour is identical inGabriel’s Graph and the Eu-
clidean Minimum Spanning Tree. This makes it redundant to calculate it for both graphs, suggesting
that one of them should be removed, or possibly replaced by the distance tothe furthest neighbour.
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Although the two parameters certainly relate to each other, they relate to the vessel distribution as
well. The ratio between them are 1.49, 1.46, 1.36 and 1.57 for each of the four cases respectively. At
this point it is recommended to the keep both parameters for further studies.

5.4 Vessel Simulations

Grizzi et.al. [20] performed a simulation where circular vessels of a fixed size were distributed
throughout an image, according to a uniform probability distribution, with the one restraint that no
vessels were allowed to overlap, see section 2.4.3. They investigated the changes of the box counting
dimension as a function of the number of vessels, for vessel counts ranging from 5 to 50. They found
that the fractal dimensions increased with the number of vessels and that there were a non-zero vari-
ance for most data points. Two similar simulations have been performed, investigating the dependency
of all used image analysis parameters on the number of vessels. The variance found in Grizzi et.al.’s
results was quite small. The ones found in these simulations have, however, proven to be significantly
larger, increasing the potential clinical value of the parameters beyond that of the vessel density.

5.4.1 The Purpose of the Vessel Simulations

The vessel simulations have served a two-fold purpose. The first is thatthey show which of the inves-
tigated parameters that strongly depend on image information other than the number of vessels. The
size of the standard deviations is considered to relate to this dependency, with large values suggesting
a strong link to the relative positions of the vessels. This was the main reason for carrying out the sim-
ulations. The purpose of this study at this point is to evaluate how well the various parameters may
be suited for further studies. Any parameter that relates solely to the numberof vessels is redundant.
The mean number of branches per node in the Euclidean Minimum Spanning Tree is an example of
this, albeit not a good one, as this was already known from theory. However, other parameters come
close, especially when the number of vessels exceeds 200.

The second benefit is the obvious, that the dependency of the parameters to the number of vessels
is revealed. These relationships are important for two reasons, the size of the standard deviations must
be considered in relation to the slope of the curve. It is hard to avoid some uncertainty in the image
processing, and false positives or negatives may affect the analysedimages. If the slope is large com-
pared to the standard deviation, then this uncertainty renders any information about the morphology
of the vessel distribution useless. The second potential use of these relationships becomes important
once the parameters are used to classify the morphology histological sections. Simulations, such as
these, although at larger volumes, may provide the necessary curves needed to remove the informa-
tion that relates to the number of vessels rather than their relative positions, i.e., the morphology. The
parameters may, for instance, be replaced by their distance to the mean, either expressed in absolute
values, or perhaps better, as the number of standard deviations that seperate the data point from the
mean. Relating it to the number of standard deviations may be an advantage because the sizes of these
deviations have been found to vary with respect to the vessel count formany of the parameters. In
effect, the deviations from the mean are expected to be smaller in images with manyvessels, at least
for most parameters.

Two series of simulations were performed, the first based on a uniform random probability dis-
tribution and the last on the cross sections of three-dimensional percolationclusters. The simplest of
these approaches offers a method that is easy to understand and implement,and fast to execute. It
was, however, hypothesized that variations in results from such a simple approach are not represen-
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tative for real distributions. A second approach, based on three-dimensional percolation theory, was
implemented with the following hypotheses:

a) The results from the two approaches should be different.

b) The percolation approach should, in particular, give somewhat greater variations for many of
the parameters, especially the cumulative histogram parameters.

c) The percolation method is a better model for the vascular network. It should, consequently,
correlate better to the results from tissue section analysis than the random approach does.

The two first have been confirmed, but the last requires a much larger data material than the four
sections used here. More data from simulations must be gathered as well, in particular the fractal
dimensions of the percolation simulation are far from smooth. The limited material available does,
however, certainly suggest that the variations in real samples may be evenlarger for real sections than
either of the simulations suggest, at least for some parameters.

5.4.2 The Simple Random Simulation

The main strength of this simulation is its simplicity, and it has been named accordingly. The simple
rules of the simulation implies that very few assumption are made, this is, however, misleading. To
assume that vessel cross sections are well approximated by uniform probability distributions, is fairly
naive. Even more so, when the entire process of angiogenesis, endothelial growth factor diffusion
fields, hypoxia inducible factors and the available morphological data, is taken into consideration.
This is in principle no less an assumption than the assertion made of the other simulation, namely that
the vessel images are well approximated by percolation theory. The main benefit of this method is
that it places very few restrictions on the output and it is easily understandable and implementable.

5.4.3 The Percolation Simulation

This simulation is based on an extrapolation of Gazit et.al.’s [17] find, that two-dimensional net-
work models have a similar fractal behaviour as that of invasion percolation. The assumption is then
made that a similar behaviour is present in three-dimensional systems. Thereare ways of implement-
ing a three-dimensional percolation model. As shown in table 2.3 there are several different three-
dimensional percolation models in the same universality class; site and bond random percolation, site
and bond non-trapping invasion percolation, and trapping site invasion percolation. In addition there
are several lattice-related parameters that must be specified, including theshape of the lattice and its
size. The computation time involved increases rapidly for larger lattices, and the complexity of the
code is higher for more complicated lattices, for example a hexagonal lattice.

The choice was made to use the non-trapping bond invasion percolation on asimple cubic lattice.
Bond percolation on a cubic lattice consists of directional bonds and one ofthese directions can easily
be extracted as a cross section. This gives the appearance of a situationsimilar to that in a histological
section. The similarity is, however, superficial. In a real section, all vessels crossing a plane are
included. Because the sections are extremely thin, the odds of a vessel running alongside the plane is
close to zero. In the invasion bond percolation model, however, two thirds of the vessels will never
cross the image plane.

The model was chosen over a site percolation model, in part because the visual representations of
bond clusters bear a closer resemblance to a vessel network, and the concept is consequently easier
to communicate, but primarily because the horizontal bonds serve to reducethe local dependence
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between one cross section and the next. This may be achieved by other means as well, for instance,
through the site percolation method by only utilizing every other section, but in abond model it is a
built in effect. The choice between bond and site percolation is not regarded as important to the model
outcome. Trapping invasion percolation has, however, been ruled out, as no physical equivalence of
the trappingprocess exists in the system, and random percolation introduces a percolation threshold
to the model.

The local dependence of one section on the next may be considered a weakness in the percolation
model. Each section does not represent an independent image. This effect could be reduced by only
sampling the possible sections at some set interval. This effect is, however, closely related to the
strength of the model, that the probability of finding a vessel is greater in the vicinity of other vessels.
This is expected to increase the probability of avascular areas and the likelihood that patterns such as
those observed in case four are generated. The network morphology will, in general, be different from
that of the uniform distribution. Only 169 different clusters were used in the simulation, as the great
variations in the mean show, it would have benefited greatly from a larger data material. The general
outline of the behaviour of the parameters is, however, expected to be relatively representative.

5.4.4 Evaluating the Two Simulations

The predictions of the hypothesis was confirmed, the percolation model provided larger, and in part
much larger, deviations for many of the observed parameters. More importantly, it has been estab-
lished that the distribution used in the simulations has a large impact on some parameters, albeit less
so for others. This implies that if real data material is to be classified according to its deviation from
a simulation curve, as suggested above, then the model of the simulation is of great importance.

Sudden Value Changes at Specific Vessel Numbers

The sudden changes at specific values in some of the parameters of the percolation simulation were
unexpected, i.e. the sudden drops in the cumulative histogram parameters at 50, 78 and 97 vessels,
as well as the sudden increase in the fractal dimension at 50 vessels. Thecause of these effects are
unknown. However, they do not appear to affect any of the SSA-data. All parameters were calculated
by the same script for each vessel count, thus removing the possibility that amix-up of data files
could affect some parameters without effecting all of them. The shape of the curves also contradict
this possibility. The images near these transitions have not been inspected visually and the cause may
very well be found there. The sections containing few vessels are most likely to be found near the
end of the cluster, edge effects may consequently be involved. However, the sharp transitions at no
less than three places would still be unexpected. Another possible cause isthat, by chance, some
clusters with very low occupation may have been generated, in effect thata route with relatively little
resistance has been found from one side to the other in these clusters. This would cause relatively
many sections with few vessels to be generated throughout the cluster, causing a single simulation
to obtain a high percentage of the sections at these vessel counts. As the total number of clusters is
as low as 169, this is possible, but not likely, leaving the possibility that this is anattribute of the
three-dimensional percolation cluster in some way. In addition, a new simulationcontaining a far
higher number of clusters would be a good follow-up study, in order to obtain better defined curves.
This should also reveal if these features have appeared by chance, or by the nature of the percolation
cluster.
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Cumulative Histograms

As expected, these values are far higher than those of the random simulation. These are perhaps the
parameters with the largest differences. The mean is increased by a factor of two and the deviation by
at least a factor of four.

Fractal Dimension

The fractal dimensions are, as expected, different for these two simulations, confirming that this
dimension, the sandbox dimension at high diameters for the mass centres, canbe used to classify
morphology. The fractal dimension of the percolation simulation is lower than those of the random
simulation, even at peaks of the uneven percolation curve.

SSA-Parameters

Many of these values have much greater variations for the percolation simulation than the random
simulation, especially at large vessel numbers. The curve shape is, however, generally quite similar.

5.5 Relevance to Clinical Data

There are a few published papers investigating the relevance of fractalanalysis to clinical data. De
Felice et.al. [13] investigated and found an increased fractal dimension ofthe oral vasculature in pa-
tients withLynch cancer family syndrom Iand II compared to the control group. Weyn et.al. [43]
investigated the correlation of fractal analysis, syntactic structure analysis and the microvessel den-
sity’s ability to predict tumour prognosis using a K-nearest neighbour test.They concluded that the
SSA-parameters in particular may be useful as a prognosticator in general diagnostic pathology, but
found only a mediocre prognostic value for the fractal parameters. Saboet.al. [36] investigated the
microvessel density and fractal dimension of renal cell carcinoma sections and concluded that the
fractal dimension was inversely associated with tumour necrosis, and that tumour necrosis was the
only investigated parameter with significant independent prognostic value.The literature on the other
parameters, the microvessel density in particular, is more extensive. In addition there is some limited
material on other uses of fractal analysis in cancer research (e.g. Spillman et.al.’s[42] study of H&E
sections, or Craciunescu et.al.’s [8] study of dynamic contrast-enhanced magnetic resonance images)

This thesis shows the dependency of the investigated image analysis parameters on the number of
vessels. It also provides an estimate of the size of the variance that can beexpected for a given number
of vessels. Furthermore, it provides concrete examples of what analysis results of real histological
data may look like. This provides a basis for evaluating which of the parameters that should be
included if a smaller panel of parameters is to be preferred. The study hasnot, however, investigated
how these parameters relate to other clinical or tumour specific data. Althoughthere certainly are
ways to improve the methods used in this study, some of which have been addressed, it seems more
important to establish the relevancy of the parameters themselves. If these parameters, or at least some
subset of them, do indeed correlate to clinical data, either patient specific,e.g. prognosis, survival,
metastasis incidence, treatment response, or tumour specific, e.g. tumour grade, hypoxic or necrotic
fractions, or established vascular parameters, then the correlations should be identifiable with the
current implementation of the methods.
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5.6 Suggestions for Further Studies

This section provides suggestions for further studies within this area, based on this thesis. Some of
them relate to possible improvements of the methods developed here, while otherrelate to further
investigations regarding the possible applications of these results.

5.6.1 Correlation Studies

A correlation study should be performed, investigating how these parameters relate to other clinical
parameters. These may be parameters relevant to a wide range of areas,such as prognosis, diagnosis,
metastatic potential, parameters relevant to specific treatments, in particular hypoxia, and most likely
other areas as well. This is considered the most important step in the continued investigation of these
methods, and, consequently, the most important of the follow-up suggestions.

5.6.2 Segmentation of the Images

Other possible approaches, as to how the threshold is applied to the images, may be investigated for
some or all steps of the process. For the selected method, the number of false positive and false nega-
tive vessels should be investigated. All parameters should be investigated for robustness with respect
to false negatives and positives. This can be done by randomly removing or adding vessels to the
image and to investigate the effects on the parameters. This should provide a clear indication of how
well the segmentation routine, as a minimum requirement, needs to perform. If some or all param-
eters show an exceedingly large sensitivity with respect to the segmentation,this indicates that the
results of the segmentations need to be manually inspected and corrected of any errors. Furthermore,
and far more importantly, it may suggest that the relevant parameter is so highly dependent on the
vessel distribution and/or number, that it for all practical purposes may be considered chaotic, and,
subsequently, quite possibly of little use, although correlation studies shouldbe used to confirm this.

5.6.3 Fractal Analysis

A histogram of the fractal dimensions of each vessel perimeter can be made, although images at
higher magnifications are recommended. This would be relevant as a description of the individual
vessel characteristics.

The effect of different image resolutions on the different dimensions and images may be studied
further. Limited information for sandbox dimension of large diameters of the mass centre is available
from the four cases, the other dimensions have not been investigated at all. Furthermore, this is the
only dimension that has been investigated in the simulations.

5.6.4 Vessel Simulation

Both simulations may be performed for more images in order to better establish the curve shapes. The
odd behaviour of some of the percolation parameters at specific vessel counts may be investigated
further in a larger simulation. The other fractal algorithms can, if desired, be included in simulations
as well, although this will significantly increase the computation time of the simulation.
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Chapter 6

Conclusion

This thesis provides the initial investigation of a broad panel of image analysisparameters which may
be used to quantify vessel distribution patterns in vascular cross sections. The computer programs
required to calculate the paramters have been written as a part of the thesis,and the analysis methods
have been tested on four cases. These methods are now established andadapted to the study of histo-
logical images. In this way, the thesis provides a basis for further investigations, including correlation
studies.

It has been important to establish whether or not it is meaningful to performfractal analysis on ves-
sel cross-sections. Although one must be careful with how any resultingdimensionsare interpreted,
fractal analysis algorithm do appear to be able to differentiate between different vessel distributions.
The different fractal methods investigated, all produce different results, and it is, with the possible
exception of the Fourier method, difficult to completely exclude any of the parameters from further
studies.

The Box Counting method provides the results that best represent thefractal dimensionof the im-
ages. The method results in well defined curve shapes for many of the imagetypes, but it
requires an exceedingly long computation time, limiting its usefulness.

The Correlation method provides some mixed results, for some of the image types it produces well
defined power law scaling regions, whilst for others, the mass centre images in particular, it
fails.

The Mass method is based on the correlation method. In spite of this, it does appear to have a bet-
ter defined curve shape, in particular it does not require a five point average smoothing. This
method is recommended over the Correlation dimension, and is the most promesing of the three
algorithms utilising the Fast Fourier Transform. It is somewhat faster than thesandbox algo-
rithm, and should be given extra consideration for very large image sizes,or three-dimensional
studies.

The Sandbox method is considered the most promising of these methods, providing well defined
curve shapes for all the image types.

The Fourier method has a long list of problematic features, in addition to the fact that it only pro-
vides power law scaling regions for Gabriel’s Graph and the Euclidean Minimum Spanning
Tree, not for the images.
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Taking all algorithms and images types into consideration, the recommended fractal parameters are
the Sandbox dimensions of the mass centre images, Gabriel’s Graph and the Euclidean Minimum
Spanning Tree, at large sandbox diameters. In addition the EMST dimensionat small diameters may
be investigated. At this point in time it is not recommended to exclude any of the SSA-parameters
from the Syntactic Structure Analysis.

The vessel simulations provides a framework for further research, asthey give an indication to-
wards which results one can expect from histological sections. They also provide a clear demonstra-
tion of how such simulations may be used to map analysis results to a linear scale independent of
the number of vessels in the image. This is important if one whishes to find parameters which solely
depends on the vessel distribution pattern.

The simulations and the analysis of the four cases provide good reasons for being optimistic about
the possible use of these parameters. Based on these results, it is recommended to proceed with
comparative studies, as this is the only way the real usefulness of the parameters can be identified.
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3. Fractal Dimensions of the Vessel Mass Centre Images . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-16–A-17

4. Fractal Dimensions of Gabriel’s Graph . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-18–A-19
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Box Countinig Algorithm with 30 points
Shape Norm of Res. Slope Dimension True Dimension Absolute Error
Sierpinski Carpet 0.1646 -1.8616 1.8616 1.8929 -0.0313
Sierpinski Gasket 0.0499 -1.6235 1.6235 1.5850 0.0385
Percolation Cluster 1 0.0588 -1.8426 1.8426 1.8958 -0.0532
Percolation Cluster 2 0.0540 -1.8371 1.8371 1.8958 -0.0587
Percolation Backbone 1 0.0583 -1.6490 1.6490 1.6432 0.0058
Percolation Backbone 2 0.0540 -1.6472 1.6472 1.6432 0.0040
Perc. Elastic Backbone 1 0.1135 -1.1874 1.1874 1.1307 0.0567
Perc. Elastic Backbone 2 0.1274 -1.1568 1.1568 1.1307 0.0261
Circle Perimeter 0.0842 -1.0725 1.0725 1.0000 0.0725
Circle 0.0484 -1.9571 1.9571 2.0000 -0.0429
Square Perimeter 0.0132 -1.0038 1.0038 1.0000 0.0038
Square 0.0413 -1.9797 1.9797 2.0000 -0.0203
Mean of Error 0.0001 Standard Deviation of Error 0.0429

Correlation Algorithm (smoothed)
Shape Norm of Res. Slope Dimension True Dimension Absolute Error
Sierpinski Carpet 0.0575 -0.1423 1.8577 1.8929 -0.0352
Sierpinski Gasket 0.0870 -0.4280 1.5720 1.5850 -0.0130
Percolation Cluster 1 0.0245 -0.1152 1.8848 1.8958 -0.0110
Percolation Cluster 2 0.0275 -0.1190 1.8810 1.8958 -0.0148
Percolation Backbone 1 0.0602 -0.3302 1.6698 1.6432 0.0266
Percolation Backbone 2 0.0515 -0.3519 1.6481 1.6432 0.0049
Perc. Elastic Backbone 1 0.0703 -0.9023 1.0977 1.1307 -0.0330
Perc. Elastic Backbone 2 0.0727 -0.9394 1.0606 1.1307 -0.0701
Circle Perimeter 0.0436 -0.9982 1.0018 1.0000 0.0018
Circle 0.0361 -0.0231 1.9769 2.0000 -0.0231
Square Perimeter 0.0906 -0.9419 1.0581 1.0000 0.0581
Square 0.0351 -0.0228 1.9772 2.0000 -0.0228
Mean of Error -0.0110 Standard Deviation of Error 0.0323
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Mass Algorithm
Shape Norm of Res. Slope Dimension True Dimension Absolute Error
Sierpinski Carpet 0.0545 1.8624 1.8624 1.8929 -0.0305
Sierpinski Gasket 0.0440 1.5848 1.5848 1.5850 -0.0002
Percolation Cluster 1 0.0485 1.8943 1.8943 1.8958 -0.0015
Percolation Cluster 2 0.0567 1.8881 1.8881 1.8958 -0.0077
Percolation Backbone 1 0.0536 1.6892 1.6892 1.6432 0.0460
Percolation Backbone 2 0.0697 1.6574 1.6574 1.6432 0.0142
Perc. Elastic Backbone 1 0.0495 1.1887 1.1887 1.1307 0.0580
Perc. Elastic Backbone 2 0.0498 1.0928 1.0928 1.1307 -0.0379
Circle Perimeter 0.0393 1.0304 1.0304 1.0000 0.0304
Circle 0.0570 1.9763 1.9763 2.0000 -0.0237
Square Perimeter 0.0457 1.0528 1.0528 1.0000 0.0528
Square 0.0556 1.9770 1.9770 2.0000 -0.0230
Mean of Error 0.0064 Standard Deviation of Error 0.0336

Sandbox Algorithm with 50 points
Shape Norm of Res. Slope Dimension True Dimension Absolute Error
Sierpinski Carpet 0.0203 1.8817 1.8817 1.8929 -0.0112
Sierpinski Gasket 0.0434 1.5670 1.5670 1.5850 -0.0180
Percolation Cluster 1 0.0568 1.9076 1.9076 1.8958 0.0118
Percolation Cluster 2 0.0357 1.8949 1.8949 1.8958 -0.0009
Percolation Backbone 1 0.0419 1.6852 1.6852 1.6432 0.0420
Percolation Backbone 2 0.0374 1.6543 1.6543 1.6432 0.0111
Perc. Elastic Backbone 1 0.0432 1.1613 1.1613 1.1307 0.0306
Perc. Elastic Backbone 2 0.0536 1.1072 1.1072 1.1307 -0.0235
Circle Perimeter 0.0164 1.0034 1.0034 1.0000 0.0034
Circle 0.0323 1.9746 1.9746 2.0000 -0.0254
Square Perimeter 0.0370 1.0207 1.0207 1.0000 0.0207
Square 0.0377 1.9720 1.9720 2.0000 -0.0280
Mean of Error 0.0010 Standard Deviation of Error 0.0230

Fourier Algorithm (smoothed)
Shape Norm of Res. Slope Dimension True Dimension Absolute Error
Sierpinski Carpet 0.6984 -1.9503 1.9503 1.8929 0.0574
Sierpinski Gasket 0.0855 -1.5682 1.5682 1.5850 -0.0168
Percolation Cluster 1 0.5202 -1.7977 1.7977 1.8958 -0.0981
Percolation Cluster 2 0.6759 -1.9838 1.9838 1.8958 0.0880
Percolation Backbone 1 0.1041 -1.6001 1.6001 1.6432 -0.0431
Percolation Backbone 2 0.0745 -1.6051 1.6051 1.6432 -0.0381
Perc. Elastic Backbone 1 0.2393 -1.2122 1.2122 1.1307 0.0815
Perc. Elastic Backbone 2 0.1474 -1.1371 1.1371 1.1307 0.0064
Circle Perimeter 0.0721 -1.0112 1.0112 1.0000 0.0112
Circle 0.0999 -2.9984 2.9984 2.0000 0.9984
Square Perimeter 0.0262 -0.9976 0.9976 1.0000 -0.0024
Square 0.1053 -2.9666 2.9666 2.0000 0.9666
Mean of Error 0.0046 Standard Deviation of Error 0.0586

Table A.1: Data tables from the testing of the fractal algorithms. See figures A.2-A.7 for graphs and further
information on the power law scaling of the individual shape.
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Figure A.1: The test shapes of the fractal algorithms
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Figure A.2: Testing the algorithms on the Sierpinski Carpetand the Sierpinski Gasket
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Figure A.3: Testing the algorithms on two 1024x1024 random percolation clusters
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Figure A.4: Testing the algorithms on 1024x1024 percolation backbones
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Figure A.5: Testing the algorithms on the elastic backbone of two 1024x1024 percolation clusters
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Figure A.6: Testing the algorithm on a filled circle and a filled square
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Figure A.7: Testing the algorithms on a circle and a square perimeter



A. ADDITIONAL FIGURES AND TABLES A-11



A-12 APPENDIX

Case 1 Case 2

10
0

10
1

10
2

10
2

10
3

10
4

10
5

Box Size (pixel)

Box Counting

10
0

10
1

10
2

−1.8

−1.6

−1.4

−1.2

−1

−0.8
Box Counting Gradient

Region Slope NormR LWidth
−1.5778 0.0699 0.3960
−1.0577 0.0685 0.5009

Region Start End FitInt
-·-·-· 1.0 9.0 8.5
-·-·-· 9.0 145.0 -

10
0

10
1

10
2

10
2

10
3

10
4

Box Size (pixel)

Box Counting

10
0

10
1

10
2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

Box Counting Gradient

Region Slope NormR LWidth
−1.5522 0.0755 0.4149
−0.8616 0.0250 0.3760

Region Start End FitInt
-·-·-· 1.0 10.0 12.1
-·-·-· 18.0 145.0 -

10
0

10
2

10
−2

10
−1

10
0

r (pixel)

Correlation

10
0

10
1

10
2

−2.5

−2

−1.5

−1

−0.5

0

Correlation Gradient

Region Slope NormR LWidth
−0.2393 0.0479 0.2297
−1.4736 0.0533 0.1799
−0.4163 0.1144 0.3909

Region Start End FitInt
-·-·-· 0.5 2.7 3.7
-·-·-· 4.6 17.1 17.7
-·-·-· 17.1 300.2 - 10

0
10

2
10

−3

10
−2

10
−1

10
0

r (pixel)

Correlation

10
0

10
1

10
2

−5

−4

−3

−2

−1

0

Correlation Gradient

Region Slope NormR LWidth
−0.2551 0.0521 0.2297
−1.0094 0.0918 0.4612
−0.5567 0.0949 0.2406

Region Start End FitInt
-·-·-· 0.5 2.7 2.8
-·-·-· 2.9 86.1 70.2
-·-·-· 86.1 502.0 -

10
0

10
2

10
0

10
1

10
2

10
3

10
4

r (pixel)

Mass

10
0

10
1

10
2

1

1.5

2

2.5

3

Mass Gradient

Region Slope NormR LWidth
1.8353 0.0809 0.1915
0.9167 0.0660 0.2602
1.5081 0.0406 0.3107

Region Start End FitInt
-·-·-· 1.1 4.5 5.0
-·-·-· 5.7 38.2 41.7
-·-·-· 55.1 537.4 -

10
0

10
2

10
0

10
1

10
2

10
3

10
4

r (pixel)

Mass

10
0

10
1

10
2

0.5

1

1.5

2

2.5

3

Mass Gradient

Region Slope NormR LWidth
1.8175 0.0825 0.1915
1.0502 0.0376 0.4010
1.3423 0.0301 0.2105

Region Start End FitInt
-·-·-· 1.1 4.5 5.0
-·-·-· 7.0 133.1 117.8
-·-·-· 133.1 622.4 -

10
2

10
1

10
2

10
3

10
4

Sandbox Diameter (pixel)

Sandbox

10
1

10
2

10
3

0.8

1

1.2

1.4

1.6

1.8

2

Sandbox Gradient

Region Slope NormR LWidth
1.7213 0.0507 0.2837
0.9511 0.0739 0.3483
1.5605 0.0652 0.3028

Region Start End FitInt
-·-·-· 3.0 17.0 17.6
-·-·-· 17.0 143.0 142.1
-·-·-· 143.0 911.0 -

10
2

10
1

10
2

10
3

10
4

Sandbox Diameter (pixel)

Sandbox

10
1

10
2

10
3

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Sandbox Gradient

Region Slope NormR LWidth
1.7066 0.0517 0.2837
1.1365 0.0505 0.5210
1.4232 0.0751 0.1953

Region Start End FitInt
-·-·-· 3.0 17.0 16.5
-·-·-· 17.0 411.0 297.1
-·-·-· 411.0 1357.0 -

10
0

10
2

10
−6

10
−4

10
−2

frequency (1/pixel)

Fourier
10

0
10

1
10

2
10

3

−3

−2.5

−2

−1.5

−1

−0.5
Fourier Gradient

Region Slope NormR LWidth
−1.4467 0.0877 0.1497
−2.3320 0.0988 0.1152
−0.7312 0.0560 0.3115
−1.8464 0.0713 0.1203
−3.0801 0.0776 0.2205

Region Start End FitInt
-·-·-· 1.0 3.0 2.3
-·-·-· 3.0 7.0 6.8
-·-·-· 7.0 68.3 70.8
-·-·-· 68.3 165.0 162.2
-·-·-· 165.0 830.3 -

10
0

10
2

10
−6

10
−4

10
−2

frequency (1/pixel)

Fourier
10

0
10

1
10

2
10

3

−3

−2.5

−2

−1.5

−1

−0.5

Fourier Gradient

Region Slope NormR LWidth
−1.3781 0.0792 0.1497
−0.8155 0.0609 0.1578
−1.1405 0.0402 0.2205
−1.7620 0.0550 0.1203
−3.1538 0.0677 0.1905

Region Start End FitInt
-·-·-· 1.0 3.0 11.7
-·-·-· 4.6 14.6 19.6
-·-·-· 14.6 73.5 73.3
-·-·-· 73.5 177.5 189.2
-·-·-· 205.6 830.3 -

Figure A.8: Different analysis applied to the full cross section of cases 1 & 2
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Figure A.9: Different analysis applied to the full cross section of cases 3 & 4
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Figure A.10: Different analysis applied to the vessel perimeters of cases 1 & 2
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Figure A.11: Different analysis applied to the vessel perimeters of cases 3 & 4
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Figure A.12: Different analysis applied to the mass centersof cases 1 & 2
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Figure A.13: Different analysis applied to the mass centresof cases 3 & 4
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Figure A.14: Different analysis applied to the Gabriel’s Graph of cases 1 & 2
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Figure A.15: Different analysis methods of Gabriel’s Graphof cases 3 & 4
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Figure A.16: Different analysis applied to the EMST of cases1 & 2
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B Matlab Scripts and Functions

B.1 Image Processing

1. Extract Vessels from RGB-image . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

2. Image Combine Functions (floating point) . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

B-1
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3. Prodcue Raster Image from Graph or Image of Different Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5

Function: extractvessels – Extract Vessels
� �

1 f unc t i on Ibw = e x t r a c t v e s s e l s (A)
2 % Ibw = e x t r a c t v e s s e l s ( I )
3 % Th is f u n c t i o n e x t r a c t s t h e v e s s e l s ou t o f CD34 images , by f ir s t
4 % e x t r a c t i n g t h e green laye r , t hen expand ing t h e h i s t g ram byimage o v e r l a y .
5 % A s u b t r a c t i o n o f an average f i l t e r e d image i s then used b e f or e
6 % t h r e s h o l d i n g t h i s image f o r a BW−image based on luminance .
7 % The g r a y s c a l e image i s f u r t h e r p r o c e s s e d by edge d e t e c t i o nand
8 % t h r e s h o l d i n g t o p r o v i d e a BW−image o f t h e edges i n t h e image . These two
9 % BW images i s then combined b e f o r e t h e t h e lumens are f i l l e d in and t h e

10 % image c leaned up by remove ing areas s m a l l e r than 64 p i x e l s .

12 A= s i n g l e (A ) ;

14 % RGB t o g raysca le , u s i n g green l a y e r due t o s u p e r i o r r e s o l u ti o n
15 i f s i z e(A,3 )==3
16 A=A ( : , : , 2 ) ;
17 end

19 I2 =A;
20 %% IMAGECOMBINE
21 % Perform image o v e r l a y s u n t i l a t l e a s t 100 ppm o f t h e image area i s e i t h e r
22 % above 90% luminance or belowe 10%
23 I = imcombinefp ( I2 , I2 ,’overlay’ , 1 ) ;
24 i = 1 ;
25 whi le sum( sum( sum( I >= .90 ) ) ) < .0001* numel ( I ) &&. . .
26 sum( sum( sum( I <= .10 ) ) ) < .0001* numel ( I )
27 i = i +1;
28 I = imcombinefp ( I2 , I ,’overlay’ , 1 ) ;
29 end
30 d isp ( [ ’Number of overlays = ’ num2str ( i ) ] ) ;

32 I = s i n g l e ( I ) ;
33 %% AVERAGE FILTER
34 % average f i l t e r
35 ws =50; % wid th o f ave rag ing area
36 mIM= i m f i l t e r ( I , f s p e c i a l (’average’ , ws ) ,’replicate’ ) ;
37 % I e q u a l s t h e s u b t r a c t i o n image
38 I =mIM−I ;

40 % C a l c u l a t i n g t h e t h r e s h o l d o f t h e luminance image .
41 l e v e l = g r a y t h r e s h ( I ) ;
42 Ibwlum=im2bw ( I , l e v e l ) ;

44 %% EDGE DETECTION
45 [ I s o b e l , t h r e s h , gv , gh ] = edge ( I ,’sobel’ ) ;
46 grad = sq r t ( gh .^2+ gv . ^ 2 ) ;
47 grad = grad−min ( min ( g rad ) ) ;
48 grad = grad . /max(max( g rad ) ) ;

50 % t h r e s h o l d i n g edge image
51 l e v e l = g r a y t h r e s h ( g rad ) ;
52 Ibw=im2bw ( grad , l e v e l ) ;

54 %% Keeping a l l p i x e l s r e c o g n i z e d by e i t h e r luminance or edget h r e s h o l d s
55 Ibw = Ibw | Ibwlum ;

57 %% FIND ENTIRE LUMEN
58 % Merge areas ve ry c l o s e t o each o t h e r by morpho log i ca l c l o s in g s .
59 Ibw = bwmorph ( Ibw , ’close’ , 3 ) ;
60 % Close lumens by f i l l i n g i n h o l e s
61 Ibw = i m f i l l ( Ibw , ’holes’ ) ;
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62 % Erode o f f a one−p i x e l− t h i c k l a y e r a t t h e p e r i m e t e r t o accoun t f o r t h e
63 % edge f u n c t i o n o v e r e s t i m a t e s t h e w id th o f t h e edges .
64 Ibw = bwmorph ( Ibw ,’erode’ ) ;
65 % Remove a l l " v e s s e l s " s m a l l e r than 64 p i x e l s a t x25 m a g n i f i ca t i o n t h i s i s
66 % rough l y t r a n s l a t e s i n t o an area o f ( 1 . 1 0 E−6m) ^ 2 , i . e . f a l s e p o s i t i v e s due
67 % t o n o i s e .
68 Ibw = bwareaopen ( Ibw , 6 4 ) ;

� �

Listing B.1: extractvessels.m

Function: imcombinefp – Image Layer Combine (floating point)
� �

1 f unc t i on I = imcombinefp ( v a r a r g i n ) ;
2 % IMAGE = imcombinefp ( Foreground , Backbround , mode , n )
3 % Imcombinefp works w i th f l o a t i n g p o i n t images .
4 % These o p e r a t i o n s are based on t h e laye r−modes o f
5 % t h e Gnu−Image Man ipu la t i on Program− GIMP
6 %
7 % n > 1 a p p l i e s t h e fo rg round m u l t i p l e t imes , r e p l a c i n g t h e background w i th
8 % t h e r e s u l t o f l a s t i t e r a t i o n .
9 %

10 % t h e mode can t a k e any o f t h e f o l l o w i n g v a l u e s :
11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 % SIMPLE FILTER ’ a d d i t i o n ’
13 % ’ s u b t r a c t ’
14 % ’ d i f f e r e n c e ’
15 % ’ m u l t i p l y ’
16 % ’ d i v i d e ’
17 %
18 % COMPOSITE FILTER ’ dodge ’
19 % ’ burn ’
20 % ’ screen ’
21 % ’ ove r l ay ’
22 % ’ h a r d l i g h t ’
23 % ’ s o f t l i g h t ’
24 % ’ darkenon ly ’
25 % ’ l i g h t e n o n l y ’
26 % ’ g r a i n e x t r a c t ’
27 % ’ gra inmerge ’
28 %
29 % HSV FILTER ’ hue ’
30 % ’ co lour ’
31 % ’ s a t u r a t i o n ’
32 % ’ va lue ’
33 %
34 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 % %% s k i p p i n g unused image combine f u n c t i o n s . . .
36 %
37 % OVERLAY
38 % B i s i n v e r t e d , m u l t i p l i e d by two t i m e s F , added t o B , and thenm u l t i p l i e d
39 % by B
40 %

43 % parse i n p u t arguments
44 s w i t c h 1
45 case numel ( v a r a r g i n ) == 1 && i s n u m e r i c ( v a r a r g i n {1 } )
46 F= v a r a r g i n {1 } ;
47 B=F ;
48 cmode=’overlay’ ;
49 n =1;
50 case numel ( v a r a r g i n ) == 2 && i s n u m e r i c ( v a r a r g i n {1 } ) &&. . .
51 i s n u m e r i c ( v a r a r g i n {2 } )
52 F= v a r a r g i n {1 } ;
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53 B= v a r a r g i n {2 } ;
54 cmode=’overlay’ ;
55 n =1;
56 case numel ( v a r a r g i n ) == 3 && i s n u m e r i c ( v a r a r g i n {1 } ) &&. . .
57 i s n u m e r i c ( v a r a r g i n {2 } ) && i s c h a r ( v a r a r g i n {3 } )
58 F= v a r a r g i n {1 } ;
59 B= v a r a r g i n {2 } ;
60 cmode= v a r a r g i n {3 } ;
61 n =1;
62 case numel ( v a r a r g i n ) == 4 && i s n u m e r i c ( v a r a r g i n {1 } ) &&. . .
63 i s n u m e r i c ( v a r a r g i n { 2 } ) . . .
64 && i s c h a r ( v a r a r g i n {3 } ) && i s s c a l a r ( v a r a r g i n {4 } )
65 F= v a r a r g i n {1 } ;
66 B= v a r a r g i n {2 } ;
67 cmode= v a r a r g i n {3 } ;
68 n= v a r a r g i n {4 } ;
69 o t h e r w i s e
70 d isp ( ’ERROR in immode incorrect input arguments’ )
71 I = [ ] ;
72 re turn
73 end
74 cmode=lower ( cmode ) ;

76 % c o n v e r t t o s i n g l e i f u i n t 8
77 i f i s e q u a l ( c l a s s ( F ) ,’uint8’ )
78 F = s i n g l e ( F ) ;
79 e l s e i f ( i s e q u a l ( c l a s s ( F ) ,’single’ ) | | i s e q u a l ( c l a s s ( F ) ,’double’ ) ) &&. . .
80 max(max(max( F ) ) ) <=1
81 F = s i n g l e ( 2 5 5 .* F ) ;
82 end
83 i f i s e q u a l ( c l a s s (B) ,’uint8’ )
84 B = s i n g l e (B ) ;
85 e l s e i f ( i s e q u a l ( c l a s s (B) ,’single’ ) | | i s e q u a l ( c l a s s (B) ,’double’ ) ) &&. . .
86 max(max(max(B) ) ) <=1
87 B = s i n g l e ( 2 5 5 .* B ) ;
88 end
89 F= s i n g l e ( F ) ;
90 B= s i n g l e (B ) ;

92 %% IMAGE MODES %%
93 s w i t c h 1
94 %% s k i p p i n g unused image combine f u n c t i o n s

96 % OVERLAY
97 % B i s i n v e r t e d , m u l t i p l i e d by two t i m e s F , added t o B , and then
98 % m u l t i p l i e d by B
99 case i s e q u a l ( cmode ,’overlay’ )

100 I = (B . * ( B+ ( 2 .* F.* (255−B ) ) . / 255) . / 2 5 5 ) ;

102 o t h e r w i s e
103 d isp ( ’mode not recognized’ )
104 end

106 i f n > 1
107 n=n−1;
108 I = imcombine ( F , I , cmode , n ) ;
109 end

111 I = s i n g l e ( I . / 2 5 5 ) ;
� �

Listing B.2: imcombinefp.m
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Function: rasterim – Produce Image Matrices from Graphs or Change the Resolution of Black
and White Images

� �
1 f unc t i on A = r a s t e r i m ( xa , xb , ya , yb , s i z )
2 % A = r a s t e r i m ( xa , xb , ya , yb , s i z )
3 % r a s t e r i m produces an image m a t r i x o f s i z e s i z , where t h e p i xe l s e n t e r e d
4 % or e x i t e d by t h e v e c t o r s [ ( xa , ya ) , ( xb , yb ) ] are 1 , and t h e r es t 0 .
5 % Th is i s used t o produce r a s t e r images o f Gabr ie l ’ s Graph andt h e
6 % Euc l i dean Minimum Spanning Tree f o r F r a c t a l A n a l y s i s .
7 % The f u n c t i o n can a l s o be used t o cange t h e r e s o l u t i o n i n an image t o s i z
8 % by provd ing t h e row and column i n d i c e s : r a s t e r i m (C , C , R , R ,s i z )

10 A = f a l s e ( s i z ) ;
11 xmax = max(max ( [ xa ( : ) ; xb ( : ) ] ) ) ;
12 ymax = max(max ( [ ya ( : ) ; yb ( : ) ] ) ) ;
13 xa = doub le ( xa ) . / xmax ;
14 xb = doub le ( xb ) . / xmax ;
15 ya = doub le ( ya ) . / ymax ;
16 yb = doub le ( yb ) . / ymax ;

18 f o r i = 1 : numel ( xa )
19 x1 = round ( xa ( i )* s i z ( 2 ) ) ;
20 x2 = round ( xb ( i ) * s i z ( 2 ) ) ;
21 y1 = round ( ya ( i )* s i z ( 1 ) ) ;
22 y2 = round ( yb ( i ) * s i z ( 1 ) ) ;
23 f romx = f l o o r ( min ( x1 , x2 ) ) ;
24 t ox = c e i l (max( x1 , x2 ) ) ;
25 f romy = f l o o r ( min ( y1 , y2 ) ) ;
26 t oy = c e i l (max( y1 , y2 ) ) ;
27 i f ( x2−x1 )==0
28 a = i n f ;
29 e l s e
30 a = ( y2−y1 ) / ( x2−x1 ) ;
31 end
32 b = y1−a* x1 ;
33 % a s s i g n i n g s t a r t and s t o p p i x e l s
34 A( y1 , x1 ) =1;
35 A( y2 , x2 ) = 1 ;

37 %% ch eck in g i n t e r s e c t s w i t h y−g r i d l i n e s
38 y g r i d = fromy + . 5 : toy− .5 ;
39 i f i s f i n i t e ( a )
40 x = ( ygr id−b ) / a ;
41 e l s e
42 x = x1* ones (s i z e( y g r i d ) ) ;
43 b = 0 ;
44 end
45 % keep ing p i x e l s v i s i t e d i n two d iagona l c o r n e r s
46 l = ( ( x+.5)− f i x ( x +.5) <1 e−10);
47 l c = l ( 1 : numel ( l )−1) & l ( 2 : numel ( l ) ) ;
48 xc = x ( l c ) + . 5 ;
49 yc = y g r i d ( l c ) + . 5* s ign ( a ) ;
50 % removing p i x e l s on l y v i s i t e d i n one co rne r ( p i x e l s are never v i s i t e d i n
51 % two h o r i s o n t a l y or v e r t i c a l y a l i g n e d corners , because a l lp o i n t s s t a r t i n
52 % i n t e g e r p o s i t i o n s . )
53 x ( l ) = [ ] ;
54 y g r i d ( l ) = [ ] ;
55 ym = [ ygr id − .5 , y g r i d + . 5 ] ;
56 ym = [ym, yc ] ;
57 xm = round ( [ x , x , xc ] ) ;
58 % xm = [xm , xc ]

60 %% ch eck in g i n t e r s e c t s w i t h x−g r i d l i n e s
61 x g r i d = fromx + . 5 : tox− .5 ;
62 y = a* ( x g r i d )+ b ;
63 % keep ing p i x e l s v i s i t e d i n two d iagona l c o r n e r s
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64 l = ( ( y+.5)− f i x ( y +.5) <1 e−10);
65 l c = l ( 1 : numel ( l )−1) & l ( 2 : numel ( l ) ) ;
66 yc = y ( l c ) + . 5* s ign ( a ) ;
67 xc = x g r i d ( l c ) + . 5 ;
68 % removing p i x e l s on l y v i s i t e d i n one co rne r
69 y ( l ) = [ ] ;
70 x g r i d ( l ) = [ ] ;
71 xn = [ xg r id − .5 , x g r i d + .5 , xc ] ;
72 yn=round ( [ y , y , yc ] ) ;

74 % a s s i g n new p i x e l v a l u e s
75 I = sub2 ind (s i z e(A) , [ ym , yn ] , [ xm , xn ] ) ;
76 A( I ) = 1 ;
77 end

79 A= ro t90 ( ro t90 (A ) ) ;
� �

Listing B.3: rasterim.m

B.2 Syntactic Structure Analysis

1. Script for queueing SSA-analysis of multiple files . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6

2. Script running SSA-analysis on a single file . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7

3. Gabriels Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8

4. Euclidean Minimum Spanning Tree . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9

5. GG and EMST Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-12

6. Voronoi Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-16

7. Statistics to LATEX writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . B-18

Script: runallSSA.m – Script Queueing SSA-Analysis
� �

1 c lea r , c l o s e a l l
2 % S c r i p t used t o queue d i f f e r e n t f i l e s f o r s y n t a c t i c s t r u c t ur e a n a l y s i s
3 % DEPENDENCIES: s c r i p t G e t G r a p h s .m, g g s t a t s .m, v o r o n o i s ta t .m, s t a t t e x .m

5 % gg = 3−7
6 f i d t o t a l = fopen ( ’../analyse/images/prelim/total.tex’ ,’w’ ) ;
7 f i d b l = fopen ( ’../analyse/images/prelim/branchlength.tex’ ,’w’ ) ;
8 f i d b p n = fopen ( ’../analyse/images/prelim/branchpernode.tex’ ,’w’ ) ;
9 f i d n n = fopen ( ’../analyse/images/prelim/distnn.tex’ ,’w’ ) ;

10 f i d f n = fopen ( ’../analyse/images/prelim/distfn.tex’ ,’w’ ) ;
11 % emst = 8−12
12 f i d e m s t t o t a l = fopen ( ’../analyse/images/prelim/emsttotal.tex’ ,’w’ ) ;
13 f i d e m s t b l = fopen ( ’../analyse/images/prelim/emstbranchlength.tex’ ,’w’ ) ;
14 f i dems tbpn = fopen ( ’../analyse/images/prelim/emstbranchpernode.tex’ ,’w’ ) ;
15 f i d e m s t n n = fopen ( ’../analyse/images/prelim/emstdistnn.tex’ ,’w’ ) ;
16 f i d e m s t f n = fopen ( ’../analyse/images/prelim/emstdistfn.tex’ ,’w’ ) ;
17 % vorono i = 13−15
18 f i d a r e a = fopen ( ’../analyse/images/prelim/vorarea.tex’ ,’w’ ) ;
19 f i d a r e a = fopen ( ’../analyse/images/prelim/vorshape.tex’ ,’w’ ) ;
20 f i d a r e a = fopen ( ’../analyse/images/prelim/vorform.tex’ ,’w’ ) ;

22 c a s e s t r = ’case1x25’ ;
23 s c r i p t G e t G r a p h s

25 c a s e s t r = ’case2x25’ ;
26 s c r i p t G e t G r a p h s ;
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28 c a s e s t r = ’case3x25’ ;
29 s c r i p t G e t G r a p h s ;

31 c a s e s t r = ’case4x25’ ;
32 s c r i p t G e t G r a p h s ;

34 f c l o s e( ’all’ ) ;
35 c l o s e a l l

� �

Listing B.4: runallSSA.m

Script: scriptGetGraphs.m – Script Running SSA-Analysis on Image
� �

1 % S c r i p t f o r f i n d i n g t h e vo rono i diagram , g a b r i e l s graph andt h e e u c l i d e a n
2 % minimum spann ing t r e e . Note t h e f i l e s o u t p u t i s w r i t t e n t o must be opened
3 % i n ano the r s c r i p t , f u r t h e r m o r e c a s e s t r must be s p e c i f i e d in ano the r
4 % s c r i t p .
5 %
6 % Th is s c r i p t i s used t o g e t h e r w i t h t h e runa l lSSA s c r i p t .
7 % Other d e p e n d e n c i e s : g a b r i e l s g r a p h , emst , g g s t a t s , v o r o no i s t a t .

9 t i t l e f o n t = 26 ;
10 a x i s f o n t = 18 ;
11 IM = imread ( s t r c a t (’../analyse/images/’ , c a s e s t r ,’bw.tif’ ) ) ;
12 IM = s i n g l e ( IM ) ;
13 IM = IM . / max(max( IM ) ) ; % t r a n s f o r m p o s s i b l e i n p u t bw from ( 0 , 2 5 5 ) t o ( 0 , 1 )

15 K2=IM ;
16 %% p r e p r o s s e s s i n g image
17 % removing any h o l e s and red u c in g a reas t o t h e c e n t e r o f mass .
18 K2 = i m f i l l (K2 , ’holes’ ) ;
19 K2 = bwmorph (K2 , ’shrink’ , i n f ) ;

21 %% l o c a t i n g a l l v e s s e l s
22 [R , C] = f i nd (K2 ’ ) ;
23 xmin=min (R ) ; xmax = max(R ) ; ymin=min (C ) ; ymax=max(C ) ;
24 x =[R , C ] ;

26 %% Voronoi
27 [ v , c ]= vo rono in ( x ) ;
28 % making random c o l o r d i s t r i b u t i o n f o r p a t c h e s
29 [ r , I ]= s o r t ( rand ( 1 , l eng th ( c ) ) ) ;
30 c d i s t = I ; % c o l o r d i s t r i b u t i o n
31 f i g u r e ( 1 ) , c l f , hold on ,
32 % p l o t t i n g a l l po l ygons t h a t have a l l c o r n e r s i n s i d e t h e image t o avo id
33 % edge
34 i s i n s i d e = f a l s e (s i z e( c ) ) ;
35 f o r i = 1 : l eng th ( c )
36 %% on ly use po lygons i n s i d e image
37 i f a l l ( c { i }~=1) && a l l ( v ( c { i } ,1) >= xmin ) && a l l ( v ( c { i } ,1) <=xmax ) && . . .
38 a l l ( v ( c { i } ,2) >= ymin ) && a l l ( v ( c { i } ,2) <=ymax )
39 i s i n s i d e ( i ) = 1 ;
40 % p l o t po lygon
41 patch ( v ( c { i } , 1 ) , v ( c { i } , 2 ) , c d i s t ( i ) ) ; % use random c o l o r c d i s t ( i ) .
42 end
43 end
44 c=c ( i s i n s i d e ) ;
45 % forma t and e x p o r t f i g u r e
46 a x i s ( [ 1 s i z e( IM , 2 ) 1 s i z e( IM , 1 ) ] )
47 a x i s on ; a x i s t i g h t ;
48 a x i s ( [ 1 s i z e( IM , 2 ) 1 s i z e( IM , 1 ) ] )
49 s e t ( gca , ’ydir’ ,’reverse’ ,’FontSize’ , a x i s f o n t ) ;
50 t i t l e ( ’Voronoi Diagram’ ,’fontsize’ , t i t l e f o n t ) ;
51 hold o f f
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52 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r , . . .
53 ’/’ , c a s e s t r ,’voronoi.eps’ ) )

55 %% Delauney t r i a n g u l a t i o n
56 TRI = de launay ( x ( : , 1 ) , x ( : , 2 ) ) ;

58 %% G a b r i e l s graph
59 x ind = x ( : , 1 ) ; y ind =x ( : , 2 ) ;
60 [ x1 , x2 , y1 , y2 ]= g a b r i e l s g r a p h ( TRI , x ind , y ind ) ;

62 f i g u r e ( 2 ) , c l f ,
63 hold on ,
64 f o r i =1 : numel ( x1 )
65 p l o t ( [ x1 ( i ) , x2 ( i ) ] , [ y1 ( i ) , y2 ( i ) ] , ’k’ ) ,
66 end
67 hold o f f
68 % forma t and e x p o r t f i g u r e
69 d a s p e c t ( [ 1 1 1 ] ) ,
70 s e t ( gca , ’ydir’ ,’reverse’ ,’FontSize’ , a x i s f o n t ) ;
71 a x i s on ; a x i s t i g h t
72 a x i s ( [ 1 s i z e( IM , 2 ) 1 s i z e( IM , 1 ) ] )
73 t i t l e ( ’Gabriel’’s Graph’ ,’fontsize’ , t i t l e f o n t )
74 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r , . . .
75 ’/’ , c a s e s t r ,’gabrielsgraph.eps’ ) )

77 %% Euc l i dean Minimum Spanning Tree
78 f i g u r e ( 8 ) , c l f ,
79 [ xa , ya , xb , yb ] = emst ( x1 , y1 , x2 , y2 ) ;
80 hold on ,
81 f o r i =1 : numel ( xa )
82 p l o t ( [ xa ( i ) , xb ( i ) ] , [ ya ( i ) , yb ( i ) ] , ’k’ ) ,
83 end
84 hold o f f
85 % forma t and e x p o r t f i g u r e
86 a x i s t i g h t , a x i s on , d a s p e c t ( [ 1 1 1 ] ) ,
87 a x i s ( [ 1 s i z e( IM , 2 ) 1 s i z e( IM , 1 ) ] )
88 s e t ( gca , ’ydir’ ,’reverse’ ,’FontSize’ , a x i s f o n t ) ,
89 t i t l e ( ’Euclidean Minimum Spanning Tree’ ,’fontsize’ , t i t l e f o n t −5);
90 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r ,’emst.eps’ ) )

92 g g s t a t s ( x1 , x2 , y1 , y2 , c a s e s t r ,’gg’ )
93 g g s t a t s ( xa , xb , ya , yb , c a s e s t r ,’emst’ )
94 v o r o n o i s t a t ( v , c , c a s e s t r )
95 %c l o s e a l l f i g u r e s
96 c l o s e a l l

� �

Listing B.5: scriptGetGraphs.m

Function: gabrielsgraph.m – Gabriels Graph
� �

1 f unc t i on [ x1 , x2 , y1 , y2 ] = g a b r i e l s g r a p h ( TRI , x , y )
2 % [ x1 , x2 , y1 , y2 ] = g a b r i e l s g r a p h ( TRI , x _ i n d i c e s , y _ i n d i c es )
3 % TRI i s t h e Delauney t r i a n g u l a t i o n .
4 % The f u n c t i o n c a l c u l a t e s G a b r i e l s Graph from t h e de launey
5 % t r i a n g u l a t i o n .
6 %
7 % G a b r i e l s Graph i s de te rm ined by keep ing a l l b ranches between nodes
8 % t h a t f u l l f i l l t h e f o l l o w i n g c r i t e r i u m :
9 % Each branch between two nodes u n i q u e l y d e t e r i m n e s a c i r c l ew i t h t h i s

10 % branch as t h e d ia me te r . I f t h e r e are no o t h e r nodes i n s i d e t hi s c i r c l e ,
11 % then t h e branch i s a p a r t o f G a b r i e l s Graph , o t h e r w i s e i t i s no t .

13 %% t u r n t h e l i s t o f t r i a n g l e s i n t o a l i s t o f b raches / edges
14 S= c a t ( 1 , TRI ( : , 1 : 2 ) , TRI ( : , [ 1 , 3 ] ) , TRI ( : , [ 2 , 3 ] ) ) ;
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15 S= un ique ( S ,’rows’ ) ;
16 x1=x ( S ( : , 1 ) ) ; x2=x ( S ( : , 2 ) ) ;
17 y1=y ( S ( : , 1 ) ) ; y2=y ( S ( : , 2 ) ) ;

19 %% t e s t i n g a l l b ranches f o r t h e g a b r i e l s graph c r i t e r i u m
20 l = ze ros( l eng th ( x1 ) , 1 ) ;
21 f o r i =1 : numel ( x1 ) ,
22 dx=abs( x1 ( i )−x2 ( i ) ) ;
23 dy=abs( y1 ( i )−y2 ( i ) ) ;
24 r = sq r t ( dx^2+dy ^ 2 ) . / 2 ;
25 x c t r = min ( x1 ( i ) , x2 ( i ) ) + dx / 2 ;
26 y c t r = min ( y1 ( i ) , y2 ( i ) ) + dy / 2 ;

28 %% check t h e nodes t h a t has a branch t o ( x1 , y1 ) or ( x2 , y2 ) ;
29 % a l l e p u n k t e r som går t i l e l l e r f r a
30 I f rom = f i nd ( ( ( x1==x1 ( i ) ) & ( y1==y1 ( i ) ) ) ) ;
31 I t o = f i nd ( ( ( x2==x2 ( i ) ) & ( y2==y2 ( i ) ) ) ) ;

33 I = c a t ( 1 , I f rom , I t o ) ;
34 XN= un ique ( [ [ x1 ( I ) , y1 ( I ) ] ; [ x2 ( I ) , y2 ( I ) ] ] , ’rows’ ) ;

36 %% ch eck in g t h e d i s t a n c e t o t h e c e n t r e o f t h e c i r l c e
37 d i s t T o C t r =sq r t ( ( x c t r−XN( : , 1 ) ) . ^ 2 + ( y c t r−XN( : , 2 ) ) . ^ 2 ) ;
38 i f a l l ( d i s t T o C t r >= r ) ,
39 l ( i ) = 1 ;

41 e l s e
42 l ( i ) = 0 ;

44 end
45 end

47 %% removing a l l b ranches t h a t does no t meet t h e c r i t e r i u m .
48 x1=nonzeros( x1 .* l ) ;
49 x2=nonzeros( x2 .* l ) ;
50 y1=nonzeros( y1 .* l ) ;
51 y2=nonzeros( y2 .* l ) ;

� �

Listing B.6: gabrielsgraph.m

Function: emst.m – Euclidean Minimum Spanning Tree
� �

1 f unc t i on [ x1 , y1 , x2 , y2 ] = emst ( x1 , y1 , x2 , y2 )
2 % Funt ion [ x1 , y1 , x2 , y2 ] = EMST( x1 , y1 , x2 , y2 )
3 %
4 % Euc l i dean Minimum Spanning Tree
5 % The Tree i s e u c l i d e a n because t h e w e i g h t s on each branch i s sp e c i f i e d by
6 % t h e e u c l i d e a n d i s t a n c e between t h e e n d p o i n t s . The minimumspann ing t r e e
7 % i s a t r e e rea ch in g a l l p o i n t s i n a graph i n such a way t h a t t h e sum o f
8 % t h e w e i g h t s o f a l l i n d i v i d u a l b ranches i s min im ized .
9 %

10 % ( x1 , y1 ) , ( x2 , y2 ) s p e c i f y t h e two e n d p o i n t s o f t h e l i n e s t h at make up
11 % t h e graph and t h e EMST .

13 s i z =[max ( [ y1 ; y2 ] ) , max ( [ x1 ; x2 ] ) ] ;

15 %% Make l i s t o f a l l nodes [ Node ind ice , { n e i g h b o u r i n d i c e s } ,
16 %% { d i s t a n c e T o N e i g h b o u r s } ]
17 A = c a t ( 2 , sub2 ind ( s i z , y1 , x1 ) , sub2 ind ( s i z , y2 , x2 ) ) ;% a l l a r cs
18 N = un ique ( [ y1 , x1 ; y2 , x2 ] ,’rows’ ) ; % a l l nodes
19 N = sub2 ind ( s i z ,N( : , 1 ) ,N ( : , 2 ) ) ;
20 Neigh = c e l l (s i z e(N ) ) ;
21 D i s t = c e l l ( s i z e(N ) ) ;
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23 % f i n d n e i g h o u r s
24 f o r i =1 : l eng th (N) ,
25 I f rom = f i nd ( A( : , 1 ) = =N( i ) ) ;
26 I t o = f i nd (A( : , 2 ) = =N( i ) ) ;

28 ne igh = [A( I t o , 1 ) ; A( I f rom , 2 ) ] ;
29 [ ne igh ] = un ique ( ne igh ) ;
30 [m1 , n1 ] = ind2sub ( s i z ,N( i ) ) ;
31 [m2 , n2 ] = ind2sub ( s i z , ne igh ) ;
32 d i s t = sq r t ( (m2−m1 ) . ^ 2 + ( n2−n1 ) . ^ 2 ) ; % e u c l i d e a n norm

34 Neigh { i }= ne igh ;
35 D i s t { i }= d i s t ;
36 end

38 %% I n i t i a l i z i n g network v a r i a b l e s .
39 f i r s t = 1 ; % i n d i c e o f t h e f i r s t node added t o network
40 Tree = N( f i r s t ) ;%1 % The c u r r e n t e u c l i d e a n minmum spann ing t r e e
41 AddedTo = N( f i r s t ) ;%1
42 F r i n g e = [ ] ;
43 F r i n g e D i s t = [ ] ;
44 FringeConnTo = [ ] ;
45 ConnTo = c e l l ( 1 , numel (N ) ) ;
46 % weigh t t o t h e ne ighbour node t h a t c o n n e c t s t h i s node t o t h e tr e e
47 ConnToWeight = c e l l ( 1 , numel (N ) ) ;
48 l a s t a d d e d = f i r s t ;% s t a r t i n g w i th f i r s t node

50 %% S p e c i f y i n g t h e f i r s t arc between t h e s t a r t n o d e and t h e c l os e s t ne ighbour
51 ne igh = Neigh { l a s t a d d e d } ;
52 d i s t = D i s t { l a s t a d d e d } ;

54 F r i n g e = [ F r i n g e ; ne igh ] ;
55 F r i n g e D i s t = [ F r i n g e D i s t ; d i s t ] ;
56 FringeConnTo = [ Fr ingeConnTo ; ones ( numel ( d i s t ) , 1 )* l a s t a d d e d ] ;

58 [ va l , i nd ] = min ( F r i n g e D i s t ) ;

60 Tree = [ Tree ; F r i n g e ( ind ) ] ;
61 added to = FringeConnTo ( ind ) ;
62 AddedTo = [ AddedTo ; Tree ( 1 ) ] ;
63 l a s t a d d e d = f i nd (N== F r i n g e ( ind ) ) ;

65 ConnTo{ f i r s t } = l a s t a d d e d ;
66 ConnToWeight { f i r s t } = F r i n g e D i s t ( i nd ) ;

68 ConnTo{ l a s t a d d e d } = f i r s t ;
69 ConnToWeight { l a s t a d d e d } = F r i n g e D i s t ( i nd ) ;

71 F r i n g e ( ind ) = [ ] ; % d e l e t i n g row
72 F r i n g e D i s t ( i nd ) = [ ] ; % d e l e t i n g row
73 FringeConnTo ( ind ) = [ ] ;% d e l e t i n g row

75 %% I t e r a t i n g t h e r e s t o f t h e network
76 f o r i =1 : l eng th (N)−1 ,
77 % upda t i ng f r i n g e
78 ne igh = Neigh { l a s t a d d e d } ;
79 d i s t = D i s t { l a s t a d d e d } ;

81 %% Check ing i f t h e new ne ighbou rs are i n Fr inge a l r e a d y .
82 % i f any ne igh a l r e a d y i s i n Fr inge i t shou ld be k e p t w i t h t h e s ma l l e s t
83 % o f t h e two we igh ts , r a t h e r than added aga in
84 removeind = [ ] ;
85 f o r j =1 : numel ( ne igh )
86 I = f i nd ( F r i n g e == ne igh ( j ) ) ; % never more than one i n d i c e , I i s a s c a l a r
87 i f ~ isempty ( I )
88 removeind = [ removeind ; j ] ;
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89 i f F r i n g e D i s t ( I ) > d i s t ( j )
90 F r i n g e D i s t ( I ) = d i s t ( j ) ;
91 FringeConnTo ( I ) = l a s t a d d e d ;
92 end
93 end
94 end

96 ne igh ( removeind ) = [ ] ;
97 d i s t ( removeind ) = [ ] ;

99 %% Check ing i f any new ne ighbou rs are i n t h e network a l r e a d y .
100 % i f any ne igh a l r e a d y i s i n Tree i t shou ld be removed from t h e li s t
101 removeind = [ ] ;
102 f o r j =1 : numel ( ne igh )
103 I = f i nd ( Tree== ne igh ( j ) ) ;
104 i f ~ isempty ( I )
105 removeind =[ removeind ; j ] ;
106 end
107 end
108 ne igh ( removeind ) = [ ] ;
109 d i s t ( removeind ) = [ ] ;

111 %% Adding ne ighbou rs t o Fr inge
112 F r i n g e = [ F r i n g e ; ne igh ] ;
113 F r i n g e D i s t = [ F r i n g e D i s t ; d i s t ] ;
114 FringeConnTo = [ Fr ingeConnTo ; ones ( numel ( d i s t ) , 1 )* l a s t a d d e d ] ;

116 % i f Fr inge i s emtpy , a l l done
117 i f isempty ( F r i n g e )
118 break ; % s t o p loop
119 end

121 % f i n d t h e f r i n g e node w i th s m a l l e s t we igh t ( s ) and add t o t r e e.
122 [ va l , i nd ] = min ( F r i n g e D i s t ) ;
123 l a s t a d d e d = f i nd (N== F r i n g e ( ind ) ) ;
124 added to = FringeConnTo ( ind ) ;
125 Tree = [ Tree ; F r i n g e ( ind ) ] ;
126 AddedTo = [ AddedTo ;N( added to ) ] ;

128 %% Adding t h e new c o n n e c t i o n t o t h e node
129 % i f t h i s i s no t t h e f i r s t c o n n e c t i o n then e a r l i e r c o n n e c t i o ns must be
130 % k e p t .
131 i f isempty ( ConnTo{ added to } )
132 ConnTo{ added to } = l a s t a d d e d ;
133 ConnToWeight { added to } = F r i n g e D i s t ( i nd ) ;
134 e l s e
135 ConnTo{ added to } = [ ConnTo{ added to } ; l a s t a d d e d ] ;
136 ConnToWeight { added to } = [ ConnToWeight { added to } ; F r i n g eD i s t ( i nd ) ] ;
137 end

139 %% Removing added f r i n g e
140 F r i n g e ( ind ) = [ ] ; % d e l e t i n g row
141 F r i n g e D i s t ( i nd ) = [ ] ; % d e l e t i n g row
142 FringeConnTo ( ind ) = [ ] ;% d e l e t i n g row
143 end

145 %% C a l c u l a t i n g c o o r d i n a t e s o f s t a r t and end o f a l l b ranches
146 x to = [ ] ; y to = [ ] ; xfrom = [ ] ; yfrom = [ ] ; %
147 n =0;
148 f o r i = 1 : l eng th ( ConnTo )
149 i f ~ isempty ( ConnTo{ i } )
150 conn to = ConnTo{ i } ;
151 f o r j =1 : l eng th ( conn to ) ;
152 n=n +1;
153 [ yfrom ( n ) , xfrom ( n ) ] = ind2sub ( s i z , N( conn to ( j ) ) ) ;
154 [ y to ( n ) , x to ( n ) ] = ind2sub ( s i z , N( i ) ) ;
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155 end
156 end
157 end

159 %% Pars ing o u t p u t
160 %% Removing M u l t i p l e V e r t i c e Added a t t h e Connec t ion o f t h e Fi r s t Node
161 x1=xfrom ( : ) ;
162 x2= x to ( : ) ;
163 y1=yfrom ( : ) ;
164 y2= y to ( : ) ;

� �

Listing B.7: emst.m

Function: ggstat.m – Gabriels Graph and EMST Statistics
� �

1 f unc t i on g g s t a t s ( v a r a r g i n )
2 % g g s t a t s ( x1 , x2 , y1 , y2 , c a s e s t r , g raphs t r , [ t e x s o r t w r i t e] )
3 % C a l c u l a t e s g a b r i e l s graph or e u c l i d e a n minimum spann ing tr e e s t a t i s t i c s .
4 % x1 , y1 and x2 , y2 are t h e s t a r t and end c o o r d i n a t e s r e s p e c t i ve l y o f a l l
5 % branches i n t h e network . c a s e s t r and g r a p h s t r are used t o s pe c i f y
6 % f i l e n a m e s f o r t h e u n s o r t e d w r i t i n g s t o f i l e .
7 %
8 % The d e f a u l t va l u e f o r w r i t i n g s o r t e d t o t e x i s 1 .
9 % W r i t i n g s o r t e d t o t e x assumes t h a t t h e o u t p u t f i d s are numbered from

10 % 3−7 i n t h e case o f g a b r i e l s graph
11 % 8−12 i n t h e case o f e u c l i d e a n minimum spann ing t r e e
12 % see runa l lSSA . . .

14 t i t l e f o n t = 26 ;
15 a x i s f o n t = 18 ;

17 x1 = v a r a r g i n {1 } ;
18 x2 = v a r a r g i n {2 } ;
19 y1 = v a r a r g i n {1 } ;
20 y2 = v a r a r g i n {2 } ;
21 c a s e s t r = v a r a r g i n {5 } ;
22 g r a p h s t r = v a r a r g i n {6 } ;
23 t e x s o r t w r i t e =1;
24 i f numel ( v a r a r g i n ) >6
25 t e x s o r t w r i t e = v a r a r g i n {7 } ;
26 end

28 s i z ( 1 ) = max(max ( [ x1 ; x2 ] ) ) ;
29 s i z ( 2 ) = max(max ( [ y1 , y2 ] ) ) ;

31 %% Branch Length Parameters
32 numbranch = l eng th ( x1 ) ;
33 branchLeng ths =sq r t ( ( x2−x1 ) . ^ 2 + ( y2−y1 ) . ^ 2 ) ;
34 t o t a l L e n g t h = sum( b ranchLeng ths ) ;
35 meanBranchLength =mean( b ranchLeng ths ) ;
36 s tdBranchLeng th =s td ( b ranchLeng ths ) ;
37 skewnessBranchLength= skewness ( b ranchLeng ths ) ;
38 k u r t o s i s B r a n c h L e n g t h = k u r t o s i s ( b ranchLeng ths ) ;

40 f i g u r e ( 1 4 ) , h i s t ( b ranchLengths , 5 0 ) ,
41 t i t l e ( ’Branch Length’ ,’fontsize’ , . . . t i t l e f o n t )
42 s e t ( gca , ’FontSize’ , a x i s f o n t )
43 i f strcmp ( g r a p h s t r ,’emst’ )
44 s e t ( gca , ’XLim’ , [ 0 , 3 0 0 ] ,’YLim’ , [ 0 , 2 5 ] )
45 e l s e
46 s e t ( gca , ’XLim’ , [ 0 , 5 0 0 ] ,’YLim’ , [ 0 , 6 0 ] )
47 end
48 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r , . . .
49 ’/’ , c a s e s t r ,’hist’ , g r a p h s t r ,’brl.eps’ ) )
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51 %% Branches / Node Parameters
52 % number o f nodes
53 nodes = un ique ( [ x1 , y1 ; x2 , y2 ] ,’rows’ ) ;
54 numnodes = s i z e( nodes , 1 ) ;
55 b r an ch es = s o r t r o w s ( [ x1 y1 ; x2 y2 ] , 1 ) ;

57 node ind = sub2 ind ( s i z , nodes ( : , 1 ) , nodes ( : , 2 ) ) ;
58 b r a n c h i n d = sub2 ind ( s i z , b r an ch es ( : , 1 ) , b r an ch es ( : , 2 ) ) ;

60 % numbranchespernode−− numbpn
61 numbpn = ze ros( s i z e( nodes , 1 ) , 1 ) ;
62 f o r i =1 : numel ( node ind )
63 numbpn ( i ) = sum( sum( node ind ( i ) == b r a n c h i n d ) ) ;
64 end
65 meanbpn =mean( numbpn ) ;
66 s tdbpn = s td ( numbpn ) ;
67 skewnessbpn = skewness ( numbpn ) ;
68 k u r t o s i s b p n = k u r t o s i s ( numbpn ) ;

70 f i g u r e ( 1 1 ) , bar ( h i s t c ( numbpn , 1 :max(max( numbpn ) ) ) ) ,
71 t i t l e ( ’Branches Per Node’ ,’fontsize’ , t i t l e f o n t )
72 s e t ( gca , ’FontSize’ , a x i s f o n t ,’XLim’ , [ 0 , 1 0 . 5 ] )
73 i f strcmp ( g r a p h s t r ,’emst’ )
74 s e t ( gca , ’YLim’ , [ 0 , 2 0 0 ] )
75 e l s e
76 s e t ( gca , ’YLim’ , [ 0 , 1 5 0 ] )
77 end
78 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r , . . .
79 ’/’ , c a s e s t r ,’hist’ , g r a p h s t r ,’bpn.eps’ ) )

82 %% Dis ta n ce t o n e a r e s t and f u r t h t e s t ne ighbou rs
83 % nodennd− node n e a r e s t ne ighbour d i s t a n c e
84 nodennd = i n f .* ones (s i z e( nodes , 1 ) , 1 ) ;
85 % nodefnd− node f u r t h e s t ne ighbour d i s t a n c e
86 nodefnd = ze ros( s i z e( nodes , 1 ) , 1 ) ;
87 f o r i =1 : numel ( x1 )
88 nodeA = sub2 ind ( s i z , x1 ( i ) , y1 ( i ) ) ;
89 nodeB = sub2 ind ( s i z , x2 ( i ) , y2 ( i ) ) ;
90 indA = f i nd ( node ind == nodeA ) ;
91 indB = f i nd ( node ind == nodeB ) ;
92 i f branchLeng ths ( i ) < nodennd ( indA )
93 nodennd ( indA ) = b ranchLeng ths ( i ) ;
94 end
95 i f branchLeng ths ( i ) < nodennd ( indB )
96 nodennd ( indB ) = b ranchLeng ths ( i ) ;
97 end
98 i f branchLeng ths ( i ) > nodefnd ( indA )
99 nodefnd ( indA ) = b ranchLeng ths ( i ) ;

100 end
101 i f branchLeng ths ( i ) > nodefnd ( indB )
102 nodefnd ( indB ) = b ranchLeng ths ( i ) ;
103 end
104 end

106 % n e a r e s t ne ighbour
107 meannn = mean( nodennd ) ;
108 s td n n = s td ( nodennd ) ;
109 skewnessnn = skewness ( nodennd ) ;
110 k u r t o s i s n n = k u r t o s i s ( nodennd ) ;

112 % f u r t h e s t ne ighbour
113 meanfn = mean( nodefnd ) ;
114 s t d f n = s td ( nodefnd ) ;
115 skewness fn = skewness ( nodefnd ) ;
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116 k u r t o s i s f n = k u r t o s i s ( nodefnd ) ;

118 f i g u r e ( 1 3 ) , h i s t ( nodennd , 30 ) ,
119 t i t l e ( ’Distance to Nearest Neighbour’ ,’fontsize’ , t i t l e f o n t )
120 s e t ( gca , ’FontSize’ , a x i s f o n t )
121 i f strcmp ( g r a p h s t r ,’emst’ )
122 s e t ( gca , ’XLim’ , [ 0 , 3 0 0 ] ,’YLim’ , [ 0 5 0 ] )
123 e l s e
124 s e t ( gca , ’XLim’ , [ 0 , 2 0 0 ] ,’YLim’ , [ 0 5 0 ] )
125 end
126 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r , . . .
127 ’/’ , c a s e s t r ,’hist’ , g r a p h s t r ,’dnn.eps’ ) )

129 f i g u r e ( 1 6 ) , h i s t ( nodefnd , 50 ) ,
130 t i t l e ( ’Distance to Furthest Neighbour’ ,’fontsize’ , t i t l e f o n t )
131 s e t ( gca , ’FontSize’ , a x i s f o n t )
132 i f strcmp ( g r a p h s t r ,’emst’ )
133 s e t ( gca , ’XLim’ , [ 0 , 3 0 0 ] ,’YLim’ , [ 0 3 0 ] )
134 e l s e
135 s e t ( gca , ’XLim’ , [ 0 , 5 0 0 ] ,’YLim’ , [ 0 4 0 ] )
136 end
137 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , . . .
138 c a s e s t r ,’hist’ , g r a p h s t r ,’dfn.eps’ ) )

140 f i l e w r i t e =1;
141 i f f i l e w r i t e
142 % c a s e s t r = ’ case3x25 ’ ;
143 f i d = fopen ( s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r , . . .
144 g r a p h s t r ,’stat.txt’ ) , ’w’ ) ;
145 f p r i n t f ( f i d , ’Number of nodes: \t\t\t\t %d \n’ , numnodes )
146 f p r i n t f ( f i d , ’Number of branches: \t\t\t\t %d \n’ , numbranch ) ;
147 f p r i n t f ( f i d , ’Total length: \t\t\t\t\t %4.4f \n’ , t o t a l L e n g t h ) ;
148 f p r i n t f ( f i d , ’Mean branch length: \t\t\t\t %3.4f \n’ , meanBranchLength )
149 f p r i n t f ( f i d , ’Standard deviation of branch lengths: \t\t %3.3f \n’ , . . .
150 s tdBranchLeng th )
151 f p r i n t f ( f i d , ’Skewness of branch lengths: \t\t\t %3.4f \n’ , . . .
152 skewnessBranchLength )
153 f p r i n t f ( f i d , ’Kurtosis of branch lengths: \t\t\t %3.4f \n’ , . . .
154 k u r t o s i s B r a n c h L e n g t h )
155 f p r i n t f ( f i d , ’Mean number of branches per node: \t\t %3.4f \n’ , meanbpn )
156 f p r i n t f ( f i d , ’Standard deviation of branches per node: \t %3.4f \n’ , s tdbpn )
157 f p r i n t f ( f i d , ’Skewness of branches per node: \t\t\t %3.4f \n’ , skewnessbpn )
158 f p r i n t f ( f i d , ’Kurtosis of branches per node: \t\t\t %3.4f \n’ , k u r t o s i s b p n )
159 f p r i n t f ( f i d , ’Mean distance to nearest neighbour: \t\t %3.4f \n’ , meannn )
160 f p r i n t f ( f i d , ’St.dev. of distance to nearest neighbour: \t %3.4f \n’ , s t d n n )
161 f p r i n t f ( f i d , ’Skewness of distance to nearest neighbour: \t %3.4f \n’ , . . .
162 skewnessnn )
163 f p r i n t f ( f i d , ’Kurtosis of distance to nearest neighbour: \t %3.4f \n’ , . . .
164 k u r t o s i s n n )
165 f p r i n t f ( f i d , ’Mean distance to furthest neighbour: \t\t %3.4f \n’ , meanfn )
166 f p r i n t f ( f i d , ’St.dev. of distance to furthest neighbour: \t %3.4f \n’ , s t d f n )
167 f p r i n t f ( f i d , ’Skewness of distance to furthest neighbour: \t %3.4f \n’ , . . .
168 skewness fn )
169 f p r i n t f ( f i d , ’Kurtosis of distance to furthest neighbour: \t %3.4f \n’ , . . .
170 k u r t o s i s f n )

172 f c l o s e( f i d )
173 end

175 %% Wr i te t o t e x
176 t e x w r i t e = 1 ;
177 i f t e x w r i t e
178 t e x f o r m a t 1 = ’2’ ;
179 numformat = ’%6.2d’ ;
180 f i d = fopen ( s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r , . . .
181 g r a p h s t r ,’stat.tex’ ) , ’w’ ) ;
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182 s t a t t e x ( f i d ,’%06i’ ,’0’ ,’\\# nodes:’ , numnodes ,’\\# branches’ , . . .
183 numbranch ,’total length’ , . . .
184 round ( t o t a l L e n g t h ) )
185 s t a t t e x ( f i d , numformat , t ex fo rma t1 ,’Mean:’ , meanBranchLength ,’SD:’ , . . .
186 s tdBranchLength ,’Skew’ , . . .
187 skewnessBranchLength ,’Kurt’ , k u r t o s i s B r a n c h L e n g t h ) ;
188 s t a t t e x ( f i d , numformat , t ex fo rma t1 ,’Mean:’ , meanbpn ,’SD:’ , s tdbpn ,’Skew’ , . . .
189 skewnessbpn ,’Kurt’ , k u r t o s i s b p n ) ;
190 s t a t t e x ( f i d , numformat , t ex fo rma t1 ,’Mean:’ , meannn ,’SD:’ , s tdnn ,’Skew’ , . . .
191 skewnessnn ,’Kurt’ , k u r t o s i s n n ) ;
192 s t a t t e x ( f i d , numformat , t ex fo rma t1 ,’Mean:’ , meanfn ,’SD:’ , s t d f n ,’Skew’ , . . .
193 skewnessfn ,’Kurt’ , k u r t o s i s f n ) ;

195 f c l o s e( f i d )

197 end

199 %% Wr i te s o r t e d t o t e x
200 i f t e x s o r t w r i t e
201 t e x f o r m a t 1 = ’2’ ;
202 t e x f o r m a t 2 = ’0’ ;
203 numformat1 = ’%6.2f’ ;
204 numformat2 = ’%6d’ ;
205 i f strcmp ( g r a p h s t r ,’gg’ )
206 f i d 1 =3;
207 e l s e i f strcmp ( g r a p h s t r ,’emst’ )
208 f i d 1 =8;
209 end

211 f p r i n t f ( f i d1 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
212 s t a t t e x ( f i d1 , numformat2 , t ex fo rma t2 ,’\\# nodes:’ , numnodes ,’\\# branches:’ , . . .
213 numbranch ,’$\\Sigma$ length:’ , round ( t o t a l L e n g t h ) )
214 f p r i n t f ( f i d 1 +1 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
215 s t a t t e x ( f i d 1 +1 , numformat1 , t ex fo rma t1 ,’Mean:’ , meanBranchLength ,’SD:’ , . . .
216 s tdBranchLength ,’Skew:’ , skewnessBranchLength ,’Kurt:’ , . . .
217 k u r t o s i s B r a n c h L e n g t h ) ;
218 f p r i n t f ( f i d 1 +2 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
219 s t a t t e x ( f i d 1 +2 , numformat1 , t ex fo rma t1 ,’Mean:’ , meanbpn ,’SD:’ , s tdbpn ,’Skew:’ , . . .
220 skewnessbpn ,’Kurt:’ , k u r t o s i s b p n ) ;
221 f p r i n t f ( f i d 1 +3 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
222 s t a t t e x ( f i d 1 +3 , numformat1 , t ex fo rma t1 ,’Mean:’ , meannn ,’SD:’ , s tdnn ,’Skew:’ , . . .
223 skewnessnn ,’Kurt:’ , k u r t o s i s n n ) ;
224 f p r i n t f ( f i d 1 +4 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
225 s t a t t e x ( f i d 1 +4 , numformat1 , t ex fo rma t1 ,’Mean:’ , meanfn ,’SD:’ , s t d f n ,’Skew:’ , . . .
226 skewnessfn ,’Kurt:’ , k u r t o s i s f n ) ;

229 f o r i =0:4
230 i f strcmp ( c a s e s t r ,’case4x25’ )
231 f p r i n t f ( f i d 1 + i , ’\\\\’ ) ;
232 e l s e
233 f p r i n t f ( f i d 1 + i , ’&’ ) ;
234 end
235 end
236 end
237 end % end f u n c t i o n

� �

Listing B.8: ggstats.m
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Function: voronoistat.m – Voronoi statistics

� �
1 f unc t i on v o r o n o i s t a t ( v a r a r g i n )
2 % v o r o n o i s t a t ( v , c , c a s e s t r , [ f i l w r i t e ] , [ t e x w r i t e ] , [ t e xs o r t w r i t e ] )
3 % c a l c u l a t e s vo rono i s t a t i s t i c s from t h e vo rono i v e r t i c e s ,v , and c e l l s , c ,
4 % which may be o b t a i n e d u s in g t h e vo rono in f u n c t i o n .
5 % D e f a u l t v a l u e s f o r f i l e w r i t e and t e x w r i t e i s 1
6 % To manua l ly o v e r r i d e d e f a u l t a l l t h r e e wr i t e− l o g i c a l s must be s p e c i f i e d .
7 %
8 % NB: t e x s o r t w r i t e assumes t h a t o u t p u t f i l e s f o r area , shapes and form have t h e
9 % numer i ca l v a l u e s o f 13 , 14 and 15 r e s p e c t i v e l y . T e x s o r t w r it e i s used t o

10 % w r i t e da ta from a l l d i f f e r e n t ca ses i n t o t h e same t a b l e s .
11 %
12 % f i l e w r i t e p roduces a s c i i t e x t o u t p u t .
13 % t e x w r i t e f o r m a t s o u t p u t t o l a t e x t a b u l a r code f o r use w i th in p u t .
14 % t e x s o r t w r i t e , same f o r m a t t i n g as t e x w r i t e .

16 t i t l e f o n t =26;
17 a x i s f o n t =18;
18 %% Parse i n p u t
19 v= v a r a r g i n {1 } ;
20 c= v a r a r g i n {2 } ;
21 c a s e s t r = v a r a r g i n {3 } ;
22 i f numel ( v a r a r g i n ) >=6
23 f i l e w r i t e = v a r a r g i n {4}
24 t e x w r i t e = v a r a r g i n {5}
25 t e x s o r t w r i t e = v a r a r g i n {6}
26 e l s e % d e f a u l t
27 f i l e w r i t e = 1 ;
28 t e x w r i t e = 1 ;
29 t e x s o r t w r i t e =1;
30 end

32 %% area o f t h e po lygons
33 f o r i =1 : l eng th ( c )
34 %% area o f po l ygons
35 a r e a ( i ) = p o l y a r e a ( v ( c { i } , 1 ) , v ( c { i } , 2 ) ) ;
36 %% p e r i m e t e r o f t h e po lygons
37 xtmp = v ( c { i } , 1 ) ;
38 ytmp = v ( c { i } , 2 ) ;
39 dxtmp2 = d i f f ( [ xtmp ; xtmp ( 1 ) ] ) . ^ 2 ;
40 dytmp2 = d i f f ( [ ytmp ; ytmp ( 1 ) ] ) . ^ 2 ;
41 p e r i m e t e r ( i ) = sum( sq r t ( dxtmp2+dytmp2 ) ) ;
42 %% number o f s i d e s
43 n s i d e s ( i )=l eng th ( c { i } ) ;
44 end
45 % forma t and e x p o r t o u t p u t
46 f i g u r e ( 2 1 ) , bar ( ( 0 : . 1 : 5 ) .* 1 0 0 0 0 , h i s t c ( a rea , ( 0 : . 1 : 5 ) .* 1 0 0 0 0 ) ) ,
47 t i t l e ( ’area’ ,’fontsize’ , t i t l e f o n t )
48 s e t ( gca , ’XLim’ , [ 0 , 5 0 0 0 0 ] ,’FontSize’ , a x i s f o n t )
49 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r ,’histvarea.eps’ ) )

51 %% area
52 meanarea =mean( a r e a )
53 s t d a r e a = s td ( a r e a )
54 s k a r e a = skewness ( a r e a )
55 kua rea = k u r t o s i s ( a r e a )

57 %% p e r i m e t e r
58 f i g u r e ( 2 2 ) , h i s t ( p e r i m e t e r , 3 0 ) , t i t l e ( ’perimeter’ )
59 %% number o f s i d e s
60 f i g u r e ( 2 3 ) , bar ( 1 :max( n s i d e s ) , h i s t c ( ns i des , . 5 : 1 :max( n s i d e s ) ) ) ,
61 t i t l e ( ’number of sides’ ,’fontsize’ , t i t l e f o n t )

63 %% p o l y g o n a l form
64 po ly fo rm = 4* a r e a . / ( p e r i m e t e r ) . ^ 2 ;
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65 f i g u r e ( 2 4 ) , h i s t ( poly form , 3 0 ) , t i t l e ( ’polygonal form’ ,’fontsize’ , t i t l e f o n t )
66 s e t ( gca , ’XLim’ , [ 0 , 0 . 3 ] ,’FontSize’ , a x i s f o n t )
67 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r ,’histvform.eps’ ) )
68 meanform = mean( po ly fo rm )
69 s td fo rm = s td ( po ly fo rm )
70 skform = skewness ( po ly fo rm )
71 kuform = k u r t o s i s ( po ly fo rm )

73 %% p o l y g o n a l shape
74 maxd is t = ze ros( l eng th ( c ) , 1 ) ;
75 m i n d i s t = i n f ( l eng th ( c ) , 1 ) ;
76 f o r i =1 : l eng th ( c )
77 % f i n d i n g t h e l e n g t h between t h e v e r t i c e s
78 c c u r r e n t = c { i } ;
79 v x c u r r e n t = v ( c c u r r e n t , 1 ) ;
80 v y c u r r e n t = v ( c c u r r e n t , 2 ) ;
81 f o r j =1 : l eng th ( c c u r r e n t )
82 f o r k = 1 : l eng th ( c c u r r e n t )
83 % t h e o t h e r node must no t be t h e same as or n e x t t o j .
84 i f k~= j && k ~= mod ( j −1,numel ( c c u r r e n t ) ) &&. . .
85 k~=mod ( j +1 , numel ( c c u r r e n t ) )
86 d i s t a n c e = sq r t ( ( v x c u r r e n t ( j )− v x c u r r e n t ( k ) ) . ^ 2 + . . .
87 ( v y c u r r e n t ( j )− v y c u r r e n t ( k ) ) . ^ 2 ) ;
88 i f d i s t a n c e > maxd is t ( i ) , maxd is t ( i )= d i s t a n c e ;end
89 i f d i s t a n c e < m i n d i s t ( i ) , m i n d i s t ( i )= d i s t a n c e ;end
90 end
91 end
92 end
93 end
94 po l yshape = m i n d i s t . / maxd is t ;

96 f i g u r e ( 2 5 ) , h i s t ( po lyshape , 3 0 ) , t i t l e ( ’polygon shape’ ,’fontsize’ , t i t l e f o n t )
97 s e t ( gca , ’XLim’ , [ 0 , 1 ] ,’FontSize’ , a x i s f o n t )
98 h g ex p o r t (gcf , s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r ,’histvshape.eps’ ) )

100 meanshape =mean( po l yshape ) ;
101 s t d s h a p e =s td ( po l yshape ) ;
102 skshape = skewness ( po l yshape ) ;
103 kushape = k u r t o s i s ( po l yshape ) ;

105 %% Wr i te t o f i l e
106 i f f i l e w r i t e
107 f i d = fopen ( s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r , . . .
108 ’voronoistat.txt’ ) , ’w’ ) ;
109 f p r i n t f ( f i d , ’Mean area of polygon’’s: \t\t %1.4f \n’ , meanarea ) ;
110 f p r i n t f ( f i d , ’Standard Deviation of area: \t\t %8.4f \n’ , s t d a r e a ) ;
111 f p r i n t f ( f i d , ’Skewness of area distribution: \t\t %8.4f \n’ , s k a r e a ) ;
112 f p r i n t f ( f i d , ’Kurtosis of area distribution: \t\t %8.4f \n’ , kua rea ) ;
113 f p r i n t f ( f i d , ’Mean of polygonal shape: \t\t %8.4f \n’ , meanshape ) ;
114 f p r i n t f ( f i d , ’Standard diviation of polygonal shape: \t %8.4f \n’ , s t d s h a p e ) ;
115 f p r i n t f ( f i d , ’Skewness of polygonal shape: \t\t %8.4f \n’ , skshape ) ;
116 f p r i n t f ( f i d , ’Kurtosis of polygonal shape: \t\t %8.4f \n’ , kushape ) ;
117 f p r i n t f ( f i d , ’Mean of polygonal form: \t\t %8.4f \n’ , meanform ) ;
118 f p r i n t f ( f i d , ’Standard diviation of polygonal form: \t %8.4f \n’ , s t d fo rm ) ;
119 f p r i n t f ( f i d , ’Skewness of polygonal form: \t\t %8.4f \n’ , sk form ) ;
120 f p r i n t f ( f i d , ’Kurtosis of polygonal form: \t\t %8.4f \n’ , kuform ) ;
121 f c l o s e( f i d )
122 v a r a r g o u t = { } ;
123 end

125 %% Wr i te t o t e x
126 i f t e x w r i t e
127 t e x f o r m a t 1 = ’2’ ;
128 numformat = ’%6.2d’ ;
129 f i d = fopen ( s t r c a t (’../analyse/images/’ , c a s e s t r ,’/’ , c a s e s t r , . . .
130 ’voronoistat.tex’ ) , ’w’ ) ;
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131 s t a t t e x ( f i d , numformat , t ex fo rma t1 ,’Mean:’ , meanarea ,’SD:’ , s t d a r e a ,’Skew:’ , . . .
132 ska rea ,’Kurt:’ , kua rea ) ;
133 s t a t t e x ( f i d , numformat , t ex fo rma t1 ,’Mean:’ , meanshape ,’SD:’ , s t dshape ,’Skew:’ , . . .
134 skshape ,’Kurt:’ , kushape ) ;
135 s t a t t e x ( f i d , numformat , t ex fo rma t1 ,’Mean:’ , meanform ,’SD:’ , s td fo rm ,’Skew:’ , . . .
136 skform ,’Kurt:’ , kuform ) ;
137 f c l o s e( f i d )
138 end

140 %% Wr i te s o r t e d t o t e x
141 i f t e x s o r t w r i t e
142 t e x f o r m a t 1 = ’2’ ;
143 t e x f o r m a t 2 = ’0’
144 numformat1 = ’%6.2f’ ;
145 numformat2 = ’%6d’ ;

147 f i d 1 =13;
148 f p r i n t f ( f i d1 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
149 s t a t t e x ( f i d1 , numformat1 , t ex fo rma t1 ,’Mean:’ , meanarea ,’SD:’ , s t d a r e a ,’Skew:’ , . . .
150 ska rea ,’Kurt:’ , kua rea ) ;
151 f p r i n t f ( f i d 1 +1 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
152 s t a t t e x ( f i d 1 +1 , numformat1 , t ex fo rma t1 ,’Mean:’ , meanshape ,’SD:’ , . . .
153 s tdshape ,’Skew:’ , skshape ,’Kurt:’ , kushape ) ;
154 f p r i n t f ( f i d 1 +2 , s t r c a t (’%%’ , c a s e s t r ,’\n’ ) ) ;
155 s t a t t e x ( f i d 1 +2 , numformat1 , t ex fo rma t1 ,’Mean:’ , meanform ,’SD:’ , . . .
156 s td fo rm ,’Skew:’ , skform ,’Kurt:’ , kuform ) ;

158 f o r i =0:2
159 i f strcmp ( c a s e s t r ,’case4x25’ )
160 f p r i n t f ( f i d 1 + i , ’\\\\’ ) ;
161 e l s e
162 f p r i n t f ( f i d 1 + i , ’&’ ) ;
163 end
164 end
165 end

� �

Listing B.9: voronoistat.m

Function: stattex.m

� �
1 f unc t i on s t a t t e x ( v a r a r g i n )
2 % S t a t T e x ( f i d , numformat , t e x f o r m a t , S t r i n g 1 , Num 1 , . . . , St r i n g n , Num n )
3 % f u n c t i o n t o s i m p l i f y t h e t e x f o r m a t t i n g . Each s t r i n g and number p a i r i s
4 % w r i t t e n on a s e p a r a t e l i n e i n a l a t e x t a b u l a r
5 %
6 % Example : s t a t t e x ( f i d , ’%6.2 d ’ , ’ 2 ’ , ’ Mean ’ , meannum ) ;

8 f i d = v a r a r g i n {1 } ;
9 numformat = v a r a r g i n {2 } ;

10 t e x f o r m a t = v a r a r g i n {3 } ;

12 f p r i n t f ( f i d , [ ’\\begin{tabular}{lD{.}{.}{’ , t ex fo rma t ,’}} \n’ ] )
13 f o r i = 4 : 2 : ( numel ( v a r a r g i n ) )
14 s t r = v a r a r g i n { i } ;
15 cnum = v a r a r g i n { i +1} ;
16 f p r i n t f ( f i d , c e l l 2 m a t ( s t r c a t ( { s t r } , {’ & ’ } , { numformat } , { ’ \\\\ \n’ } ) ) , cnum ) ;
17 end
18 f p r i n t f ( f i d , ’\\end{tabular}\n’ ) ;

� �

Listing B.10: stattex
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B.3 Random Site Percolation

1. Script for Generating and Processing a Random Percolation Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . B-19

2. Largest Cluster in Percolation Matrix . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-20

3. Sort Cluster by Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-20

4. Backbone of Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-21

5. Shortest Path Across Cluster . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-23

6. Direct Paths Across Cluster . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-24

7. Locate Neighbouring Pixels that are Inside the Matrix . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-25

8. Lookup Table Identifying Bridgeing Pixels . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-25

9. Lookup Table Identifying Spur Pixels . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-26

Script: sitepercscript.m – Generate and Process a Random Percolation Cluster
� �

1 % random s i t e p e r c o l a t i o n a t p e r c o l a t i o n t h r e s h o l d .
2 % A p e r c o l a t i o n m a t r i x and ; t h e l a r g e s t ( i n f i n i t e ) c l u s t e r ,t h e t r a n s p o r t
3 % backbone and t h e e l a s t i c backbone o f t h e c l u s t e r are c a l c u la t e d .
4 % The r e s u l t s are p l o t t e d t o f i g u r e s and t h e m a t r i c e s saved .

6 c l e a r a l l ;

8 % s e t pa ramete rs
9 p = .592747 ; % c r i t i c a l t h r e s h o l d

10 s i z =[1 1 ]* 256 ; % s i z e o f ne twork

12 % Make new c l u s t e r s u n t i l spann ing c l u s t e r ococupy ing more than 0 .3 i s
13 % o b t a i n e d
14 notdone =1;
15 whi le notdone
16 m= s i z ( 1 ) ; n= s i z ( 2 ) ;
17 A= rand (m, n ) ; % p e r c o l a t i o n network
18 A=im2bw (A,1−p ) ; % t h r e s h o l d
19 % E x t r a c t l a r g e s t c l u s t e r
20 N = l a r g e s t c l u s t e r (A ) ;
21 i f any (N ( : , 1 ) ) && any (N( : , s i z e(N , 2 ) ) ) && sum( sum(N)) > numel (N)* . 3 ,
22 notdone =0;
23 end
24 end
25 save 512 f i g 2 /A. mat A

27 %% Find E l a s t i c Backbone
28 t i c % s t o r e t ime a t s t a r t
29 D = s o r t c l u s t e r (N ) ;
30 f i g u r e ( 2 ) , c la , imagesc(D) , d a s p e c t ( [ 1 1 1 ] ) , colormap(−gray ( 2 5 6 ) + 1 ) ,
31 [ EBal l , EBclose ] = s h o r t e s t p a t h (D ) ;
32 d isp ( ’Elastic Backbone’ )
33 t oc % r e p o r t t ime used

35 % p l o t l a r g e s t c l u s t e r and e l a s t i c backbone
36 EB=EBal l ( : , : , 1 ) ;
37 EB=max(max(EB))−EB;
38 EB( f i nd (EB ) ) = 1 ;
39 f i g u r e ( 4 ) , c la , imagesc(N. * . 8 + EB ( : , : , 1 ) ) ,
40 d a s p e c t ( [ 1 1 1 ] ) , colormap(−gray ( 2 5 6 ) + 1 ) ;

42 d isp ( ’Transport Backbone’ )
43 t i c
44 %% C a l c u l a t e t r a n s p o r t backbone
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45 BB=backbone (N) ;
46 t oc

48 D= s o r t c l u s t e r (N ) ;
49 D(D<10)=10;
50 D(D==max(max(D) ) ) = 0 ;

52 %% P l o t a l l d i f f e r e n t c l u s t e r s
53 L = bwlabe ln (A , 4 ) ;
54 RGB = l a b e l 2 r g b (L ,’lines’ ,’w’ ,’shuffle’ ) ;
55 map=[ 1 1 1 ;
56 . 4 . 4 . 7 ;
57 . 7 . 5 . 5 ;
58 0 0 0 ;
59 ] ;
60 f i g u r e ( 1 )
61 subp lo t ( 1 , 2 , 1 ) , c la , imagesc(A) , colormap(−gray +1) ,
62 d a s p e c t ( [ 1 1 1 ] ) , a x i s o f f
63 subp lo t ( 1 , 2 , 2 ) , c la , imagesc(RGB) , d a s p e c t ( [ 1 1 1 ] ) ,
64 d a s p e c t ( [ 1 1 1 ] ) , a x i s o f f
65 f i g u r e ( 2 )
66 %% P l o t L a r g e s t C l u s t e r a long w i th backbone and e l a s t i c backbone
67 subp lo t ( 1 , 2 , 1 ) , c la , image(2* N+BB+EB ) ; colormap ( map ) ;
68 d a s p e c t ( [ 1 1 1 ] ) ; , a x i s o f f
69 subp lo t ( 1 , 2 , 2 ) , c la , imagesc(D) , colormap ( [ map ; [ j e t ( 2 4 5 ) ] ] ) ,
70 d a s p e c t ( [ 1 1 1 ] ) , a x i s o f f , co lo rbar

72 %% save t h e r e s u l t s
73 save 512 f i g 2 / m a t r i c e s . mat A BB D EB EBal l N

� �

Listing B.11: sitepercscript.m

Function: largestcluster.m – Largest Cluster in a Random Percolation Matrix
� �

1 f unc t i on N = l a r g e s t c l u s t e r (A)
2 % Remove a l l e x c e p t l a r g e s t c l u s t e r
3 N= bwlabe ln (A , 4 ) ;
4 S= r e g i o n p r o p s (N, ’Area’ ) ;
5 N=ismember (N, f i nd ( [ S . Area ]==max(max ( [ S . Area ] ) ) ) ) ;

� �

Listing B.12: largestcluster.m

Function: sortcluster.m – Sort Cluster by Distance
� �

1 f unc t i on D = s o r t c l u s t e r ( v a r a r g i n ) ;
2 % D = s o r t c l u s t e r (N , [ I ] ) ;
3 % D i s a m a t r i x o f same s i z e as N . N i s a bw−m a t r i x w i t h ones a t c l u s t e r
4 % l o c a t i o n and z e r o s o u t s i d e . D i s a d i s t a n c e m a t r i x w i t h a l l cl u s t e r s i t e s
5 % c o n t a i n i n g a va lu e equa l t o t h e d i s t a n c e t o t h e l e f t edge . A ll
6 % non−c l u s t e r s i t e s c o n t a i n a va lu e one g r e a t e r than t h e l o n g e s t d is t a n c e .
7 %
8 % The o p t i o n a l second i n p u t parameter I , i s a l i s t o f t h e i n d i ce s t h e
9 % d i s t a n c e s w i l l be c a l c u l a t e d r e l a t i v e t o . The d e f a u l t va l ue i s a l l

10 % c l u s t e r s i t e s on t h e l e f t edge .

12 % i n i t i a l i z i n g
13 N= v a r a r g i n {1 } ;
14 F= l o g i c a l (ze ros( s i z e(N ) ) ) ; % p e r c o l a t i o n f r o n t
15 D=ze ros( s i z e(N ) ) ; % d i s t a n c e m a t r i x
16 i f numel ( v a r a r g i n ) == 2
17 I = f i nd ( [ v a r a r g i n { 2 } ] ) ;
18 e l s e
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19 I = f i nd (N ( : , 1 ) ) ;
20 end
21 F ( I ) = 1 ; % i n case
22 Done= f a l s e (s i z e(D ) ) ;

24 % Track ing Network
25 whi le any ( any ( F ) )

27 %Adding new s i t e s t o network ;
28 I = f i nd ( F ) ;
29 Done (f i nd (D) ) = 1 ;
30 D( I )=D( I ) + 1 ;
31 D=D+Done ;
32 ne ighbou r = l e g a l n (s i z e(N) , I ) ;

34 F l a s t =F ;
35 F ( ne ighbou r ) = N( ne ighbou r ) .* ~ Done ( ne ighbou r ) ;
36 F = F & ~ F l a s t ;
37 end

39 % t r a n s f o r m c o u n t e r t o d i s t a n c e and l a b e l a l l non−c l u s t e r s i t e s w i t h
40 % maximum va lu e +1
41 Dmax=max(max(D) ) + 1 ;
42 D= Dmax−D;

� �

Listing B.13: sortcluster.m

Function: backbone – Backbone of the Cluster
� �

1 f unc t i on N2 = backbone (N)
2 % BB = backbone (N)
3 % C a l c u l a t e s t h e t r a n s p o r t backbone o f t h e i n f i n i t e c l u s t e rm a t r i x N .
4 %
5 % The backbone c o n s i s t s o f a l l c l u s t e r p a r t s t h a t w i l l no t b reak away from
6 % t h e c l u s t e r by t h e removal o f a s i n g l e p i x e l . Th i s a l g o r i t h ml o c a t e s a l l
7 % p i x e l s w i t h t h e p o t e n t i a l t o break up t h e c l u s t e r f rom a loop−up t a b l e .
8 % These p i x e l s are then , one by one , removed and t h e new numbero f a reas
9 % wi th more than one p i x e l i s coun ted . I f t h e c l u s t e r broke a p ar t t hen t h e

10 % p i x e l i s removed a long w i th any r e g i o n no t i n c o n n t a c t w i t h ad i r e c t
11 % r o u t e a c r o s s t h e c l u s t e r . The p i x e l s c l o s e s t t o a d i r e c t r o ut e has t h e
12 % h i g h e s t p o t e n t i a l f o r b rea k i n g o f f l a r g e r e g i o n s which s u bs e q u e n t l y need
13 % not be checked f u r t e r , t h e s e p i x e l s are t h e r e f o r checked f ir s t .
14 % F i n a l l y , because t h i s approach d o e s n t f i n d " spur−p i x e l s " , i . e . t h e end
15 % p o i n t o f l i n e s , a l l 4−connec ted sp u rs are removed by a look−up t a b l e .
16 % I t i s assumed t h a t any p a r t removed i n t h i s way i s s m a l l e r than k e p t p a r t
17 % c o n t a i n i n g t h e d i r e c t pa th .

19 N2=N;
20 % Find a l l d i r e c t p a th s a c r o s s t h e c l u s t e r
21 DP= d i r e c t p a t h s (N ) ;

23 % removing b r i d i n g p i x e l s u s i n g t h e l i b e r a l h b r e a k r u l e f u n ct i o n ( custom
24 % made ) i n a l o o k u p t a b l e .
25 l u t = make lu t ( @lhbreak , 3 ) ;
26 L = a p p l y l u t (N, l u t ) ;
27 % Making a l i s t o f t h o s e p i x e l s t h a t were found no t t o break up th e r e g i o n
28 L=N & ~L ;
29 I = f i nd (L ) ;

31 % S o r t i n g t h e c l u s t e r w i t h t h e d i r e c t p a th s as s t a r t p o i n t s , re t u r n i n g t h e
32 % d i s t a n c e from each c l u s t e r s i t e t o t h e c l o s e s t d i r e c t pa th .The l i s t o f
33 % removab le p i x e l s i s then s o r t e d acco rd ing t o t h i s .
34 D= s o r t c l u s t e r (N, DP ) ;
35 [Y, Id ]= s o r t (D( I ) ) ;
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36 I = I ( Id ) ;

38 f o r i =1 : numel ( I )
39 i f N2( I ( i ) )
40 N( I ( i ) ) = 0 ;

42 Lbw= bwlabe ln (N , 4 ) ;
43 S= r e g i o n p r o p s (Lbw ,’Area’ ) ;

45 n c l u s t e r s = f i nd ( [ S . Area ] > 1 ) ;
46 % proceed i f t h e c l u s t e r has been s p l i t i n t o p a r t s
47 i f numel ( n c l u s t e r s ) > 1
48 L2 ( I ( i ) ) = 1 ;
49 % ch eck in g i f t h e t h e p i x e l removed l i e s on a d i r e c t pa th i f
50 % not i t can s a f e l y be removed .
51 i f ~DP( I ( i ) )
52 N2= N2 & l a r g e s t c l u s t e r (N ) ;
53 e l s e
54 % c l u s t e r has been s p l i t i n t h r e e on DP, t h e d i r e c t pa th
55 % p a r t s are t o be r e p l a c e d and any rema in ing p a r t s
56 % unna t t ached t o t h e d i r e c t pa th w i l l be removed .
57 l I = l e g a l n ( s i z e(N) , I ( i ) ) ;
58 l I = nonzeros( l I (N( l I ) & N( l I ) ) ) ;

60 l I d p = nonzeros( l I ( (DP( l I ) & DP( l I ) ) ) ) ;
61 ondp=Lbw( l I d p ) ;
62 l I = nonzeros( l I ( ~ (DP( l I ) & DP( l I ) ) ) ) ;
63 o f f d p = Lbw( l I ) ;
64 l = ~ ismember ( o f fdp , ondp ) ;
65 % c l u s t e r t o be removed
66 o f f d p = un ique (nonzeros( o f f d p ( l ) ) ) ;
67 i f ~ isempty ( o f f d p )
68 f o r tmp =1: numel ( o f f d p )
69 I tmp = f i nd (Lbw== o f f d p ( tmp ) ) ;
70 N2( I tmp ) = 0 ;
71 end
72 end
73 end
74 end
75 end
76 N2( I ( i ) ) = 1 ;
77 N( I ( i ) ) = 1 ;

79 end
80 % on ly keep ing t h e l a r g e s t c l u s t e r
81 N2 = l a r g e s t c l u s t e r (N2 ) ;
82 % adding any removed p i x e l s from t h e d i r e c t pa th .
83 N2 = N2 | DP ;

85 % C o n t i n o u s l y removing four−connec ted spur−p i x e l s u n t i l l a l l s i n g l e p i x e l
86 % l i n e s are removed .
87 l u t = make lu t ( @lspur , 3 ) ;
88 L1= f a l s e (s i z e(N2 ) ) ;
89 L2=L1 ;
90 L1 = a p p l y l u t (N2 , l u t ) ;
91 whi le ~ i s e q u a l ( L2 , L1 )
92 L2=L1 ;
93 L1 = a p p l y l u t ( L1 , l u t ) ;
94 L1 = L1 | DP ;
95 end
96 % Removing sp u rs form N2
97 N2 = N2 & L1 ;

� �

Listing B.14: backbone.m
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Function: shortestpath.m – Shortest Paths Across the Cluster

� �
1 f unc t i on v a r a r g o u t = s h o r t e s t p a t h (D)
2 % [ EBal l , EBclose , EBbin ] = s h o r t e s t p a t h (D)
3 % D i s a s o r t e d m a t r i x o f t h e c l u s t e r w i t h v a l u e s a s s i g n e d accord ing t o t h e
4 % d i s t a n c e form t h e l e f t s i d e .
5 %
6 % EBal l i s a m a t r i x c o n t a i n i n g a l l t h e s h o r t e s t r o u t e s th rough t h e mat r i x ,
7 % wi th t h e d i f f e r e n t r o u t e s found on t h e i n d i c e s o f t h e t h i r d dimens ion .
8 % The r o u t e s are l a b e l e d w i th v a l u e s acco rd ing t o t h e d i s t a n ce t o t h e
9 % s t a r t .

10 %
11 % EBclose i s a m a t r i x o f t h e n e a r e s t ne ighbou rs t o EBal l l a b e le d acco rd ing
12 % t o t h e d i s t a n c e t o t h e s t a r t . Th i s may be used i n c e r t a i n a l g or i t h m s used
13 % t o f i n d t h e t r a n s p o r t backbone .
14 %
15 % EBbin i s a l o g i c a l image o f EB c o n t a i n i n g no d i s t a n c e i n f o r ma t i o n .
16 %
17 % Finds t h e s h o r t e s t pa th i n a s o r t e d c l u s t e r
18 % The a l g o r i t h m f l o o d s t h e m a t r i x f rom one s i d e and b a c k t r a c ks th rough t h e
19 % c l u s t e r once a path l e a d s t o t h e o t h e r s i d e . Th i s i s a width− f i r s t
20 % r o u t i n e ch eck i n g a l l p o s s i b l e p a th s s i m u l t a i n o u s l y and a bo r t s when a
21 % r o u t e reaches t h e o t h e r s i d e .
22 %
23 % NOTE a l l non−c l u s t e r s i t e s must be a s s i g n e d va lu e Dmax ( no t 0 )

25 % FINDING ALL SHORTEST HORIZONTAL PATHS
26 Dmax=max(max(D) ) + 1 ;
27 Dmin=min (D( : , s i z e(D , 2 ) ) ) ;
28 ID= f i nd (D( : , s i z e(D, 2 ) ) = = Dmin ) ;

30 EB=ones (s i z e(D) ) * Dmax+1; % i n i t i l i z i n g e l a s t i c backbone m a t r i x− EB
31 EBal l =ze ros( s i z e(D, 1 ) , s i z e(D, 2 ) , numel ( ID ) ) ;
32 EBclose =ze ros( s i z e(D ) ) ;

34 f o r i =1 : numel ( ID )
35 m=ID ( i ) ; n= s i z e(D , 2 ) ;
36 EB(m, n )=Dmin ;
37 EBclose (m, n )=−1;

39 m = [m+1 m−1];
40 l = ( (m<=s i z e(D , 1 ) ) .* ( m>=1) ) ;
41 m = m( f i nd ( l ) ) ;

43 EBclose (m, n )=Dmin ;

45 f o r j =1 :Dmin−1
46 I = f i nd (EB==min ( min (EB ) ) ) ;

48 %adding l e g a l ne ighbour c e l l s .
49 r = l e g a l n (s i z e(D) , I ) ;
50 Dval=D( r ) ;

52 % removing non−minimum c e l l s
53 l = ( Dval==min ( min ( Dval ) ) ) ;
54 r = r ( f i nd ( r . * l ) ) ;
55 Dval=min ( min ( Dval ) ) ;

57 i f ~ isempty ( r ) ;
58 EB( r )= Dval ;
59 EBclose ( r )=−1;
60 end

62 % MAKING LIST FOR Backbone CALCULATION
63 [m, n ] = ind2sub (s i z e(D) , r ) ;
64 m = c a t ( 1 , m+1 , m−1, m, m) ;
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65 n = c a t ( 1 , n , n , n +1 , n−1);
66 I tmp =[ f i nd ( n < 1 ) ; f i nd ( n>s i z e( EBclose , 2 ) ) ] ;
67 i f ~ isempty ( I tmp ) ,
68 n ( I tmp ) = 0 ; m( I tmp ) = 0 ;
69 m=m( f i nd (m) ) ; n=n (f i nd ( n ) ) ;
70 end
71 I tmp =[ f i nd (m< 1 ) ; f i nd (m>s i z e( EBclose , 1 ) ) ] ;
72 i f ~ isempty ( I tmp ) ,
73 n ( I tmp ) = 0 ; m( I tmp ) = 0 ;
74 m=m( f i nd (m) ) ; n=n (f i nd ( n ) ) ;
75 end

77 r2 = sub2 ind (s i z e( EBclose ) , m, n ) ;
78 temp= f a l s e (s i z e( r2 ) ) ;
79 r = c a t ( 1 , r ( : ) ,f i nd ( EBclose ==−1));
80 f o r t e l l e r = 1 : numel ( r )
81 I r = f i nd ( r2 == r ( t e l l e r ) ) ;
82 i f ~ isempty ( I r ) ,
83 temp ( I r ) = 1 ;
84 end
85 end

87 r2 = r2 ( f i nd ( r2 .* ~ temp ) ) ;
88 EBclose ( r2 )=Dmin− j ;
89 end
90 EBal l ( : , : , i )=EB ;
91 tmp = EB;
92 tmp ( tmp==max(max( tmp ) ) ) = 0 ;
93 tmp = tmp&tmp ;
94 EBbin ( : , : , i )= tmp ;
95 end

97 % p a r s i n g o u t p u t
98 v a r a r g o u t {1}= EBal l ;
99 v a r a r g o u t {2}= EBclose ;

100 v a r a r g o u t {3}= EBbin ;
� �

Listing B.15: shortestpath.m

Function: directpaths.m – Locate All Direct Paths Across the Cluster
� �

1 f unc t i on DP = d i r e c t p a t h s (N)
2 % DP = d i r e c t p a t h s (N)
3 % Finds a l l d i r e c t h o r i z o n t a l p a th s i n a s o r t e d c l u s t e r . These r o u t e s need
4 % not be t h e g l o b a l l y s h o r t e s t rou te , on l y t h e s h o r t e s t r o u t efrom t h e
5 % i n d i v i d u a l s t a r t l o c a t i o n s a t bo th s i d e s and t o t h e c l o s e s tp o i n t on t h e
6 % o t h e r .
7 %
8 % NOTE a l l non−c l u s t e r s i t e s must have va lu e 0 i n N;

10 % i n i t i a l i z e
11 s i z =s i z e(N ) ;
12 DP= f a l s e ( s i z ) ;

14 % FINDING ALL SHORTEST HORIZONTAL PATHS
15 f o r j = 1 : 2 ;
16 % F l i p l e f t / r i g h t t o l o c a t e t h e s h o r t e s t p a th s from both s i d es
17 N= f l i p l r (N ) ;
18 D= s o r t c l u s t e r (f l i p l r (N ) ) ;
19 % Changing non−c l u s t e r d i s t a n c e v a l u e s from max t o 0 .
20 D(D==max(max(D) ) ) = 0 ;
21 s t a r t = D( : ,s i z e(D , 2 ) ) ;
22 % s t a r t v a l u e s are i n d i c e s i n a s i n g l e column , c a l c u l a t i n g t og l o b a l
23 % i n d i c e v a l u e s .
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24 I s t a r t =f i nd ( s t a r t )+ s i z ( 1 ) .* ( s i z (2 )−1) ;
25 % I t e r a t i n g from each s t a r t l o c a t i o n
26 f o r i =1 : numel ( I s t a r t )
27 c u r r e n t = I s t a r t ( i ) ;
28 DP( c u r r e n t ) = 1 ;
29 whi le ~ isempty ( c u r r e n t )
30 % f i n d i n g l e g a l ne ighbou rs
31 l n = l e g a l n ( s i z , c u r r e n t ) ;
32 % removing ne ighbou rs no t on network , or on d i r e c t pa th
33 l n =nonzeros( l n . * (D( l n )&D( l n ) ) ) ;
34 % u s in g t h e min imal rou te , removing r e p e t i t i o n s
35 l n = un ique ( l n (D( l n )==min (D( l n ) ) ) ) ;
36 c u r r e n t = nonzeros( l n . * ( ~ ( DP( l n )&DP( l n ) ) ) ) ;
37 DP( c u r r e n t ) = 1 ;
38 end
39 end
40 % F l i p p i n i g t h e d i r e c t p a t h m a t r i x back
41 DP= f l i p l r (DP ) ;
42 end

� �

Listing B.16: directpaths.m

Function: legaln.m – Locate Legal Neighbours (inside matrix)
� �

1 f unc t i on ne ighbou r = l e g a l n ( s i z , I )
2 % I = l e g a l n ( s i z , I )
3 % Retu rns a l l i n d i c e s i n I t h a t are l e g e l , i . e . i n s i d e t h e boundry s i z .
4 [m, n ]= ind2sub ( s i z , I ) ;
5 m = [m+1 m−1 m m] ;
6 n = [ n n n+1 n−1];
7 l = ( (m<= s i z ( 1 ) ) & (m>=1) ) & ( ( n<= s i z ( 2 ) ) & ( n > = 1 ) ) ;
8 m=nonzeros(m.* l ) ; n=nonzeros( n .* l ) ;
9 ne ighbou r = sub2 ind ( s i z ,m, n ) ;

� �

Listing B.17: legaln.m

Function: lhbreak.m – Lookup Table identifying Bridgeing Pixels
� �

1 f unc t i on r = l h b r e a k ( x ) ;
2 % r = l h b r e a k ( x )
3 % l i b e r a l ( i . e . 4−connec ted ) break r u l e b rea k i n g H−connec ted r e g i o n s f o r
4 % lookup t a b l e . The i n p u t x i s a 3x3 b i n a r y m a t r i x o f some c o n f ig u r a t i o n .
5 % I f t h e midd le e lemen t can be changed from 1 t o 0 w i t h o u t b rea ki n g up a
6 % 4−connec ted r e g i o n then t h i s i s done . Otherw ise t h e o r i g i n a l va l u e i s
7 % k e p t .

9 x1=x ;
10 x2=ro t90 ( x1 ) ;
11 x3=ro t90 ( x2 ) ;
12 x4=ro t90 ( x3 ) ;
13 s w i t c h 1
14 % a l l z e r o s s t a y
15 case x (5 )==0 , r =0;
16 % x ( 5 ) == 1 FOR REMAINING CASES

18 % non b r i d g i n g p i x e l s are k e p t .
19 % NOT
20 % * * * * 1 *
21 % 1 1 1 1 1 *
22 % * * * * * *
23 case ~ ( . . .
24 i s e q u a l ( x ( 4 : 6 ) , [ 1 1 1 ] ) | | . . .
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25 i s e q u a l ( x ( [ 2 , 5 , 8 ] ) , [ 1 1 1 ] ) | | . . .
26 ( x ( 2 ) && x ( 4 ) ) | | . . .
27 ( x ( 2 ) && x ( 6 ) ) | | . . .
28 ( x ( 4 ) && x ( 8 ) ) | | . . .
29 ( x ( 6 ) && x ( 8 ) ) )
30 r =1;

32 % i f 8 or more p i x e l s are 1 r canno t break a pa th
33 % 1 1 0
34 % 1 1 1
35 % 1 1 1
36 case sum( x ( : ) ) > = 8 , r =1;

38 % i f one comp le te s i d e i s 1 , and t h e midd le o p o s i t e i s 0 then r canno t
39 % break a path
40 % 1 1 1
41 % 1 1 1
42 % * 0 *
43 case any ( . . .
44 [ sum( x1 ( 1 : 6 ) ) sum( x2 ( 1 : 6 ) ) sum( x3 ( 1 : 6 ) ) sum( x4 ( 1 : 6 ) ) ] = = 6 . . .
45 & [ x1 (8)==0 x2 (8)==0 x3 (8)==0 x4 (8 )==0 ] . . .
46 ) ,
47 r =1;

49 % i f x i s on a co rne r i t canno t break pa th
50 % * 1 1
51 % 0 1 1
52 % * 0 *
53 case ( x1 ( 2 ) && x1 ( 3 ) && x1 ( 6 ) && ~x1 ( 4 ) && ~x1 ( 8 ) ) | | . . .
54 ( x2 ( 2 ) && x2 ( 3 ) && x2 ( 6 ) && ~x2 ( 4 ) && ~x2 ( 8 ) ) | | . . .
55 ( x3 ( 2 ) && x3 ( 3 ) && x3 ( 6 ) && ~x3 ( 4 ) && ~x3 ( 8 ) ) | | . . .
56 ( x4 ( 2 ) && x4 ( 3 ) && x4 ( 6 ) && ~x4 ( 4 ) && ~x4 ( 8 ) )
57 r =1;
58 o t h e r w i s e
59 r =0;
60 end

� �

Listing B.18: lhbreak.m

Function: lspur.m – Lookup Table identifying Spur Pixels

� �
1 f unc t i on r = l s p u r ( x ) ;
2 % l i b e r a l ( i . e . 4−connec ted ) spur removing f u n c t i o n f o r l u t , make lu t and a p p ly l u t
3 % t h i s removes t h e end p o i n t s o f (4− connec ted ) l i n e s w i t h o u t removing sma l l
4 % o b j e c t s c o m p l e t e l y .

6 s w i t c h 1
7 % a l l z e r o s s t a y
8 case x (5 )==0 , r =0;
9 % x ( 5 ) == 1 FOR REMAINING CASES

11 case x (2 )+ x (4 )+ x (6 )+ x (8)==1
12 r =0;

14 o t h e r w i s e
15 r =1;
16 end

� �

Listing B.19: lspur.m
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B.4 Fractal Analysis
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Function: regridboxcountpix.m – Count Number Occupied Pixels in Resized Image for Box
Count Method

� �
1 f unc t i on [ num] = r e g r i d b o x c o u n t p i x (A, s i z )
2 % num = REGRIDBOXCOUNTPIX(A , s i z e ) ;
3 % r e g r i d b o x c o u n t p i x maps t h e m a t r i x A over t o a new m a t r i x M. The s i z e o f
4 % new p i x e l s i n M i s de te rm ined by t h e s c a l a r s i z e , s i z , c o n t a in i n g t h e
5 % number o ld p i x l e s each new p i x e l i s c o v e r i n g a long each a x i s. Any c e l l i n
6 % M t h a t maps t o a c e l l , or p a r t o f a c e l l i n A , t h a t c o n t a i n s a non−ze ro
7 % e n t r y i s s e t t o 1 . The f u n c t i o n then c o u n t s a l l non empty c e l l,
8 % r e p o s i t i o n s t h e g r i d and c o u n t s again , compai rs a l l p o s i b le p o s i t i o n s and
9 % r e t u r n s t h e minimum number o f non−empty boxes

11 % I f m a t r i x i s i n non− l o g i c a l fo rmat , a l l nonzero e n t r i e s are c o n v e r t e d t o
12 % 1 i n t h e c o n v e r s i o n t o l o g i c a l .
13 i f ~ i s l o g i c a l (A)
14 A= l o g i c a l (A ) ;
15 end

17 % Mat r i x d imens ions
18 x= s i z e(A , 1 ) ; y=s i z e(A , 2 ) ;
19 m=c e i l ( x . / s i z ) ; n=c e i l ( y . / s i z ) ;

21 % Permu ta t i o n s w i th a d i s p l a c e m e n t a long e i t h e r row or column d i r e c t i o n ,
22 % w i l l r e q u i r e a m a t r i x one s i z e l a r g e r f o r t h a t d i r e c t i o n . Thi s i s because
23 % t h e s e d i s p l a c e d g r i d s have t h e l a s t c e l l s p l i t be tween t h e two s i d e s o f
24 % t h e m a t r i x i s no t j o i n e d back t o g h e t e r as one , a ’ wrapping ’ of t h e image
25 % a c r o s s t h e edge i s no t wanted . Th i s i s hand led by l e a v i n g t h el a s t row or
26 % column as an a l l−ze ro vec to r , wich w i l l t h e r e f o r no t c o n t r i b u t e t o t h e
27 % sum o f non−empty c e l l s .
28 k = s i z −1;
29 l = s i z −1;
30 % P r e a l l o c a t i n g memory
31 M= ze ros(m+1 , n +1 ,c e i l ( x . / m−1) ,’single’ ) ;
32 % Using t h e l o g i c a l b i t−f o rma t t o save memory .
33 M= l o g i c a l (M) ;

35 %lo o p s th rough t h e new m a t r i x .
36 f o r i =1 :m+1;
37 % c a l c u l a t e t h e i n d i c e s o f t h e f i r s t and l a s t c e l l s o f t h e o ld ma t r i x wich
38 % are c o n t a i n e d i n t h e new c e l l s . C e l l s o u t s i d e t h e m a t r i x arei gno red .
39 % from / to−x and from / to−y are v e c t o r s c o n t a i n g a l l t h e d i s p l a c e d
40 % v e r s i o n s as w e l l as t h e o r i g i n a l .

42 f romx = f i x ( ( i −1)* x /m+1)− (0: k ) ; I = f i nd ( fromx < 1 ) ; fromx ( I ) = 1 ;
43 t ox = c e i l ( i * x /m)− (0 : k ) ; I = f i nd ( t ox > x ) ; t ox ( I )= x ;
44 f o r j =1 : n +1;
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45 f romy = f i x ( ( j −1)* y / n +1)− (0: l ) ; I = f i nd ( fromy < 1 ) ; fromy ( I ) = 1 ;
46 t oy = c e i l ( j * y / n )− (0 : l ) ; I = f i nd ( t oy > y ) ; t oy ( I )= y ;
47 % loop th rough t h e d i f f e r e n t d i s p l a c e m e n t s
48 dkd l = 1 ;
49 f o r dk =1: k+1
50 f o r d l =1: l +1
51 % Check ing i f any o f t h e c e l l s i n t h e o ld mat r i x , t h a t i s
52 % ( p a r t i a l l y ) c o n t a i n e d i n a g i ven c e l l i n t h e new mat r i x ,
53 % i s non−ze ro . I f so t h e c o r r e s p o n d i n g e n t r y i n t h e new
54 % m a t r i x i s s e t t o 1 .
55 M( i , j , dkd l )= any ( any ( A( fromx ( dk ) : t ox ( dk ) , fromy ( d l ) : t oy ( d l ) ) ) ) ;
56 dkd l = dkd l +1;
57 end
58 end
59 end
60 end

62 % Find l o w e s t p o s s i b l e number o f non−empty c e l l s .
63 num=min ( sum( sum(M) ) ) ;

� �

Listing B.20: .m

Function: sandboxnumber.m – Count Number of Pixels For Sandbox Algorithm
� �

1 f unc t i on [ num , r ] = sandboxnumber ( v a r a r g i n )
2 % [NUM] = SANDBOXNUMBER(IMAGE , INDEX , NPOINTS )
3 % Used f o r c a l c u l a t i n g t h e sandbox d imens ion o f IMAGE
4 %
5 % C a l c u l a t e s t h e number o f occup ied p o s i t i o n s around INDEX in t h e image
6 % m a t r i x A and r e t u r n s an nx2 vec to r , where n i s t h e number o f i nd i c e s i n
7 % INDEX , c o n t a i n i n g t h e sum o f t h e number o f occup ied p o s i t i on s over a l l
8 % i n d i c e s i n INDEX and i n t h e second column t h e number o f i n d i ce s i n INDEX
9 % t h a t has c o n t r i b u t e d t o t h i s sum .

10 %
11 % INDEX may be a nx1 v e c t o r c o n t a n i n g t h e i n d i c e s or a nx2 m a t r ix c o n t a n i n g
12 % t h e s u b s c r i p t s o f t h e p o i n t s .
13 %
14 % Opt i ona l argument NPOINTS reduces t h e l i s t o f p o s s i b l e ne ighbourhoods t o
15 % check t o a l i s t o f l o g a r i t h m i c l y d i s t r i b u t e d s u b s e t . D e f a ul t va l u e ( 0 )
16 % s k i p s t h i s r e d i s t r i b u t i o n and uses t h e f u l l da ta range .

18 %% PARSE INPUT
19 A= v a r a r g i n {1 } ;
20 Index= v a r a r g i n {2 } ;
21 % log r e d u c t i o n
22 i f numel ( v a r a r g i n ) >2
23 nL = v a r a r g i n {3 } ;
24 e l s e
25 nL = 0 ;
26 end

28 Lmax = min ( round ( s i z e(A ) . / 2 ) ) ;
29 i f nL > 0
30 % l o g a r t i h m i c d i s t r i b u t i o n o f ne ighbourhood w i d t h s
31 logL = l og10 ( 1 ) : l og10( Lmax ) / nL : l og10( Lmax ) ;
32 pLs = un ique (round ( 1 0 . ^ logL ) ) ;
33 e l s e
34 % a l l p o s s i b l e ne ighbourhood w i d t h s
35 pLs = 1 : Lmax ;
36 end

38 % i f i n d i c e s are s u p l i e d , t r a n s f o r m t o s u b s c r i p t s
39 i f s i z e( Index ,2 )==1
40 [ temp1 , temp2 ]= ind2sub (s i z e(A) , Index ) ;
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41 Index= c a t ( 2 , temp1 , temp2 ) ;
42 e l s e i f s i z e( Index ,2 )~=2
43 d isp ( ’ERROR: Input , wrong format’ )
44 re turn
45 end

47 % I n i t i a l i z e
48 I = Index ;
49 num=[0 0 ] ;
50 f o r i =1 : s i z e( I , 1 )
51 temp= I ( i ) ;
52 m= I ( i , 1 ) ;
53 n= I ( i , 2 ) ;
54 % l o c a t e d i s i t a n c e t o n e a r e s t edge
55 edge=min ( min ( [m−1, s i z e(A,1)−m] ) , min ( [ n−1,s i z e(A,2)−n ] ) ) ;
56 % a l l p o s i b l e w i d t h s i n s i d e t h e m a t r i x
57 Ltmp = pLs ( pLs <=edge ) ;
58 f o r j =1 : numel ( Ltmp )
59 L = Ltmp ( j ) ;
60 % s u b s e t o f m a t r i x c o n t a i n i n g on l y sandbox
61 subA=A(m−L :m+L , n−L : n+L ) ;
62 % adding sum o f t h i s sandbox t o t h e o t h e r sandboxes o f same s i ze
63 i f ( s i z e( num,1) >=L)
64 num(L , 1 ) =sum( sum( subA ) ) + num(L , 1 ) ;
65 num(L,2 )=1+num(L , 2 ) ;
66 e l s e
67 num(L , 1 ) =sum( sum( subA ) ) ;
68 num(L , 2 ) = 1 ;
69 end
70 end
71 end

73 % parse o u t p u t
74 r = pLs ;

� �

Listing B.21: sandboxnumber.m

Function: massestimate.m – Mass and Correlation Estimate
� �

1 f unc t i on v a r a r g o u t = m a s s e s t i m a t e ( v a r a r g i n )
2 % [Dim , normr , S , k ] = m a s s e s t i m a t e ( IMAGE , nk , kmin , fmode , di s t r i b u t i o n )
3 % [DimM, normrM , SM, kM, DimC , normrC , Sc , kc ] = . . .
4 % m a s s e s t i m a t e ( IMAGE , nk , kmin , fmode , d i s t r i b u t i o n )
5 %
6 % C a l c u l a t e f r a c t a l d imens ion by t h e mass e s t i m a t e
7 % Because c a l c u l a t i o n o f t h e mass e s t i m a t e goes a long way t o ca l c u l a t e t h e
8 % c o r r e l a t i o n e s t i m a t e as w e l l ano the r o p t i o n a l s e t o f o u t p ut pa ramete rs i s
9 % a v a i l a b l e f o r t h e c o r r e l a t i o n e s t i m a t e o u t p u t .

10 %
11 % NK i s t h e number o f d i f f e r e n t f r e q u e n c y b i n s t h e s p e c t r a l d en s i t y i s
12 % averaged i n t o . KMIN i s t h e s m a l l e s t f r e q u e n c y a l lowed t o p ar t i c i p a t e i n
13 % t h e c a l c u l a t i o n . FMODE s p e c i f i e s p r o p e r t i e s o f t h e f o u r i er
14 % t r a n s f o r m o f t h e s u p p l i e d image . FMODE t a k e s t h e f o l l o w i n gv a l u e s which
15 % s p e c i f y t r a n s f o r m s t o be done b e f o r e t h e m a t r i x i s t r a n s f o rm e d i n t o t h e
16 % a u t o c o r r e l a t i o n .
17 %
18 % 0 − app ly f o u r i e r t r a n s f o r m w i th padding
19 % 1 − app ly f o u r i e r t r a n s f o r m w i t h o u t padd ing
20 % 2 − IMAGE i s t rans fo rmed , app ly c o n v e r t i o n t o s p e c t r a l
21 % d e n s i t y
22 % 3 − IMAGE i s t r a n s f o r m e d and c o n v e r t e d t o s p e c t r a l d e n s i t y ,
23 % no f u r t h e r t r a n s f o r m a t i o n r e q u i r e d b e f o r e c a l c u l a t i o n .
24 %
25 % DIM i s t h e power law s c a l i n g o f t h e s p e c t r a l d e n s i t y , i . e . t he f o u r i e r
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26 % e s t i m a t e o f t h e f r a c t a l d imens ion .
27 % NORMR i s t h e norm o f t h e r e s i d u a l s o f t h e l o g l o g l i n e a r f i t .
28 % S i s t h e ang le averaged s p e c t r a l d e n s i t y as a f u n c t i o n o f K .
29 %
30 % DEFAULTS: nk = 20
31 % kmin = 10
32 % mode = 3 ( s p e c t r a l d e n s i t y i s s u p p l i e d )

34 %% parse i n p u t
35 i f numel ( v a r a r g i n )==0
36 % e r r o r ( ’ f o u r i e r : wrong input ’ , s t r c a t ( ’ Wrong number o f i np u t s i n ’ , . . .
37 % ’ \ n [Dim , normr , S , r ]= f o u r i e r e s t i m a t e (F , [ nk ] , [ kmin ] , [padd ing ] ) ’ ) )
38 end
39 i f numel ( v a r a r g i n ) >= 5
40 d i s t r = v a r a r g i n {5 } ;
41 e l s e
42 d i s t r = ’logarithmic’ ;
43 end
44 i f numel ( v a r a r g i n ) >= 4
45 fmode = v a r a r g i n {4 } ;
46 e l s e
47 fmode =2;
48 end
49 i f numel ( v a r a r g i n ) >= 3
50 kmin = v a r a r g i n {3 } ;
51 e l s e
52 kmin = 10 ;
53 end
54 i f numel ( v a r a r g i n ) >=2
55 nk = v a r a r g i n {2 } ;
56 i f nk ==0 ,
57 nk=c e i l ( min ( s i z e( v a r a r g i n { 1 } ) ) . / 2 ) ;
58 end
59 e l s e
60 nk = 20 ;
61 end
62 i f numel ( v a r a r g i n ) >=1
63 F = v a r a r g i n {1 } ;
64 e l s e
65 % F=rand ( 1 0 2 4 ) ;
66 end

68 %% app ly rema in ing t r a n s f o r m s acco rd ing t o fmode
69 s w i t c h 1
70 case fmode == 0
71 F = f f t 2 ( F ,2* s i z e( F ,1)−1 ,2* s i z e( F ,2 )−1 ) ;
72 S = F .* conj ( F ) ;
73 case fmode == 1
74 F = f f t 2 ( F ) ;
75 S = F .* conj ( F ) ;
76 case fmode == 2
77 S = F .* conj ( F ) ;
78 case fmode == 3
79 S = F ;
80 end

83 %% a u t o c o r r e l a t i o n − c a l c u l a t e , s h i f t and n o r m a l i z e
84 C= i f f t 2 ( S ) ;
85 C= f f t s h i f t (C ) ;
86 C=r e a l (C ) ;
87 C=C . /max(max(C ) ) ;
88 % %% cropp ing o f f rand−o f f e r r o r s
89 % C(C<( .00001 ) )=0 ;
90 % f i g u r e ( 1 ) , imagesc ( log10 ( abs ( r e a l ( ( C ) ) ) ) ) , co lo rba r ,co lormap ( j e t )
91 % pause
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93 %% ang le ave rage ing
94 % f ( x , y ) −> f ( r )
95 % [C, r ] = ang leave rage (C , nk , ’ l o g a r i t h m i c ’ ) ;
96 [C , r ] = a n g l e a v e r a g e (C , nk , d i s t r , kmin ) ;

98 %% cropp ing o f f rand−o f f e r r o r s
99 l = ( abs(C) < 1 0 . ^ (−1 0 ) ) ;

100 C( l ) = [ ] ;
101 r ( l ) = [ ] ;

104 %% CORRELEATION DIMENSION
105 % Because t h e c a l c u l a t i o n o f t h e mass d imens ion have done t h ehard work
106 % n e c e s s a r y t o c a l c u l a t e t h e c o r r e l a t i o n d imens ion t h i s i s re t u r n e d as w e l l

108 %% l o g l o g f i t t i n g
109 lC = l og10(C ) ;
110 l r = l og10( r ) ;
111 [ P , s ]=p o l y f i t ( l r , lC , 1 ) ;
112 % e x t r a c t i n g norm o f r e s i d u a l s
113 s= s t r u c t 2 c e l l ( s ) ;
114 normr=s ( 3 ) ;

116 %% p a r s i n g o u t p u t f o r c o r r e l a t i o n d imens ion
117 v a r a r g o u t {5}=P ; % Slope over e n t i r e range o f C o r r e l a t i o n e s t i m a t e
118 v a r a r g o u t {6}= normr ; % norm o f r e s i d u l a s from t h e r e g r e s s i o n
119 v a r a r g o u t {7}=C; % Angle averaged s p e c t r a l d e n s i t y
120 v a r a r g o u t {8}= r ; % f r e q u e n c y b i n s

122 %% i n t e g r a t e by p i e c e w i s e cu b i c s p l i n e i n i t e r p o l a t i o n
123 CR = C.* r ;
124 f t y p e = f i t t y p e (’spline’ ) ;
125 f i t 1 = f i t ( r ’ ,CR’ , f t y p e ) ;
126 i n t y = i n t e g r a t e ( f i t 1 , r , r ( 1 ) ) ;
127 M = i n t y ( 1 : numel ( i n t y ))− i n t y ( 1 ) ;

129 %% t r a n s f o r m i n g column t o row v e c t o r
130 M=M( : ) ;
131 r = r ( : ) ;

133 %% l o g l o g f i t t i n g
134 lM = l og10(M) ;
135 l r = l og10( r ) ;
136 [ P , s ]=p o l y f i t ( l r , lM , 1 ) ;
137 % e x t r a c t i n g norm o f r e s i d u a l s
138 s= s t r u c t 2 c e l l ( s ) ;
139 normr=s ( 3 ) ;

141 %% p a r s i n g o u t p u t
142 v a r a r g o u t {1}=P ; % Slope o f e n t i r e range o f Mass e s t i m a t e
143 v a r a r g o u t {2}= normr ; % norm o f r e s i d u l a s from t h e r e g r e s s i o n
144 v a r a r g o u t {3}=M; % Angle averaged s p e c t r a l d e n s i t y
145 v a r a r g o u t {4}= r ; % f r e q u e n c y b i n s

� �

Listing B.22: massestimate.m

Function: fourierestimate.m – Fourier Estimate
� �

1 f unc t i on v a r a r g o u t = f o u r i e r e s t i m a t e ( v a r a r g i n )
2 % [Dim , normr , S , k ] = f o u r i e r e s t i m a t e ( IMAGE , nk , kmin , fmode )
3 %
4 % C a l c u l a t e f r a c t a l d imens ion by t h e f o u r i e r e s t i m a t e
5 %
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6 % NK ( num ) i s t h e number o f d i f f e r e n t f r e q u e n c y b i n s t h e s p e c tr a l d e n s i t y i s
7 % averaged i n t o . KMIN ( num ) i s t h e s m a l l e s t f r e q u e n c y a l lowed t o p a r t i c i p a t e i n
8 % t h e c a l c u l a t i o n . FMODE ( num ) s p e c i f i e s p r o p e r t i e s o f t h e fo u r i e r
9 % t r a n s f o r m o f t h e s u p p l i e d image . FMODE t a k e s t h e f o l l o w i n gv a l u e s

10 %
11 % 0 − app ly f o u r i e r t r a n s f o r m w i th padding
12 % 1 − app ly f o u r i e r t r a n s f o r m w i t h o u t padd ing
13 % 2 − IMAGE i s t rans fo rmed , app ly c o n v e r t i o n t o s p e c t r a l
14 % d e n s i t y
15 % 3 − IMAGE i s t r a n s f o r m e d and c o n v e r t e d t o s p e c t r a l d e n s i t y ,
16 % no f u r t h e r t r a n s f o r m a t i o n r e q u i r e d .
17 %
18 % DIM i s t h e power law s c a l i n g o f t h e s p e c t r a l d e n s i t y , i . e . t he f o u r i e r
19 % e s t i m a t e o f t h e f r a c t a l d imens ion .
20 % NORMR i s t h e norm o f t h e r e s i d u a l s o f t h e l o g l o g l i n e a r f i t .
21 % S i s t h e ang le averaged s p e c t r a l d e n s i t y as a f u n c t i o n o f K .
22 %
23 % DEFAULTS: nk = 20
24 % kmin = 10
25 % mode = 3 ( s p e c t r a l d e n s i t y i s s u p p l i e d )
26 % d i s t r i b u t i o n = l o g a r i t h m i c

28 %% parse i n p u t
29 i f numel ( v a r a r g i n )==0
30 % e r r o r ( ’ f o u r i e r : wrong input ’ , s t r c a t ( ’ Wrong number o f i np u t s i n ’ , . . .
31 % ’ \ n [Dim , normr , S , r ]= f o u r i e r e s t i m a t e (F , [ nk ] , [ kmin ] , [padd ing ] ) ’ ) )
32 end
33 i f numel ( v a r a r g i n ) >= 5
34 d i s t r = v a r a r g i n {5 } ;
35 e l s e
36 d i s t r = ’logarithmic’ ;
37 end
38 i f numel ( v a r a r g i n ) >= 4
39 fmode = v a r a r g i n {4 } ;
40 e l s e
41 fmode =2;
42 end
43 i f numel ( v a r a r g i n ) >= 3
44 kmin = v a r a r g i n {3 } ;
45 e l s e
46 kmin = 10 ;
47 end
48 i f numel ( v a r a r g i n ) >=2
49 nk = v a r a r g i n {2 } ;
50 e l s e
51 nk = 20 ;
52 end
53 i f numel ( v a r a r g i n ) >=1
54 F = v a r a r g i n {1 } ;
55 e l s e
56 F=rand ( 1 0 2 4 ) ;
57 end

59 %% app ly rema in ing t r a n s f o r m s acco rd ing t o fmode
60 s w i t c h 1
61 case fmode == 0
62 F = f f t 2 ( F ,2* s i z e( F ,1)−1 ,2* s i z e( F ,2 )−1 ) ;
63 S = F .* conj ( F ) ;
64 case fmode == 1
65 F = f f t 2 ( F ) ;
66 S = F .* conj ( F ) ;
67 case fmode == 2
68 S = F .* conj ( F ) ;
69 case fmode == 3
70 S = F ;
71 end
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73 %% s p e c t r a l d e n s i t y− s h i f t and n o r m a l i z e
74 S= f f t s h i f t ( S ) ;
75 S=S . /max(max( S ) ) ;

77 %% ang le ave rage ing
78 % f ( x , y ) −> f ( r )
79 [ S , r ] = a n g l e a v e r a g e ( S , nk , d i s t r , kmin ) ;

81 %% l o g l o g f i t t i n g
82 lS = l og10( S ) ;
83 l r = l og10( r ) ;
84 [ P , s ]=p o l y f i t ( l r , lS , 1 ) ;
85 % e x t r a c t i n g norm o f r e s i d u a l s
86 s= s t r u c t 2 c e l l ( s ) ;
87 normr=s ( 3 ) ;

89 %% p a r s i n g o u t p u t
90 v a r a r g o u t {1}=P ; % Slope o f e n t i r e range
91 v a r a r g o u t {2}= normr ; % norm o f r e s i d u l a s from t h e r e g r e s s i o n
92 v a r a r g o u t {3}=S ; % Angle averaged s p e c t r a l d e n s i t y
93 v a r a r g o u t {4}= r ; % f r e q u e n c y b i n s

� �

Listing B.23: fourierestimate.m

Function: angleaverage.m – Angle Average for Mass, Correlation and Fourier Estimate
� �

1 f unc t i on [ F , r ] = a n g l e a v e r a g e ( F , nk , s t y l e , kmin )
2 % [F , r ] = ang leave rage (M, nk )
3 % [F , r ] = ang leave rage (M, nk , s t y l e )
4 % [F , r ] = ang leave rage (M, nk , s t y l e , kmin )
5 %
6 % Retu rns a v e c t o r o f M v a l u e s avaraged over nk c i r c l e s aroundi t s c e n t r e
7 % s t y l e t a k e s t h e f o l l o w i n g v a l u e s :
8 % ’ l o g a r i t h m i c ’
9 % ’ a r i t h m e t i c ’

10 % d e f a u l t va l u e i s l o g a r i t h m i c
11 %
12 % kmin >0 s p e c i f i e s an i n n e r rad ius , a l l p o i n t s w i t h i n t h i s w il l be igno red .

14 i f isempty ( s t y l e )
15 s t y l e =’logarithmic’
16 end
17 i f isempty ( kmin )
18 kmin =0;
19 end

21 %% ang le ave rag ing
22 % l o c a t i n g c e n t r e p i x e l and f i n d i n g s h o r t e s t d i s t a n c e from ce n t r e t o edge
23 mctr = c e i l ( ( s i z e( F , 1 ) + 1 ) / 2 ) ;
24 n c t r = c e i l ( ( s i z e( F , 2 ) + 1 ) / 2 ) ;
25 kmax = min ( mctr , n c t r ) ;

27 % i n i t i l i z i n g t h e p o s i t i o n s o f t h e b i n s t h e da ta i s avaraged in t o
28 i f i s e q u a l ( s t y l e ,’logarithmic’ )
29 l ogk = l og10( kmax ) / nk : l og10( kmax ) / nk : l og10( kmax ) ;
30 k = 10 . ^ logk ;
31 e l s e i f i s e q u a l ( s t y l e ,’arithmetic’ )
32 % k = kmax / nk : kmax / nk : kmax ;
33 k = kmin : kmax / nk : kmax ;
34 e l s e
35 er ro r ( ’angleaverage:unknownstyle’ , . . .
36 ’ERROR: unrrecognized style in angleaverage’ )
37 end
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38 k=k ( k>=kmin ) ;

40 %% i n i t i l i z i n g t h e p o s i t i o n s o f t h e b i n s t h e da ta i s avaragedi n t o
41 l ogk =l og10( k ) ;

43 %% i n i t i a l i z e ang le average
44 % c o u n t e r a r ray f o r t h e number o f e n t r i e s i n each b in
45 Frc = ze ros( 1 , numel ( k ) ) ;
46 % b i n s f o r s t o r i n g F w i th reduced r e s o l u t i o n
47 Fr = ze ros( 1 , numel ( k ) ) ;
48 % b i n s f o r s t o r i n g t h e mean d i s t a n c e o f t h e e n t r i e s i n each b in
49 F r r = ze ros( 1 , numel ( k ) ) ;
50 f o r m=1: s i z e( F , 1 )
51 dm = mctr−m;
52 f o r n =1: s i z e( F , 2 )
53 dn = n c t r−n ;
54 r = sq r t (dm^2+dn ^ 2 ) ;
55 % c e n t r e i t em i s ou t o f bounds and v a l u e s > kmax are on l y d e f i n ed
56 % i n c o r n e r s
57 i f r ~= 0 && r <=kmax && r >=kmin
58 % f i n d i n g t h e n e a r e s t k ( t h e v va lu e i s r e q u i r e d i n s y n t a x )
59 [ v , rk ] = min ( abs( logk−l og10( r ) ) ) ;
60 Frc ( rk ) = Frc ( rk ) + 1 ;
61 Fr ( rk ) = Fr ( rk ) + ( F (m, n ) ) ;
62 F r r ( rk ) = F r r ( rk ) + ( r ) ;
63 end
64 end
65 end

67 % removing empty b i n s
68 l = Frc & Frc ;
69 Fr = Fr ( l ) ;
70 F r r = F r r ( l ) ;
71 Frc = Frc ( l ) ;
72 k = k ( l ) ;

74 % d i v i d i n g sum t o mean
75 F = Fr . / Frc ;
76 r = F r r . / Frc ;

� �

Listing B.24: angleaverage.m

Function: autofit.m – Linear Fit of the Most Linear Region
� �

1 f unc t i on v a r a r g o u t = a u t o f i t ( v a r a r g i n )
2 % [P , from , to , normr , q u a l i t y ] = a u t o f i t ( x , y )
3 % [P , from , to , normr , q u a l i t y ] = a u t o f i t ( x , y , dxmin )
4 % [P , from , to , normr , q u a l i t y ] = a u t o f i t ( x , y , dxmin , Imin , Imax )
5 % [P , from , to , normr , q u a l i t y ] = a u t o f i t ( x , y , dxmin , Imin , Imax , m i n f i n d w i d t h )
6 %
7 % Where dxmin i s t h e minimum number o f i n d i c e s cons ide red , Imin and Imax
8 % are t h e bounds o f t h e search , p o i n t s o u t s i d e t h i s range are igno red and
9 % m i n f i n d w i d t h i s t h e s m a l l e s t c o n t i n o u s r e g i o n scanned f o ra f i t , measured

10 % as t h e f r a c t i o n o f t h e number o f t h e l o g a r i t h m i c w id th .
11 %
12 % D e f a u l t v a l u e s : dxmin = 0 .20* numel ( x )
13 % Imin = 1
14 % Imax = numel ( x )
15 % m i n f i n d w i d t h = 0 .20
16 %
17 % Th is a l g o r i t h m f i n d s t h e s i n g l e s u b r e g i o n o f t h e f u n c t i o n y( x ) t h a t can
18 % b e s t be d e s c r i b e d by a l i n e a r f i t . A f i t i s c o n s i d e r e d b e t t e rw i t h
19 % i n c r e a s i n g l o g a r i t h m i c w id th m u l t i p l i e d by (1−normR ) ^ 5 .
20 %
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21 % Th is i s b r u t e f o r c e s o l u t i o n t o t h e problem t e s t i n g a l l l e g al sub reg ions ,
22 % acco rd ing t o i t s o p t i o n a l arguments , and compar ing them t of i n d t h e b e s t
23 % one .

25 %% Parse i n p u t
26 x = v a r a r g i n {1 } ;
27 F = v a r a r g i n {2 } ;
28 i f numel ( v a r a r g i n ) >=3
29 dxmin= v a r a r g i n {3 } ;
30 e l s e
31 dxmin=round ( . 2 0 .* numel ( x ) ) ;
32 end
33 i f numel ( v a r a r g i n ) >=5
34 Imin = v a r a r g i n {4 } ;
35 Imax = v a r a r g i n {5 } ;
36 e l s e
37 Imin = 1 ;
38 Imax = numel ( x ) ;
39 end
40 i f numel ( v a r a r g i n ) >= 6
41 min f i ndw id th = v a r a r g i n {6 } ;
42 e l s e
43 min f i ndw id th = . 2 0 ;
44 end
45 i f Imax − Imin < dxmin
46 d isp ( ’ERROR: (Imax - Imin) < dxmin’ )
47 re turn
48 end

50 %% C a l c u l a t e a l l p o s s i b l e c o n t i n o u s l i n e a r f i t s
51 f o r i = Imin : Imax−dxmin
52 f o r j = i +dxmin : Imax
53 [ Pn , sn ]=p o l y f i t ( ( x ( i : j ) ) , ( F ( i : j ) ) , 1 ) ;
54 Pj ( j )= Pn ( 1 ) ; % s l o p e
55 sn= s t r u c t 2 c e l l ( sn ) ;
56 normr j ( j )= sn {3 } ; % norm o f r e s i d u a l s
57 i f i snan ( no rmr j ( j ) )
58 normr j ( j )= i n f ;
59 end
60 xmaxj ( j−i−dxmin +1)= j ;
61 end
62 P{ i }= P j ;
63 normr { i }= normr j ( no rmr j&normr j ) ;
64 xmin ( i )= i ;
65 xmax{ i }=xmaxj ;
66 c l e a r Pj normr j xmin j xmaxj
67 end

69 %% Compare t h e q u a l i t y o f each f i t t o f i n d t h e b e s t w i t h i n eachrange
70 f o r i = Imin : numel ( P )
71 from= i ;%xmin ( i ) ;
72 t o =xmax{ i } ;
73 norm=normr { i } ;
74 f o r j =1 : numel (norm )
75 % x f a c t o r i s p e r c e n t a g e o f t o t a l range
76 x f a c t o r = ( ( x ( t o ( j ) ) )− ( x ( from ) ) ) . / ( x ( numel ( x ))−x ( 1 ) ) ;
77 n f a c t o r = (1.−norm ( j ) ) . ^ 5 ;
78 % ch eck in g i f c u r r e n t l o c a t i o n meats r e q u r i e m e n t s
79 i f x f a c t o r >= min f i ndw id th
80 qua l ( j ) = x f a c t o r .* n f a c t o r ;
81 e l s e
82 qua l ( j ) = 0 ;
83 end
84 l ( j )= norm ( j ) < . 0 5 ;
85 end
86 c l e a r v a l i nd
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87 [ va l , i nd ]=max( qua l ) ;
88 qva l { i }= v a l ;
89 qfrom { i }= i ;
90 q to { i }= t o ( i nd ) ;
91 qua l = [ ] ;
92 end

94 %% Find t h e b e s t f i t compar ing a l l ranges
95 [ q u a l i t y , i nd ] = max( c e l l 2 m a t ( qva l ) ) ;
96 % a d j u s t f o r any empty c e l l s be ing removed b e f o r e max ( . . . )
97 i nd = ind + Imin − 1 ;
98 from=qfrom { ind } ;
99 t o = q to { i nd } ;

100 [ P , s ]=p o l y f i t ( x ( from : t o ) , F ( from : t o ) , 1 ) ;
101 s = s t r u c t 2 c e l l ( s ) ;
102 normr = s {3 } ;

104 %% Parse o u t p u t
105 i f ( x ( t o )−x ( from ) ) >= min f i ndw id th* ( x ( numel ( x ))−x ( 1 ) )
106 v a r a r g o u t {1} = P ;
107 v a r a r g o u t {2} = from ;
108 v a r a r g o u t {3} = t o ;
109 v a r a r g o u t {4} = normr ;
110 v a r a r g o u t {5} = q u a l i t y ;
111 e l s e
112 v a r a r g o u t {1} = [ ] ;
113 v a r a r g o u t {2} = [ ] ;
114 v a r a r g o u t {3} = [ ] ;
115 v a r a r g o u t {4} = [ ] ;
116 v a r a r g o u t {5} = [ ] ;
117 end
118 end % end a u t o f i t

� �

Listing B.25: autofit.m

Function: reclinfit.m – Recursive Linear Fit of all Regions (starting with the best)
� �

1 f unc t i on [ f i t s ] = r e c l i n f i t ( x , y , fromx , tox , sp , f i t s )
2 % R e c u r s i v e L inea r F i t
3 %
4 % { f i t s } = r e c l i n f i t ( x , y , f rom_ind , to_ ind , s e a r c h c r i t e r ia )
5 %
6 % Th is f u n c t i o n r e c u r s i v e l y f i n d s a l l l i n e a r f i t s i n t h e r e g io n o f FROMX t o
7 % TOX w i t h i n t h e bounds o f t h e s e a r c h c r i t e r i a .
8 %
9 % s e a r c h c r i t e r i a = [ minn , minsw , minfw ] ;

10 %
11 % MINN i s t h e minimum number o f p o i n t s a l l owed i n a f i t , d e f a u lt = 5 .
12 % MINSW i s t h e minimum search width , on l y r e g i o n s wider than th i s
13 % f r a c t i o n o f t h e t o t a l w id th i s searched , d e f a u l t = 0 . 2 0 .
14 % MINFW i s t h e minimum a ccep ted r e g i o n a f i t can be made across, aga in
15 % measured i n f r a c t i o n o f t o t a l width , d e f a u l t = 0 . 1 5 .
16 %
17 % The o u t p u t i s a one−d i m e n s i o n a l c e l l v e c t o r were each in d ex c o n t a i n s t h e
18 % f o l l o w i n g 7 m a t r i c e s :
19 %
20 % f i t s { i } = { s lope , i n t e r c e p t , f rom_ind , to_ ind , norm o f r e si d u a l s , . . .
21 % width , q u a l i t y o f f i t } ;

23 %% Decla re and parse i n p u t
24 i f e x i s t ( ’fits’ ) ~=1
25 f i t s = { } ;
26 end
27 i f e x i s t ( ’sp’ ) ~= 1 | | isempty ( sp )
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28 % use d e f a u l t s
29 minn = 5 ;
30 minsw = . 2 .* ( ( x ( numel ( x ) ) )− ( x ( 1 ) ) ) ;
31 minfw = . 1 5 ;
32 sp = [ minn , minsw , minfw ] ;
33 e l s e
34 minn = sp ( 1 ) ;
35 i f numel ( sp ) >= 2
36 minsw = sp ( 2 ) .* ( x ( numel ( x ))−x ( 1 ) ) ;
37 e l s e
38 minsw = . 2 * ( ( x ( numel ( x ) ) )− ( x ( 1 ) ) ) ;
39 end
40 i f numel ( sp ) == 3 ;
41 minfw = sp ( 3 ) ;
42 e l s e
43 minfw = . 1 5 ;
44 end
45 end

47 %% Run a u t o f i t r e c u r s i v e l y t o f i n d a l l l i n e a r r e g i o n s i n agreement w i t h t h e
48 %% search c r i t e r i a v e c t o r .
49 [ P , from , to , normr , qua l ] = a u t o f i t ( x , y , minn , fromx , tox , minfw ) ;
50 i f ~ isempty ( P )
51 f i t s { numel ( f i t s )+1} = {P ( 1 ) P ( 2 ) from t o normr . . .
52 [ ( x ( t o )−x ( from ) ) / ( x ( numel ( x ))−x ( 1 ) ) ] qua l } ;

54 i f ( ( from − f romx ) > minsw ) && ( ( from − f romx ) >minn )
55 f i t s = r e c l i n f i t ( x , y , fromx , from , sp , f i t s ) ;
56 end
57 i f ( ( t ox − t o > minsw ) ) && ( ( tox − t o ) > minn )
58 f i t s = r e c l i n f i t ( x , y , to , tox , sp , f i t s ) ;
59 end

61 end

63 %% END FUNCTION RECLINFIT
64 end

� �

Listing B.26: reclinfit.m

Function: linfitplot – Plot Graphs and Data Table of Linear Regions
� �

1 f unc t i on [ fh1 fh2 ] = l i n f i t p l o t ( x , y , mode , f i t s , f i d )
2 % [ f i g u r e h a n d l e 1 f i g u r e h a n d l e 2 ] = l i n f i t p l o t ( x , y , mode , fi t s )
3 % [ f i g u r e h a n d l e 1 f i g u r e h a n d l e 2 ] = l i n f i t p l o t ( x , y , mode , fi t s , f i d )
4 %
5 % mode = ’ normal ’ or ’ log ’
6 % mode s p e c i f i e s i f t h e da ta shou ld be p l o t t e d on to log log−graphs or no t .
7 %
8 % Th is f u n c t i o n p l o t s a l l l i n e a r f i t s a long w i th t h e f u n c t i o n, y ( x ) , i n a
9 % s i n g l e f i g u r e , and draws p a t c h e s benea th each l i n e a r reg ion , and

10 % s p e c i f i e s where t h e f i t s i n t e r s e c t s . The hand le o f t h i s f i gu r e i s
11 % r e t u r n e d i n fh1 .
12 %
13 % Fur thermore t h e g r a d i e n t o f t h e f u n c t i o n , w i t h t h e same i n fo r m a t i o n
14 % r e p r e s e n t e d i n t h a t f i g u r e i s r e t u r n e d i n fh2 .
15 %
16 % I f t h e o p t i o n a l parameter f i d i s s p e c i f i e d t h e legend o f t h ep l o t i s
17 % w r i t t e n , f o r m a t t e d t o t h e l a t e x t a b u l a r env i ronment , t o t he f i l e w i t h
18 % i d e n t i f i c a t i o n f i d . O the rw ise a s m a l l e r l egend i s w r i t t e nt o s c r e e n .

20 %% parse i n p u t and s e t f l a g s
21 i f e x i s t ( ’fid’ ,’var’ ) ~= 1
22 f i d = [ ] ;
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23 end
24 x = x ( : ) ; %−>column form
25 y = y ( : ) ; %−>column form
26 i f strcmp ( mode ,’log’ )
27 % remove n e g a t i v e va lues , t h e y are o u t s i d e t h e r e a l range o f log .
28 r e a l i n d = y >= 0 ;
29 x = x ( r e a l i n d ) ;
30 y = y ( r e a l i n d ) ;
31 l x = l og10( x ) ;
32 l y = l og10( y ) ;
33 end
34 i f e x i s t ( ’fid’ ,’var’ ) == 1 && ~ isempty ( f i d )
35 i f f i d ~= 1
36 w r i t e l e g e n d t o f i l e = 1 ;
37 w r i t e l e g e n d t o s c r e e n = 0 ;
38 e l s e
39 w r i t e l e g e n d t o s c r e e n = 1 ;
40 w r i t e l e g e n d t o f i l e = 0 ;
41 end
42 e l s e
43 w r i t e l e g e n d t o f i l e = 0 ;
44 w r i t e l e g e n d t o s c r e e n = 0 ;
45 end
46 fh1 = f i g u r e ; c l f , hold on
47 fh2 = f i g u r e ; c l f , hold on

49 %% d e f i n e colormap
50 % Use t h e midd le p o r t i o n o f t h e hue p a r t o f t h e hsv−c o l o r r e p r e s e n t a t i o n t o
51 % a c h i e v e a colormap w i t h o u t complementary c o l o r s .
52 numf = numel ( f i t s ) ;
53 i f numf == 1 ,
54 cmap = [ . 9 6 9 , . 2 , . 2 ] ;
55 e l s e
56 cmap = f f t s h i f t ( hsv(2* numf ) , 1 ) ;
57 cmap = cmap . / 1 . 3 ;
58 cmap = cmap + . 2 ;
59 cmap ( cmap >1) = 1 ;
60 cmap ( cmap <0) = 0 ;
61 cmap=cmap (f l o o r ( numf . / 2 ) + 1 :f l o o r (3* numf . / 2 ) , : ) ;
62 end
63 colormap ( cmap ) ;

65 %% s o r t f i t s
66 s o r t v e c = ze ros( numel ( f i t s ) , 1 ) ;
67 f o r i =1 : numel ( f i t s )
68 s o r t v e c ( i ) = f i t s { i } {3 } ;
69 end
70 [ tmp s o r t i n d ] = s o r t ( s o r t v e c ) ;
71 f i t s = f i t s ( s o r t i n d ) ;

73 %% d e t e r m i n i n g min l e g a l f u n c t i o n va lues , c ropp ing a t 10^−10
74 miny = min ( y ) ;
75 i f miny < 10^−3 && strcmp ( mode ,’log’ )
76 i f ( miny == − i n f )
77 ytmp = y ;
78 ytmp ( ytmp==− i n f ) = [ ] ;
79 miny = min ( y ) ;
80 e l s e i f ( ( miny == 0) && strcmp ( mode ,’log’ ) )
81 ytmp = y ;
82 ytmp ( ytmp ==0) = [ ] ;
83 miny = min ( ytmp ) ;
84 end
85 i f miny < 10^−10
86 miny = 10^−10;
87 end
88 end
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90 %% p l o t pa tch r e g i o n s
91 f i g u r e ( fh1 )
92 f o r i =1 : numel ( f i t s )
93 from = f i t s { i } {3 } ;
94 t o = f i t s { i } {4 } ;

96 px = ( [ x ( from ) ; x ( from : t o ) ; x ( t o ) ] ) ;
97 py = ( [ miny ; y ( from : t o ) ; miny ] ) ;
98 r e g i o n i d ( i ) = patch ( px , py , cmap ( i , : ) ) ;
99 end

101 %% p l o t s l o p e s
102 f o r i =1 : numel ( f i t s )
103 s l o p e = f i t s { i } {1 } ;
104 i n t e r c e p t = f i t s { i } {2 } ;

106 i f strcmp ( mode ,’log’ )
107 f i t i d ( i ) = p l o t ( x , 1 0 . ^ ( l x .* s l o p e + i n t e r c e p t ) ,’color’ , . . .
108 cmap ( i , : ) ,’LineWidth’ , 1 . 5 ) ;
109 p l o t ( x , 1 0 . ^ ( l x .* s l o p e + i n t e r c e p t ) ,’k:’ ) ;
110 e l s e i f strcmp ( mode ,’normal’ )
111 f i t i d ( i ) = p l o t ( x , ( x .* s l o p e + i n t e r c e p t ) ,’color’ , . . .
112 cmap ( i , : ) ,’LineWidth’ , 1 . 5 ) ;
113 p l o t ( x , ( x .* s l o p e + i n t e r c e p t ) ,’k:’ ) ;
114 end
115 end

117 %% l o c a t e f i t i n t e r s e c t i o n s
118 % i f u p p e r f l a g
119 f o r i =1 : numel ( f i t s )−1
120 s l o p e = f i t s { i } {1 } ;
121 i n t e r c e p t = f i t s { i } {2 } ;
122 s l o p e 2 = f i t s { i +1} {1} ;
123 i n t e r c e p t 2 = f i t s { i +1} {2} ;
124 i n t e r x ( i ) = ( i n t e r c e p t 2− i n t e r c e p t ) / ( s lope−s l o p e 2 ) ;
125 i n t e r y = s l o p e* i n t e r x ( i )+ i n t e r c e p t ;
126 i f strcmp ( mode ,’log’ )
127 i n t e r x ( i ) = 1 0 . ^ i n t e r x ( i ) ;
128 i n t e r y =10.^ i n t e r y ;
129 end
130 p l o t ( [ i n t e r x ( i ) i n t e r x ( i ) ] , [ miny i n t e r y ] ,’-.’ ,’color’ , [ 0 0 0 ] , . . .
131 ’LineWidth’ , 2 ) ;
132 end

134 %% p l o t f u n c t i o n
135 p l o t ( x , y , ’k’ ,’Linewidth’ , 1 . 5 ) ;

137 %% forma t f i g u r e
138 hold o f f
139 % s c a l e s
140 a x i s s q u a r e
141 i f strcmp ( mode ,’log’ )
142 s e t ( gca , ’XScale’ ,’log’ ,’YScale’ ,’log’ , . . .
143 ’YLim’ , [ miny . / 1 0 . ^ ( . 2 ) max( y ) . * 1 0 . ^ ( . 2 ) ] ,’XLim’ , [ min ( x ) max( x ) ] , . . .
144 ’XMinorTic’ ,’on’ ,’YMinorTic’ ,’on’ ,’XMinorTic’ ,’on’ ) ;
145 e l s e i f strcmp ( mode ,’normal’ )
146 s e t ( gca , ’YLim’ , [ miny−.2 max( y ) + . 2 ] , ’XLim’ , [ min ( x ) max( x ) ] ) ;
147 end

149 %% GRADIENT
150 f i g u r e ( fh2 ) , c l f , hold on

152 i f strcmp ( mode ,’log’ )
153 grad = grad ien t ( ly , l x ) ;
154 e l s e i f strcmp ( mode ,’normal’ )
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155 grad = grad ien t ( y , x ) ;
156 end
157 %% f i n d i n g min and max non− i n f g r a d i e n t v a l u e s
158 mingrad = min ( g rad ) ;
159 i f mingrad ==− i n f ,
160 grad2 = grad ;
161 grad2 ( grad==− i n f ) = [ ] ;
162 mingrad=min ( g rad2 ) ;
163 end
164 maxgrad = max( g rad ) ;
165 i f maxgrad == in f ,
166 grad2 = grad ;
167 grad2 ( grad == i n f ) = [ ] ;
168 maxgrad=max( g rad2 ) ;
169 end

171 %% p l o t pa tch r e g i o n s
172 f i g u r e ( fh2 )
173 f o r i =1 : numel ( f i t s )
174 from = f i t s { i } {3 } ;
175 t o = f i t s { i } {4 } ;
176 px = ( [ x ( from ) ; x ( from : t o ) ; x ( t o ) ] ) ;
177 py = ( [ mingrad ; g rad ( from : t o ) ; mingrad ] ) ;
178 r e g i o n i d ( i ) = patch ( px , py , cmap ( i , : ) ) ;
179 end

181 %% p l o t s l o p e s
182 f o r i =1 : numel ( f i t s )
183 s l o p e = f i t s { i } {1 } ;
184 p l o t ( [ x ( 1 ) x ( numel ( x ) ) ] , [ s lope , s l o p e ] ,’.-’ ,’color’ , . . .
185 cmap ( i , : ) ,’LineWidth’ , 1 . 5 )
186 p l o t ( [ x ( 1 ) x ( numel ( x ) ) ] , [ s lope , s l o p e ] ,’k’ )

188 end

190 %% p l o t g r a d i e n t
191 p l o t ( x , grad ,’b’ ,’LineWidth’ , 1 . 5 )

193 %% forma t g r a d i e n t p l o t
194 i f strcmp ( mode ,’log’ )
195 s e t ( gca , ’XScale’ ,’log’ ,’XLim’ , ( [ min ( x ) max( x ) ] ) , . . .
196 ’YLim’ , [ mingrad− .1 , maxgrad + . 1 ] , . . .
197 ’YMinorTic’ ,’on’ ,’XMinorTic’ ,’on’ ) ;
198 e l s e i f strcmp ( mode ,’normal’ )
199 s e t ( gca , ’XLim’ , ( [ min ( x ) max( x ) ] ) , ’YLim’ , [ mingrad− .1 , maxgrad + . 1 ] ) ;
200 end

202 %% w r i t e legend data t o f i l e
203 i f w r i t e l e g e n d t o f i l e
204 f p r i n t f ( f i d , ’\\newcolumntype{e}{c@{ }} \n’ ) ;
205 f p r i n t f ( f i d , ’\\newcolumntype{d}[1]{D{.}{.}{#1}@{ }} \n’ ) ;
206 f o r i =1 : numel ( f i t s )
207 f p r i n t f ( f i d , ’\\definecolor{c%d}{rgb}{%4.4g,%4.4g,%4.4g}\n’ , i , . . .
208 cmap ( i , 1 ) , cmap ( i , 2 ) , cmap ( i , 3 ) ) ;
209 end

211 f p r i n t f ( f i d , ’\\begin{tabular}{|@{ }e|d{4}|d{4}|d{4}|}\\hline\n’ ) ;
212 f p r i n t f ( f i d , s t r c a t (’\\multicolumn {1}{|@{ }e|}{Region} &’ , . . .
213 ’\\multicolumn{1}{e|}{Slope} & \\multicolumn{1}{e|}{NormR} &’ , . . .
214 ’\\multicolumn{1}{e|}{LWidth} \\\\ \\hline \n’ ) ) ;

216 f o r i =1 : numel ( f i t s )
217 f p r i n t f ( f i d , s t r c a t (’{\\setlength\\fboxsep{0mm}\\’ , . . .
218 ’fbox{\\raisebox{\\depth}%%\n’ , . . .
219 ’ {{\\colorbox{c%d}{\\rule{0mm}{3pt}~~~~~~}}}}}’ , . . .
220 ’%%\n & %5.4f &%5.4f & %5.4f\\\\\n’ ) , . . .
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221 i , f i t s { i } {1} , f i t s { i } {5} , f i t s { i } { 6 } ) ;
222 end

224 %% w r i t e r e g i o n bo rde rs
225 f p r i n t f ( f i d , s t r c a t (’\\hline\n\\multicolumn {1}{|@{ }e|}{Region} &’ , . . .
226 ’\\multicolumn{1}{e|}{Start} & \\multicolumn{1}{e|}{End} &’ , . . .
227 ’\\multicolumn{1}{e|}{FitInt} \\\\ \\hline \n’ ) ) ;

229 f o r i =1 : numel ( f i t s )−1
230 f p r i n t f ( f i d , s t r c a t (’{\\setlength\\fboxsep{0mm}\\’ , . . .
231 ’fbox{\\raisebox{\\depth}%%\n’ , . . .
232 ’ {{\\colorbox{c%d}{\\rule{0mm}{3pt}-$\\cdot$ -}}%%\n’ , . . .
233 ’ {\\colorbox{c%d}{\\rule{0mm}{3pt}$\\cdot$ -$\\cdot$}}%%\n’ , . . .
234 ’}}} %%\n & \\multicolumn{1}{e|}{%4.1f} & \\multicolumn{1}’ , . . .
235 ’{e|}{%4.1f} & \\multicolumn{1}{e|}{%4.1f}\\\\\n’ ) , . . .
236 i , i , x ( f i t s { i } { 3 } ) , x ( f i t s { i } { 4 } ) , i n t e r x ( i ) ) ;
237 end
238 i = numel ( f i t s ) ;
239 f p r i n t f ( f i d , s t r c a t (’{\\setlength\\fboxsep{0mm}\\’ , . . .
240 ’fbox{\\raisebox{\\depth}%%\n’ , . . .
241 ’ {{\\colorbox{c%d}{\\rule{0mm}{3pt}-$\\cdot$ -}}%%\n’ , . . .
242 ’ {\\colorbox{c%d}{\\rule{0mm}{3pt}$\\cdot$ -$\\cdot$}}%%\n’ , . . .
243 ’}}} %%\n & \\multicolumn{1}{e|}{%4.1f} &\\multicolumn{1}{e|}’ , . . .
244 ’{%4.1f} & \\multicolumn{1}{e|}{-}\\\\\n’ ) , . . .
245 i , i , x ( f i t s { i } { 3 } ) , x ( f i t s { i } { 4 } ) ) ;
246 i f numel ( f i t s ) >1 ,
247 f p r i n t f ( f i d , ’\\hline’ ) ;
248 end
249 f p r i n t f ( f i d , ’\n\\end{tabular} \\\\\n’ ) ;
250 end

252 %% w r i t e legend t o s c r e e n
253 i f w r i t e l e g e n d t o s c r e e n
254 f p r i n t f ( f i d , ’Slope \t\t NormR \t\t LWidth \n’ ) ;
255 f o r i = 1 : numel ( f i t s )
256 f p r i n t f ( f i d , ’%5.4f \t %5.4f \t %5.4f \n’ , f i t s { i } { 1 } , . . .
257 f i t s { i } {5} , f i t s { i } { 6 } ) ;
258 end
259 f p r i n t f ( f i d , ’End \t\t Start \t\t FitInt \n’ ) ;
260 f o r i = 1 : numel ( f i t s )−1
261 f p r i n t f ( f i d , ’%4.1f \t\t %4.1f \t\t %4.1f \n’ , x ( f i t s { i } { 4 } ) , . . .
262 x ( f i t s { i +1} {3 } ) , i n t e r x ( i ) ) ;
263 end
264 end

266 %% end l i n f i t p l o t
267 end

� �

Listing B.27: linfitplot.m

B.5 Random and Percolation Vessel Simulations

1. Perform Random Simulation Using a Uniform Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . B-42

2. Calculate one 3D Invasion Bond Percolation Cluster . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-45

3. Process and Save Sections from the 3D Percolation Cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-47

4. Modify Exported Image Cell Vector Produced by the Bondslideprocessing Script . . . . . . . . . . . . . . . B-49

5. Merge Data from Different Data Files from each SimulationBefore Exporting . . . . . . . . . . . . . . . . . B-50

6. Export Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55



B-42 APPENDIX

Script: randomsimulation – Perform Random Simulation of Histological Sections

Note: The section of this program that handles the acquisition of image analysis paramters, are used in similar
scripts for the percolation simulation and the downscaled histological images. These scripts will not be included
again.

� �
1 % s c r i p t randoms imu la t i on .
2 % Th is s c r i p t s i m u l a t e s i m m u n o h i s t o l o g i c a l da ta by randomly p l a c i n g
3 % v e s s e l s on an empty image . The v a r i o u s image a n a l y s i s pa ramete rs are
4 % c a l c u l a t e d f o r each o f t h e s i m u l a t e d images .
5 c l e a r
6 n f a c t o r = 10 ;
7 t 0 = cput ime ;
8 nimages = 200;% number o f images a t each v e s s e l coun t

10 % k may be changed t o a subse t , e . g . 1 :10 , t o d i v i d e
11 % work load among s e v e r a l computers , o u t p u t i s w r i t t e n t o f i le
12 f o r k = 1 : 5 0 ;
13 % i n i t i a l i z e f o r each v e s s e l coun t
14 v a r e a s t a t = [ ] ;
15 v f o r m s t a t = [ ] ;
16 v s h a p e s t a t = [ ] ;
17 f s h a p e s t a t = [ ] ;
18 ggnumbsta t = [ ] ;
19 g g b l s t a t = [ ] ;
20 g g b p n s t a t = [ ] ;
21 g g n n s t a t = [ ] ;
22 g g f n s t a t = [ ] ;
23 emstnumbs ta t = [ ] ;
24 e m s t b l s t a t = [ ] ;
25 e m s t b p n s t a t = [ ] ;
26 e m s t n n s t a t = [ ] ;
27 e m s t f n s t a t = [ ] ;

29 f o r i = 1 : n images
30 t i c
31 A = f a l s e ( 3 0 0 , 4 0 0 ) ;
32 I = 1 : numel (A ) ;
33 f o r tmp =1: n f a c t o r* k
34 n = round ( ( numel ( I )−1)* rand ) + 1 ;
35 I ( n ) = [ ] ; % d e l e t e s e l e c t e d so i t w i l l no t be chosen aga in .
36 A( n ) = 1 ;
37 end

39 %% CUMULATIVE HISTOGRAM
40 ch = cumh is t (A , [ . 1 , . 5 , . 9 ] ) ;
41 ch10 ( i ) = ch ( 1 ) ;
42 ch50 ( i ) = ch ( 2 ) ;
43 ch90 ( i ) = ch ( 3 ) ;

45 %% SSA
46 [ v s t a t , g g s t a t , e m s t s t a t ,GG,EMST] = randomsimSSA (A) ;
47 % forma t o f s t a t v e c t o r s :
48 % v s t a t = { areaparams , formparams , shapeparams } ;
49 % gg / e m s t s t a t = { numbranch , blparams , bpnparams , . . .
50 % nnparams , fnparams } ;

52 % add vo rono i s t a t i s t i c s
53 i f ~ isempty ( v s t a t )
54 v a r e a s t a t = [ v a r e a s t a t ; s i n g l e ( v s t a t { 1 } ) ] ;
55 v f o r m s t a t = [ v f o r m s t a t ; s i n g l e ( v s t a t { 2 } ) ] ;
56 v s h a p e s t a t = [ v s h a p e s t a t ; s i n g l e ( v s t a t { 3 } ) ] ;
57 end
58 % add gg s t a t i s t i c s
59 ggnumbsta t = [ ggnumbsta t ; s i n g l e ( g g s t a t { 1 } ) ] ;
60 g g b l s t a t = [ g g b l s t a t ; s i n g l e ( g g s t a t { 2 } ) ] ;
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61 g g b p n s t a t = [ g g b p n s t a t ; s i n g l e ( g g s t a t { 3 } ) ] ;
62 g g n n s t a t = [ g g n n s t a t ; s i n g l e ( g g s t a t { 4 } ) ] ;
63 g g f n s t a t = [ g g f n s t a t ; s i n g l e ( g g s t a t { 5 } ) ] ;
64 % add emst s t a t i s t i c s
65 emstnumbs ta t = [ emstnumbs ta t ; s i n g l e ( e m s t s t a t { 1 } ) ] ;
66 e m s t b l s t a t = [ e m s t b l s t a t ; s i n g l e ( e m s t s t a t { 2 } ) ] ;
67 e m s t b p n s t a t = [ e m s t b p n s t a t ; s i n g l e ( e m s t s t a t { 3 } ) ] ;
68 e m s t n n s t a t = [ e m s t n n s t a t ; s i n g l e ( e m s t s t a t { 4 } ) ] ;
69 e m s t f n s t a t = [ e m s t f n s t a t ; s i n g l e ( e m s t s t a t { 5 } ) ] ;

71 %% FRACTAL ANALYSIS
72 %% o f image s l i d e
73 sp = [ 5 , . 2 , . 1 5 ] ;
74 [ P , s ,X,Y] = g e t f r a c d i m (A,’sand’ , 5 0 ) ;
75 f i t s = r e c l i n f i t ( l og10(X) , l og10(Y) , 1 , numel (X) , sp ) ;

77 %% s o r t f i t s
78 s o r t v e c = ze ros( numel ( f i t s ) , 1 ) ;
79 f o r n =1: numel ( f i t s )
80 s o r t v e c ( n ) = f i t s {n } {3 } ;
81 end
82 [ tmp s o r t i n d ] = s o r t ( s o r t v e c ) ;
83 f i t s = f i t s ( s o r t i n d ) ;

85 dim = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 1 ) ) ;
86 Dim( i ) = dim ;
87 e p s i n d = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 3 ) ) ;
88 e p s i l o n = X( e p s i n d ) ;
89 Eps ( i ) = e p s i l o n ;
90 omegaind = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 4 ) ) ;
91 omega = X( omegaind ) ;
92 Omega ( i ) = omega ;
93 normr ind = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 4 ) ) ;
94 normr = X( normr ind ) ;
95 Normr ( i ) = normr ;

97 %% o f GG
98 sp = [ 5 , . 3 , . 2 5 ] ;
99 [ P , s ,X,Y] = g e t f r a c d i m (GG,’sand’ , 5 0 ) ;

100 f i t s = r e c l i n f i t ( l og10(X) , l og10(Y) , 1 , numel (X) , sp ) ;

102 %% s o r t f i t s
103 s o r t v e c = ze ros( numel ( f i t s ) , 1 ) ;
104 f o r n =1: numel ( f i t s )
105 s o r t v e c ( n ) = f i t s {n } {3 } ;
106 end
107 [ tmp s o r t i n d ] = s o r t ( s o r t v e c ) ;
108 f i t s = f i t s ( s o r t i n d ) ;

110 dim = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 1 ) ) ;
111 DimGG( i ) = dim ;
112 e p s i n d = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 3 ) ) ;
113 e p s i l o n = X( e p s i n d ) ;
114 EpsGG ( i ) = e p s i l o n ;
115 omegaind = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 4 ) ) ;
116 OmegaGG( i ) = X( omegaind ) ;
117 NormrGG ( i ) = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 5 ) ) ;

119 %% o f EMST
120 sp = [ 5 , . 3 , . 2 5 ] ;
121 [ P , s ,X,Y] = g e t f r a c d i m (EMST,’sand’ , 5 0 ) ;
122 f i t s = r e c l i n f i t ( l og10(X) , l og10(Y) , 1 , numel (X) , sp ) ;

124 %% s o r t f i t s
125 s o r t v e c = ze ros( numel ( f i t s ) , 1 ) ;
126 f o r n =1: numel ( f i t s )
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127 s o r t v e c ( n ) = f i t s {n } {3 } ;
128 end
129 [ tmp s o r t i n d ] = s o r t ( s o r t v e c ) ;
130 f i t s = f i t s ( s o r t i n d ) ;

132 dim = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 1 ) ) ;
133 DimEMST( i ) = dim ;
134 e p s i n d = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 3 ) ) ;
135 e p s i l o n = X( e p s i n d ) ;
136 EpsEMST( i ) = e p s i l o n ;
137 omegaind = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 4 ) ) ;
138 OmegaEMST( i ) = X( omegaind ) ;
139 NormrEMST ( i ) = c e l l 2 m a t ( f i t s { numel ( f i t s ) } ( 5 ) ) ;
140 end

142 %% MEAN AND STANDARD DEVIANCE OF THE PERMUTATIONS
143 %% AT CONSTANT VESSEL COUNT.

145 %% Cumula t i ve His togram Parameters
146 mch10 ( k ) = mean( ch10 ) ;
147 s tdch10 ( k ) = s td ( ch10 ) ;
148 mch50 ( k ) = mean( ch50 ) ;
149 s tdch50 ( k ) = s td ( ch50 ) ;
150 mch90 ( k ) = mean( ch90 ) ;
151 s tdch90 ( k ) = s td ( ch90 ) ;

153 %% SSA
154 mvarea ( k , : ) = mean( v a r e a s t a t , 1 ) ;
155 s t d v a r e a ( k , : ) = s td ( v a r e a s t a t , 1 ) ;
156 mvform ( k , : ) = mean( v f o r m s t a t , 1 ) ;
157 s tdv fo rm ( k , : ) = s td ( v f o r m s t a t , 1 ) ;
158 mvshape ( k , : ) =mean( v s h a p e s t a t , 1 ) ;
159 s t d v s h a p e ( k , : ) =s td ( v s h a p e s t a t , 1 ) ;

161 mggnumb ( k , : ) = mean( ggnumbsta t ) ;
162 stdggnumb ( k , : ) = s td ( ggnumbsta t ) ;
163 mggbl ( k , : ) = mean( g g b l s t a t , 1 ) ;
164 s t d g g b l ( k , : ) = s td ( g g b l s t a t , 1 ) ;
165 mggbpn ( k , : ) = mean( ggbpns ta t , 1 ) ;
166 s tdggbpn ( k , : ) = s td ( ggbpns ta t , 1 ) ;
167 mggnn ( k , : ) = mean( g g n n s t a t , 1 ) ;
168 s tdggnn ( k , : ) = s td ( g g n n s t a t , 1 ) ;
169 mggfn ( k , : ) = mean( g g f n s t a t , 1 ) ;
170 s t d g g f n ( k , : ) = s td ( g g f n s t a t , 1 ) ;

172 memstnumb ( k , : ) =mean( emstnumbs ta t ) ;
173 stdemstnumb ( k , : ) =s td ( emstnumbs ta t ) ;
174 memstbl ( k , : ) = mean( e m s t b l s t a t , 1 ) ;
175 s t d e m s t b l ( k , : ) = s td ( e m s t b l s t a t , 1 ) ;
176 memstbpn ( k , : ) =mean( e m s t b p n s t a t , 1 ) ;
177 s tdems tbpn ( k , : ) =s td ( e m s t b p n s t a t , 1 ) ;
178 memstnn ( k , : ) =mean( e m s t n n s t a t , 1 ) ;
179 s tdems tnn ( k , : ) = s td ( e m s t n n s t a t , 1 ) ;
180 memstfn ( k , : ) = mean( e m s t f n s t a t , 1 ) ;
181 s t d e m s t f n ( k , : ) = s td ( e m s t f n s t a t , 1 ) ;

183 %% F r a c t a l Parameters
184 mDim( k ) = mean( Dim ) ;
185 stdDim ( k ) = s td ( Dim ) ;
186 mEps ( k ) = mean( Eps ) ;
187 s tdEps ( k ) = s td ( Eps ) ;
188 mOmega( k ) = mean( Omega ) ;
189 stdOmega ( k ) = s td ( Omega ) ;

191 mDimGG( k ) = mean(DimGG ) ;
192 stdDimGG ( k ) = s td (DimGG ) ;
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193 mEpsGG( k ) = mean( EpsGG ) ;
194 stdEpsGG ( k ) = s td ( EpsGG ) ;
195 mOmegaGG( k ) =mean(OmegaGG ) ;
196 stdOmegaGG ( k ) =s td (OmegaGG ) ;
197 mNormrGG( k ) = mean( NormrGG ) ;
198 stdNormrGG ( k ) = s td (NormGG ) ;

200 mDimEMST( k ) = mean(DimEMST ) ;
201 stdDimEMST ( k ) = s td (DimEMST ) ;
202 mEpsEMST( k ) = mean(EpsEMST ) ;
203 stdEpsEMST ( k ) = s td (EpsEMST ) ;
204 mOmegaEMST( k ) =mean(OmegaEMST ) ;
205 stdOmegaEMST ( k ) =s td (OmegaEMST ) ;
206 mNormrEMST( k ) = mean( NormrEMST ) ;
207 stdNormrEMST ( k ) = s td (NormEMST ) ;

209 end
210 c l e a r I
211 t o t a l t i m e = cputime−t 0 ;
212 save ’../analyse/test/randomsim/lastrunworkspace.mat’
213 end

� �

Listing B.28: randomsimulation.m

Script: bondpercolation3d – Calculate one 3D Invasion Bond Percolation Cluster
� �

1 % S c r i p t p roduc ing one t h r e e d i m e n s i o n a l i n v a s i o n bond p e r co l a t i o n
2 % c l u s t e r . The v e r t i c a l bonds are s t o r e d i n t h e m a t r i x P3 a t t he
3 % end o f t h e s c r i p t .

5 % i n i t i a l i z e
6 s i z =[46 61 1 0 0 ] ;
7 A1 = rand ( s i z ( 1 ) , s i z ( 2 ) + 1 , s i z ( 3 ) + 1 ) ;
8 A2 = rand ( s i z ( 1 ) + 1 , s i z ( 2 ) , s i z ( 3 ) + 1 ) ;
9 A3 = rand ( s i z ( 1 ) + 1 , s i z ( 2 ) + 1 , s i z ( 3 ) ) ;

10 P1 = f a l s e (s i z e(A1 ) ) ;% c l u s t e r
11 P2 = f a l s e (s i z e(A2 ) ) ;
12 P3 = f a l s e (s i z e(A3 ) ) ;
13 N1 = f a l s e (s i z e(A1 ) ) ;% neighbour
14 N2 = f a l s e (s i z e(A2 ) ) ;
15 N3 = f a l s e (s i z e(A3 ) ) ;

18 % I n l e t = s i n g l e p o i n t a t t h e midd le o f bot tom l a y e r
19 N3( round ( s i z ( 1 ) . / 2 ) ,round ( s i z ( 2 ) . / 2 ) , 1 ) = 1 ;

21 c o u n t e r = 0 ;
22 whi le ~any ( P3 ( : , : , s i z ( 3 ) ) )
23 c o u n t e r = c o u n t e r +1;

25 % Find weakes t bond f o r each d i r e c t i o n ; x , y and z .
26 I1 = f i nd (N1 ) ;
27 [ min1 , ind1 ] = min (A1( I1 ) ) ;
28 min1 = min ( [ min1 , i n f ] ) ;
29 [m1 , n1 , p1 ] = ind2sub (s i z e(A1 ) , I1 ( ind1 ) ) ;

31 I2 = f i nd (N2 ) ;
32 [ min2 , ind2 ] = min (A2( I2 ) ) ;
33 min2 = min ( [ min2 , i n f ] ) ;
34 [m2 , n2 , p2 ] = ind2sub (s i z e(A2 ) , I2 ( ind2 ) ) ;

36 I3 = f i nd (N3 ) ;
37 [ min3 , ind3 ] = min (A3( I3 ) ) ;
38 min3 = min ( [ min3 , i n f ] ) ;
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39 [m3 , n3 , p3 ] = ind2sub (s i z e(A3 ) , I3 ( ind3 ) ) ;

41 % S e l e c t t h e weakes t bond , compar ing t h e t h r e e d i r e c t i o n s
42 [ minval , min ind ] = min ( [ min1 , min2 , min3 ] ) ;

44 % Add bond t o t h e c l u s t e r and upda te ne ighbou rs l i s t
45 i f minind == 1
46 P1 (m1 , n1 , p1 ) = 1 ;
47 i f m1< s i z ( 1 ) , N1(m1+1 , n1 , p1 ) = 1 ;end
48 i f m1>1 , N1(m1−1,n1 , p1 ) = 1 ; end
49 i f n1 <= s i z ( 2 )
50 N2(m1 , n1 , p1 ) = 1 ;
51 N2(m1+1 , n1 , p1 ) = 1 ;
52 end
53 i f n1 > 1
54 N2(m1 , n1−1,p1 ) = 1 ;
55 N2(m1+1 , n1−1,p1 ) = 1 ;
56 end
57 i f p1 <= s i z ( 3 )
58 N3(m1 , n1 , p1 ) = 1 ;
59 N3(m1+1 , n1 , p1 ) = 1 ;
60 end
61 i f p1 > 1
62 N3(m1 , n1 , p1−1) = 1 ;
63 N3(m1+1 , n1 , p1−1) = 1 ;
64 end
65 end

67 i f minind == 2
68 P2 (m2 , n2 , p2 ) = 1 ;
69 i f n2< s i z ( 2 ) , N2(m2 , n2 +1 , p2 ) = 1 ;end
70 i f n2 >1 , N2(m2 , n2−1,p2 ) = 1 ; end
71 i f m2 <= s i z ( 1 )
72 N1(m2 , n2 , p2 ) = 1 ;
73 N1(m2 , n2 +1 , p2 ) = 1 ;
74 end
75 i f m2 > 1
76 N1(m2−1,n2 , p2 ) = 1 ;
77 N1(m2−1,n2 +1 , p2 ) = 1 ;
78 end
79 i f p2 <= s i z ( 3 )
80 N3(m2 , n2 , p2 ) = 1 ;
81 N3(m2 , n2 +1 , p2 ) = 1 ;
82 end
83 i f p2 > 1
84 N3(m2 , n2 , p2−1) = 1 ;
85 N3(m2 , n2 +1 , p2−1) = 1 ;
86 end
87 end

89 i f minind == 3
90 P3 (m3 , n3 , p3 ) = 1 ;
91 i f p3< s i z ( 2 ) , N3(m3 , n3 , p3 +1) = 1 ;end
92 i f p3 >1 , N3(m3 , n3 , p3−1) = 1 ; end
93 i f m3 <= s i z ( 1 )
94 N1(m3 , n3 , p3 ) = 1 ;
95 N1(m3 , n3 , p3 +1) = 1 ;
96 end
97 i f m3 > 1
98 N1(m3−1,n3 , p3 ) = 1 ;
99 N1(m3−1,n3 , p3 +1) = 1 ;

100 end
101 i f n3 <= s i z ( 2 )
102 N2(m3 , n3 , p3 ) = 1 ;
103 N2(m3 , n3 , p3 +1) = 1 ;
104 end
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105 i f n3 > 1
106 N2(m3 , n3−1,p3 ) = 1 ;
107 N2(m3 , n3−1,p3 +1) = 1 ;
108 end
109 end

111 % Remove c l u s t e r v a l u e s from ne ighbour l i s t
112 N1 = N1 & ~P1 ;
113 N2 = N2 & ~P2 ;
114 N3 = N3 & ~P3 ;

116 % P r i n t p r o g r e s s i n d i c a t o r t o s c r e e n
117 % f i n d h i g h e s t l a y e r o f P a long z−a x i s
118 tmp = sum( sum( P3 , 2 ) , 1 ) ;
119 [ tmpval , tmpind ] = f i nd ( tmp ) ;
120 f p r i n t f ( 1 ,’\b\b\b\b\b\b\b\b\b\b\bTop=%2d/%2d’ ,max( tmpind ) , s i z ( 3 ) )
121 s w i t c h mod ( coun te r , 4 )
122 case 0
123 f p r i n t f ( 1 ,’|’ )
124 case 1
125 f p r i n t f ( 1 ,’/’ )
126 case 2
127 f p r i n t f ( 1 ,’-’ )
128 case 3
129 f p r i n t f ( 1 ,’\\’ )
130 end

132 end
133 f p r i n t f ( 1 ,’\r \r’ ) ;
134 t oc

� �

Listing B.29: bondpercolation3d.m

Script: bondslideprocessing – Process and Save Sections from the3D Percolation Cluster
� �

1 % S c r i p t p r o c e s s i n g 3d i n v a s i o n bond p e r c o l a t i n c l u s t e r .
2 % Th is s c r i p t uses t h e b o n d p e r c o l a t i o n 3 d s c r i p t t o g e n e r a t ea
3 % p e r c o l a t i o n c l u s t e r ( t h e v e r t i c a l bonds i n t h e r e s u l t i n g cl u s t e r
4 % i s s t o r e d i n m a t r i x P3 ) .
5 % The s c r i p t t hen lo o p s th rough a l l t h e d i f f e r e n t c r o s s s e c t io n s o f
6 % o f t h e mat r i x , removes two p i x e l rows / columns from a l l f o u rs i d e s ,
7 % red u c in g t h e t h e r e s o l u t i o n from 47 x62 t o 43 x58 . The imagesare then
8 % en la rg ed t o 301 x406 ( m u l t p l y by 7 ) , and each v e s s e l i s randomly
9 % s h i f t e d w i t h i n a 7x7 square o f i t s o r i g i n a l p o s i t i o n ( un i form

10 % p r o b a b i l i t y d i s t r i b u t i o n ) .
11 % The image i s then added t o a c e l l a r ray s t o r e d i n a f i l e ,
12 % s o r t e d by t h e number o f v e s s e l s i n t h e image .
13 % Th is a r ray s t o r e s a l l images found a t t h e s p e c i f i c v e s s e l coun t

15 c l e a r
16 r u n n r = 1 ; % used i n f i l e n a m e when t h e c l u s t e r i s s t o r e d
17 whi le 1
18 r u n n r = r u n n r +1;
19 % d i s p l a y p r o g r e s s t o s c r e e n
20 f p r i n t f ( 1 ,’Run Number: %d \r\n ’ , r u n n r )
21 % produce i n v a s i o n bond p e r c o l a t i o n c l u s t e r by i n v o k i n g s c ri p t
22 b o n d p e r c o l a t i o n 3 d

24 % save r e s u l t i n g c l u s t e r
25 f o l d e r = ’47x62x100’ ;
26 save( [ f o l d e r ,’/bpercz’ , num2str ( r u n n r ) ,’.mat’ ] , ’P3’ )

28 % PRODUCE CELL ARRAY OF IMAGES SORTED BY NUMBER OF VESSELS
29 Ims tack = c e l l ( 1 , 1 )
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31 %% Wi thou t expans ion and r a n d o m i s a t i o n
32 % coun t number o f v e s s e l s and add t o s t a c k
33 f o r n =1: s i z e( P3 , 3 )
34 cu r ren t sum =sum( sum( P3 ( : , : , n ) ) ) ;
35 i f cu r ren t sum <= numel ( Ims tack ) && ~isempty ( Ims tack { cu r ren t sum } )
36 Ims tack ( cu r ren t sum ) = { [ Ims tack ( cu r ren t sum ) , { P3 ( : , : , n) } ] } ;
37 e l s e
38 Ims tack ( cu r ren t sum ) = {P3 ( : , : , n ) } ;
39 end
40 end

42 % w r i t e t o f i l e
43 f o r n =1: l eng th ( Ims tack )
44 i f ~ isempty ( Ims tack {n } )
45 f i l e n a m e = [ f o l d e r ,’\originalstack\vc’ , num2str ( n ) ,’.mat’ ] ;
46 i f e x i s t ( f i l ename ,’file’ )==2 ,
47 s t a c k = s t r u c t 2 c e l l (load ( f i l e n a m e ) ) ;
48 s t a c k = s t a c k {1 } ;
49 e l s e
50 s t a c k = [ ] ;
51 end
52 f o r i = 1 : numel ( Ims tack ( n ) )
53 s t a c k = [ s tack , Ims tack ( n ) ] ;
54 end
55 save( f i l ename ,’stack’ )
56 end
57 end

59 %% With Expans ion and r a n d o m i z a t i o n
60 f p r i n t f ( 1 ,’\r\r\r ’ )
61 %% P l o t t i n g S e c t i o n
62 % r e s e t t i n g Ims tack t o emtpy c e l l a r ray
63 Ims tack = c e l l ( 0 ) ;
64 f o r n = 1 : s i z e( P3 , 3 )
65 Im0 = P3 ( : , : , n ) ;
66 % removing border 2x2 p i x e l s
67 Im0 = Im0 ( 3 : s i z e( Im0 ,1)−2 , 3 : s i z e( Im0 ,2 )−2 ) ;

69 % i n c r e a s e r e s o l u t i o n o f image by add ing empty rows and columns
70 Im2 = Im0 ;
71 expandf = 7 ;
72 f o r i = 1 :1
73 Im = Im2 ;
74 Im2 = [ Im ; f a l s e (s i z e( Im , 1 )* ( expandf−1) , s i z e( Im , 2 ) ) ] ;
75 Im2 = reshape( Im2 , s i z e( Im , 1 ) , s i z e( Im , 2 )* expandf ) ;
76 Im2 = ro t90 ( Im2 ) ;
77 Im2 = [ Im2 ; f a l s e (s i z e( Im2 , 1 )* ( expandf−1) , s i z e( Im2 , 2 ) ) ] ;
78 Im2 = reshape( Im2 , s i z e( Im , 1 )* expandf , s i z e( Im , 2 )* expandf ) ;
79 Im2 = ro t90 ( Im2 ,−1) ;
80 end
81 % randomiz ing w i t i n 7x7 square
82 rdx = ( c e i l ( rand ( sum( sum( Im0 ) ) , 1 )* ( expandf ))− c e i l ( expandf / 2 ) ) ;
83 rdy = ( c e i l ( rand ( sum( sum( Im0 ) ) , 1 )* ( expandf ))− c e i l ( expandf / 2 ) ) ;
84 [Y,X] = ind2sub ( s i z e( Im2 ) , f i nd ( Im2 ) ) ;
85 X = X + rdx ; X(X<1) = 1 ; X(X> s i z e( Im2 , 2 ) ) = s i z e( Im2 , 2 ) ;
86 Y = Y + rdy ; Y(Y<1) = 1 ; Y(Y> s i z e( Im2 , 1 ) ) = s i z e( Im2 , 1 ) ;
87 Im = f a l s e (s i z e( Im2 ) ) ;
88 Im ( sub2 ind (s i z e( Im2 ) ,Y,X) ) = 1 ;

90 % adding t o images tack
91 cu r ren t sum =sum( sum( Im ) ) ;
92 i f cu r ren t sum > 0
93 i f cu r ren t sum <= numel ( Ims tack ) &&. . .
94 ~ isempty ( Ims tack { cu r ren t sum } )
95 Ims tack ( cu r ren t sum ) = { [ Ims tack ( cu r ren t sum ) , { Im } ] } ;
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96 e l s e
97 Ims tack ( cu r ren t sum ) = {Im } ;
98 end
99 end

100 end
101 %% Expor t
102 f o r n =1: l eng th ( Ims tack )
103 i f ~ isempty ( Ims tack {n } )
104 f i l e n a m e = [ f o l d e r ,’\randomizedstack\vc’ , num2str ( n ) ,’.mat’ ] ;
105 i f e x i s t ( f i l ename ,’file’ )==2 ,
106 s t a c k = s t r u c t 2 c e l l (load ( f i l e n a m e ) ) ;
107 s t a c k = s t a c k {1 } ;
108 e l s e
109 s t a c k = [ ] ;
110 end
111 f o r i = 1 : numel ( Ims tack ( n ) )
112 s t a c k = [ s tack , Ims tack ( n ) ] ;
113 end
114 save( f i l ename ,’stack’ )
115 end
116 end

118 end % w h i l e
� �

Listing B.30: bondslideprocessing.m

Function: sortslides – Further Process Saved Image Slide Arrays From the Percolation Clusters
by Removing Nested Cell Array Entries

Note: After this step the images are analysed, code is similar to that of the randomsimulation at page B-42 (in
appendix B).

� �
1 f unc t i on s t a c k 2 = s o r t s l i d e s ( )
2 % Func t i on read ing c e l l a r r a y s c o n t a i n g images o f a s p e c i f i cnumber o f
3 % v e s s e l s , and s o r t them t o become one d i m e n s i o n a l . P e r c o l a ti o n c l u s t e r
4 % c o n t a i n i n g s e v e r a l s e c t i o n s w i th t h e same number o f v e s s e ls have produced
5 % a c e l l a r ray o f v a r y i n g number o f images a t each e n t r y .
6 % Furthermore , t h e v e s s e l c o u n t s t h e number o f images a t eachv e s s e l coun t
7 % and s t o r e s t h e r e s u l t i n a f i l e .

9 f o r vc =1:500
10 f i l e n a m e = [’randomizedstack/vc’ , num2str ( vc ) ,’.mat’ ] ;
11 % check i f f i l e e x i s t s
12 i f e x i s t ( f i l ename ,’file’ )==2
13 s t a c k = s t r u c t 2 c e l l (load ( f i l e n a m e ) ) ;
14 s t a c k = s t a c k { : } ( : ) ;
15 s t a c k = r e s t a c k ( s tack , { } ) ;
16 save( f i l ename ,’stack’ )
17 s l i d e c ( vc ) = numel ( s t a c k ) ;
18 e l s e
19 s l i d e c ( vc ) = 0 ;
20 end
21 v e s s e l c ( vc ) = vc ;
22 end
23 l o g f i l e = ’numberofslides.mat’ ;
24 save( l o g f i l e , ’vesselc’ ,’slidec’ ) ;
25 end

28 f unc t i on s t a c k 2 = r e s t a c k ( s tack , s t a c k 2 )
29 f o r i =1 : numel ( s t a c k )
30 i f i s l o g i c a l ( s t a c k { i } ) ;
31 s t a c k 2 { numel ( s t a c k 2 )+1} = s t a c k { i } ;
32 e l s e
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33 s t a c k 2 = r e s t a c k ( s t a c k { i } , s t a c k 2 ) ;
34 end
35 end
36 end

� �

Listing B.31: sortslides.m

Script: randomsimstitch – Merge the Data in the Different Stored Vessel Count Files for the
Random and the Percolation Simulation

� �
1 % s c r i p t g a t h e r i n g t h e image a n a l y s i s pa ramete rs from each ve s s e l coun t
2 % f i l e and add them t o a s i n g l e v e c t o r f o r p l o t t i n g . The p e r c o la t i o n
3 % s i m u l a t i o n has one f i l e per v e s s e l count , t h e random s i m u l at i o n has f i v e
4 % d i f f e r e n t f i l e s c o n t a i n g i n t e r v a l l s o f d i f f e r e n t v e s s e l co u n t s .

6 i f ~ e x i s t ( ’tmch10’ ,’var’ )
7 %% d e c l a r e v a r i a b l e s
8 % f r a c t a l
9 tmDim = [ ] ;

10 t s tdD im = [ ] ;
11 tmEps = [ ] ;
12 t s t d E p s = [ ] ;
13 tmOmega = [ ] ;
14 ts tdOmega = [ ] ;

16 tmDimGG = [ ] ;
17 tstdDimGG = [ ] ;
18 tmEpsGG = [ ] ;
19 ts tdEpsGG = [ ] ;
20 tmOmegaGG = [ ] ;
21 tstdOmegaGG = [ ] ;

23 tmDimEMST = [ ] ;
24 tstdDimEMST = [ ] ;
25 tmEpsEMST = [ ] ;
26 tstdEpsEMST = [ ] ;
27 tmOmegaEMST = [ ] ;
28 tstdOmegaEMST = [ ] ;

30 % cumh is t
31 tmch10 = [ ] ;
32 t s t d c h 1 0 = [ ] ;
33 tmch50 = [ ] ;
34 t s t d c h 5 0 = [ ] ;
35 tmch90 = [ ] ;
36 t s t d c h 9 0 = [ ] ;

38 % SSA
39 tmvarea = [ ] ;
40 t s t d v a r e a = [ ] ;
41 tmvform = [ ] ;
42 t s t d v f o r m = [ ] ;
43 tmvshape = [ ] ;
44 t s t d v s h a p e = [ ] ;

46 tmggnumb = [ ] ;
47 ts tdggnumb = [ ] ;
48 tmggbl = [ ] ;
49 t s t d g g b l = [ ] ;
50 tmggbpn = [ ] ;
51 t s t d g g b p n = [ ] ;
52 tmggnn = [ ] ;
53 t s t d g g n n = [ ] ;
54 tmggfn = [ ] ;
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55 t s t d g g f n = [ ] ;

57 tmemstnumb = [ ] ;
58 t s tdemstnumb = [ ] ;
59 tmemstb l = [ ] ;
60 t s t d e m s t b l = [ ] ;
61 tmemstbpn = [ ] ;
62 t s t d e m s t b p n = [ ] ;
63 tmemstnn = [ ] ;
64 t s t d e m s t n n = [ ] ;
65 tmemst fn = [ ] ;
66 t s t d e m s t f n = [ ] ;
67 end

69 i f i s e q u a l ( f o l d e r ,’percsim’ ) ,
70 r e a d f i l e = ’47x62x100/results/percsimvc’ ;
71 numpar ts = 9 ;
72 p a r t s t e p = 50 ;
73 p a r t s = 1 : 9 ;
74 f roms = p a r t s t e p* ( p a r t s−1)+1; f roms ( 1 ) = 10 ;
75 t o s = p a r t s t e p* ( p a r t s ) ; t o s ( numel ( t o s ) ) = 479 ;
76 load ( ’47x62x100/numberofslides.mat’ )
77 l = ~( s l i d e c >=10) ;
78 l = l ( f roms ( 1 ) : t o s ( numel ( t o s ) ) ) ;

80 e l s e i f i s e q u a l ( f o l d e r ,’randomsim’ ) ,
81 r e a d f i l e = ’randomsim300x400/lastrunworkspace’ ;
82 numpar ts = 5 ;
83 p a r t s t e p = 10 ;
84 p a r t s = 1 : 5 ;
85 f roms = p a r t s t e p* ( p a r t s−1)+1;
86 t o s = p a r t s t e p* ( p a r t s ) ;
87 l = f a l s e (s i z e( p a r t s ) ) ;
88 end

90 f o r p a r t =1: numel ( p a r t s )
91 from = froms ( p a r t ) ;
92 t o = t o s ( p a r t ) ;

94 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 %% Remove ze ro rows , i . e . v e s s e l c o u n t s w i t h o u t any images
96 i f i s e q u a l ( f o l d e r ,’percsim’ )
97 f i l e n a m e = [ r e a d f i l e ,num2str ( t o ) ,’ws.mat’ ] ;
98 e l s e i f i s e q u a l ( f o l d e r ,’randomsim’ )
99 f i l e n a m e = [ r e a d f i l e ,num2str ( from ) ,’to’ , num2str ( t o ) ,’.mat’ ] ;

100 end

102 load ( f i l e n a m e )
103 %% F r a c t a l Parameters
104 mDim = mDim( from : t o ) ;
105 stdDim = stdDim ( from : t o ) ;
106 mEps = mEps ( from : t o ) ;
107 s tdEps = s tdEps ( from : t o ) ;
108 mOmega = mOmega( from : t o ) ;
109 stdOmega = stdOmega ( from : t o ) ;

111 mDimGG = mDimGG( from : t o ) ;
112 stdDimGG = stdDimGG ( from : t o ) ;
113 mEpsGG = mEpsGG( from : t o ) ;
114 stdEpsGG = stdEpsGG ( from : t o ) ;
115 mOmegaGG = mOmegaGG( from : t o ) ;
116 stdOmegaGG = stdOmegaGG ( from : t o ) ;

118 mDimEMST = mDimEMST( from : t o ) ;
119 stdDimEMST = stdDimEMST ( from : t o ) ;
120 mEpsEMST = mEpsEMST( from : t o ) ;
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121 stdEpsEMST = stdEpsEMST ( from : t o ) ;
122 mOmegaEMST = mOmegaEMST( from : t o ) ;
123 stdOmegaEMST = stdOmegaEMST ( from : t o ) ;

127 %% Cumula t i ve His togram Parameters ;
128 mch10 = mch10 ( from : t o ) ;
129 s tdch10 = s tdch10 ( from : t o ) ;
130 mch50 = mch50 ( from : t o ) ;
131 s tdch50 = s tdch50 ( from : t o ) ;
132 mch90 = mch90 ( from : t o ) ;
133 s tdch90 = s tdch90 ( from : t o ) ;

135 %% SSA=
136 mvarea = mvarea ( from : to , : ) ;
137 s t d v a r e a = s t d v a r e a ( from : to , : ) ;
138 mvform = mvform ( from : to , : ) ;
139 s tdv fo rm = s tdv fo rm ( from : to , : ) ;
140 mvshape = mvshape ( from : to , : ) ;
141 s t d v s h a p e = s t d v s h a p e ( from : to , : ) ;

143 mggnumb = mggnumb ( from : t o ) ;
144 stdggnumb = stdggnumb ( from : t o ) ;
145 mggbl = mggbl ( from : to , : ) ;
146 s t d g g b l = s t d g g b l ( from : to , : ) ;
147 mggbpn = mggbpn ( from : to , : ) ;
148 s tdggbpn = s tdggbpn ( from : to , : ) ;
149 mggnn = mggnn ( from : to , : ) ;
150 s tdggnn = s tdggnn ( from : to , : ) ;
151 mggfn = mggfn ( from : to , : ) ;
152 s t d g g f n = s t d g g f n ( from : to , : ) ;

154 memstnumb = memstnumb ( from : t o ) ;
155 stdemstnumb = stdemstnumb ( from : t o ) ;
156 memstbl = memstbl ( from : to , : ) ;
157 s t d e m s t b l = s t d e m s t b l ( from : to , : ) ;
158 memstbpn = memstbpn ( from : to , : ) ;
159 s tdems tbpn = s tdems tbpn ( from : to , : ) ;
160 memstnn = memstnn ( from : to , : ) ;
161 s tdems tnn = s tdems tnn ( from : to , : ) ;
162 memstfn = memstfn ( from : to , : ) ;
163 s t d e m s t f n = s t d e m s t f n ( from : to , : ) ;

165 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
166 %% S t i t c h them t o g e t h e r

168 %% F r a c t a l Parameters
169 tmDim = [ tmDim , mDim ] ;
170 t s tdD im = [ ts tdDim , stdDim ] ;
171 tmEps = [ tmEps , mEps ] ;
172 t s t d E p s = [ t s t d Ep s , s tdEps ] ;
173 tmOmega = [ tmOmega , mOmega ] ;
174 ts tdOmega = [ tstdOmega , stdOmega ] ;

176 tmDimGG = [ tmDimGG ,mDimGG ] ;
177 tstdDimGG = [ tstdDimGG , stdDimGG ] ;
178 tmEpsGG = [ tmEpsGG , mEpsGG ] ;
179 ts tdEpsGG = [ tstdEpsGG , stdEpsGG ] ;
180 tmOmegaGG = [ tmOmegaGG , mOmegaGG ] ;
181 tstdOmegaGG = [ tstdOmegaGG , stdOmegaGG ] ;

183 tmDimEMST = [ tmDimEMST ,mDimEMST ] ;
184 tstdDimEMST = [ tstdDimEMST , stdDimEMST ] ;
185 tmEpsEMST = [ tmEpsEMST , mEpsEMST ] ;
186 tstdEpsEMST = [ tstdEpsEMST , stdEpsEMST ] ;
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187 tmOmegaEMST = [ tmOmegaEMST , mOmegaEMST ] ;
188 tstdOmegaEMST = [ tstdOmegaEMST , stdOmegaEMST ] ;

190 %% Cumula t i ve His togram Parameters
191 tmch10 = [ tmch10 , mch10 ] ;
192 t s t d c h 1 0 = [ t s t d c h 1 0 , s tdch10 ] ;
193 tmch50 = [ tmch50 , mch50 ] ;
194 t s t d c h 5 0 = [ t s t d c h 5 0 , s tdch50 ] ;
195 tmch90 = [ tmch90 , mch90 ] ;
196 t s t d c h 9 0 = [ t s t d c h 9 0 , s tdch90 ] ;

198 %% SSA
199 tmvarea = [ tmvarea ; mvarea ] ;
200 t s t d v a r e a = [ t s t d v a r e a ; s t d v a r e a ] ;
201 tmvform = [ tmvform ; mvform ] ;
202 t s t d v f o r m = [ t s t d v f o r m ; s tdv fo rm ] ;
203 tmvshape = [ tmvshape ; mvshape ] ;
204 t s t d v s h a p e = [ t s t d v s h a p e ; s t d v s h a p e ] ;

206 tmggnumb = [ tmggnumb ; mggnumb ] ;
207 ts tdggnumb = [ ts tdggnumb ; stdggnumb ] ;
208 tmggbl = [ tmggbl ; mggbl ] ;
209 t s t d g g b l = [ t s t d g g b l ; s t d g g b l ] ;
210 tmggbpn = [ tmggbpn ; mggbpn ] ;
211 t s t d g g b p n = [ t s t d g g b p n ; s tdggbpn ] ;
212 tmggnn = [ tmggnn ; mggnn ] ;
213 t s t d g g n n = [ t s t d g g n n ; s tdggnn ] ;
214 tmggfn = [ tmggfn ; mggfn ] ;
215 t s t d g g f n = [ t s t d g g f n ; s t d g g f n ] ;

217 tmemstnumb = [ tmemstnumb ; memstnumb ] ;
218 t s tdemstnumb = [ ts tdemstnumb ; stdemstnumb ] ;
219 tmemstb l = [ tmemstb l ; memstbl ] ;
220 t s t d e m s t b l = [ t s t d e m s t b l ; s t d e m s t b l ] ;
221 tmemstbpn = [ tmemstbpn ; memstbpn ] ;
222 t s t d e m s t b p n = [ t s t d e m s t b p n ; s tdems tbpn ] ;
223 tmemstnn = [ tmemstnn ; memstnn ] ;
224 t s t d e m s t n n = [ t s t d e m s t n n ; s tdems tnn ] ;
225 tmemst fn = [ tmemst fn ; memstfn ] ;
226 t s t d e m s t f n = [ t s t d e m s t f n ; s t d e m s t f n ] ;

228 end

230 %% Replace non s l i d e i n d i c e s w i th nan ( from 0 ) ,
231 % t h i s so t h e y w i l l no t be p l o t t e d
232 tmDim ( l ) = nan ;
233 t s tdD im ( l ) = nan ;
234 tmEps ( l ) = nan ;
235 t s t d E p s ( l ) = nan ;
236 tmOmega ( l ) = nan ;
237 ts tdOmega ( l ) = nan ;

239 tmDimGG( l ) = nan ;
240 tstdDimGG ( l ) = nan ;
241 tmEpsGG ( l ) = nan ;
242 ts tdEpsGG ( l ) = nan ;
243 tmOmegaGG( l ) = nan ;
244 tstdOmegaGG ( l ) = nan ;

246 tmDimEMST( l ) = nan ;
247 tstdDimEMST ( l ) = nan ;
248 tmEpsEMST ( l ) = nan ;
249 tstdEpsEMST ( l ) = nan ;
250 tmOmegaEMST( l ) = nan ;
251 tstdOmegaEMST ( l ) = nan ;
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253 tmch10 ( l ) = nan ;
254 t s t d c h 1 0 ( l ) = nan ;
255 tmch50 ( l ) = nan ;
256 t s t d c h 5 0 ( l ) = nan ;
257 tmch90 ( l ) = nan ;
258 t s t d c h 9 0 ( l ) = nan ;

260 %% SSA
261 tmvarea ( l , : ) = nan ;
262 t s t d v a r e a ( l , : ) = nan ;
263 tmvform ( l , : ) = nan ;
264 t s t d v f o r m ( l , : ) = nan ;
265 tmvshape ( l , : ) = nan ;
266 t s t d v s h a p e ( l , : ) = nan ;

268 tmggnumb ( l , : ) = nan ;
269 ts tdggnumb ( l , : ) = nan ;
270 tmggbl ( l , : ) = nan ;
271 t s t d g g b l ( l , : ) = nan ;
272 tmggbpn ( l , : ) = nan ;
273 t s t d g g b p n ( l , : ) = nan ;
274 tmggnn ( l , : ) = nan ;
275 t s t d g g n n ( l , : ) = nan ;
276 tmggfn ( l , : ) = nan ;
277 t s t d g g f n ( l , : ) = nan ;

279 tmemstnumb ( l , : ) = nan ;
280 t s tdemstnumb ( l , : ) = nan ;
281 tmemstb l ( l , : ) = nan ;
282 t s t d e m s t b l ( l , : ) = nan ;
283 tmemstbpn ( l , : ) = nan ;
284 t s t d e m s t b p n ( l , : ) = nan ;
285 tmemstnn ( l , : ) = nan ;
286 t s t d e m s t n n ( l , : ) = nan ;
287 tmemst fn ( l , : ) = nan ;
288 t s t d e m s t f n ( l , : ) = nan ;

290 %% Rename a l l v a r i a b l e s
291 % f r a c t a l a n a l y s i s
292 mDim = tmDim ;
293 stdDim = ts tdDim ;
294 mEps = tmEps ;
295 s tdEps = t s t d E p s ;
296 mOmega = tmOmega ;
297 stdOmega = tstdOmega ;

299 mDimGG = tmDimGG ;
300 stdDimGG = tstdDimGG ;
301 mEpsGG = tmEpsGG ;
302 stdEpsGG = tstdEpsGG ;
303 mOmegaGG = tmOmegaGG ;
304 stdOmegaGG = tstdOmegaGG ;

306 mDimEMST = tmDimEMST ;
307 stdDimEMST = tstdDimEMST ;
308 mEpsEMST = tmEpsEMST ;
309 stdEpsEMST = tstdEpsEMST ;
310 mOmegaEMST = tmOmegaEMST ;
311 stdOmegaEMST = tstdOmegaEMST ;

313 %% c u m u l a t i v e h i s tog ram
314 mch10 = tmch10 ;
315 s tdch10 = t s t d c h 1 0 ;
316 mch50 = tmch50 ;
317 s tdch50 = t s t d c h 5 0 ;
318 mch90 = tmch90 ;
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319 s tdch90 = t s t d c h 9 0 ;

321 %% SSA %% SSA
322 mvarea = tmvarea ;
323 s t d v a r e a = t s t d v a r e a ;
324 mvform = tmvform ;
325 s tdv fo rm = t s t d v f o r m ;
326 mvshape = tmvshape ;
327 s t d v s h a p e = t s t d v s h a p e ;

329 mggnumb = tmggnumb ;
330 stdggnumb = ts tdggnumb ;
331 mggbl = tmggbl ;
332 s t d g g b l = t s t d g g b l ;
333 mggbpn = tmggbpn ;
334 s tdggbpn = t s t d g g b p n ;
335 mggnn = tmggnn ;
336 s tdggnn = t s t d g g n n ;
337 mggfn = tmggfn ;
338 s t d g g f n = t s t d g g f n ;

340 memstnumb = tmemstnumb ;
341 stdemstnumb = ts tdemstnumb ;
342 memstbl = tmemstb l ;
343 s t d e m s t b l = t s t d e m s t b l ;
344 memstbpn = tmemstbpn ;
345 s tdems tbpn = t s t d e m s t b p n ;
346 memstnn = tmemstnn ;
347 s tdems tnn = t s t d e m s t n n ;
348 memstfn = tmemst fn ;
349 s t d e m s t f n = t s t d e m s t f n ;

� �

Listing B.32: randomsimstitch.m

Script: plotcasesandperccomparison – Export Graphs of the Image Analysis Parameters of the
Percolation Simulation and the Data Points of the Histological Sections

Note: A similar script (not included) exports the graphs from the random simulation.
� �

1 % S c r i p t e x p o r t i n g t h e r e s u l t s f rom t h e downsca led h i s t o l o gi c a l
2 % data and t h e p e r c o l a t i o n s c r i p t .
3 c l e a r
4 f o l d e r = ’percsim’ ;
5 % c a l l r a n d o m s i m s t i t c h s c r i p t
6 r a n d o m s i m s t i t c h
7 % load t h e downsca led h i s t o l o g i c a l image a n a l y s i s da ta
8 load ’../analyse/test/randomsim/caseparams2.mat’
9 e x p o r t f l a g = 1 ;

10 f u l l r e s f r a c c o m p = 1 ;

12 %% Expor t S e c t i o n
13 t i t l e f s = 22 ;
14 a x i s f s = 18 ;

16 f o l d e r = [ f o l d e r ,’comp’ ] ;
17 l i new id thnum1 = 3 ;
18 l i new id thnum2 = 2 ;

20 i f e x p o r t f l a g

22 %% Number o f s e c t i o n s
23 f i g u r e ( 1 ) , c l f , p l o t ( v e s s e l c , s l i d e c ) ,
24 s e t ( gcf , ’windowstyle’ ,’docked’ ) ,
25 t i t l e ( ’Number of Generated Images’ ,’fontsize’ , t i t l e f s )
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26 s e t ( gca , ’fontsize’ , a x i s f s ,’xlim’ , [ 0 , 5 0 0 ] ,’box’ ,’off’ ,’ylim’ , [ 0 8 0 ] )
27 y l a b e l ( ’Number of Images’ ) , x l a b e l ( ’Number of Vessels’ )
28 p r i n t ( gcf , ’-depsc2’ , [ ’../analyse/test/’ , f o l d e r , ’/numberofslides.eps’ ] )

30 %% F r a c t a l Dimension
31 %% FD o f image
32 f i g u r e ( 2 ) , c l f , errorbar ( f roms ( 1 ) : t o s ( numel ( t o s ) ) , mDim, stdDim )
33 hold on , p l o t ( f roms ( 1 ) : t o s ( numel ( t o s ) ) , mDim,’k’ ) ; hold o f f
34 s e t ( gcf , ’windowstyle’ ,’docked’ ) ,
35 t i t l e ( ’Fractal Dimensions at Large Sandbox Sizes’ ,’fontsize’ , t i t l e f s )
36 s e t ( gca , ’fontsize’ , a x i s f s ,’xlim’ , [ 0 , 5 0 0 ] ,’box’ ,’off’ ,’ylim’ , [ . 7 5 , 2 ] )
37 y l a b e l ( ’Sandbox Dimension’ ) , x l a b e l ( ’Number of Vessels’ )
38 i f f u l l r e s f r a c c o m p
39 hold on , p l o t ( numvesse ls , Dim2 ,’kx’ ,’linewidth’ , l inewid thnum1 , . . .
40 ’markersize’ , 16 ,’markeredgecolor’ ,’k’ ,’markerfacecolor’ , . . .
41 ’none’ ) , hold o f f
42 end
43 hold on , p l o t ( numvesse ls , Dim ,’ro’ ,’linewidth’ , 2 , . . .
44 ’markeredgecolor’ ,’r’ ,’markerfacecolor’ ,’r’ ) , hold o f f
45 p r i n t ( gcf , ’-depsc2’ , [ ’../analyse/test/’ , f o l d e r , ’/fractaldim.eps’ ] )
46 f i g u r e ( 1 ) , c l f , p l o t ( f roms ( 1 ) : t o s ( numel ( t o s ) ) , stdDim ) , y l im ( [ 0 . 1 ] )
47 s e t ( gca , ’fontsize’ , a x i s f s ,’xlim’ , [ 0 , 5 0 0 ] ,’box’ ,’off’ )
48 t i t l e ( ’St.Dev of Dimension’ ,’fontsize’ , t i t l e f s )
49 y l a b e l ( ’Standard Deviation’ ) , x l a b e l ( ’Number of Vessels’ )
50 p r i n t ( gcf , ’-depsc2’ , [ ’../analyse/test/’ , f o l d e r , ’/fractalstd.eps’ ] )

52 f i g u r e ( 1 ) , c l f
53 hold on
54 errorbar ( f roms ( 1 ) : t o s ( numel ( t o s ) ) , mOmega , stdOmega ,’k’ )
55 p l o t ( f roms ( 1 ) : t o s ( numel ( t o s ) ) , mOmega ,’b’ )
56 errorbar ( f roms ( 1 ) : t o s ( numel ( t o s ) ) , mEps , s tdEps )
57 p l o t ( f roms ( 1 ) : t o s ( numel ( t o s ) ) , mEps ,’k’ )
58 s e t ( gcf , ’windowstyle’ ,’docked’ ) , t i t l e ( ’Upper Fractal Region’ ,’fontsize’ , t i t l e f s )
59 s e t ( gca , ’fontsize’ , a x i s f s ,’xlim’ , [ 0 , 5 0 0 ] ,’box’ ,’off’ )
60 l egend( ’End Diameter’ ,’Start Diameter’ ,’Location’ ,’East’ )
61 y l a b e l ( ’Sandbox Diameter’ ) , x l a b e l ( ’Number of Vessels’ )
62 i f f u l l r e s f r a c c o m p
63 hold on , p l o t ( numvesse ls , Eps2 . / 5 . 1 6 ,’kx’ ,’linewidth’ , l inewid thnum1 , . . .
64 ’markersize’ , 22 ,’markeredgecolor’ ,’k’ ,’markerfacecolor’ ,’none’ ) , hold o f f
65 hold on , p l o t ( numvesse ls , Omega2 . / 5 . 1 6 ,’bx’ ,’linewidth’ , l inewid thnum1 , . . .
66 ’markersize’ , 22 ,’markeredgecolor’ ,’b’ ,’markerfacecolor’ ,’none’ ) , hold o f f
67 end
68 hold on , p l o t ( numvesse ls , Eps ,’ro’ ,’linewidth’ , 2 , . . .
69 ’markersize’ , 10 ,’markeredgecolor’ ,’r’ ,’markerfacecolor’ ,’r’ ) , hold o f f

71 hold on , p l o t ( numvesse ls , Omega ,’ro’ ,’linewidth’ , 2 , . . .
72 ’markersize’ , 10 ,’markeredgecolor’ ,’r’ ,’markerfacecolor’ ,’r’ ) , hold o f f

74 p r i n t ( gcf , ’-depsc2’ , [ ’../analyse/test/’ , f o l d e r , ’/fractalregion.eps’ ] )
75 hold o f f

77 % S c r i p t c o n t i n u e s t o p l o t graphs f o r a l l parameters , i n t o t al 918 l i n e s .

79 c l o s e a l l
80 end

� �

Listing B.33: plotcasesandperccomparison.m


