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Abstract

There is a broad consensus in the database research community that
the traditional ACID properties are not suitable for certain application
domains. Especially, long-lasting and information sharing transactions
are not adequately supported. Several extended transaction models
have been presented to deal with these shortcomings. Many of these
models do this by relaxing the isolation property. Apotram, presented
by Ole Jgrgen Anfindsen, is one such model. It allows transactions to
customize their degree of isolation. This is achieved by introducing two
mechanisms, parameterized access modes and nested databases. Apo-
tram requires transactions to be able to modify their degree of isolation
dynamically. This is achieved by allowing transactions to modify their
associated parameterized access modes. This thesis analyzes the con-
sequences of this requirement and points out when these modifications
introduce conflicts. First, parameter modification is analyzed in the
context of parameterized access modes only, then the integration of
access modes and nested databases is investigated. Furthermore, a set
of strategies for resolving and avoiding conflicts are introduced and

discussed.
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Chapter 1

Introduction

1.1 Introduction

This chapter gives some brief background information on transactions, lim-
itations of traditional transactions, and the Apotram transaction model. It
also explains what problem this thesis addresses and gives a presentation of
the structure of the thesis.

1.2 Background information

1.2.1 An Overview of Transactions

Transactions can be thought of as a unit of operations that define an atomic
action. A transaction can be begun, and then completed by either abort-
ing or committing it. If the transaction is aborted then it is as if it never
had taken place. Transactions provide concurrency control and recovery.
Concurrency control assures concurrent execution of transactions without
introducing inconsistencies. This gives a running transaction the illusion
that it has the whole system to itself.

Recovery assures that if a transaction does not succeed for some reason
(e.g. hardware or software failure) then the database is restored to a consist-
ent state close to the point of failure. Thus, a failure should never leave the
database in an inconsistent state.

Traditionally, transaction are expected to have four properties, called the
ACID properties |Gra81, HR83]. Briefly explained, they are:

Atomicity. Either all operations of a transaction are executed or none at
all.

Consistency. A transaction must be correct, i.e. take the database from
one consistent state to another.
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Isolation. A transaction should not be able to read intermediate results of
other transactions.

Durability. Once completed, the results of the transaction are permanent
in the database even in spite of any later failures.

1.2.2 Limitations of Classical Transactions

The flat transaction model was designed for short independent transactions
that perform simple state transformations. However, certain application do-
mains have a behavior which can not be adequately supported by flat trans-
actions. Examples of such application domains are CAD/CAM, office auto-
mation, publication environments, and software development environments.
Transactions in such environments can be very complex, access many data
items and live for a long period of time (e.g. hours, days, or months). Long
lasting transactions are often called long-lived. The flat transaction model
is not suitable for such transactions. Firstly, because of the long duration,
long-lived transactions are more vulnerable to failures. If such a failure oc-
curs after the transaction has done a possibly significant amount of work, all
this work has to be rolled back (i.e. undone). Secondly, to ensure isolation
long-lived transactions lock resources for long periods of time and thereby
force any competing transactions to wait for the long-lived transaction to
commit. Finally, according to [Gra81|, the frequency of deadlock increases
with the fourth power of the transaction size.

Another limitation of the flat transaction model is that the demand for
isolation prevents cooperation between transactions. This poses difficulties
in collaborative environments. Transactions are not able to see any ongoing
work performed by other transactions. Imagine, for example a software
development environment where a team of developers work together on some
module. Each transaction represents the work of a developer. Information
needs to be shared between the developers to properly integrate their work.
Under the flat transaction model the sharing would not be allowed due to
the demand for isolation.

This suggests that there is a need to relax isolation to support collabor-
ation between transactions and many of the purposed extended transaction
models deal with the shortcomings of flat transactions by doing exactly that.
However, there is still a need to preserve isolation in some situations and
therefore it would be beneficial if the degree of isolation could be custom-
ized. Apotram, briefly summarized in the next section, is one such model
that allows transactions to customize their level of isolation.

1.2.3 The Apotram Transaction Model

The Apotram transaction model was defined in [Anf97] by Ole J. Anfind-
sen. Apotram is an acronym for application oriented transaction model. It

12



deals with the shortcomings of classical transactions by introducing condi-
tional isolation between transactions. This allows transactions to customize
the degree of isolation. Only read-write and write-read conflicts can be made
conditional, write-write conflicts still conflict unconditionally. This results in
a new correctness criterion called conditional conflict serializability (CCSR)
of which the traditional correctness criterion, conflict serializability (CSR), is
a special case. The criterion is implemented by parameterized access modes.
A transaction uses parameterized access modes to specify what degree of
isolation it wants. A transaction can read uncommitted data from another
transaction if their access parameters are compatible. Thus, parameterized
access modes realizes collaboration by allowing transactions to share uncom-
mitted data.

Another concept introduced by Apotram is nested databases. This allows
transactions to recursively create databases. The creating transaction of a
nested database can move data items into the database and define which
transactions that are allowed to execute within it. Transactions running
within a nested database can access its objects. When they commit (or
abort) they commit (or abort) to the owner of the nested database, which can
accept, deny, or reject the request. Nested databases deal with write-write
conflicts by allowing visiting transactions to alternate their write accesses un-
der the control of the transaction owning the nested database. This concept
results in the nested conflict serializability (NCSR) correctness criterion.

By combining the CCSR and NCSR criteria we get nested conditional
conflict serializability (NCCSR) which makes the handling of read-write,
write-read, and write-write conflicts possible.

1.2.4 The Contributions of this Thesis

One of the requirements of Apotram is the possibility to modify the degree
of isolation of transactions dynamically. This is done by allowing the trans-
actions to modify their read and write parameter values during execution.
However, these modifications can introduce conflicts. One of the resulting
problems is pointed out in [Anf97, page 108]:

If a data item locked in W(B) mode is read by another transaction
in R(A) mode, what should then happen if the first transaction
attempts to change lock mode from W(B) to W(C)? Should this
be prevented? If not, should the reader be notified? Or perhaps
the outcome should depend on whether or not C' C A? And
should there be rules limiting how lock parameters can change in
general?

In general, a conflict can result each time the degree of isolation is made
more strict.
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This thesis analyses the concept of dynamic parameter modification. Dy-
namic parameter modification is first investigated under pure CCSR (i.e. nes-
ted databases are not allowed.), and then the more complex case of NCCSR
is analyzed. The thesis investigates when conflicts result, suggests various
strategies to resolve and avoid these conflicts, and gives a discussion of each
strategy.

1.3 The Structure of the Thesis

The part of the thesis consisting of chapters 2 through 4 gives some back-
ground knowledge required to follow the discussions of this thesis.

Chapter 2 gives an overview of transactions. It explains why concurrency
control and recovery is needed and how they are ensured by the idea of
transactions. Concepts such as the ACID properties, conflict serializability,
the two-phase locking protocol, and transaction histories and their properties
are explained.

In chapter 3 the concept of transaction models is presented. First, the
classical flat transaction model and its limitations are discussed. Then,
various extended transaction models such as Sagas [GMS87], nested trans-
actions [Mos81|, and dynamic restructuring of transactions [KP92| are ex-
plained.

A presentation of the Apotram transaction model |Anf97] and its prop-
erties such as parameterized access modes and nested databases is given in
chapter 4.

Chapter 5 is the main contribution of this thesis. It analyses the concept
of dynamic modification of parameters and suggest strategies for avoiding
and resolving conflicts that can result when applying this concept.

Finally, chapter 6 discusses the results of this thesis, lists the contribu-
tions made, and gives some areas for further work.

1.4 Summary

This chapter has given background information and a motivation for this
thesis.
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Chapter 2

Transactions

2.1 Introduction

transaction /treen'zaek [n/ n 1 [U] ~ of sth the conducting

of business: the transaction of official /routine/government/public
business. 2 [C] a piece of business done: cheque/credit/cash
transactions legal/commercial /property transactions.

— Ozford’s Advanced Learner’s Dictionary

The transaction is a very old concept. The Sumerians invented writing for
transaction processing six thousand years ago [GR93|. The earliest writing
that has been found is on clay tablets that recorded the royal inventory of
taxes, land, grain, cattle, slaves and gold. This way, scribes kept records of
each transaction. One can say that this system was a transactional system:

Database. An abstract system state, represented as marks on clay tablets,
was maintained.

Transactions. Scribes recorded state changes with new records (clay tab-
lets) in the database. Today, we would call these state changes trans-
actions.

—Gray, Reuter 1993 [GRI3|

The clay tablets represented the real world and made it easy for the
scribes to answer questions about the current and past state.

The technology used to record the data evolved over several thousand
years through papyrus, parchment and then paper. Then in the the late
1800s, Herman Hollerith built a punch-card computer system to record and
report the 1890 United States census. During the first half of the twentieth
century the punch-card growth and evolution was heavily fueled by the need
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for transaction processing. The systems were primarily used for inventory
control and accounting.

Then in the second half of the twentieth century, due to the invention of
magnetic storage, batch transaction processing was possible. The first online
transaction processing followed batch transaction processing as electronic
storage and computer networks. An on-line transaction is the execution of
a program that performs a function, usually on behalf of an online user.

The first on-line transaction processing application to receive widespread
use was an airline reservations system: the SABRE system [BN97]. It was
developed by American Airlines in the early 1960s as a joint venture between
IBM and American Airlines. It was one of the biggest computer system
efforts undertaken by anyone at that time, and still is one of the largest
transaction processing systems in the world.

Table 1 shows some transactional applications with some example trans-
actions.

| Application | Example Transactions
Banking Deposit or withdraw money from an account
Securities trading Purchase 100 shares of stock
Insurance Pay an insurance premium
Inventory control Record the arrival of a shipment
Manufacturing Log a step of an assembly process
Retail Record a sale
Government Register an automobile
Internet Place an order using an on-line catalog
Telecommunications Connect a telephone call
Military command and control | Fire a missile
Media Download a video clip

Table 2.1: Examples of transaction processing applications. Taken from
Bernstein, Newcomer [BN97]

In the early years, the transaction processing market was primarily driven
by large companies needing to support business functions for large numbers
of customers. Large TP systems are now becoming even more important as
online services become popular on the Internet. But, smaller TP systems will
grow as the Internet makes it possible also for small businesses to provide
online services [BN97].

2.2 Fundamental Properties of Transactions

A transaction is a set of operations which forms a logical unit of work. The
transactions operate on a shared database. The operations of a transaction
fall in two groups:
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1. Transaction operations: Start, Commit and Abort a transaction.
2. Data operations: Reading and Writing data items.

A transaction is first started, then data operations are performed in the
context of the started transaction, finally the transaction is terminated either
by a commit or abort operation. No data operations can follow commit or
abort. During the execution of an abort all changes made by the transactions
are undone/rolled back.

During execution a transaction can go through the following states:

Active. This is the initial state. A transaction is active while it is execut-
ing.

Partially Committed. After the commit statement has been executed.
Failed. This state is reached when normal execution can not proceed.

Aborted. After the completion of a rollback of the transaction. The
transaction has either aborted itself (suicide) or has been aborted by
the system (murder).

Committed. This state is reached when the changes of the transaction
have been made durable.

Transactions should possess several fundamental properties. These are
usually called the ACID properties [HR83].

e Atomicity
e Consistency
e Isolation

e Durability

The acronym ACID was first presented by Hérder & Reuter in their article
“Principles of Transaction-Oriented Database Recovery” from 1983 [HR83].
The following sections will describe the ACID properties.

2.2.1 Atomicity

Transactions that comply with this property must either execute completely
or not at all. It should under no circumstances only execute partially. To give
an example of why this property is necessary imagine a transaction that takes
$ 100 from account A and then adds it to an account B. This transaction has
to be atomic. Either both updates have to be done or none at all. The owner
of account A would be very dissatisfied if only the withdrawal of account A
would be executed. The $ 100 would be lost.
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Partially

Committed Committed

Failed Aborted

Figure 2.1: State diagram of a transaction

When something goes wrong and the transaction has to be aborted, it
is the responsibility of the recovery method to ensure atomicity. All state
changes must be undone, and if any other transactions have read data written
by the aborting transaction, they too have to be aborted (cascading abort).
Section 2.6 will look further into recovery.

2.2.2 Consistency

A transaction should maintain the consistency of the database. When a
transaction executes on an initially consistent database the database should
also be consistent after the execution. Unlike atomicity, isolation and dur-
ability, consistency is a responsibility that is shared between the transaction
programs and the transaction processing system that executes those transac-
tion programs. Therefore the programmer of the transaction programs must
analyze and test his programs very carefully to make sure that they preserve
consistency. During the execution of a transaction the database can be in an
inconsistent state a number of times. This fact does not cause any problems
because these inconsistencies are not seen by other transactions due to the
assurance of isolation and atomicity.
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2.2.3 Isolation

Several transactions may run concurrently on a system. If the operations
of the concurrent transactions can interleave arbitrarily then their execution
can result in an inconsistent database. The isolation property gives each
transaction the illusion of having the system entirely to itself. Effects of
other concurrent transactions are hidden from the transactions. Section 2.3
will take a look at which problems that can occur when transactions are
allowed to interleave arbitrarily.

2.2.4 Durability

Durability requires that all updates that have been done during the execution
of a transaction must not be forgotten by the system. This is typically
done by storing the updates on some non-volatile device (e.g. a disk) that
survives the failure of the system. This guarantees that if something causes
the system to fail after a commit, the changes made by the transaction are
not lost. This also implies that there is no automatic function to undo the
changes of a committed transaction. The only way this can be done is by
invoking a compensating transaction.

Durability is a important property because transactions usually provide
a service that acts as a contract between the users of the system and the
service provider. Take, again, the example of a banking system that provides
debit/credit transactions. When some amount of money is withdrawn from a
customer’s account, the bank would not be very pleased if the system forgets
the updates of this transaction.

Durability is usually implemented in database systems by logging the
changes made by its transactions. The logging is done while the transac-
tions are running. When a transaction is about to commit, the system makes
sure that the transaction’s log entries are durable (e.g. written to some non-
volatile storage). If this is the case, then the transaction has indeed com-
mitted and the results are durable. Now, the changes of the transaction are
recorded in the log, but they need not be written to the database. So, what
would happen if the system fails at this point? The database would have to
be repaired using the log. The system checks each entry in the log to see if
it has been written to the database. For the log entries where this is not the
case, the change of the entry is applied to the database. When this process,
called recovery, is completed, the system resumes normal operation.

2.3 Concurrency Control
Concurrency control deals with the coordination of processes that execute in

parallel. These processes may access shared data in an interleaved manner
which may lead the system into an inconsistent state. This inconsistency
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is entirely the result of the way the processes were scheduled and therefore
occurs even if every process is coded correctly.

Concurrency problems arise in design of hardware, operating systems,
communication systems, real time system, and database systems, among

others [BHGS87].

In database systems the concurrent processes are represented by transac-
tions. The following section will look at what kind of problems concurrency
introduces. These problems are avoided if we do not allow concurrent ex-
ecutions. The transactions will then be executed serially. An execution is
serial if, for every pair of transactions, all the operations of one transactions
execute before any operations of the other. A serial execution is correct since
every transaction involved is correct (by assumption), and serially executing
transactions can not interfere with each other. There are two good reasons
for allowing concurrency [SKS97|:

1. Throughput. Transactions perform different kinds of actions. One
part of the transaction may use the CPU and the other part access
I/O devices(e.g. disk, network, keyboard). The CPU and disk can be
accessed in parallel by the computer system. By allowing transactions
to execute concurrently the parallelism of the computer system may be
exploited. Instead of letting the disk be idle during a CPU intensive
part of a transaction, another transaction which needs to access the
disk may execute concurrently. This increases the throughput of the
system.

2. Average response time. The system may run transactions which differ
greatly in length. Some may be short while others are long(e.g. a query
which has to traverse large portions of the database). If transactions
are run serially, short transactions have to wait for long ones to finish.
Thus, increasing the average response time.

The motivation for allowing concurrency is essentially the same for data-
base systems as for using multiprogramming in operating systems [SKS97].
Concurrency improves performance but forces implementation of concur-
rency control schemes to avoid introducing inconsistency. Only in the simplest
systems is serial executions a practical way to avoid interference [BHG87].

2.3.1 Problems introduced by concurrency

This section will take a look at four problems which are introduced when
transactions are allowed to interleave in certain ways.
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The Lost Update Problem

This problem occurs when two concurrent transactions access the same state
in a way that causes some update to be lost. Imagine two transactions 7}
and T5 that both withdraw some money from an account A.

One can see the occurrence of the lost update problem if the two trans-
actions T} and 75 interleave in the manner shown in figure 2.2. The update
of transaction 717, is overwritten by 75, hence lost.

T1 T2
X:=read_balance();

X:=read_balance();
X:=X-N;
X:=X-M;
write_balance(X);

write_balance(X);

Figure 2.2: The lost update problem

The Temporary Update/Dirty Read Problem

This problem happens when one transaction 77 updates a state and then
fails for some reason. If some other concurrent transaction 75 read the state
before it was changed back to its initial value, an incorrect state has been
read. The calculations and changes made by 7T, are based on that incorrect
value. See Figure 2.3.

T1 T2
X:=read_balance();
X:=X-N;

write_balance(X);
X:=read_balance();
X:=X-M;
write_balance(X);
T, fails and must undo its
changes, but 75 has already read
the inconsistent value.

Figure 2.3: The temporary update/dirty read problem
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The Incorrect Summary problem

If one transaction, 75, is calculating an aggregate summary function while
other transactions are updating some of the values 75 is using, then it can
happen that 75 reads some values before they are updated and some after.
This will cause 75 to result with an incorrect summary. See figure 2.4.

Ty ib)

sum:=0;
read_item(A);
sum:=sum + A;

read_item(X);

X:=X-M;

write_item(X);

read_item(X);

sum:=sum + X; +—— Here T5 reads X after M
has been subtracted by T3
but before M has been ad-
ded to Y, which gives an in-
correct summary in 75.

read_item(Y);

sum:=sum + Y;

read_item(Y);

Y:=Y+M;

write_item(Y);

Figure 2.4: The incorrect summary problem

The Phantom Problem

So far we have only concerned ourselves with read and write operations.
Some transactions must also be able to insert data into the database, not
only modify existing data. Now, imagine that one transaction, 77, is cal-
culating the sum of all accounts and another transaction,7b is inserting a
new account. With two transactions only two serial schedules are possible,
either Ty — T5 or T — T7. In the first schedule, 77 does not include the
new account in the sum, but in the second it is included. Please notice that
in schedule 1, 77 and T do not access any data in common, so one could
wrongly think that their operations could be arbitrarily interleaved without
introducing a conflict. But, they do conflict on a phantom, namely the newly
created account. So the ordering of the operations affects the result, and as
we will see in the next section, this means that the operations conflict.
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2.3.2 Conflicting Operations

The reason why these problems occur is due to the ordering of conflicting
operations. Two operations are said to conflict if their ordering affects the
result. This happens if they operate on the same data and one of them
is a write. A read(z) operation conflicts with a write(x) and a write(x)
operation conflicts with both read(z) and write(z). For example, the result
of a read(x) depends on whether the read precedes or follows a write(x)
operation. The result of two writes depends on which write was processed
last.

2.4 Serializability Theory

To implement isolation and making sure that resulting transaction schedules
do not leave the database in an inconsistent state, one has to know which
schedules will preserve consistency. Serializability theory is a mathematical
tool that allows us to prove if a schedule preserves consistency. A concurrent
execution of transactions results in a transaction history. The history is
said to be serializable if it represents a serializable execution. Informally
an execution is serializable if it has the same effects on the database as
a serial execution. Because a serial execution assures consistency by not
having any interleaving of transactions, a serializable execution also preserves
consistency. In this section serializability will be defined and two types of
serializability will be explained.

Transaction Histories A history is a model of the execution of a set of
transactions. The history consists of the operations of the transactions and
how they are ordered. Since some of the operations may execute in parallel
the ordering is a partial order. Only non-conflicting operations may be ex-
ecuted in parallel. Because the ordering of conflicting operations determines
the result of the history, one has to know in what order they were executed.
Each transaction may either have an abort or commit operation. After an
abort or commit no operations can perform on behalf of that transaction. A
history where all included transactions either have committed or aborted is
called a complete history [BHG87]. A complete history is serial if, for every
pair of transactions, all the operations of one transactions execute before any
operations of the other. There are n! possible serial histories over a set of n
transactions.

Equivalence of histories To be able to define serializable executions we
will have to define what it means that two histories are equal.

Definition 1 [Conflict equivalence of histories| Two histories H and H' are
defined as conflict equivalent if [BHG87]

23



1. They consist of the same set of transactions and have the same opera-
tions.

2. They order conflicting operations of non-aborted transactions in the
same way. That is, if p and q are conflicting operations and p occurs
prior to q in H then p has to occur prior to q in H' as well.

In the following example 7T} can be thought of as a transfer from account
x to y and T, as a deposit into account x:

1. Ty = ri[z]r [yJw: [z]w: [y]er
2. Ty = rolx|wsax]es

Here r[x] and w[x| mean that the transaction respectively reads and writes the
data item x. The calculations on the data items are not shown because they
do not affect the consistency of the execution of the transactions. We assume
that the operations that can be performed by the transactions do not make
the transaction able to communicate by other means than by reading and
writing data items. If such communication was allowed then the concurrency
manager could not determine the dependencies between the communicating
transactions.

Consider the following three possible histories including the two transac-
tions:

1. Hy = rfz|r[y|w: [z]w; [y]erre[z]we[z]co
2. Hy = ri[z]ri[y]w [z]re[x]w; [y]wa[z]cico
3. Hs = ri[z]ri[y]rs[z]ws[x]w; [x]w; [y]cico

Note that Hj is the serial execution 77 — T5. The pairs of conflicting op-
erations between the two transactions are (r[x], wa[z]), (w1 [x], ro[z]), (w1 [x], wa[z]).
The order of these conflicts in the three example histories are:

L Hy : (rifa], wal2]), (wiz], ra]), (w1 [2], wa[z])
2. Hy : (rifz], wale]), (wifa], rafa]), (wifa], wal2])
3. Hy: (rifz], wale]), (wala], rifa]), (wifa], walz])

In H; and H> the conflicts are ordered in the same way and by definition
of equivalence of histories, H; and Hy are equivalent. In Hg3, however, the
second pair of conflicts is ordered differently. Hence, Hj3 is not equal to
neither Hy nor Hs. Hj is in fact an example of the lost update problem. 75
overwrites the results of 77 on .

This definition of equivalence of histories is based on the ordering of
conflicting operations included in the history. Later, in section 2.4.1, we will
look at a different definition of equivalence called view equivalence.
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Serializable histories Now that we know what a serial history is and what
it means that two histories are equivalent, we can understand the definition
of serializability:

Definition 2 (Serializability) A history H is serializable if and only if it
1s equivalent to some serial history Hg.

As mentioned earlier there is more than one way to define equivalence of
histories; conflict equivalence and view equivalence (see section 2.4.1). Based
on whether conflict or view equivalence is used, two forms of serializability
are possible, conflict serializability (CSR) and view serializability (VSR),
respectively. In the rest of this thesis I will let equivalence and serializability
mean conflict equivalence and conflict serializability, unless otherwise stated.

In the example above we saw that Hs is equivalent to the serial history
H,. By the definition of serializability we now know that Hs is serializable.

Remember that there are n! possible serial histories when n transactions
are involved. It gets rather inefficient to find an equivalent serial history to
a specific non-serial history when n is moderately large. Another way to
test if a history H is serializable is to derive and analyze the serialization
graph(SG) for H, denoted SG(H). This graph is derived by creating a node
for every committed transaction involved in H and creating an edge from T;
to T}, i # j, if there is an operation in T; which precedes and conflicts with
one of T}’s operations. An edge in the graph can represent more than one
pair of conflicting operations.

The serialization graphs for the histories of the example above are shown
in figure 2.5.

Hy Ho Ha

O—® O— G b

Figure 2.5: Serialization graphs for Hy, Hy and Hj

The single edge 17 — T5 in the histories H; and Hs represents all three
conflicts between the two transactions. The edge 1o — T} in Hj exists
because of the (ws[z],r1[x]) conflict ordering.

Each edge in SG(H) means that at least one of T;’s operations precedes
and conflicts with one of T}’s. From the definition of conflict equivalence
this suggests that if an equivalent serial history exists T; must precede 7}.
If a cycle is present in the graph, an equivalent serial history cannot exist.
Let us say that there exists a cycle in H containing the nodes 7; and 7}. In
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an equivalent serial history 7; precedes T; which in turn precedes T;. This
is impossible.
This argument is formalized in the fundamental serializability theorem [BHG87]

Theorem 1 (The Serializability Theorem) A history H is serializable
ifft SG(H) is acyclic.

The history Hj3 contains a cycle, and therefore is not serializable.

Given an acyclic serialization graph, SG(H), all equivalent serial histories
can be derived by topologically sorting SG(H). Our example histories H;
and Hs have only one equivalent serial schedule: T — T5.

2.4.1 View Serializability

Another definition of history equivalence is called wview equivalence. This
definition of equivalence is less restrictive than conflict equivalence.

Definition 3 (View Equivalence) Two histories H and H' are view equi-
valent if the following conditions hold:

1. They consist of the same set of transactions and have the same opera-
tions.

2. For any committing pair of transactions T; and T}, if T; reads a data
item x from T; in H then T; must also read from T; in H'.

3. If T; is the last transaction to write a data item x in H, then T; must
also be the last transaction to write x in H'.

From this definition of history equivalence we get view serializability.

Definition 4 (View Serializability) A history H is view serializable iff
it is view equivalent to some serial history.

The definition of view serializability is less restrictive when a value is
written that is independent of all previous reads of that transaction. These
writes are called blind writes [EN94|. Histories that are view serializable but
not conflict serializable always contain blind writes [SKS97].

Although view serializability is less restrictive than conflict serializability
it is not used in commercial database systems. Testing for view serializability
has been shown to be NP—complete, which means that it is highly unlike
that efficient algorithms for this will be found. For more information on
VSR please consider [BHG87, page 38|.

Liff reads if and only if.
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2.5 Enforcing Serializability

This section will look at the most commonly used concurrency control scheme,
the two-phase locking protocol. Several other schemes exist:

e Timestamp Ordering (TO).
e Serialization Graph Testing (SGT).

Timestamp ordering and serialization graph testing are theoretically in-
teresting, but hardly used in commercial systems. For a detailed description
of these concurrency control schemes see [BHG87, chapter 4].

2.5.1 Schedulers

The concurrency control scheme is enforced by the scheduler. The scheduler
receives operations from the transaction manager. It can respond to an
operation in three ways:

1. Immediately schedule it.
2. Delay it.

3. Reject it. This causes the transaction that issued the operation to
abort.

Based on how schedulers react to operations they can coarsely be divided
into two categories: conservative and aggressive. Conservative schedules
tend to delay operations. This gives the scheduler greater freedom to later
rearrange the operations to ensure serializability. Aggressive schedulers try
to avoid delaying operations by scheduling them as early as possible. The
scheduler reduces the ability to rearrange conflicting operations later and
may only be able to ensure a serializable execution by aborting one or more
transactions.

The performance of the scheduler type depends on the environment in
which it is used. Aggressive schedulers may perform better under situations
where concurrent transactions rarely conflict. The conservative scheduler
might unnecessarily delay operations under this situation. If, on the other
hand, concurrent transactions often do conflict then an aggressive scheduler
would often have to abort transactions to ensure serializability. The conser-
vative scheduler would more often be able to achieve serializability without
aborting transactions.

2.5.2 The Two-Phase Locking Protocol

The oldest and most widely used concurrency control algorithm is lock-
ing [Tan92]. The concept is simple. Each data item has a lock associated
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with it. A transaction can either acquire a lock or release a lock it is already
holding. If a transaction 7; wants to use a resource x it first has to aquire a
lock on x. If x is not already locked T; becomes the owner of the lock on zx.
If, on the other hand, x is locked, no other transaction may access it. If x
was already locked by some transaction T} then it is up to the lock manager
to deal with this conflict. The lock manager could choose to deny the request
(e.g. by throwing an exception) or block the requesting transaction 7; and
add it to a queue. When the owner of the lock on z releases the lock, a
transaction 7T; is picked from the queue by using some scheduling algorithm
(e.g. round robin) and T; is set to the owner of the lock and revived.

This locking protocol is restrictive because data items only can be locked
exclusively. Two transactions can not simultaneously read a data item. More
flexibility can be achieved by letting the acquiring transactions specify in
what mode they want to lock the item. Transactions can read and write
data items, so two lock modes come naturally, read- and write locks.

The algorithm for lock acquisition will now have to consider what lock
mode is requested. A request to lock data item x in lock mode m can only
be granted if no other transactions hold a lock in mode that conflicts with
m. Section 2.3.2 described conflicting operations. Two lock modes on a data
item z conflict if one of them is a write. This traditional concurrency control
scheme allows multiple simultaneous readers, but only a single writer.

Unrestricted acquisition and release of locks by transactions does not
ensure serializability. Cycles can still be created in the serialization graph.
Figure 2.6 shows the occurrence of the lost update problem even though
locking is used.

T 15

rl[x]

r[x]

ul [x]
rl[x]
r[x]
ul [x]

wl [x]

w[x]

ul [x]
wl [x]
w[x]
ul [x]

Figure 2.6: The lost update problem when locking is used. The update of
T is overwritten by 75 and therefore lost.

The two-phase locking protocol applies some additional restrictions and
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guarantees conflict serializability. As indicated by its name the protocol
requires that transactions issue their lock and unlock requests in two phases.

1. Growing phase. The transaction can aquire locks, but is not allowed
to release any lock.

2. Shrinking phase. The transaction can only release locks. It is not
allowed to aquire any new locks.

The transaction starts with its growing phase. Once a lock is released, the
shrinking phase is entered. Once in its shrinking phase the transaction can
not acquire any new locks in its remaining execution. Figure 2.7 illustrates
the two-phase locking protocol.

Lock
point
|
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g Growing L Shrinking
s ™ phase h phase
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> !
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:
Time

Figure 2.7: The basic two-phase locking protocol (Basic 2PL). The figure
has been adopted from |Tan92|.

Let us give an intuitive explanation of why 2PL ensures serializability.
Recall that a history is serializable if and only if its SG is acyclic. An
incoming edge to a transaction’s node in the SR may be created when the
transaction acquires a lock. An outgoing edge from a transaction’s node
can only be created if that transaction has released that a lock. Thus, to
create a cycle in the SG, some transaction must first release a lock and then
later acquire a lock. This is explicitly prohibited by the 2PL protocol. For
a more thorough explanation and proof the reader is referred to [BHG87,
pages 49-56].

The basic two-phase locking protocol is subject to cascading rollback of
transactions. Cascading rollback can be avoided by requiring that write-
locks are held until the transaction commits. This version of 2PL is called
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strict two-phase locking and assures that no transactions can read results
written by uncommitted transactions.

Another variation of 2PL is the rigorous two-phase locking protocol which
requires that all locks are held until the transaction commits. See section
2.6.1 for more information on rigorous histories.

All of these two-phase protocols are vulnerable to deadlocks. A deadlock
occurs when two or more transactions block each other in a way that makes
it impossible to continue. Figure 2.8 shows an example of a classic deadlock
situation.

T1 T2
rl[x]

rl[y]
wlly]

wl[x]

Figure 2.8: Example of a deadlock. T} waits for 75 to release the lock on y
while T, waits for T] to release the lock on x.

There are various ways of coping with deadlocks.
1. Time-out. A transaction that has waited too long for a lock is aborted.

2. Wait-for graph (WFG). A graph over which transactions wait for which
others is maintained. A cycle in the graph represents a deadlock situ-
ation. A transaction participating in the cycle is selected (the victim)
and aborted to resolve the deadlock.

It is also possible to modify the 2PL protocols to avoid deadlocks. This
can be done by making the transactions predeclare their readsets and write-
sets. This variant is called two-phase locking with predeclaring. A problem
with this approach is that the transaction does not always know exactly
which items it is going to access. As a solution to this problem, transactions
often have to overstate their read- and writesets. For a thorough discussion
of deadlocks and 2PL with predeclaring see [BHGS87, pages 56-59].

2.6 Recoverability

The recovery system of the database must make sure that software and
hardware failures do not corrupt persistent data. This is usually done by
restoring the database to a previous consistent sate. All effects of uncom-
mitted transactions should be removed. An executing transaction has the
following effects:

1. Effects on data the transaction writes.
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2. Effects on other transactions that read from the transaction.

These effects have to be undone when the transaction is aborted.
A transaction has to be rolled back if one of the following situations
occur.

e The transaction aborts itself(suicide).
e The transaction is aborted(murder):

— Hardware/Software crash.
— The transaction participates in a deadlock and is chosen as victim.

— The transaction is scheduled by an aggressive scheduler that can
not let the transaction continue because this would break serial-
izability.

It is not always easy to undo all effects of an aborting transaction. Some
transactions display output to the user during execution. The user might
use this output as input to another transaction. The database system has
no possibility to discover this dependency between the two transactions,
and the execution of the second transaction might bring the system into an
inconsistent state. This way the isolation property has been violated. Some
systems solve this by not displaying any output until the transaction has in
fact committed all its work. But, this can also lead to a problem. Imagine
that the transaction commits successfully and is about to show the user its
results. Then, for some reason, the system crashes and the user did not get
to see the result. A concrete example would be the withdrawal transaction
of an ATM (Automatic Teller Machine). The bank does not want to give
the customer his/her money until the transaction has committed. But, if the
system crashes between the delivery of the money and the commitment of
the transaction, the customer will not receive his money, but the bank will
think he did.

These problems are results of non-recoverable actions. The actions can
not be undone if the transaction that executes them aborts. The difference
between the effect of actions are categorized as [Gra81]:

Unprotected. The action does not have to be considered when aborting
a transaction.

Protected. The action has to be undone when a transaction is aborted

Real. The action can not be undone. This category of actions is also
known as non-recoverable actions.
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2.6.1 Properties of Transaction Histories

Serializability is not enough to ensure executions that preserve consistency.
Let us take a look at a transaction history in which the dirty read consistency
problem occurs:

o Hy = ri[z]w[z]ra[x]wsy|coar

Here 11 updates x and before T, aborts its value of z is read by 75. The
serialization graph of Hy is given in figure 2.9. When analyzing SG(H,) we
find that Hy in fact is serializable (it contains no cycles) even though it con-
tains a consistency problem. This shows that serialization does not prevent
the dirty read problem. Now, because 75 read from the aborted 7} it too has
to be aborted, a cascading abort. Remember that the durability property of
ACID guaranteed that committed transactions are durable. Therefore the
durability property forbids the rollback of the committed T transaction.
Thus, the history H, is not recoverable.

( ) (W, [x], rix]) @

Figure 2.9: The serialization graph of a history that contains a dirty read

A history H is recoverable (RC) if no transaction 7" in H commits until
all transactions it read from have committed. A transaction 7; is said to read
from T} in a history H if

1. wj[z] precedes 7;[x]
2. Tj does not abort before r;[z]

3. If another transaction 7} writes x after 7} then it aborts before T;
reads z.

From this definition of recoverable histories we see that H, is not recoverable
since Ty reads from 77 and 75 commits before T7.

In recoverable histories no committed transaction will ever have to be
rolled back. Notice that if a transaction 7T; aborts then all transaction that
have read from T; must be aborted as well. Thus, a single transaction’s abort
may lead to the abortion of several transactions that may have performed
a significant amount of work. This phenomenon is called cascading rollback.
As an illustration, consider the following example:

o Hjs = ri[z|wi[z]ra[z]waylrs[ylas
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T3 reads from 75 which in turn reads from 77. Because 77 aborts and 15
reads from T3, 15 has to be aborted. 73 must also be aborted because it
reads from T5.

Cascading aborts are not desirable because they require significant book-
keeping to know which transactions read from which others and because
the abortion of a single transaction can result in the abortion of uncontrol-
lably many transactions that may have performed a considerable amount
of work. Database systems are in practice designed to avoid cascading
aborts [BHG87|.

A history H avoids cascading aborts(ACA) if a transaction only may
read from committed transactions or itself.

Histories that are ACA are not always enough. The problem involves
undoing the writes of aborted transactions. We assume that no transactions
read from other uncommitted transactions (ACA). Consider the following
execution:

o Hg = wi[z,3wsx, 1]cras

The notation w;[z, val] means that the transaction 7; writes val into z. The
write action of 75 has to be undone. This can be done by using the concept
of before images. The before image of a w;[x,val] operation is the value z
had just before the execution of this write. To undo a write operation, the
write value is replaced by the before image of the write. In our example the
value of = should be set to 3 which was the before image of ws[z, 1]. This
simple procedure of undoing aborted writes by using before images does not
always work. Consider the following execution where the initial value of x is
1:

o H; = wi[z,2ws[z,3|ay

The before image of wi[x,2] is 1, but the value that should be restored is
the value 3 written by 75. The abortion of 77 should not have any effect on
x because = has been overwritten after T} wrote it.

Now consider that 75 also aborts:

o Hg = wi[z,2]ws[z,3|ajas

The before image of ws|x,3] is 2, the value written by 77. The cor-
rect value should be 1, the initial value of x, because T} also aborted. This
problem occurs when the before image has been written by an aborted trans-
action.

These problems can be avoided if no transaction can write a data item x
before other transactions that have written x have either aborted or commit-
ted. Histories which are ACA and satisfy the above requirement are called
strict [BHGS87|.

A rigorous (RG) history is a strict history with the additional property
of not allowing any transaction to write items read by other transactions
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until all reading transactions have either committed or aborted. A two-—
phase locking protocol where all locks are held until the transaction has
terminated produces rigorous histories. Rigorous schedulers have been shown
to be useful to ensure global serializability in multi-databases [Anf97].

2.6.2 Relationships between classes of histories

The classifications of histories given in the previous section place increas-
ingly more restrictions on histories. This is illustrated by the following the-
orem [Anf97].

Theorem 2 RG C ST C ACA C RC

Figure 2.10 shows the relationships between the recovery and concur-
rency control properties of transaction histories. Notice that the relations
are proper inclusions. This can easily be proven by giving examples of his-
tories which fall into one set but not into the subset.

Almost all commercial database systems implement schedulers which cre-
ate histories that are conflict serializable and strict (CSR N ST) [EN94|. This
is due to the fact that conflict serializability can be efficiently implemented
by e.g. using strict two—phase locking? and that recovery can be simply im-
plemented by the use of before-images when the histories are strict. Being
strict also implies, due to the above theorem, that histories are recoverable
and avoid cascading aborts.

2.7 Summary

This chapter has given an explanation of the concept of transactions and
presented basic terminology and formalism. Transactions provide concur-
rency control and recovery. Both these aspects where explained and tech-
niques to ensure them were presented.

2A strict two—phase locking scheduler will actually produce histories that are stricter
than strict [Anf97, page 11].
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Figure 2.10: Relationships between histories that are CSR, VSR, RC, ACA,
ST, and RG
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Chapter 3

Transaction Models

3.1 Introduction

This chapter explains the concept of transaction models and gives examples
of such models. Its starts with discussing the traditional flat transaction
model in section 3.3. Section 3.4 motivates the need for more advanced
transaction models and shows that flat transactions give inadequate support
for a range of application domains. One type of transactions that are poorly
supported by the flat transaction model are long-lived transactions, which
are discussed in section 3.5. The Saga transaction model was proposed to
handle long-lived transactions and is presented in section 3.6. Section 3.8
introduces the nested transaction model, which is the fundamental basis for
almost all extended transaction models. Both the flat and nested transaction
models are inspired by the theoretical concept of spheres of control presented
in section 3.7.

3.2 Transaction Models

A transaction model specifies what components it is made of, how they are
structured, and how they can and must behave. For example, the nested
transaction model allows a hierarchical structure of transactions and con-
strains behavior by requiring that a parent transaction only can commit if
all its children have committed (see section 3.8).

The following sections will discuss various transaction models.

3.3 Flat transactions
The flat transaction model is the traditional and simplest transaction model.

Almost all existing systems today only support this model. The examples of
transactions given in the previous chapter where all of flat transactions.
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A transaction starts with a begin and ends with either a commit or
abort (see 2.1). A transaction is called flat because there is only one layer
of control. Everything between begin and commit/abort occurs on the same
level. This means that either all the actions of a transactions will commit
or abort. It is not possible to rollback or commit parts of a transaction. As
we will see later, there exists a need for a more control of the execution of
transactions. This need has lead to several suggestions of extensions of the
flat transaction model.

Figure 3.1 shows one of the most commonly used example of a flat trans-
action: the debit/credit transaction. The flat transaction model was first
created for banking applications, which makes it very suitable for these kinds
of transactions.

procedure DebitCreditAccount( Account account, float amount )

{

Begin_Transaction();

account.balance := account.balance + amount;
if ( account.balance < 0 )
{
Abort_Transaction();
}
else
{
Commit_Transaction();
}

Figure 3.1: Example of a flat transaction: the debit/credit transaction

3.4 Extended Transaction Models

The flat transaction model is highly suitable for short independent transac-
tions that perform simple state transformations. It was designed with this
behavior in mind. However, the complexity of certain application domains
results in behavior that the flat transaction model is unsuitable for. There
is a broad consensus for this claim in the research community and many
extensions of the flat transaction model have been suggested to deal with
the requirements of these advanced(non-traditional) application domains.
CAD/CAM, CASE, cooperative applications are examples of such advanced
application domains.

The following examples show activities that are not supported by the flat
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transactions model:

Trip planning. Imagine a system for a travel agency that supports trip
planning. During the trip planning the agency can book various activ-
ities, like flights, hotels, rental cars and so on. Now, let’s say that a
fair amount of booking has been done when the travel agent finds out
that the last booking has to be canceled for some reason. The scope of
rollback in the flat transaction model is the whole transaction. All the
work that has been done will unnecessarily be rolled back. It would
be useful to be able to do a selective rollback. Instead of aborting
the whole transaction it should be possible to rollback to a selected
position. In section 3.8 we look at how the nested transaction model
supports fine-tuning of the scope of rollback.

Bulk update. At the end of a month a bank has to update the accumulated
interest of its one million accounts. This large amount of work is
performed by a transaction 7. Now, imagine that the system crashes
for some reason and that 7" had done the significant amount of work of
updating 940,000 accounts. The very undesirable effect of the crash, is
that 7" now has to be rolled back. All the 940,000 updates have to be
undone, although they are not invalid. The rollback will probably take
the same amount of time as the work already done. A more acceptable
behavior would be for the transaction to be able to pick up at the last
account successfully updated and continue updating from there.

Unpredictable developments. Take a software development environ-
ment where developers can lock files and work on them. Imagine that
a developer Bob needs two files to perform his development assignment
and write-locks both of them. Bob finishes his work on A and continues
his work on B. While doing his changes to B, another developer Alice
asks him if she can get access to A. Bob does not need A anymore and
wants to be able to release A. If his transaction adheres to the two-
phase locking protocol, releasing A would force Bob’s transaction into
the shrinking phase. Bob would not be able to aquire any new files.
In addition, if the system avoids cascading aborts, Bob’s transaction
would not be allowed to release any files until the transaction com-
mits. Thus, forcing Alice to wait for Bob to finish his possibly large
amount of work on B. It would be desirable for Bob to only commit
the work on A or to be able to atomically transfer A to Alice’s transac-
tion. The atomic transfer solution would be attractive if Bob did not
want the outside world to see his changes on B before Alice commits
her work. These two alternatives can be realized by using the dynamic
restructuring of transactions suggested by Gail Kaiser and Carlton Pu
in [KP92].
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This example demonstrates that some environments where the actions
of a transaction are not foreseeable can not be properly supported by
traditional transaction management.

CAD design. A number of engineering teams work in parallel on the
design of a new car. Team A works on the engine and team B works
on the transmission. Each team’s work is done in the context of a
transaction, T4 and Tp. During the course of the work the teams have
to collaborate to make sure that the engine and transmission actually
fit together when the work is completed. But, because of the isolation
property of ACID, one transaction can not see the effects of another
until it has committed.

This example shows that in some situations it is required that con-
current uncommitted transactions can see each others uncommitted
results, and in that way be able to cooperate.

These examples show a number of situations where traditional transac-
tion management does not offer adequate support. The core requirements
can be summarized as:

Long-lived transactions. Long-lived transactions are discussed in section
3.5.

Inner-structuring of transactions. Instead of requiring transactions to be
flat, some sort of inner structuring should be supported by the trans-
action model. This structuring can be used to fine-tune the scope of
rollback or exploit inner transaction parallelism. The Saga and nes-
ted transaction models discussed in section 3.6 and 3.8 respectively,
provide structuring of transactions.

Cooperative transactions. To allow transactions to collaborate they must
be able to share information. This is explicitly prohibited by the isol-
ation property, which makes it appear to transactions that they are
executing alone. This suggests that isolation has to be compromised.
The Apotram transaction model presented in chapter 4 supports co-
operation.

Serializability is a too strong correctness criterion to support long-lived
and cooperative transactions. Many extended transaction models provide
support for these transactions by introducing correctness criteria that relaxes
isolation/serializability.

The basic idea is that an identified conflict with respect to serializability
is not necessarily really a conflict given a specific application’s semantics.
Take the example of a collaborative document editing application: having
one transaction reading a document while another is modifying it does not
necessarily represent a conflict in the eyes of the application.
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Using the application’s semantics to define the concurrency control scheme
results in moving some responsibility for the integrity of the data from the
database management system to the application. This is the price one has to
pay when relaxing isolation. This kind of concurrency control is often called
semantic concurrency control.

3.5 Long-Lived Transactions

Long-lived transactions are transactions that last for a significantly long
period of time(e.g. days, weeks or months). A long-lived transaction (LLT)
has a long duration because it accesses many objects, performs time con-
suming computations, waits for interaction with humans, or a combination
of these factors. As already shown in the section 3.4, these kinds of transac-
tions are not properly supported by the traditional transaction model. The
bulk update example showed how vulnerable long-lived transactions are to
failures. It is not acceptable to completely rollback a transaction that has
performed, say, a week’s amount of work. LLTs also have a higher probab-
ility of encountering a system failure due to their duration. In addition, a
long lived transaction holds locks on resources and thereby prevents other
concurrent transactions from accessing these resources during its lifetime.
The other transactions may have to wait weeks or even months before they
are able to access the locked resources, thus heavily reducing concurrency.
This is a consequence of enforcing isolation.

Extended transaction models often provide support for long lived trans-
actions by relaxing isolation. They can make it possible to release resources
early by committing parts of a transaction or to allow collaborative sharing
of resources between transactions.

3.6 Sagas

Sagas where introduced by Garcia-Molina and Salem in [GMS87] to deal with
the problems of long lived transactions. Compared to traditional models,
Sagas relax the property of isolation by allowing a Saga to release partial
results before it completes.

A Saga is a LLT that can be broken up into a set of subtransactions that
can be interleaved with other transactions. A subtransaction represents a
part of the work done by the complete transaction. Each subtransaction is a
transaction in its own right. The effects of a committed subtransaction will
be globally visible even though the entire Saga may not be completed. Thus,
the execution of the Saga is not isolated. The compound execution of the
subtransactions of a Saga should be atomic. If any subtransaction fails then
all completed subtransactions should be compensated for. The compensa-
tion is made possible by providing each subtransaction with a compensating
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transaction. The compensating transaction undoes the semantic effects of
its subtransaction. Because, the execution of the Saga is not isolated, other
transactions could have read the results of the subtransactions before they
were undone by its compensating transaction. It is therefore necessary to
assure that the reduced isolation does not introduce inconsistencies.

In section 2.6 we saw that in real life some actions, called real actions,
can not be compensated (e.g. drilling a hole). In these cases, Sagas are
inapplicable.

The idea of incorporating compensating transactions into the transaction
model is the main contribution of Sagas [ELMB92].

3.7 Spheres of Control

This section will describe a concept which was the inspiration for the flat
and nested transaction models: Spheres of Control.

The notion of spheres of was presented in [Dav78]. The idea is general
and powerful, but has never been fully formalized. A system that fully
supports spheres of control would probably be hard to implement due to the
generality.

For a system to be able to use the concept of spheres of control it has
to be structured as a hierarchy of abstract data types. The abstract data
type, or ADT, hides its internal effects from the surrounding environment
in case it has to revoke the result for internal reasons. The operation is first
externalized when the ADT returns the result through its interface. Thus,
each invocation of an ADT is an atomic action from the callers point of view.

When ADTs are organized in hierarchies, lower level ADTs are used to
compose higher level complex ADTs. It is not always desirable to make
the results of the lower level ADTs globally available. Consider the opera-
tion representing a transfer from one bank account to another. This can be
used by representing two ADTS: the Bank and the Account ADT. Assume
that the account ADT has two atomic operations: deposit and withdraw.
The transfer of $100 from an account A to another account B can be im-
plemented by first issuing an withdraw( $100) from account A, followed by
an deposit($100) on account B. The complete transfer operation should be
atomic. If each operation on the account ADT is externalized, then the
outside world would be able to see the results of each of the operations.
Imagine now that the deposit operation fails due to some error. A process
that used the externalized results of the withdraw operation would now base
its operations on erroneous data. To avoid this problem and assure atom-
icity, it is possible to dynamically create new spheres of control that contain
the commitment of data. A dynamic sphere of control would be created
which contains the effects of the deposit and withdraw operations. These
dynamic spheres are determined by consistency constraints and dependen-
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cies on shared data, messages or other objects.
This results in two varieties of spheres of control.

1. Static SoCs. These SoCs are created by the structuring of the abstract
data types.

2. Dynamic SoCs. These SoCs are dynamically created to contain the
commitment of shared data.

Dynamically created for controlling the committment of Al

Figure 3.2: Spheres of control

Figure 3.2 shows these two kinds of spheres of control. The spheres
with solid lines represent the abstract data types and the sphere with a
dotted line is a dynamic sphere. The arrows show an execution through the
ADT hierarchy. Al and A2 are executed sequentially, while e.g. C1 and C2
are executed in parallel. Al wants to retain some of its effects from being
externalized and therefore creates the dynamic SoC S. Now, A2 can start
working on the data of Al. S contains the joint action of both Al and
A2 and can terminate when all other processes which depend on Al have
terminated.

The spheres of control concepts suggest that the complete execution his-
tory with dependencies and values associated should be recorded. This im-
plies that data items would never be changed, instead a new version would
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be created. Another consequence of this approach is that there is not really
any need to keep a database. The log will contain all the information.

The reason why this extensive history has to be recorded comes from
the demand for recovery. Imagine that some SoC B encounters an erroneous
data item. It now has to trace back and find the SoC that created the error.
SoC B finds out that the faulty data was created by SoC A. The next step
now will be to trace forward and do recovery for all processes that have
become dependent on data produced by SoC A. The concept of spheres of
control does not provide any help to do this recovery. All the recovery steps
are completely application dependent.

The only thing that a SoC system provides is a history of data versions
and dependencies. The application has to deal with anything else.

3.8 Nested Transactions

3.8.1 Introduction

The nested transaction model was introduced by Moss in [Mos81]. The idea
of nested transactions seems to have originated with the spheres of control
concept of Davies [Dav78|(See section 3.7). He defined a nested transaction
hierarchy as a nested collection of spheres of control where the outmost
sphere was called the top-level transaction. The top-level transaction was
the interface to the outside world.

The nested transaction model allows transactions within transactions. A
nested transaction is a transaction that contains subtransactions. The sub-
transactions may themselves be nested. This nesting of transactions results
in a hierarchy of transactions. A graphical illustration of a nested transaction
hierarchy and a description of the terminology is given in figure 3.3.

Nested transactions have at least two important advantages over tra-
ditional flat transactions. First, they allow potential internal parallelism
of transactions to be exploited (See section 3.8.3). Second, they make it
possible to define the scope of rollbacks by allowing subtransactions to fail
independently.

The nested transaction model is the fundamental basis of all advanced
transaction models which are proposed in the literature [US92]. They differ
in the constraints they put on how transactions are structured and how they
interact with each other. Despite this common use of the nested transaction
model very few commercial systems support the model even today.

Consider once more the trip planing example. This problem can now be
represented by letting the complete trip planning be the top level transaction
and each individual reservation a subtransaction of the top level transaction.
Now, if one of the individual reservations fails, only the respective subtrans-
action has to be rolled back. The other transactions are not affected. Re-
member that when using the flat transaction model, all the work had to be
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root or top level transaction: root of the transaction hierarchy (Here T10).

superior, ancestor: each transaction which is a part of a given transaction
up to the database. The ancestor includes the given transaction itself.
superiors(T33) = {T22,T10}. ancestors(T33) = {1'33,722,T10}.

inferior, descendant: each transaction which is a part of the subtransaction
hierarchy of a given transaction. The descendant relation includes the given
transaction itself. inferiors(T22) = {T32,T33,T40}. decendants(T22) =
{T22,732,7T33,T40}.

parent: The immediate superior of a transaction. parent(T22) = {T'10}.
child: The immediate inferior of a transaction. children(T22) = {T'32,733}.

sibling: Any other child of the parent of a given transaction. sieblings(122) =
{T20,T21}.

leaf transaction: Transaction which has no inferior. In the above transaction
tree T'21, T30, T'32, T'32 and T'40 are all leaf transactions.

non-leaf (or inner) transaction: All transactions which have at least one
inferior. 710, 720, T22 and T'33 are non-leaf transactions.

Figure 3.3: Nested transaction terminology. This figure is adopted from
[US92].

rolled back (see section 3.3). In addition, independent transactions could be
executed in parallel. We will look further at parallelism in section 3.8.3.
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3.8.2 Definition of the Nesting structure

As already mentioned a transaction can start a subtransaction that recurs-
ively can create its own subtransactions. The following rules define the
relationship between transactions and subtransactions [GR93].

Commit rule. When a subtransaction commits its results are committed to its
parent transaction, 7},. These results are only visible to 7},. The transaction
completely commits after all its superiors up to the root transaction have
committed. After the root transaction has committed the results of 1" are
available to the outside world and made durable.

Rollback Rule. When a subtransaction is rolled back all of its inferior transactions
are also rolled back, independent of their local commit status.

Visibility rule. Changes made by a subtransaction are made visible to its parent
when the subtransaction commits. Objects held by the parent of a transac-
tion can be made available to its children.

From the outside a top level transaction looks and behaves exactly as a
traditional flat transaction. Subtransactions are not fully equivalent to flat
transactions. The commit rule states that the results are not made durable
until the top-level transaction commits. Therefore, they lack the durability
property of the ACID properties. Even though a subtransaction has issued a
commit, if any superior of the transaction is rolled back, then the committed
subtransaction is rolled back.

Subtransactions are atomic with respect to their parent transaction.
Moss defined that only leaf transactions can do actual work on the data-
base. Inner transactions where used to structure and control the work being
done by the leaf transactions. Many proposed transaction models that are
based on nesting do not apply this restriction.

3.8.3 Parallelism

Besides allowing control over the scope of rollbacks, another benefit of nes-
ted transaction is their ability to exploit parallelism. Parallelism can be
categorized into two kinds:

1. Inter-transaction parallelism. Allows parallelism between transactions.
2. Intra-transaction parallelism. Allows parallelism within a transaction.

Recall that from the outside a nested transaction is indistinguishable from
a flat transaction. Flat transactions can already be executed in parallel, thus
introducing nesting does not increase inter-transaction parallelism. Nested
transactions do however support intra-transaction parallelism. By taking a
flat transaction and structuring it into a hierarchy in which parts can be
executed in parallel exploits intra-transaction parallelism.
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Several different policies of intra-transaction parallelism can be realized
based on what restrictions are applied [Anf97]:

1. No parallelism. Only one member transaction of a nested transaction
can be active at any one time.

2. Parent-child parallelism only. Only the parent and at most one of its
children can be active at any one time. The child can recursively have
only one child active. Parallelism is restricted to some hierarchical
path. Sibling transactions can not run in parallel.

3. Sibling parallelism only. Several children of a parent may be active,
but the parent must remain passive until all of them have completed.

4. Both Parent-child and sibling parallelism. Parallelism without any re-
strictions. All members of the transaction hierarchy may execute in
parallel.

To avoid trouble caused by the increasingly allowed concurrency of the
above policies, concurrency control mechanisms are required.

3.9 Dynamic Restructuring of Transactions

Dynamic restructuring of transactions was proposed in [KP92]. It was pur-
posed mainly for supporting open-ended applications. Open-ended applica-
tions are characterized by:

1. Uncertain duration (from hours to months).

2. Unpredictable developments (actions can not be foreseen at the begin-
ning).

3. Interaction with other concurrent activities.

Dynamic restructuring is realized by the following provided operations:
e Split-Transaction and Split-Commit-Transaction

e Join-Transaction

The Split-Transaction operation splits an ongoing transaction into two
serializable transactions and divides its resources between the resulting trans-
actions. The work of a transaction can be divided among several coworkers
by splitting it. The syntax of the operation is:

Split-Transaction(
A:(AReadSet, AWriteSet, AProcedure),
B: (BReadSet, BWriteSet, BProcedure))
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A and B denote the resulting transactions of the split and AReadSet,
AWriteSet, BReadSet, and BWriteSet are sets of data items accessed in A
and B. AProcedure and BProcedure are the starting points of execution for A
and B, respectively. The Split-Commit-Transaction operation is a variation
of the split operation where the new transaction resulting from a split is
immediately committed. This operation is useful to release held resources
early and thereby increasing concurrency. The Split-Commit-Transaction
command has the following signature:

Split-Transaction(
A: (AReadSet, AWriteSet),
B: (BReadSet, BWriteSet, BProcedure))

The AProcedure argument is not applicable because A will commit im-
mediately after the Split-Commit-Transaction operation.

The Join-Transaction operation atomically transfers all the resources
held by an ongoing transaction into a specified target transaction. The
transaction that is joined into the target transaction is dissolved after the
join operation and its resources are committed or aborted as part of the tar-
get transaction. The operation allows a hand-over of results to a coworker
to integrate them into the coworker’s ongoing task. The syntax of the join-
transaction operation is: Join-Transaction(S:TID). S is here the transac-
tion identifier of the target transaction. In order to maintain control over its
execution, the target transaction should be able to decide if it allows another
transaction to merge with it. These operations are illustrated in figure 3.4.

Split-Transaction Split—-Commit-Transaction Join—Transaction

(i) (ii) (iii)

Figure 3.4: Dynamic restructuring of transactions

By combining the split and join operations an atomic transfer of re-
sources can be realized. Imagine that two transactions need to collaborate

48



by transfering some data from one to the other. This can be done by split-
ting the data to be transfered to a new transaction and then immediately
joining the transaction with the target transaction of the collaboration. This
is illustrated in figure 3.5.

- --Join

Figure 3.5: Atomic transfer of resources through use of split and join oper-
ations

3.10 Summary

In this chapter we have taken a look at the flat transaction model and its
limitations. Requirements of advanced applications that are not suppor-
ted by the flat transaction models were discussed. Long-Lived transactions,
Sagas, Spheres of control, nested transactions, and dynamic restructuring of
transactions are all extended transaction models that aim at dealing with
the shortcomings of flat transactions and were presented through the rest of
the chapter.
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Chapter 4

Apotram

4.1 Introduction

Apotram is an extended transactional model defined by Ole Jgrgen An-
findsen in [Anf97]. The Apotram acronym stands for Application-Oriented
Transactional Model and indicates that the behavior of the model can be
configured by the application. The transaction model aims at supporting
collaborative work [Anf00b].

As mentioned in chapter 3 there is a broad consensus in the database
research community that classical concurrency control is too restrictive to
support a number of application domains. Apotram increases concurrency by
introducing two new correctness criteria respectively called conditional con-
flict serializability (CCSR) and nested conflict serializability (NCSR). These
correctness criteria are generalizations of classic conflict serializability (CSR,
see section 2.4), which makes Apotram able to support CSR as a special case.

The formal CCSR and NCSR correctness criteria are realized and made
practical by introducing two corresponding mechanisms for controlling con-
currency control: parameterized access modes for CCSR and nested databases
for NCSR. Parameterized access modes, nested databases and their corres-
ponding criteria will be presented in section 4.2 and 4.3, respectively.

The two correctness criteria can be combined to form the nested condi-
tional conflict serializability (NCCSR) correctness criterion, which will be
discussed in section 4.4. Transactions that follow the NCCSR criterion are
said to have ACCID (pronounced azid) properties: Atomicity, Consistency,
Conditional Isolation, and Durability. CCSR makes the isolation conditional
by letting the application conditionally allow conflicts.

The content of this chapter is largely based on [Anf97].
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4.2 Parameterized Access Modes

Traditional serializability considers two operations conflicting if at least one
of them is a write. Thus, read-write and write-read are considered conflicting.
Only read-read actions are considered non-conflicting. This compatibility
relationship is illustrated by figure 4.1.

R|W

*

R
W

Figure 4.1: The traditional compatibility matrix. The asterisk indicates
compatibility. Only concurrent reading is considered non-conflicting.

However, this definition of access compatibility is too restrictive for many
application domains. The idea of parameterized access modes is to condi-
tionally allow read-write and write-read conflicts. Write-write conflicts are
still considered conflicting and will be looked into in section about nested
databases. The formal correctness criterion, Conditional Conflict Serializab-
ility (CCSR), used by parameterized access modes will be presented in the
next section.

The condition for determining if two operations conflict is given by para-
meterized access modes. Parameterized access modes give the application
the possibility to associate its read and write accesses with parameter val-
ues. The parameters values are used by to indicate whether read-write or
write-read accesses should conflict. Parameterized read and write will be rep-
resented by R(A) and W(A), respectively, where A is the parameter value.
Parameters are subsets of some application-defined parameter domain. Two
accesses, R(A) and W(B) are defined as compatible iff B C A. The resulting
compatibility matrix is depicted in figure 4.2.

R(4) | W(B)
R(A) | * ?
w(B) | ?

Figure 4.2: The CCSR compatibility matrix. Asterisk indicates compatib-
ility, question mark indicates compatibility iff B C A. The read-write and
write-read conflicts are made conditional.

The following example taken from [AnfOOa| makes this concept more
concrete:

...assume the set of available parameter values is good, me-
dium, bad. Then e.g. W(bad) and R(good) would conflict, while
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W(good) and R(medium, good) would not. The idea is that a
writer using W(good) signals to any potential reader that the
reliability or quality of the W-locked data is "good". Conversely,
a reader using R(medium, good) thereby tells the system that
he/she is willing to read data that is of "good or medium" qual-
ity /reliability.

Non-parameterized read and write modes can be represented as R and
W, but they will be treated as R()) and W(x), respectively, where * denotes
some arbitrary superset of D. D is the domain of all parameter sets, thus
x will be a superset of all allowed parameter sets. When using the non-
parameterized access modes, the condition of the conditional conflict will
never be fulfilled and the behavior falls back to classic conflict serializability.
This shows that CSR is a special case of CCSR.

Figure 4.3 gives some examples of parameterized access.

Access Mode | Access Mode | Relation Compatible
R W {x} Z {0} No
R{a} W{a} {a} C {a} Yes
R{a,b} W{a} {a} C{a,b} Yes
W{a} R{a,b} {a} C {a,b} Yes
R{a,b} W{a,c} {a,c} Z {a,b} No
R{0} W{a} {a} Z {0} No

Figure 4.3: Examples of parameterized accesses. The first and second
columns show the competing access modes. The third column shows the
conditional conflict relation. '+’ denotes some arbitrary superset of the do-
main of parameters. Notice that all write access modes conflict with R{(}}.

4.2.1 Conditional Conflict Serializability (CCSR)

The formal correctness criterion resulting from making conflicts conditional
is called Conditional Conflict Serializability (CCSR).

The motivation behind CCSR is twofold:
1. Enable customization of the notion of a conflict.
2. Enable communication of the quality of uncommitted data.

When using parameterized access modes these goals are achieved by using
appropriate parameters. The formal definition of CCSR results when substi-
tuting the notion of a conflict in traditional serializability theory (see section
2.4, page 23) with the conditional one given in the following definition:
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Definition 5 (Conditional Conflict) The parameterized read mode R(A)
and the parameterized write mode W(B) conflict unless B C A.

Recall the definition of conflict equivalence given in definition 1 on page
23. By using the conditional notion of a conflict the definition of conditional
conflict equivalence of histories results.

If we define serializability by using this definition of history equivalence,
we get conditional conflict serializability:

Definition 6 (Conditional Conflict Serializability (CCSR)) A history
is conditional conflict serializable iff it is conditional conflict equivalent to a
serial history.

The serializability theorem (page 26) states that a history is serializable
iff the serialization graph (SG) is acyclic. The CSR corresponding serializ-
ation graph, conditional conflict serialization graph (CCSG), can be defined
if conflicts are understood in the conditional sense. Then, by replacing SG
with CCSG in the theorem, we get the generalized Serializability theorem:

Theorem 3 (The Generalized Serializability Theorem) A history H
is serializable iff CCSG(H ) is acyclic.

The proof for this theorem could basically be a verbatim copy of the analog-
ous proof of Bernstein et al [BHG87, page 33|, provided SR is replaced with
CCSR, SG(H) is replaced with CCSG(H ), and conflict is understood in the
conditional sense. It can be found in [Anf97, page 30].

4.2.2 CCSR and Correctness

In section 2.3.1 on page 20 we looked at some problems introduced by con-
currency. What consequences does the relaxation of serializability allowed
by CCSR have regarding these problems?

The Lost Update Problem. Both CSR and CCSR prevent write-write
conflicts, therefore this problem is avoided by both criteria.

Dirty Read Problem When dirty reads are allowed under CSR, trans-
actions have no way of knowing whether the data it reads is reliable
or not. CCSR, on the other hand, always tells its transactions the
quality /reliability of the data through parameter values. Instead of
allowing all dirty reads, a transaction running under CCSR can expli-
citly tell what category of unreliable data it is willing to read by setting
corresponding read parameters. Data items which are accessed with
other write parameters will not be visible in the scope of the reading
transaction. Thus, CCSR offers a more favorable solution to the dirty
read problem than CSR.
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The Incorrect Summary problem Given the fact that CSR is a special
case of CCSR, and that this problem is avoided in CSR, CCSR can
also avoid this problem by using ordinary read modes. However, the
problem can be made arbitrarily small by proper use of access modes
or protocols as discussed in [Anf97, pages 35-37|

The Unrepeatable Read Problem Insisting on repeatable reads in en-
vironments (e.g. concurrent engineering environments) where data is
constantly being altered seems somewhat unreasonable. The demand
for repeatable reads could on the other hand be significant in envir-
onments where complex queries coexist with short update transac-
tions [Anf97].

The unrepeatable read problem can be eliminated by introducing “en-
hanced” read parameters that dynamically establish integrity constraints.
The reader is referred to [Anf97, pages 37-38| for an in-depth discus-
sion.

As already discussed the relaxation of serializability is necessary to sup-
port demands made by a number of application domains. The price to pay
for giving the applications more flexibility is the reoccurrence of some of the
problems eliminated by traditional conflict serializability. It is therefore im-
portant to investigate when these classes of concurrency problems result in
actual problems for the specific application.

4.2.3 Relationship of CCSR to the Traditional Transaction
Classes

Recall that CSR is a special case of CCSR. This means that the class of CSR
histories must be a proper subset of the class of CCSR histories. Figure 4.4
shows the how CCSR relates to the traditional classes of transaction histories.
Notice that, unlike CSR, CCSR allows histories that are not view serializable
(VSR). For the proofs of these relationships the reader is directed to [Anf97,
page 38].

4.2.4 Enforcing CCSR

The following discussion assumes that locking is used as the concurrency
control scheme (locking was discussed in section 2.5). Parameterized access
modes can be realized by associating each lock with the parameter of the
access mode. The conflict detection algorithm of the lock manager will now
have to use the conditional notion of a conflict. When scheduling a lock
request for a resource x with a given access mode, the lock manager has to
test that the requested parameterized lock is compatible with all the held
locks on x. Figure 4.5 gives an example of a history of parameterized lock
requests on a resource. Request 3 is a non-parameterized write-lock request
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ﬂn histories \

VSR

. /

Figure 4.4: Relationship of CCSR to traditional transaction classes. No
rectangle for CSR; it is the intersection of CCSR and VSR. This figure is
adopted from [Anf97].

that is denied because of the existing read-locks. Request 4 is denied because
request 2 stated that it is only willing to read from transactions which write
with the b parameter ({a} Z {b}). Request 6 conflicts with 5, and request 7
is denied because write-write accesses always conflict.

Just as 2PL ensures conflict serializability (see page 29), parameterized
2PL will ensure conditional conflict serializability (CCSR). Parameterized
2PL uses parameterized locks and the conditional notion of a conflict de-
scribed above.

The size of each lock is an important performance metric in transaction
managers. The number of locks can be significantly large, which makes
it important that each lock requires as little memory as possible to avoid
a heavy memory footprint. The implementation therefore has to make sure
that the additional memory requirement induced by lock parameters is small.
The set inclusion tests must also be efficient to avoid significantly reducing
performance when scheduling lock requests.
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No. | Lock Request | Lock Granted | r locks w locks
1 | rl{a,b} Granted rl:None wl:None
2 | ri{b} Granted rl:{a, b} wl:None
3 | wl Denied (1,2) | rl:{a,b},{b} | wl:None
4 | wi{a} Denied (2) rl:{a, b}, {b} | wl:None
5 | wl{b} Granted rl:{a,b}, {b} | wl:None
6 | ri{c} Denied (5) rl:{a, b}, {b} | wl:{b}
7 | wi{b} Denied (5) rl:{a, b}, {b} | wl:{b}

Figure 4.5: Examples of parameterized lock requests. All requests are for
locks on the same resource. Time grows downward. The ’Lock Granted’
column shows if the request was granted or denied. If it was denied the
numbers in parentheses indicate which previous lock requests it conflicted
with. The last two columns show the existing read and write locks on the
resource prior to the request. The w lock request in line 3 represents a
non-parameterized lock request.

4.2.5 Example Scenario

This example is from the domain of software engineering applications. Ima-
gine a team of engineers working on a set of source files. To be able to access
a file the engineers must lock it in the appropriate way. During the period
an engineer, say Bill, is doing his changes to his locked source files, other en-
gineers might want to look at Bill’s work. When using classic serializability,
isolation prevents other engineers to see Bill’s intermediate results. As long
as engineers are aware of which files are in development and of their level
of reliability, there really is not any need to prevent browsing. Using para-
meterized access modes makes it possible to relax isolation in a controlled
manner. The parameter values could indicate the reliability of data items,
e.g. low, medium, and high. At early stages Bill could use W(low) locks to
indicate low reliability and upgrade the parameter as his files become more
reliable. Other engineers that want to browse indicate what level of reli-
ability they are willing to accept by setting corresponding read parameters
(e.g. R(medium)).

4.3 Nested Databases

While parameterized access modes allow relaxation of serializability by con-
ditionally allowing read-write and write-read conflicts, nested databases deal
with write-write conflicts and enable controlled collaborative work between
two or more transactions.

The nested database concept is inspired by Spheres of Control described
on page 42. A database can be thought of as having a Sphere of Control
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including the data items of the database. This Sphere of Control will be
called a DBSOC. Transactions running within the database create their own
Spheres of Control consisting of the data items they access. Based on what
access mode is used, two types of spheres of control emerge: Read SOCs
(RSOCs) and Write SOCs (WSOCs). Allowing transactions to dynamically
convert their WSOCs into DBSOCs gives rise to the idea of nested databases.
The database that results from this dynamically created DBSOC is called a
subdatabase. Other transactions can execute within this dynamically created
DBSOC on behalf of its owner.

The creating transaction is said to be the owner of the subdatabase.
A subset of the owner’s write-locked data items (WSOC) can be logically
moved into the subdatabase. All transactions must run in the context of one
and only one database. The transaction is said to wisit that database and
may only write-lock and modify objects that are contained by the database it
visits. Top level transactions are said to visit the global database. When an
owner transaction moves a data item into its subdatabase, the data item is
removed from the database it is moved from. This way nested databases form
a hierarchy of disjoint logical sets of data items. It is important to emphasize
that the term ’database’ is used in a logical and not physical sense. When
stating that objects are contained by or moved into a database, it does not
mean that the items are physically contained or moved.

A transaction that visits a subdatabase may recursively create its own
subdatabase. This allows recursion to arbitrary depths or to a possibly
maximum depth chosen by the implementation.

The owner of a subdatabase may choose to commit the subdatabase when
no transactions are visiting it. If visiting transactions exist, the owner could
have the choice of forcing them to commit or abort. The objects of the
subdatabase are then moved back into the WSOC of the owner. The owner
may also choose to abort the subdatabase, which results in all work done
in the context of the subdatabase, and in all its inferiors, being rolled back.
This is comparable to the abortion of a parent transaction in the nested
transaction model described in section 3.8, page 44.

The owner of a subdatabase may be able to dynamically enforce access
control over its database. It can for example define a user set that specifies
the users that are authorized to visit the database and with what access
modes (e.g. only allow browsing).

Work done by visiting transactions commit their results to the owner
of the database, which can choose to accept, reject(rollback) the changes or
refuse the commit request (e.g. if the owner regards the work to be committed
as unfinished).

Figure 4.6 gives a summary of the above described rules of nested data-
bases and figure 4.7 illustrates the structure of transactions and nested data-
bases.
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Nested Database Rules:
= A transaction is created in the context of a single database
A transaction can only access objects of the database it visits.

A transaction can dynamically create subdatabases

Pl

An owner of a subdatabase can move a selection of its write-locked
objects into the subdatabase

An owner of a subdatabase can can commit or abort the subdata-
base

4

= An owner of a subdatabase can accept or reject work performed
by visiting transactions.

= An owner of a subdatabase can enforce an authorization policy
on the subdatabase.

Figure 4.6: Nested database rules

4.3.1 Nested Conflict Serializability (NCSR)

Traditional conflict serialization is enforced on the level of the database.
Nested databases gives the transactions the possibility to create their own
databases. Remember that the nested databases form a disjunct hierarchy
of sets of data items. The fact that these databases are disjunct results in
concurrency control (e.g. CSR) having only to be enforced on a per database
basis.

This recursive enforcement of CSR as correctness criterion at all levels of
databases is referred to as Nested Conflict Serializability (NCSR):

Definition 7 (Nested Conflict Serializability (CCSR)) A history is nes-
ted conflict serializable iff all the following conditions hold:

1. Subdatabases can be mested to arbitrary depths.
2. Transaction histories in subdatabases are CSR.

3. Transactions in subdatabase histories commit to the subdatabase owner.

4.3.2 Implementation of Nested Databases

Nested databases can be simply implemented by introducing a new lock
mode called DB lock. The DB-lock has exactly the same compatibility rela-
tionship to other locks as the write-lock has. When a transaction creates a
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Figure 4.7: Nested databases. a, b, ¢, d, e, and f represent the data items
made available by the global database. If the circle is dotted it means that
the item has been moved to a lower level. The T} transaction has created a
subdatabase containing the b, ¢, and d items. T is a wisiting transaction of

the subdatabase and has created its own subdatabase containing c.

subdatabase consisting of some subset of its write-locked items, it converts
its write-locks on the items to a DB-lock. To access the items inside the
database, transactions must aquire ordinary locks on the items. The conver-
sion from W to DB will never have to be delayed or rejected, but converting
from DB back to W can only be allowed if no other locks are being held in

the domain of the DB-lock.

4.3.3 Enforcing NCSR

The two-phase locking protocol, which ensures CSR transaction histories,
was introduced in section 2.5.2 on page 27. In [Anf97|, the author shows that
database nesting will result in NCSR, histories, provided two-phase locking
is employed in all subdatabases.
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4.3.4 Example Scenario

Let us return to the domain of software engineering. Imagine a software
team consisting of Linda, Bill, and Janet. Linda is the team lead and has
the responsibility of extending a software module with some functionality.
The module consists of a number of source files. At the initiation phase of the
project Linda creates a subdatabase consisting of the module’s source files
and gives Bill and Janet access privileges. Bill and Janet can now perform
their work within the subdatabase. Each time Bill or Janet commit their
work, it is committed to owner of the subdatabase, i.e. Linda. Linda can
choose to accept,reject, or postpone the commit. Linda is also able to control
requests to roll-back work.

Let us say that a part of the module has to be integrated with another
module developed by a different team and that Linda has given Bill the re-
sponsibility of the integration. Bill has to collaborate with the other team
and administrate the work being done. Bill can now create his own subdata-
base, which will be nested within Linda’s subdatabase, and give access to
the members of the other team with whom he has to collaborate. Bill has
full control over the work being done in his subdatabase and can commit the
subdatabase when he is confident that the job is done. Bill then commits
his transaction, which fate lies in the hands of Linda.

Notice that this way of working with nested databases poses a solution
to the unpredictable developments problem on page 39.

4.4 Integrating NCSR and CCSR: NCCSR

Recall that NCSR deals with write-write conflicts and requires that the trans-
actions histories in subdatabases are CSR. If we allow the histories of sub-
databases to be of the more general correctness criterion CCSR, we generalize
NCSR to nested conditional conflict serializability (NCCSR):

Definition 8 (Nested Conditional Conflict Serializable (NCCSR))
a transaction history is nested conditional conflict serializable iff:

1. Subdatabases can be nested to arbitrary depths.
2. Transaction histories in subdatabases are CCSR.

3. Transactions in subdatabase histories commit to the subdatabase owner.

Note that CSR, CCSR, and NCSR are all special cases of NCCSR.

This brings the increased flexibility introduced by parameterized access
modes into the domain of nested databases, thus making transactions able
to deal with combinations of read-write,write-read, and write-write conflicts.

In section 4.3 we saw that nested databases are created by converting a
WSOC (set of write-locks) to a DBSOC. If the write-locks are parameterized
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then the resulting subdatabase will also be parameterized. The combination
of parameterized access modes and nested databases lead to some issues that
will be further looked into by the next chapters of this thesis.

4.5 Summary

This chapter has described the Apotram transaction model and its introduc-
tion of parameterized access modes and nested databases to support collab-
orative work.

At the time of writing, there exist two implementations of Apotram. The
first is the result of a collaboration involving Sun Microsystems Laboratories
(California, US), University of Glasgow (Scotland) and Apotram AS (Nor-
way) [DA0Oa, DAOOb|. This is a prototype implementation. In addition
to the transaction model, a proof of concept application was implemen-
ted that exploits Apotram’s collaborative features. The demo application
simulates a multi-user word processing system. Both the Apotram proto-
type and the demo application were developed using the Java programming
language [JSGB00]. The second implementation of Apotram is part of a
development contract between EPM Technology and Apotram AS. It is im-
plemented in the C programming language.

A third implementation aimed at the commericial market is currently
being developed using Java and the Oracle DBMS.
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Chapter 5

Dynamic Modification of
Isolation

5.1 Introduction

In the previous chapter the Apotram transaction model was presented with
its two new correctness criteria, conditional conflict serializability (CCSR),
nested conflict serializability (NCSR) and their integration nested condi-
tional conflict serializability (NCCSR). In [Anf97, page 55|, Anfindsen states
that Apotram should support dynamic modification of parameters. Thus,
allowing transactions to dynamically change their applied parameters during
their lifetime and thereby changing the degree of isolation. This results in
some issues that have to be further investigated.

In this chapter we describe and analyze dynamic modification of para-
meters, its resulting issues, and purpose solutions. We first take a look at
dynamic modification of parameters in the context of CCSR only. Then, we
look at resulting issues when integrating NCSR.

5.2 Dynamic Modification of Isolation

Section 4.2 of chapter 4 discussed parameterized access modes. Recall that
two parameterized accesses R(A) and R(B) are compatible iff B C A. The
parameterized compatibility matrix is reprinted in figure 5.1 for conveni-
ence. This way parameterized access modes are used to conditionally relax
isolation.

During the lifetime of a transaction it could be desirable to change the
read parameters, write parameters, or both for some or all of its items. A
transaction is created with a set of parameters defined by the application
developer or user. The transaction should be able to change its parameters
by notifying/invoking the transaction manager. The transaction manager
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Figure 5.1: The CCSR compatibility matrix. Asterisk indicates compatib-
ility, question mark indicates compatibility iff B C A. The read-write and
write-read conflicts are made conditional.

has to determine the consequences of the parameter change and grant or
revoke the modification.

Example. Let us return to the example of section 4.2.5 on page 57. In this
example parameters are used to indicate the reliability of source files, e.g. low,
medium, and high. Imagine that Bill is working on a new source file. He starts
with W(low) locks to indicate low reliability. As his work reaches medium
reliability, he modifies the write parameters of the source file to W(medium).
He has now dynamically modified his write parameters from low to medium.
This change has consequences on isolation. Imagine, that during Bill’s period
of work, Linda is using read parameter R(medium) to indicate that she is
only interested in source files of medium reliability. At first, she will be
denied to browse Bill’s source file because he uses W(low), but after his
parameter change she will be able to browse the file she previously did not
have access to. Here, the parameter modification resulted in another person
gaining access to a source file. But, imagine now that after Linda locks Bill’s
source file for browsing, Bill for some reason has to downgrade the reliability
of the file back to W(low). If the transaction manager allows this parameter
modification, it would violate the CCSR. correctness criterion. Linda would
be using R(medium) and Bill W(low) where medium ¢ low. The transaction
manager must implement some policy to deal with the issues resulting from
dynamic parameter modification. The goal of this chapter is to analyze the
issues related to dynamic parameter modification in context of CCSR and
NCCSR and suggest various policies to deal with them.

5.3 Scope of Parameters

[Anf97, page 55| argues that an Apotram transaction model should allow
multiple concurrency levels within a transaction. This means that a single
transaction should be able to use various access mode parameters. What
scope should a transaction’s parameter usage cover? It is assumed that lock-
ing is used for ensuring concurrency control and that parameterized access
modes are implemented by associating each lock with a corresponding para-
meter value. Thus, each lock acquired by a transaction may use different
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parameter values. This results in the scope being the data item. A bet-
ter alternative would be to let the transaction be the scope of parameter
operations. All data manipulation statements of a transaction are then ex-
ecuted using the parameter values associated with the transaction. If the
transaction needs to execute some statements with other parameter values,
it spawns a subtransaction that uses the desired set of parameters. This way
there is no need to specify read/write parameters for each read/write lock.
The multiple concurrency accesses are conveniently grouped by the structure
of nested transactions.

The usage of different parameter sets in subtransactions leads to an is-
sue that has to be investigated. Remember that under the classic nested
transaction model (described in section 3.8, page 44) when a subtransaction
commits, its locks are upward inherited by its parent. Now, imagine that
a transaction, T', has spawned a subtransaction using a different parameter
set. The subtransaction locks various items using its parameters. When the
subtransaction has performed its work, it commits. As a result of the com-
mit T inherits the locks. But, now 7" owns locks with different parameter
values: the locks it has acquired using its parameters and the locks with the
parameters inherited from the committed subtransaction. This violates the
requirement that each transaction executes using only its associated para-
meters. This problem is illustrated in figure 5.2.

T: R(A)W(B) T: R(A)W(B) T: R(A)W(B)
01(A,B) 0l1(A,B) 01(A,B)
== | | T :ROXOW(Y) | | ™ 02(X,Y)
02(X,Y)
(i) (i) (iii)

Figure 5.2: Transaction parameter scope problem. (i) The transaction 7' is
using A and B for its read and write parameters, respectively. It is working
on a data item, o1. 01(A, B) means that the transaction has locked the o;
data item with A for read parameters and B for write parameters. (ii) T’
needs to perform some work using different parameters, R(X)W (Y'). This
is accomplished by spawning the 7" subtransaction. 7" performs its work
on o9 and commits. (iii) 7 inherits og from T’. This results in a conflict
because T' is now operating with two different access modes: R(A)W(B)
and R(X)W(Y).
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One way to deal with this problem would be to convert the parameters
of the subtransaction’s locks to those of the parent when committing sub-
transactions. We will later see that this parameter conversion/modification
will under some circumstances lead to conflicts and might, depending on the
policy of the transaction manager, be denied.

5.4 Dynamic Modification of Parameters in CCSR

We will in this section concentrate on the consequences of dynamic modi-
fication of parameters in the context of conditional conflict serializability.
Recall that CCSR is realized by parameterized access modes. We begin by
analyzing the problem of parameter modification of read and write paramet-
ers separately. In the next section, 5.4.3, strategies for dealing with issues of
parameter modification are discussed. In section 5.5 we increase complexity
by integrating NCSR.

5.4.1 Modification of Read Parameters

Read parameters are used by a transaction to specify what type of dirty data
it is willing to read. A transaction using A for its read parameters can read
data written by any transaction that uses a subset of A for its write para-
meters. Note that concurrent read accesses of any parameter values never
conflict. Thus, modification of read parameters will never introduce conflicts
with other transactions that read common data regardless of the parameter
values used. The modification can therefore only introduce conflict with
writers.

Let us take a look at a sample history that includes modification of read
parameters.

No. | Ty Ty Comment
1 | R{a,b}W{a} R{a}W{a,b}
2 | ri(o)
3 | wl(o2)
4 wl(o1) Ok: {a,b} = {a,b}
5 rl(02) Ok: {a} = {a}
6 | R{a,b} — R{a,b,c} Ok: {a,b} C {a,b,c}
7 | R{a,b,c} — R{b} Not Ok: {a,b} ¢ {b}

Here we see a history including two transactions. Step 1 shows the read
and write parameters of each transaction. By looking at the read parameters
we see that 77 is willing to read a more extensive set of dirty data than 75
because T7’s read parameter set is larger than 75’s. Both transactions are
able to read data from transactions that use W{a}, but 77 is additionally
able to read from transactions that use W{b} and W{a,b}. In the locking
covered by steps 2 through 5, a dependency between T} and 75 is established
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because they read data items from each other. 7T} reads o; from 75 and 75
reads oo from T7. In the comment column we see why this is allowed by the
CCSR correctness criterion.

In step 6, 71 modifies its read access mode from R{a,b} to R{a,b,c}.
This is an expansion of the read parameter set, which results in 77 now being
able to read the same dirty data as before and in addition data written by
transaction using W{c}, W{a, c}, W{b,c}, and W{a,b,c}. If we look at the
condition of CCSR stating that that a transaction using R(A) is able to read
from any transaction(s) using W (B) if B C A, we see that no expansion of
the read parameter set will ever introduce a conflict.

Theorem 4 (Expansion of read parameters) If the read parameters of
a transaction are erpanded, then no conflict will result.

The proof comes straightforward given the following lemma:

Lemmal () ACBABCC=ACC
The proof follows easily from the definition of the subset relation and can be
found in [Gri94, page 147].

If we substitute the set variables in the above lemma with our read and
write parameter sets we get:

BCANACA =BCA

This proves that the expansion of the write parameter set will never
violate the CCSR condition.

In step 7 T} modifies its read access mode from R{a,b,c} to R{b}. This
modification introduces a conflict with 75. T3 is reading oy from 75 and 75
is using {a, b} for its write parameters. After changing its read parameters
to {b}, T1 is no longer allowed to read from T, because it would violate
the CCSR correctness criterion: {a,b} ¢ {b}. Notice that the parameter
modification of 77 is a restriction of the read parameter set. Informally, T}
is saying that it is no longer willing to read dirty data that is written with
a or ¢ write parameters. The conflict occurs because 77 is already reading
data written with conflicting write parameters. If 75 would have used {b}
for its write parameters the read parameter set restriction would not have
been a problem.

Thus, every time an element is removed from the read parameter set of
a transaction, a conflict might be introduced.

To be able to formally specify and test conflicts some terminology and
definitions are introduced in figure 5.3.

Given this terminology we can now define functions which will help us
deal with parameter modifications.

Definition 9 ReadCon flictingTxns(T,A) = {T | Ty € activeTransactionsA
T #T N (T readsFrom Ty) Nwp(Ty) € A}
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Terminology:
activel ransactions is the set of all active transactions.

rp(T) is a function that returns the read parameter set used by the trans-
action given as argument. E.g. rp(T2) = {a}.

wp(T) is a function that returns the write parameter set used by the trans-
action given as argument. E.g. wp(Ts) = {a, b}.

rl(o) is a boolean function that is evaluated as true iff o is read-locked by
one or more transactions. E.g. rl(o1) = true.

wl(0) is a boolean function that is evaluated as true iff o is write-locked by
a transaction. E.g. wi(o1) = true.

readers(o) is a function that is returns the set of transactions that have
read-locked o. E.g. readers(o1) = {T1}.

writer(o) is a function that is returns the transaction that has write-locked
o. E.g. writer(o1) = Tb.

rls(T) is a function that returns the set of data items that are read-locked
by T. E.g. rls(T1) = {o1}-

wls(T) is a function that returns the set of data items that are write-locked
by T. E.g. wis(T1) = {o2}.

readsFrom(Ty, Te) = rls(Ty) Nwls(Ty) # 0. This is a boolean function that
returns true iff T} reads from 75. Can also be used in infix notation
(e.g. Ty readsFrom Ty)

Figure 5.3: Transaction terminology

The ReadCon flictingI'tns function returns the set of transactions that
will conflict with T if its read parameters are set to A. The last clause
demands that A and T}’s write parameters must conflict. Considering the
sample history above, we get that ReadCon flictingTxzns(T1,{b}) = {T»}.
Thus, modifying the read parameters of 7} to {b} introduces a conflict with
Ts.

A read parameter modification of a transaction T" to A does not introduce
any conflicts iff ReadConflictingTzns(T,A) = (. Please note that the
outcome depends completely on the state of the system at the time the test
is applied. A read parameter change allowed in one instance of time might
be disallowed in another due to changes to the set of active transactions or
changes to their write parameters.

Another useful function is one that returns the set of shared data items
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that are involved in the conflict:

Definition 10 ReadCon flictingltems(T, A) = {ox | o € ris(T) ANwl(og) A
wp(writer(oy)) € A}

The function says that the data item has to be read-locked by T, write-
locked by some other transaction, and the parameters of the writer and T
must conflict. As with the ReadCon flictingTzns function, the modification
of the read parameters of a transaction 7" to A does not introduce conflicts
iff ReadConflictingltems(T, A) = 0.

5.4.2 Modification of Write Parameters

Now, let us switch our attention over to the modification of write parameters.
A history of two transactions is given below.

No. | T} T Comment
1 | R{a,b}W{a} | R{a}W{a,b}
2 | ri(o)
3 | wl(o2)
4 wl(o1) Ok: {a,b} = {a,b}
5 rl(02) Ok: {a} = {a}
6 WH{a,b} — WH{a} | Ok: {a} C {a,b}
7 W{a} — W{a,c} | Not Ok: {a,c} ¢ {a,b}

The notation and first 5 steps were explained in section 5.4.1 and will
not be repeated here. Please recall that write-write accesses always conflict
and therefore changes to a transactions write parameters only affects other
readers.

In step 6 T5 successfully narrows its write parameter set from {a,b} to
{a}.

We will now show that restriction of write parameters never introduces
conflicts.

Theorem 5 (Restriction of write parameters) If the write parameters
of a transaction are restricted, then no conflict will result.

The theorem can be proven by using lemma 1 on page 67. If we substitute
the set variables in the lemma with our read and write parameter sets and
swap the first two clauses (allowed due to the commutative law of A) we get:

BCAANB' CB=BCA

This proves that restriction of the write parameter set from B to B’ will
never result in a conflict.

In step 7 we see that the modification of the write parameters of T5
conflicts with the read parameters of T7. The addition of the ¢ parameter
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requires that any reading transactions must include c in their read parameter
set. 17 does not include ¢ and is therefore not allowed to read the dirty
data written by 75. This shows that the addition of a write parameter,
a, of a transaction T introduces conflicts if there exists at least one other
transaction that has read-locked data items written by T without having
the added parameter in its read parameter set. Please note that there can
exist multiple readers of each data item write-locked by a transaction. This
is different from the read parameter modification case, where there can exist
at most one writer for each read-locked data item.

Definition 11 WriteConflictingTxzns(T, B) = {1}, | T € activeTransactions/\
T, # T N (Ty readsFrom T) AN B € rp(Ty)}

The function returns the set of transactions that will conflict with 7' if its
write parameters are set to B. The last clause demands that the B’ and T}’s
read parameters must conflict. Considering the sample history above we get
that WriteCon flictingTxns(T2,{a,c}) = {11}. Thus, modifying the write
parameters of T5 to {a,c} introduces a conflict with T7.

A write parameter modification to B by a transaction 7" does not intro-
duce any conflicts iff WriteCon flictingTzns(T, B) = (). Again, the outcome
depends on the state of the system at the time the test is applied.

The write equivalent version of ReadCon flictingltems is as follows:

Definition 12 WriteCon flictingltems(T, B) = {oy | ox € wils(T)A3t;[t; €
readers(ox) AN B € rp(t;)]}

The function says that the object has to be write-locked by T, read-
locked by at least one other transaction, and the parameters of at least one
of the readers must conflict with B. As with the WriteCon flictingl'xns
function, the modification of the write parameters of a transaction 7" to B
does not introduce conflicts iff WriteCon flictingltems(T, B) = (.

5.4.3 Mechanisms for Dealing with Resulting Conflicts

To avoid introducing conflicts and thereby violating the correctness criterion,
the transaction manager has to implement a strategy to deal with para-
meter changes. We will now present and discuss various strategies. The first
strategy prevents conflicts from being introduced in the first place, while the
rest provides mechanisms to deal with conflicts if they occur.

Queuing Parameter Modification Requests

The startegy is based on queuing requests. This technique is used for ex-
ample in two phase locking (see page 27), which queues requests to avoid
breaking conflict serializability. If a request for parameter modification res-
ults in one or more conflicts, then the transaction is suspended and the
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request is queued. If at some later point in time the requested parameter
modification is legal, then the modification is performed and the transaction
regains control.

Apotram is designed to support environments where transactions can be
long-lived (for long lived transactions see section 3.5). The above strategy
would result in transactions having to wait indefinitely when modifying para-
meters. This is exactly what one wants to prevent in environments with long
lived transactions, which makes this approach undesirable.

Only allow transactions to loosen isolation

This strategy only allows transactions to loosen isolation, never increase it.
This is enforced by making parameter modification follow the rules from
theorem 4 and 5:

1. Only allow expansion of the read parameter set:
R(A) — R(A") iff ACA

2. Only allow restriction of the write parameter set:
W(A) - W(A)iff ACA

Let us turn back to the example above where parameters were used to
indicate data item reliability. Consider once more the work Bill does on a
new source file. He starts with the low parameter and proceeds through
medium to high as the reliability increases accordingly. Assume that the
transaction manager enforces the above described policy. How should the
parameters be set up in this example? It is natural to believe that more
and more transactions are willing to read dirty data as the reliability of
the data increases. This works well with rule 2 above, which states that
the write parameter set can only be restricted. Thus, possibly giving more
transactions access to the data.

In order to accomplish this with the Apotram parameters, the low,
medium, and high categories can be mapped to parameter sets in the fol-
lowing way:

1. high — {a}
2. medium — {a,b}
3. low — {a,b,c}

As one can see, the lower the level of reliability, the wider the parameter
set. If Bill uses the write parameters W (medium), and another user, Jane,
read parameters R(high), then the two accesses will conflict with each other
because

W (medium) = {a,b} € {a} = R(high)
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But, if Jane uses R(low), the access is allowed:
W (medium) = {a,b} C {a,b,c} = R(low)

Rounding up, a transaction can only upgrade the level of reliability of
the data it writes and read data of increasingly lower levels of reliability.

This approach puts significant restrictions on the modification of read
and write parameters. On the other hand, an implementation of this ap-
proach would be straightforward and performance efficient. The only effort
needed to support parameter modification would be a test that the new
read parameter set is a superset of the current one and that the new write
parameter set is a subset of the current one.

Only Allow modification of parameters if no conflicts result

The idea here is to allow parameter modification only if it does not intro-
duce conflicts. Every time a transaction requests a parameter change the
transaction manager must test if the change is allowed. The pseudo code
for implementing a test to determine if a read parameter modification would
introduce conflicts could be:

function testReadParameterModification

(T : Transaction,
A : ParameterSet ) : boolean
begin

if rp(T) subset A then return true;

for each dataitem o in rls(T) do
if wl(o) and wp(writer(o)) conflicts with A then return false;
next;

return true;
end

Here, the transaction manager has to traverse the, possibly large, set of
read-locked data items to determine if a read parameter modification should
be allowed. The implementation has to make sure that the joined opera-
tion of testing and parameter modification is atomic. No transaction should
during the test be able to change the state in a way that would introduce
a conflict. Imagine that during an execution of this test the data item oy
is cleared and the test continues to iterate through the rest of the read-
locked objects. Imagine further that another transaction with conflicting
write parameters chooses to write-lock o7 during the remaining execution of
the test and that the remaining test is successful. The test would return true
even though the parameter change would result in a conflict. This problem
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is analogous to the incorrect summary problem described in section 2.3.1,
page 22.

The corresponding test for modifying write parameters is similar, with
the exception that each write-locked data item can be read by multiple trans-
actions, not just one. This would add an inner loop to the above foreach
loop, traversing the set of readers of the currently treated write-locked data
item o. Thus, the write test is performance intensive because its growth rate
is quadratic, O(N?)!, due to the nested for loop. The read test, on the
other hand, has a linear, O(N), growth rate.

Aborting competing transactions

This approach avoids potential conflicts by aborting the transactions that
conflict with the new parameter set. Modifying read parameters aborts con-
flicting writers (at most one writer per data item), and modifying write para-
meters aborts conflicting readers (possibly multiple readers per data item).
The following is a more formal description of this strategy:

e T:R(A) — R(A") = abort(ReadCon flictingTzns(T, A"))
o T:W(B)— W(B') = abort(WriteCon flictingTzns(T, B'))

This is a very aggressive approach in that the accumulated work of a
possibly large set of transactions would be rolled-back because a transaction
decides to modify its parameters.

Let us take a look at this strategy in the context of the example above.
Kate is observing the work being done by Bill indicating medium reliab-
ility. Kate then decides that she is not willing to see work with less than
high reliability and therefore modifies her read parameters to R(high). This
modification introduces a conflict with Bill’s W (medium) access mode and
by applying the described approach all Bill’s work will be aborted and rolled
back. This is clearly not acceptable behavior in the context of this example.

Due to the consequences of this approach it is likely to believe that it
would be useful in only a few special cases.

Release conflicting locks

Recall that a parameter modification results in a conflict if at least one data
item is locked by another transaction with parameters that conflict with
the requested parameters. The previous approach resolved the conflict by
affecting the other transactions. This approach only affects the transaction
that requests the parameter modification. It resolves conflicts by releasing
all locks of the requesting transaction on data items that are involved in the
conflict. Modifying read parameters leads to releasing conflicting read locks.

!This notation is called Big-O notation and states that the growth rate is quadratic.
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When modifying write parameters, on the other hand, conflicting write locks
have to be released.

e T: R(A) — R(A") = release(ReadCon flictingItems(T, A’))
o T:W(B) — W(B') = release(WriteCon flictingItems(T, B'))

A significant advantage of this approach is if the transactions follow the
rule of two phase locking (see section 2.5.2), they will be forced into their
shrinking phase when they release a lock. Thus, not being able to acquire
new locks. As we saw in section 2.6 the time of read and write lock release
has consequences for the properties of transaction histories generated. Let
us take a look at the consequences for read and write locks separately:

Read. The premature release of read locks would prevent histories that
are rigorous (a description of rigorous histories was given on page 33).
Rigorous histories demand that read locks are held until commit. Strict
histories could still be enforced because write locks are held till commit.

Write. The premature release of write locks prevents histories that avoid
cascading aborts (ACA). When the write lock of a data item is released,
the associated write parameter is removed. This makes transactions
able to read the item without knowing that it is dirty and depends
on the success of the transaction which had the write lock. If the
transaction which released the write lock has to abort, then the reading
transaction(s) would have to be rolled back too. Hence, this is not a
desirable solution.

It has to be investigated if it is acceptable to sacrifice rigorous histories.

Split conflicting data items

Instead of releasing the locked items and loosing transactional control over
them, one could use the split mechanism of dynamic restructuring of trans-
actions (described in section 3.9) to split the locked items into a new trans-
action. When a read parameter change is requested that would introduce
conflicts, the conflicting data items are split into a new transaction which
uses the old parameters. Thus, a parameter modification can result in two
transactions, the current transaction using the new parameters, a new trans-
action using the old parameters holding the items that would have introduced
a conflict. Let us take a look at this strategy in the case when read para-
meters are modified:

1. T requests a read parameter change from A to A’.
2. Parameter change introduces conflicts: ReadCon flictItems(T, A’) #
0.
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3. T is split creating 7" which uses the old parameters R(A)W (B) and
read-locks ReadCon flictItems(T, A’).
4. T continues with the new parameters R(A")W (B).

The process is illustrated by figure 5.4.

/ T (R, W) |

T(R, W) - R=R" =~ T(R, W) ,

Change read parameters SplitintoTand T’

Figure 5.4: Modification of read parameters by splitting

The process for modifying write parameters:

1. T requests a write parameter change from B to B’.

2. Parameter change introduces conflicts: WriteCon flictItems(T, B’) #
0.

3. T is split creating 7" which uses the old parameters R(A)W (B) and
read-locks WriteCon flictItems(T, B').

4. T continues with the new parameters R(A)W (B’).

Figure 5.5 illustrates the modification of write parameters.
The split operations required when modifying read and write parameters

respectively are:

Read parameter modification :

Split — Transaction(
T : (rls(T) \ ReadConflictingItems(T, A"), wis(T)),

T" : (ReadConflictingItems(T, A"),0));

Write parameter modification: :

Split — Transaction(
T : (rls(T),wls(T) \ WriteCon flictingltems(T, B')),

T : (0, WriteCon flictingltems(T, B")));
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' T(R, W)
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Change write parameters SplitintoTand T’

Figure 5.5: Modification of write parameters by splitting

Notice that the resulting transactions, T' and 7", are disjoint. They have
disjoint read and write lock sets: (rls(T)Uwls(T))N(ris(T")Uwls(T")) = 0.

Split commit conflicting data items

This approach is identical to the previous one with the exception that the
split transaction 7" is committed immediately. See figures 5.6 and 5.7 for
read and write parameter modification, respectively.

T(R, W)

T Commit

Y

T(R', W)

Change read parameters

SplitintoTand T
Commit T’

Figure 5.6: Modification of read parameters by splitting
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Figure 5.7: Modification of write parameters by splitting

Move conflicting read locks into subtransaction

In section 5.3 we looked at how multiple concurrency levels within a transac-
tion was realized through subtransactions. We can use multiple concurrency
levels to avoid the conflicts of parameter modification. The idea is to keep
the old parameters for the data items that conflict with the new parameters.
Thus, establishing two concurrency levels, one using the new parameters
and the other retaining the old parameters. The pseudo code for a read
parameter modification using this strategy could be:

// Create a new concurrency level
T’ = CreateSubTxn(T, ReadConflictingItems(T, A’),A , B);

// Perform read parameter modification
T: A -> A°

But, as we saw in section 5.3 and figure 5.2 the commit or abort of the
subtransaction,7”, will result in the parent,T’, inheriting the items locked by
T'. These parameters of these items will have to be converted to those of
T, which was precisely what had to be prevented to avoid conflicts. One
way to deal with this is to prevent the commit of these subtransactions
till no conflicts would result. Conflicts could be explicitly removed when
they are caused by read parameters. The solution would be to append the
subtransaction’s read parameters to those of the parent. Now, the commit of
the subtransaction would only result in the expansion of the read parameters
of its locked items. One the other hand, this method requires the expansion
of the parent’s read parameters, something that might not be desirable. One
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might at first think that this method for dealing with read parameters could
be applied to the write case by only restricting the parameters instead of
expanding them. However, this would result in an empty write parameter
set(W(()) if the parent’s and subtransaction’s write parameters are disjoint.
The W () is not allowed because it would result in transactions requiring
full isolation being able to read dirty data. Recall, that unparameterized
transactions use R(()) to avoid reading dirty data and R(()) does not conflict
with W (0).

5.4.4 Summary

We have taken a look at dynamic parameter modification in the context of
the CCSR correctness criterion. It was shown that increasing the degree of
isolation results in the possibility of transactions loosing their granted right
to observe data of the transactions with the now higher degree of isolation.
The restriction of read parameters and expansion of write parameters of a
transaction increases the transaction’s degree of isolation. The expansion
of read parameters and restriction of write parameters, on the other hand,
relaxes isolation and does not introduce conflicts.

The following strategies for avoiding or dealing with introduced conflicts
were presented and discussed:

1. Queuing Parameter Modification Requests

2. Only allow transactions to loosen isolation

3. Only allow modification of parameters if no conflicts result
4. Aborting competing transactions

5. Release conflicting locks

6. Split conflicting data items

7. Split commit conflicting data items

8. Move conflicting read locks into subtransaction

Strategies 1 and 2 prevent conflicts due to parameter modification, while 3
disallows parameter modifications that introduce conflicts. The rest of the
strategies provide mechanisms to deal with conflicts introduced by parameter
modification. Of these strategies 1 and 4 were found to be of limited applic-
ability. It is important to notice that the mechanisms do not have to be
applied to the transaction that requests the parameter modification. They
could be applied to any transaction that is involved in the conflict. For ex-
ample, say a transaction, 77, decides to modify its write parameters and this
introduces some conflict with the read parameters of another transaction, 75.
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Instead of dealing with the conflict in 77, 75 could be required to split the
data items involved into a new transaction using read parameters which are
compatible with the new write parameters of 7. This could be used in the
above example where Kate is browsing Bill’s work only accepting medium
reliability and Bill decides to degrade the reliability of his transaction to low.
Instead of making this Bill’s problem, Kate could be forced to split the data
she is reading from Bill into a new transaction which accepts data of low
reliability.

Please recall that when a transaction modifies its parameters, a signi-
ficant number of transactions could be involved in a resulting conflict. By
moving the responsibility of resolving the conflict away from the parameter
modifying transaction, the conflict has to be dealt with in all the other
transactions involved.

5.5 Integrating Parameterized Access Modes and
Nested Databases (NCCSR)

The concept of nested databases was discussed in section 4.3, page 57. A
transaction is always started in the context of one database and is said to visit
that database. The transaction can begin (i.e. create) and commit or abort
(i.e. end) nested databases. The transaction that created the nested data-
base is called the owner of the database and can assign appropriate write
parameters to it. The owner also controls what set of transactions/users
that are allowed access to its nested database(s). Visiting transactions can
recursively create their own nested databases resulting in a hierarchy of nes-
ted databases. A visiting transaction can only modify data items of the
database it visits. However, it can read data items from any descendant
database of its visiting database if the read access parameters used do not
conflict with the write parameters of the nested database or any of its visit-
ing transactions. Thus, data items of a nested database, ndb, can be read in
two ways, by visiting transactions of ndb or by transactions visiting some su-
perior database of ndb. Transactions that follow the latter approach will be
called observers of a nested database. Please note that transactions visiting
the global database can observe any data item if the access mode parameters
do not conflict. The relation between visiting and observing transactions is
illustrated in figure 5.8.

5.5.1 Nested Database Parameters

Recall that when a transaction moves a write-locked data item into a nested
database, the write-lock of the item is converted into a nested database lock
(NDB lock). NDB locks behave as ordinary write locks, so as the write-lock,
the NDB lock can have associated parameters. Only the owner of a nested
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Figure 5.8: Visiting and observing read accesses of nested databases. The
WSOCs of the transactions are not shown. Circled data items within
RSOC's represent visiting read accesses and boxed data items represent ob-
serving read accesses. T3 is an example of an observing transaction. It reads
¢ from the descendant NDB2. T] both reads a from the database it visits
and observes ¢ from the descendant nested database NDB2. Ty does not
observe. It reads b from the database it visits and is the creator of N DB2.

database can move data-items into it. Remember that we have restricted
transactions to use only one parameter value for all its locked data items,
and that multiple concurrency levels are realized through the use of nested
transactions. Thus, the granularity of parameters is the transaction. In
the same way, we will demand that the granularity of parameters will be
the nested database and not its contained data items. Therefore, there will
be associated a parameter set with each nested database which applies to
all that database’s elements. Now, imagine a scenario where a transaction
has created a nested database, N DB 4, with parameters different from the
transaction’s own write-parameters. If one allows the transaction to move its
data items into N DB 4 by only converting the type of the lock from write to
NDB, then NDB 4 would contain a data item with parameters different from
the parameters of ND B 4. Hence, violating the above stated rule about NDB
parameter granularity. To prevent this, the parameters of data items being
moved into a nested database are converted to the associated parameters of
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the nested database.

5.5.2 Parameterized Access and Nested Databases

Let us take a look at how the integration of nested databases affects para-
meterized access. Figure 5.9 will guide us through the arguments. Recall
that nested databases have associated write parameters and we assume that
no restrictions are imposed on parameter usage.

In step 1, T} has write-locked a using the W (By,) access mode and cre-
ated a nested database NDB that uses W(Bypp). In step 2, 71 moves a
into NDB. Now, this is actually a write parameter change on a’s behalf. a’s
write parameters are changed from T)’s write parameters to NDB’s write
parameters: W(Br,) — W(Bypp). As with all write parameter modific-
ations, if another transaction is reading a using R(A) where By, € A and
Bnpp € A, then this implicit parameter modification would also result in a
conflict. This is not an explicitly requested modification of parameters and
will therefore be referred to as implicit parameter modifications.

In step 3, T5 visits NDB and write-locks a using W (Brp,). Thus, a’s write
parameter set changes from W (Bnpgp) to W(Br,). After possibly doing
some updates to a, 7> commits to NDB in step 4. Again, this represents
an implicit parameter change, W(Br,) — W(Bnpg), which could result in
conflicts in the same way as pointed out above. In step 5, NDB commits
and thereby changes the write parameters used to access a, back to Bry.
Thus, resulting in another type of implicit parameter modification.

This analysis of parameter usage in NCCSR gives us the following three
types of implicit write parameter modifications:

1. Moving data items into nested databases.
2. Committing visiting transactions of nested databases.

3. Committing nested databases.

5.5.3 View of parameters by reading visitors and observers

Consider step 4 in figure 5.9 again. Imagine that another transaction, say 73,
is visiting the global database using R(A) and wants to observe the a data
item. In order to test if this parameter access conflicts or not, which write
parameters should be considered? Should 73 relate to the write parameters
of NDB (i.e. W(Bnpg)), or to those of NDB’s visiting transaction 75 (i.e.
W (Br,))? This question of behavior is addressed in [Anf97, page 52]:

...I tend to believe that such readers should simply see the
parameter set of the DB lock. This is the simplest solution, and
gives rise to more freedom inside subdatabase domains. Moreover,
readers who need more detailed information about the reliability
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Figure 5.9: Parameterized nested databases.

of data items that are being manipulated inside a subdatabase,
can establish a visiting transaction in the subdatabase in ques-
tion.

82




By employing the strategy of letting observers see the nested database para-
meters, the implicit parameter modification of committing visiting trans-
actions (type 2 above) would only affect other visiting transactions of the
same nested database. Observers would always see the parameters of the
nested database. In our example above, the observing transaction 75 would
see the parameters of NDB, W(Bypp) and not those of T5. On the other
hand, if observers relate to the write parameters of visiting transactions, ex-
plicit and implicit modifications of those parameters would affect observing
transactions in addition to visiting transactions.

5.5.4 Analysis of Explicit Modification of Parameters

Let us take a closer look at explicit modification of transaction and NDB
parameters in context of NCCSR. We assume that an observing transaction
sees the write parameters of the nested database from which it is observing
and not those of any visiting transaction. Furthermore, we assume no re-
strictions on parameter usage by transactions and nested databases.

Modification of Read Parameters

Remember that a transaction can read data items by reading from the data-
base it visits or by observing some descendant nested database. When modi-
fying its read parameters the transaction, 77 must

1. Avoid introducing conflicts with other visiting transactions that have
write-locked data read by 7.

2. Avoid introducing conflicts with nested databases from which it ob-
serves data.

Modification of Write Parameters

Only other visiting reading transactions can be involved in a conflict res-
ulting from a write parameter modification. This is so because observing
transactions only see the parameters of the nested database from which they
observe and not from visiting writing transactions. Hence, a transaction, T,
must

e Avoid introducing conflicts with other transactions visiting the same
database and reading one or more data items from 7.

Modification of NDB Parameters

The modification of nested database parameters can be used to communicate
to observing transactions that the state of the uncommitted data contained
by the database has changed. A nested database is a structuring mechanism
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which does not have its own thread of execution, so it is the owner of the
nested database that requests the parameter modification. When modifying
NDB parameters the following has to be considered:

e Deal with introduced conflicts involving transactions observing the
database.

5.5.5 Avoiding and Dealing with Conflicts in NCCSR

In the last sections we have analyzed the integration of CCSR and NCCSR in
regard to parameterized accesses. As we know from section 5.4 conflicts can
be introduced if parameters are modified. Read parameters can be expanded
and write parameters can be restricted without causing conflicts, because
these modifications only result in a lower degree of isolation. Section 5.5.2
taught us that parameters can not only be modified as a result of an explicit
parameter modification request, but also implicitly. Following is a summary
of all the actions that may result in parameters being modified. The first
three actions are parameter modifications based on explicit requests, and the
last three are implicit modifications.

1. Modification of read parameters

2. Modification of write parameters

3. Modification of NDB parameters

4. Moving data items into nested databases

5. Committing visiting transactions of nested databases
6. Committing nested databases

Let us take a look at how we might prevent these conflicts from being
introduced by these actions and see how the techniques for conflict resolu-
tion from the pure CCSR case apply to the environment of NCCSR. Three
strategies of increasing degree of parameter usage freedom will be given. The
first aims at completely preventing conflicts by significantly restricting para-
meter usage. The second one only prevents denial of commit. Finally, the
third does not impose any restrictions on parameter usage.

Strategy preventing all conflicts by restricting parameter usage

The basic idea here is to prevent conflicts by restricting the parameter usage
to only allow loosening of isolation. This can be realized by ensuring that
all of the above six parameter modification actions only can result in less
isolation. For the actions 1 through 3 this looks easy. Read parameters can
only be expanded, and write and NDB parameters can only be restricted.
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Recall that moving a data item into a nested database (action 4) results
in the conversion of the data item’s write parameters to the parameters of
the nested database. Therefore, we demand that the parameter values of
a nested database have to be equal to or a subset of the write parameters
of the transaction that owns it: Bypp C Bp. This ensures that the write
parameters of a data item being moved into a nested database only can
be restricted. Imagine now a nested database, NDB, using Bypp for its
parameters, that the transaction, T, that owns it uses W (Br), and Bypp C
Br. T moves one of its data items, z, into N DB. This results in a restriction
of the write parameters of x. So far, so good. But, when T decides to
commit N DB (action 6), the parameters of x are converted back to By. This
conversion can introduce conflicts and can not be allowed. To assure that the
commitment of nested databases does not lead to expanded write parameter
sets, the owning transaction must use write parameters that are equal to or
more restricted than those of its nested database. By combining this demand
with the previous one we get By C Bypp A Bypp € Br, which is the same
as Br = Bypp. Thus, a transaction can only create a database with the
same parameters as its write parameters. This also leads to the operation of
modifying NDB parameters only being allowed if the write parameters of the
owner also are changed to be the same as the new NDB parameters. In the
same way, visiting transactions can only use write parameters that are equal
to or a superset of the database they visit. They are not allowed to restrict
their write parameters to a level where they are more restrictive than the
NDB parameters. This ensures that when they commit (action 5), the write
parameters of their write-locked items are not modified in a manner that
could introduce conflicts. These are significant restrictions of parameter
use which deprive transactions and nested databases of their freedom of
parameter usage.

Strategy preventing denial of commit (action 5 and 6)

It is desirable that transactions and nested databases are able to commit
when they are ready. They should not be given the burden of sorting out
introduced conflicts. This is particularly important in environments where
the transactions represent the work of a user. When the user has completed
his work and wants to commit it, he assumes that this should be painless
(e.g. like saving a document).

This approach tries to prevent conflicts being introduced by actions 5 and
6. Transactions are only allowed to move data items into a nested database
if this does not introduce any conflict. Thus, a transaction can be denied
moving a data item into a subdatabase. The transaction could for example be
given the possibility to resolve the conflict by forcing the conflicting reader(s)
to change their parameters by using one of the strategies from section 5.4.3.
Given our obtained knowledge from the previous approach, we eliminate the
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conflicts of action 5 and 6 by requiring:

1. A transaction’s write parameters must be equal to or a subset of the
parameters all its nested databases.

2. A nested database can only use parameters that are a superset of its
owner’s write parameters.

3. A visiting transaction can only use write parameters that are a superset
of the parameters of the database it visits.

From these rules we see that both nested databases and visiting transac-
tions are allowed to both expand and restrict their write parameters as long
as the rules hold. The expansion of write and NDB parameters can introduce
conflicts with reading transactions. In the case expansion of NDB paramet-
ers, only observing transactions are involved in the conflict and in the case of
transaction write-parameters, only transactions that visit the same nested
database are involved. When modifying a transaction’s write parameters
one could use one of strategies from section 5.4.3 to resolve conflicts. But,
when modifying nested database parameters theses techniques do not apply.
They only deal with transactions, not nested databases. One way to resolve
the conflict would be to use one of the techniques on the observers involved.
The observers could be forced to sufficiently expand their read parameters
or maybe split their transaction. As with modification of write parameters,
conflicts resulting from modification of read parameters could be dealt with
by the strategies from CCSR.

Strategy for maximizing freedom of parameter usage

This strategy gives the maximum amount of freedom by not imposing re-
strictions on parameter usage. The disadvantage is that the transactions and
nested databases have to resolve any conflicts introduced by their commit-
ment. Recall that the transactions preventing the commit are transactions
reading data items with read parameters that would be incompatible with
the write parameters of the items after the commit. One could resolve these
conflicts by forcing the readers to change their read parameters on the items
by using one of the strategies presented in section 5.4.3.

5.5.6 Summary

We have analyzed the consequences that the integration of CCSR with NCSR
has on dynamic parameter modification. We saw that in addition to the is-
sues of explicit requested parameter modification request, three other actions
resulted in implicit parameter modification. The parameters of nested data-
base were defined to apply to all data items contained by the database, and
observing transactions see the NDB parameters of the databases they are
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observing and not those of any visiting transactions within the observed
database.

Three strategies where introduced to, in varying degree, minimize the
appearance of conflicts due to implicit and explicit parameter modifications.
Depending on how different application domains would use transaction and
nested databases parameters and in what way they would be dynamically
modified, one of the suggested strategies could be used. The following is a
brief example of NCCSR parameter usage in the domain of software engin-
eering.

Example. Let us return to Linda and Bill, the software engineers. Bill has
been working on some source files inside the nested database of Linda. He is
given the responsibility of integrating some files into, say, a reusable compon-
ent. The transaction he currently is running uses W (medium). He creates
a nested database, N D Bp;;, using low for the NDB parameters to indicate
the reliability of the component. Then, he moves the involved files into his
nested database. This represents an implicit parameter modification and any
resulting conflicts have to be resolved. In this application domain it would
be reasonable to expect the readers involved in the conflict to yield. They
could be requested to change their read parameters by one of the strategies
of section 5.4.3. Bill now gives access privileges to the members of the team
that will be working on the task. They start working on the files with low
parameters and upgrade the parameters as the reliability increases. By us-
ing the parameter mappings of section 5.4.3 each upgrade would result in a
restriction of the write parameters. Bill, could change the NDB parameters
as the combined reliability of the task increases. Finally, when the task is
completed, he commits NDBpg;; and Linda accepts, rejects, or denies the
commit. The parameters of the data items are now converted back to those
of Bill’s transaction. Recall, that his transaction used W (medium) at the
time of creation. Note, that the data items’ correct reliability state is high
so it would not be right to convert them to medium. Bill could prevent
this by upgrading his write parameters to high before the commit of the
N DBpgj; or the system could prevent the situation from occurring by enfor-
cing the rule of the strategy preventing denial of commit above, which only
allows N D Bpg;;; to use parameters that are equal to or a superset of the write
parameters of Bill’s transaction. To follow the rule Bill would have to up-
grade his transaction’s write parameters each time he upgraded NDBpg;;’s
parameters.

5.6 Summary

This chapter has analyzed the issues concerning dynamic modification of
isolation in the contexts of both CCSR and NCCSR. We first analyzed the
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less complex CCSR case and suggested a number of strategies for dealing
with conflicts introduced by read and write parameter modifications. Then,
we integrated CCSR with NCSR and analyzed the consequences in regard to
read, write, and NDB parameter modifications. Finally, three strategies of
increasing degree of parameter usage freedom where suggested and discussed.
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Chapter 6

Conclusions and Future Work

6.1 Introduction

This chapter gives an evaluation of the results and a summary of the contri-
butions of this thesis. It also presents two areas for future work.

6.2 Evaluation of Results

The previous chapter showed how a parameter modification can introduce
conflicts with transactions that use conflicting parameters. A number of
strategies to deal with these conflicts weere suggested. The strategies that
aim at resolving conflicts can be used in two ways. They can be used in a
way that only affects the transaction requesting the parameter modification,
and they can be used in a way that affects the other transactions involved in
the conflict. An example of the latter was given on page 78 where Bill down-
graded the reliability of his work to low and thereby forced the observing
transaction of Kate accepting only medium reliability to resolve the created
conflict. This leads to discussion of the semantics of a parameterized lock.
If a parameterized read-lock is held on a data item using e.g. R{medium},
should this mean that the transaction is granted the right to read the data
item using R{medium} till it decides to release the lock? Given these se-
mantics, Bill would have no right to force Kate to resolve the conflict because
she has been granted the right to read the data using the medium parameter.
Another way to define the semantics of a parameterized lock would be to state
that if a transaction holds a read-lock using some parameters it is granted
read access to the locked data. However, it does not have locked the right
to use the associated parameters. This means that the transaction could be
requested to modify its parameters to avoid conflicts with other transactions.
These semantics would allow the actions in the example above.

Both the mentioned semantics are useful. The first definition would be
useful to transactions whose execution depends on the ability to access the
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locked data using the associated parameters. If they were forced to change
their parameters, they would not be able to continue and would thus have
to abort. The second definition is useful in e.g. collaborative environments
where there exist transactions that observe some uncommitted data knowing
that the level of reliability of the data could change to an undesirable level.
Here it should not be the writers problem if some reader does not accept
the new parameters. This is the situation of most collaborative application
domains, because collaboration is often enabled by relaxing isolation and
thus letting transactions read uncommitted data.

Due to the value of the two semantics of parameterize locks described,
it would be desirable if a CCSR transaction manager supported both. One
could imagine the implementation of two types of locks. The first supports
locked parameterized access (the first described lock semantics above) and
the second could allow a configurable policy which dictates how the associ-
ated parameters are allowed to be modified by other transactions.

Allowing dynamic modification of parameters introduces conflicts under
circumstances pointed out in the previous chapter. These conflicts have
to be avoided or resolved. Which methods that could be used to achieve
this depends on how the application uses parameterized access and nested
databases provided by Apotram.

6.3 Contributions of this Thesis

One of the requirements of the Apotram transaction model is the ability
to dynamically modify a transaction’s concurrency level [Anf97, page 55].
This is realized by allowing transactions to dynamically modify their para-
meterized access modes. The analysis of consequences of allowing dynamic
modification was not within the scope of O.J. Anfindsen’s thesis and was
therefore left to further research. This thesis has analyzed the implications of
dynamic parameter modification. First, dynamical modification of paramet-
ers was analyzed in the context of conditional conflict serializability (CCSR)
only and then the focus was shifted to the more complex context of nested
conditional conflict serializability (NCCSR). In both cases it was pointed out
under what circumstances parameter modifications result in conflicts. In ad-
dition, a number of strategies to deal with discovered issues were suggested.
These strategies can be classified into two categories, those that prevent con-
flicts from being introduced and those that provide a mechanism to remove
introduced conflicts.

The above stated contributions are summarized below.

e Analysis of dynamic parameter modifications under CCSR and a dis-
cussion of the consequences.
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e Analysis of dynamic parameter modifications under NCCSR and a dis-
cussion of the consequences.

e Suggested strategies for avoiding and resolving conflicts under CCSR.

e Suggested strategies for avoiding and resolving conflicts under NCCSR.

These contributions are valuable when implementing and using Apotram
with support for dynamic parameter modification.

6.4 Possible Future Work

6.4.1 Integration of Apotram and Split/Join Operations

A important contribution to transaction models is the concept of dynamic
restructuring of in-progress transactions suggested in [Kai95] (and briefly
summarized in this thesis on page 47). Some of the strategies to deal with
dynamic parameter modification presented in the previous chapter used the
split and split-commit operations to resolve conflicts. To use these strategies
it is therefore necessary to integrate Apotram with the operations that
provide restructuring of transactions. The additional functionality provided
to Apotram could enhance Apotram in other ways and has to be further
investigated, as stated in [Anf97, page 108].

6.4.2 Case Study giving a Practical Example of Parameter
Modification

Initially this thesis was supposed to include a chapter giving a case study de-
scribing how a concrete application domain that requires support for collab-
oration and long-lived transactions could be implemented using Apotram. It
would be investigated how the requirements could be met by the use of Apo-
tram and dynamic parameter modification. This case study would provide
a concrete example of practical use of Apotram and its support for dynamic
modification of parameters. Unfortunately, it was not possible to conduct it
within the time-frame of the master thesis.

Such a case study would be a valuable contribution by showing how real-
world applications could use and benefit from dynamic parameter modifica-
tion.
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