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Abstract 

Using Norwegian individual register data of young workers, from the period 1986-2008, we 

analyse whether there are large and persistent negative relationships between unemployment 

and the risk of repeated unemployment and being out of labour force. A nearest-neighbour 

propensity score matching method is applied to make the treatment group (the unemployed) 

and the control group (the employed) as similar as possible. By tracking workers over a 10-

year follow-up period, we find that unemployment has a negative effect on later labour 

market attachment. This is consistent with existing findings in the literature. The negative 

effects decrease over time. Using the bounding approach proposed by Rosenbaum (2002) to 

analyse the importance of unobserved variables, our results indicate that a relatively high 

level of unobserved selection bias could be present in the data before changing the inference. 

Thus, unemployment leaves young workers with long-term scars.  
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1. Introduction 

“Scarring” is defined as the negative long-term effect that unemployment has on future labour 

market possibilities in itself. Thus, an individual who has been unemployed will be more 

likely to suffer from negative labour market experiences in the future, compared to an 

otherwise identical individual who has not been unemployed. In the short-term, an 

unemployment period will imply a direct income loss. There are several studies, however, 

indicating that an unemployment period deteriorates future labour market possibilities and 

thus has severe long-term consequences as well. Arulampalam et al. (2000) and Gregg (2001) 

show evidence of state dependence scarring effects in individual unemployment histories (see 

also Biewen and Steffens (2010) for a German study). Norwegian papers of particular interest 

are Raaum and Røed (2006) that find patterns of youth unemployment persistence, and 

studies of downsizing (Huttunen et al., 2011, Bratsberg et al., 2010) which find increased 

probabilities of leaving the labour force for displaced workers. Bratsberg et al. (2010) show 

that 28 percent of all new disability insurance claims among males in Norway can be 

attributed to job displacement, implying that unemployment may be a pathway to disability 

pension. Thus, the direct costs associated with an unemployment period, for both the society 

and the individual, may be only the tip of an iceberg. Summarising the quite extensive 

literature on scarring, there seems to be ample evidence of state dependency in unemployment 

histories. 

While there is evidence of a true scarring effect in the existing literature, less is known 

about its cause. Possible explanations are depreciation of human capital (Becker, 1993), 

psychological discouragement or habituation effects (Clark et al., 2001), theories of job 

matching where the unemployed accept poorer quality jobs (Pissarides, 1994), social work 

norms that influence individuals preferences for work (Stutzer and Lalive, 2004), and 
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employers using individual’s unemployment as a signal of low productivity (Lockwood, 

1991). In the latter case, individuals with a history of unemployment may face systematically 

lower chances of finding employment, even though they are identical to the other job seekers 

with regards to other characteristics that are observable to the employer.  

When it comes to unemployment, it is well known that younger workers are affected 

more severely than their older and more established counterparts. This has become 

particularly evident during the current financial crisis and recessionary conditions afflicting 

several countries, especially those in the southern parts of Europe. Furthermore, one might 

think that the scarring effects are more significant for younger workers without a long 

employment history. Indeed, this seems to be the general belief among policy-makers, who 

often make specific active labour market programs targeting young workers. In other words, 

having unemployment spells might be considered a stronger signal about the qualifications 

and skills of young workers, rather than older ones. In addition, if a period of unemployment 

causes permanent exits form the labour market this may be particularly severe for the young 

who have their entire working career a head of them as opposed to the older workers who are 

closer to their retiring age. Thus, it seems reasonable to focus on relatively young workers 

when analysing the consequences of unemployment.  

The aim of this paper is to analyse the magnitude of possible scarring effects of 

unemployment on future labour market status, being unemployed and being out of labour 

force, among young Norwegian workers.
1
  We therefore focus on young individuals who 

already have some work experience.
2
 Following a standard practice in labour market studies, 

                                                 
1
 We do not focus on wage scarring for those who return to employment. While there is evidence of 

wage scarring in the literature, this seems to be of less concern in a Norwegian context. Huttunen et al. 

(2011) find moderate effects of displacement on earnings for those who remain in the labour force, 

while the effects of displacement on the probability of leaving the labour force are large. 
2
 There is of course an extensive literature on the school-to-work transition. However, since we focus 

on young workers with at least two years of continuous experience, we do not discuss this literature. 
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we analyse the potential scarring effects separately for males and females. Reasons for such 

potential gender differences are for instance educational differences, occupational choice, 

family patterns and preferences. There are several reasons to focus on the Norwegian labour 

market. First, Norway has traditionally had a very low unemployment rate. For this reason, 

one might think that the scarring effects should be high, since being one out of few 

unemployed individuals may be perceived as a stronger signal of the individual’s abilities by 

the employer than being one out of many unemployed when unemployment is high. Second, 

Norway is considered to be a well-developed welfare state. This might lead to longer 

unemployment and negative selection into disability pension. With free education, a failure of 

an individual’s success in the labour market might therefore only reflect ones observed and 

unobserved lack of skills, or match made in the labour market. Thus, getting a diagnosis that 

gives one the option of stepping out of the labour force due to disability might be tempting. 

On the other hand, the authorities may also put significant effort into ensuring that everybody 

has a relatively good attachment to the labour market.  

The data employed in this study have several advantages. First, they provide us with a 

very long time series. Second, the data sources are administrative registers, e.g. the public tax 

register, thereby reducing the problems of self-reporting errors, attrition, etc. Third, they are 

census data and therefore highly representative and provide a large number of observations. 

Finally, unlike most other studies in this field, they include information about females.  

The focus is on young individuals (i.e. those who completed their education at most 

ten years prior to a potential unemployment experience), which registered as unemployed 

during the years 1990-1998. A comparison group is formed, constituted by young individuals 

who are employed. The labour market status of the two groups is recorded in the ten 

subsequent years. To make the two groups as comparable as possible, we use a nearest 
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neighbour propensity matching estimator. We also address the role of unobserved variables 

by using the approach proposed by Rosenbaum (2002). Our main finding is that there exists a 

large and persistent negative relationship between previous unemployment and future labour 

market status of being unemployed and being out of labour force. This indicates that there 

may be a considerable scarring effect of unemployment. The estimated relationships are 

similar for females and males. 

The structure of the paper is as follows. Section 2 presents some information about 

intuitional settings in Norway. Section 3 presents the data, while a description of the matching 

procedure is provided in Section 4. Section 5 presents the results and this is followed by some 

sensitivity analyses in Section 6. Finally, we offer some concluding remarks in Section 7.  

 

2. Institutional Settings 

The unemployment rate in Norway has traditionally been very low. Still, we note that 

unemployment among the younger cohorts is much higher than for older individuals. For 

instance, in 1993, a recessionary year in Norway, the unemployment rate among males aged 

15-24 years was 14.4, while it was only 5.7 among males aged 25-54. The corresponding 

numbers for females were 12.9 and 4.2, respectively. In 1998, a booming year in the 

Norwegian economy, the corresponding numbers were 9.1 and 2.2 for men, and 9.5 and 2.3 

for females, respectively.
3
 The gender difference in unemployment rates among younger 

individuals may be a result of the fact that males are traditionally employed in sectors that are 

more exposed to business cycle fluctuations (for instance manufacturing and construction), 

while females are more typically employed in the public sector. It should also be mentioned 

that the gender segregation in the Norwegian labour market is quite high (see OECD 2002). 

                                                 
3
 Source: Statistics Norway 
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Moreover, females have more education than males among the youngest cohorts. For 

instance, based on numbers for individuals aged 25-29 in 1999, 30.6 percent of males have a 

university education, while the corresponding number for females is 39.2.
 4

 

Individuals who are either residents or work as employees in Norway are 

automatically insured under the National Insurance Scheme. The conditions for receiving 

unemployment benefits are that the worker has previously earned income, has lost his job for 

reasons beyond his control, and is actively seeking employment and capable of work.
5
 To 

receive state benefits during the review period of this study, 1990-1998, a beneficiary needed 

to earn a minimum of approximately 50 000 NOK (2009) the year prior to becoming 

unemployed, or twice this amount during the last three years prior to unemployment (NAV, 

2010).
6
 The benefit received is 62.4 percent of previous earnings up to a certain maximum 

amount.
7
 The unemployment benefit period varies depending on previous earnings; benefits 

could in practice be received for about three years in the period 1990-1998.
8
  

The two main laws regulating hires and fires in Norway are the law of employment 

(“Sysselsettingsloven”), and the law of labour relations (“Arbeidsmiljøloven”). Still, there is 

no legal rule on the selection of workers to be dismissed in case of mass lay-off. In the main 

collective agreement (“Hovedavtalen”) between the labour unions and the employers 

association (NHO) it is stated that employers should emphasise seniority when restructuring 

and during mass-lay-offs. However, it is possible to ignore the seniority rule if there are good 

reasons for this. 

                                                 
4
 Source: Statistics Norway 

5
 However, individuals who quit voluntarily, or are dismissed due to reasons within their control, may 

also receive benefits after a certain waiting period of at least eight weeks.  
6
 1 NOK  1/8 Euro. 

7
 The maximum amount is approx. 270 000 NOK in 1998. 

8
 It is also possible to continue receiving unemployment benefits after an interruption within 52 weeks 

without having to meet the minimum earnings threshold. 

 



6 

 

 

3. Data 

3.1 Sample constructing 

The data are drawn from data produced by Statistics Norway and include information on all 

Norwegian residents between 16 and 74 years of age. This includes employment 

relationships, labour market status, earnings, education, age, experience, material status and 

municipality of residence, collected from different administrative registers for the years 1986 

to 2008. They are census data, making them highly representative and provide a large number 

of observations. There is also information about the number of months an individual has been 

registered as unemployed during a year. Both individuals who are entitled to unemployment 

benefits, and individuals who are not, may register as unemployed. An initiated month of 

registered unemployment is categorized as an entire month even if the unemployment spell is 

shorter. Data from the Norwegian Social Science Data Services are used to construct 

unemployment rates separately for males and females for 46 regional labour markets in the 

years 1990-1998.
9
 

The sample is constructed by pooling all individuals in the period 1990 to 1998, which 

constitute the base years.
10

 In a base year only individuals in the labour force are included. On 

the basis of their employment status, they are divided into two groups: employed and 

unemployed. Every individual that is registered with a plant identification number, i.e. has an 

employer in the register-months, being May in the years 1990-1995, and November in the 

years 1996-1998, and is not registered with any months of unemployment and is not a 

                                                 
9
 The 46 regional labour markets are categorized by Statistics Norway and classified according to 

commuting statistics (Bhuller, 2009).  
10

 These exact base years are chosen so that it is possible to observe the individuals’ registered 

unemployment histories two years prior to a base year, for reasons to be explained, and to follow 

individuals up to ten years after a base year. The registered unemployment variable is only available 

from 1988. 
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fulltime student (i.e. not registered with on-going education and working less than 20 hours a 

week) in a given base year is part of the employed group.
11, 12

 All individuals with registered 

unemployment, regardless of whether they are fulltime students or have a plant identification 

number or not, are part of the unemployed group. Individuals in a base year that are neither 

part of the employed group nor part of the unemployed group are excluded.
 13

 

We want the sample to consist of individuals who are entitled to unemployment 

benefits in a base year so that it is economically beneficial for the individuals who lose their 

job in that year to register as unemployed rather than leaving the labour force. Hence, we 

restrict the sample to regular workers with a minimum of two years of work experience prior 

to a base year. Thus, only individuals who have been working at least 20 hours a week at a 

plant and are classified as receiving wage in the tax-records in the two years prior to a base 

year are included. Individuals with on-going education or completed education the two most 

recent years prior to a base year are excluded. Furthermore, all individuals with registered 

unemployment in the two years prior to a base year are excluded. The latter both increases the 

probability that the remaining individuals are actually regular workers, and ensures that all 

registered unemployed in a base year have started their unemployment period in that 

respective base year. Also individuals not working in Norway in the two years prior to a base 

year are excluded. 

Since we are interested in scarring early in the career, we limit our sample to 

individuals who have ended their education within 3-10 years prior to a base year. We 

                                                 
11

 In addition, individuals not registered with a plant identification number and not registered with any 

months of unemployment in a year are categorized as being employed in that respective year if they 

satisfy the following criterion; they are registered with an identical plant identification number the 

year prior and subsequent to the year the plant identification number is missing.  
12

 Note that this definition of employment also includes part time workers. 
13

 Note that even though there are 9 base years in total, there is only one base year observation per 

individual. For individuals who satisfy the criteria of being in the sample multiple base years, the 

earliest base year observation is used.  
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condition on years since ended education and not age per se so that the higher and lower 

educated have a similar amount of labour market experience. Individuals who have not 

finished their education within a time frame of two years prior and five years after what is 

expected had they taken their education non-stop from they started primary school, are 

excluded.
14

 These latter restrictions, combined with the minimum of two years of work, make 

the unemployed and the employed groups similar in terms of labour market experience. In 

addition, individuals with less than 9 years of education in a base year are excluded.  

The employment statuses for the two comparison groups – i.e. those who were 

employed in a base year versus those who were unemployed – are compared yearly for a 

period of 10 years following a base year, referred to as the follow-up years. For each of the 

follow-up years the individuals’ employment statuses are divided into three categories: 

employed, unemployed and not participating in the labour force, i.e. out of labour force. To be 

classified as employed or unemployed the same criteria applies as for the classification of 

these two groups in a base year. Individuals with missing information on a multiple of 

accessible employment relationship variables and not already classified as employed or 

unemployed are classified as out of labour force.
15

 Also individuals who are fulltime students, 

i.e. registered with on-going education and working less than 20 hours a week, are classified 

as out of labour force.
16

 Individuals with uncertain employment status in the follow-up years, 

not corresponding to any of the above employment status categories are excluded (8.5% of 

sample). In addition, individuals with incomplete relevant data are also excluded.  

                                                 
14

 In the years following a base year the individuals have the option of taking further education. This 

option is not restricted since taking more education may be a consequence of experiencing 

unemployment in a base year. 
15

 The employment relationship variables include plant identification number, firm identification 

number, municipality of work and start and termination date of employment relationships.  
16

 For the years 2007 and 2008 the variable with information about ongoing education is not available. 

In these years students who work, even if it is less than 20 hours a week, are categorized as employed 

if they have no months of registered unemployment. We tend to believe that this affects only very few 

individuals.  
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The data contains both personal and demographic characteristics of the individuals, 

including age, years of education, earnings (fixed NOK 2000 prices), marital status and 

whether the individual is born outside of Scandinavia. We also have information on type of 

education, industry and region of residence. For the analysis, both education type and industry 

type are divided into 9 categories.
17

 Region of residence is divided into 7 major areas defined 

by Statistics Norway (Hartvedt et al., 1999), ranging from the urban capital region to the 

relatively rural micro regions. In addition we have regional labour market unemployment 

rates constructed by gender.
 
 

 

3.2 Descriptive analysis 

 

 [Table 1 “Descriptive statistics before matching” about here] 

 

Table 1 reports characteristics of the two groups being employed and unemployed in a base 

year by gender. All characteristics are measured in the year prior to the base year. Even 

though the employed and unemployed groups are relatively similar, they are not identical. 

Individuals in the unemployed group are younger, less likely to be married (especially males), 

and have lower levels of education and lower wages. They are more likely to be non-

Scandinavian. Among other things, they are also less likely to work in the public sector, more 

likely to be in the construction industry, and less likely to live in the capital region. Moreover, 

individuals in the unemployed group typically live in local labour market areas with higher 

unemployment rates in a base year.  

                                                 
17

 See Statistics Norway (1989) for the educational type classification, and Statistics Norway (1983) 

for industry classification. 
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The shares of individuals being unemployed and out of labour force in the follow-up 

years are shown in Figure A1 (males) and A2 (females) in the appendix, where we have split 

the sample according to their employment status in the base year, i.e. employed or 

unemployed. Since the two groups are not identical in terms of observed characteristics, these 

comparisons of their labour market statuses in the follow-up years may not be credible 

measures of the effect of unemployment per se. To construct a valid control group for the 

unemployed group we make use of matching. Without this matching, the differences between 

the employed group and the unemployed group in the follow-up years, may caused by 

differences in observed characteristics, and NOT due to the potential unemployment 

experience.     

 

4. Empirical Method 

4.1 Matching estimator 

A standard model used to motivate matching is the potential outcome model or Rubin model 

(see Holland 1986, and Caleido and Kopening 2008). In this model there is a treatment 

indicator Di, which as a binary variable takes the value 1 if individual i receives treatment and 

0 otherwise. The individual has two potential outcomes; Yi
1
 denotes the outcome if treated and 

Yi
0
 denotes the outcome if untreated. In regard to this analysis the treatment Di indicates 

whether the individual is in the unemployed group, i.e. has experienced unemployment in a 

base year, or not. Since we are interested in the effect of unemployment on future labour 

market statuses it would be desirable to compare the potential outcomes Yi
1

 (labour market 

status if experienced unemployment) and Yi
0

 (labour market status if not experienced 

unemployment) for individuals in the unemployed group. However, one can only observe a 

single outcome for each individual in the unemployed group, Yi
1

, and not the potential 
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outcome for these same individuals had they not been unemployed, Yi
0
. Hence, one can only 

compare mean differences in outcomes in the population and get average treatment effects.  

Thus, what we are interested in is the average treatment effect on the treated (ATT), 

defined as: 

 

   1 0 | 1 | 1ATT E Y D E Y D      

 

Notice that also E(Y
0
 | D=1) is never observed. Using the mean outcome of the employed 

group E(Y
0 

| D=0) may not be a proper substitute for E(Y
0
 | D=1). This is because 

characteristics which determine whether an individual became unemployed in a base year are 

likely also to determine the individual’s future labour market status. In other words, there 

might be a selection into unemployment. The average treatment effect on the treated is 

estimated using a matching method. In essence, this method makes sure that a comparable 

employed group is equal to the unemployed group in terms of observed characteristics. 

For identification in this model, it is assumed that the unemployed and the employed 

group are different because they differ with regard to observed characteristics only. This is to 

say that given the observed characteristics, X, the potential outcomes are independent of 

treatment, i.e. the unemployment incidence in a base year. Formally: Y
0
, Y

1 
|| D | X, where || 

denotes independence. This is called the Conditional Independence Assumption (CIA). CIA is 

a strong assumption and requires no selection on unobserved characteristics. However, since 

we can never be certain about whether there actually is selection on unobservable 

characteristics, we test the sensitivity of our results to different levels of unobserved 

heterogeneity causing selection into unemployment as a robustness check in section 6. 
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Another requirement for matching is the common support condition. This condition 

ensures that there exists a counterpart for every individual in the unemployed group. This 

restriction is of less concern in this case since we have an employment group that is much 

larger than the unemployed group. For males, there are a total of 196 702 individuals in the 

employed group and 17 169 individuals in the unemployed group. For females, the 

breakdown is 159 398 in the employed group and 12 187 in the unemployed group, 

respectively.  

We match the individuals using propensity scores. This is a simple method that 

diminishes the dimensionality problem when having many and continuous observed variables. 

The propensity score is defined as      Pr 1 |  i i i ip x D x  , where xi is the vector of 

observed characteristics for individual i. Thus, the propensity score gives each individual a 

probability of experiencing unemployment. Rosenbaum and Rubin (1983) showed that 

conditioning on p(x) instead of X is sufficient to identify the treatment effect, given that CIA 

and the common support condition holds. With respect to the propensity score, individuals in 

the unemployed group are matched to the nearest individual in the employed group without 

replacement.  

 

4.2 Common support and matching quality 

The propensity scores are estimated separately for males and females using logistic 

regressions. The dependent binary variable takes the value 1 if an individual is unemployed in 

a base year and zero otherwise. All controls from the summary statistics reported in Table 1, 

measured the year prior to a base year, are included in the estimations. In addition to base 

year dummies, the square root of age, and regional labour market unemployment rates 

measured in the base years. 
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Without going into details, it could be mentioned that for males the coefficients of the 

base year dummies from the logistic regression follow the pattern of the overall 

unemployment rates for the years 1990-1998, with a peak in the likelihood of unemployment 

in early nineties, and a slump in 1997-1998.
18

 We also find the local unemployment rates 

positive and highly significant. Furthermore, education, income, age – which might also 

proxy experience, and marriage increase the probability of staying employed. The results for 

females are much the same as for males, except that the coefficients for the base year 

dummies seem to be rather flat. This difference is consistent though, with the gender-

segregated labour market in Norway, as described in Section 2, with females being 

overrepresented in the public sector and not exposed to business cycles to the same degree as 

men. 

  

 [Figure 1 “Propensity scores – males” about here] 

 [Figure 2 “Propensity scores – females” about here] 

 

To evaluate whether the common support condition is satisfied we investigate the 

distributions of the estimated propensity scores. Figures 1 and 2 show the distribution of the 

estimated propensity scores before and after matching for males and females, respectively, in 

both the treatment (i.e. unemployed) and control (i.e. employed) groups. While the 

distributions for the treatment and control groups differ, the distribution of the control group 

covers the range of the treatment group. In addition, the extreme values (minimum and 

maximum) of the propensity scores for the treated group are within the extreme values of the 

                                                 
18

 These results are not reported but available from the authors on request. 
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control group.  This indicates that the common support condition is satisfied. After matching, 

the distributions of the two groups are visually identical for both genders.  

 

[Table 2 “Descriptive statistics after matching” about here] 

 

The quality of the propensity score matching is evaluated by doing a visual inspection 

of the means of the observed characteristics for the treatment and the control group after 

matching, and calculating absolute standardised biases (Rosenbaum and Rubin 1985) and 

t-tests. Examination of the results in Table 2 shows that the observed characteristics are 

extremely similar after matching. There is no bias larger than 2% for any of the observed 

characteristics for neither males nor females. For most of the observed characteristic the bias 

is well below 2%. In addition the p-values of the t-tests show that none of the means are 

significantly different in the two groups. Hence the matching procedure has generated a 

control group for the unemployed group that is, on average, identical. 

 

5. Results  

Since the matching method has removed most of the bias attributable to observed 

characteristics, an estimate of the average treatment effect on the treated groups is simply 

found by taking the difference in mean outcomes in the unemployed group and the matched 

control group. The effects of experiencing unemployment are shown in Figures 3-6. The 

probability differences for the treated group (i.e. those who experience unemployment) and 

the control group on later unemployment and of being out of labour force for males are 

reported in Figures 3 and 4 respectively.  
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 [Figure 3 “ATT – unemployment for males” about here] 

 

Starting with the average treatment effects on the treated on unemployment, reported in Figure 

3, we see that this is 40 percentage points the first follow-up year. Note, however, that in the 

first follow-up year it is likely that many individuals in the unemployed group are in the same 

continuous unemployment spell that started in a base year. The estimated effect drops to 

about 10 percentage points in the fifth year. Looking at the probabilities behind this figure in 

follow-up year five, we find that those in the control group have a probability of 7.8 percent 

of being unemployed, while the corresponding number for the unemployed individuals is 

much higher at 17.2 percent. Turning to the evolution over time, we see that the average 

treatment effects seem to stabilize at five percentage points from year eight onwards. With 

regards to the latter stabilization, the underlying reason is that the ones in the treatment group 

have a probability of unemployment of 11 percent, while the control group have a probability 

of 6 percent. 

 

 [Figure 4 “ATT – out of labour force for males” about here] 

 

Moving now to the treatment effects on being out of labour force, this seems quite 

stable over time. It appears to be consistent with the findings reported in Huttunen et al. 

(2011) (see their Figure 3), where they analyse the effects of job displacement in Norway, as 

well as Eliason and Storrie (2006) for Sweden, and Verho (2008) for Finland. Thus, there are 

large and persistent negative relationships between previous unemployment and future labour 

market status of being unemployed and being out of labour force for males. 
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[Figure 5 “ATT – unemployment for females” about here] 

 [Figure 6 “ATT – out of labour force for females” about here] 

 

The comparable figures for females are reported in Figures 5 and 6, which correspond 

to the difference in incidences of unemployment, and being out of labour force, respectively. 

Somewhat surprisingly, we find the pattern for females to be very similar to men; our prior 

beliefs were that we would find significant differences. As explained in Section 2, females 

seem to undertake more education, typically work in different industries and tend to be more 

family-oriented earlier in the life-cycle, when compared to men.  

 

6. Sensitivity analyses  

The results in Section 5 are based on the assumption that the CIA condition holds. If there are 

unobserved factors that differ across the treatment and the control groups that affect both the 

probability of becoming unemployed and the outcome variables being employed or out of 

labour force in the follow-up years, these results are not reliable causal effects of 

unemployment. It is imaginable that even though we have controlled for a variety of observed 

characteristics, there might be unobserved factors like productivity, preferences for work and 

ability causing selection bias. Since it is not possible to know whether there actually is 

important unobserved variables causing selection bias or not, we address this issue by 

calculating upper and lower bounds for the test statistic for different levels of unobserved 

heterogeneity, an approach proposed by Rosenbaum (2002). This allows us to test for how 

much unobserved heterogeneity must influence the selection process into unemployment 

before the estimated effects are no longer significant.  
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The procedure outlined follows Aakvik (2001). The probability of being treated, i.e. 

being in the unemployed group for individual i may be expressed as: 

 

 Pr  1 |   (  )i i i i iD x F x u             

  

where ui is an unobserved variable and γ is the effect of ui on the probability being in the 

unemployed group. If we let F(.) be the logistic distribution and assuming that we have a 

matched pair of individuals, i and j, then the odds ratio (i.e. the relative odds of receiving 

treatment for these two individuals) may be written as: 

 

  
(1 )1 exp( )

exp[ ]
(1 ) exp( )

1

i

i ji i i
i j

j j i j j

j

x u
u u

x u



   


    



 
   

 



 

 

The x vector cancels out since the two matched individuals have the same observed 

characteristics. If e
γ 

= 1 then the two individuals have the same probability of being in the 

unemployed group. On the other hand, if e
γ 

> 1 then the two matched individuals differ in 

their odds of being in the unemployed group. If a value of e
γ 
slightly larger than 1 changes the 

inference about the effects of unemployment, the estimated effects are interpreted as being 

sensitive to unobserved selection bias. In contrast, if a large value of e
γ
 does not change the 

inference, then we might say that the estimated effects are not sensitive to unobserved 

selection bias. A value of e
γ 

= 2 changes the individuals relative differences of receiving 

treatment by a factor of 2, i.e. 100 percent. In line with the notions of Aakvik (2001), we also 

consider e
γ
 = 2 to be a very large number.  
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With fixed e
γ 

≥ 1 and binary u, the non-parametric Mantel-Haenszel (1959) test-

statistics can be bounded by two known distributions (Rosenbaum (2002)). If e
γ 

= 1 the 

bounds do not move apart and constitute the reference point of no unobserved selection bias. 

With e
γ 
> 1 the bounds move apart showing the sensitivity of the test statistics to the presence 

of unobserved selection bias. There are two bounds: One is the test statistic when the effects 

of unemployment are overestimated, denoted 
MHQ , and the other is the test statistic when the 

effects of unemployment are underestimated, denoted 
MHQ . In Table 3 we report only the p-

values of these test statistics.
19

 

 

[Table 3 “Robustness check, MH-test” about here] 

 

The Table 3 reports the p-values for both the upper and lower HM bounds for various 

values of e
γ
; i.e. e

γ
 = 1 (the reference point of no unobserved selection bias), e

γ
 = 1.5, and e

γ
 = 

2. It does so for both the estimated effect of prior unemployment on unemployment and on out 

of labour force in each follow-up year. Starting with the robustness of unemployment for 

males, it turns out that all but a small minority of p-values are 0.00. In other words, the 

estimated effects are not sensitive to unobserved selection bias. However, we do see that the 

estimated effects for out of labour force are somewhat more sensitive especially for the later 

follow-up years. This is likely to be caused by the fact that the estimates for average treatment 

effects are smaller when it comes to being out of labour force. Turning to females, the overall 

finding is consistent with the reported results for males with regards to unemployment. The 

test results for out of labour force are admittedly more sensitive to unobserved selection bias. 

                                                 
19

 In addition to Rosenbaum (2002) and Aakvik (2001), Caleido and Kopening (2008) give a practical 

overview of this approach.  
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Note, however, that this does not mean that selection biases are present and we cannot say 

anything about the most likely magnitudes.  

 

7. Concluding remarks  

This paper contributes to the existing literature by investigating a possible scarring effect of 

unemployment on future labour market status for young workers with some years of work 

experience. The analysis is made separately for males and females. Taking advantage of rich 

and detailed register data from Norway, we use a matching estimator to construct a control 

group that is as similar as possible with regards to observables as to the individuals who 

experience an incidence of unemployment. This is done in an attempt to disentangle the 

effects of observables and the scarring effects. 

The main finding is that there exists a large and persistent negative relationship 

between previous unemployment and future labour market status for both genders. For males, 

the average treatment effects on the treated on unemployment starts at 40 percentage points 

the first follow-up year, drops to 10 percentage points in the fifth year, and stabilizes around 5 

percentage points from follow-up year 8 and onwards. The treatment effects on being out of 

labour force are about 4 percentage points and stable over time. Comparing males and 

females, we find the patterns to be very similar. When we analyze the sensitivity of the results 

using the Rosenbaum (2002) bounding approach, our results indicate that only a relatively 

high level of unobserved selection bias could change the inference. Thus, unemployment 

leaves young workers with long-term scars. These findings are consistent with findings from 

other Scandinavian studies of displacement, even though these studies are based on older and 

more established workers. Furthermore, the results of our analysis are for individuals with at 

least two years of labour market experience prior to their unemployment incidence. The 
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unemployed with no prior work experience may be even more scarred. Thus, when we have 

ample evidence that the early labour markets history turns out to be decisive for subsequent 

labour market success, these findings may be used as support for significant public 

expenditures targeting young individuals.  
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Table 1: Descriptive statistics before matching 

 

Mean values and shares. All characteristics measured the year prior to a base year. 

 

 Males Females 

 Unemployed Employed Unemployed Employed 

     

age 24.42 26.14 24.00 25.60 

yrs of educ. 11.16 12.46 11.40 12.60 

earnings in 1000a)
 209 253 162 196 

married 0.15 0.26 0.24 0.30 

non-Scand. .02 .02 .02 .02 

     

Education typeb)     

general .22 .16 .29 .20 

teaching .01 .02 .03 .09 

humanities/art .01 .02 .05 .05 

business adm. .09 .16 .32 .32 

sciences/technical .58 .52 .09 .09 

transport .03 .03 .03 .03 

health services .00 .02 .03 .13 

agriculture .03 .03 .01 .01 

service/defence .03 .04 .14 .09 

     

Industryb)     

agriculture .03 .02 .01 .01 

petroleum .01 .01 .00 .01 

manufacturing .30 .26 .16 .10 

electricity .00 .02 .00 .00 

construction .27 .11 .02 .01 

wholesale .19 .20 .37 .23 

transport .06 .08 .04 .06 

finance .05 .11 .11 .12 

public .09 .19 .29 .45 

     

Residence charb)
     

capital region .17 .25 .23 .30 

metropolis region .18 .18 .19 .18 

university region .02 .02 .02 .02 

center region .29 .27 .26 .25 

med. size region  .10 .09 .09 .08 

small size region .08 .07 .06 .05 

micro size region .17 .13 .16 .12 

     

Base yearsb)     

1990 .40 .41 .32 .40 
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1991 .11 .07 .11 .09 

1992 .11 .08 .11 .09 

1993 .09 .06 .09 .08 

1994 .07 .06 .09 .07 

1995 .06 .06 .08 .07 

1996 .06 .07 .08 .07 

1997 .05 .09 .06 .07 

1998 .05 .09 .06 .07 

     

Unempl.rates (base 
year) 

6.28 5.69 4.55 4.28 

     

Nbr of individuals 17 169 196 702 12 187 159 398 

     

 

a) Fixed NOK 2000 prices. 
b) Shares in each category within each group; unemployed and employed. 

Summarizes vertically to 1 
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Figure 1: Propensity scores before and after matching –males. 
 
Note: The Control (Employed) group consist of all individuals in the employed group 
before matching and a limited sample of the employed after matching. 
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‘ 

Figure 2: Propensity scores before and after matching –females. 
 
Note: The Control (Employed) group consist of all individuals in the employed group 
before matching and a limited sample of the employed after matching. 
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Table 2: Descriptive statistics after matching 

 

Mean values and shares. All characteristics measured the year prior to a base year.  
 

 
 

 Males Females 

 Treated 
(Unempl
oyed) 

Control |bias| 

(%)a) 
p-value Treated 

(Unem
ployed) 

Control |bias| 
(%)a) 

p-value 

age 24.42 24.40 0.8 0.41 24.00 24.02 1.0 0.39 

yrs. of educ. 11.16 11.14 0.7 0.38 11.40 11.40 0.2 0.84 

earnings in 

1000b)   

209 209 0.1 0.88 162 162 0.1 0.95 

married .15 .15 0.6 0.52 .24 .24 0.7 0.60 

non-Scand. .02 .02 0.4 0.70 .02 .02 0.7 0.56 

         

Education typec)         

general .22 .22 0.4 0.72 .29 .28 0.7 0.61 

teaching .01 .00 0.4 0.57 .03 .03 0.5 0.64 

humanities/art .01 .01 1.2 0.19 .05 .05 0.1 0.93 

business adm. .09 .09 0.8 0.38 .32 .33 1.3 0.30 

sciences/ techn. .58 .58 0.1 0.90 .09 .09 1.1 0.41 

transport .03 .03 0.5 0.68 .03 .03 0.3 0.80 

health services .00 .00 0.4 0.30 .03 .03 1.6 0.05 

agriculture .03 .03 0.0 1.00 .01 .01 0.4 0.75 

service/defence .03 .03 0.3 0.90 .14 .14 0.9 0.51 

         

Industryc)         

agriculture .03 .03 1.1 0.33 .01 .01 0.4 0.76 

petroleum .01 .01 0.2 0.82 .00 .00 0.0 1.00 

manufacturing .30 .30 0.3 0.78 .16 .16 0.9 0.52 

electricity .00 .00 0.7 0.31 .00 .00 0.8 0.35 

construction .27 .27 0.9 0.50 .02 .02 0.8 0.57 

wholesale .19 .19 0.9 0.40 .37 .37 0.5 0.70 

transport .06 .06 0.2 0.87 .04 .04 0.9 0.43 

finance .05 .05 0.1 0.90 .11 .11 0.7 0.55 

public .09 .10 0.5 0.62 .29 .29 0.5 0.66 

         

Residence 
char.c)

 

        

capital region .17 .17 0.2 0.86 .23 .22 0.9 0.45 

metropolis 
region 

.18 .18 1.1 0.32 .19 .18 1.4 0.28 

university 
region 

.02 .02 0.5 0.64 .02 .02 0.6 0.63 
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center region .29 .28 0.9 0.43 .26 .27 2.1 0.11 

med. size 
region  

.10 .10 0.3 0.79 .09 .09 0.4 0.75 

small size 
region 

.08 .08 0.6 0.60 .06 .06 0.5 0.69 

micro size 
region 

.17 .17 0.1 0.92 .16 .16 0.2 0.90 

         

Base yearsc)          
1990 .40 .40 1.1 0.31 .32 32. 0.4 0.73 

1991 .11 .11 0.1 0.92 .11 .11 0.1 0.92 

1992 .11 .11 1.3 0.27 .11 .11 0.1 0.94 

1993 .09 .09 0.5 0.69 .09 .09 0.5 0.71 

1994 .07 .07 1.9 0.08 .09 .09 1.7 0.22 

1995 .06 .06 0.2 0.82 .08 .08 0.7 0.60 

1996 .06 .06 0.4 0.74 .08 .08 0.2 0.91 

1997 .05 .05 0.3 0.77 .06 .06 1.3 0.29 

1998 .05 .05 0.2 0.79 .06 .06 1.3 0.27 

         
Unempl. rates 
(base year) 

6.28 6.27 0.4 0.74 4.55 4.57 1.2 0.34 

         

Nbr of 
individuals 

17 169 17 169 12 187 12 187  

 
a) Absolute standardised bias. 
b) Fixed NOK 2000 prices. 
c) Shares in each category within each group; unemployed and employed. 

Summarizes vertically to 1. 
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Figure 3: Average treatment effect on the treated (ATT) on the probability of being 
unemployed in the follow-up years –males.  
 
 
 
 

 
Figure 4: Average treatment effect on the treated (ATT) on the probability of being 
out of labour force in the follow-up years –males.  
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Figure 5: Average treatment effect on the treated (ATT) on the probability of being 
unemployed in the follow-up years –females.  
 
 
 
 

 
Figure 6: Average treatment effect on the treated (ATT) on the probability of being 
out of labour force in the follow-up years –females.  
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Table 3: Robustness check, MH-test 

                      Follow-up years 1 2 3 4 5 6 7 8 9 10 

  

mh+ mh- mh+ mh- mh+ mh- mh+ mh- mh+ mh- mh+ mh- mh+ mh- mh+ mh- mh+ mh- mh+ mh- 

Males 
 

                    
Unemployment 

                    
eγ = 1.0 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eγ = 1.5  
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eγ = 2.0  
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - 0 - 0 

Out of labour 
force                     

eγ = 1.0 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eγ = 1.5  
 

0 0 0 0 0.02 0 0.07 0 0.46 0 0.08 0 0 0 0.01 0 - 0 - 0 

eγ = 2.0  0.45 0 0.01 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 

                      
Females 

 
                    

Unemployment 
                    

eγ = 1.0 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eγ = 1.5 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0.01 0 
eγ = 2.0 

 
0 0 0 0 0 0 0 0 0.01 0 0.38 0 0.28 0 - 0 - 0 - 0 

Out of labour 
force                     

eγ = 1.0 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eγ = 1.5  
 

0.10 0 0.12 0 0.21 0 0.45 0 0.33 0 - 0 - 0 - 0 - 0 - 0 

eγ = 2.0  
 

- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 

                      Notes:  The mh+ denotes p-values of the upper bound, while the mh- denotes the p-values of the lower bound. 
 

 

A "-" denotes a negative treatment effect resulting from assuming a large positive unobserved heterogeneity bias. 
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Appendix 

 

 
Figure A1: Shares of males in the two groups (employed and unemployed) being 
unemployed and out of labour force in the follow-up years. 
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Figure A2: Shares of females in the two groups (employed and unemployed) being 
unemployed and out of labour force in the follow-up years. 
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