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Abstract. We consider the three-dimensional Euler equations of gas dynam-

ics on a bounded periodic domain and a bounded time interval. We prove that

Lax-Friedrichs scheme can be used to produce a sequence of solutions with
ever finer resolution for any appropriately bounded (but not necessarily small)

initial data. Furthermore, we show that if the density remains strictly positive

in the sequence of solutions at hand, a subsequence converges to an entropy
solution. We provide numerical evidence for these results by computing a

sensitive Kelvin-Helmholtz problem.

1. Introduction

In three space dimensions, the compressible Euler equations on conservative form
are,

ut + f1
x + f2

y + f3
z = 0(1)

where

f1 = (ρu, ρu2 + p, ρuv, ρuw, u(E + p))T ,

f2 = (ρv, ρvu, ρv2 + p, ρvw, v(E + p))T ,(2)

f3 = (ρw, ρwu, ρwv, ρw2 + p, w(E + p))T ,

u = (ρ, ρvT , E)T conservative variables.

v denotes the velocity vector with components (u, v, w); ρ is the density, p the
pressure, E the total energy, e the specific internal energy and, T the temperature.
cp and cv denote the specific heats at constant pressure or volume. Furthermore,
E = 1

2ρ|v|
2 +ρe, e = cvT , ρe = p

γ−1 and γ = cp/cv. (For air, γ = 7/5 but generally

1 < γ < 5/3.) The thermodynamic variables are related through the ideal gas law,
p = ρRT where R is the gas constant.

In this paper, we consider the Euler equations (1) on the domain Q = [0, T ]×Ω,
where T is an arbitrary but finite time and Ω = [0, 1]3 is the unit cube. We assume
periodicity in all three space dimensions.

Assumption 1.1. Assume that the initial data are provided in the following spaces:

u(0,x) ∈ (L2(Ω))5, T (0,x) ∈ L2(Ω), v(0,x) ∈ (L2(Ω))3, ρ(0,x), T (0,x) > 0.

For initial data with small total variation, existence and uniqueness have been
proven in [BB05] for the 1-D problem. However, to date there are no global well-
posedness results for the system of Euler equations in 3-D. The goal of this work is
to address the question of existence of so-called (weak) entropy solutions.
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1.1. Definitions. It is well-known that the Euler equations may develop discon-
tinuities in finite time. Therefore its solutions are usually interpreted in a weak
sense.

A solution u is a weak solution, if it satisfies the equations in a distributional
sense. That is, if u satisfies∫ T

0

∫
Ω

(
(φt)u + (φx)f1 + (φy)f2 + φzf

3
)
dx dt+

∫
Ω

φ(x, 0)u(0,x) dx = 0(3)

for all non-negative test functions φ ∈ D(Q) (these functions are periodic since Ω is
periodic). Weak solutions are generally not unique and conservation laws, such as
(1), are supplemented with an entropy condition. To define the entropy condition,
we need the following definition.

Definition 1.2. Let d be the number of space dimensions. An entropy pair, is a
pair of functions (U,F) with U : R5 → R, F : R5 → Rd where U is convex and
F′ = U ′f ′.

Here, we consider three space dimensions, i.e., d = 3 and F = (F 1, F 2, F 3).
Furthermore, qT = Uu are the entropy variables. We denote the entropy potential
as Ψi = 〈q, f i(u(q))〉 − F i(u(q)), i = 1, 2, 3. A vanishing viscosity solution of a
conservation law, results in the following inequality for the entropy pair.

Ut +∇F ≤ 0(4)

Since solutions of conservation laws are often assumed to be a vanishing viscosity
limits of a viscous equation, (4) is often used as an entropy condition or admissibility
criterion.

Definition 1.3. A weak solution u of (1) is an entropy solution, if (4) is satisfied
in a distributional sense for all entropy pairs.

For the Euler equations, it is not clear if this entropy condition will single out a
unique solution. As mentioned above, the entropy inequality is satisfied for vanish-
ing viscosity solutions but other entropy conditions have been proposed. We refer
to [Sle13] for a discussion on entropy conditions for the Euler equations.

Let S = ln( p
ργ ) be the specific entropy. Then the entropy pairs for the Euler

equations are given by

U = −ρh(S)

F 1 = −ρuh(S),

F 2 = −ρvh(S),

F 3 = −ρwh(S),

h′′(S)

h′(S)
<

1

γ
(See [Har83].)

For an entropy U , Uuu is symmetric positive definite. (For the Euler equations this
is the case if ρ, T > 0.)

Integrating (4) over Ω leads to the familiar global entropy inequality.∫
Ω

Ut dx ≤ 0.(5)

The inequality (5) results in a bound on U(T ), which leads to the following result,
which is standard. (See [Daf00].)
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Proposition 1.4. Assume that the initial conditions are given as in Assumption
1.1. Furthermore, we assume that ρ(x, t) > 0, T (x, t) > 0, t ∈ [0, T ],x ∈ Ω. Then
entropy solutions u of (1), satisfy

u(t) ∈ (L2(Ω))5, p, ρ|v|2 ∈ L2(Ω).(6)

Such estimates are possible to obtain for numerical schemes (so-called entropy
stable schemes). However, they are not sufficient to prove convergence to a weak
solution. The problem is the non-linear flux function.

Our strategy is the following. We use (essentially) the local Lax-Friedrichs
scheme, in a semi-discrete form, and demonstrate that it generates a sequence
of solutions up to any finite time on the bounded periodic domain. This part is ac-
complished with the help of entropy estimates and a proof that the thermodynamic
variables remain non-negative to any final time T .

Having established that a sequence of solutions can be generated on ever finer
grids, we consider sequences that have no vacuum regions. (We regard this as an a
posteriori examination since an existing sequence either has this property or not.)
For sequences whose density remain bounded away from 0, we prove convergence
to a weak entropy solution. For this we show that the numerical flux functions are
equi-integrable and that one of the factors in each non-linear product converges
almost everywhere.

Finally, we present numerical results for a Kelvin-Helmholtz problem that is
very sensitive to perturbations. Numerical simulations of this problem were used
in [FKMT14] as evidence of the non-existence of entropy solutions. Contrary to
their results, we do see convergence to an entropy solution in accordance with the
theory developed in this paper.

2. Lax-Friedrichs scheme

We discretize the domain Ω with N + 1 points in the x, y, z directions. That
means h = 1/N and xi = ih, yj = jh, and zk = kh, i, j, k = 0, .., N . Let
uhijk = (ρijk,m

1
ijk,m

2
ijk,m

3
ijk, Eijk)T where the components are the numerical vari-

ables corresponding to density, momentum in the x-y-z-direction and total energy.
All variables satisfy the same algebraic relations as their continuous counterparts.
E.g. Eijk =

pijk
γ−1 + 1

2ρijk
((m1

ijk)2 + (m2
ijk)2 + (m3

ijk)2) . We use uijk, vijk and

wijk to denote the velocity components. With a slight abuse of notation, we use

Dx
− to denote the operator Dx

−aijk =
aijk−ai−1jk

h irrespective if a is a scalar or a
vector. If it is a vector, the operation is carried out on each component. We define
Dy
−, D

z
−, D

x
+, D

y
+, D

z
+ analogously. Furthermore, D0 = 1

2 (D+ +D−).
The periodic boundary conditions are enforced through the following relations:

uh0jk = uN+1jk, uhi0k = uiN+1k, uhij0 = uijN+1.(7)

Let

g1
ijk = (m1

ijk, uijkm
1
ijk + pijk, uijkm

2
ijk, uijkm

3
ijk, uijk(Eijk + pijj))

T ,

g2
ijk = (m2

ijk, vijkm
1
ijk, vijkm

2
ijk + pijk, vijkm

3
ijk, vijk(Eijk + pijk))T ,

g3
ijk = (m3

ijk, wijkm
1
ijk, wijkm

2
ijk, wijkm

3
ijk + pijk, wijk(Eijk + pijk))T ,

be the local flux vectors at the grid points. The semi-discrete local Lax-Friedrichs
scheme is,

(uhijk)t +Dx
−f1
i+1/2jk +Dy

−f2
ij+1/2k +Dz

−f3
ijk+1/2 = 0.(8)
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where

f1
i+1/2jk =

g1
i+1jk + g1

ijk

2
−
λ1
i+1/2jk

2
(ui+1,jk − uijk),

f2
ij+1/2k =

g2
ij+1k + g2

ijk

2
−
λ2
ij+1/2k

2
(uij+1k − uijk),(9)

f3
ijk+1/2 =

g3
ijk+1 + g3

ijk

2
−
λ3
ijk+1/2

2
(uijk+1 − uijk),

and

λ1
i+1/2jk = max(|ui+1jk|+ ci+1jk, |uijk|+ cijk) + δ(10)

λ2
ij+1/2k = max(|vij+1k|+ cij+1k, |vijk|+ cijk) + δ

λ3
ijk+1/2 = max(|wijk+1|+ cijk+1, |wijk|+ cijk) + δ

where δ > 0 is a constant.

Remark With δ = 0 the scheme is the semi-discrete Local Lax-Friedrichs scheme.
For technical reasons, we need an (arbitrarily) small extra diffusion δ.

The numerical entropy flux in the x-direction is

F1
i+1/2jk =

1

2
〈qi+1jk + qijk, f

1
i+1/2jk〉 −

1

2

(
Ψ1
i+1jk + Ψ1

ijk

)
.(11)

Entropy stability ensures that

〈qi+1jk − qijk, f
1
i+1/2jk〉 ≤

(
Ψ1
i+1jk −Ψ1

ijk

)
.(12)

(Similar relations hold in the other two directions.) The key idea with entropy
stability is that upon contraction of (8) with the entropy variables, qijk, one obtains,

(Uijk)t + qTijk(Dx
−f1
i+1/2jk +Dy

−f2
ij+1/2k +Dz

−f3
ijk+1/2) = 0

which can be recast using the entropy stability properties (11) and (12) as,

(Uijk)t +Dx
−F1

i+1/2jk +Dy
−F2

ij+1/2k +Dz
−F3

ijk+1/2 ≤ 0.(13)

Note that (13) is a local entropy inequality in every point and corresponds to (4).
A numerical solution obtained with (8) will satisfy the entropy condition (i.e. it
is entropy stable) for all entropies. (See [Tad03].) Hence, if the discrete solutions
converge as the grid is refined, the limit will be an entropy solution.

2.1. The discrete entropy estimate. We will use the notation L2(ΩN ) to denote

the discrete L2-space. It is equipped with the norm, ‖uh‖22 =
∑N
ijk=0 h

3u2
ijk where

uh denotes the entire vector of (in this case x-velocity) values uijk. (Other discrete
norms are defined with the same analogy.)

We will use the superscript h to distinguish a discrete vector from the correspond-
ing continuous variable. E.g. u(x, t) is the continuous vector with five components
appearing in the Euler equations. uijk is the discrete solution vector with five com-
ponents at xi, yj , zk. uh is the vector of all discrete solutions at all points such that
(uh)ijk = uijk. The analogous relations hold for all variables, including scalars.

Assumption 2.1. The initial data are projections of the initial data given in As-
sumption 1.1 onto the grid. That is u0

ijk = u(0,xijk). Hence, the discrete initial
data reside in the equivalent discrete spaces.

Proposition 2.2. Let the initial data be given as in Assumption 2.1. Assume that
Th(t), ρh(t) ≥ 0, t ∈ [0, T ], then the scheme (8) is entropy stable and its solutions
satisfy uh ∈ C(0, T ; (L2(ΩN ))5) and ph, (ρ(u2 + v2 + w2))h ∈ C(0, T ;L2(ΩN )).
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Proof. Multiplying (13) by h3 and summing in (periodic) space, lead to,

N∑
i,j,k=0

h3(Uijk)t ≤ 0(14)

To obtain an L2 bound on the variables, we repeat the calculation for the entropy
Ū = U − U(uh0 ) − U ′(uh0 )T (uh − uh0 ) where uh0 is a constant state. (This is an
affine change, which ensures that Ū is also an entropy.) We choose (u0)ijk =
(ρ0, 0, 0, 0, E0), for all i, j, k, where ρ0 and E0 are positive constants. This corre-
sponds to a state at rest with constant density, temperature and pressure.

The entropy Ū satisfies the analog estimate (14). We can recast this as

1

2

N∑
i,j,k=0

{h3(uh − uh0 )TU ′′(θh(T )))(uh − uh0 )}ijk ≤
N∑

i,j,k=0

h3Ū(u0,h).(15)

Observe that U ′′(θh(t)), for t ∈ [0, T ], is symmetric positive definite, since θh(t) is
an intermediate state between uh and uh0 . This implies that the thermodynamic
variables of θh(t) are positive and bounded away from 0 since we have assumed that
ρijk ≥ 0, Tijk ≥ 0. Hence, we obtain an L2 bound on uh (continuously in time).
(This argument was given in [Daf00] and also presented in [Svä15].) The estimates
on ph and (ρ(u2 + v2 + w2))h follows from the estimate of Eh and positivity.

�

2.2. Positivity and solvability of the ODE system. The estimate in the pre-
vious section hinges on positivity, i.e., ρijk(t) ≥ 0 and Tijk ≥ 0. To demonstrate
that the scheme produces positive solutions, we begin by considering positivity of
ρ. The scheme for the continuity equation is:

(ρijk)t +Dx
0 (ρu)ijk +Dy

0(ρv)ijk +Dz
0(ρw)ijk =

Dx
−(
hλ1

i+1/2jk

2
Dx

+ρijk) +Dy
−(
hλ2

ij+1/2k

2
Dy

+ρijk) +Dz
−(
hλ3

ijk+1/2

2h
Dz

+ρijk)

We present the argument for the terms in the x-direction keeping in mind that the
other two directions are treated similarly. Hence, we consider,

(ρijk)t +Dx
0 (ρu)ijk + ...−Dx

−(
hλ1

i+1/2jk

2
Dx

+ρijk)− ... = 0

which can be restated as,

(ρijk)t +

(
(ui+1 − λ1

i+1/2)ρi+1 + (λ1
i+1/2 + λ1

i−1/2)ρi + (−ui−1 − λ1
i−1/2)ρi−1

2h

)
jk

... = 0.

For any given h > 0, let ρi be the minimum. If ρi → 0 then (ρi)t ≥ 0 since
λ1
i+1/2jk ≥ max(|ui+1jk|, |uijk|). (The terms in the yz-directions are balanced by

the same argument.) Hence, ρi ≥ 0 and ρh will always remain non-negative.
For positivity of ph, we rely on Lax-Friedrichs scheme being entropy stable for

any entropy. Then we can use the minimum entropy principle derived by Tadmor
in [Tad86]. From this result we have S = log(pρ−γ) ≥ Smin, at each point, or
p ≥ exp(Smin)ργ , and positivity of p follows that of ρ. Finally, Th ≥ 0 follows from
ρh, ph ≥ 0 and the gas law.

Next, consider a solution up to a time τ , where ρh(t) ≥ 0 for all t ∈ (0, τ ]. Hence,
Proposition 2.2 holds on this time interval. (Also, keep in mind that h is fixed for
a particular approximation implying that the conservative variables are pointwise
bounded from above thanks to the L2 estimates.) Since (ρijk)t ≥ 0, we conclude
that (ρijk) ≥ 0 in a neighborhood of t = τ . Hence, we can extend our a priori
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bounds beyond t = τ , and repeat the argument till we reach any finite time T (for
all h > 0).

We summarize the results of this section.

Lemma 2.3. Let the initial data satisfy Assumption 2.1. Then a semi-discrete
solution of (8) satisfies ρijk(t), Tijk(t) ≥ 0 for all t ∈ [0, T ] and i, j, k = 1...N .

The semi-discrete system constitutes a system of ordinary differential equations
(ODEs), uht = F(uh), where F(uh) symbolizes the spatial discretization of (8).
Having a priori determined the non-negativity of the numerical approximations, we
turn to the question of solvability of the resulting ODE system.

We know that the a priori estimates can be extended to any finite time T . From
these estimates it is straightforward to show that for a given grid size h, the function
F is Lipshitz continuous and hence there exists a unique solution on the arbitrary,
but finite, interval [0, T ]. Consequently, we can generate a sequence of solutions uh

satisfying the a priori bounds given in Proposition 2.2 and Lemma 2.3.

2.3. Estimates for strictly positive sequences. The estimates obtained from
entropy considerations along with non-negativity are not enough to establish con-
vergence to a weak solution. However, at this point we know that we can generate
a sequence of solutions using the numerical scheme.

It is well-known that vacuum creates mathematical problems. Here, we can not
preclude formation of vacuum regions in the limiting solution. However, close to
vacuum (or generally large Knudsen numbers) the continuum hypothesis breaks
down and the Euler equations are not valid. Hence, there is no practical limitation
to henceforth consider sequences satisfying ρh(t) ≥ ε > 0. We will term this an
a posteriori condition since we can examine its validity after a sequence has been
generated.

Remark Mathematically, one may argue that it is desirable to be able to prove
that a weak solution is obtained even in the presence of vacuum. However, such a
solution is not physically admissible. Consequently, it must be subject to the same a
posteriori examination to ensure admissibility. On the other hand, a mathematical,
as well as practical, breakthrough would be if one could prove that ρh(t) ≥ ε > 0
holds with general initial data. We have not been able to do that.

Lemma 2.4. If ρh(t) ≥ ε > 0, uniformly as h → 0, then Th ∈ L2(ΩN ) and
vh ∈ (L2(ΩN ))3.

Proof. By the gas law: Th ≤ ph/(Rε) ∈ L2(ΩN ). From the L2 estimates of the
momentum components, we get the L2 estimates on the velocities themselves. E.g.

uh ≤ (ρu)h

ε ∈ L2(ΩN ). �

We can now bound the artificial diffusion terms in the numerical fluxes.

Lemma 2.5. Under the assumptions of Prop. 2.2 and Lemma 2.4, hλ1,2,3Dx,y,z
+ uk ∈

L1(0, T ;L1(ΩN )), k = 1...5.

Proof. First, λ1,2,3 depend on velocity and the speed of sound, i.e.,
√
T , which are

bounded by Lemma 2.4 in L∞(0, T ;L2(ΩN )). Furthermore, hD+u
k is bounded

thanks to uh ∈ C(0, T ; (L2(ΩN ))5) by Prop. 2.2. The result follows by Cauchy-
Schwarz. �

2.4. Equi-integrability of the numerical flux. The next step is to establish
weak convergence in L1 of the numerical fluxes.

Lemma 2.6. Under the assumptions of Prop. 2.2 and Lemma 2.4, the numerical
fluxes f1,2,3 are bounded in L1(Q).
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Proof. The fluxes f1,2,3 are arithmetic averages of g1,2,3 plus artificial diffusion
term. Boundedness in L1 of g1,2,3 follows from the observation that all fluxes are
products of uh or ph, and vh. The estimates of g1,2,3 follow from uh ∈ L2(ΩN ),
Lemma 2.4 and Cauchy-Schwarz. The artificial diffusion terms are bounded by
Lemma 2.5. �

L1 integrability is not sufficient for weak convergence. For that we need a slightly
stronger bound, namely equi-integrability. There are a number of equivalent con-
ditions for equi-integrability. We use the following:

Let U ∈ L1(Q) be a family of integrable functions, then U is equi-integrable if
and only if,

lim
ξ↑∞

sup
u∈U

∫
|u|>ξ

|u| dx = 0.(16)

Lemma 2.7. Under the assumptions of Prop. 2.2 and Lemma 2.4, the numerical
fluxes f1,2,3 are equi-integrable.

Proof. From the entropy estimate, and with our definition of λ, it is easy to see
that we obtain an estimate of

δ

∫ T
0

N∑
ijk=1

(
h(Dx

+uhijk)2 + h(Dy
+uhijk)2 + h(Dz

+uhijk)2
)
h3 dt ≤ C(17)

Hence, Dx,y,z
+ (

√
huh) ∈ L2(0, T ;L2(ΩN )). By Sobolev embedding,

√
huh ∈ L2(0, T ;L6(ΩN ))

(in three space dimensions). Furthermore, ρ ≥ ε > 0, gives
√
hvh(L2(0, T ;L6(ΩN )))3.

Since for any fixed finite N the L2 estimates imply bounds in L∞(ΩN ), we
only need to investigate equi-integrability when N → ∞. That is, N → ∞ gives
the supremum of the family U = {uh} in (16). (Or rather, if it does not give
the supremum, {uh} is equi-integrable since we would have a uniform bound in
L∞(Q).) Equi-integrability concerns the measure of max |u|. Hence, we consider
the worst case scenario: All mass is concentrated on h3×∆t part of the domain Q.

Remark It is only if uh is not in L∞ that it might not be equi-integrable. Further-
more, the measure, h3×∆t, of the set where mass is concentrated, can be replaced
by any larger but vanishing set of width H3 ×∆t̃. It has to be a vanishing set or
else, the maximum will not grow out of bounds. However, the patch can not have
a smaller width than h so that determines the maximal growth.

Consider the lth component of uh, here denoted ulijk and let ul be its maximum

on the small patch of measure h3×∆t. Given that ,
√
huh ∈ L2(0, T ;L6(ΩN )), we

have ∫ T

0

N∑
ijk=1

((
√
hulijk)6h3)2/6 dt ≤ C

Hence, if all mass is concentrated on the small subset.

((
√
hul)6h3)2/6∆t ≤ C

((ul)6h6)1/3∆t ≤ C

(ul)2h2∆t ≤ C

|ul| ≤ C 1√
∆th

The velocities will also satisfy the analogous estimates. We now estimate a flux
component, g proportional to u times a velocity component. (Here, we take the
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y-component v as a generic example.)

lim
ξ↑∞

lim
N↑∞

∫
|g|>ξ

|g| dx dt ≤ lim
ξ↑∞

lim
N↑∞

∫
|g|>ξ

|vul|dx dt ≤

lim
N↑∞

(
C

1√
∆th

)2

h3∆t ∼ lim
N↑∞

h = 0(18)

There are also flux components proportional to ”velocity times pressure”. Hence,
we need a maximal growth of pressure which can be obtained from the L2 estimate
of ph. It is easy to see that on the same patch, we have

pmax ≤
C√

∆th3/2
.(19)

Hence, with g now symbolizing, say vp, we have

lim
ξ↑∞

lim
N↑∞

∫
|g|>ξ

|vpmax|dx dt ≤ lim
N↑∞

C
1√
∆th

1√
∆th3/2

h3∆t ∼ lim
N↑∞

√
h = 0(20)

For the artificial diffusion term, we apply the same argument noting that one
part is proportional to vhuh and is bounded as in (18). The part involving the

speed of sound is straightforward, since the sound speed (∼
√
T ) is bounded in

C(0, T ;L4(ΩN ). This term is approaching 0 somewhat faster than the term in
(18).

�

2.5. Convergence of flux terms. Equi-integrability ensures that a subsequence
converges weakly in L1. E.g., the momentum terms in the continuity equations
m1,h ⇀ m1. In this case, this immediately establishes that the continuity equa-
tion is satisfied weakly. However, for the momentum and energy equations more
information is needed. Consider the momentum equations. Equi-integrability gives

uhm1,h ⇀ um1 ∈ L1,

ph ⇀ ph ∈ L1.

(Similarly for all the other products of velocity and momentum.) The pressure term
needs no further attention but the momentum term does. We know that

uh ⇀ u ∈ L1, L2, m1,h ⇀m1 ∈ L1, L2,

and must show that um1 = um1. Thanks to equi-integrability of the sequence
uhm1,h, and weak convergence of uh and m1,h it is sufficient to prove that either
uh or m1,h converges a.e. (sub-sequentially).

To prove this, we will, once again, use the artificial diffusion. From (17) we have,∫ T
0

N∑
i,j,k=1

h3
|∆m1,h

i+1/2,j,k|
2

h
dt < C(21)

First, we check how this estimates caps the formation of concentrations. Assume
we localize all ”mass” of the integrals to one point, say xmnp. Then∫ T

0

|∆m1
m+1/2np|

2 dt <
C

h2
(22)

In this special case, we conclude that the estimate ensures that Dx
+m

1,h ∈ L1(ΩN×
[0, T ]). To see this we consider,∫ T

0

‖Dx
+m

1,h‖1 dt =

∫ T
0

N∑
i,j,k=1

h3
|∆m1

i+1/2jk|
h

dt < C
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which, with all mass located at one point,∫ T
0

|∆mm+1/2np| dt <
C

h2
(23)

With |∆m1
m+1/2np| > 1, (22) dominates (23). A similar argument reveals that (21)

bounds ‖Dx
+m

1,h‖1 on sets up to O(N2) points. Hence, concentrations will not

destroy the a.e. convergence, since if m1,h ∈ L1(0, T ;W 1,1(ΩN )), we would have
strong convergence of a subsequence in L1(0, T ;L3/2(ΩN )).

Remark We stress that we have not proven that m1,h ∈ L1(0, T ;W 1,1(ΩN )) in
general. We only claim that families of functions with mass concentrated on sets
less than O(N2), are bounded in L1(0, T ;L3/2(ΩN )). Consequently, we can draw
from such an (infinite) family of functions a strongly convergent subsequence in
L3/2.

What is left to prove is that oscillations are kept at bay such that a.e. convergence
can be inferred. Hence, we consider an O(N3) set, denoted BN3 . (The general case
O(N2Nα), α ∈ (0, 1], is straightforward to handle in a similar way.)

On such a set, we obtain from (21) that every difference is bounded as∫ T
0

|∆m1
m+1/2np|

2 dt < Ch, for all (xm, yn, zp) ∈ BN3 .(24)

Unfortunately, this will not bound ‖Dx
+m

1,h‖ but it clearly shows that the differ-
ences are decreasing to 0. The highest frequency in the x-direction is proportional
to aN sin(Nx). Hence, aN (sin(Nx)− sin(N(x+h))) ∼ aNNh ∼ aN , where h is the

grid step. We conclude that aN ∼
√
h. Hence, we obtain a.e. convergence of m1,h

for such functions. By this we have shown that m1,h converges a.e. on any subset
of ΩN . In conjunction with equi-integrability, we conclude that um1 = um1.

Moving to the energy equation, we can make the same argument to prove con-
vergence of uhEh-type terms. To prove that uhph converges, we observe that this
follows from weak convergence of m1,hTh ∈ L1, m1,h ⇀ m1 ∈ L1 and almost
everywhere, and weak convergence of Th ∈ L2.

Finally, we need to show that the artificial diffusion terms converge to 0 weakly
in L1. We denote the artificial diffusion part of f1

i+1/2jk in (9) as

gAD,1i+1/2jk =
hλ1

2
Dx

+uhijk.(25)

(Similarly for the other two fluxes.) We first note that thanks to the a priori
estimates, we have

√
hλ1Dx

+uhijk ∈ L2(0, T , L2(ΩN )).(26)

As already noted, λ1(∼ |u|+
√
T ) ∈ L2(0, T , L2(ΩN )). By Cauchy-Schwarz,

g∗,1i+1/2jk =
gAD,1i+1/2jk√

h
=

√
hλ1

2
Dx

+uhijk ∈ L1(Q)

From (18), the artificial diffusion flux satisfies the equi-integrability relation

lim
ξ↑∞

lim
N↑∞

∫
|gAD,1|>ξ

|gAD,1| dx dt ∼ lim
N↑∞

h = 0.(27)

and, therefore, the function g∗,1 = gAD,1√
h

, is also equi-integrable, and we can ex-

tract a convergent subsequence that converges weakly in L1(Q). We conclude that

gAD,1 =
√
hg∗,1 converges weakly in L1 to 0.

We summarize the results in a proposition.
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Proposition 2.8. Let uh, on Q = ΩN × [0, T ] be a sequence of solutions generated
by the scheme (8) with ρijk(t) ≥ ε > 0. Then for a subsequence, the numerical
fluxes (9) converge weakly in L1(Q).

2.6. Entropy solutions. At this point, we can summarize our findings in the main
theorem.

Theorem 2.9. The scheme (8) generates a sequence of numerical solutions, uh, on
ΩN × [0, T ]. If the sequence satisfies ρijk(t) ≥ ε > 0, then a subsequence converges
weakly to an entropy solution of the Euler equations (1).

Proof. First, the scheme satisfies the entropy stability condition (13), which ensures
that a weak solution is also an entropy solution.

Multiplying (8) by test functions φ ∈ D(Q) (projected onto the grid) it is
straightforward to move the spatial differences onto the test function using sum-
mation by parts and periodicity.∫ T

0

N∑
ijk=1

h3
(

(φijk)tuijk + (Dx
+φijk)f1

i+1/2jk + (Dy
+φijk)f2

ij+1/2k + (Dz
+φijk)f3

ijk+1/2

)
dt

+h3
N∑

ijk=1

φijk(0)uh,0ijk = 0(28)

Equation (28) will converge to (3) in a distributional sense, if uh, fmijk are (at least)

equi-integrable and the fluxes f i(uh) ⇀ f i(u). By Prop. 2.2 uh ∈ C(0, T ;L2(ΩN ))
and a subsequence will converge weakly. The fluxes are equi-integrable by Lemma
2.7 and a subsequence converges in L1(Q). Finally, by Proposition 2.8, we have
f i(uh) ⇀ f i(u) and we conclude that the limit is a weak solution.

�

We make a few remarks on the implications of this theorem.

• The equations (1) are satisfied in D′(Q) but uh will converge weakly in L2

(and L1).
• In smooth regions, i.e, where the solution is differentiable, the effect of the

artificial diffusion will vanish as h→ 0.
• While the thermodynamic variables remain positive till any finite time, the

scheme can not preclude the appearance of large vacuum regions. Never-
theless, the numerical solution, uh, will remain bounded but the velocities
and temperature may not be bounded. Under such circumstances, {uh}
may not approximate a weak solution.
• It is possible to relax the scheme to the standard local Lax-Friedrichs by set-

ting δ = 0. We only need to use (17) for sequences with ρ, T ≥ constant >
0, since it is only for such sequences we are able to prove convergence to
weak solutions. Moreover, for such sequences, we have an estimate (17)
with

√
Tmin in place of δ. (The minimum of the speed of sound.)

3. Kelvin-Helmholtz problem

As an example of entropy solutions obtained with Lax-Friedrichs scheme, we
consider a Kelvin-Helmholtz problem. (Here, we use δ = 0.) This problem was
proposed in [FKMT14] as a sensitive test case for the Euler equations, and we have
used the same set-up. The initial conditions are given by

(29) u0 =

{
u1 if 0.25 < y < 0.75

u2 if y ≤ 0.25 or y ≥ 0.75
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where u1 and u2 are the conservative variables obtained from the states: ρ1 = 2 and
ρ2 = 1; u1 = −0.5 + ε sin(2πx) and u2 = 0.5 + ε sin(2πx); v1 = v2 = 0 + ε sin(2πy);
p1 = p2 = 2.5. With ε = 0, u0 is a steady state solution of the Euler equations.
To trip the instability and obtain a time dependent solution we set ε = 0.1. This
will produce the familiar Kelvin-Helmholtz swirls. In the presence of shear stress
(i.e. with the Navier-Stokes equations), these swirls usually break up in smaller
vortices and the flow may even become turbulent. Without any shear stress (the
Euler equations), the swirls roll up as vortex sheets.

The results from running Lax-Friedrichs scheme (with Euler-forward in time)
till T = 2 are shown in Table 1. We present the L1 norms of ρu and ρv. The L2-
norm values are given for ρ and E since the L1 norms are constant (too machine
precision) thanks to positivity and conservation. Furthermore, we tabulate the L1-
differences of the variables on consecutive grids. Upon convergence, these values
should approach 0.

As seen in Table 1, the L1-/L2-norms of the variables are converging. The
differences are also decreasing and form Cauchy sequences. The only deviance is
in ρv where there is a large decrease between 20482 to 40962 followed by a slight
increase (81922) and a substantial decrease to the finest grid (163842). It is not
unexpected that the sequence is not perfectly decreasing since there is dynamics in
between the variables. Nevertheless, it should be clear that the simulations indicate
convergence.

In Figure 1, the solutions on the sequence of grids are shown. Finer structures
appear on finer grids and the large structures become better resolved. We also see
the roll-up of the vortex sheets.

ρ E ρu ρv
N L2 L1-diff L2 L1-diff L1 L1-diff L1 L1-diff

512 1.5557 - 6.4488 -
1024 1.5637 0.076 6.4521 0.13 0.5651 - 0.09254 -
2048 1.5706 0.070 6.4573 0.10 0.5818 0.067 0.1329 0.058
4096 1.5756 0.052 6.4602 0.052 0.5886 0.036 0.1790 0.021
8192 1.5802 0.040 6.4629 0.051 0.5959 0.023 0.1858 0.024
16384 1.5842 0.038 6.4653 0.045 0.6034 0.022 0.1876 0.016

Table 1. L2/L1-norm values of variables and L1-differences be-
tween two consecutive refinements.

Next, we investigate the behaviour as ε → 0. We compute numerical solutions
uhε till T = 2 for a decreasing sequence of ε values. With ε = 0, we should expect
to see u0 unchanged in time since it is a steady state solution. In Table 2 the L1

and L2 differences between uhε and u0 are listed.
The first part of Table 2 shows the sequence of errors as ε decreases, computed

on a grid with N2 = 10242 grid points. We note that the errors decrease towards 0,
as they should, but they do not reach 0 when ε = 0. The reason is that the artificial
viscosity diffuses the discontinuity and introduces an error proportional to the grid
size. Hence, we should see a further reduction of the error if the resolution is
increased. Indeed, that is the case. The discontinuity becomes sharper, as depicted
in Figure 2, and we see in the last two rows of Table 2 that the error continues to
decrease towards zero.
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(a) 5122 (b) 10242

(c) 20482 (d) 40962

(e) 81922 (f) 163842

Figure 1. Figures of density at T = 2.0 on different grids. ε = 0.1

4. Conclusions

We have shown that in the regime where the Euler equations constitute a valid
physical model, there exists (weak) entropy solutions for possibly large but appro-
priately bounded initial data. This was accomplished by using the standard local
Lax-Friedrichs scheme, which has the following key features:

• It always produces a numerical solution to any finite time T .
• If, and this condition can be examined a posteriori, the density remains

bounded away from 0, the scheme is convergent to a weak solution.
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N ε L1 L2

1024 0.1 0.205 0.344
1024 0.01 0.0922 0.166
1024 0.0 0.0898 0.160

2048 0.0 0.0644 0.135
4096 0.0 0.0431 0.1039

Table 2. ε-convergence measured in ρ. Difference between steady
state solution and numerical solution at T = 2.

(a) 20482 (b) 40962

Figure 2. Figures of density at T = 2.0 on different grids with ε = 0.

• The scheme is entropy stable for all entropies and the approximated weak
solution is an entropy solution.

We have already stressed the importance of the second point but emphasize it again.
We do not use positivity as an a priori assumption. It is only used to determine
whether or not a weak solution has been recovered. If vacuum occurs, we do not
get a weak solution but even IF a weak solution exists, it would not model physics
since the Euler equations do not constitute a valid model for vacuum. So from a
modeling perspective, this a posteriori examination should anyway be carried out.

In Section 3, we presented numerical results for a Kelvin-Helmholtz problem,
obtained with the Lax-Friedrichs scheme. We observed strong convergence in L1.
Furthermore, we demonstrated that the steady state solution is recovered when the
perturbation ε→ 0 and the grid is refined. In summary, the numerical experiments
corroborate the theoretical findings.

Finally, we remark that the numerical results for the Kelvin-Helmholtz problem
contradict those presented in [FKMT14], in which no convergence was observed
for the variables and the solutions were ”turbulent-like”. The numerical solutions
were generated by an entropy-stable ENO scheme (termed TeCNO). Since the Lax-
Friedrichs scheme converges to the well-known Kelvin-Helmholtz roll-ups, we con-
clude that our numerical solutions approximate the physically relevant solution.
We remark that, although an entropy stable scheme may satisfy the same a priori
estimates as Lax-Friedrichs scheme, the estimates may still be insufficient to bound
the numerical flux functions.
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References

[BB05] S. Bianchini and A. Bressan. Vanishing viscosity solutions of non-linear
hyperbolic systems. Ann. of Math., 161:223–342, 2005.

[Daf00] C. M. Dafermos. Hyperbolic conservation laws in continuum physics.
Springer Verlag, Berlin, 2000.
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