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1 Introduction

We investigate and discuss in detail the issue of CP violation (CPV) in the scalar sector

of the Two-Higgs-Doublet Model (2HDM). In spite of the existing rich literature (see,

for example [1]) we believe that it is worth revisiting this issue with particular emphasis

on the possibility of spontaneous CP violation from a phenomenological point of view.

The ultimate goal of our study is to identify observables which will distinguish between

explicit (ECPV) and spontaneous CP violation (SCPV) without reconstructing the full

potential. For early literature on this question, see [2]. The aim of the present paper

is more modest: we will determine and display regions of explicit and spontaneous CP

violation in the physical parameter space of the model, i.e., in terms of parameters used

directly in coupling constants of mass eigenstates, such as mixing angles of neutral scalars,

masses, and vacuum expectation values (VEVs).

In general, the parameter regions where spontaneous CP violation occurs are embedded

in regions of explicit CP violation, forming lower-dimensional sub-spaces or manifolds.

They can only be located where the potential has two minima of equal depth. However,

the converse is not true: not all locations where there are two minima of equal depth

correspond to spontaneous CP violation [3]. Thus, if the potential V has two minima

labeled A and B, spontaneous CP violation may only occur at the manifolds constituting

boundaries between a region where VA < VB and another where VB < VA.

We will also discuss the cases of CP conservation. The trivial ones are at boundaries

of the CP-violating parameter space. In addition, we find lower-dimensional manifolds of

CP conservation (appearing as points in our two-dimensional plots), totally immersed in a

region of explicit CP violation.

Our discussion is limited to the scalar sector, but is on the other hand rather

general in the sense that we do not commit ourselves to any particular scheme for the

Yukawa couplings.

The paper is organized as follows. In section 2 we review the minimal model that allows

for explicit as well as spontaneous CP violation. In sections 3 and 4 we discuss the condi-

tions for CP conservation and violation, respectively. In section 5 we illustrate our findings

with detailed numerical examples, and in section 6 we discuss the prospects for experimen-

tally establishing CP violation. Section 7 contains a brief summary, one appendix gives ex-

plicit minimization conditions, whereas another relates potential parameters to invariants.

2 The model

The scalar potential of the 2HDM shall be parametrized in the standard fashion:

V (Φ1,Φ2) = − 1

2

{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+
λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4(Φ†1Φ2)(Φ†2Φ1) +
1

2

[
λ5(Φ†1Φ2)2 + H.c.

]
+
{[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
(Φ†1Φ2) + H.c.

}
, (2.1)
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with

Φi =

(
ϕ+
i

(vi + ηi + iχi)/
√

2

)
, i = 1, 2. (2.2)

All parameters in (2.1) are real, except for m2
12, λ5, λ6 and λ7, which in general could

be complex. In the presence of CP violation the neutral sector comprises 3 scalars, Hi

(i = 1, 2, 3), of undefined CP properties, which are defined through the diagonalization of

the mass-squared matrix, M2, by an orthogonal rotation matrix R:H1

H2

H3

 = R

η1

η2

η3

 , (2.3)

satisfying

RM2RT =M2
diag = diag(M2

1 ,M
2
2 ,M

2
3 ), (2.4)

and parametrized e.g. in terms of three rotation angles αi as [4]

R =

 c1 c2 s1 c2 s2

−(c1 s2 s3 + s1 c3) c1 c3 − s1 s2 s3 c2 s3

−c1 s2 c3 + s1 s3 −(c1 s3 + s1 s2 c3) c2 c3

 (2.5)

with ci = cosαi, si = sinαi. In eq. (2.3), η3 ≡ − sinβχ1 + cosβχ2 is the combination of χi
which is orthogonal to the neutral Nambu-Goldstone boson. Here, tanβ ≡ v2/v1.

We constrain the model by demanding that there exists a basis for (Φ1,Φ2) in which the

VEVs are real and λ6 = λ7 = 0. Then the quartic terms of the potential are invariant under

the Z2 symmetry Φi → ±Φi. The symmetry, when imposed upon the whole Lagrangian

(except for the soft-breaking quadratic terms in our potential) eliminates flavour-changing

neutral currents (FCNC) which otherwise appear in Yukawa interactions. We choose to

work in this particular basis. By choosing another basis, we will in general lose its simplicity

by introducing non-zero λ6 and λ7, and the VEVs may also acquire a phase. This will be

illustrated by explicit examples later on. This model is the simplest setting in which the

2HDM may give CP violation.

We shall also ensure vacuum stability, for that we assume that the potential is positive

at large field strength irrespective of the direction in the field space. The positivity condi-

tions for the most general case with λ6, λ7 6= 0 (no Z2 symmetry) suitable for a numerical

study was formulated in [5], and solved in the geometrical approach of [6]. Here we limit

ourselves to the case with λ6 = λ7 = 0, the positivity conditions then read:

λ1 > 0, λ2 > 0, λ3 + min[0, λ4 − |λ5|] > −
√
λ1λ2. (2.6)

The freedom in choosing a different basis for (Φ1,Φ2) could be parametrized by the

following U(2) transformation:1(
Φ̄1

Φ̄2

)
= eiψ

(
cos θ e−iξ sin θ

−eiχ sin θ ei(χ−ξ) cos θ

)(
Φ1

Φ2

)
. (2.7)

1The parameters of the potential are unaltered by the choice of ψ. The transformed VEVs, however,

will depend on ψ. Thus, a suitable choice of ψ allows us to cancel a common phase of the VEVs.
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In our analysis the input parameters will be scalar masses M1,2, MH± , the angles αi
of the neutral-sector rotation matrix, and

µ2 ≡ v2

2v1v2
Rem2

12, (2.8)

along with a U(1)em-preserving minimum (defining tanβ) that is taken to be real. Note

that reality of the VEVs can always be achieved by an appropriate phase rotation of Φi

and therefore does not compromise the generality of our approach. It is easy to see that

the adopted input parameters are sufficient to determine all the potential parameters.2

In our analysis we will assume that the minimum specified by v1,2 satifies the constraint

v2
1 + v2

2 ∼ (246 GeV)2. However it may happen that this minimum is not the global

minimum (vacuum), so we will use the subscript A for our starting minimum to distinguish

it from other minima we encounter. Thus,

〈Φ1〉A =
1√
2

(
0

v1

)
, 〈Φ2〉A =

1√
2

(
0

v2

)
. (2.9)

In this paper we are going to study the CP-properties of the model with particular

emphasis on distinguishing explicit and spontaneous CP violation. Necessary and sufficient

criteria for how to distinguish these two types of CP violation has been worked out by

different groups. In [8, 9] a tensorial approach has been used for this purpose, while

in [6, 10–12] geometric methods have been developed for the same purpose. In our work,

we “control” the vacuum since we start with a set of physical masses and the location of the

vacuum as input parameters. The parameters of the potential are determined from our set

of (physical) input parameters. We have found the approach of [8, 9] more convenient for

our purposes, and thus we have adopted their tensorial approach. However, we have verified

that for the model which was considered in this paper, the conditions for CP conservation

obtained in [6, 10–12] coincides with those found in [8, 9].

Studying the CP properties of the model, we will sometimes need to express the pa-

rameters of the potential also in a different basis. By changing basis, we will in these cases

see the true nature of CP in our model. Any two different bases are related by a U(2)-

transformation (2.7). In particular, we shall be interested in the cases where a basis exists

in which all the parameters of the potential are real [8, 9]. This is possible for the cases

where CP is conserved or broken spontaneously. We will use a bar-notation to distinguish

the parameters of the potential and the fields in this basis, i.e., λ̄i, m̄ij and Φ̄i from the

parameters we originally started from.

We shall limit ourselves in this study to a model defined by imposing the Z2 symmetry

for dimension-4 operators in the Lagrangian formulated in a certain initial basis. Then,

in this basis, λ6 = λ7 = 0 and tree-level Flavour-Changing Neutral Currents are absent in

2When λ6 = λ7 = 0, the potential contains 10 real parameters. Two of the mass parameters could

be swapped for VEVs via the minimization conditions, see appendix A. The third minimization condition

eliminates 1 parameter so that we eventually get 9 parameters. Those could be determined in terms of

3 masses, 3 mixing angles, µ2 and 2 VEVs. For the input masses we use M1, M2 and MH± , then M3 is

calculable, see [7] for details. Alternatively, one could take M3 as input rather than the ratio tanβ = v2/v1.

– 4 –



J
H
E
P
0
1
(
2
0
1
4
)
1
0
5

Yukawa couplings [13]. This symmetry will be softly violated by a dimension-2 operator

Φ†1Φ2, here referred to as the m2
12 term. Note however, that any U(2) rotation would in

general reintroduce non-zero λ6 and λ7. In particular, it is worth noticing that a rotation

could be adopted to eliminate the m2
12 term. That would introduce λ6- and λ7-terms, so

that the Z2 would appear hardly broken in the other basis. However, the coefficients of

those terms would be correlated in such a way that the renormalizability would be preserved

exactly in the same manner as in the initial basis containing soft breaking through non-zero

m2
12 with vanishing λ6 and λ7.

We shall throughout this paper have repeated need for the phases of m2
12 and λ5, so

we introduce the following notation for this purpose,

m2
12 = |m2

12|eiα, λ5 = |λ5|eiγ , 0 ≤ α, γ < 2π. (2.10)

If CP is conserved, or spontaneously violated, then a basis exists in which all the

parameters of the potential are real. Thus, in this basis the potential (2.1) can be written as

V̄ (Φ̄1, Φ̄2) = − 1

2

{
m̄2

11Φ̄†1Φ̄1 + m̄2
22Φ̄†2Φ̄2 + m̄2

12

[
Φ̄†1Φ̄2 + H.c.

]}
+
λ̄1

2
(Φ̄†1Φ̄1)2 +

λ̄2

2
(Φ̄†2Φ̄2)2 + λ̄3(Φ̄†1Φ̄1)(Φ̄†2Φ̄2)

+ λ̄4(Φ̄†1Φ̄2)(Φ̄†2Φ̄1) +
1

2
λ̄5

[
(Φ̄†1Φ̄2)2 + H.c.

]
+
[
λ̄6(Φ̄†1Φ̄1) + λ̄7(Φ̄†2Φ̄2)

] [
(Φ̄†1Φ̄2) + H.c.

]
, (2.11)

where now all the λ̄i and m̄2
ij are real. This basis has the property that if CP is conserved,

both VEVs are real, while if CP is spontaneously violated, the VEV of one doublet is

complex. Our starting minimum “A” will in this basis be denoted (〈Φ̄1〉A, 〈Φ̄2〉A).

3 CP conservation

In any 2HDM, CP is conserved if and only if the three invariants J1, J2 and J3 [8, 9, 15]

are all real. In a model in which λ6 = λ7 = 0 and the VEVs are real, these invariants can

be written in a compact form [14]:

Im J1 = − 2

v2
Im
[
v̂∗āYab̄Z

(1)

bd̄
v̂d
]

= −v
2
1v

2
2

v4
(λ1 − λ2)Imλ5 (3.1)

Im J2 =
2

v4
Im
[
v̂∗b̄ v̂
∗
c̄YbēYcf̄Zeāf d̄v̂av̂d

]
= −v

2
1v

2
2

v8

[(
(λ1 − λ3 − λ4)2 − |λ5|2

)
v4

1 + 2(λ1 − λ2)Reλ5v
2
1v

2
2

−
(
(λ2 − λ3 − λ4)2 − |λ5|2

)
v4

2

]
Imλ5 (3.2)

Im J3 = Im
[
v̂∗b̄ v̂
∗
c̄Z

(1)
bē Z

(1)

cf̄
Zeāf d̄v̂av̂d

]
=
v2

1v
2
2

v4
(λ1 − λ2)(λ1 + λ2 + 2λ4)Imλ5 (3.3)
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The first line of each of these three equations defines the invariant [8, 9] (see also [15, 16]),

whereas the second line is the model-specific expression for the invariant written out in our

starting basis. It is worth noting the absence of Imm2
12 above, its presence is hidden since

the minimization condition (A.3) has been invoked to express Imm2
12 through Imλ5.

Thus, CP conservation requires

Im J1 = Im J2 = Im J3 = 0. (3.4)

The conditions under which CP is conserved in such a model are described in [14]. They

are labeled CPC1 to CPC5, and defined by

• CPC1: v1 = 0

• CPC2: v2 = 0

• CPC3: Imλ5 = 0

• CPC4: λ1 = λ2 and v1 = v2

• CPC5: λ1 = λ2 and (λ1 − λ3 − λ4)2 = |λ5|2

While CPC1-CPC3 are quite trivial it is worth paying some attention to the two remaining

conditions. Both require two conditions to be satisfied, and will thus only be satisfied in a

lower-dimensional parameter space, as compared with the former three cases.

3.1 CPC4: λ1 = λ2 and v1 = v2

It can be shown that in this case the following U(2) transformation will make the parameters

of the potential and the VEVs simultaneously real:(
Φ̄1

Φ̄2

)
= eiψ

(
cos π4 e−iξ sin π

4

i sin π
4 −ie

−iξ cos π4

)(
Φ1

Φ2

)
(3.5)

where ξ = −γ/2, ψ = −γ/4 and γ = arg(λ5).

We find that after this transformation

m̄2
12 =

[
Rem2

12 − 2|λ5|v2
1 cos2 γ

2

]
sin

γ

2
,

λ̄5 = −1

2
(λ1 − λ3 − λ4 + |λ5|),

λ̄6 = 0,

λ̄7 = 0,

λ̄1 = λ̄2. (3.6)

Furthermore,

〈Φ̄1〉A =

(
0

v1 cos γ4

)
(3.7)

〈Φ̄2〉A =

(
0

v1 sin γ
4

)
(3.8)

– 6 –
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with

tan β̄ = tan
γ

4
. (3.9)

3.2 CPC5: λ1 = λ2 and (λ1 − λ3 − λ4)2 = |λ5|2

Let us consider two different cases for which this can happen:

• Case 1: λ1 = λ2 and λ1 − λ3 − λ4 = −|λ5|

• Case 2: λ1 = λ2 and λ1 − λ3 − λ4 = +|λ5|

In both these cases a basis exists in which all the parameters of the potential and the VEVs

are simultaneously real.

3.2.1 Case 1: λ1 = λ2 and λ1 − λ3 − λ4 = −|λ5|

In this case, when v1 + v2 cos(γ/2) 6= 0 the following U(2) transformation will make all the

parameters of the potential and the VEVs real:(
Φ̄1

Φ̄2

)
= sgn

(
v1 + v2 cos γ2

)
× eiψ

(
cos π4 e−iξ sin π

4

−sgn(v2 − v1)eiχ sin π
4 sgn(v2 − v1)ei(χ−ξ) cos π4

)(
Φ1

Φ2

)
(3.10)

where

ξ = −γ
2
, χ = arctan

2v1v2 sin γ
2

v2
1 − v2

2

, ψ = − arctan
v2 sin γ

2

v1 + v2 cos γ2
(3.11)

and γ = arg(λ5).

After this transformation we have

m̄2
12 =

[
Rem2

12 − 2|λ5|v1v2 cos2 γ
2

]√
v4

1 + v4
2 − 2v2

1v
2
2 cos γ

2v1v2
,

λ̄5 = 0,

λ̄6 = 0,

λ̄7 = 0. (3.12)

Furthermore,

λ̄1 = λ̄2, (3.13)

and the transformed minimum becomes

〈Φ̄1〉A =
1

2

(
0√

v2
1 + v2

2 + 2v1v2 cos γ2

)
(3.14)

〈Φ̄2〉A =
1

2

(
0√

v2
1 + v2

2 − 2v1v2 cos γ2

)
(3.15)

– 7 –
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meaning the VEVs are all real. This corresponds to CP conservation. However, the value

of tanβ has also been transformed,

tan β̄ =

√
1 + tan2 β − 2 tanβ cos γ2
1 + tan2 β + 2 tanβ cos γ2

. (3.16)

Finally, considering the special case when v1 + v2 cos γ2 = 0 (which could occur for

tanβ > 1), we need to use ψ = −π
2 in the above U(2) transformation in order to make the

parameters and the VEVs real. The transformed quantities now become

m̄2
12 =

(Rem2
12v2 − 2|λ5|v3

1)
√

(v2
2 + 3v2

1)(v2
2 − v2

1)

2v1v2
2

,

λ̄5 = 0,

λ̄6 = 0,

λ̄7 = 0, (3.17)

and the transformed minimum is given by

〈Φ̄1〉A =
1

2

(
0√

v2
2 − v2

1

)
(3.18)

〈Φ̄2〉A =
1

2

(
0√

v2
2 + 3v2

1

)
(3.19)

with

tan β̄ =

√
tan2 β + 3

tan2 β − 1
. (3.20)

3.2.2 Case 2: λ1 = λ2 and λ1 − λ3 − λ4 = +|λ5|

In this case, when v1 + v2 sin(γ/2) 6= 0 the following U(2) transformation will make all the

parameters of the potential and the VEVs real:(
Φ̄1

Φ̄2

)
= sgn

(
v1 + v2 sin γ

2

)
× eiψ

(
cos π4 e−iξ sin π

4

−sgn(v2 − v1)eiχ sin π
4 sgn(v2 − v1)ei(χ−ξ) cos π4

)(
Φ1

Φ2

)
(3.21)

where

ξ =
π

2
− γ

2
, χ = − arctan

2v1v2 cos γ2
v2

1 − v2
2

, ψ = arctan
v2 cos γ2

v1 + v2 sin γ
2

(3.22)

and γ = arg(λ5).

We find that after this transformation

m̄2
12 =

[
Rem2

12 + 2|λ5|v1v2 sin2 γ
2

]√
v4

1 + v4
2 + 2v2

1v
2
2 cos γ

2v1v2
,

λ̄5 = 0,

λ̄6 = 0,

λ̄7 = 0. (3.23)

– 8 –
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Furthermore,

〈Φ̄1〉A =
1

2

(
0√

v2
1 + v2

2 + 2v1v2 sin γ
2

)
(3.24)

〈Φ̄2〉A =
1

2

(
0√

v2
1 + v2

2 − 2v1v2 sin γ
2

)
(3.25)

meaning they are all real. This corresponds to CP conservation. Furthermore,

tan β̄ =

√
1 + tan2 β − 2 tanβ sin γ

2

1 + tan2 β + 2 tanβ sin γ
2

. (3.26)

Finally, considering the special case when v1 + v2 sin γ
2 = 0, we have to use ψ = π

2 in

the above U(2) transformation in order to make the parameters and the VEVs real. The

transformed quantities now become

m̄2
12 =

(Rem2
12v2 + 2|λ5|v3

1)
√

(v2
2 + 3v2

1)(v2
2 − v2

1)

2v1v2
2

,

λ̄5 = 0,

λ̄6 = 0,

λ̄7 = 0, (3.27)

and the transformed minimum is given by

〈Φ̄1〉A =
1

2

(
0√

v2
2 − v2

1

)
(3.28)

〈Φ̄2〉A =
1

2

(
0√

v2
2 + 3v2

1

)
(3.29)

and tan β̄ by eq. (3.20).

We note that in both these cases CPC4 and CPC5 (and their subcases), λ̄6 and λ̄7

remain zero, but tanβ is transformed into a different value tan β̄.

4 CP violation

In any 2HDM, CP is conserved if and only if the three invariants J1, J2 and J3 [8, 9] are

all real, see eqs. (3.1)–(3.3).

Thus, CP violation requires

Im J1 6= 0 and/or Im J2 6= 0 and/or Im J3 6= 0. (4.1)

– 9 –
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4.1 Explicit CP violation

According to [8, 9], we have to check four invariant quantities, IY 3Z , I2Y 2Z , I3Y 3Z and I6Z

to determine whether CP is broken spontaneously or explicitly in a CP-violating model.

In any 2HDM, CP is broken explicitly if at least one of these invariants is non-zero. This

means that there exists no basis for which all the parameters of the potential are real.

In a 2HDM with λ6 = λ7 = 0, and with real VEVs, two of these invariants are zero,

and the other two can be written in a compact form:

IY 3Z = Im
[
Z

(1)
ac̄ Z

(1)

eb̄
Zbēcd̄Ydā

]
= 0, (4.2)

I2Y 2Z = Im
[
Yab̄Ycd̄Zbādf̄Z

(1)
fc̄

]
=

1

4
(λ1 − λ2)Im

[
(m2

12)2λ∗5
]

=
v2

1v
2
2

4v4
(λ1 − λ2)

[
4v2µ2Reλ5 − 4µ4 + v4(Imλ5)2

]
Imλ5, (4.3)

I3Y 3Z = Im
[
Zac̄bd̄ZcēdḡZeh̄f q̄YgāYhb̄Yqf̄

]
= −1

8
(m2

11 −m2
22)
[
(λ1 − λ3 − λ4)(λ2 − λ3 − λ4)− |λ5|2

]
Im
[
(m2

12)2λ∗5
]

= −v
2
1v

2
2

8v6

[
(λ1 − λ3 − λ4)(λ2 − λ3 − λ4)− |λ5|2

]
×
[
(v2

1 − v2
2)(2µ2 − v2(λ3 + λ4 + Reλ5)) + v2(v2

1λ1 − v2
2λ2)

]
×
[
4v2µ2Reλ5 − 4µ4 + v4(Imλ5)2

]
Imλ5, (4.4)

I6Z = Im
[
Zab̄cd̄Z

(1)

bf̄
Z

(1)

dh̄
Zfājk̄Zkj̄mn̄Znm̄hc̄

]
= 0. (4.5)

Some comments are here in order:

− The first line of each of these equations is the definition of the invariant [8, 9].

− The second line is the model-specific expression of the invariant given in our starting

basis before applying the minimization conditions.

− In order to obtain the third form for I2Y 2Z we have used the relation (2.8) defining

µ2, and (A.3) between Imm2
12 and Imλ5, obtained by minimization of the potential for

real VEVs.

− In order to obtain the third form for I3Y 3Z we have expressed m2
11 and m2

22 in terms of

the λs, according to the minimization conditions (A.1) and (A.2).

In general the CP violation is explicit if

IY 3Z 6= 0 and/or I2Y 2Z 6= 0 and/or I3Y 3Z 6= 0 and/or I6Z 6= 0. (4.6)

However in the simple model defined by eq. (2.1), the non-trivial part of this is

I2Y 2Z 6= 0 and/or I3Y 3Z 6= 0. (4.7)
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4.2 Spontaneous CP violation

In the case when

IY 3Z = I2Y 2Z = I3Y 3Z = I6Z = 0, (4.8)

CP is either conserved or broken spontaneously. If, in addition, at least one of the Ji
is complex, the CP violation is spontaneous. This means that there exists a choice of

basis where all the parameters of the potential are real, but then the vacuum breaks CP

(complex VEVs).

For CP to be broken spontaneously it is necessary that the following five conditions

are satisfied simultaneously (failure to do so means the model is CP conserving):

• v1 6= 0

• v2 6= 0

• Imλ5 6= 0

• λ1 6= λ2 or v1 6= v2

• λ1 6= λ2 or (λ1 − λ3 − λ4)2 6= |λ5|2

In addition, one or both of the following conditions emerging from the requirement that

I2Y 2Z = 0 and I3Y 3Z = 0 must be satisfied (otherwise the CP violation would be explicit):

• SCPV1:

4
µ2

v2
Reλ5 − 4

(
µ2

v2

)2

+ (Imλ5)2 = 0 (or equivalently Im
[
(m2

12)2λ∗5
]

= 0) (4.9)

• SCPV2:

λ1 = λ2, λ1 = λ3 +λ4 +Reλ5−2
µ2

v2
(or equivalently λ1 = λ2, m

2
11 = m2

22) (4.10)

Note that these conditions refer to the basis defined by eq. (2.1). The above conditions

ensure that the potential is indeed CP invariant, and CP is only broken by the VEVs.

An important comment is here in order. Assuming that U(1)em is not spontaneously

broken, we can, without compromising generality, assume that in any basis 〈Φ̄1〉 is real while

〈Φ̄2〉 is complex. The value of the potential at the minimum will be Vmin = V̄ (〈Φ̄1〉A, 〈Φ̄2〉A).

Complex conjugating both sides of (2.11) it is easy to see that

Vmin = V̄ (〈Φ̄1〉A, 〈Φ̄2〉A) = V̄ (〈Φ̄1〉A, 〈Φ̄2〉∗A). (4.11)

This means that there exists another minimum of exactly the same depth as our starting

minimum A. In the real basis, this second minimum is located at a position in Φi-space

that is the complex conjugate of the location of minimum A. Let us label this second

minimum B. Thus

〈Φ̄1〉B = 〈Φ̄1〉A, 〈Φ̄2〉B = 〈Φ̄2〉∗A. (4.12)

Thus, when we have SCPV, there exist two minima of the same depth which (in the real

basis) are complex conjugates of each other.
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4.2.1 SCPV1: Im
[
(m2

12)2λ∗5
]

= 0

Invoking the definitions (2.10), the condition Im
[
(m2

12)2λ∗5
]

= 0 becomes:

|m2
12|2|λ5|Im (ei(2α−γ)) = 0, (4.13)

which is satisfied when sin(2α− γ) = 0. This in turns means that cos(2α− γ) = ±1, or

γ = 2α+ nπ, n integer . (4.14)

In this case, for λ6 = λ7 = 0, the following U(2) transformation will make all the

parameters of the potential real:(
Φ̄1

Φ̄2

)
=

(
1 0

0 eiα

)(
Φ1

Φ2

)
(4.15)

This transformation yields

m̄2
12 = m2

12e
−iα = |m2

12|,
λ̄5 = λ5e

−2iα = |λ5|e−i(2α−γ) = |λ5| cos(2α− γ) = ±|λ5|,
λ̄6 = 0,

λ̄7 = 0, (4.16)

meaning they are all real. This corresponds to spontaneous CP violation. The transformed

starting minimum is in this case:

〈Φ̄1〉A =
1√
2

(
0

v1

)
(4.17)

〈Φ̄2〉A =
eiα√

2

(
0

v2

)
(4.18)

4.2.2 SCPV2: λ1 = λ2 and m2
11 = m2

22

In this case, the following U(2) transformation will make all the parameters of the poten-

tial real: (
Φ̄1

Φ̄2

)
=

(
cos π4 sin π

4

−i sin π
4 i cos π4

)(
Φ1

Φ2

)
(4.19)

This transformation yields

m̄2
12 = Im (m2

12),

λ̄5 = −1

4
(λ1 + λ2) +

1

2
(λ3 + λ4 − Reλ5),

λ̄6 =
1

2
Imλ5,

λ̄7 = −1

2
Imλ5, (4.20)

– 12 –



J
H
E
P
0
1
(
2
0
1
4
)
1
0
5

meaning they are all real. This corresponds to spontaneous CP violation. The transformed

starting minimum is in this case:

〈Φ̄1〉A =
1

2

(
0

v1 + v2

)
(4.21)

〈Φ̄2〉A =
i

2

(
0

v2 − v1

)
(4.22)

5 Case studies

We will discuss regions in the parameter space of the model limiting ourselves to the

following representative cases:

1. M1 = 125 GeV, M2 = 200 GeV, MH± = 350 GeV, µ = 250 GeV, tanβ = 0.5, 1, 2,

2. M1 = 125 GeV, M2 = 200 GeV, MH± = 350 GeV, µ = 250 GeV, tanβ = 5, 10, 30,

3. M1 = 125 GeV, M2 = 300 GeV, MH± = 500 GeV, µ = 300 GeV, tanβ = 0.5, 1, 2,

4. M1 = 125 GeV, M2 = 300 GeV, MH± = 500 GeV, µ = 300 GeV, tanβ = 5, 10, 30.

For these choices we fix α1 and search through the (α2, α3) plane in order to determine

regions that are consistent with CP conservation and/or CP violation (explicit or

spontaneous).

We start with figure 1 where, for tanβ = 2 and α1 = ±π/6 it is illustrated how

the different constraints reduce the allowed region of the (α2, α3) parameter space. The

rotation angles are defined according to the conventions of [4], so that the allowed ranges

are −π/2 < α2 ≤ π/2 and 0 ≤ α3 ≤ π/2. It is worth noticing that for given values of

tanβ and α1, only one of these two quadrants is accessible by allowed models [17]. (At the

border, for α2 = 0, we have M3 = M2.)

The boundaries of the yellow regions will be of particular interest in the following

discussion. Green lines and dots indicate locations where CP is conserved. Everywhere

else, CP is violated. Red curves and dots indicate where the CP violation is spontaneous.

In the upper panels of figure 1, the yellow region indicates where a consistent solution

for M3 (real, and satisfying M3 ≥ M2) can be found, otherwise white color is adopted.

In the middle panels, positivity (2.6) has been imposed. The pink region indicates where

positivity is violated. In the bottom panels, we also impose the constraint that the starting

minimum A shall be global. The region forbidden by this constraint is shown in cyan.

As illustrated by the middle and lower panels of figure 1, there are two kinds of borders

which are relevant for the model: (i) the border between a region where positivity is

satisfied, and where it is not (illustrated by yellow and pink in the middle and bottom

panels), and (ii) the border between the region where the starting minimum is the global

one, and where it is not (illustrated by yellow and cyan in the bottom panels). We shall

refer to these regions as “physical” (yellow), “non-positive” (pink) and “non-global” (cyan).

More results are shown in figures 2–5.
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Figure 1. For tanβ = 2, and two values of α1 (left: α1 = −π/6, right: α1 = +π/6), the top panels

show the allowed regions (yellow) in the α2–α3 space after imposing the constraint M3 > M2.

Red curves correspond to parameters that satisfy the condition (4.9), while red dots satisfy the

condition (4.10). Both of these indicate spontaneous CP violation. Green lines and dots indicate

locations of CP conservation. Middle panels: the positivity constraint (2.6) is also imposed (pink

region disallowed). Bottom panels: additionally, the global minimum constraint is imposed (cyan

region disallowed).

5.1 CPC

Regions of CPC are denoted by green color, they correspond to parameters for which one

of the conditions CPC1-CPC5 specified in section 3 is satisfied. It is worth noting which

cases can be realized for our parameter choices. The trivial cases CPC1 and CPC2 are

not illustrated in our plots. Since we consider only non-degenerate scalar masses, the case

CPV3, i.e. Imλ5 = 0 corresponds to [18]:

• α2 = ±π/2 (then R11 = R12 = R23 = R33 = 0 and H1 is CP odd),

• α2 = 0 and α3 = π/2 (then R13 = R21 = R22 = R33 = 0 and H2 is CP odd),

• α2 = 0 and α3 = 0 (then R13 = R23 = R31 = R32 = 0 and H3 is CP odd).

The corresponding regions comprise vertical green lines at the left and right edges of the

panels and green dots located in the middle of the lower and upper sides of the panels.

For our choices of parameters the case CPC4 is never satisfied. The remaining green
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dots correspond to the case CPC5. It is worth mentioning that these green dots are not

isolated points. They just appear as isolated points in our two-dimensional plots. In the

full parameter-space, these locations are parts of lower-dimensional manifolds comprising

regions of CP conservation.

5.2 The positivity border

As we see from figure 1 there exist two kinds of positivity borders. One can have a

non-positive/physical border and a non-positive/non-global border. Along both kinds of

borders, the potential will be flat in at least one direction, but bounded from below. When

the non-positive/physical border is crossed into the physical region, a global minimum of

the potential exists, and is equal to our starting minimum (denoted “A”).

When the non-positive/non-global border (left bottom panel in figure 1) is crossed into

the non-global region, a global minimum of the potential exists, but our starting minimum

A was not the correct one. Another, deeper minimum exists.

5.3 The global minimum borders

The region where the starting minimum A is not the global one, is represented in cyan.

This region can be adjacent to physical (yellow) regions and to regions where positivity

is violated (pink). The former boundaries are manifolds where spontaneous CP violation

may occur. In [3], it was shown that the 2HDM vacuum can be twice degenerate only

when a certain symmetry (CP or some other symmetry) of the potential is spontaneously

broken. This is consistent with our findings. We discuss these mattes in more detail below.

5.3.1 SCPV1: Im
[
(m2

12)2λ∗5
]

= 0

The points satisfying SCPV1 are denoted by red curves. These curves separate a region

where the starting minimum (A) is the global minimum (yellow) from a region where it

is not. Thus, along the red curves, there are two minima of equal depth. Along the red

curves our starting minimum (A) which is real exists alongside another minimum (B) of

the same depth (which is complex). The starting minimum can in the basis (2.1)–(2.2) be

denoted by

〈Φ1〉A =
1√
2

(
0

v1

)

〈Φ2〉A =
1√
2

(
0

v2

)
(5.1)

which is real. The second minimum which has the same depth is located at

〈Φ1〉B =
1√
2

(
0

v1

)

〈Φ2〉B =
1√
2

(
0

v2e
−iγ

)
(5.2)
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where the vi are the same as for the starting minumum and γ is the phase of λ5, as defined

by eq. (2.10).

In the real basis (2.11) we have:

〈Φ̄1〉A =
1√
2

(
0

v1

)

〈Φ̄2〉A =
1√
2

(
0

v2e
+iγ/2

)

whereas for the other minumum we get:

〈Φ̄1〉B =
1√
2

(
0

v1

)

〈Φ̄2〉B =
1√
2

(
0

v2e
−iγ/2

)

Our potential is CP invariant (as we consider the case of SCPV). Under CP

Φi
CP←→ Φ∗i (5.3)

therefore in particular V (〈Φ1〉A, 〈Φ2〉A) = V (〈Φ1〉B, 〈Φ2〉B). This explains why the curve

of SCPV1 separates the forbidden (non-global) and allowed (yellow) regions.

5.3.2 SCPV2: λ1 = λ2 and m2
11 = m2

22

The red dot in figure 1 denotes a point satisfying SCPV2.3 This is also on a boundary

between a forbidden and an allowed (yellow) region. The cyan region next to the red

dot is forbidden because the starting minimum (A) is not the global minimum. Another,

deeper minimum with in general complex VEV exists there. In the allowed (yellow) region

next to the red dot, the starting minimum (A) is the global minimum. A numerical

study shows that for the red dot, the starting minimum (A) which is real exists alongside

another minimum (B) which is also real. These have the same depth and are related in the

following way:

〈Φ1〉B = 〈Φ2〉A =
1√
2

(
0

v2

)

〈Φ2〉B = 〈Φ1〉A =
1√
2

(
0

v1

)
. (5.4)

Clearly, along the border between the allowed (yellow) region and the forbidden re-

gion, on the “back”, where there is no red curve, there are also two minima of the same

depth. However, on this side, as opposed to the “front”, where the red curve runs, no

3These dots are in fact parts of a lower-dimensional manifold of the full parameter space where we have

SCPV2. They appear as points only because we show a two-dimensional slice of the full parameter space.
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real basis exists, except at one single point, denoted by the red dot where CP is violated

spontaneously. The analytic expression defining the red points is given by eq. (4.10). The

values of the VEVs at the red point are specified in eq. (5.4).

Below, we derive analytic expresions that determine the “back border”. As a first step,

we numerically determined points along the cyan/yellow “back border”. Then, after having

located these points, the VEVs of both minima were calculated for each of the points. The

VEV of the starting minimum (A) was of course the same value that we started out with.

The numerical evaluation of the VEV of the second minimum (B) showed that the value

of 〈Φ2〉B is real along the whole “back border”. Thus, the VEVs along the border are real

for both minima. This simplifies the stationary-point equations a lot, and sets the stage

for an analytical study.

Starting with minimum A in which the vacuum is described by our input-parameters

v1 and v2, which we here treat as known quantities, we find the following identities by

using the stationary-point equations (A.4)–(A.7):

m2
11 = λ1v

2
1 + λ345v

2
2 − Re (m2

12)
v2

v1

m2
22 = λ2v

2
2 + λ345v

2
1 − Re (m2

12)
v1

v2

Im (m2
12) = Imλ5v1v2 (5.5)

Here, we have used the abbreviation λ3 + λ4 + Reλ5 ≡ λ345. Using these identities, we

arrive at the following expression for the value of the potential at our starting minimum A:

V (〈Φ1〉A, 〈Φ2〉A) = −λ1

8
v4

1 −
λ2

8
v4

2 −
λ345

4
v2

1v
2
2 (5.6)

Turning now to the second minimum (B) which the numeric study told us was real, we

express it as

〈Φ1〉B =
1√
2

(
0

u1

)

〈Φ2〉B =
1√
2

(
0

u2

)

where u1 and u2 are real, unknown quantities. The minimum B must also satisfy the

stationary-point equations. Thus,

m2
11 = λ1u

2
1 + λ345u

2
2 − Re (m2

12)
u2

u1

m2
22 = λ2u

2
2 + λ345u

2
1 − Re (m2

12)
u1

u2

Im (m2
12) = Imλ5u1u2, (5.7)

and the value of the potential at minimum B becomes

V (〈Φ1〉B, 〈Φ2〉B) = −λ1

8
u4

1 −
λ2

8
u4

2 −
λ345

4
u2

1u
2
2. (5.8)
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By combining (5.5) with (5.7) and putting V (〈Φ1〉A, 〈Φ2〉A) = V (〈Φ1〉B, 〈Φ2〉B), we arrive

at the following set of equations:

λ1v
2
1 + λ345v

2
2 − Re (m2

12)
v2

v1
= λ1u

2
1 + λ345u

2
2 − Re (m2

12)
u2

u1
(5.9)

λ2v
2
2 + λ345v

2
1 − Re (m2

12)
v1

v2
= λ2u

2
2 + λ345u

2
1 − Re (m2

12)
u1

u2
(5.10)

v1v2 = u1u2 (5.11)

λ1

8
v4

1 +
λ2

8
v4

2 +
λ345

4
v2

1v
2
2 =

λ1

8
u4

1 +
λ2

8
u4

2 +
λ345

4
u2

1u
2
2 (5.12)

This is a set of four equations with only two unknown (u1 and u2). Combining (5.11)

and (5.12) we solve for u1 and u2 (picking the only real, positive solution not corresponding

to minimum A) to get

u1 = 4

√
λ2

λ1
v2, u2 = 4

√
λ1

λ2
v1. (5.13)

Thus,we have found that the VEVs of the second minimum (B) along the “back border”

are given by

〈Φ1〉B =
1√
2

(
0

4

√
λ2
λ1
v2

)
,

〈Φ2〉B =
1√
2

(
0

4

√
λ1
λ2
v1

)
.

We see that this simplifies to the VEVs we found for minimum B in the case of SCPV2, see

eq. (5.4). Inserting these VEVs into either (5.9) or (5.10), we arrive at the same equation:

Re (m2
12) = (λ345 −

√
λ1

√
λ2)v1v2. (5.14)

This turns out to be the equation defining the curve that constitutes the “back border”.

However, this curve can be expressed in many different ways by using the equations in (5.5)

to rewrite it. After some algebra, we find that (5.14) implies√
λ1m

2
22 −

√
λ2m

2
11 = 0. (5.15)

This expression does not explicitly contain v1 or v2, and clearly shows that whenever we

have SCPV2 (λ1 = λ2,m
2
11 = m2

22), this equation is satisfied by default.

We note that whenever (5.15) is satisfied, the potential is invariant under the following

transformation:

Φ1 → 4

√
λ2

λ1
Φ∗2,

Φ2 → 4

√
λ1

λ2
Φ∗1. (5.16)

Thus, we have identified an additional discrete symmetry of the potential along the “back

border” that explains why we have two minima of equal depth along the curve defined

by (5.15). In fact, we easily see that the two minima A and B transform into each other

under this transformation.
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Figure 2. Similar to the bottom panels of figure 1, for M1 = 125 GeV, M2 = 200 GeV, MH± =

350 GeV, µ = 250 GeV, three values of tanβ (left to right: 0.5, 1, 2) and six values of α1 (top to

bottom: π/2, π/3, π/6, 0, −π/6, −π/3). White: excluded because M2
3 < M2

2 ; Pink: excluded by

non-positivity; Cyan: excluded by the global minimum constraint. The solid black contours indicate

constant values of M3 = 300, 400, · · · GeV, the curves are moving outwards from the vertical line

α2 = 0 as M3 increases.

5.4 Further illustrations

In figures 2–5 we illustrate regions of ECPV and SCPV for the parameter choices specified

at the beginning of section 5.

The following symmetry (discussed in section 3.1 of [5]) can be observed in figure 2

and figure 4:

tanβ ↔ cotβ, α1 ↔ 1
2π − α1, α2 ↔ −α2. (5.17)

The cases shown in figure 1 correspond to the third and fifth row in the right-hand

column of figure 4.
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Figure 3. Similar to figure 2 for tanβ = 5, 10 and 30.

In all panels of figures 2–5 positivity and the global-minimum constraint are imposed.

We note that only one of the cases studied in figure 1 exhibits SCPV2. The red dot

(SCPV2) appears at values of α1 between −0.83 and −0.47. The red dot then appears

around (0, π/2), moves somewhat down and to the right and then up again to disappear

at (0.49, π/2) as α1 varies in this interval.

In some of these panels (for low tanβ), we note the appearance of a green dot, indicat-

ing CP conservation inside a yellow region (recall that the yellow region denotes explicit

CP violation). As already mentioned, the dot corresponds to the case CPC5.

In our examples, the high-tanβ cases (figures 3 and 5) do not exhibit any of the isolated

points (SCPV2) of spontaneous CP violation, only SCPV1 (red border between the blue

and yellow regions) and explicit CP violation (yellow). Furthermore, there is no isolated

point of CP conservation inside the yellow regions either. In this sense, the low-tanβ cases

have more structure.
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Figure 4. Similar to the bottom panels of figure 1, for M1 = 125 GeV, M2 = 300 GeV, MH± =

500 GeV, µ = 300 GeV, three values of tanβ (left to right: 0.5, 1, 2) and six values of α1 (top to

bottom: π/2, π/3, π/6, 0, −π/6, −π/3). White: excluded because M2
3 < M2

2 ; Pink: excluded by

non-positivity; Cyan: excluded by the global minimum constraint. The solid black contours indicate

constant values of M3 = 400, 500, · · · GeV, the curves are moving outwards from the vertical line

α2 = 0 as M3 increases.

In order to focus on CP violation, we have not exhibited the impact of other constraints.

When these are imposed, significant parts of the remaining (yellow) parameter space are

excluded. For the case of Type II Yukawa couplings, see for example [20, 21].

6 Disentangling spontaneous and explicit CP-violation

The ultimate goal of this study should be to propose a phenomenological strategy that

allows one to disentangle spontaneous from explicit CP-violation. There are several com-

ments in order, regarding that goal.

– 21 –



J
H
E
P
0
1
(
2
0
1
4
)
1
0
5

Figure 5. Similar to figure 4 for tanβ = 5, 10 and 30.

6.1 Invariants and observables

Any physical observable quantity must be independent of our choice of basis. This is the

motivation behind giving a basis-independent formulation of the 2HDM. When we study

a particular model and choose a particular basis suitable for the study, this amounts to

assigning values to certain parameters, or constraining them by assuming relations between

the parameters of the model.

When we write out the full algebraic expression for an invariant quantity in the com-

pletely general 2HDM, without choosing any particular basis, we get an expression that

is itself manifestly invariant. By this, we mean that applying the transformation rules for

each parameter in the expression under a change of basis, we get exactly the same algebraic

expression in terms of the transformed parameters.
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When we write out the algebraic expressions for invariant quantities in a 2HDM where

we have chosen a particular basis, the resulting algebraic expressions are not always man-

ifestly invariant anymore. So if we now apply the transformation rules for each parameter

in the expression under a change of basis, we may get a different algebraic expression in

terms of the transformed parameters.

When we perform a measurement, we determine a quantity that is basis independent.

However, in a 2HDM where a particular basis has been chosen, this measurement will

correspond to a basis-specific algebraic expression (that is not necessarily invariant) for

the measured invariant. In this sense we may say that we interpret the measured invari-

ant quantity as corresponding to the non-invariant basis-specific algebraic expression in

our model.4

In our model, even without specifying the Yukawa sector, experiments will let us

measure certain combinations of parameters. By combining measurements, we may thus

determine parameters of our model. However, a parameter can only be determined from

experiments if there exists an invariant (or function of invariants) that in the model simpli-

fies to this parameter. Examples of observable parameters that can be determined uniquely

in our model are λ3 and λ4, while there is a twofold ambiguity that prevents us from de-

termining λ1 and λ2 uniquely. This twofold ambiguity is discussed in detail in appendix B.

In that appendix, we arrive at the following list of nine independent observables:

(v2
1 + v2

2), (v2
1 − v2

2)2, (λ1 + λ2), (λ1 − λ2)2, λ3, λ4,Reλ5, (Imλ5)2, µ2, (6.1)

meaning that we can determine all the parameters of the potential, except for those that

would let us distinguish one doublet from the other. Of course, specifying the Yukawa

sector would normally allow us to resolve the ambiguities.

Since the conditions for spontaneous CP violation are symmetric under an exchange

of the two doublets, the above-mentioned ambiguity does not prevent us from testing the

origin of CP violation, working exclusively within the bosonic sector of the model.

6.2 Preliminaries

For spontaneous CP violation one needs, first of all, at least one non-zero imaginary part of

the Ji invariants, otherwise CP is conserved in the scalar sector. On top of that all Ii invari-

ants must vanish, which is just the condition for CP invariance of the scalar potential. There

exist various ways to detect CP violation originating from the scalar sector experimentally,

usually through measurements of certain CP asymmetries, see e.g. [5, 17, 20, 22, 24–34].

In fact, that is the easy part of the task, the one that is much more challenging is to

find an experimental and simple method to verify the conditions for CP symmetry of the

potential (4.9) and/or (4.10). Let’s focus on the condition (4.9). Since the condition is

4There is a simple analogy to this in special relativity. We may measure both the energy and three-

momentum of a particle in the rest frame of an observer even if neither energy nor three-momentum is

Lorentz invariant. This is because there exist Lorentz-invariant quantities that in the rest frame of the

observer simplify to either the energy or the three-momentum of the particle.
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formulated in terms of an invariant, it could be verified experimentally:

−4I2Y 2Z

Im J1
=
[
4v2µ2Reλ5 − 4µ4 + v4(Imλ5)2

]
= 0 (6.2)

In order to enable experimental verification of the condition for SCPV1, one is tempted to

express it through parameters that appear in Feynman rules, e.g. mixing angles. That can

be done and the result is the following:[
4v2µ2Reλ5 − 4µ4 + v4(Imλ5)2

]
= 4

[
∆2 − µ2(M2

1R
2
13 +M2

2R
2
23 +M2

3R
2
33)
]

= 0, (6.3)

where ∆ is defined through

∆ijk =
(M2

k −M2
j )Rj3Rk3

(v1Ri1 − v2Ri2)
(6.4)

such that ∆ ≡ v∆123.

From equation (6.3), two strategies are apparent:

• It is clear that if we can find ways to measure the three observables µ2, Reλ5 and

(Imλ5)2, we are able to test SCPV1. Determining these three observables will most

probably require more than three measurements.

• It is also clear that if one could measure M1, M2, α1,2,3, tanβ and µ2, then one would

be able to test SCPV1. The neutral masses are of course observables, but α1,2,3 and

tanβ are not all observables due to the inability to distinguish the two Higgs doublets

as we have already discussed. However, since (Imλ5)2 = 4∆2/v4, we can conclude

that ∆2 is an observable. Furthermore, R2
i3 is unchanged under the transformation in

eqs. (3.11) and (3.12) of [5] (which amounts to interchanging the two Higgs doublets).

Hence R2
i3 are observables, and thus can be used in this approach to test SCPV1.

• A third strategy would be to search for a combination of vertex couplings that equals

the expression (6.3). Since the absolute value of vertex couplings are observables, this

would outline a strategy for disentangling the CP nature of the model. But since the

Feynman rules are non-trivial, this approach will most likely represent a considerable

algebraic challenge.

Similar comments apply to the SCPV2 case (4.10). The difference is that adopting a similar

strategy, even more parameters are needed to decide whether CP is broken spontaneously.

6.3 Determining the potential

We know that we cannot uniquely reconstruct the full potential and the VEVs from mea-

surements in the scalar sector only. However, measurements in the non-fermionic sector

(i.e., independently of Yukawa couplings) would be sufficient to determine the nature of

the CP violation in the scalar sector. We may thus check the nature of a possible CP

violation via a reconstruction of the parts of the potential that can be measured. This

could proceed via measurements of masses and couplings. In principle, the masses could

all be determined independently:
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• Measure the neutral masses M1, M2, M3 (perhaps best done at a muon collider).

• Measure the charged-Higgs mass MH± (single production via WZ fusion, or pair

production in γγ collisions).

The most natural attempt to determine the remaining parameters in a way that is

independent of Yukawa couplings (and therefore not sensitive to a Yukawa-coupling specific

version of a 2HDM) is through measurements of branching ratios for Higgs bosons decaying

into vector bosons:

BR(Hi → ZZ/W+W−) ∼ g2
HiZZ ∼ g

2
HiW+W− ∼ (v1Ri1 + v2Ri2)2, i = 1, 2, 3 (6.5)

and

BR(Hi → H+W−) ∼ g2
HiH+W− ∼ (vRi3)2 + (v2Ri1 − v1Ri2)2, i = 1, 2, 3 (6.6)

These 6 quantities are however not independent. For a given i, the right-hand sides add

to v2. Since we consider v2 known (v = 246 GeV), three relations are thus removed.

Furthermore, summing the right-hand sides of (6.6) over i, we again get v2. Thus, the

couplings given by (6.5) and (6.6) provide two independent constraints. However the

branching ratios depend on the total decay widths, therefore they are sensitive to Yukawa

couplings — the feature that we want to avoid. Therefore, in order to eliminate the total

width Γ(Hi) one has to consider ratios of branching ratios, so eventually one obtains only

one useful constraint.

Here, a comment is in order. It is easy to check that g2
HiZZ

, g2
HiW+W− and g2

HiH+W−

are invariant under basis transformations, and thus observable. That implies that only

quantities formed from αi and tanβ that are invariants could be determined through mea-

surements of branching ratios.

In order to test (6.3) we need three more relations. We could use the following decays

(note that there are three equations):

BR(Hi→H+H−)∼
∣∣∣∣2M2

H±
v1Ri1+v2Ri2

v2
− µ2 v1Ri2+v2Ri1

v1v2
+M2

i

v3
1Ri2+v3

2Ri1
v1v2v2

+ ∆
vRi3
v1v2

∣∣∣∣2
(6.7)

or invoke the trilinear neutral-Higgs couplings. In order to eliminate Γ(Hi) one has to

consider ratios, for instance one can normalize BR(Hi → H+H−) to one of those two

independent branching ratios discussed above, see (6.5) and (6.6).

Then, within the considered model, the potential could be constructed (up to an

ambiguity irrelevant for the CP properties), and equation (6.3) could be verified.

We have outlined a strategy to determine all the nine independent parameters of the

potential. The strategy assumes that three neutral and one charged scalar are observed

and their gauge and some cubic couplings could be determined through measurements

of appropriate branching ratios. Then, of course, it is possible to verify if CP is broken

spontaneously. On the other hand it should be realized that equation (6.3) contains only

four invariants, one of which (v) is known, so one could hope that only three measurements
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need to be determined: Reλ5, (Imλ5)2 and µ2. This observation triggers the question:

what is a minimal set of necessary measurements? For instance, if another scalar particle

is discovered, be it H2 or H+, would it be possible to test (6.3) assuming an ideal situation

such that all couplings involving known scalar particles could be measured? It turns out

that since it is hard to exclude non-linear relationships among couplings, it is highly non-

trivial to find such a minimal set of observables that are necessary to test (6.3). It also

depends on identifying a selection of measurements that could realistically be performed.

In order to find a satisfactory solution, a detailed analysis of all the available couplings is

needed and this is beyond the scope of the present study.

6.4 An ideal observable?

One could have hoped that it would be possible to find an ideal observable OCPC such that

OCPC ∝
[
4v2µ2Reλ5 − 4µ4 + v4(Imλ5)2

]
. (6.8)

Unfortunately that seems to be quite difficult.

From the plots that we have presented it is clear that one could, at least in principle,

prove experimentally that CP is violated explicitly. For that one needs to measure M1,

M2, MH± , µ2. In addition αi and tanβ must be known (up to ambiguities). Then if the

experimental point is located away (taking into account experimental uncertainties) from

the red curves and dots then one can conclude that CP is violated explicitly. However, to

prove that CP violation is spontaneous is, in practice, impossible since one would need to

prove that an experimentally allowed point in the parameter space is located exactly either

on a red curve or a red dot. Since measurements are always accompanied by some errors,

explicit CP violation would always be an option. Of course if an experimental point would

lie close to a red curve or a red dot then one could argue that it is more natural to assume

that indeed CP is violated spontaneously, since that is connected with increased symmetry

of the Lagrangian (the symmetry being, of course, CP itself).

7 Summary

We can summarize our findings in the following three points:

1. The strategy we adopted uses tanβ, α1,2,3, µ2, M2
1,2 and M2

H± as input. Then m2
11,

m2
22, m2

12 and λi are determined (alsoM2
3 is fixed) adopting the stationarity conditions

and relations between diagonal and non-diagonal scalar mass-squared matrices. We

choose the input masses M2
1,2 and positive M2

3 so v1 = v cosβ and v2 = v sinβ is the

location of a local minimum. Then we check numerically if the minimum is global,

if it is not then it was denoted as cyan in the plots. We have also checked if the

vacuum is stable by inspecting positivity of the potential, regions where it is not the

case were denoted by pink.

2. Parameters that correspond to SCPV lie on borders of regions for explicit CP vio-

lation (ECPV). For those parameters there exist two vacua (related by a CP trans-

formation) of the same depth. For fixed M1, M2, MH± , α1 and tanβ the SCPV1
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corresponds to a one-dimensional manifold (denoted by red curves) while SCPV2

corresponds to a point (red dot) as it is specified by two conditions. Red lines and

red dots are located on borders between regions of ECPV (yellow) and regions where

a deeper minimum exists (cyan).

3. Red curves/dots could be approached infinitely close remaining in the region of ex-

plicit CP violation. Therefore even if the potential parameters were known (always

with some uncertainty) SCPV could be mimicked by ECPV. Of course, if parameters

are such that the model is far from the red curves/dots, one can conclude that CP is

violated explicitly. Perhaps the simplest (theoretically) method to test SCPV1 would

be to measure Im
[
(m2

12)2λ∗5
]
, if that was non-zero, CP would be broken explicitly.

In spite of the twofold ambiguity that unavoidably accompanies measurements that

are not sensitive to Yukawa couplings, the conditions for spontaneous CPV, SCPV1

and SCPV2 could be verified experimentally.

It should be stressed that in our analysis, no assumptions were made on the structure

of Yukawa couplings.
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A Minimum conditions

We shall here define some notation related to minimizing the potential with respect to an

independent set of variables. If we choose these to be Φ†1 and Φ†2, we get from eq. (2.1)

∂V (Φ1,Φ2)

∂Φ†1
= − 1

2

{
m2

11Φ1 +m2
12Φ2

}
+ λ1(Φ†1Φ1)Φ1 + λ3(Φ†2Φ2)Φ1 + λ4(Φ†2Φ1)Φ2 + λ5(Φ†1Φ2)Φ2 = 0, (A.1)

∂V (Φ1,Φ2)

∂Φ†2
= − 1

2

{
m2

22Φ2 + (m2
12)∗Φ1

}
+ λ2(Φ†2Φ2)Φ2 + λ3(Φ†1Φ1)Φ2 + λ4(Φ†1Φ2)Φ1 + (λ5)∗(Φ†2Φ1)Φ1 = 0. (A.2)

In the “bar’red” basis (2.11), these equations would in general have additional terms in-

volving λ̄6,7. In all, we have four conditions, two real parts and two imaginary parts must

all vanish.
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The real parts of these equations can be used to solve for m2
11 and m2

22 in terms of the

λs and the VEVs. Because of hermiticity, the imaginary parts give just one condition

Imm2
12 = v1v2Imλ5 . (A.3)

A.1 Stationary-point equations for complex vacuum

In the case where we have a charge-conserving minimum of the form

〈Φ1〉 =
1√
2

(
0

v1

)

〈Φ2〉 =
1√
2

(
0

v2e
iθ

)

the stationary-point equations are:

λ1v
3
1 + (λ3 + λ4 + Reλ5 cos 2θ − Imλ5 sin 2θ)v1v

2
2

−m2
11v1 − (Re (m2

12) cos θ − Im (m2
12) sin θ)v2 = 0 (A.4)

λ2 cos θv3
2 + [(λ3 + λ4 + Reλ5) cos θ − Im (λ5) sin θ]v2

1v2

−Re (m2
12)v1 −m2

22 cos θv2 = 0 (A.5)

(Imλ5 cos 2θ + Reλ5 sin 2θ)v1v
2
2 − (Im (m2

12) cos θ + Re (m2
12) sin θ)v2 = 0 (A.6)

λ2 sin θv3
2 + [(λ3 + λ4 − Reλ5) sin θ − Im (λ5) cos θ]v2

1v2

+Im (m2
12)v1 −m2

22 sin θv2 = 0 (A.7)

We note that these are necessary, but not sufficient, conditions for having a minimum of

the potential. It is also worth noticing that for θ = 0 equations (A.6) and (A.7) coincide.

It is also instructive to write the stationary-point conditions as two complex equations:

λ1v
3
1 +

[
λ3 + λ4 + |λ5|ei(γ+2θ)

]
v1v

2
2 −m2

11v1 − |m2
12|ei(α+θ)v2 = 0 (A.8)

λ2v
3
2 +

[
λ3 + λ4 + |λ5|ei(γ+2θ)

]
v2

1v2 −m2
22v2 − |m2

12|ei(α+θ)v1 = 0 (A.9)

B Observable parameters of the potential

In this appendix we will show how different parameters of the potential (and combinations

thereof) can be written in an invariant form that is independent of our choice of basis. If

the parameters can be written in an invariant form, it means that they are observables and

can be measured. Let us start by writing the potential and the VEVs in the forms [8, 9]

V = Yab̄Φ
†
āΦb +

1

2
Zab̄cd̄(Φ

†
āΦb)(Φ

†
c̄Φd), (B.1)

and

〈Φa〉 =
1√
2

(
0

vv̂a

)
. (B.2)
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Comparing this to (2.1) and (2.2), we find that

v̂1 =
v1

v
, v̂2 =

v2

v
, (B.3)

Y11 = −m
2
11

2
, Y12 = −m

2
12

2
, Y21 = −(m2

12)∗

2
, Y22 = −m

2
22

2
(B.4)

and

Z1111 = λ1, Z2222 = λ2,

Z1122 = Z2211 = λ3,

Z1221 = Z2112 = λ4,

Z1212 = λ5, Z2121 = (λ5)∗. (B.5)

All other Zab̄cd̄ vanish. In [8, 9] it is shown how to construct basis-invariant quantities from

contractions between tensor indices of Vab̄, Yab̄ and Zab̄cd̄ following a certain pattern. Using

the same pattern, we are able to write parameters of our potential in an invariant way. Ev-

ery quantity where we construct a scalar by contracting barred against unbarred indices in

the V -, Y - and Z-tensors will be a basis-invariant. Let us first define the following matrices:

Vab̄ = v̂av̂
∗
b̄ =

1

v2

(
v2

1 v1v2

v1v2 v2
2

)
,

Z
(1)

ab̄
= Zac̄cb̄ =

(
λ1 + λ4 0

0 λ2 + λ4

)
, Z

(2)

ab̄
= Zab̄cc̄ =

(
λ1 + λ3 0

0 λ2 + λ3

)
. (B.6)

Z
(21)

cd̄
= Z

(2)

ab̄
Zbācd̄, Z

(V )

cd̄
= Vab̄Zbācd̄ (B.7)

Consider the invariant expressions

1

2

[
TrZ(2) −

Tr
(
Z(2)

)2 − 2Tr(V Z(21))

TrZ(2) − 2Tr(V Z(2))

]
= λ3 (B.8)

1

2

[
TrZ(1) −

Tr
(
Z(2)

)2 − 2Tr(V Z(21))

TrZ(2) − 2Tr(V Z(2))

]
= λ4. (B.9)

Since these clearly invariant expressions simplify to λ3 and λ4 in our model, λ3 and λ4 are

observables in our model.

The parameters λ1 and λ2, however, are not observables. This is due to the fact

that the labeling of the two doublets Φ1 and Φ2 is arbitrary, and interchanging the two

doublets will just amount to renaming the parameters of the potential. This symmetry of

the potential is written out explicitly in eqs. (3.11) and (3.12) of [5]. Therefore we will not

be able to measure parameters that would let us distinguish one doublet from the other

by performing measurements in the scalar sector only. Hence, parameters like λ1, λ2 and

tanβ cannot be determined uniquely, unless one specifies the Yukawa couplings. In other

words, certain combinations of parameters that are symmetric under the interchange of

the two doublets are observables:

TrZ(2) − 2λ3 = λ1 + λ2 (B.10)

2Tr(Z(2))2 − (TrZ(2))2 = (λ1 − λ2)2 (B.11)
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Here, the fact that λ3 has been shown to be an observable leads to the conclusion that

λ1 + λ2 is an observable. Together with the observable (λ1 − λ2)2 this means that one is

able to determine the values of λ1 and λ2, but one is not able to determine which is which,

i.e., there is a twofold ambiguity in the determination of these two parameters.

The same goes for tanβ (or equivalently v1 and v2). The quantity v2
1 + v2

2 = v2 =

(246 GeV)2 is invariant under a change of basis. Also consider

v4
(
TrZ(2) − 2Tr(V Z(2))

)2
2Tr(Z(2))2 − (TrZ(2))2

= (v2
1 − v2

2)2 (B.12)

The fact that v2
1 + v2

2 and (v2
1 − v2

2)2 are observables (together with the fact that vi is

positive) means that v1 and v2 can be determined up to the twofold ambiguity.

We find invariant expressions also for Reλ5 and µ2. Thus, these two parameters

are also observables in our model. We have not substituted the invariant expressions for

(λ1 − λ2)2 or (v2
1 − v2

2)2 in the following expressions. For Reλ5, the expression is

v4

(λ1 − λ2)2 [( v2
1 − v2

2)2 − v4]

[
−2Tr(V Z(V ))(λ1 − λ2)2 − Tr(Z(2)Z(21))

+3Tr(V Z(21))
(

2Tr(V Z(2))− TrZ(2)
)

+ Tr(V Z(2))
(

Tr(Z(2))2 + 2TrZ(2)TrZ(1)
)

−2(Tr(V Z(2)))2(TrZ(2) + TrZ(1)) + Tr(Z(2))2(TrZ(2) + TrZ(1))− (TrZ(2))2TrZ(1)
]

= Reλ5, (B.13)

and for µ2

v2

(λ1 − λ2)2 [( v2
1 − v2

2)2 − v4]

[
−2TrY

(
Tr(V Z(21))− Tr(V Z(2))TrZ(2)

)
−2Tr(Y Z(2))

(
2Tr(V Z(2))− TrZ(2)

)
+ v2Tr(V Z(V ))

(
(TrZ(2))2 − 2Tr(Z(2))2

)
−v2Tr(V Z(2))

(
Tr(V Z(21))− Tr(Z(2))2

)
− 2Tr(Y Z(21))− v2Tr(Z(V )Z(21))

]
= µ2. (B.14)

Finally, we consider Imλ5, which we can only determine up to a sign ambiguity because of

the inability to distinguish the two doublets. Consider

4µ4 − 4v2µ2Reλ5 − 4I2Y 2Z/Im J1

v4
= (Imλ5)2 . (B.15)

Since we have already shown that Reλ5 and µ2 are observables, it follows that (Imλ5)2 is

an observable.

In summary then, all parameters of the potential and the VEVs can in principle be

measured without specifying the Yukawa sector, up to the ambiguities: (i) λ1 ↔ λ2, (ii)

Imλ5 ↔ −Imλ5 and (iii) v1 ↔ v2. These ambiguities are not independent. If one of them

is resolved (meaning that we have been able to distinguish between the two doublets), the

two others will resolve simultaneously.
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