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Chapter 1

Introduction

Domain decomposition methods are flexible methods for solving linear or
nonlinear systems of equations arising from the discretization of partial dif-
ferential equations. In the linear cases which are studied in this thesis, the
domain decomposition method can be viewed as a preconditioner for the
Krylov subspace accelerators such as the Conjugate gradient or the Gen-
eral minimal residual method. The term domain decomposition has different
meanings when the topic is discussed by mathematicians and engineers. In
this thesis we refer domain decomposition as a preconditioning method. I.e.
the process of subdividing the solution of large linear systems into smaller
problems or subdomains where the solutions can be used to produce a precon-
ditioner or solver for the system of equations that results from the discretizing
the entire domain.

It is not always satisfying to use domain decomposition as preconditioner
alone. With solving only on each subdomain the accuracy of a precondi-
tioner may be poor. To compensate for this, multilevel methods have been
introduced . These methods solve the linear system of equations on a larger
scale such that the problems of the accuracy on the artificial boundary of
each sub-problem is reduced. A domain decomposition method with two lev-
els, i.e. which decompose the problem into smaller sub-problems and solve it
on coarse scale is referred as a two level domain decomposition method. The
benefits of domain decomposition methods are especially the parallelization
properties, simplification on complicated geometry and the fact that conver-
gence the properties are excellent.

In this thesis we will focus on the convergence properties and the implemen-
tation of a two level additive Schwarz method and investigate numerically
the results provided by Chou, SH and Huang, J in the paper, A domain
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2 Introduction

decomposition algorithm for general covolume methods for elliptic problems
[9]. Although the topic of this paper states general control volume methods,
we present a method based on the finite element method and its discretiza-
tion, namely the control volume finite element method.

The control volume finite element method (CVFEM) was a solution of prob-
lems associated with the control volume finite difference method [22] i.e. the
geometric constraints of the finite difference method. With the CVFEM it is
possible to construct control volumes on unstructured mesh that conforms to
an arbitrary shaped domain. The method was invented in the 1960’s for solv-
ing electromagnetic field problems. In the early 1980’s Bagli and Patankar
[2] linked the method to heat transfer and fluid flow. The CVFEM are some-
times referred as the finite volume method FVM in the literature. The basics
of the CVFEM is that we use the discretization techniques associated with
the finite element method and additionally construct a dual partition or con-
trol volumes around each discretization point. The flux over each edge in the
dual partition is then calculated, stored and used to generate a linear sys-
tem of equations which can be computed together with a source term (right
hand side) and give an approximate solution of the problem in question. In
this thesis we restrict the implementation and numerical experiments to the
steady state diffusion equation on the form,{

−∇ · (A∇u) = f in Ω
u = 0 on ∂Ω,

with zero Dirichlet boundary conditions. This is sufficient to test the conver-
gence properties in the two level additive Schwarz framework together with
the CVFEM. Simultaneously an error of the discretization can be estimated.
The diffusion equation appears in many compound equations and the space
discretization of this term is essential when solving such systems numerically.
For the actual space discretization it is convenient to consider both regular
and irregular triangulation of the domain. The benefits with irregular trian-
gulations are that they can tessellate any planar surface and for that reason
is widely used in many discretization applications.

With a heterogeneous diffusion coefficient A the CVFEM generates an un-
symmetric coefficient matrix. There is a variety of methods for solving linear
systems of equations. The general minimal residual method is one of them
and this method is suitable for solving system of linear equations with un-
symmetric structure.

This thesis investigates numerically the convergence properties of the CVFEM
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preconditioned with the two level additive Schwarz method for the CVFEM
method and compares it to other preconditioners for the GMRES. Domain
decomposition on such methods are not common, and to see the numerical re-
sults in this context is interesting. There have been some research regarding
the domain decomposition capabilities for the mortar finite element method
in [11]. In [19] the authors look at the finite volume variational formulation
and its application to domain decomposition methods for rectangular grids.
However there have been little research regarding the CVFEM capabilities
on two level additive Schwarz methods with overlap. Further we will explain
terms and conditions such that the work done here can be easily reproduced,
understood and tested by others. Now follows an outline of the thesis.

Chapter 2: This chapter is entirely devoted to the CVFEM. In the first
part we describe some important concepts such as mesh, region of support
and interpolating shape functions. Next we formulate a CVFEM scheme
through a model problem, and at the end comment on the convergence of
the method.

Chapter 3: This chapter explains the idea behind preconditioning, con-
dition numbers and the GMRES method. In the part about the GMRES
method, we explain how the algorithms works as well as give a convergence
estimate.

Chapter 4: Here we explain generally about domain decomposition and
the Schwarz methods, especially the two level additive Schwarz method. We
look at an abstract view of the two level additive Schwarz for use in chapter
6.

Chapter 5: In chapter 5 the implementation aspects of CVFEM, espe-
cially the assembly of the coefficient matrix are presented to the best of
ability. A full review of how we have implemented the two level additive
Schwarz method is included. Some of the important terms such as restric-
tion and interpolation operators are explained in detail.

Chapter 6: We present the analysis of the convergence rate from [9], and
state the theorem to be tested numerically in chapter 7.

Chapter 7: We present the numerical results of the implementation of
both the CVFEM and two level additive Schwarz method, and also a compar-
ison with other well known preconditioners are done to show the convergence
properties.

Chapter 8: Summary of the thesis and conclusion of the work.
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Chapter 2

Control Volume Finite Element
Method (CVFEM)

In this section we introduce a variation of the finite element method (FEM).
The difference from this method is the introduction of a dual mesh, and that
we approximate it with the flux over the so called control volumes generated
around every node instead of using the original triangulation to calculate the
solution. For more about the FEM see [3, 7]. In the following chapter we
will study the essence of the control volume finite element method. Basic
concepts of the method will be explained. First important definitions and
syntax such as mesh, basis, shape functions, region of support, control volume
will be explained before we explain the method through a model problem.
In later chapters, important aspects of implementation will be discussed.
A fundamental part of the CVFEM is the discretization and how this is
applied. The first part of this chapter will be dedicated to how we prepare the
continuous problem to suit the discrete version of the method. Much of the
theory about CVFEM shown in this chapter are inspired from [21, 9, 7, 13].

2.1 Important Concepts Regarding the CVFEM

In this section we will explain some of the important concepts around the
CVFEM. For understanding the method it can be convenient to be confident
on the different expressions and definitions. Before the method is explained
in an abstract manner, we introduce some of the important terms. As defined
in [21].

5



6 Control Volume Finite Element Method (CVFEM)

2.1.1 Discretization

With discretization we mean the process which starts out from continuous
models and equations and transforms them into discrete variants of the prob-
lem. This is often the first step toward making the problems suitable for num-
merical experimentation, implementation and evaluation. There are various
ways to discretisize a domain.

In this thesis we are going to use a finite element discretization and in-
troduce a dual partion to obtain the CVFEM. A basic approach is using
structured mesh where the nodes are located such that each node is uniquely
specified by a row and a column vector in a uniform manner. Meshing of
triangular elements will be in focus. The benefits of a triangular mesh, espe-
cially unstructured triangular mesh, is that it will give geometric flexibility.
An unstructured mesh is a mesh which is not regular, and the triangles are
not uniform over the domain. In the next section we will see the difference
between regular and structured, and irregular and unstructured meshes. An
2−D unstructured mesh can tessellate any planar surface. A common choice
is to place the nodes in the vertices[3], but it is also possible to let the nodes
lie on the midpoint of an edge. We have to be careful not make too acute
angles in the triangulation. This is due to the numerical solution obtained is
critically dependent on the quality of the mesh[9].
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2.1.2 Mesh

A mesh which is built up with only one type of triangular elements is called
a regular triangulation or a regular mesh. On the other hand, we call a
domain discretizised of various types of triangles, an unstructured mesh or
unstructured triangulation. A node is a part in our data structure which
we are using to compute the solution. Each triangle consists of three nodes.
These nodes are our building block, and the placing of the nodes gives us the
mesh.

Structured Mesh

Figure 2.1: Here we see a structured mesh in 2-D with 36 nodes on a domain
0 < x, y < 1.

Unstructured Mesh

Figure 2.2: Here we see a unstructured mesh in 2-D with 42 nodes on a
domain 0 < x, y < 1.
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2.1.3 Region of Support

The region of support is the list of nodes that share a common element with
a given node. This region is used to gain and produce the dual partition. In
figure 2.3 we see an example of a triangular mesh where the region of support
with basis i. Around each node, it is possible through the region of support,
to make a closed polygon. This polygonial is used to produce what we call
the control volume CV.

i

Figure 2.3: Illustration of the region of support.
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2.1.4 Control Volume

In the region of support a control volume (CV) is created by joining the
centre of each element in the support to the mid-points of the element sides
that pass through the nodes. See figure 2.4. In general this creates a closed
polygonial CV with 2m sides or faces, where m is the number of elements
in the support. This can bee seen in figure 2.6. Each CV contributes 1/3 of
its area to the CV area if we use the circumcenter of the triangles as base.
The volumes from all the nodes tessellates the domain without overlap. See
figure 2.6 for vizualation.

Figure 2.4: Because of the uniform structure of the triangular mesh, this
control volume look like it only has m sides.

2.1.5 Interpolation Shape Functions

The building block of the discretization is the triangular element. For linear
triangular elements, which are used in this thesis, the node points are placed
at the vertices of the triangle [3] and the nodes are labelled 1, 2 and 3 as in
figure (2.5). Values of the dependent variable φ, the so called basis functions,
are calculated and stored at these node points. An arbitrary point (x, y)
within an element can be approximated with linear interpolation

φi = axi + byi + c i = 1, 2, 3 (2.1)

It is more convenient to rewrite the basis function in terms of the Shape
function N1, N2 and N3 where

Ni(x, y) =

{
1 , at node i
0 , at all points opposite to node i
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1 1 1

2 2 2

3 3 3

P
P

P

A123

Ap23
Ap31

Ap12

Figure 2.5: Here we see an illustration of how the shape functions are defined.
The shape functions are used to calculate the flux over each line segment or
face in one element.

3∑
i=1

Ni(x, y) = 1, at every point in the element (2.2)

The continuous unknown field can now be expressed as the linear combination
of the values at nodes i = 1, 2, 3

φ(x, y) ≈
3∑

i=1

Ni(x, y)φi (2.3)

A straightforward geometric derivation for the shape functions can be ob-
tained such that

A123 =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
=

1

2
[(x2y3 − x3y2) − x1(y3 − y2) + y1(x3 − x2)] (2.4)

where Aijk denotes the area of one triangle in one particular element. Simi-
larly we obtain the the sub−elements with vertices at points (p, 2, 3), (p, 3, 1),
and (p, 1, 2) where p is an arbitrary and variable point in the element. With
these definitions it follows that the shape functions are given by

N1 =
Ap23

A123
, N2 =

Ap31

A123
, N2 =

Ap12

A123
. (2.5)
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For actual implementation it is the derivatives of the shape functions which
are of intrest.

N1x =
∂N1

∂x
=

(y2 − y3)

2A123
, N1y =

∂N1

∂y
=

(x3 − x2)

2A123
(2.6)

N2x =
∂N2

∂x
=

(y3 − y1)

2A123
, N2y =

∂N2

∂y
=

(x1 − x3)

2A123
(2.7)

N3x =
∂N3

∂x
=

(y1 − y2)

2A123
, N3y =

∂N3

∂y
=

(x2 − x1)

2A123
(2.8)

2.1.6 Sobolev Spaces

When we characterize a solution of a partial differential equation it is nec-
essary to know what class of functions we are seeking the solution in. It is
often possible to show that the solution is the limit of an Cauchy sequence
[8]. The space in which we seek the solution has to be complete i.e a Banach
space. In this thesis we also require that the metric is induced by an inner
product such that the space is a Hilbert space. We will look at integrable
functions, and their derivatives. At the same time we will demand that the
derivatives are integrable. In this thesis we look at domains Ω ⊂ R2, but the
theory developed applies Rd in general. We denote the closure of Ω with Ω.
Here u is a scalar real functions, i.e. u : Ω → R.
We start out by defining the space of integrable functions. For every positive
p, we define the space Lp(Ω) which is the quantity of measurable functions
u, where

Lp(Ω) =

∫
Ω

|u(x)|p dx < ∞. (2.9)

The norm of the space Lp(Ω) is defined by

||u||Lp(Ω) =

(∫
Ω

|u(x)|p dx

)1/p

. (2.10)

If p = ∞, L∞(Ω) is defined as the quantity of measurable functions u, where

sup
x∈Ω

|u(x)| < ∞. (2.11)

The norm of the space L∞(Ω) is given by

||u||L∞ = sup
x∈Ω

|u(x)|. (2.12)

The spaces Lp(Ω) where 1 ≤ p ≤ ∞ is Banach spaces, while the space L2(Ω)
is a Hilbert space. An important space is when p = 2 and for real functions
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the inner product of the space L2(Ω) becomes

(u, v)L2(Ω) =

∫
Ω

u(x)v(x) dx. (2.13)

We also want the integrable functions to be in some sort differentiable. It is
not possible to differentiate (2.13) in classical manner for all functions. We
have to introduce the term weak derivative. If α = (α1, α2, · · · , αd), then αj

is a d-tuple of a non-negative integer . The term α is an multi index. With
the multi index in hand we can use the following notation for the derivative

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂xαd
d

. (2.14)

The term |α| is defined as

|α| =
d∑

j=1

αj (2.15)

With this way of describe the derivative of we can for a arbitrary local inte-
grable function u ∈ Ω define the weak derivative with the relation,

∀φ ∈ C∞
0 (Ω)

∫
Ω

D|α|uφ dx = (−1)|α|
∫

Ω

uDαφ dx, (2.16)

We see that if u is differentiable in classical manner, then equation (2.16) is
obtained with partial integration since φ = 0 on the boundary ∂Ω. The nice
property of the weak derivative is that it gives a unambiguous definition of
the derivative of quantities close to zero. With quantities close to zero we
mean functions that are almost equal everywhere except zero. The spaces
Lp is is not actually the functions u itself, but what we refer as equivalent
classes. If the Lp space is equal to the function u over the whole domain Ω
except zero we say that they are similar on a quantity measures near zero.
With the weak derivative we can define the Sobolev space which is where we
want to seek a solution u to the problem (2.31). The Sobolev space is defined
as Wm,p(Ω), where m is a non negative integer, and 1 ≤ p ≤ ∞. The space
of functions u ∈ Lp(Ω) where all the weak derivatives of u up order m also
lies in Lp(Ω). The space Wm,p(Ω) is given as

Wm,p(Ω) = {u ∈ Lp(Ω)|Dαu ∈ LpΩ ∀ |α| ≤ m} (2.17)

The norm of the Sobolev space Wm,p(Ω) is for p ≤ ∞ given as,

||u||W m,p(Ω) =

∑
|α|=m

||Dαu||pLp(Ω)

1/p

. (2.18)
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For p = ∞ the Sobolev norm is given as

||u||W m,p(Ω) = max
|α|≤m

||Dαu||L∞(Ω) (2.19)

The spaces Wm,p(Ω) is Banch spaces. The important space Wm,2(Ω) which
are used in this thesis is an Hilbert space, with inner product

(u, v)W m,2(Ω) =
∑
|α|≤m

(Dαu,Dαv)2
L (Ω). (2.20)

An usual notation for these Hilbert space is the Hm(Ω) = Wm,2(Ω). We see
that H0(Ω) then becomes L2(Ω).
Before we explain some important subgroups of the traditional Sobolev spaces,
it can be convenient to give a theorem that explain the term embedding.

Theorem 1 Let X and Y be two Banach spaces with norms || · ||X and || · ||Y
respectivly. We say that X is embedded in Y , and use the notation X ↪→ Y
if the two following conditions are satisfied:

i. X ⊂ Y

ii. For all x ∈ X there exists a constant c such that ||x||Y ≤ c||x||X .

Sometimes it is necessary to look at Sobolev spaces Hs(Ω) with non in-
teger index s. These kind of Sobolev spaces are important when evaluating
the boundary integrals. Let Ω ⊂ Rd and assume that s > 0 but constitutes
a non-integer. Let m be the integer value of s, i.e m = s, and let λ = s−m.
Then λ in(0, 1). We define the inner product

(u, v)Hs(Ω) =
∑
|α|≤m

∫
Ω

Dαu(x)Dαv(x)dx

+

∫∫
Ω×Ω

[Dαu(x) − Dαu(y)][Dαv(x) − Dαv(y)]

||x − y||d+2λ
2

dxdy

]
,(2.21)

with the norm
||u||Hs(Ω) =

√
(u, u)Hs(Ω) (2.22)

Too characterize the space Hs(Ω), we look at

Xs = {u ∈ C∞(Ω)|||u||Hs(Ω) < ∞} (2.23)

with the norm || · ||Hs(Ω). The space Hs(Ω) is defined as the completion of
the space Xs, i.e.

Hs(Ω) = Xs. (2.24)
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Sobolev spaces where s are non-integer is called Sobolev-Slobodeckij spaces.
We have that Hs(Ω) ↪→ Hm(Ω). We will use s = 1/2 when we evaluate
boundary integrals in the following.

Next we go on with explaining the important subspace Hm
0 (Ω). We de-

fine Hm
0 to be the closure in Hm(Ω) of the infinitely differentiable function

compactly supported in Ω. We write

Hm
0 (Ω) = C∞

0 (Ω). (2.25)

Let Ω ⊂ Rd be a limited open set, and assume that the boundary is Lipschitz
continuous

Hm(Ω) ↪→ C0(Ω) for m >
d

2
. (2.26)

If a function is defined on the domain Ω, then we call the restriction of
the same function to the boundary ∂Ω for the trace to the function u on
the boundary. If the trace of a function is well posed, the function has to
have a natural expansion to the boundary. It is not enough to demand that
the function is continuous or lies in L2.However, if the function is uniformly
continuous on a closed domain Ω ⊂ Rd, then we now that function has
an unambiguous expansion to the boundary ∂Ω. For a Lipschitz continuous
boundary the embedding (2.26) holds, and it is therefore sufficient to demand
that the function lies in Hm(Ω) with m > d/2. Although the function has
to be uniformly continuous in the domain, the boundary integral treated do
not have the same restrictions. We see that if the domain should hold the
Lipschitz continuous conditions, m > d/2 that for m = 2, we have that d = 2
or d = 3. This is often a stricter condition than what we need for solving
partial differential equations. To solve partial differential equations we need
the trace of the functions u in H1(Ω). The trace of such functions can not
be evaluated directly since the boundary of a domain do not always have the
quantity zero in relation to itself. It is however possible to evaluate this by
an looking at a linear map γ : H1(Ω) → H1/2(∂Ω), such that γu = u|γ for
all u ∈ H1(Ω) ∩ C0(Ω). Conversely each function φ ∈ Ω be understood as
the trace of a function of the function u ∈ H1(Ω). Since the mapping γ is
continuous and linear, i.e γu is embedded in u, we have the relation

||γu||1/2
H (∂Ω) ≤ c||u||H1(Ω). (2.27)

This means that functions which lies close to uniformly continuous functions
is mapped in the same manner. This fact gives the H1 functions a natural
value on the boundary. If the trace of the functions defined in this manner,
we can define the space H1

0 (Ω). If the Ω is limited and the boundary is
Lipschitz continuous we define the space H1

0 (Ω) as,

H1
0 (Ω) = {u ∈ H1(Ω)|u|∂Ω = 0} (2.28)
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With this definition we can seek solutions in the H1
0 space without concerning

about the boundary integral problems if the functions is uniformly continu-
ous.
An important subspace in the analysis of developing a discrete version of
partial differential for control volume methods are the space H(div, Ω). We
consider the space Rd and let Ω ⊂ Rd be an open domain and q ∈ Rd be a
vector in this space. Then the space

H(div, Ω) = {q ∈ (L2(Ω))d|divq ∈ L2(Ω). (2.29)

This space has the norm

||q||H(div,Ω) =

(
d∑

i=1

||qi||2L2(Ω) + ||divq||2L2(Ω)

)1/2

. (2.30)

The space H(div, Ω) is a space where all the vectors components and the
divergence to the vector lies in the space L2(Ω).

2.2 Formulation of a CVFEM Scheme

In this section we will look at a CVFEM scheme through a boundary value
model problem. We will look closer to the abstract view of the CVFEM and
explain some important tools to treat the problem.

2.2.1 A Model Problem

We consider the self-adjoint elliptic problem on a polygon domain Ω with
boundary ∂Ω,

{
−∇ · (A∇u) = f in Ω

u = 0 on ∂Ω,
(2.31)

where f ∈ L2(Ω), u ∈ H1
0 (Ω) and A is finite symmetric positive definite

matrix

2.2.2 Triangulation

We have to discretisize the domain Ω. Let τh = [K] be a triangulation of the
domain Ω, where each triangle K does not have any interior angles greater
than π

2
. The triangulation is quasi uniform, which means that there exists
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positive constant C0, C1 independent of h such that each triangle K ∈ τh is
within a disk of radius C0h and C1h. We can know formulate the piecewise
linear conforming finite element spaces

Sh = {v ∈ C0(Ω̂) : v|K is linear,∀K ∈ τh} (2.32)

where Ω̂ = ∪K∈τh
K̂ means that we are taking to account all the triangles on

the domain, or the closure Sh
0 = Sh ∩ H1

0 (Ω).

2.2.3 Dual Mesh

We make a Donald dual partition such as in figure 2.6, and construct the
control volumes τ ∗

h = {Vi}M1+M2
i=1 . Here M1 is internal nodes, and M2 is

boundary nodes. We denote the nodal points by {zi}M1+M2
i=1 . The dual mesh

is constructed from the node points zi. With Donald dual we mean that the
lines defining the control volume meet in the barycentre of each triangle K.
With the barycentre as base, the coefficient matrix will be non-symmetric if
the diffusion coefficient is heterogeneous, but not necessary anisotropic. It
will though be dependent on the mesh.

Figure 2.6: Visualization of the dual mesh. The shaded area denotes one
control volume and the dotted lines the entire dual partition. The solid lines
shows the original finite element mesh 2.32
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2.2.4 Variational and Integral Formulation

To obtain the solution we determine the flux over the edges in each control
volume. We assume that mass is conserved over the control volumes. We can
state the model problem on integral form [1], which expresses conservation
trough, ∫

∂Ω

q · nds =

∫
Ω

fdx. (2.33)

where the flux q = −A∇u. For equation (2.33) to be valid we have to
demand that q ∈ H(div, Ω). We refer the reader to [1], for proof that this
is sufficient regularity conditions such that the solution u ∈ H1

0 (Ω). With
the right regularity conditions in place we want the equation to apply for the
discrete problem. Equation (2.33) still applies if we look at one particular
control volume Vi. The general equation is then modified to find uh ∈ Sh

0

such that for Vi

−
∫

∂Vi

(A∇uh) · nds =

∫
Vi

fdx i = 1, 2...,M1. (2.34)

We want equation (2.34) on variational form such that the we can use the
powerful properties of this formulation. To get the problem on variational
form we multiply both side of equation (2.31) with a test function and inte-
grate over the domain. For the general problem this test function is defined as
a function v ∈ H1

0 (Ω). If we then apply Greens formula we get the variational
form of (2.31),

∀v ∈ H1
0 (Ω) : a(u, v) =

∫
Ω

A∇v · ∇udx =

∫
Ω

fvdx. (2.35)

The way equation (2.31) is defined it is zero on the boundary. This is the
reason for why the boundary term not appear in (2.35). Equation (2.35) has
much better regularity conditions than (2.31). We see that in the original
problem we have to demand that the function u has to be two times differen-
tiable, but in (2.35) it only has to be differentiable one time. The variational
form of the equation (2.35) is stated on bilinear form. The reason for stat-
ing the variational formulation on bilinear form is the many application in
analysis. It is easy through the bilinear form to show how we can extend
the problem to operators which give the arise to solve the problem as an
linear system of equations. Also the applications in the error analysis make
it beneficial to state the problem in this way.
We now return to (2.34). As we have described it is useful to have the prob-
lem on variational form. Before we can multiply (2.34) with a test function,
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we have to define this test function. Since equation (2.34) applies for the
control volumes Vi where i = [1, 2, · · · ,M1] we have to consider this. We
define the test function as for all v ∈ Sh

0

πhv =

M1∑
i=1

v(zi)χi. (2.36)

We explain this test function a little more thoroughly. For every node in the
discretization zi, the term χi is the shape of the control volume surrounding
this node. The term pih on the left hand side of equation (2.36) is a short
hand notation applying the shape of each control volume to the right node.
By choosing this test function, we make sure that we integrate over each
control volume, and not over any other volume. Basicly this test function
restricts the integration to the correct control volume. The summation means
that we do this for every control volume Vi, and therefore this is equivalent
with integrating over the whole domain Ω as in the (2.33). By applying
equation (2.34) with a general test function v ∈ H1

0 (Ω) we get the integral
form of (2.31).

a(uh, v) =

∫
∂Ω

(A∇uh) · nds v =

∫
Vi

fvdx. (2.37)

We call it the integral formulation because we base the derivation on equation
(2.33) and not the (2.31). At the same time we state the problem on bilinear
form where we want to find uh ∈ Sh

0 such that

ah(uh, v) = fh(v) ∀v ∈ Sh
0 (2.38)

For all v, w ∈ Sh
0 , where w represent the test function of (2.36) addition to

some manipulation, equation (2.38) can be expressed as,

ah(v, w) = −
M1∑
i=1

∫
∂Vi

(A∇v) · ndsw(zi), fh(v) =

∫
Vi

fπhvdx. (2.39)

This is a form of the problem (2.31) suitable for solving numerically. With
the powerful tools of the bilinear form, it is easy to show how we can go from
the abstract form to an matrix representation of the problem. This is shown
in the next section.

2.2.5 From Abstract to Matrix Formulation

As equation (2.39) shows, we now have a system where we compute for every
control volume and every node in the discretization. Further we have to
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introduce a linear operator Bh from Sh
0 �Sh

0 such that

ah(v, w) = (Bhv, w), v, w ∈ Sh
0 , (2.40)

where x is a vector in R2. Similarly we have for for fh(v) the linear operator
fh from Sh

0 → Sh
0 such that

fh(v) = (fh, v). (2.41)

We can then write equation (2.39) on operator form

Bhuh = fh (2.42)

where uh can be written in terms of the interpolating shape functions Ni as
in section 2.1.5. For all the nodes we can express the solution through

uh =

M1∑
i=1

uiNi. (2.43)

With the introduction of the interpolation shape functions the matrix repre-
sentation of (2.39) is

Bhuh = fh. (2.44)

In (2.44) the three different terms are respectively a matrix Bh = [aij]M1×M1 ,
and vectors uh = [u1, u2, · · · , uM1 ]

T , fh = [u1, u2, · · · , uM1 ]
T with, aij =∫

∂Vi
(A∇Nj) · nds and fi =

∫
Vi

f(x)dx. In general the CVFEM generates

a coefficient matrix Bh which is non-symmetric. If the circumcenters had
made up the control volumes we would get a symmetric coefficient matrix.
Also if the diffusion coefficient are constant we will get a symmetric matrix.

2.3 Convergence Behaviour

In this section we briefly mention some error estimates in the H1 and L2

norms of the CVFEM. The formulation of the problem as in (2.38) allow us
to use the techniques from finite element error analysis. We mention that
for stricter conditions then what is envisaged here the result in the L2 norm
the order of convergence will not be the same. For analysis around CVFEM
error estimates see [4, 13, 5, 10].
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2.3.1 Estimation of the Error in the H1 and L2 Norm

If the triangulation have no interior angles grater than π/2, then [10] provides
us with an estimate of the error in both the L2 and H1 norm. When u ∈
H2(Ω), uh ∈ Sh

0 where u and uh denotes the solutions of respectively (2.33)
and (2.34). The matrix A of (2.31) is a symmetric positive definite matrix,
and f ∈ L2(Ω), then the error in the H1 norm is bounded by

||u − uh||H1 ≤ Ch||u||H2 , (2.45)

and in the L2 norm it is defined as,

||u − uh||L2 ≤ Ch2||u||H2 (2.46)

where constant C is independent of the mesh size h.



Chapter 3

Preconditioning and General
Minimal Residual Method

In this chapter the essence of preconditioning [6] , condition number [6] and
the general minimal residual method [20, 17] will be presented. In the section
about preconditioning we described in general what the purpose of this term
is, and in chapter 4 we introduce a specific preconditioner. We briefly talk
about condition numbers, since the aim of preconditioner is to improve ill
conditioned matrices. In the section about GMRES we describe the basics
of how this may be implemented, and in the end give an estimate of the
convergence without poof. Otherwise we talk about important terms in use
for developing GMRES, such as Arnoldi iteration and Krylov subspaces.

3.1 Preconditioning

Preconditioning is about designing an effective matrix, the so-called precon-
ditioner, in order to obtain a numerical solution with more accuracy or in
less time [6, 20]. If we consider a linear system of n equations,

Ax = b, (3.1)

where A ∈ Rn×n, b ∈ Rn. Then a simple preconditioned system takes the
following form,

MAx = Mb. (3.2)

Where M ∈ Rn×n matrix that approximate A−1 so that only multiplica-
tion by M is needed. We begin with defining condition number of a matrix,
since the goal of the preconditoner is exactly to lower this number. The tar-
get is to construct a preconditioned M such that the preconditioned matrix

21
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A1 = MA has better matrix properties than A. There are two types of prac-
tical methods for solving (3.1), direct methods and iterative methods. Here
the focus will be on iterative methods and especially on the GMRES. Our
aim is to use a two level additive Schwartz method as a preconditoner for the
global system (3.1). We often say that a preconditoner M of a matrix A is a
matrix such that M−1A has a smaller condition number than A. These pre-
conditoners are useful when solving large sparse linear systems. For iterative
solvers as GMRES and others, the rate of converges decay as the condition
number of the matrix A increases. If we find a good preconditoner it will
reduce the condition number.

3.1.1 Condition of a Problem and Condition Number

If a small perturbation in input data leads to a small perturbation in output
data we say the problem is well conditioned. One the other hand an ill con-
ditioned problem is one where a small perturbations in the input gives large
changes in the output data. The analogy ”small” and ”large” is dependent
on the application and the problem. A problems condition can be measured
in what we call the condition number.

Theorem 2 Let A ∈ Cm∗m be non-singular and consider the equation Ax =
b. The problem of computing b, given x, has condition number

κ = ||A|| ||x||
||b||

≤ ||A||
∣∣∣∣A−1

∣∣∣∣ (3.3)

with respect to perturbations of x The problem of computing x, given b, has
condition number

κ =
∣∣∣∣A−1

∣∣∣∣ ||b||
||x||

≤ ||A||
∣∣∣∣A−1

∣∣∣∣ (3.4)

with respect to perturbations of b. If ||·|| = ||·||2, then equality holds in (3.3)
if x is a multiple of a right singular vector of A corresponding to the minimal
singular value σm, and equality holds in (3.4) if b is a multiple of a left
singular vector of A corresponding to the maximal singular value σ1.

The product ||A|| ||A−1|| is what we refer to as the condition number of
A, and is denoted by κ(A):

κ = ||A||
∣∣∣∣A−1

∣∣∣∣ (3.5)

If κ(A) is small, A is said to be well conditioned, if κ(A) is large, A is ill-
conditioned. If A is singular, it is usual to denote κ(A) = ∞. The usage of
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||·|| = ||·||2 results in ||A|| = σ1 and ||A−1|| = 1
σm

. The condition number can
then be written in the 2-norm,

κ(A) =
σ1

σm

, (3.6)

and is used to for computing 2-norm condition numbers of matrices. The aim
in preconditioning is to reduce the condition number of the system. Typically
one can use domain decomposition methods. If A is normal i.e. AT A = AAT ,
then the condition number can be stated as

κ(A) = ‖λmax(A)

λmin(A)
‖ (3.7)

where λmax(A) and λmin(A) are maximum and minimum eigenvalues of A.
The condition number can be a measure of how long time the iterative solver
will use on a desired system of equations. The point of using a preconditioner
is exactly reduce the condition number such that the solver use less time on
the solving the linear system. A good linear solver is the General Minimal
Residual Method which is discussed in the next section. If the matrix A is
poorly conditioned or close to singular it can be convenient to look at the
the symmetric part of A, by threat the expression (A + AT )/2 instead of A
in the above theory.

3.2 General Minimal Residual Method(GMRES)

Trough the next section the method described the main theory and results are
provided from [20, 17]. The goal of the GMRES is to solve (3.8) and when we
have disceretisized (2.31) by using the CVFEM, we obtain the linear system,

Px = b, (3.8)

where P ∈ Rn×n is a non symmetric but sparse (n × n) matrix, b ∈ Rn,
and x ∈ Rn is the unknown. Although the GMRES can solve symmetric
problems, it is designed to solve non symmetric but sparse system. The
coefficient matrix A in (2.44) is general non symmetric, and is suitable to be
solved by a preconditioned GMRES method with the preconditioner given
by a two level domain decomposition method. The GMRES method is well
documented in the sense of finite element method, and all the applications
and analysis is to be find in [20]. Hence it may be convenient to explore
its applications to finite volume equations. The GMRES is used because of
the non symmetric nature of the coefficient matrix, and in this section we
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describe the most important aspects of the algorithm but refer to [6] for more
details. In for example reservoir simulation, wells and irregular grid block
structure destroy the natural sparse symmetric structure of the coefficient
matrix. Through the past few decades we have seen a flourish of iterative
techniques, many of them are the Krylov subspace methods[16]. There are
several parameter-free Krylov subspace algorithms that have been developed
for solving non symmetric systems of linear equations. With parameter-free
refer to the lack of choosing a parameter such as required in successive over
relaxation type methods [15]. GMRES is one of the parameter-free Krylov
subspace methods. We want to minimize the residual in the Krylov subspace
κn = (b, P b, · · · , P n−1b). We use the notation x∗ = P−1b for the exact
solution of the problem (3.8). The idea of the GMRES can be formulated in
one sentence. At step n, the approximation of x∗ by the vector xn ∈ κn shall
minimize the norm of the residual rn = b−Pxn. This is the same as solving
a least square problem. We define the Krylov matrix Kn, which is nothing
else but the Krylov subspace on a matrix formulation,

Kn =

[
b Pb · · · P n−1b

]

3.2.1 GMRES as a Least Square Problem

We can now solve the least square problem, Let Kn be the defined as above,
then

PKn =

[
Pb P 2b · · · P nb

]
The column space of PKn is Pκn. Then the problem is to find a vector
c ∈ Cn such that

||PKnc − b||2 = min (3.9)

This can be done by a decomposition into a orthogonal and upper triangular
matrix, or a so called QR factorization, where Kn = QnRn. Once c is found,
we can solve the problem xn = Knc. This is an unstable way of developing
GMRES. The cost of this type of GMRES are also to high. Instead it is more
efficient and benificial to use the Arnoldi iteration to construct a sequence
of the Krylov matrices. The Krylov subspace is not linearly independent.
We have to find another basis. For this purpose it is clever to use the so
called Arnoldi iteration [20], which is a Gram-Schmidt style iteration [15] of
finding orthonormal vectors forming the basis of κn. The basis is denoted
with (q1, q2, · · · , qn). The Arnoldi iteration construct a sequence of Krylov
matrices Qn, where the columns of the matrices (q1, q2, · · · , qn) span the suc-
cessive Krylov subspaces κn. The Arnoldi iteration intention is to transform
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a matrix to Hessenberg form. A complete reduction of P to Hessenberg form
by an orthogonal similarity transformation can be written P = QHQ∗ or
PQ = QH. The term Q∗ is the adjoint or the hermitian conjugate of Q, i.e.
the transpose if Q is real. Because of cost, and the fact that m can be very
large or even infinite, we consider only the first n columns of PQ = QH. Let
the Qn be the (m × n) matrix whose the first n columns of Q are given by

Qn =

[
q1 q2 · · · qn

]
Let H̃n be the (n+1)×n upper left section of H, which also are a hessenberg
matrix on the form,

H̃n =


h11 · · · h1n

h21 h22

. . . . . .
...

hn,n−1 hnn

hn+1,n


With this definition of H̃n, we can write

PQn = Qn+1H̃n. (3.10)

By multiplying the matrices in equation (3.10) we obtain the n’th column of
the expression

Pqn = h1nq1 + · · · + hnnqn + hn+1,nqn+1, (3.11)

where qn+1 is based on the previous term of the Krylov vectors and itself. It
is a so called (n + 1) recurrence relation. The Arnoldi iteration is the task of
implementing equation (3.11). With the concepts of the Arnoldi iteration and
the Krylov matrices in mind, the task can be reformulated from xn = Knc
to xn = Qny. Instead of solving equation (3.9) the new least square problem
to solve is to find a vector y ∈ Cn such that

||PQny − b||2 = is minimized. (3.12)

The problem (3.12) has dimension m×n, because of the structure of Krylov
subspaces, the actual dimension of the problem is (n + 1) × n. This can
be solved by applying definition (3.10) to equation (3.12), then we get the
minimization task problem

||Qn+1H̃ny − b||2 = min. (3.13)
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Expression (3.13) can further be modified since both vectors of the norm are
inside the column space of Qn+1. Multiplying with Q−1

n+1 on both sides of the
components in the norm does not change the result. The expression

||H̃ny − Q−1
n+1b||2 = min, (3.14)

is equivalent with (3.13). Because of the orthogonality of Qn+1, we have that
the term Q−1

n+1 is equal to ||b||e1, where e1 = (1, 0, 0, · · · ), which is the first
standard basis of Rn+1 The final form of the GMRES least square problem

||H̃ny − ||b||e1||2 = min. (3.15)

The overall algorithm of the GMRES solves this minimization task with
respect to y at step n and then solve the problem xn = Qny. At each step
the GMRES minimize the norm of the residual rn = b − Pxn over all the
vectors xn ∈ κn. Minimization of the residual rn = b − Pxn is done in the
minimization task (3.15), and not explicitly from xn, i.e.

||rn|| = ||H̃ny − ||b||e1||2.

The GMRES consists in general of four important steps:

1. For generating the (n + 1) × n upper Hessenberg matrix =⇒ Arnoldi
iteration.

2. Find the yn that minimize the residual ||rn||.

3. Computation of xn = Qnyn.

4. Repeat until the residual is within the desired error.

3.2.2 Convergence of the GMRES

The nth iteration minimizes the residual in κn. As mentioned previously, ev-
ery subspace is contained in the next subspace and consequently the residual
decreases monotonically. For a positive definite matrix, the rate of conver-
gence can be expressed as,

||rn|| ≤ (1 − λmin(P T + P )

2λmax(P T + P )
)n/2||r0|| (3.16)

λ denotes the largest and smallest eigenvalue of the matrix that consists of
P T and P . I additional the matrix P is symmetric, the rate of convergence
is,

||rn|| ≤ (
κ2

2(P ) − 1

κ2
2(P )

)n/2||r0||, (3.17)
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where κ2
2 is the condition number in the euclidean way. In the general we can

describe the convergence rate of the GMRES in the manner of Einsenstat,
Elman and Shultz ??. As for the CVFEM we let P be a linear operator in
the finite dimensional element space Rn which is associated with an inner
product [·, ·] and a norm || · ||. Both the norm and inner product shall reflect
the peculiar properties of P . For the next theorem we also assume that
P is non symmetric but positive definite. Then the GMRES method can
be characterized in terms of the minimal eigenvalue symmetric part of the
operator and the norm of the operator. They are defined as

cp = inf
x6=0

[Px, x]

[x, x]
and cp = sup

x6=0

||Px||
||x||

(3.18)

By considering the decrease of the norm of the residual in a single step, the
following theorem can be established for the convergence.

Theorem 3 (Einsenstat, Elman, Shultz) If cp > 0, then the GMRES method
converges after m steps, the norm of the residual is bounded by

||rm|| ≤ (1 −
c2
p

C2
p

)1/2||r0||. (3.19)
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Chapter 4

Domain Decomposition

Domain decomposition among other is used as preconditioner for Krylov
space iterative methods, i.e. GMRES [17, 20] and Conjugate Gradient method
[12], for solving boundary value problems. A detailed description of a do-
main decomposition method, a two level additive Schwartz method, will be
described later in the chapter. The main idea of domain decomposition is
to split the problem into smaller boundary value problems or subdomains,
and then synchronize the solution from every subdomain. This makes these
methods suitable for parallel computing. There are different ways of split-
ting the domain, and we separate between overlapping and non-overlapping
domain decomposition. In overlapping methods the subdomains interfaces
overlaps with each other, and in non-overlapping the intersection is only on
the boundary. An advantage of overlapping methods are faster convergence,
but it is also a more costly routine and the implementation is often more
complex. In these methods it is common to distinguish between coarse and
fine scale. The solution is solved both in the coarse scale and the fine scale
on every subdomain. The coarse and fine scale can have many different levels
and, a so called multilevel method. A two level method consist of only one
fine scale and one coarse scale.

The reason for solving the method on both coarse and fine scale, is that
if we only solve the problem on fine scale, the low frequencies of the solu-
tion will be lost [18]. To compensate for this, we also solve it on a coarse
scale. If we only solve it on a coarse scale, the precision of the solution will
probably not be satisfied, dependent of the problem and application. There
are many types of domain decomposition, but we will here only talk about
the Schwartz methods. Schwartz was the first person to develop a domain
decomposition method in the late 19th century. The main theory in the next
sections about the Schwarz methods are form [18, 14, 9].

29
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Ω1 ∂Ω2 ∂Ω1 Ω2

Figure 4.1: Schwarz’s famuse figure, two overlapping subdomains Ω1 and Ω2

with two artificial interfaces ∂Ω2 and ∂Ω1.

4.1 General Theory About Schwarz Methods

For understanding a two level Schwars methods it is beneficial to under-
stand the basics of general Schwarz methods, we briefly will go true some of
the theory behind these methods. We will go true the overlapping Schwarz
method, the additive Schwarz method and finally the two level additive
Schwarz method, which is used in this thesis.

Consider the domain Ω as in figure 4.1. The domain Ω consists of two
overlapping subdomains Ω1 ∪ Ω2. The goal is to solve the linear PDE ,

Lu = f in Ω, (4.1)

u = g on ∂Ω, (4.2)

where ∂Ω denote the boundary of Ω. Also in the rest of this chapter we
say that u ∈ H1

0 (Ω), g, f ∈ L2(Ω) and L is a linear operator similar to the
operators in equation (2.42). The artificial boundary ∂Ωi is the part that is
inside the domain Ωi that is interior to Ω. The overlapping Schwarz method
iterates by first selecting a initial guess u0

2 for the values in ∂Ω1, and then
solve the boundary value problem iteratively for un

1 .

Lun
1 = f in Ω1 (4.3)

un
1 = g on ∂Ω1∂Ω1, (4.4)

un
1 = un−1

2 on ∂Ω1, (4.5)
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The same procedure is done for un
2 ,

Lun
2 = f in Ω2 (4.6)

un
2 = g on ∂Ω2∂Ω2 (4.7)

un
2 = un−1

1 on ∂Ω2 (4.8)

This method described here is called the alternating Schwarz method. Often
it is useful and possible to use a matching grid in the overlapping region
such that the unknowns dose not duplicate each other. A method that has
this feature is called the multiplicativeSchwarz method. The discretisized
problem can be formulated as Au = f similar as in chapter 2.2. The iteration
can then be written in two steps:

un+1/2 = un +

(
A−1

Ω1
0

0 0

)
(f − Aun) (4.9)

and

un = un+1/2 +

(
0 0
0 A−1

Ω2

)
(f − Aun+1/2). (4.10)

AΩi
is the discrete form of the operator L, restricted to Ωi. This basic

method is not suitable for parallel computing since each iteration involves se-
quential fractional steps. As it is seen from the equation 4.9 and 4.10 this is
nothing else than a Gauss-Seidel method divided into blocks. This generaliza-
tion of the Gauss-Seidel method is called the block Gauss-Seidel method. A
more robust method for parallel computing is the additive Schwarz method.

4.1.1 One Level Additive Schwarz Method

The additive Schwarz method (ASM) is the multiplicative Schwarz method
where the iteration is done in one step. If we put ?? and ?? the result is the
parallelized version of the multiplicative Schwarz or ASM.

un+1 = un +

[(
A−1

Ω1
0

0 0

)
+

(
0 0
0 A−1

Ω2

)]
(f − Aun).

The expression above can be written in a compressed manner

un+1 = un + (B1 + B2)(f − Aun), (4.11)
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Figure 4.2: The fine scaled region represent one subdomain. On every sub-
domain the discrete version of the problem is solved and summarized. This
is suitable as a preconditioner for the general fine scaled problem. The fine
scaled domain can be viewed as the restriction operator Ri of the ASM

where is Bi = RT
i A−1

Ω Ri. Ri is what we call the restriction matrix. The
method will converge if we do not weighting the overlap, but with weight-
ing the convergence properties will increase. The idea behind the restric-
tion matrix, which we have looked at earlier, is to makes sure that that the
components in the particular domain Ωi is returned. The ASM can eas-
ily be extended to multiple subdomains. If the domain Ω is divided into
Ω1 ∪Ω2 ∪ · · · ∪Ωi−1 ∪Ωi overlapping subregions, the ASM can be expressed
as follows.

un+1 = un +
∑

i

Bi(f − Aun). (4.12)

The additive Schwarz method now apply for i subdomains. For the attentive
reader one may see that the ASM is nothing else but a generalization of the
Jacobi method. It is called the block Jacobi method.

4.2 Two Level Additive Schwarz Method

The problem with single level methods is that in large problems and cases
with many subdomains the effictivity decreases dramaticly. There is no con-
nection between the subdomains except the interface or the overlap. If there
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are many subdomains it is critical for the convergence that there are some
sort of interaction between the domains. The iterative linear solver needs
some global way of communicate of information at each iteration. A efficient
and reliable way of transmitting global information across the domains is the
multilevel method. The idea of a multilevel method is to use coarse spaces
to nurture the communication between the domains. It is possible to use
several different coarse spaces, but the most basic multilevel method is to
use one coarse space and is called a two level method. The combination of
the ASM and one coarse space correction is the two level additive Schwarz
method. We look at the two different systems ACuC = fC and AF uF = fF ,
respectively the coarse and fine discretizations of the problem. If the error
on the coarse grid is known, it is possible to interpolate it back to the fine
grid and use this as a correction. The problem is that we do not know the
error. However if the residual on the coarse grid is known the error on the
coarse grid can be calculated from the error equation ACeC = rC . Again we
encounter a problem, we do not know the residual rC on the coarse grid. We
only now the residual on the fine grid, and by interpolation we can approx-
imate the residual. RT

0 is a representation of the linear interpolation from
coarse to the fine grid. A coarse grid correction can then be stated as follows;

uF = uF + RT
0 A−1

C R0(f − AFuF) (4.13)

This equation states that the residual is calculated, we restrict it to the
coarse grid solves the coarse grid problem, and then at last interpolate the
solution back to the fine grid. This is the basic of a coarse grid correction.
The problem is just that this is not possible. What is possible is to use the
coarse grid correction term RT

0 A−1
C R0 as a preconditioner. The idea is that

the coarse grid part of the preconditioner has a large null space. The rank,
or linearly independent columns of RT

0 A−1
C R0 has the same dimension as AC .

Dependent on the coarse grid, this is normally much fewer than the dimension
of the fine scale. This principle makes sure that the error or residual which
lies in the null space of the coarse grid term never is corrected. A specially
the components that include most of the high frequency errors. This is the
basic behind a two level method, a coarse grid correction which correct all
the errors in the fine grid and a local or fine grid solver. A good rule is that
the relation between the subdomains and the coarse grid should be scalable,
which means that the performance should be insensitive to the number of
subdomains.
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Iteration of a Two Level Additive Schwarz Method

rn
F = f − Aun

F Computation of the residual onΩ

rC = R0r
n
F Restrict the residual to the coarse space

ACvc = rC Solve on the coarse space (AC = R0ART
C)

vn = RT
0 vC Interpolate the correctio

un
F = un

F + vn Compute the new approximation

un+1
F = un

F +
∑

i

Bir
n
F ASM onΩ

4.3 The Abstract Schwarz Framework

In this section we will give an abstract view of the two level additive Schwarz
method. The terms and conditions are also used in the convergence analy-
sis chapter 6. The aim is to use the Schwarz framework a method solving
equation (2.44) and study the convergence.

4.3.1 Two Level Overlapping Additive Schwarz Method

The domain Ω is portioned into subdomains τH = {Ωi}N
i=1 which are quasi

uniform with mesh size H. The boundary of τH is aligned with τh. This coarse
triangulation can be associated with the piecewise linear finite element space
SH and SH

0 in the same manner as in 2.2.2, similarly as Sh and Sh
0 . To gain a

overlapping method we have to extend the subdomains Ωi into larger regions
Ωi

′, i.e. Ωi ⊂ Ωi
′ such that Ω =⊂N

i=1. The boundary ∂Ωi
′ are also aligned

with τh. The minimum distance between Ωi
′ and Ωi are denoted by

δ = min
i

dist(∂i
′ \ ∂Ω, ∂Ωi \ ∂Ω). (4.14)

In [18] they define the difference between generous and small overlap. If δ is
proportional with h we say the subdomains Ωi

′N
i=1 has a small overlap. On

the other hand if there exists a β > 0, such that δ ≥ βH, we say that Ωi
′N
i=1

has a generous overlap. A quasi uniform finite element subdivision of each
Ωi

′, where i > 0 is obtained from the finite element triangulation τh. The
new space is defined as

Sh
i = H1

0 (Ωi
′) ∩ Sh

0 . (4.15)
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The space Sh
i extends the subspace Sh

0 by zero since it Sh
i vanish on the

boundary ∂Ωi
′. The decomposed subspace Sh

0 can be viewed as

Sh
0 = SH

0 +
N∑

i=1

Sh
i . (4.16)

As for the CVFEM method we define a bilinear aH(v, w) similarly as ah(v, w)
, with the difference that v, w ∈ SH

0 and change τh with τH . A dual mesh
are related with the τH , similarly as for τh. We let the linear operators
T0 : Sh

0 → SH
0 and T0 : Sh

i → SH
i , 1 ≤ i ≤ N , be defined as

aH(T0v, w) = ah(v, w), v ∈ Sh
0 , w ∈ SH

0 , (4.17)

ah(Tiv, w) = ah(v, w), v ∈ Sh
0 , w ∈ SH

i . (4.18)

(4.19)

For (4.17) to be well posed we assume that there exist a constant H0, such
that for h < H < H0. This is due to the fact that the subspace SH

i and SH
i

are finite dimensional Hilbert spaces. The two level additive Schwarz method
described has the intention to solve (2.38), by solving a similar equivalent
problem,

Tuh = f̃h, (4.20)

where T =
∑N

i=0 Ti, f̃h =
∑N

i=0 Tiuh. We solve the terms Tiuh in the subspace
such that,

aH(T0uh, v) = ah(uh, v) = fh(v), v ∈ SH
0 , (4.21)

and,

ah(Tiuh, v) = ah(uh, v) = fh(v), v ∈ SH
i . (4.22)

It is not obvious that (4.20) and (2.38) are equivalent. We further show how
the equation (4.20) are defined on operator and matrix forms. We define some
linear bounded operators for use in the analysis later. Let Q0 : Sh

0 → SH
0 ,

Qi : Sh
0 → SH

i , 1 ≤ i ≤ N which are the standard L2 orthogonal projection
operators. Let B0 : SH

0 → SH
0 , Bi : SH

i → SH
i , 1 ≤ i ≤ N be operators such

that,

(B0v, w) = aH(v, w), ∀v, w ∈ SH
0 , (4.23)

(Biv, w) = ah(v, w) = (Bhv, w), ∀v, w ∈ Sh
i . (4.24)

The way the operators Ti, Qi and Bi is given, we see that

BiTi = QiBh, i = 1, 2, · · · , N, (4.25)
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or,
Ti = B−1

i QiBh, i = 1, 2, · · · , N. (4.26)

The two level additive Schwarz method (4.20) then becomes

ShBhuh = Shfh, (4.27)

where Sh =
∑N

i=0 BiQi. By the definition of preconditioners in section 3.1,
we see that this is just equation (2.38) preconditioned by Sh.

4.3.2 A Matrix Representation of the Two Level Over-
lapping Additive Schwarz Method

The number of interior nodes in Sh are defined as the the number of elements
in Ω, and are denoted with |Ω̂|. For every Ωi

′, 1 ≤ i ≤ N the interior nodes
are defined as the number of elements in the specific subdomain and denoted
with |Ω̂′|. Remember, with interior in one subdomain we do not mean the
artificial boundary, only the fixed boundary from the global problem. We
first apply a global ordering of the interior nodes in the domain Ω̂. Further
we assume that the set of nodes in Ω̂j

′, where [p1, p2, · · · , pM ] are points
in the domain has the global indices [i1, i2, · · · , iM ], respectively, with i1 <
i2 < · · · < iM . Every subdomain has local index [1, 2, · · · ,M ] corresponding
to the global index respectively. We can describe the local matrix as Bi =
(qkl)1≤k,l≤M , where qkl = bikil from equation (2.44). For all i an extension

operators Ri : E|Ω̂i| → E|Ω̂| is defined such that,

Eiv(k) =

{
v(k) k ∈ Ω̂i,

0 otherwise,

for arbitrary v ∈ E|Ω̂i|. Through the extension operator Ri the global repre-
sentation of the particular domains is preserved. Basicly Ri transfer the local
representation of the subspace Sh

i and associate it with the global indexing in
Sh

0 . By some simple manipulation we can obtain the matrix representation
of (4.27) such that,

ShBhuh = Shfh, (4.28)

where,

Sh = RHB
−1

H RT
H +

N∑
i=1

RiB
−1

i RT
i . (4.29)

Here RT
i and RT

H denote the transpose of the corresponding matrix.



Chapter 5

Implementation of the CVFEM
and the Additive Schwarz
Framework

In this chapter we go through the algorithm step by step, so that it is easy
to reproduce. First we explain the assembly of the coefficient matrix in the
CVFEM which consists of the most not evident parts of the implementation.
In same section we describes how other aspects of implementing the CVFEM
can be done. Later in the section a matrix deviation of how the tow level
additive Schwarz with an default overlap could be designed.

5.1 Assembly of the Coefficient Matrix in the

CVFEM

If there are M nodes the coefficient matrix will be a matrix of (M × M)
elements. First of all the dual partition is obtained. This is done through
the definition of what the region of support is. As described in 2.1.3 the
region of support is the nodes surrounding a node. The nodes in a support
is listed in an array, as shown below

Ri,j = [ri,1, ri,2, · · · , ri,j], (5.1)

where Ri,j is the the i’th node, with j nodes in the support. To distinguish
between internal and boundary nodes, we add a zero on the end of the array
of a boundary node. There is now M different nodes with each have a
array containing the neighbouring nodes. Further there are some calculations
that involves the above arrays and information used to calculate the stiffness

37
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matrix that have to be obtained. Loop over all the nodes M , for every
node there is assembled an array containing the neighbouring nodes. Then
a new loop is applied, looping over the length of the array containing the
neighbouring nodes. We now point at the different nodes in the region of
support such that we have a system that creates the triangulation.

[1 2 3] = [i, Ri,j, Ri,j+1]. (5.2)

We associates the nodes (5.2) with the coordinates such that,

x1 = xi x2 = xRi,j
x3 = xRi,j+1

y1 = yi y2 = yRi,j
y3 = yRi,j+1

.

The information obtained is used to calculate the necessary parts to develop
the coefficient matrix and the right hand side. In the model problem (2.31)
the diffusion coefficients is defined as A, but to avoid confusion we redefine
it to be κ. Further we have that one element has the volume

Vtri =
1

2

∣∣∣∣∣∣
1 xi yi

1 xRi,j
yRi,j

1 xRi,j+1
yRi,j+1

∣∣∣∣∣∣
=

(xRi,j
yRi,j+1

− xRi,j+1
yRi,j

) + xi(yRi,j
− yRi,j+1

) + yi(xRi,j+1
− xRi,j

)

2
.

The contribution of one element to the one specific control volume is.

V j
i =

1

3
Vtri (5.3)

To obtain an oveview we denote the labeling with the local labeling 1, 2, 3,
which represent one triangle. The derivatives of the shape functions can then
be expressed and calculated.

N1x =
∂N1

∂x
=

(y2 − y3)

2Vtri

, N1y =
∂N1

∂y
=

(x3 − x2)

2Vtri

N2x =
∂N2

∂x
=

(y3 − y1)

2Vtri

, N2y =
∂N2

∂y
=

(x1 − x3)

2Vtri

N3x =
∂N3

∂x
=

(y1 − y2)

2Vtri

, N3y =
∂N3

∂y
=

(x2 − x1)

2Vtri

With theses shape functions the gradient can be expressed, and the compo-
nents are with respect to x and y,

∂φ

∂x
= N1xφ1 + N2xφ2 + N3xφ3

∂φ

∂y
= N1yφ1 + N2yφ2 + N3yφ3
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Figure 5.1: The faces of a element

It is possible to calculate the faces of the problem, refer to the figure 5.1.

∆xf1 =
x3

3
− x2

6
− x1

6
∆xf2 = −x3

3
+

x2

6
+

x1

6

∆yf1 =
y3

3
− y2

6
− y1

6
∆yf2 = −y3

3
+

y2

6
+

y1

6

When we know ∆xf1, ∆yf1, ∆xf2 and ∆yf2, the area or the length of the
face can be derived by using Phytagoras as 5.1 shows. The footnote f1 and
f2 refers to the face of the elements we are threatening. See figure (5.1) for
illustration.

Af1 =
√

∆x2
f1 + ∆y2

f1 (5.4)

Af2 =
√

∆x2
f2 + ∆y2

f2 (5.5)

The flux over each face in there specified direction can be approximate
by dividing the x and y component in each direction with the area over the
face. On face 1 the flux can be expressed as

nf1
x =

∆xf1

Af1

, nf1
y =

∆xf1

Af1

, (5.6)

and on face 2 the flux can be expressed as,

nf2
x =

∆xf2

Af2

, nf2
y =

∆yf2

Af2

. (5.7)
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At the midpoint at each face, the value of the diffusivity is determined by
the value κ and the interpolating shape functions.

κf1 = [N1κ1 + N2κ2 + N3κ3]f1 =
5

12
κ1 +

5

12
κ2 +

2

12
κ3

κf2 = [N1κ1 + N2κ2 + N3κ3]f2 =
5

12
κ1 +

2

12
κ2 +

5

12
κ3

This is sufficient information to calculate the left hand side of the problem.
The challenge is how to compute, and use the information above to get a
complete closed system of equations,

Bhuh = fh, (5.8)

and solve it with a iterative method. The integral formulation gives the rise
to determine the components of the coefficent matrix.

Bh = aij =

∫
∂Vi

(κ∇φj) · nds (5.9)

The following will represent in practice how the coefficient matrix 5.9 can
be developed by the information obtained previously in the chapter. The
notation ∂Vi|f1 and ∂Vi|f2 means the area or the length of that particular
face we are considering. I.e. ∂Vi|f1 = Af1 for the i’th control volume, and
similarly ∂Vi|f2 = Af2 as in the equations (5.4) and (5.5).∫

∂Vi

(κ∇φj) · nds =

∫
f1

(κ∇φj) · nds +

∫
f2

(κ∇φj) · nds

≈ κ∇φj · n ∂Vi|f1 + κ∇φj · n ∂Vi|f2

Here we have that ∂Vi|f1 is the same as multiplying with Af1, and similarly
with ∂Vi|f2. To gain the result below, we also use the definitions of the n
with respect to x and y as in (5.6) and (5.7) respectively. The same applies
for ∂φ

∂x
and ∂φ

∂y
.

κ∇φj · n ∂Vi|f1 = κf1
∂φ

∂x
∆yf1 − κf1

∂φ

∂y
∆xf1

= κf1[N1xφ1 + N2xφ2 + N3xφ3]∆yf1

− κf1[N1yφ1 + N2yφ2 + N3yφ3]∆xf1,

κ∇φj · n ∂Vij|f2 = κf2
∂φ

∂x
∆yf2 − κf2

∂φ

∂y
∆xf2

= κf2[N1xφ1 + N2xφ2 + N3xφ3]∆yf2

− κf2[N1yφ1 + N2yφ2 + N3yφ3]∆xf2.



5.2 Implementation of the Two Level Additive Schwartz Method 41

The above expressions can be generalized to all the nodes and their respective
support nodes.∫

∂Vi

κ∇φds ≈ −a(i, i)φi + a(i, Ri,j)φRi,j
+ a(i, Rj+1)φRi,j+1

, (5.10)

aκ
1 = −κf1N1x∆yf1 + κf1N1y∆xf1 − κf2N1x∆yf2 + κf2N1y∆xf2,

aκ
2 = κf1N2x∆yf1 − κf1N2y∆xf1 + κf2N2x∆yf2 − κf2N2y∆xf2,

aκ
3 = κf1N3x∆yf1 − κf1N3y∆xf1 + κf2N3x∆yf2 − κf2N3y∆xf2,

a(i, i) = a(i, i) + aκ
1 ,

a(i, Ri,j) = a(i, Ri,j) + aκ
2 ,

a(i, Ri,j+1) = a(i, Ri,j+1) + aκ
3 .

With a well design coefficient matrix, the task of developing a closed system
of equations is within reach. The solution,

uh = [u1, u2, · · · , uM1 ], (5.11)

is what we want to approximate, but the right hand side

fh = [f1, f2, · · · , fM1 ], (5.12)

remains to calculate. The footnote M1 refer to the internal nodes as in 2.
The elements of the right hand side can be calculated by integration

fi =

∫
Vi

f(x)dx. (5.13)

All the parts of a closed linear system is now at place. The coefficent ma-
trix Ah and the right hand side together with a iterative solver will give an
approximated solution of the problem.

5.2 Implementation of the Two Level Addi-

tive Schwartz Method

We assume we want to solve the system,

Au = f .
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The main tasks is to restrict all the subdomains and develop a coarse grid
corrector. Restriction matrices Ri is defined as a matrix which restricts the
solution to a given subdomain. The idea is that if the coefficient A and the
restriction matrix Ri is multiplied, and then ones more multiplied by the
transpose of the restriction matrix, the result will be the coefficient matrix
on the particular subdomain such that

Ai = RiART
i (5.14)

If there are i different subdomains, there are i different smaller systems to
solve. The sum of all these subdomains are actually a one level preconditioner

B =
∑

i

RT
i A−1

i Ri. (5.15)

The second main task is to construct the coarse grid correction. The solution
of the coarse and fine grid is not in the same dimension. This is the purpose
with the restriction operator R0. The operator R0 transform or averaging
the solution from the coarse level to the fine level. We can formulate the
coarse problem as follows,

A0 = R0ART
0 . (5.16)

A summation of equation (5.15) and (5.16) results in a two level additive
Schwarz method such that the preconditioner is defined as

B = RT
0 A−1

0 R0 +
∑

i

RT
i A−1

i Ri. (5.17)

5.2.1 Restriction Matrices Ri

The restriction matrix will in general never be constructed for the subdo-
mains. A partitioning algorithm is usual used for this purpose. This type of
algorithm is choosing out the favourably nodes, or optimizes the partition-
ing, such that we get a good partitioning which is consistent with solving the
system with the desired accuracy and convergence. A simple partitioning
can be one where the coarse space is defined, and the fine space is just a
refinement of the coarse space. All the fine nodes in each subdomain defines
the particular subdomain. It is often practical to have a overlap between
the subdomains, such that the convergence of the method increases. When
all the domains is defined by the fine nodes, a loop choosing out the cor-
rect nodes of the coefficient matrix is applied, such that there are a minor
coefficient matrix, solving the system on the desired place of the domain, or
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the actual subdomain. This is beneficial and suitable for parallel computing.
The system solves all the small systems instead of the large one. A disadvan-
tage of this is of course that the overall error is pretty large, but this is solved
by generating the coarse grid correction. Although it is normal to formulate
the local solver, or subdomain solver with this restriction matrices, it is in
general never constructed.

5.2.2 Interpolation Matrix R0

For developing the interpolation matrix from coarse space to the fine space,
we use linear interpolation. We can represent the coarse space basis as the
identity matrix, where each column in the matrix is an basis for the coarse
space. The basis spans the whole coarse space. If we interpolate the basis
functions from the coarse space to the fine space, we get an approximated
changed new basis, thus this now applies in the fine space. The output after
this interpolation is an array which represents an averaging. This matrix
is called the interpolation matrix and can be multiplied with the solution of
the coarse space problem. This gives an solution that applies in the fine space.

It is important how the interpolation is applied, and it is important that
the triangular elements are accounted for. This means that the input of
the interpolation has to contribute for the triangles. If we interpolates with
wrong functions, e.i. interpolates such that the nodes forms squares instead
of triangles. In this case the change of basis apply for squares and not tri-
angle on the fine scale. Interpolation of the coarse problem should apply for
triangles and not squares, this averaging will be wrong although it will be
approximately correct. The moral is that it is important to be aware of this,
and if a wrong basis change is applied, we have to take account for this in
our analyse, and the error will be of an another order.

We denote the coarse grid with 2h and the fine grid with h. The map-
ping from the coarse grid to the fine grid can be expressed as follows. The
transfer from fine grid to coarse grid and vice-versa is made possible by the
inter grid operators namely restriction and interpolation respectively. The
standard interpolation operator is a linear operator from R(N/2)−1 to RN−1.
This map takes coarse grid vectors v2h and produce fine grid vectors vh, by
the rule Ih

2hv
2h = vh defined by,

vh
2i = v2h

j (5.18)

vh
2j+1 =

1

2
(v2h

j + v2h
j+1) (5.19)
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for 0 ≤ j ≤ N
2
− 1. In the fine grid Ωh, the value of vh at the even numbered

grid points are directly transferred from Ω2h where the values at the vector
vh at the odd numbered grid points is the average of the adjacent coarse grid
values. For two dimensions, the linear interpolation is defined by,

vh
2i,2j = v2h

i,j (5.20)

vh
2i+1,2j =

1

2
(v2h

i,j + v2h
i+1,j) (5.21)

vh
2i,2j+1 =

1

2
(v2h

i,j + v2h
i,j+1) (5.22)

vh
2i+1,2j+1 =

1

2
(v2h

i,j + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1) (5.23)

The restriction operator is linear operator from RN−1 to R(N/2)−1. This
means that the fine grid vector is vh taken such that it produces the coarse
grid vector v2h, i.e. the coarse grid only takes its values from the fine grid.
The standard full weighting operator defined by I2h

h vh = v2h, where

v2h
j =

1

4
(vh

2j−1 + 2vh
2j + vh

2j+1), 1 ≤ j ≤ N

2
− 1 (5.24)

The full weighted restriction operator and the linear interpolation operator
are transpose of each other. For two dimensional problems, the full weighting
operator is given by the rule, I2h

ij vh = v2h, and is defined by

v2h
ij =

1

16
[(vh

2i−1,2j−1 + vh
2i−1,2j+1 + vh

2i+1,2j−1 + vh
2i+1,2j+1) (5.25)

+ 2(vh
2i,2j−1 + vh

2i,2j+1 + vh
2i,2j+1 + vh

2i−1,2j + vh
2i,2j−1) + 4vh

2i,2j] (5.26)

for 1 ≤ i, j ≤ N

2
− 1. (5.27)

As an illustration, we give a simple example. The restriction operator ap-
plied on a (1 × 7) vector produces a (1 × 3) vector, where Rw = w0

R =

 1 2 1 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 1 2 1

 , w =



w1

w2

w3

w4

w5

w6

w7


, w0 =

 w1 + 2w2 + w3

w3 + 2w4 + w5

w5 + 2w6 + w7



The basis of for the null space of the restriction operator N(I2h
h ) is: (2,−1, 0, 0, 0, 0, 0),

(0,−1, 2,−1, 0, 0, 0), (0, 0, 0,−1, 2,−1, 0), (0, 0, 0, 0, 0,−1, 2). The interpola-
tion operator on a (1× 3) vector produces a (1× 7) vector: R′v = 1

2
v0 where
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R =



1 0 0
2 0 0
1 1 0
0 2 0
0 1 1
0 0 2
0 0 1


, w =

 v1

v2

v3

 , w0 =



v1

2

v1
v1+v2

2

v2
v2+v3

2

v3
v3

2


The basis for R(Ih

2h) is nothing but the column vectors of the interpolation
which represents the so called hat function or triangular function. The use
of linear interpolation in multi grid schemes corresponds to a representation
of the solution in terms of piecewise linear hat scaling functions.

5.2.3 Important Aspects of the Implementation of the
Two Level Additive Schwarz Method

We will now in more simple terms explain the dynamic of how such a method
is implemented. The idea here is to show what lies in the two terms in (5.17).
We start out by defining our coarse problem,

AHuH = fH (5.28)

where AH is an (m × m) matrix, uH and fH is vectors of size m which is
also the number of nodes in the problem. H defines the largest side of one
triangle KH in the discretization. The coarse problem, or the coarse dis-
cretization makes a foundation for the subdomains. KH defines the triangles
on coarse scale level. Each triangle made on the coarse grid, is defined as
one subdomain Si. We define the boundary of a Si as SB

i . Further the whole
domain is refined such that we get a new system,

Ahuh = fh (5.29)

where Ah is an n × n matrix, uh and fh is vectors of size n which is the
number of nodes in the refined version of the problem. As in (5.28), h
in (5.29) defines the largest sides of the triangle Kh that makes out the
discretization. The task now is to determine what triangle of the fine scaled
problem (5.29) that lies in the coarse scale problem (5.28) such that the
subdomains Si = {Kh ∈ KH}. For gaining an overlap, simply define that for
all Kh on SB

i , all Kh that share a common node with SB
i should also be

included in Si. If this is done several times, an overlap of desired size can be
obtained. SN

i = {n∈ SKH
} and are used to determine the sub problems

ASN
i
uSN

i
= fSN

i
, (5.30)
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where ASN
i

is a (p×p) matrix consisting of the elements in, SN
i , uSN

i
and fSN

i

is vectors of size p which is the number of nodes in SN
i . The system (5.30) is

solved such that
uSN

i
= A−1

SN
i
fSN

i
(5.31)

for every subdomain Si. This creates a solution uSN
i

which is a vector of size
p. We define a new solution vector vh which are of the same size as the fine
scaled problem (5.29). We map the solution uSN

i
from the sub problem to

the great problem such that Z : uSN
i
→ vh(uSN

i
). The vector vh(uSN

i
is the

term
∑

i R
T
i A−1

i Ri of the preconditioner B. Further we solve the the coarse
problem (5.28) such that,

uH = A−1
H fH (5.32)

The idea is that we add the two solutions vh and uH together, such that we
get the two level preconditioner. This is not possible, and before this can
be done, a interpolation of the solution uH onto vh. We define triangular
linear interpolation such that IhHuH = uh approximately. In practice this
interpolation is produced by define a identity matrix I of size (m×m) where
the elements on the diagonal forms the basis of the nodes m at their actual
position as in the discretization of equation (5.28). Then the triangular linear
interpolation is applied to each column of I. From each interpolation we get
a “new“ fine scaled basis of size n approximating the “old“ coarse basis of
size m. The interpolation IhH is a matrix of size (m × n), and are actually
the interpolating matrix R0 from equation (5.17). The preconditioner B in
equation (5.17) can be used together with the GMRES method as a matrix,
or as an vector matrix product such that,

u = IhHuH +
m∑
i=1

uSN
i

(5.33)



Chapter 6

Convergence Rate of the
CVFEM Preconditioned with
Two Level Additive Schwarz
method

In this section we present an analytical estimate of the rate of convergence
of the combined method of the CVFEM and the two level additive Schwarz
method as a preconditioner. The results in [9] are based of inexact solver un-
like the theory presented here. In this analysis we have developed the theory
to apply for exact solvers. Still, the theory follows the lines from [9], and the
theorem and lemmas mentioned in this section, will not be proved. These
are available in the same article. The theory will be tested with different
triangulations and discretizations, both regular and irregular triangulation
in chapter 7. The idea is to use the GMRES to solve (4.28), and to determine
the coefficient cp and Cp in the equations (3.18). First we have to define a
proper inner product. In the analysis done in the next section we choose this
inner product to be

[v, w] = ã(v, w) =
∑
K∈τh

meas(K)(A(QK)∇v) · ∇w, (6.1)

where QK denote the barycentre of the finite element K. The benefits re-
lated to this choice of inner product is that it preserves good convergence
properties. The task is then to solve (4.28) through the inner product (6.1).
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Schwarz method

6.1 Estimate of Convergence Rate

The first lemma introduced shows that the different bilinear forms are ap-
proximately equal.

Lemma 1 For the bilinear forms a(·, ·), ah(·, ·) and ã(·, ·), the following es-
timates hold:

|a(v, w) − ã(v, w)| ≤ h||v||a||w||a, ∀v, w ∈ Sh
0 , (6.2)

|a(v, w) − ah(v, w)| ≤ h||v||a||w||a, ∀v, w ∈ Sh
0 . (6.3)

where ||v||a = a(v, v)1/2.

We can prove the first inequality of lemma 1 with the definitions of a(·, ·)
and ã(·, ·) and Friedrichs and Cauchy-Schwartz inequalities. The second in-
equality are more complex and refer to [9] for the proof. Thus an immediate
consequence of lemma 1 is lemma 2.

Lemma 2 There exists a positive constant H0 > 0, such that for h < H0,
we have

||v||a ' ||v||ã ' ||v||ah
' ||v||1,Ω, ∀v ∈ Sh

0 , (6.4)

where ||v||ã = ã(v, v)1/2, ||v||ah
= ah(v, v)1/2.

For lemma 2 to hold, we assume from now that the terms h and H satisfy
h < H < H0. The same principle yields for the bilinear form of the coarse
mesh, such that if we replace h with H in lemma 1 we get lemma 3.

Lemma 3 For the bilinear form aH(·, ·), we have the estimate

|aH(v, w) − a(v, w)| . H||v||a||w||a, ∀v ∈ SH
0 . (6.5)

Lemma 4 For the operators Ti, i = 0, 1, · · · , N , we have

||Tiv||a . ||v||a, ∀v ∈ Sh
0 , i = 0, 1, · · · , N. (6.6)

For the proof of lemma 4 lemmas we need the definitions of Ti and T0.
Consider Ti and T0 separately and deduce from that base.

Lemma 5 For all v ∈ Sh
0 , i = 0, 1, · · · , N , we have

ah(v, Tiv) & ã(Tiv, Tiv), (6.7)

||Tiv||ah
. ||v||ã, (6.8)

ah(Tiv, Tiv) & ã(Tiv, Tiv). (6.9)
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The lemma can be proved through the definition of ah(·, ·) and lemma 2 and
lemma 4. The second inequality follows from lemma 3. The third inequality
are also deduced with the same lemmas and definitions.

Lemma 6 Let the linear operator Ti be defined as in (4.20). Then for all
v ∈ Sh

0 , we have

ã(Tiv, v) ≥ C3ã(Tiv, Tiv) − C4hã(v, v), (6.10)

where C3 and C4 are two generic positive constants independent of H and h.

The lemma can be proved with the help of lemma 1,2,4 and 5. We further
use some existing results for the two level additive Schwarz methods for
symmetric problems such as in [18]. For i ≤ i, j ≤ N , define εij ∈ [0, 1] to
be the minimal value that satisfy

a(vi, vj) ≤ εija(vi, vi)
1/2a(vj, vj)

1/2, vi ∈ Sh
i , vj ∈ Sh

j . (6.11)

We define ρ(ε) to be the spectral radius of ε. It is given in [18] that ρ(ε) is
bounded above by a constant independent of H and h. Moreover, let α > 0
be the minimal constant such that for all v ∈ Sh

0 there exists a representation
v =

∑N
i=0 vi, with v0 ∈ SH

i , vi ∈ Sh
0 , i = 1, · · ·N , such that

N∑
i=0

a(vi, vi) ≤ α2a(v, v). (6.12)

If {Ωi} has a generous overlap, α can be bounded above independent of H
and h, and if {Ω} has a small overlap, α can be bounded by above with
C(1 + H

h
)1/2. From (2) and (6.11) the result leads to a new lemma

Lemma 7 . There exists a positive constant C5 such that for i ≤ i, j ≤ N
the following estimate holds:

a(vi, vj) ≤ C5εija(vi, vi)
1/2a(vj, vj)

1/2, vi ∈ Sh
i , vj ∈ Sh

j . (6.13)

Lemma 7 is used in the next lemma which are again used to full fill the
convergence of the method.

Lemma 8 There exists a positive constant C6, such that for all v ∈ Sh
0 ,

N∑
i=0

ã(Tiv, Tiv) ≥ C6α
−2ã(v, v). (6.14)
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Schwarz method

The problem is solved by the GMRES method trough the inner product
ã(·, ·), thus (3.18) becomes

cp = inf
v∈Sh

0 \0

ã(Tv, v)

ã(v, v)
and (6.15)

Cp = sup
v∈Sh

0 \0

ã(Tv, Tv)

ã(v, v)
, (6.16)

where T =
∑N

i=0 Ti is given in (4.20). To obtain the convergence rate esti-
mate, we must calculate cp and Cp. This is done with lemma 6, 7 and 8, and
the results are similar as in [18].

Lemma 9 For the constants cp and Cp defined in (6.15), we have the esti-
mates

cp ≥ C3C6α
−2 − C4(1 + N)h, (6.17)

CP ≥ C2
7(1 + ρ(ε) + h)2, (6.18)

where C7 is a genetric positive constant independent of h, H and α.

With lemma 9 we can conclude with the final theorem stating under certain
conditions that we have good convergence properties. The theorem are given
and proved in [9] and will be tested numerically in the next section.

Theorem 4 There exist two positive constants H0 > h0 > 0 such that the
GMRES method for solving problem (4.20) with respect to the inner product
(6.1) is convergent as h < h0 and H < H0. Furthermore, If Ωi has generous
overlap, the convergence rate is optimal, i.e. independent of H and h.



Chapter 7

Numerical Results

In this chapter we will test the theory described in the past chapters. The
main focus will be to investigate how the CVFEM preconditioned with a two
level additive Schwarz method works relative to other preconditioners, and
test the theorem described in 4. We will look at heterogeneous problems with
antisymmetric coefficient matrix such as generated by the CVFEM. We will
both look at uniform and non uniform discretizations for the purpose to test
the method more extensively. We will look how the convergence change with
increasing overlap, and study the impact of different size of subdomains. The
discretization error will be measured in L2 and H1 norms.

7.1 Reference Solution

Because of the lack of an exact solution in heterogeneous cases, we have to
compare the convergence with an estimate of the exact solution. An estimate
of the exact solution is here provided by solving the problem on a very fine
scale, and using this solution as an “exact”. We then have to interpolate the
solution we get from the approximated solution to the fine reference solution.
Obviously under this interpolation errors are introduced, but it should be the
same every time we compute the norm, and we should recognize the error in
the experiments.

7.2 Numerical Experiments on Regular Mesh

The first part of the numerical experiments are carried out on regular trian-
gles. It can be interesting to investigate how different types of discretizations
and how this affect the results. A regular discretization is often the first step
in 2d implementation of elliptic partial differential equations.
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7.2.1 The Problem

The numerical experiments in the rest of this section are carried out on the
following equation{

−∇ · (D∇u) = f in Ω := (−1, 1)
u = 0 on ∂Ω,

(7.1)

and the right hand side f is chosen to be

f = −2π2 sin(πx) sin(πy), (7.2)

where x, y ∈ Ω
∪

∂Ω and D is the diffusion coefficient. The diffusion coeffi-
cient is set to be a function of the discretization. We apply this coefficient
when we assemble the coefficient matrix, and to ensure that we get an an-
tisymmetric problem, we let D(zi) = ex(zi). If we let Bh be the coefficient
matrix we get an antisymmetry of order 0.1−0.01 on the majority the of the
off-diagonal elements. This is of coarse also dependent on the triangulation.
This is one of the major reasons for testing the theory nummerically on both
regular and irregular triangles. Since we choose the barycentre as the point
in the elements that conforming the faces of each control volume, we ensure
that we get an antisymmetric matrix. It is well known that this theory ap-
plies on symmetric cases, but for unsymmetrical cases it is not as proven.
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Figure 7.1: Typical coarse mesh used as preconditioner in the two level ad-
ditive Schwarz method with regular triangles.
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Figure 7.2: Here we see a refined version of the discretization in figure 7.1.
In each triangle of the coarse grid we refine the triangle, this constitutes one
subdomain of the preconditioner and shows the fine mesh discretization.
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Figure 7.3: Solution of the test problem with regular triangulation

Error Estimate Regular Mesh

Table 7.1:
Unknowns L2 error H1 error ROC L2/h

2 ROC H1/h
49 1.19150e-2 2.18016 2.43163e-4 3.11452e-1
225 4.10050e-4 0.38938 1.82245e-6 2.59593e-2
961 1.95947e-5 7.14862e-2 2.03899e-8 2.30601e-3
3969 1.07211e-6 1.21620e-2 2.70123e-10 1.93048e-4
16129 6.47259e-8 1.38927e-3 4.01302e-12 1.09391e-5

We observe that the error in the L2 norm has a O(h2) behaviour with a con-
stant term C from equation (2.46) approximately ≈ 10−2. The reason why
we see this scaling is because of the interpolation we do when we compare the
reference solution with the approximated solution. For the H1 error estimate
we see a convergence rate of order O(h). Here the constant C in equation
(2.45) is ≈ 10−1. This shows that the implementation of the CVFEM method
is correct, and the error estimate is consistent with the theory as in section
2.3.1.
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7.2.2 Convergence of the CVFEM Preconditioned with
an Overlapping Two Level Additive Schwarz Method
on Regular Mesh

In this section we look how the two level additive Schwarz method on regular
mesh. We check the convergence when the subdomains are held, but with
varying fine discretization. Another experiment involves holding the fine dis-
cretization but varying the subdomains and the coarse mesh. We look at the
recommended situation where the coarse grid and fine grid are proportional
to each other. To show the good convergence properties of the two level ad-
ditive Schwarz method we compare the method against a couple of common
preconditioners. In the rest of this we denote the space discretization of the
coarse grid with H and the corresponding fine discretization with h. The
notation for a generous overlap is O(H) and for a small overlap we use O(h).

Unchanged H with Varying h

Table 7.2:
Unknowns SUBD TRI TOT TRI/SUB ITR O(h) ITR O(H)
121 50 200 4 16 14
441 50 800 16 18 14
1681 50 3200 64 22 15
6561 50 12800 256 27 16
25921 50 51200 1024 37 17

Here we clearly observe the independence of h in the generous overlap case.
We conclude with a constant behaviour although we see small variations in
the results for the O(H) overlapping. The differences in the result occurs
because of the nature of the GMRES. The GMRES only approximate the so-
lution and can give varying results. With O(h) overlap the method converge
dependent of number of unknowns.
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Change H, with h Unchanged

Table 7.3:
Unknowns SUBD TRI TOT TRI/SUB ITR O(h) ITR O(H)
289 8 512 64 17 9
1681 50 3200 64 22 15
3249 98 6272 64 21 15
6561 200 12800 64 21 15
14641 450 28800 64 20 15
40401 1250 80000 64 19 14

In table 7.3 we fix the fine grid discretization and vary the coarse grid dis-
cretization. We see that both cases seem to converge independently of the
mesh. This behaviour occurs since the coarse grid becomes more an more as
a discretization itself, and not a smoothing factor. This is consistent with
theorem 4.

Small and Generous Overlap with H and h Proportional

Table 7.4:
Unknowns SUBD TRI TOT TRI/SUB ITR O(h) ITR O(H)
25 8 32 4 6 5
169 18 288 16 16 12
2401 72 4608 64 21 15
37249 288 73728 256 25 16

For the case where the subdomain and coarse discretization are proportional
we observe that the convergence is constant for the O(H) overlap, while it is
dependent on the mesh with O(h) overlap. When the number of subdomains
and the number of triangles per subdomain are comparable, we have the op-
timal case for the Schwarz methods. In the view of parallization this is the
best situation, as the subdomain and the coarse grid use the same amount
of time to solve the problem.
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Comparison Between Preconditioners

Table 7.5:
Unknowns PLAIN DIAG LUI ASM O(h) ASM O(H)
25 9 9 6 6 5
169 55 35 19 16 12
2401 242 120 68 21 15
37249 941 437 242 25 16

Table 7.5 should be viewed together with figure 7.4. We see some simple,
but usual preconditioners compared with the additive Schwarz methods. The
GMRES without any preconditioner is also displayed. What we see at once
is the low number of iterations the Schwarz methods use to get within the
desired tolerance of the residual.
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GMRES O(H)

Figure 7.4: Comparing between the different preconditioners. GMRES Plain
means no preconditioning at all, GMRES diag means a simple diagonal pre-
conditioner, GMRES LUI means an incomplete lower-upper decomposition
of the coefficient matrix as preconditioner and GMRES O(h) and GMRES
O(H), means two level additive Schwarz method with respectively small and
generous overlap.
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7.3 Numerical Experiments on Unstructured

Mesh

In this section we will study the behaviour of the solution of equation (7.2.1)
when the discretization is unstructured. With the non-uniform structure it
is interesting to see if this gives better or worse convergence conditions. First
we look at the discretization error of the CVFEM.
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Figure 7.5: Discretization of the coarse mesh
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Figure 7.6: The corresponding fine mesh of the coarse mesh
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Figure 7.7: Solution of the of equation (7.2.1) with unstructured discretiza-
tion where f is equal to equation (7.2)
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Error Estimate on Unstructured Mesh

Table 7.6:
Unknowns L2 error H1 error L2/h

2 H1/h
145 5.13586e-3 4.16804e-1 3.54198e-05 3.46137e-2
545 6.40902e-4 9.73264e-2 1.17597e-06 4.16901e-3
1601 3.56757e-05 2.34991e-2 2.22834e-08 5.87293e-4
6913 2.00948e-06 3.16133e-3 2.90681e-10 3.80222e-05
28097 1.21519e-07 2.32436e-4 4.32498e-12 1.38667e-06

We see the same behaviour here as for the regular triangulation. We have a
O(h2) order of the convergence in the L2 norm. We still see that the error is
multiplied with a constant. We do not see the perfect match as in the regular
case. This is because the triangles do not have the same shape over the whole
domain. Especially we see this when the domain is roughly discretisized. We
do observe a O(h) behaviour in the H1 norm as well.

7.3.1 Convergence of the CVFEM Preconditioned with
an Overlapping Two Level Additive Schwarz Method
on Unstructured Mesh

In this section we will investigate numerically the theory described in this
thesis. The case when we have an unstructured mesh is more general than
a regular, and since the coefficient matrix is dependent on the discretization
it is important to look at more general cases. We look at how the numerical
result are compared against the theory and also look at how this method
behaves compared to other well-known preconditioners. The first case we
consider is when the subdomains and coarse problem is proportional.

The Case When the Subdomain and Coarse Mesh is Proportional

Table 7.7:
Unknowns SUBD TRI TOT TRI/SUB ITR O(h) ITR O(H)
13 4 16 4 1 1
145 16 256 16 11 9
2449 74 4736 64 18 14
32801 254 65024 256 23 15
134353 518 267456 520 24 15
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In table 7.7 we see a clear independence of the mesh in the case with generous
overlap , it is on the other side dependent of the discretization in the case of
small overlap on each subdomain. Although the convergence of the method is
significantly better and stabilizes after only a few iterations when the overlap
is of order O(H) it is not sure to be the right choice of overlap. It is important
to take account the increasing computational time an O(H) overlap implies.

Varying H, with h Unchanged

Table 7.8:
Unknowns SUBD TRI TOT TRI/SUB ITR O(h) ITR O(H)
145 4 256 64 8 1
545 16 1024 64 14 10
2449 74 4736 64 18 14
8273 254 16256 64 18 14
13441 414 26496 64 18 14
44033 1366 87424 64 17 13

We see in the generous overlap case that we have a convergence which is
constant. The discretization does not affect how many iterations the GM-
RES uses. This is a behaviour that is consistent with theorem 4 in chapter
6. The convergence is not dependent on the mesh at all. In the first two
iteration we get better convergence than for the larger problems. The reason
for this is that there are few enough discretization points that the overlap
almost stretches over the whole domain. In fact in the first row the overlap
stretches over the whole domain and we obtain the desired tolerance after
just one iteration. In row two, the overlap is still large compared to the
domain, and we see better convergence properties for that reason.

For the case when we have a small overlap we see that the method stabi-
lizes when we increase the coarse grid and fix the fine discretization. We
see good convergence properties because the coarse grid catches most of the
characteristics of the solution and we do not need so many iterations before
we get the residual within the desired tolerance.
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Varying h, with Unchanged H

Table 7.9:
Unknowns SUBD TRI TOT TRI/SUB ITR O(h) ITR O(H)
53 20 80 4 12 12
185 20 320 16 16 12
689 20 1280 64 19 13
2657 20 5120 256 25 14
10433 20 20480 1024 35 14
41345 20 81920 4096 47 15

In table 7.9 we see a constant behaviour of the convergence when we have
a generous overlap, consistent with the theory. We also see with an small
overlap the dependence of the mesh. When we increase the number of fine
nodes, we clearly see the dependence of the grid unlike when we have a
generous overlap where we see the constant behaviour.

Comparison Between Preconditioners

Table 7.10:
Unknowns PLAIN DIAG LUI ASM O(h) ASM O(H)
13 2 2 4 1 1
145 37 26 17 11 9
2449 277 173 72 18 14
32801 1124 695 281 23 15
134353 - - - 24 15

This table 7.10 should be seen together with figure 7.8. Here we see the good
convergence properties of the two level additive Schwarz method, both for
small and generous overlap. While all the preconditioners we have compared
the method with are clear off the mark, the additive Schwarz method with
both small and generous overlap is relatively stable. In fact the case where
we have generous overlap we have that the number of iterations needed to
be within the tolerance of the residual is bounded by a constant. For the
case where we have a small overlap it is dependent on the mesh, but the
properties are still very good compared to other the other preconditioners in
the table 7.10.
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Figure 7.8: Comparing between the different preconditioners. GMRES Plain
means no preconditioning at all, GMRES diag means a simple diagonal pre-
conditioner, GMRES LUI means an incomplete lower-upper decomposition
of the coefficient matrix as preconditioner, and GMRES O(h) and GMRES
O(H), means two level additive Schwarz method with respectively small and
generous overlap.
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Chapter 8

Summary and Conclusion

In this chapter we summarize and conclude this thesis, and also give some
indication of what interesting things to do about this topic in the future.

8.1 Summary

In this thesis we have looked at the steady state diffusion equation and ap-
plied it to a the CVFEM method. We have also looked at a domain decom-
position algorithm to precondition the system of equations that arises. The
CVFEM is an applicable method for solving elliptic partial differential equa-
tions. The fact that it is locally conservative on each control volume, and
that it can tesselate any planar surface because, makes this method robust.
We have seen how the method is built up, and explained important concepts.

Because the CVFEM generates an unsymmetric coefficient matrix we have
looked at a solver suitable for solving unsymmetric linear problems. We have
seen that the GMRES is such a method, and explained the basic concepts
around how the algorithm works. In addition we have explained the basics
of preconditioning and condition number.

Since the coefficient matrix that arises form the CVFEM often has a large
condition number or is ill conditioned, we have looked at a domain decom-
position method to precondition the system. Especially we have looked at
two level additive Schwarz methods, both with a small and generous overlap.
We have gone through some theory regarding the general Schwarz methods,
and also given a detailed view of the abstract Schwarz framwork for a two
level additive Schwarz method.
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Further we have showed how we may assemble the coefficient matrix that
arises from the CVFEM, We have also discussed some important aspects of
how the two level additive Schwarz method can be implemented.

A theoretical estimate of the convergence of the Schwarz framework together
with the GMRES has been shown without proof and tested thoroughly. We
have also seen how the two level additive Schwarz method provides compared
to other preconditioners.

8.2 Conclusion

In this thesis we have seen how the control volume finite element method pre-
conditoned with a two level additive Schwarz method performs numerically.
We have seen that the discretization error of the CVFEM converges with
order O(h2) in the L2 norm, both for regular and irregular triangulations. In
the H1 norm it also performs as expected, as the error converges with a rate
of order O(h). The focus has not been on discretization errors but more on
the convergence of the preconditioned system.

If we compare the results with the theory there has been no great differ-
ence. The numerical result shows that if there is a generous overlap on each
subdomain, the method is independent on the mesh as theorem 4. For the ex-
ample described in chapter 7 we have seen that the method stabilizes around
15 iterations for small enough h and H. A two level additive Schwarz method
with generous overlap has very good convergence properties. The second best
preconditioner tested here, the LUI decomposition, is outperformed by huge
factors when the discretization is refined.

For the case with small overlap, the theory states that it converges, but
dependent on the mesh size H and h. This is exactly what we see, both
for regular and unstructured mesh. Still, the method converges significantly
better than the preconditioners it is compared against. We can conclude
with that the theory match the numerical results. The method is robust and
converges after relatively few iterations. These types of domain decomposi-
tion methods are tailor-made for parallization.

There are benefits and drawbacks with both cases. For the case with gen-
erous overlap we have that the convergence is bounded by a constant and
independent of the mesh size. The drawbacks is that the linear system to
solve at each subdomain is larger and the computational time to solve the
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subdomains increase. For the case with small overlap we do not have a fixed
convergence rate. Still, the method with small overlap has outstanding con-
vergence properties. There is a fine nuance between what kind of overlap to
choose.

Overall the two level additive Schwarz method as preconditioner on the
CVFEM with both generous and small overlap performs well and accord-
ing to the theory described in the thesis. The method is light years ahead
regarding convergence compared with other regular preconditoners. We have
seen no greater difference between regular and unstructured discretization.

The method is tested against the most common discretizations regarding
triangles, and the results are clear. There is no sense in testing the theory
against discretization techniques that are not in use, or not beneficial. In
the introduction we mentioned that the domain decomposition as precondi-
tioning for control volume methods is not common. Throughout this thesis
we have seen that this actually is a robust and convenient method on the
CVFEM. The problems that arise with the unsymmetric coefficient matrix
is solved by using the GMRES as an iterative solver. In fact the CVFEM
preconditioned with the two level additive Schwarz method performs very
well, and there are no good reasons not using domain decomposition on such
methods. Actual in the light of the results we recommend the two level ad-
ditive Schwarz method as preconditioner for the CVFEM. Further testing
will indicate if other domain decomposition methods are suitable as precon-
ditioner for the CVFEM and other control volume methods.

Domain decomposition on control volume methods is not widespread. Fur-
ther work along this line may be testing and develop theory around other
domain decomposition methods in this framework.
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