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Abstract

We consider a problem of optimal control of an infinite horizon system
governed by forward-backward stochastic differential equations with delay.
Sufficient and necessary maximum principles for optimal control under
partial information in infinite horizon are derived. We illustrate our results
by an application to a problem of optimal consumption with respect to
recursive utility from a cash flow with delay.
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1 Introduction

Let (Ω,F , (Ft)t≥0, P ) be a complete filtered probability space on which a one-
dimensional standard Brownian motion B (·) and an independent compensated
Poisson random measure Ñ(dt, da) = N(dt, da)− ν(da)dt are defined.

We study the following infinite horizon coupled forward-backward stochastic
differential equations (FBSDEs, for short) control system with delay:
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(FORWARD EQUATION)

dX(t) = b (t,X(t), X1(t), X2(t), u(t)) dt+ σ (t,X(t), X1(t), X2(t), u(t)) dB(t)

+
∫
R0

θ (t,X(t), X1(t), X2(t), u(t), a) Ñ(dt, da); t ∈ [0,∞)

X(t) = X0(t); t ∈ [−δ, 0]
(1.1)

where

X1(t) = X(t− δ) and X2(t) =
t∫

t−δ
e−ρ(t−r)X(r)dr.

(BACKWARD EQUATION)

dY (t) = −g (t,X(t), X1(t), X2(t), Y (t), Z(t), u(t)) dt+ Z(t)dB(t)

+
∫
R0

K (t, a) Ñ(dt, da); t ∈ [0,∞) · (1.2)

Throughout this paper, we introduce the following basic assumptions

δ > 0, ρ > 0 are given constants,
b : [0,∞)× R× R× R× U × Ω→ R,
σ : [0,∞)× R× R× R× U × Ω→ R,
g : [0,∞)× R× R× R× R× R× U × Ω→ R,
θ,K : [0,∞)× R× R× R× U × R0 × Ω→ R,
f : [0,∞)× R× R× R× R× R×R× U × Ω→ R,
h : R→ R,

where the coefficients b, σ, θand g are Fréchet differentiable (C1) with respect
to the variables (x, x1, x2, y, z, u).

We denote by R, the set of all functions k : R0 := R8{0} → R.
We interprete the infinite horizon BSDE (1.2) in the sense of Pardoux [16],

i.e. for all T <∞, (Y (t), Z(t),K (t, ·)) solves the equation

Y (t) = Y (T ) +
T∫
t

g (s,X(s), X1(s), X2(s), Y (s), Z(s)) ds−
T∫
t

Z(s)dB(s)

−
T∫
t

∫
R0

K (s, a) Ñ(ds, da); 0 ≤ t ≤ T ,

(1.3)
and moreover,

E[sup
t≥0

eλtY 2(t) +
∞∫
0

eλt(Z2(t) +
∫
R0

K2 (s, a) ν(da))dt] <∞ (1.4)

for sufficiently large constant λ. See section 4 in [16] for more details.
Note that by the Itô representation theorem for Lévy processes ( see [20]),

equation (1.3) is equivalent to the equation
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Y (t) = E[Y (T ) +
T∫
t

g (s,X(s), X1(s), X2(s), Y (s), Z(s)) ds | Ft]; t ≤ T ,

for all T <∞.
(1.5)

Let Et ⊆ Ft be a given subfiltration, representing the information available
to the controller at time t.

Let U be a non-empty convex subset of R. We let AE denote a given locally
convex family of admissible Et-predictable control processes with values in U .

The corresponding performance functional is

J(u) = E[
∞∫
0

f (t,X(t), X1(t), X2(t), Y (t), Z(t),K (t, ·) , u(t)) dt+ h(Y (0))]

(1.6)
where we assume that the functions f and h are Fréchet differentiable (C1)

with respect to the variables (x, x1, x2, y, z, k(·), u) and Y (0), respectively, and
f satisfies

E[
∞∫
0

|f (t,X(t), X1(t), X2(t), Y (t), Z(t),K (t, ·) , u(t)) | dt] <∞. (1.7)

The optimal control problem is to find an optimal control u∗ ∈ AE and the
value function ΦE ∈ R such that

ΦE (X0) = sup
u∈AE

J(u) = J(u∗) (1.8)

We will study this problem by using a version of the maximum principle
which is a combination of the infinite horizon maximum principle in [1] and the
finite horizon maximum principle for FBSDEs in [12] and [15].

The Hamiltonian

H : [0,∞)× R× R× R× R× R× L2(ν)× U × R× R× R× L2(ν)→ R

is defined as

H(t, x, x1, x2, y, z, k(·), u, λ, p, q, r(·)) = f(t, x, x1, x2, y, z, k, u) + g(t, x, x1, x2, y, z, u)λ
+ b(t, x, x1, x2, u)p+ σ(t, x, x1, x2, u)q +

∫
R0

θ(t, x, x1, x2, u, a)r(t, a)ν(da).

(1.9)
We suppose that the Hamiltonian H is Fréchet differentiable (C1) in the

variables x, x1, x2, y, z, k.
We associate to the problem (1.8) the following pair of forward- backward

SDEs in the adjoint processes λ(t), ( p(t), q(t), r(t, ·)):
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(ADJOINT FORWARD EQUATION)

dλ(t) = ∂H
∂y (t,X(t), X1(t), X2(t), Y (t), Z(t),K(t, ·), u(t), λ(t), p(t), q(t), r(t, ·)) dt

+∂H
∂z (t,X(t), X1(t), X2(t), Y (t), Z(t),K(t, ·), u(t), λ(t), p(t), q(t), r(t, ·)) dB(t)

+
∫
R0

∇kH(t,X(t), X1(t), X2(t), Y (t), Z(t),K(t, ·), u(t), λ(t), p(t), q(t), r(t, ·))Ñ(dt, da)

λ(0) = h
′
(Y (0))

(1.10)
(ADJOINT BACKWARD EQUATION)

dp(t) = E[µ(t) | Ft]dt+ q(t)dB(t) +
∫
R0

r(t, a)Ñ(dt, da); t ∈ [0,∞) (1.11)

where

µ(t) = −∂H∂x (t,X(t), X1(t), X2(t), Y (t), Z(t),K(t, ·), u(t), λ(t), p(t), q(t), r(t, ·))
− ∂H
∂x1

(t+ δ,X(t+ δ), X1(t+ δ), X2(t+ δ), Y (t+ δ), Z(t+ δ),K(t+ δ, ·),

u(t+ δ), λ(t+ δ), p(t+ δ), q(t+ δ), r(t+ δ, ·))

−eρt(
t+δ∫
t

∂H
∂x2

(s,X(s), X1(s), X2(s), Y (s), Z(s),K(s, ·), u(s), λ(s), p(s), q(s), r(s, ·))e−ρsds).

(1.12)

The unknown process λ(t) is the adjoint process corresponding to the back-
ward system (Y (t), Z(t),K(t, a)) and the triple unknown (p(t), q(t), r(t, a)) is
the adjoint process corresponding to the forward system X(t).

We show that in this infinite horizon setting the missing terminal conditions
for the BSDEs for (Y (t), Z(t),K(t, ·)) and (p(t), q(t), r(t, ·)) should be replaced
by asymptotic transversality conditions. See (H1) and (H5) below.

In this paper we obtain a sufficient and a necessary maximum principle
for infinite horizon control of FBSDEs with delay. As an illustration we solve
explicitly an infinite horizon optimal consumption problem with recursive utility.
Related papers dealing with infinite horizon control, but either without FB
systems or without delay, are [1], [8], [17] and [21]. Other related stochastic
control publications dealing with finite horizon only are [2], [3], [4], [5], [6], [7],
[9], [10], [11], [12], [13], [14], [15], [16], [18], [19],[20] and [22].

2 Sufficient maximum principle for partial in-
formation

We will prove in this section that under some assumptions the maximization of
the Hamiltonian leads to an optimal control.
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Theorem 2.1 Let û ∈ AE with corresponding solutions X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t),

K̂(t, a), p̂(t), q̂(t), r̂(t, a) and λ̂(t) of equations (1.1), (1.2), (1.10) and (1.11).
Suppose that:

(H1): (Transversality conditions)

lim
T→∞

E[ p̂(T )(X̂(T )−X(T ))] ≤ 0

and
lim
T→∞

E [λ̂(T )(Ŷ (T )− Y (T ))] ≥ 0.

(H2): (Concavity)
The functions x→ h(x) and

(x, x1, x2, y, z, k, u)→ H(t, x, x1, x2, y, z, K̂(·), u, λ̂, p̂, q̂, r̂(·))

are concave, for all t ∈ [0,∞).
(H3): (The conditional maximum principle)

max
v∈U

E[H(t, X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t), K̂(t, ·), v, λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Et]

= E[H(t, X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t), K̂(t, ·), û(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Et].

(H4): ( Growth conditions) Suppose for all u ∈ AE that the following holds:

E[
∞∫
0

(Ŷ (t)− Y (t))2{(∂Ĥ∂y (t))2 +
∫
R0

∥∥∥∇kĤ(t, a)
∥∥∥2 ν(da)}dt] <∞ (2.1)

E[
∞∫
0

λ̂2(t){(Ẑ(t)− Z(t))2 +
∫
R0

(K̂(t, a)−K(t, a))2ν(da)}dt] <∞ (2.2)

E[
∞∫
0

(X̂(t)−X(t))2{q̂2(t) +
∫
R0

r̂2(t, a)ν(da)}dt] <∞ (2.3)

E[
∞∫
0

p̂2(t){(σ̂(t)− σ(t))2 +
∫
R0

(θ̂(t, a)− θ(t, a))2ν(da)}dt] <∞ (2.4)

where X(t), X1(t), X2(t), Y (t), Z(t),K(t, a) are the solutions of (1.1), (1.2)
corresponding to u, and we are using the notation

∂Ĥ
∂z (t) = d

dzH(t, X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t), K̂(t, ·), z, λ̂(t), p̂(t), q̂(t), r̂(t, ·)) |z=Ẑ(t)

and similarly with ∇kĤ(t, a).
Then û(t) is an optimal control for (1.8), i.e.

J(û) = sup
u∈AE

J(u).

Proof. Assume that u ∈ AE . We want to prove that J(û)− J(u) ≥ 0, i.e.û is an optimal control.
We put

J(û)− J(u) = I1 + I2 (2.5)
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where

I1 = E[
∞∫
0

{f(t, X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t), K̂(t, ·), û(t))

−f (t,X(t), X1(t), X2(t), Y (t), Z(t), K (t, ·) , u(t))} dt]

and
I2 = E[h(Ŷ (0))− h(Y (0))].

By the definition of H, we have

I1 = E[
∞∫
0

{(Ĥ(t)−H(t))− (ĝ(t)− g(t))λ̂(t)− (b̂(t)− b(t))p̂(t)

−(σ̂(t)− σ(t))q̂(t)−
∫
R0

(θ̂(t, a)− θ(t, a))r̂(t, a)ν(da)}dt]
(2.6)

where we have used the simplified notation

Ĥ(t) = Ĥ(t, X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t), K̂(t, ·), û(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·))
H(t) = H(t,X(t), X1(t), X2(t), Y (t), Z(t),K(t, ·), u(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·)) etc.

Since h is concave, we have

h(Ŷ (0))− h(Y (0)) ≥ h′(Ŷ (0))(Ŷ (0)− Y (0)) = λ̂(0)(Ŷ (0)− Y (0)) .

By Itô’s formula, (H4), (1.2) and (1.10), we have for all T

E[λ̂(0)(Ŷ (0)− Y (0))] = E[λ̂(T )(Ŷ (T )− Y (T ))

−
T∫
0

λ̂(t)d(Ŷ (t)− Y (t))−
T∫
0

(Ŷ (t)− Y (t))dλ̂(t)

−
T∫
0

(Ẑ(t)− Z(t))∂Ĥ∂z (t)dt−
T∫
0

∫
R0

∇kĤ(t, a)(K̂(t, a)−K(t, a))ν(da)dt]

Letting T →∞, we obtain

E[λ̂(0)(Ŷ (0)− Y (0))] = lim
T→∞

E [λ̂(T )(Ŷ (T )− Y (T ))]

−E[
∞∫
0

{−λ̂(t)(ĝ(t)− g(t)) + (Ŷ (t)− Y (t))∂Ĥ∂y (t) + (Ẑ(t)− Z(t))∂Ĥ∂z (t)

+
∫
R0

∇kĤ(t, a)(K̂(t, a)−K(t, a))ν(da)}dt]. (2.7)

Combining (2.6)− (2.7), we obtain

J(û)− J(u) ≥ lim
T→∞

E [λ̂(T )(Ŷ (T )− Y (T ))]

+E[
∞∫
0

{(Ĥ(t)−H(t))− (b̂(t)− b(t))p̂(t)− (σ̂(t)− σ(t))q̂(t)

−
∫
R0

(θ̂(t, a)− θ(t, a))r̂(t, a)ν(da)− (Ŷ (t)− Y (t))∂Ĥ∂y (t)− (Ẑ(t)− Z(t))∂Ĥ∂z (t)

−
∫
R0

∇kĤ(t, a)(K̂(t, a)−K(t, a))ν(da)}dt].
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Since H is concave, we have

J(û)− J(u) ≥ lim
T→∞

E [λ̂(T )(Ŷ (T )− Y (T ))] + E[
∞∫
0

{(X̂(t)−X(t))∂Ĥ∂x (t)

+(X̂1(t)−X1(t)) ∂Ĥ∂x1
(t) + (X̂2(t)−X2(t)) ∂Ĥ∂x2

(t) + (û(t)− u(t))∂Ĥ∂u (t)

−(b̂(t)− b(t))p̂(t)− (σ̂(t)− σ(t))q̂(t)−
∫
R0

(θ̂(t, a)− θ(t, a))r̂(t, a)ν(da)}dt].

(2.8)
Applying now (H1), (H4) together with the Itô formula to p̂(T )(X̂(T )−X(T )) ,

we get

0 ≥ lim
T→∞

E [ p̂(T )(X̂(T )−X(T ))]

= E[
∞∫
0

{(b̂(t)− b(t))p̂(t)− (X̂(t)−X(t))E[µ̂(t) | Ft]

+(σ̂(t)− σ(t))q̂(t) +
∫
R0

(θ̂(t, a)− θ(t, a))r̂(t, a)ν(da)}dt]

= E[
∞∫
0

{(b̂(t)− b(t))p̂(t)− (X̂(t)−X(t))µ̂(t)

+(σ̂(t)− σ(t))q̂(t) +
∫
R0

(θ̂(t, a)− θ(t, a))r̂(t, a)ν(da)}dt]. (2.9)

By the definition (1.12) of µ , we have

E[
∞∫
0

(X̂(t)−X(t))µ̂(t)dt]

= lim
T→∞

E[
T+δ∫
δ

((X̂(t− δ)−X(t− δ))µ̂(t− δ)dt)]

= lim
T→∞

E[ (−
T+δ∫
δ

∂Ĥ
∂x (t− δ)(X̂(t− δ)−X(t− δ))dt

−
T+δ∫
δ

∂Ĥ
∂x1

(t) (X̂1(t)−X1(t))dt−
T+δ∫
δ

(
t∫

t−δ

∂Ĥ
∂x2

(s) e−ρsds)·

·eρ(t−δ)(X̂(t− δ)−X(t− δ)))dt] . (2.10)

Substituting r = t− δ, we obtain

T∫
0

∂Ĥ
∂x2

(s)(X̂2(s)−X2(s))ds

=
T∫
0

∂Ĥ
∂x2

(s)
s∫

s−δ
e−ρ(s−r)(X̂(r)−X(r))dr ds

=
T∫
0

(
r+δ∫
r

∂Ĥ
∂x2

(s)e−ρsds)eρr(X̂(r)−X(r)) dr

=
T+δ∫
δ

(
t∫

t−δ

∂Ĥ
∂x2

(s) e−ρsds)eρ(t−δ)(X̂(t− δ)−X(t− δ))dt . (2.11)
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Combining (2.8) with (2.9)− (2.11), we deduce that

J(û)− J(u) ≥ lim
T→∞

E [λ̂(T )(Ŷ (T )− Y (T ))]− lim
T→∞

E[p̂(T )(X̂(T )−X(T ))]

+E[
∞∫
0

(û(t)− u(t))∂Ĥ∂u (t)dt]

= lim
T→∞

E[ λ̂(T )(Ŷ (T )− Y (T ))]− lim
T→∞

E [p̂(T )(X̂(T )−X(T ))]

+E[
∞∫
0

E{(û(t)− u(t))∂Ĥ∂u (t) | Et}dt].

Then

J(û)− J(u) ≥ lim
T→∞

E[λ̂(T )(Ŷ (T )− Y (T ))]− lim
T→∞

EE [p̂(T )(X̂(T )−X(T ))]

+ E[
∞∫
0

E{∂Ĥ∂u (t) | Et}(û(t)− u(t))dt].

By assumptions (H1) and (H3), we conclude

J(û)− J(u) ≥ 0

i.e.û is an optimal control.

3 Necessary conditions of optimality for partial
information

A drawback of the previous section is that the concavity condition is not always
satisfied in applications. In view of this, it is of interest to obtain conditions for
an optimal control with partial information where concavity is not needed. We
assume the following:

(A1) For all u ∈ AE and all β ∈ AE bounded, there exists ε>0 such that

u+ sβ ∈ AE for all s ∈ (−ε, ε).

(A2) For all t0, h and all bounded Et0-mesurable random variables α, the
control process β(t) defined by

β(t) = α1[s,s+h)(t) (3.1)

belongs to AE .
(A3) For all bounded β ∈ AE , the derivative processes

ξ(t) := d
dsX

u+sβ(t) |s=0 (3.2)

φ(t) := d
dsY

u+sβ(t) |
s=0

(3.3)

η(t) := d
dsZ

u+sβ(t) |
s=0

(3.4)
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ψ(t, a) := d
dsK

u+sβ(t, a) |s=0 (3.5)

exist and

E[
∞∫
0

{
∣∣∣∂f∂x (t)ξ(t)

∣∣∣+
∣∣∣ ∂f∂x1

(t)ξ(t− δ)
∣∣∣+

∣∣∣∣∣ ∂f∂x2
(t)

t∫
t−δ

e−ρ(t−r)ξ(r)dr

∣∣∣∣∣+
∣∣∣∂f∂y (t)φ(t)

∣∣∣
+
∣∣∣∂f∂z (t)η(t)

∣∣∣+
∣∣∣∂f∂u (t)β(t)

∣∣∣+
∫
R0

|∇kf(t, a)ψ(t, a)| ν(da)}dt <∞.

(3.6)
We can see that

d
dsX

u+sβ
1 (t) |

s=0
= d

dsX
u+sβ(t) |

s=0
= ξ(t− δ)

and

d

ds
Xu+sβ

2 (t) |
s=0

=
t∫

t−δ
e−ρ(t−r)ξ(t)dr.

Note that
ξ(t) = 0 for t ∈ [−δ, 0] .

Theorem 3.1 Suppose that û ∈ AE with corresponding solutions X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t), K̂(t, a),

λ̂(t), p̂(t), q̂(t) and r̂(t, a) of equations (1.1), (1.2), (1.10) and (1.11).
Assume that (2.1)− (2.4) and the following transversality conditions hold:

(H5)

lim
T→∞

E[ p̂(T )ξ(T )] = 0,

lim
T→∞

E[λ̂(T )φ(T )] = 0.

(H6) Moreover, assume that the following growth condition holds

E[
T∫
0

{λ̂2(t)(η2(t) +
∫
R0

ψ2(t, a)ν(da)) + φ2(t)((∂Ĥ∂z )2(t) +
∫
R0

∇kĤ2(t, a)ν(da))

+p̂2(t)(∂σ∂x (t)ξ(t) + ∂σ
∂x1

(t)ξ(t− δ) + ∂σ
∂x2

(t)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂σ

∂u (t)β(t))2

+p̂2(t)(
∫
R0

{ ∂θ∂x (t, a)ξ(t) + ∂θ
∂x1

(t, a)ξ(t− δ) + ∂θ
∂x2

(t, a)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂θ

∂u (t, a)β(t)}2ν(da))}dt] <∞

for all T <∞.

Then the following assertions are equivalent.
(i) For all bounded β ∈ AE ,

d

ds
J(û+ sβ) |s=0= 0.
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(ii) For all t ∈ [0,∞),

E[
∂

∂u
H(t, X̂(t), X̂1(t), X̂2(t), Ŷ (t), Ẑ(t), K̂(t, ·), u, λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Et]u=û(t) = 0.

Proof. (i) =⇒ (ii):
It follows from (1.1) that

dξ(t) = { ∂b∂x (t)ξ(t) + ∂b
∂x1

(t)ξ(t− δ) + ∂b
∂x2

(t)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂b

∂u (t)β(t)}dt

+{∂σ∂x (t)ξ(t) + ∂σ
∂x1

(t)ξ(t− δ) + ∂σ
∂x2

(t)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂σ

∂u (t)β(t)}dB(t)

+
∫
R0

{ ∂θ∂x (t, a)ξ(t) + ∂θ
∂x1

(t, a)ξ(t− δ) + ∂θ
∂x2

(t, a)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂θ

∂u (t, a)β(t)}Ñ(dt, da),

and

dφ(t) = {− ∂g
∂x (t)ξ(t)− ∂g

∂x1
(t)ξ(t− δ)− ∂g

∂x2
(t)

t∫
t−δ

e−ρ(t−r)ξ(r)dr − ∂g
∂y (t)φ(t)

− ∂g
∂u (t)β(t)− ∂g

∂z (t)η(t)}dt+ η(t)dB(t) +
∫
R0

ψ(t, a)Ñ(dt, da),

where for simplicity of notation, we have set

∂

∂x
b(t) =

∂

∂x
b(t,X(t), X1(t), X2(t), u(t)) etc.

Suppose that assertion (i) holds. Then

0 = d
dsJ(û+ sβ) |s=0

= E[
∞∫
0

{∂f∂x (t)ξ(t) + ∂f
∂x1

(t)ξ(t− δ) + ∂f
∂x2

(t)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂f

∂y (t)φ(t)

+∂f
∂z (t)η(t) + ∂f

∂u (t)β(t) +
∫
R0

∇kf(t, a)ψ(t, a)ν(da)}dt+ h
′
(
∧
Y (0))φ(0)].

(3.7)

We know by the definition of H that

∂f

∂x
(t) =

∂H

∂x
(t)− ∂g

∂x
(t)λ(t)− ∂b

∂x
(t)p(t)− ∂σ

∂x
(t)q(t)−

∫
R0

∂θ

∂x
(t, a)r(t, a)ν(da)

and similarly for ∂f
∂x1

(t), ∂f∂x2
(t), ∂f

∂u (t), ∂f
∂y (t), ∂f

∂z (t) and ∇kf(t, a).

By the Itô formula and (H6), we get

E[h
′
(Ŷ (0)φ(0))] = E[λ̂(0)φ(0)]

= lim
T→∞

E[λ̂(T )φ(T )]

− lim
T→∞

E[
T∫
0

{λ̂(t)(− ∂g
∂x (t)ξ(t)− ∂g

∂x1
(t)ξ(t− δ)− ∂g

∂x2
(t)

t∫
t−δ

e−ρ(t−r)ξ(r)dr − ∂g
∂y (t)φ(t)

−∂g∂z (t)η(t)− ∂g
∂u (t)β(t)) + φ(t)∂H∂y (t) + η(t)∂H∂z (t) +

∫
R0

∇kH(t, a)ψ(t, a)ν(da)}dt].

(3.8)
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Substituting (3.8) into (3.7) we get

0 = d
dsJ(û+ sβ) |

s=0

= E[
∞∫
0

{∂f∂x (t)ξ(t) + ∂f
∂x1

(t)ξ(t− δ) + ∂f
∂x2

(t)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂f

∂y (t)φ(t)

+∂f
∂z (t)η(t) + ∂f

∂u (t)β(t) +
∫
R0

∇kf(t, a)ψ(t, a)ν(da)

−λ̂(t)(− ∂g
∂x (t)ξ(t)− ∂g

∂x1
(t)ξ(t− δ)− ∂g

∂x2
(t)

t∫
t−δ

e−ρ(t−r)ξ(r)dr − ∂g
∂y (t)φ(t)

−∂g∂z (t)η(t)− ∂g
∂u (t)β(t)) + φ(t)∂H∂y (t) + η(t)∂H∂z (t) +

∫
R0

∇kH(t, a)ψ(t, a)ν(da)}dt].

(3.9)
Applying the Itô formula to p̂(T )ξ(T ) and using (H6), we get

0 = lim
T→∞

E[p̂(T ) ξ(T )]

= E[
∞∫
0

p̂(t) { ∂b∂x (t)ξ(t) + ∂b
∂x1

(t)ξ(t− δ) + ∂b
∂x2

(t)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂b

∂u (t)β(t)}dt

+
∞∫
0

ξ(t)E[µ(t) | Ft]dt+
∞∫
0

q̂(t){∂σ∂x (t)ξ(t) + ∂σ
∂x1

(t)ξ(t− δ) + ∂σ
∂x2

(t)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂σ

∂u (t)β(t)}dt

+
∞∫
0

∫
R0

r̂(t, a){ ∂θ∂x (t, a)ξ(t) + ∂θ
∂x1

(t, a)ξ(t− δ) + ∂θ
∂x2

(t, a)
t∫

t−δ
e−ρ(t−r)ξ(r)dr + ∂θ

∂u (t, a)β(t)}ν(da)dt]

= − d
dsJ(û+ sβ) |s=0 +E[

∞∫
0

∂H
∂u (t)β(t)dt].

(3.10)
Adding (3.9) and (3.10) we obtain

E[

∞∫
0

∂H

∂u
(t)β(t)dt] = 0.

Now apply this to
β(t) = α1[s,s+h)(t)

where α(ω) is bounded and Et0-mesurable, s ≥ t0. Then we get

E[

s+h∫
s

∂H

∂u
(s)ds α] = 0

Differentiating with respect to h at h = 0 we obtain

E[∂H∂u (s) α] = 0

Since this holds for all s ≥ t0 and all α, we conclude

E[∂H∂u (t0) | Et0 ] = 0 .

This proves that (i) implies (ii).
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(ii) =⇒ (i):
The argument above shows that

d

ds
J(u+ sβ) |s=0= E[

∞∫
0

∂H

∂u
(t)β(t)dt]

for all u, β ∈ AE with β bounded. So to complete the proof we use that
every bounded β ∈ AE can be approximated by linear combinations of controls
β of the form (3.1). We omit the details.

4 Application to optimal consumption with re-
spect to recursive utility

4.1 A general optimal recursive utility problem

Let X(t) = X(c)(t) be a cash flow modelled by

{
dX(t) = X(t− δ)[b0(t)dt+ σ0(t)dB(t) +

∫
R0

γ(t, a)Ñ(dt, da)]− c(t)dt; t ≥ 0

X(0) = x > 0
(4.1)

where b0(t), σ0(t) and γ(t, a) are given bounded Ft-predictable processes,
δ ≥ 0 is a fixed delay and γ(t, a) > −1 for all (t, a) ∈ [0,∞)× R.

The process u(t) = c(t) ≥ 0 is our control process, interpreted as our relative
consumption rate such that X(c)(t) > 0 for all t ≥ 0. We let A denote the family
of all Ft-predictable relative consumption rates. To every c ∈ A we associate
a recursive utility process Y (c)(t) = Y (t) defined as the solution of the infinite
horizon BSDE

Y (t) = E[Y (T ) +
T∫
t

g (s, Y (s), c(s)) ds | Ft] for all t ≤ T , (4.2)

valid for all deterministic T < ∞. We assume that Y (t) satisfies (1.4) (See
Duffie & Epstein (1992)).

Suppose the solution Y (t) of the infinite horizon BSDE (4.2) satisfies the
condition (1.4) and let c(s); s ≥ 0 be the consumption rate.

We assume that the function g(t, y, c) satisfies the following conditions:

• g(t, y, c) is concave with respect to y and c

•
∞∫
0

E [|g(s, Y (s), c(s))|] ds <∞ for all c ∈ A (4.3)

• ∂
∂cg(t, y, c) has an inverse:
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I(t, v, w) =

{
0 if v ≥ v0(t, w)
( ∂∂cg(t, y, c))−1(v) if 0 ≤ v ≤ v0(t, w)

where v0 is ∂
∂cg(t, y, 0).

We study the problem to find c∗ ∈ A such that

sup
c∈A

Y (c)(0) = Y (c∗)(0). (4.4)

We call such a process c∗ a recursive utility optimal consumption rate.
We see that the problem (4.5) is a special case of problem (1.8) with

J(u) = Y (0)

f = 0 , h(y) = y , u = c and

b(t, x, x1, x2, u) = x1b0(t)− c
σ(t, x, x1, x2, u) = x1σ0(t)
θ(t, x, x1, x2, u, a) = x1γ(t, a)

In this case the Hamiltonian defined in (1.9) takes the form

H(t, x, x1, x2, y, z, k(·), u, λ, p, q, r(·)) = λg(t, y, c) + (x1b0(t)− c) p

+ x1σ0(t)q + x1

∫
R0

γ(t, a)r(a)ν(da) (4.5)

Maximizing H as a function of c gives the first order condition

λ(t)
∂g

∂c
(t, Y (t), c(t)) = E[p(t) | Et] (4.6)

for an optimal c(t).
The pair of adjoint processes (1.10)-(1.11) is given by{

dλ(t) = λ(t)∂g∂y (t, Y (t), c(t))dt

λ(0) = 1
(4.7)

and

dp(t) = E[µ(t) | Ft]dt+ q(t)dB(t) +

∫
R0

r(t, a)Ñ(dt, da); t ∈ [0,∞) (4.8)

where

µ(t) = −[b0(t)p(t+ δ) + σ0(t)q(t+ δ)

+

∫
R0

γ(t, a)r(t+ δ, a)ν(da)] (4.9)
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Equation (4.7) has the solution

λ(t) = exp(
t∫
0

∂g

∂y
(s, Y (s), c(s))ds); t ≥ 0 (4.10)

which substituted into (4.6) gives

∂g

∂c
(t, Y (t), c(t)) exp(

t∫
0

∂g

∂y
(s, Y (s), c(s))ds) = E[p(t) | Et] (4.11)

Hence, to find the optimal consumption rate c it suffices to find

E[p(t) | Et]; t ≥ 0.

We refer to Theorem 5.1 in [1] for a proof of the existence of the solution of
the ABSDE (4.8).

4.2 A solvable special case

In order to get a solvable case we choose the driver g in (4.2) to be of the form

g(t, y, c) = −α(t)y + ln c (4.12)

where α(t) ≥ α > 0 is an Ft-adapted process.
We also choose

δ = 0 and Et = Ft; t ≥ 0 (4.13)

and we represent the consumption rate c(t) as

c(t) = ρ(t)X(t), (4.14)

where ρ(t) ≥ 0 is the relative consumption rate.
We assume that ρ is bounded away from 0. This set of controls is denoted

by A.
The FBSDE system now has the form{
dX(t) = X(t−)[(b0(t)− ρ(t))dt+ σ0(t)dB(t) +

∫
R0

γ(t, a)Ñ(dt, da)]; t ≥ 0

X(0) = x > 0
(4.15)

and

Y (t) = Y (ρ)(t) = E[Y (T ) +
T∫
t

(−α(s)Y (s) + ln c(s)) ds | Ft] (4.16)

i.e.
dY (t) = − (−α(t)Y (t) + ln c(t)) dt+ Z(t)dB(t); t ≥ 0 (4.17)

We want to find ρ∗ ∈ A such that

sup
ρ∈A

Y (ρ)(0) = Y (ρ∗)(0) (4.18)
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In this case the Hamiltonian (1.9) gets the form

H(t, x, y, ρ, λ, p, q, r) = λ(−α(t)y + ln(ρx)) + x (b0(t)− ρ) p

+ xσ0(t)q + x

∫
R0

γ(t, a)r(a)ν(da) (4.19)

Maximizing H with respect to ρ gives the first order equation

λ(t)
1

ρ(t)
= p(t)X(t) (4.20)

where, by (1.10)− (1.11) λ(t) and (p(t), q(t), r(t, a)) satisfy the FBSDEs{
dλ(t) = −α(t)λ(t)dt
λ(0) = 1

(4.21)

and

dp(t) = −[λ(t) 1
X(t) + (b0(t)− ρ(t)) p(t) + σ0(t)q(t)

+
∫
R0

γ(t, a)r(a)ν(da)]dt+ q(t)dB(t) +
∫
R0

r(t, a)Ñ(dt, da) (4.22)

The infinite horizon BSDE (4.22) has a unique solution, (see Theorem 3.1
in [8]).

Then, the solutions of (4.21)− (4.22) are respectively,

λ(t) = exp(−
t∫
0

α(s)ds) (4.23)

and, for all 0 ≤ t ≤ T and all T <∞,

p(t)Γ(t) = E[p(T )Γ(T ) +
T∫
t

λ(s)
Γ(s)

X(s)
ds | Ft], (4.24)

where Γ(t) is given by
dΓ(t) = Γ(t−)[(b0(t)− ρ(t)) dt+ σ0(t)dB(t)

+
∫
R0

γ(t, a)Ñ(dt, da)]; t ≥ 0

Γ(0) = 1

(4.25)

(See e.g.[14, 18]).
This gives

Γ(t) = exp(−
t∫
0

σ0(s)dB(s) +
t∫
0

{b0(s)− ρ(s)− 1
2σ

2
0(s)}ds

+
t∫
0

∫
R0

{ln(1 + γ(s, a))− γ(s, a)}ν(da)ds

+
t∫
0

∫
R0

ln(1 + γ(s, a))Ñ(ds, da); t ≥ 0

(4.26)
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Comparing with (4.15) we see that

X(t) = xΓ(t); t ≥ 0 (4.27)

Substituting this into (4.24) we obtain

p(t)X(t) = E[p(T )X(T ) +
T∫
t

exp(−
s∫
0

α(r)dr)ds | Ft] (4.28)

Since ρ is bounded away from 0 we deduce from (4.20) that

p(T )X(T ) =
λ(T )

ρ(T )
=

1

ρ(T )
exp(−

T∫
0

α(r)dr)→ 0 dominatedly as T →∞.

(4.29)
Hence, by letting T →∞ in (4.28) we get

p(t)X(t) = E[
∞∫
t

exp(−
s∫
0

α(r)dr)ds | Ft] (4.30)

By (4.20) we therefore get the optimal relative consumption rate

ρ(t) = ρ∗(t) =

exp(−
s∫
0

α(r)dr)

E[
∞∫
t

exp(−
s∫
0

α(r)dr)ds | Ft]
; t ≥ 0 (4.31)

In particular, if α(r) = α > 0 (constant) for all r, then

ρ∗(t) = α; t ≥ 0. (4.32)

With this choice of ρ∗ the transversality conditions (H1) and (H5) hold and
we have proved:

Theorem 4.1 The optimal relative consumption rate ρ∗ (t) for problem (4.12)−
(4.18) is given by (4.31).

In particular, if α(r) = α > 0 (constante) for all r, thenρ∗(t) = α; for all t.

Acknowledgment We want to thank Brahim Mezerdi for helpful discussions.

References

[1] N. Agram, S. Haadem, B. Øksendal, and F. Proske. A maximum principle
for infinite horizon delay equations. arXiv ( 2012).

[2] A. Al-Hussein and B. Gherbal. Maximum principle for optimal control
of forward-backward doubly stochastic differential equations with jumps.
arXiv (2013).

16



[3] K. Bahlali, B. Gherbal and B. Mezerdi. Existence of optimal controls for
systems driven by FBSDEs. Systems & Control Letters(2011)344-349.

[4] S. Bahlali and B. Labed. Necessary and sufficient conditions of optimality
for optimal control problem with initial and terminal costs, Random Oper.
Stoch. Equ. 14, No. 3, 291-301 (2006).

[5] D. Duffie and L.G. Epstein. Stochastic differential utility. Econometrica,
volume 60, Issue 2 (1992), 353-394.

[6] N. El Karoui, S. Peng and M. C. Quenez. A dynamic maximum principle
for the optimization of recursive utilities under constraints. The Annals of
Applied Probability 11, 3, 664-693 (2001).

[7] M. Jeanblanc, A. Matoussi and A. Ngoupeyou (2010): Robust utility max-
imization in a discontinuous filtration. Preprint of University Maine.

[8] S. Haadem, B. Øksendal, F. Proske. A maximum principle for jump diffu-
sion processes with infinite horizon. arXiv (2012).

[9] Q. Meng. Optimal control problem of fully coupled forward-backward
stochastic systems with Poisson jumps under partial information, arXiv
(2009).

[10] O. Menoukeu-Pamen. Optimal control for stochastic delay system under
model uncertainty. Manuscript 2012.

[11] S. E. A. Mohammed. Stochastic differential equations with memory: The-
ory, examples and applications. Stochastic analysis and related topics VI.
The Geilo Workshop, 1996, Progress in Probability ,Birkhauser.

[12] B. Øksendal, A. Sulem. Maximum principles for optimal control of forward–
backward stochastic differential equations with jumps. SIAM J. Control
Optim. 48 (5) (2010) 2945–2976.

[13] B. Øksendal, A. Sulem, T. Zhang. A maximum principle of optimal control
of stochastic delay equations and time-advanced backward stochastique
differential equations. Adv. Appl. Prob., 43 (2011), 572-596.

[14] B. Øksendal and A. Sulem. Applied Stochastic Control of Jump Diffusions.
Springer, second edition, (2007).

[15] B. Øksendal and A. Sulem. Forward-backward SDE games and stochastic
control under model uncertainty. J. Optimazation Theory and Applications;
DOI: 10. 1007/ s 10957-012-0166-7 ( 2012).

[16] E. Pardoux. BSDE’s, weak convergence and homogenizations of semilinear
PDE’s. In F.H. Clark and R.J. Stern, editors, Nonlinear Analysis, Differen-
tial Equations and Control, pages 503–549. Kluwer Academic, Dordrecht,
1999.

17



[17] S. Peng, Y. Shi. Infinite horizon forward-backward stochastic differential
equations. Stochastic Proc. and Their Appl., 85 (2000), 75-92.

[18] M. C. Quenez and A. Sulem. BSDEs with jumps, optimization and appli-
cations to dynamic risk measures. Manuscript 2012.

[19] J. T. Shi. Maximum Principle of Recursive Optimal Control Problem for
Forward-Backward Stochastic Delayed System with Poisson Jumps. Scien-
tia Sinica Mathematica, 2012, 42(3): 251-270.

[20] S. Tang and X. Li. Necessary conditions for optimal control of stochastic
systems with random jumps. SIAM J. Control and Optimisation Vol. 32,
No. 5, pp. 1447-1475, September 1994.

[21] P. Veverka, B. Maslowski. Infinite horizon maximum principle for the dis-
counted control problem incomplete version. arXiv (2011).

[22] W. Xu. Stochastic maximum principle for optimal control problem of for-
ward and backward system. J. Aust. Math. Soc. Ser. B 37 (1995) 172 1785.

18


