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Abstract

We prove a maximum principle of optimal control of stochastic de-
lay equations on infinite horizon. We establish first and second sufficient
stochastic maximum principles as well as necessary conditions for that
problem. We illustrate our results by an application to the optimal con-
sumption rate from an economic quantity.

1 Introduction

To solve the stochastic control problems, there are two approaches: The dynamic
programming method (HJB equation) and the maximum principle.

In this paper, our system is governed by the stochastic differential delay
equation (SDDE in short):
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t J, 0, X (1), Y (£), A(t), u(t), 2) N(dt,dz); € [0,00)
X(t) = Xo(t); te[-6,0]
Y(t) = X(t—9) t € [0, 00)
Aty = [} e Pt X (r)dr t € [0,00)

which maximise the functional
T = | [16.X(0.Y 0, A0, u(v) ds (1:2)
0

where u(t) is the control process.

The SDDE is not Markovian so we cannot use the dynamic programming
method.However, we will prove stochastic maximum principles for this problem.

A sufficient maximum principle in infinite horizon whitout with non-trivial
transvertility conditions where treated by [4]. The 'natural’ transversality condi-
tion in the infinite case would be a zero limit condition, meaning in the economic
sense that one more unit of good at the limit gives no additional value. But
this property is not necessarily verified. In fact [5] provides a counterexample
for a 'natural’ extension of the finite-horizon transversality conditions. Thus
some care is needed in the infinite horizon case. For the case of the 'natural’
transversality condition the discounted control problem was studied by [7].

In real life, delay occurs everywhere in our society. For example this is the
case in biology where the population growth depends not only on the current
population size but also on the size some time ago. The same situation may
occur in many economic growth models.

The stochastic maximum principle with delay has been studied by many
authors. For example, [3] proved a verification theorem of variational inequality.
[10] established the sufficient maximum principle for certain class of stochastic
control systems with delay in the state variable. In [4] they studied inifinite
horizon bu withou a delay. In [2], they derived a stochastic maximum principle
for a system with delay both in the state variable and the control variable.
In [12] they studied the finite horizon version of this paper, however, to our
knowledge, no one has studied the infinite horizon case for delay equations.

In our paper, we establish two sufficient maximum principles and one nec-
essary for the stochastic delay systems on infinite horizon with jumps.

For backward differential equations see [16], [6] For the infinite horizon BSDE
see [14], [13], [17], [1] and [15].For more details about jump diffusion markets see
[11] and for background and details about stochastic fractional delay equations
see [8].

Our paper is organised as follows: In the second section, we formulate the
problem. The third section is devoted to the first and second sufficient maxi-
mum principles with an application to the optimal consumption rate from an



economic quantity described by a stochastic delay equation. In the fourth sec-
tion, we formulate a necessary maximum principle and we prove an existence
and uniqueness of the advanced backward stochastic differential equations on
infinite horizon with jumps in the last section.

2 Formulation of the problem
Let (Q, F, P) be a probability space with filtration J; satisfying the usual condi-
tions, on which an R-valued standard Brownian motion B (.) and an independent

compensated Poisson random measure N(dt, dz) = N(dt, dz) — v (dz) dt are
defined.
We consider the following stochastic control system with delay :

dX(t) =b(t, X(t),Y(t), A(t), u(t)) dt + o (¢, X(1), Y (t), A(t), u(t)) dB(¢)
+ /e(t,X(t),Y(t), A(t), u(t), 2) N(dt, dz);t € [0, 00)

X(t) = Xo(t); te[=0,0]

Y(t) = X(t—6) At) = / e P X (r)dr
t—9

(2.1)
0 > 0, p > 0 are given constants.
b:[0,00) x RXRXxRXxUXN—R,
0:[0,00) X RXxRXxRXU XN —R,
0:[0,00) x RxRxR XU xRy xN— R,

are given functions such that for all ¢, b(¢, , y, a, u, .), o(t, z, y, a, u, .)
and 0(t, x, y, a, u, z.) are Fy-mesurable for all z € R, y e R, a € R, u € U and
FAS Ro.

Let & C F; be a given subfiltration, representing the information available
to the controller at time t.

Let U be a non-empty subset of R. We let Ag denote the family of admissible
&i-adapted control processes.

An element of Ag is called an admissible control.

The corresponding performance functional is

J(u) =E /f (t, X(1), Y (1), A(t), u(t)) dt|;u€ Ag, (2.2)
0

where we assume that

of
alEi

E/{If(t,X(t),Y(t%A(t)’ u(t)) |+‘ (t, X (2),Y(t), A(t), u(t))
0




The value function ® is defined as

O(Xy) = sup J(u) (2.4)
uEAg
An admissible control u* (.) is called an optimal control for (2.1) if it attains

the maximum of J (u (.)) over Ag. (2.1) is called the state equation, the solution
X* corresponding to u* (.) is called an optimal trajectory.

3 A sufficient maximum principle

Our objective is to establish a sufficient maximum principle.

3.1 Hamiltonian and time-advanced BSDEs for adjoint
equations

We now introduce the adjoint equations and the Hamiltonian function for our
problem.
The Hamiltonian is

H(t,z,y,a,u,p,q,r(. (t,z,y,a,u) + b(t,z,y,a,u)p+ o(t,z,y,a,u)q

) =1f
—|—/9(t,x,y, a,u, z)r(z)v(dz),
Ro

(3.1)
where

H:0,0) X RXRXRXUXRxRxRxQ—R

and % is the set of functions r: Ry — R such that the terms in (3.1) converges
and U is the set of possible control values.

We suppose that b, o and @ are C* functions with respect to (z,y, a,u) and
that

|/

2 Jo ’
+ ‘am (t, X(1),Y (1), A(t), u(t))

0b

gs. (BX (@), Y (1), A®), u(?)

2
v(dz) pdt| < oo

+ [ o2 X010, A, ulo)
- (3.2)
for z; = x, y, a and u.

The adjoint processes (p(t),q(t),r(t,2)), t € [0,00), z € R are assumed to
satisfy the equation :



dp(t) = E [u(t) | F] dt + q(t)dB; + /r(t, z)]?f(dt, dz);t € [0,00), (3.3)
Ro

where

() = =22 4 X, Vi, Ay p(t), a(8),7(8.)

ox
OH
~ 3y (t+ 0, Xtts, Yers, Atrs, urs, p(t+0),q(t +6),7(t+4,.)

t+6
—ept (/ %—IZ (s, Xs,Ys, Ag, us,p(s),q(s),r(s,.)) epsds) (3.4)
i

3.2 A first sufficient maximum principle
Theorem 3.1 Let 4 € Ag with corresponding state processes X (t), Y (t) and

A
A(t) and adjoint processes p(t), /(}(t) and 7(t, z) assumed to satisfy the ABSDE
(3.3)- (3.4). Suppose that the following assertions hold:

(i) B | im p()(X(0) - X(1)] > 0.
(1) The function

(z,y,a,u) — H(t,z,y,a,u,p,q,7(t.)),

is concave for each t € [0,00) a.s.

(iii)
/ {ﬁ(t) (o%) + [ 02<t,z>u<dz>)
0 Ro
+X2(t) ((]/\Z(t) + /f(t,z)u(dz)) } dt] < 00, (3.5)

Ro

E

for allu € Ag.

(iiii)

H(t, X(t), X(t - 6), A(t), v, (), d(8), M (¢, ) | a}

max F
vEAg

for allt € [0,00) a.s.
Then 4(t) is an optimal control for the problem (2.4).



Proof. Choose an arbitrary u € Ag , and consider
Ju)—J(@) =1 (3.6)
where
L=E {/ {f (t, X (1), Y (t), A(t), u(t)) — f <t,f((t),?(t), /Al(t), ﬁ(t)) } dt ] .
0

By the definition (3.1) of H and the concavity, we have

L=E / {%Z(t)(X(t) - X(t) + %’;(t)(Y(t) —Y(t)+ %—f(t)(A(t) —A()
0
+ 25 (e ~ 5(0) — (b00) ~ b)) — (o(t) — 500
A (3.8)
*/(9(75,2) —0(t, 2))P(t, 2)v(dz) p dt]| ,
Ro

where we have used the simplified notation

OH OH (o o &
%(t) = 87 (taXme;fa At7 ut7p(t)7q(t)7r(t7)) .

Applying the Ito formula to  p(t)(X (t) — X (t)) we get

+//(9(t,z) - G(t,z))f(t,z)u(dz)dt)] . (3.9)

0 R



Using the definition (3.4) of p we see that

T
T ( Jexw- X(t))ﬂ(t)dt)

E =F

0

T+0
E ( / (X(t—06)— X(t—0))a(t — 5)dt)]

)

T+63ﬁ T+5 [ ¢ off
— [ == () (Y(t) =Y (t)dt — —— (s)ePsd
5y OO -V - [ ( T (s)e )
s =5
=0 (X (t — ) — X(t — 5))) dt]
(3.10)
Using integration by parts and substituting » =t — §, we obtain

T N s
:/871;(5)/67,)(54)@(70) X(r))dr ds
0 s—0
T 7"+68FI
:/< S (8)e PSds) e’ (X (r) — X(r)) dr
s

- (/ 8813 (s) e—p‘“ds) ePE=0(X (t — &) — X(t — 8))dt (3.11)

1 =
Combining (3.9), (3.10) and (3.11); we get

0<E [ Tm  H(T)(X(T) —

T—o0

oo

- 2 0 o)~ e - / O ) (v (1)~ V()
0

0 %
/ O () (A(t) — Ao + ]o (0 (1) 6(1)ilt)
)
- 7/(9(:5, z) — 0(t, 2))P(t, z)u(dz)dt)] (3.12)
Subtracting and adding / a—H ))dt in (3.12) we conclude
0



Hence

%f()a]( (6~ a(t)dt | <0,

M[/E

0

Since u € Ag¢ was arbitrary, this proves Theorem 1. =

3.3 A second sufficient maximum principle

We extend the result in [10] to infinite horizon with jump diffusions.
Consider again the system

dX(t) =b(t, X(1),Y (1), A(t), u(t)) dt
+o (t, X( ), Y (), A(t), u(t)) dB(t)
+fRO X (), Y(t), A(t),u(t), 2) (dt dz); te€0,00)
X(t) :XO() te[=6,0]
Y(t) = X(t —6) t € [0, 00)
Aty = [} e Pt X (r)dr t €[0,00)

Let X; € C[—6,0] be the segment of the path of X from t — § to ¢, i.e



for s € [—6,0]. We now give an Ito formula which is proved in [3] without
jumps. Adding the jump parts are just an easy observation.

Lemma 3.2 The Ito formula for delay
Consider a function

G(t) = F(t, X (1), A(t)), (3.13)

where F is a function in CH*Y(R3) and

Y(t) = /Z e X (t + s)ds.

then

Then
dG(t) = LFdt + o(t,x,y,a, u)g—idB(t)
+ [ {F(t,x<t->,A(t->>+9<t,X<t>,Y<t>,A<t>,u,z>

Ro
—F(t, X(t7),A(t7))
_%(t’ X(t7), A7)+ 0(t, X(t), Y (¢), A(t), u, z)}y(dz)dt
+ [ {Ft,X({t7), A7) +6(t,X(#),Y(t), A(t),u, z)
Ro

—F(t,X(t‘),A(t‘))}N(dudz)
+ax— Ay — ef)‘éa}g—sdt

where

OF OF 1 2F
LF = LF(t,a,y,a,u) = S+ b 502‘3?

Now, define the Hamiltonian, H : Ry x RxR xR x U x R? x R? x R — xR
as

H(t,x,y,a,u,p,q,r(~)) (314)
= f(ta z,y,a, u) + b(t, T, Yy, a, u)p1 + (33 — /\y — B_A(Sa)pg
oty o+ [ otayau )

Ro

where p = (p1,p2,p3)T € R? and ¢ = (q1,q2) € R? For each u € A the associated
adjoint equations are the following backward stochastic differential equations in



the unknown Fi-adapted preocesses (p(t), q(t),7(t,-)) given by;

oOH
)=,

+ /Ro r(t,z)N(dt,dz),

dps(t) = —%I(LX@),Y(t)aA(t),U(t)m(t),q(t))dt +q(t)dB(t),  (3.15)
OH

dps(t) = ——-(t, X(1), Y (1), A(t), u(t), p(t), ¢(¢))dt; (3.16)

(t’ X(t)’ Y(t)a A<t)’ u(t),p(t), Q(t))dt + @1 (t)dB(t)

Theorem 3.3 (An infinite horizon maximum principle for delay equations)
Suppose & € A and let (X,Y, A) and (p(t),q(t),r(t,-)) be the corresponding so-
lutions of (3.15)-(3.16), repectively. Suppose that

H(ta IERERERE) ap(t)v Q(t)v T(t, )))
are concave for all t > 0,
B [H(t, X(0), ¥ (), A®), (), p(0), 4(0), 7 (¢, )|

= max B2 [H(t, X(0), V(0), A1), w,5(0),40). /(1. )lE] . (3.17)

Further, assume that
Elim py (£)(X (t) — X ()] = 0, (3.18)
and
Elimp,(t)(Y (t) — Y (t))] > 0. (3.19)
In addition assume that
ps(t) =0, (3.20)
for all t. Then 4 is an optimal control.

Proof. To simplify notation we put

and

Let

10



Then we have that
= B[ (0.0 0,00 0(0).r(,) = H0. o)) (o) a0, (0, )]
=Bl (00.80,2(0) ~ b G0, w0 ()
= B[R0 - AT () e AW) - (X(0) = Y ()~ e AW palt)a
— B[ ott.0: (0) - 018,60, a0 s ()]

- E[/Ooo /R (Ot (8, 1(t), 2) — Ot €, 2)) x 1(t, 2)v(dz)d]
L+ L+ I+ L+ I (3.21)
Since (C,u) — H(C,u) is concave and (3.12), we have that
H(C,u)— H(C,0) < H<<<}ﬁ) (¢— §) + H,(C,0) - (u—1)
< H¢(¢,a)- (¢ —¢)

where H; = (%—1;17 %—IZ, %—Ij). From this we get that

L>E /O h —He(t,C(t),a(t), p(t), q(t)) - (C(t) — é(t))dt]

=F

/ (¢t — () - i T (X(0) - X)) (0dB ()
0 0

_ /Ooo(y(t) — Y (t))q2(t)dB(t)

=F /OO(X(t) — X()dp1(t) + /OO(Y(t) - Y(f))dpz(t)] : (3.22)
0 0

From (3.18), (3.19) and (3.20) we get that

0 > —Eflimpi ()(X(8) — X (£)) +Lim gz (6)(Y (£) = Y ()]

=-F

[0 - %@+ [ ik - )
0 0

+ [ [ottconue) — oL i) ey

+ /OOO/R (G(t,é(t),ﬂ(t),z) —0(t,C,u,2)) x r(t, z)v(dz)dt

T / (Y () = Y (1))dpa(t) + / T pad(v(t) — V().

11



Combining this with (3.21) and (3.22) we have that so that
I =L+L+I3+1,+1Is <0

Hence J(4) — J(u) =1 > 0, and 4 is an optimal control for our problem.
[

Example 3.4 (A non-delay infinite horizon example) Let us first consider
a non-delay example. Assume we are given

Jw) = B [ A b e*ﬂt%(u(t)xu))wt ,
where

dX(t) =[XOp—u)X(t)]dt
+o(t, X (£), u(t))dB(t);t > 0,
Xt =X,

v €(0,1) and p,6 > 0. In this case the Hamiltonian (3.14) takes the form

1
H(t7 U, Ty Py Q) = e—pt;(ux)’y + [x,u - Ul’]pl
+ [z — e Palps + o(t,x,y,a,u)g,
so that we get the partial derivative

oo

qu(t’ u,x,p, Q) = eiptuvil-r’y — IP1 — %ql

This gives us that

We now see that the adjoint equations are given by:

dpi(t) = = [ (u(t) X (1)
do

+ (1 —u(t))p1(t) + p2(t) + e

dpa(t) = —q2(t)dB(t),
do

dpg(t) = — [—6_p6p2(t) + 90 ql(t)} dt.

()] dt + q:(1)dB(@),

Since ps(t) must be 0, we then get g1 = g2 = 0. and

p2(t) =0,

12



which gives us that

dp1(t) = — [e7 (u(®)) VX (8)7 " dt + (n — u(t)p1(t))] dt,
dpg(t) = 0,

and
p1(t) = e_th(t)'Y_lu(t)"_l.
So

dp1(t) = = [e™" (u(t)) X (1)~ dt + (1 — u(t))p1 ()] dt,
= —pp: (t)dt

which gives

or all t > 0. Inserting u into the dynamics of X, we get that
f g y , we g

AX(t) = [pX (1) = pr (0)7TeT T g,
So

x(0) = e [x00) =07 [ eapl(-n— (0= psias|.

To ensure that X (t) is alwasys non-negative, we get the optimal p(0) as

X(0) ]
Joeap((—p— (A= p)s)ds |

We now see that limpy(t) = 0, so that we have

p1(0) = l

Elim gy (£)(X (£) — X (£))] > 0.
This tells us that u is an optimal control.
Example 3.5 (An infinite horizon example with delay) Now let us con-

sider a case where we have delay. This is an infinite horizon version of Fxample
1in [10]. Let

()= E [ / N LX) + (e

13



where

+o(t, X(t),Y(t), A(t),u(t))dB(t);t > 0,

{dX(t) — [X()p+ Y()a + BAR) — u(t)(X (L) + Y (t)e B)]dt

X(t) = Xo(t);t € [=6,0],

v €(0,1) and p,§ > 0. In this case the Hamiltonian (3.20) takes the form

1
H(tv u,2,Y,a,p, Q) = e—Ptg(u(x + yepﬁﬂ))’y + [Z‘,U/ +ay+ ﬂa - U(ﬂf + yep(;ﬂ)]pl
+ [‘T - )‘y - e—p5a]p2 + U(ta z,yY,a, u)Qv
so that we get the partial derivative

)
Vi H (b, y,a,p,0) = e ut o+ yerB) — (a4 ye Bpy — S ar.

This gives us that

oo 1

prt) = e @+ e ) e = 5

We now see that the adjoint equations are given by:
pi () =~ [~ u(t))(X(0) + ¥ (0 5)"
) (0) 4 2(8) + Soan D)+ ax (DB,
Apa(t) = ~ [~ (u(t))(X(2) + ¥ (557 er?
(

(o — u(t)e? B)p (1) — Apa(t) + g—‘y’m(mdt + ga(t)dB(D),

dps(t) = —[Bp1(t) — e " pa(t) + %m( )]dt.

Let us try to choose q1 = g2 = 0. Since p3(t) =0, we then get

e~ rd

B

p1(t) = pa(t),

which gives us that
dpi (1) = —[e™"" (u(®))V (X (1) + Y (£)e” B) " dt + (1 — ult))pr(t) + e Bpa (t)]dt,

—pé
dps () = —[e " (u(B))" (X (t) + Y (1)’ )7 Let* pt + (o= 5=~ u®)p2(t) = Apa())dt,

and

prt) = e PHX () + Y (e B) Hu(t)

14



or

t
eFip] T (1)

X0 + Y (0)er s’ (3:23)

u(t) =

Hence, to ensure that
e~ Po

5

pi(t) = p2(t)

we need that
a=e"B(u+ A+ e”p).
So

dpy(t) = —[e~ P (u(t)) (X (t) + Y (£)e” B) dt + (n — u(t))pi(t) + e Bpa (t)]dt,
= —[up1(t) + " Bpy(t)]dt,

which gives us that
P (t) — pl(o)ef(;ﬁepéﬁ)t’

for some constant p1(0). Hence by (3.23) we get

1

p1(0)>—* —L_(pt—(put+er®Bt))
t = = v

U0 =100 = X+ YO )

for all t > 0 and some p1(0). In analogy with Example 3.4 it is natural to
conjecture that the optimal value, K, of p1(0)is given by

K = inf{p;(0) : XP*©O (1) + YO (1)eM3 > 0, for all t > 0},

see [9]. So,the optimal control is given by

1
KA1 1 pé
t) = ﬁ(pt—(,ut—i-e Bt)) .
"0 = XK@+ Y0 p)© )

From this we get that limp; (t) = lim po(¢) = 0, so that we have
Eltim 1, (6)(X (1) — X ()] > 0,

and
Eflimpa(t)(Y () — Y (£))] > 0.

This tells us that u is an optimal control.

15



4 A necessary maximum principle

In addition to the assumptions in the previous section, we now assume the

following.
(A7) For all u € Ag and all 8 € Ag bounded, there exists >0 such that

u+speAds  forall s € (—¢e).

(As) For all tg, h and all bounded & -mesurable random variables «, the
control process 3(t) defined by

B(t) = alfs oyn(t) (4.1)

belongs to Ag.
(A3) For all bounded § € Ag, the derivative process

(1) = LX) |

s=0

exists and belongs to L%(\ x P).
It follows from (2.1) that

oo ab ob

d5(6) = { L8O + Ot = 8)+ 5 (1) [ e Der)ar+ m(tm(t)} t
t—o

" {g‘;@)g(w + S 0Ee =)+ G20 [ty + 5o (t)} o
t—45

+f {‘9%, 6+ g (06— 0) + 5 (1.2 /5 e HE(r)dr + (1 Z)ﬁ(t)} Nat, d)

Ox
Ro
where, for simplicity of notation, we define

0 0
%b(t) = a—xb(t,X(t),X(t —0),A(t),u(t)),

and used that
d

gyu—&-sﬁ (t)

d
— X 8) |, = E(t - 9)

5=0

and

16



diAu+sB £ ]._,= ( e—P(t— T)Xu+55( )dr
S

dt

l.=o

).
|

( e —p(t—r) Xu+s,8( )

= P=TIE(t)dr
tfé
Note that
&(t) =0fort € [-6,00) .

Theorem 4.1 (Necessary maximum principle) Suppose that 4 € Ag with
corresponding solutions X (t) of (2.1)-(2.2) and ;;\J(t), 4(t), and #(t,2) of (3.2)-
(3.3), and corresponding derivative process £(t) given by (4.2).

Assume that for all u € Ag the following hold:

B jﬁ?(t) (2?) (&) + (g;;) (&t —0) + (?) 0 ( 5
+/ (gz>2(t,z)52(t) + (22)2 (t,2)E2(t — 6) + (gi)Q (t,2) (/teﬂ“”é(r)dr)Q + <Sz>2 (t,2) ¢ v(d
s

Ro

/62 {d / 2(t, 2) V(dz)}dt<oo.

and

[ —
N
=
i
2
Pl
=
S~—
&
v
&)
+
7N\
QD‘Q.)
19
N————
N
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B [Jm p()(X ()~ X ()] > 0.

Then the following assertions are equivalent.
(¢) For all bounded 8 € Ag,

£J(u +s0) |._,=0.

(#) For allt € [0, 00),

E H(tv X(t)v)}(t)w’éi(t)aﬁ(ﬂvﬁ(ﬂ»/q\(t)vf(t’ ) | gt at) =0 a.s.

u="u(t

17



Proof. Suppose that assertion () holds. Then

d .
0= I+,

= %E /f(t,Xﬂ+sﬁ(t), YfH-SB(t)’ Aﬁ-‘:—sﬁ(t)’ fb(t) + Sﬁ(t)dt]

s=0

t
0 0 0 0
| { L + SO~ 8)+ 0 / e PU=Ig(r)dr + aji(t)ﬁ(t)} dt]
0 =5
We know by the definition of H that
0 OH b do a0
(=20~ (o) - W (0atr) ~ [ 51,2, 2pwtaz)
Ro
0 0 0
and the same for 8—;(15), ai (t) and 8—5(75)
We have R
E[m 5(0)(X(t) - X(1)] = 0
So

E[m (p(t)xﬁﬂﬁ(t))} ZE[H (ﬁ(t)Xﬁ(t))}

t—o0 t—o0

for all B € Ag and all s € (—¢,€).
Hence

i [E{E Goxrw)] <o

| (L sox)

function.s Fro?n(xéhe uniform limits with uniform convergence of the derivative,
we can interchange the derivative and integration, and get

ls=0< g(w) , where g(w) is some integrable

0= [T Gox*00)}] I

_E %{m (BOX*0(0) }| lmo

[T {ﬁ(t) i(xﬂ“ﬁ(t))} oo -

18



Applying the It6 formula to p(t) di (X@*+sB(t)) we obtain
s

0= [ {o1) 5 (x7m) o f] = 8 [ ()]

=F {/A(t) {gZ(t)f(t) + S—Z(t)g(t — &)+ %(t /e—p(t—r)g(r)dr + gZ(t)ﬁ(t)} dt
0

t—6

+[ewE WO | 7+ [o0 {ggmgw + G 0E =0+ 52(0) [ e elrdr + gjww} at

’I”Z%Z %z— %zte_p(t_r)rr@z v(dz
+f [t >{am<f’ 00 + 3y =0 50002 /5 Er)dr + 5 (4, 2)B(0) p v(d >dt]

Therefore

Use
6(t) = al[s,s-‘rh] (t)

where a(w) is bounded and &;,-mesurable, s > ¢y and get

s+h8H
E(/ au(s)dsoz) =0

Differentiating with respect to h at 0, we have

E (CZ)Z(S) a) =0

This holds for all s > ¢y and all o, we obtain that
oOH
El—I(ty) | & =0.
( 5, (t0) | to)

This proves that assertion () implies (i1).

To complete the proof, we need to prove the converse implication; which is
obtained since every bounded § € A¢ can be approximated by linear combina-
tions of controls 8 of the form (4.1). =
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5 Existence and uniqueness of the time-advanced
BSDESs on infinite horizon

The main result in this section refer to the existence and uniqueness for (3.3) —
(3.4) where the coefficients satisfy a Lipschitz condition.

We now study time-advanced backward stochastic differential equations driven
by a Brownian motion B(t), and a compensated Poisson random measure N (dt, d().

Let B(t) be a Brownian motion and N (dt, d¢) := N(dt, d¢)—v(d¢)dt, where v
is the Lévy measure of the jump meaure N (-, -), be an independent compensated
Poisson random measure on a filtered probability space (2, F, {F;}o<t<oo)-

Given a positive constant J, denote by D([0,d],R) the space of all cadlag
paths from [0, d] into R. For a path X(-) : Ry — R, X; will denote the function
defined by X;(s) = X(t + s) for s € [0,8]. Put H = L?(v). Consider the L?
space Vi := L?([0,0] — R;ds) and Va := L*([0,8] — H;ds). Let

F:REXRXRXVIXRXRXxVI XxXHXHXxVoaxQ—R

be a function satisfying the following Lipschitz condition: There exists a con-
stant C such that

|F(t7p17p27p7 q1,492,4,71,72, 7, (“‘)) - F(tvﬁlap_Qaﬁy q_la (127 (ja Fla T_Qv 7:? w)‘

< C(pr =1l + |p2 = P2l + Ip = Plvy +an — @1l + g2 — @2l + g — qlw,

+‘T1—f1‘7—l+|7'2—?2|'H+|7’—f|v2). (51)
Assume that (t,w) — F(t,p1,p2,p,q1,92,9,71,72,7,w) is predictable for all
P1,P2,P,q1,42, 9,71, T2, 7. Further we assume the following;:

(oo}
E/ eM|F(t,0,0,0,0,0,0,0,0,0)%dt < oo,
0

for all A € R. We now consider the following backward stochastic differential

equation in the unknown F;-adapted processes (p(t), q(t),r(t,2)) € H x H x H:
dp(t) = E[F(tap(t)ap(t + 5apta q(t + 6)7 qt, T(t + 6)) Tt)|ft]dt

+q(t)dB(t) + /RO r(t, 2)N(dz, dt), (5.2)
where
E UOOO e)‘t|p(t)|2dt] < 00, (5.3)
for all A € R.

Theorem 5.1 (Existence and uniqueness) Assume the condition (5.1) is
fulfilled. Then the backward stochastic partial differential equation (5.2) - (5.3)
admits a unique solution (p(t), q(t),r(t, z)) such that

2 [ |t +iaoe+ [ 0 |r<t,z>|2u<dz>}dt] <o,

for all A e R.

20



Proof.
Step 1:
Assume F is independent of its second, third and fourth parameter.

Set ¢°(t) := 0, 7°(t, 2) := 0. For n > 1, define (p"(t),q"(t),r"(t, 2)) to be
the unique solution of the following BSDE:

dp"(t) =E [ e (N R ) A e (A e (R S R A OV A K.
+/R N(dt,dz); (5.4)

0

E [/Ooo e>‘t|p”(t)|2dt] <0

This exists by Theorem 3.1 in [4].
Our goal is to show that (p™(t),¢"(t),r"(t, z)) forms a Cauchy sequence.
By Ito’s formula we get that

for t € [0, 00) such that

0= |e/\t n+1( |2 / )\e)\9|pn+1 ) (5)|2d5
+ /tOo €>\s|qn+1(s) _ q"(s)|2d8
Ooe)\s (s 2 — (s, 2)) 2dsv(dz
+1‘ AJ( (5,2) = r"(s, 2)) [Pdsw(dz)
b2 [0 = p70) B[ - P Fs

+2/m@%w“<wm%@ﬂf“@rwWQM&

/ / 9 n+1 S z)—r"(s,z)|2
Ro

+w”“<>—W@WHW“w@—W@w»M%@ﬁ

Rearenging, using that for all € > 0, ab < & ° + €b? we have by the Lipschitz
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requirement (5.1)
Bl pm1(e) - ()]
s [T s - o) Pas
SB[ N (o)Pa
B[ [0 - ) ot
<[ M) - o) s
0B [ X))
4 e6E[/too g™ (s +8) — (s + 6)[2ds]
ool [ o [ ) — " () Pduds]
B[ X s) 1 ()

+ 66E[/ M (s 4+ 0) — "L (s + 6)|3,ds]
t

oo s5+0
+ 66E[/ e)‘s/ 7" (u) — " (u)|3,duds]
t s

where C, = %2 and we used the abbreviation
Fn(t) = F(ta qn(t)vqn(t + 5)7qurn(t7 .),rn(t + 9, ),T?())

Note that
o
B[ / olq" (s +8) — " (s + 6)Pds
t

< M / T g s) — g (5)]ds)

22



Using Fubini

o 5+0
El /t / g™ (w) = ¢" " (u) *duds
< E[/too /ua g™ (u) — ¢" ()| *dsdu
< (G- B[ it - P

< B| / T g s) — g (5)]ds)

Similiar for 7™ — r® 1. It now follows that
EeM[p™t(t) — p™(t))°]
FEL[ ) - (o) P
t
+ E[/ / | (1t (s, 2) — 1" (s, 2))|*v(d2)ds]
t Ro
<(C-NE([ M) - (o))
t

+e6(2+ e M)E| / T o lgn(s) — " (s)[2ds]

t

b e6(2 + e—M)E[/tOo A (5) — 11 (s) 2 ds]. (5.5)

Choosing € = so that

BN () — " (0)]?]
T B / g™ (5) — ¢"(s)2ds]
- e (r (s, 2) — (s, 2))|2v(d2)ds
*E[/t / (4 (5, 2) — (5, 2)) [P (d2)ds]
(€ NEL[ M) 5 )RS+ G M) o)

t t

+58Lf T ol () — s ds]
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This implies that

a - S 3 n
- e [T -y )
0
+ e(CE—)\)tE[/ eAs|qn+1(8) _ q"(s)|2]d8

t
+ (Gt / | (r" (s, 2) — r"(s, 2))|*v(dz)ds]
Ro

[\

1 o0
- (C. )\)tE[/ e)\s|qn(s) o qn—1(8)|2d8
t

(Cff)‘)tE/ e)‘s|r”(s) - r”fl(s)ﬁds
t

+
M\H

Integrating the last inequality we get that
B[ b0 - 0P
+/000 e(c‘d)tE[/oo g™t (s) — " (s)|?ds]
t
+/ o(Co= Nt /]R 2| (rH (s, 2) — (s, 2)) v (dz)ds]d
0

IN

l\D\H | =

/ (Ce—=N) tE e/\s|qn(8) _ q”_l(s)|2dsdt
/ (C. A)tE/ GAS‘Tn(S) — r"*1(5)|$_(dsdt. (5.6)
So that

o oo

e(Cm Nt / N (s) — g"(s)|ds]

0 t

/ e(cme[/ / | (Y (s, 2) — 17 (s, 2)) Pw(d) ds)dt
0 Ro

1
5/\ (Ce )\tE/ e>\3|qn(8)_qn71(s)|2dsdt
1L
2

/ e(Ce )‘)tE/ eMo|rm(s) — ™ ~1(s)|3,dsdt

_|_

IA
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This gives that
/ e“f”%Q/ g™ (s) — " (s)Pds]
0 t

+/0°° e(cg_mE[/too /]R | (1 H (s, 2) — (s, 2)) |Pv(dz) ds]dt

1

< —C
= on 3

if A > €. It then follows from (5.6) that
B[ M) - p 0] < 5 Ca
0
From (5.5) and (5.6), we now get
/ / M |(r"t (s, z) — (s, 2)) [Pv(dz)ds]dt
Ro
+E[/ g (s) — ¢ (s)|?ds] < —C’gnC
t

From this we conclude that there exist progressively measurable processes
(p(t)7 q(t)7 T(t; Z)), such that

lim E[eX|p" (t) — p(t)|*dt] = 0,

i B[ M) - )P =0
Jm B[ () - plo)Par =0
Jm B[ o) - (0P =
nILH;oE/ /R M| (1" (s, 2) — r(s, 2))|*v(dz)ds]dt = 0.

Letting n — oo in (5.4) we see that (p(t), q(t),r(t, z)) satisfies
dp(t) E[F( ( 7Q(t+5) q,T ( )77”(t+5,.)77”t(')) |ft]dt
+/ N(dt,dz),
Ro
for all ¢ > 0.

Step 2:
General F.
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Let p°(t) = 0. For n > 1 define (p™(t),q"(t),r™(t,2)) to be the unique
solution of the following BSDE:

dp™(t) = E[F(t,p" ' (t),p" ' (t+6),p7 ", q"(t),q"(t + 0), g, 7" (t), 7" (t + 8), r}) | Fy)dt

+q"(t)dB(t) + /R r"(t,z)N(dz,dt),

for t € [0,00). The existence of (p™(t), ¢"(t),r™(t, z)) was proved in Step 1.
By using the same arguments as above, we deduce that

Eekt‘pn-‘rl(t) _pn(t)|2]
JrE[/t 6As|qn+1(5) _ q"(s)\zds]
+ E[/too 6)\5/R |(rn+1(3,z) — Tn(syz))|21/(dz)ds]

o0 1 (o)

<(C-NEL[ M) - (ePds) 4 SB[ ) -5 o) P
t t

This implies that

d — > S n n 1 — > S n n—
— GECTIEL [ A ) < () Pas]) < e[ () = ()]
t

Integrating from 0 to oo, we get

o0 1 o0 (o]
B[ b -t Pas < 5 [ @B [ ) < o) P
0 0 t

So if A > C. then by iteration we see that

K

B /O A (s) — pn(s)Pds] < OO

for some constant K.

Uniqueness:

In order to prove the uniqueness, we assume that there are two solutions (p'(t), ¢'(s),7' (s, 2))
and (p2(t),q*(s),%(s, z)) of the ABSDE

dp(t) =K [F(t,p(t),p(t + 5)7pt7Q(t)aQ(t + 6)7QtaT(t)7T(t + 6)3Tt) | ft] dt

~

+q(t)dB(t) + [ r(t,z)N(dt,dz); t €[0,00)
Ro
E|[ et |p@))? dt| <oo; AeR .
0

By Ito’s formula, we have
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B[ 0 -0 + [T e ot (s) - (9] ds

+E E{oeA *lq'(s) — qz(s)\st] +E

jfoeA st ri(s,z) — r?(s, z)|2 dsu(dz)]

=2ET@S[w%ﬂ—p%$|
x (E [ F(3,0'(5),p"5 + 6), 0%, ¢"(5), ¢ (5 + 6), g}, 71 (), (5 + 8),71) | o |

B [ F(s,p2(s),52(s + 8), 92 4%(s), 2 (s + 0), 42, 12(s).12(s + 0),2) | F, )] ds
szETeAﬂw%@fﬁ@ﬂ

xC (!pl(S) —p*(s)| + [p' (s + 8) = p*(s + 0)| + Sf!pl(U) — p*(u)| du

1o (5) = @(5)] + a5 + ) — (s + )] + 7ﬂ¢(>—q<ﬂdu

) =2+ s 0) =+ D)+ T )~ m&]d

By the above inequalities for (p, ¢, r) and the fact that 2¢b < i + eb? , we
€
have that

E{e“ypl (t) — p*(t)] ]+E{ *q'(s (5)|2d5]

+E lfe“f ri(s, z) — (s, 2)| dsu(dz)]
g(%f—A>E[fasw%@—p%@Fw]

(24 e 20) B Efewpl(s)— | ds}

L2+ e ) e ET@AS [l'(5) = () + ' (5. 2) = (5, ), ] ds
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Taking € such that (2 +e*9%) e=

E [6)‘ t ‘pl(t)

—p2(t)ﬂ +E

sy
®
>
w
)
L
—
»
N
|
)
[\v]
~
»
=
QU
»

+E Ofoe)‘ SRf }7’1(5, z) — 1"2(.9,,z)|2 dsy(dz)]

.
+;E[f|q q?(s)

Efe/\

2 ds}

“|pt(s) — p*(s)|* ds

+;E[f|r sz—r sz|H }

We get

E [e’\ tlpt(t

3C
<=ty
€

3C?

) - ()]
+1E L}Oe/\ s |r1(s,z) — r2(s,z)‘2dsy(dz)1
[fe’\‘5| pQ(s)‘st} )

+ %E [e’\ s ‘ql(s) - q2(s)’2 ds}

Using the fact that ) > == 4 % , we obtain for all ¢ € [0, 00),
€

E [e>‘ t |p1(t

) -0 =0,

which proves that p'(t) and p?(t) are indistinguishable. m
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