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Abstract

New current modified Schrödinger equations are derived suited to
study waves on both potential and non–potential inhomogeneous cur-
rents. Split–step schemes of first, second, and fourth order are dis-
cussed. Different results are presented regarding the current terms
and the model setup.

This paper mainly serve as background information for Hjelmervik
& Trulsen (2009), but the current modified Schrödinger equations and
model setup presented here are expected to have an even larger range
of application possibilities.

1 Introduction

Studies of nonlinear wave–current interactions are of academic interest and
important in order to reduce safety hazards in ocean currents.

Even linear interaction of waves and currents is still an active field of
research. It is well known that linear refraction due to currents can provoke
large waves. Waves encountering an opposing current may obtain reduced
wave length and increased wave height and steepness. When waves encounter
an opposing current jet, focusing can further enhance the wave intensity near
the centre of the jet. Linear refraction of waves by currents is known to cause
navigational problems, e.g. in the Agulhas current, river estuaries, rip cur-
rents, entrances in fjords during outgoing tides, and in tidal flows in the
coastal zone, (Longuet-Higgins & Stewart, 1961; Peregrine, 1976; González,
1984; Jonsson, 1990; Lavrenov, 1998; Bottin & Thompson, 2002; Mori, Liu
& Yasuda, 2002; MacIver, Simons & Thomas, 2006; MacMahan, Thornton
& Reniers, 2006). When the steepness thus increases, enhanced nonlinear
modulations is anticipated (Stocker & Peregrine, 1999; Lavrenov & Porubov,
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2006). However, it is not well known how the enhanced effect of nonlinearity
modify the wave height. Our goal is to investigate how current and nonlin-
earity modifies the wave heights for waves propagating on inhomogeneous
stationary currents. In this paper we will derive equations and construct a
numerical setup for this purpose. We will also study some results regarding
the model setup, the current terms, and different current configurations.

Several different equations are used to study wave–current interactions.
Our need to resolve wave phases on non–potential currents restricts us from
employing several obvious candidates. White (1999) allowed a prescribed
current with vorticity, and derived a wave action equation which is a phase
averaged model. Ray theory (White & Fornberg, 1998) is used for track-
ing wave packets. Peregrine & Smith (1979) derived a nonlinear Schrödinger
equation useful for caustics where ray theory breaks down. Schrödinger equa-
tions have bandwidth constraints which may be problematic. The Zakharov
(1968) equation does not have bandwidth constraints, but makes it hard to
include a prescribed current, and is limited to potential flows.

Here we derive a current modified cubic Schrödinger equation suited for
waves on prescribed, stationary collinear currents. Some related models have
already been published. Stewartson (1977) considered the effects of slowly
varying depth and current, and derived a cubic Schrödinger equation lim-
iting to potential theory. Turpin, Benmoussa & Mei (1983) considered the
effects of slowly varying depth and current, and derived a cubic Schrödinger
equation limiting to one horizontal dimension. Gerber (1987) used the vari-
ational principle to derive a cubic Schrödinger equation for a non–uniform
medium, limiting to potential theory in one horizontal dimension. Stocker
& Peregrine (1999) extended the modified nonlinear Schrödinger equation of
Dysthe (1979) to include a slowly varying, periodic current and derived a
current modified Schrödinger equation. As an application example of their
theory, they studied the effect on a wave field from a potential surface current
induced by an internal wave. Their dominant current term, UB, is of cubic
order. We want to study stronger currents. Our equation will be taken up
to cubic nonlinearity, and will include waves and currents in two horizontal
dimensions allowing horizontal shear.

Several methods may be used to derive nonlinear Schrödinger equations
for deep water waves: an averaged Lagrangian method (Yuen & Lake, 1982),
a spectral method (Zakharov, 1968), and a multiple scales method (Hasimoto
& Ono, 1972; Davey & Stewartson, 1974; Dysthe, 1979; Stocker & Peregrine,
1999). We have used a multiple scale expansion similar to Mei (1989).

Several numerical methods may be used to solve nonlinear Schrödinger
equations. We employ a split–step method using both Fourier methods and
finite difference methods (Lo & Mei, 1985; Weidman & Herbst, 1986; Stocker
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& Peregrine, 1999). The Fourier methods are used on the linear terms with
constant coefficients. The finite difference methods are used on the nonlinear
terms and the linear terms with variable coefficients. Lo & Mei (1985) used a
split–step scheme to solve the modified Schrödinger equation by Dysthe and
compared their results with experiments.

2 Wave paths on prescribed currents

The linear dispersion relation for gravity waves on deep water is given by:

(ω − k · U)2 = gk (1)

ω = ω(kx, ky, x, y, t) is the angular frequency. g = 9.81m/s2 is the accel-
eration of gravity. k = kxi + kyj is the wave vector with wave number

k =
√
k2
x + k2

y . And U = U(x, y)i+ V (x, y)j is the horizontal surface current

which is assumed stationary and slowly varying spatially. Since U is the
horizontal surface current, it does not have to be divergence free. The full
current field has a vertical component which does not appear in the dispersion
relation (1).

(1) may be made dimensionless using the characteristic length and time
scales of the wave field in the absence of current:

(ω − k · U)2 = k (2)

√
k

|ω − kxU | U = −0.2

U = 0.2

U = 0

kx

Figure 1: The dimensionless linear dispersion relation (2) for long crested
gravity waves, k = kxi, on a collinear current, U = U(x)i. Here ω = 1.
Solutions for selected currents are marked with disks.

There are up to four solutions of (2) for long crested waves, k = kxi,
on a collinear current, U = U(x)i, (figure 1 and 2). There exist only two
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ωU

kx/ω2

Figure 2: The linear dis-
persion relation (2) for
long crested gravity waves,
k = kxi, on a collinear
current, U = U(x)i.
Both coordinate axes are
asymptotes for all curves.
ω2 = ±kx when U = 0. A
local minimum is found in
(kx/ω

2, ωU) = (4,−0.25).

solutions when U = 0 or |U | > 1
4ω

, three solutions when |U | = 1
4ω

, and four
solutions when |U | < 1

4ω
.

Without any current the solutions are ω = ±
√
k, depending on the di-

rection of the waves. If the waves encounter a co–current (kxU > 0), the
wavelength increases. If the waves encounter a counter current (kxU < 0),
the wavelength decreases. In both cases the phase velocity of the waves is
stronger than the group velocity of the waves.

When U = − 1
4ω

kx

k
, the group velocity of the waves has the same strength

as the velocity of the counter current. If the counter current increases fur-
ther in strength, there does not exist any solution of the dispersion relation
because the energy of the waves cannot propagate on such strong counter
currents. If the counter current decreases in strength, the wave train may
split in two parts with decreasing and increasing wave number respectively.
With decreasing wave number the phase velocity of the waves is stronger
than the group velocity of the waves, and as the strength of the counter cur-
rent approaches zero, the wave number approaches ω2. With increasing wave
number the group velocity follows the counter current. As the strength of
the counter current approaches zero, the wave number approaches infinity.

On a co–current there exist solutions with high wave numbers which
increase when the strength of the co–current decrease. The group velocity
is larger than the phase velocity. This situation cannot be provoked by the
current, but if provoked it can exist on a current. When the wave number
exceeds a certain threshold, the capillary waves are more dominant than the
gravity waves, see Trulsen & Mei (1993)
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2.1 Wave path equations

The wave paths are tangential with the group velocity, cg, while the rays are
tangential with the wave number vector, k. Since the dispersion relation (2)
is not isotropic, the wave paths and the rays do not coincide. The wave path
equations may be written by:

dω

dt
=
∂ω

∂t
= 0 (3)

dk

dt
= −∂ω

∂x
= −kx

(
∂U

∂x
i +

∂U

∂y
j

)
(4)

dx

dt
=
∂ω

∂k
= U ± 1

2
√
k

k

k
(5)

Here the x-axis is aligned along the current so that U = U(x, y)i.
According to (3) the angular frequency, ω, is constant for each wave path.

Suppose that U = U0 and k = (kx0, ky0) at x = x0. The conserved frequency
will then be:

ω = kx0U0 ±
(√

k2
x0 + k2

y0

)1/2

(6)

The wave paths are longitudinally reflected when U ± 1
2
√
k
kx

k
= 0 and

transversally reflected when ky = 0 according to (5). Suppose that U = URl
when the wave paths are longitudinally reflected, and U = URt when the
wave paths are transversally reflected. If ky0 = 0, URl and URt are given by:

URl = − 1

4ω
(7)

URt = U0 (8)

The stopping velocity in (7) is in agreement with Peregrine (1976), White &
Fornberg (1998), and others.

Following Mei (1989) it can be shown that B satisfies the following con-
servation law:

∂

∂t

(
B2

σ

)
+ ∇h ·

(
cg

B2

σ

)
= 0 (9)

B is the amplitude of the waves. σ and cg are given by:

σ = ω − U · k
cg = U ± 1

2
√
k

k

k
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(c) U0 = −0.1
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(d) U0 = −0.3

Figure 3: Wave paths with corresponding wave number, |k|, and amplitude,
|B|, as a function of x according to (3)–(5) and (9). The short lines across
the wave paths are normal to the wave vector k. Here ω = 1.
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(9) may also be written on the same form as the wave path equations, in
order to calculate the amplitude while tracing a path:

d

dt

(
B2

σ

)
=

∂

∂t

(
B2

σ

)
+ cg · ∇h

(
cg

B2

σ

)
= −

(
B2

σ

)
∇ · cg (10)

2.1.1 An example

Suppose that the waves ride a collinear current jet where U = U(y)i:

U(y) = U0 cos2
(
πy

Y

)
(11)

The rays diverge on co–currents (figure 3a–b) and converge on counter
currents (figure 3c–d). The rays are transversally reflected at the same veloc-
ity as the initial velocity in agreement with (8). Since the dispersion relation
(2) is not isotropic, the wave vector, k, is not tangential with the wave paths
except when the wave vector is parallel to the current, U .

On co–current jets the amplitude and wave number increase towards the
channel walls and decrease towards the centre of the jet. On counter current
jets the amplitude and wave number increase towards the centre of the jet.
When the counter current is stronger than the stopping velocity, (7), the rays
are reflected longitudinally (figure 3d).

2.2 Exact dispersion for constant current

Suppose that only the positive root is applied in (2):

ω = kxU + kyV +
(
k2
x + k2

y

) 1

4 (12)

Let ω = 1 + △ω and k = (kx, ky) = (1 + △kx,△ky) where △ω is the
modulation frequency and (△kx,△ky) is the modulation wave vector:

1 + △ω = (1 + △kx)U + △kyV +
(
1 + 2△kx + (△kx)2 + (△ky)2

) 1

4 (13)

Taylor expansion of the last term gives:

△ω − U −△kxU −△kyV − 1

2
△kx +

1

8
(△kx)2 − 1

4
(△ky)2

− 1

16
(△kx)3 +

3

8
△kx(△ky)2 = O

(
(△k)4

)
(14)
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Following the method of Yuen & Lake (1982) and Trulsen et al. (2000), (14)
may then be transformed using the following direct correspondences:

△ω → i
∂

∂t
, △kx → −i ∂

∂x
, △ky → −i ∂

∂y
(15)

For a linear, homogeneous wave system of uniform properties these corre-
spondences can be made rigorous. When including inhomogeneous currents,
the two last relationships in (15) are not accurate unless the ∇U–terms can
be neglected (Stocker & Peregrine, 1999).

Suppose that the current is slowly varying so that the waves do not feel
the changes locally. Then the relations in (15) used on (14) give:

i
∂

∂t
− U + iU

∂

∂x
+ iV

∂

∂y
+
i

2

∂

∂x
− 1

8

∂2

∂x2
+

1

4

∂2

∂y2

− i

16

∂3

∂x3
+

3i

8

∂3

∂x∂y2
= O

(
(△k)4

)
(16)

If multiplied with −iB, the linear terms in a time evolution of a current
modified Scrödinger equation appear:

∂B

∂t
+

1

2

∂B

∂x
+ iUB + U

∂B

∂x
+ V

∂B

∂y
+
i

8

∂2B

∂x2
− i

4

∂2B

∂y2

− 1

16

∂3B

∂x3
+

3

8

∂3B

∂x∂y2
= O

(
(△k)4

)
(17)

In the next section, current modified nonlinear Schrödinger equations will
be derived using multiple scales. These equations will allow inhomogeneous
currents.

3 Evolution of current modified nonlinear

Schrödinger equations

Assume that the total velocity field, vtot = v + V , is a superposition of the
velocity of a wave field, v = (u, v, w), and a prescribed stationary current
field, V = (U, V,W ), in a Cartesian coordinate system, (x, y, z). The x–axis
is aligned with the principal propagation direction of the waves. The z–axis
is vertical with unit vector k pointing upwards. z = 0 corresponds to the
undisturbed free water surface. The water is assumed inviscid, incompress-
ible, and deep with respect to the characteristic wavelength. The current
field is assumed unaffected by waves. η and ζ are the surface displacements
associated with the wave field and the current field respectively.
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Potential Vorticity Stocker & Hjelmervik
Stewartson

current allowed Peregrine & Trulsen
(1977)

(sec. 3.1) (sec. 3.2) (1999) (2009)
akc ǫ ǫ 0 ǫ ǫ

(U, V )kc/ωc ǫ ǫ 1 ǫ2 ǫ
Wkc/ωc ǫ5 ǫ4 ǫ2 ǫ2 ǫ2

Akc ǫ2 ǫ2 0 ǫ2 ǫ2

1/kcX ǫ2 ǫ ǫ ǫ ǫ
1/kcY ǫ2 1 ǫ ǫ ǫ
1/ωcT 0 0 ǫ2 ǫ 0

Nonlinear yes yes no yes yes
Horizontal

2 2 2 2 2dimensions
Potential

yes no yes yes notheory

Table 1: Current modified Schrödinger equations. kc and ωc are the charac-
teristic wave number and frequency for the undisturbed wave field, ω2

c = gkc.
a and A are the amplitudes associated with the wave field and the surface
current field respectively. (U, V,W ) is the characteristic current with a char-
acteristic length scale (X, Y, Z) and time scale T .

The Euler equation for the combined wave and current field can be written
as:

∂v

∂t
+ vtot · ∇vtot = −1

ρ
∇ptot − gk (18)

The total pressure, ptot = p+P+ps, is a combination of the dynamic pressure
due to the wave field, p, the dynamic pressure due to the current field, P ,
and the static pressure, ps = pa− ρgz, where pa is the atmospheric pressure,
ρ is the density, and g is the acceleration of gravity.

The vorticity of the waves, γ = ∇ × v, obeys the equation:

∂γ

∂t
+ vtot · ∇γ − γ · ∇vtot = −v · ∇Γ + Γ · ∇v (19)

If the vorticity of the current, Γ = ∇×V , equals zero, (19) is homogeneous
with respect to γ, and if the wave field starts out irrotational, it will remain
irrotational. For waves riding a current field with vorticity, vorticity will
develop in the wave field as well.

Traditional Schrödinger equations are built on potential theory (Davey
& Stewartson, 1974; Stewartson, 1977; Dysthe, 1979; Dysthe & Das, 1981;
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Gerber, 1987; Stocker & Peregrine, 1999; Trulsen et al., 2000). Here we will
derive two current modified nonlinear Schrödinger equations. The first is
built on potential theory (sec. 3.1), and the second allows horizontal shear
and includes all the terms from the first (sec. 3.2). In table 1 the character-
istic sizes of these derivations are compared to some of the derivations found
in literature.

Let a, kc and ωc be the characteristic amplitude, wavenumber and angular
frequency of the surface waves. We employ the steepness of the waves as a
small ordering parameter in the following, ǫ = akc ≪ 1, thus kcη = O(ǫ) and
v kc

ωc
= O(ǫ). The horizontal current velocities are assumed just small enough

to avoid collinear reflection of the waves, (U, V ) kc

ωc
= O(ǫ) . The vertical

surface current velocity is assumed negligible, W kc

ωc
= O(ǫ5) when potential

theory is used, and W kc

ωc
= O(ǫ4) when vorticity is allowed. It follows from

the Bernoulli equation that the surface displacement induced by the current
is small, Akc = O(ǫ2).

3.1 Potential current field

If the current field is a potential field, V = ∇Φ, the velocity of the wave
field can be represented by a potential, v = ∇φ, according to (19).

The continuity equation for the wave field, may be written as:

∇2φ = 0 (20)

The waves are assumed on deep water, that is ∇φ→ 0 as z → −∞. The
surface equations for the combined field at the free surface z = η+ ζ , can be
written as:

∂η

∂t
+ ∇(φ + Φ) · ∇(η + ζ) =

∂

∂z
(φ+ Φ) (21)

∂φ

∂t
+

1

2
(∇(φ + Φ))2 + g(η + ζ) = 0 (22)

Taylor expansions around z = 0 gives (21–22) on the form:

∂η

∂t
+ ∇φ · ∇(η + ζ) + ∇Φ · ∇η + ζ∇ ∂

∂z
(φ+ Φ) · ∇η + ζ∇∂φ

∂z
· ∇ζ

+η∇ ∂

∂z
(φ+ Φ) · ∇(η + ζ) +

1

2
η(η + 2ζ)∇ ∂

∂z
(φ+ Φ) · ∇(η + ζ)

+
1

2
ζ2∇ ∂

∂z
(φ+ Φ) · ∇η +

1

2
ζ2∇∂φ

∂z
· ∇ζ +

1

6
η3∇∂2φ

∂z
· ∇η

=
∂φ

∂z
+ η

∂2

∂z2
(φ+ Φ) + ζ

∂2φ

∂z2
+

1

2
η(η + 2ζ)

∂3

∂z3
(φ+ Φ) +

1

2
ζ2∂

3φ

∂z3
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+
1

6
η3∂

4φ

∂z4
+ · · · (23)

∂φ

∂t
+ (η + ζ)

∂2φ

∂t∂z
+

1

2
(η + ζ)2 ∂3φ

∂t∂z2
+

1

6
(η + ζ)3 ∂4φ

∂t∂z3

+
1

2
∇φ · ∇(φ+ 2Φ) + η∇(φ+ Φ) · ∇ ∂

∂z
(φ+ Φ) + ζ∇(φ+ Φ) · ∇∂φ

∂z

+ζ∇φ · ∇∂Φ

∂z
+

1

2
η2

(
∇∂φ

∂z

)2

+
1

2
η2∇φ · ∇∂2φ

∂z2
+ gη + · · · = 0 (24)

Let the horizontal length scales, L, of the current be longer than a charac-
teristic wavelength so that 1/(kcL) = O(ǫ2). In accordance with the scaling
assumptions, all equations, variables, and sizes in the following are made di-
mensionless using the characteristic length and time scales of the wave field,
so that kcx → x, ǫkcx → x̄, ωct → t, kcη → ǫη, kcζ → ǫ2ζ , 1

ωc
φ → ǫφ,

kc

ωc
(U, V ) → ǫ(U, V ), and kc

ωc
W → ǫ5W ,

The wave field is represented by perturbation series for the surface dis-
placement, η, and the velocity potential, φ:

η = ǫη̄ + 1
2

(
B1e

i(x−t) + ǫB2e
2i(x−t) + ǫ2B3e

3i(x−t) + · · ·+ c.c.
)

φ = ǫφ̄ + 1
2

(
A′

1e
i(x−t) + ǫA′

2e
2i(x−t) + ǫ2A′

3e
3i(x−t) + · · ·+ c.c.

) (25)

η̄ = η̄(x̄, ȳ, t̄) and φ̄ = φ̄(x̄, ȳ, z, t̄) are the mean surface displacement and
mean induced velocity potential respectively. Bn = Bn(x̄, ȳ, t̄) and A′

n =
A′
n(x̄, ȳ, z, t̄) are the n’th harmonics of the surface displacement and the in-

duced current potential respectively. The characteristic wavenumber is fixed
appropriate for waves undisturbed by current, therefore the entire effect of
refraction is represented by modulations of B1.

Both the mean functions and the harmonics, are perturbed:

η̄ = η̄1 + ǫη̄2 + · · · , Bn = Bn0 + ǫBn1 + ǫ2Bn2 + · · ·
φ̄ = φ̄1 + ǫφ̄2 + · · · , A′

n = A′
n0 + ǫA′

n1 + ǫ2A′
n2 + · · · (26)

3.1.1 Vertical dependence

The n’th harmonic terms of the scaled continuity equation, (20) is given by:

∂2A′
n

∂z2
− n2A′

n + 2ǫin
∂2A′

n

∂x̄
+ ǫ2

(
∂2A′

n

∂x̄2
+
∂2A′

n

∂ȳ2

)
= 0 (27)

where ∂A′

n

∂z
→ 0 as z → −∞.
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First order To first order the continuity equation for A′
n (27) is:

∂2A′
n0

∂z2
− n2A′

n0 = 0 (28)

which has the solution:

A′
n0 = An0(x̄, ȳ, t̄)e

nz (29)

since
∂A′

n0

∂z
→ 0 as z → −∞.

Second order To second order the continuity equation for A′
n (27) is:

∂2A′
n1

∂z2
− n2A′

n1 + 2in
∂A′

n0

∂x̄
= 0 (30)

where
∂A′

n1

∂z
→ 0 as z → −∞.

Using the result from first order (29), gives:

∂2A′
n1

∂z2
− n2A′

n1 + 2in
∂An0

∂x̄
enz = 0 (31)

which has the solution:

A′
n1 = An1(x̄, ȳ, t̄)e

nz − i
∂An0

∂x̄
zenz (32)

Third order To third order the continuity equation for A′
n (27) is:

∂2A′
n2

∂z2
− n2A′

n2 + 2in
∂A′

n1

∂x̄
+
∂2A′

n0

∂x̄2
+
∂2A′

n0

∂ȳ2
= 0 (33)

where
∂A′

n2

∂z
→ 0 as z → −∞.

Using the results from first and second order (29, 32) gives:

∂2A′
n2

∂z2
− n2A′

n2 + 2in
∂An1

∂x̄
+
∂2An0

∂x̄2
(1 + 2nz)enz +

∂2An0

∂ȳ2
enz = 0 (34)

which has the solution:

A′
n2 = An2(x̄, ȳ, t̄)e

nz − i
∂An1

∂x̄
zenz − 1

2n

∂2An0

∂ȳ2
zenz − 1

2

∂2An0

∂x̄2
z2enz (35)
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Fourth order To fourth order the continuity equation for A′
n (27) is:

∂2A′
n3

∂z2
− n2A′

n3 + 2in
∂A′

n2

∂x̄
+
∂2A′

n1

∂x̄2
+
∂2A′

n1

∂ȳ2
= 0 (36)

where
∂A′

n3

∂z
→ 0 as z → −∞.

Using the result from first, second, and third order (29, 32, 35) gives:

∂2A′
n3

∂z2
− n2A′

n3 + 2in
∂An2

∂x̄
+
∂2An1

∂x̄2
(1 + 2nz)enz +

∂2An1

∂ȳ2
enz

−2i
∂3An0

∂x̄∂ȳ2
zenz − i

∂3An1

∂x̄3
z(1 + nz)enz = 0 (37)

which has the solution:

A′
n3 = An3(x̄, ȳ, t̄)e

nz − i
∂An2

∂x̄
zenz − 1

2n

∂2An1

∂ȳ2
zenz − 1

2

∂2An1

∂x̄2
z2enz

− i

2n2

∂3An0

∂x̄∂ȳ2
z(1 − nz)enz +

i

6

∂3An0

∂x̄3
z3enz (38)

Defines An = An0 + ǫAn1 + ǫ2An2 + · · · which gives:

A′
n = Ane

nz − iǫ
∂An
∂x̄

zenz − ǫ2
(

1

2n

∂2An
∂ȳ2

z +
1

2

∂2An
∂x̄2

z2

)
enz

+ǫ3
(

i

2n2

∂3An
∂x̄∂ȳ2

z(nz − 1) +
i

6

∂3An
∂x̄3

z3

)
enz +O(ǫ4) (39)

3.1.2 Surface equations

The scaled surface equations (23–24) to the fourth order of ǫ are given by:

∂η

∂t
+ ǫ

∂φ

∂x

∂η

∂x
+ ǫU

∂η

∂x
+ ǫ2η

∂2φ

∂x∂z

∂η

∂x
+

1

2
ǫ3η2 ∂3φ

∂x∂z2

∂η

∂x
+ ǫ3η

∂U

∂z

∂η

∂x

+ǫ3ζ
∂2φ

∂x∂z

∂η

∂x
+ ǫ

∂φ

∂y

∂η

∂y
+ ǫV

∂η

∂y
+ ǫ2η

∂2φ

∂y∂z

∂η

∂y
+

1

2
ǫ3η2 ∂3φ

∂y∂z2

∂η

∂y

+ǫ3η
∂V

∂z

∂η

∂y
+ ǫ3ζ

∂2φ

∂y∂z

∂η

∂y

=
∂φ

∂z
+ ǫη

∂2φ

∂z2
+ ǫ2ζ

∂2φ

∂z2
+

1

2
ǫ2η2∂

3φ

∂z3
+ ǫ3ηζ

∂3φ

∂z3
+

1

6
ǫ3η3∂

4φ

∂z4

+O(ǫ4) (40)

∂φ

∂t
+ ǫη

∂2φ

∂t∂z
+ ǫ2ζ

∂2φ

∂t∂z
+

1

2
ǫ2η2 ∂3φ

∂t∂z2
+ ǫ3ηζ

∂3φ

∂t∂z2
+

1

6
ǫ3η3 ∂4φ

∂t∂z3
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+
1

2
ǫ

(
∂φ

∂x

)2

+ ǫU
∂φ

∂x
+ ǫ2η

∂φ

∂x

∂2φ

∂x∂z
+ ǫ2ηU

∂2φ

∂x∂z
+

1

2
ǫ3η2

(
∂2φ

∂x∂z

)2

+
1

2
ǫ3η2∂φ

∂x

∂3φ

∂x∂z2
+

1

2
ǫ3η2U

∂3φ

∂x∂z2
+ ǫ3η

∂φ

∂x

∂U

∂z
+ ǫ3ζ

∂φ

∂x

∂2φ

∂x∂z

+ǫ3ζU
∂2φ

∂x∂z
+ ǫ3ηU

∂U

∂z
+

1

2
ǫ

(
∂φ

∂y

)2

+ ǫV
∂φ

∂y
+ ǫ2η

∂φ

∂y

∂2φ

∂y∂z

+ǫ2ηV
∂2φ

∂y∂z
+

1

2
ǫ3η2

(
∂2φ

∂y∂z

)2

+
1

2
ǫ3η2∂φ

∂y

∂3φ

∂y∂z2
+

1

2
ǫ3η2V

∂3φ

∂y∂z2

+ǫ3η
∂φ

∂y

∂V

∂z
+ ǫ3ζ

∂φ

∂y

∂2φ

∂y∂z
+ ǫ3ζV

∂2φ

∂y∂z
+ ǫ3ηV

∂V

∂z
+

1

2
ǫ

(
∂φ

∂z

)2

+ǫ2η
∂φ

∂z

∂2φ

∂z2
+ ǫ3ζ

∂φ

∂z

∂2φ

∂z2
+

1

2
ǫ3η2

(
∂2φ

∂z2

)2

+
1

2
ǫ3η2∂φ

∂z

∂3φ

∂z3
+ η

= O(ǫ4) (41)

First order To first order of ǫ the surface equations (40–41) give:

B10 = iA10 (42)

Second order The zeroth harmonic terms of second order of ǫ in the dy-
namic surface equation (41) are:

i

4
B10A

∗
10 −

i

4
A10B

∗
10 +

1

2
|A10|2 + η̄1 = 0 (43)

Using the results from first order (42) gives:

η̄1 = 0 (44)

The first harmonic terms of second order of ǫ in the surface equations
(40–41) are:

− i

2
B11 +

1

2

∂B10

∂t̄
+

i

2
B10U =

1

2
A11 −

i

2

∂A10

∂x̄
(45)

− i

2
A11 +

1

2

∂A10

∂t̄
+

i

2
A10U +

1

2
B11 = 0 (46)

Using the result from first order (42) gives the Schrödinger equation to linear
order:

∂A10

∂x̄
+ 2

∂A10

∂t̄
+ 2iUA10 = 0 (47)
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and

B11 = iA11 −
∂A10

∂t̄
− iUA10 (48)

The second harmonic terms to second order of ǫ of the surface equations
(40–41) are:

−iB20 −
1

2
A10B10 = A20 (49)

−iA20 −
i

4
A10B10 +

1

2
B20 = 0 (50)

Using the result from first order (42) gives:

A20 = 0 (51)

B20 = −1

2
A2

10 (52)

Third order The zeroth harmonic terms to third order of ǫ in the surface
equations (40–41) are:

∂η̄1

∂t̄
+

i

4
A10

∂B∗
10

∂x̄
− i

4
B10

∂A∗
10

∂x̄
+

i

4

∂A10

∂x̄
B∗

10 −
i

4

∂B10

∂x̄
A∗

10 =
∂φ̄1

∂z
(53)

∂φ̄1

∂t̄
+

1

4
B10

∂A∗
10

∂t̄
+

i

4
B10A

∗
11 −

1

4
B10

∂A∗
10

∂x̄
+

1

4

∂A10

∂t̄
B∗

10 −
i

4
A11B

∗
10

−1

4

∂A10

∂x̄
B∗

10 +
i

4
B11A

∗
10 −

i

4
A10B

∗
11 +

1

2
A11A

∗
10 −

i

2

∂A10

∂x̄
A∗

10

+
1

2
A10A

∗
11 +

i

2
A10

∂A∗
10

∂x̄
− i

4
UB10A

∗
10 +

i

4
UA10B

∗
10 + η̄2 = 0 (54)

Using the results from first and second order (42, 44, 48) gives:

∂φ̄1

∂z
= −∂|A10|2

∂t̄
(55)

η̄2 = −∂φ̄1

∂t̄
(56)

The first harmonic terms of third order of ǫ in the surface equations (40–
41) are:

− i

2
B12 +

1

2

∂B11

∂t̄
− 1

2
A20B

∗
10 +

1

4
B20A

∗
10 +

i

2
UB11

+
1

2
U
∂B10

∂x̄
+

1

2
V
∂B10

∂ȳ
− 1

8
|B10|2A10 +

1

16
B2

10A
∗
10
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=
1

2
A12 −

i

2

∂A11

∂x̄
− 1

4

∂2A10

∂ȳ2
+

1

2
η̄1A10 +

1

2
ζA10 (57)

− i

2
A12 +

1

2

∂A11

∂t̄
− i

2
η̄1A10 +

i

4
B20A

∗
10 − iA20B

∗
10 −

i

2
ζA10

+
i

16
B2

10A
∗
10 −

i

8
|B10|2A10 + A20A

∗
10 +

i

2
UA11

+
1

2
U
∂A10

∂x̄
+

1

2
V
∂A10

∂ȳ
+

1

2
|A10|2B10 +

1

2
B12 = 0 (58)

Using the results from first and second order (42, 44, 47–48, 51–52) gives the
current modified cubic nonlinear Schrödinger equation:

∂A11

∂x̄
+ 2

∂A11

∂t̄
+ 2iUA11 + i

∂2A10

∂t̄2
− 6U

∂A10

∂t̄

+i|A10|2A10 − 5iU2A10 + 2V
∂A10

∂ȳ
− i

2

∂2A10

∂ȳ2
= 0 (59)

and

B12 = iA12 −
∂A11

∂t̄
+ iζA10 −

3i

8
|A10|2A10 − iUA11

+2U
∂A10

∂t̄
+ 2iU2A10 − V

∂A10

∂ȳ
(60)

The second harmonic terms of third order of ǫ in the surface equations
(40–41) are:

−iB21 +
1

2

∂B20

∂t̄
− 1

2
A10B11 +

i

4
A10

∂B10

∂x̄
− 1

2
B10A11 +

3i

4

∂A10

∂x̄
B10

+iUB20 = A21 −
i

2

∂A20

∂x̄
(61)

−iA21 +
1

2

∂A20

∂t̄
− i

4
B10A11 −

1

4
B10

∂A10

∂x̄
+

1

4
B10

∂A10

∂t̄
− i

4
A10B11

+iUA20 +
i

4
UA10B10 +

1

2
B21 = 0 (62)

Using the results from first and second order (42, 47–48, 51–52) gives:

A21 = 0 (63)

B21 = −2iA10
∂A10

∂t̄
− A10A11 + 2UA2

10 (64)

The third harmonic terms of third order of ǫ in the surface equations
(40–41) are:

−3i

2
B30 −

3

4
A10B20 −

3

2
A20B10 −

3

16
B2

10A10 =
3

2
A30 (65)

−3i

2
A30 − iB10A20 −

i

4
B20A10 −

i

16
B2

10A10 +
1

2
B30 = 0 (66)
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Using the results from first and second order (42, 51–52) gives:

A30 = 0 (67)

B30 = −3i

8
A3

10 (68)

Fourth order The first harmonic terms of fourth order of ǫ in the surface
equations (40–41) are:

− i

2
B13 +

1

2

∂B12

∂t̄
+

i

2

∂φ̄1

∂x̄
B10 +

i

2

∂η̄1

∂x̄
A10 + iη̄1

∂A10

∂x̄
− 1

2
η̄1A11 −

1

2
η̄2A10

−1

2
A20B

∗
11 −

1

2
A21B

∗
10 +

1

4
B20A

∗
11 +

1

4
B21A

∗
10 −

1

8
A10B11B

∗
10

−1

8
A10B10B

∗
11 +

1

8
B10B11A

∗
10 +

1

16
B2

10A
∗
11 −

1

8
|B10|2A11

+
i

2
A20

∂B∗
10

∂x̄
+

i

8
A10B10

∂B∗
10

∂x̄
+

i

16
B2

10

∂A∗
10

∂x̄
+

3i

8
|B10|2

∂A10

∂x̄

+
3i

4

∂A20

∂x̄
B∗

10 −
i

4

∂B20

∂x̄
A∗

10 +
i

8
A10

∂B10

∂x̄
B∗

10 −
i

8
B10

∂B10

∂x̄
A∗

10

+
i

2
UB12 +

1

2
U
∂B11

∂x̄
+

1

2
V
∂B11

∂ȳ
− 1

2
ζA11 + iζ

∂A10

∂x̄

=
1

2
A13 −

i

2

∂A12

∂x̄
− 1

4

∂2A11

∂ȳ2
− i

4

∂3A10

∂x̄∂ȳ2
(69)

− i

2
A13 +

1

2
B13 +

1

2

∂A12

∂t̄
+

i

2

∂φ̄1

∂x̄
A10 +

1

2

∂φ̄1

∂z
A10 −

i

2
η̄1A11 −

1

2
η̄1
∂A10

∂x̄

+
1

2
η̄1
∂A10

∂t̄
− i

2
η̄2A10 − iA20B

∗
11 + 2A20A

∗
11 + 2A21A

∗
10 − iA21B

∗
10

+
i

4
B20A

∗
11 +

i

4
B21A

∗
10 +

1

2
A10B11A

∗
10 −

i

8
A10B11B

∗
10

+
1

2
A10B10A

∗
11 −

i

8
A10B10B

∗
11 +

1

2
A11B10A

∗
10 −

i

8
B10A11B

∗
10

+
i

8
B10B11A

∗
10 +

i

16
B2

10A
∗
11 + 2iA20

∂A∗
10

∂x̄
− 1

4
B20

∂A∗
10

∂x̄
+

1

4
B20

∂A∗
10

∂t̄

+
3i

4
A10B10

∂A∗
10

∂x̄
− 1

8
B2

10

∂A∗
10

∂x̄
+

1

16
B2

10

∂A∗
10

∂t̄
− i

∂A20

∂x̄
A∗

10

−1

2

∂A20

∂x̄
B∗

10 +
1

2

∂A20

∂t̄
B∗

10 −
3i

4
B10

∂A10

∂x̄
A∗

10 −
1

4
B10

∂A10

∂x̄
B∗

10

+
1

8
B10

∂A10

∂t̄
B∗

10 +
i

2
UA12 + iUA20B

∗
10 −

i

4
UB20A

∗
10 −

i

16
UB2

10A
∗
10

+
i

8
U |B10|2A10 +

1

2
U
∂A11

∂x̄
+

1

2
V
∂A11

∂ȳ
+

1

2
U
∂U

∂z
B10 +

1

2
V
∂V

∂z
B10
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− i

2
ζA11 −

1

2
ζ
∂A10

∂x
+

1

2
ζ
∂A10

∂t
+

i

2
ζUA10

= 0 (70)

Using the results from first, second and third order (42, 44, 47–48, 51–52,
55–56, 59–60, 63–64, 67–68) gives the current modified nonlinear Schrödinger
equation built on potential theory to Dysthe level, MNLSC:

∂A12

∂x
+ 2

∂A12

∂t
+ i

∂2A11

∂t
2 + 2i

∂φ1

∂x
A10 −

i

2

∂2A11

∂y2
− ∂3A10

∂t∂y2

−8A10
∂A10

∂t
A∗

10 + iA2
10A

∗
11 + 2iA10A11A

∗
10 + 2iUA12 − 6U

∂A11

∂t

−6iU
∂2A10

∂t
2 − 10iUA2

10A
∗
10 + 2V

∂A11

∂y
+ 2iV

∂2A10

∂t∂y
− 5iU2A11

+20U2∂A10

∂t
+ iU

∂U

∂z
A10 − 6UV

∂A10

∂y
+ iV

∂V

∂z
A10 + 14iU3A10

= 0 (71)

3.1.3 Summary

In the following A = A1, B = B1, and (x̄, ȳ, t̄) = (x, y, t) to simplify the
notation.

Space evolution of A The space evolution of the MNLSC equation (71)
expressed by modulation of A is:

∂A

∂x
+ 2

∂A

∂t
+ 2iUA

+i
∂2A

∂t2
− i

2

∂2A

∂y2
+ iA|A|2 − 6U

∂A

∂t
− 5iU2A+ 2V

∂A

∂y

+2i
∂φ

∂x
A− ∂3A

∂t∂y2
− 8|A|2∂A

∂t
− 6iU

∂2A

∂t2
− 10iUA|A|2 + 2iV

∂2A

∂t∂y

+20U2∂A

∂t
+ iU

∂U

∂z
A− 6UV

∂A

∂y
+ iV

∂V

∂z
A + 14iU3A = 0 (72)

and

∂φ

∂z
= −∂|A|

2

∂t
when z = 0 (73)

4
∂2φ

∂t2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 when z < 0 (74)

∂φ

∂z
= 0 when z → −∞ (75)
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with the following reconstruction formulas:

η = −∂φ
∂t

A2, A3 = 0

B = iA− ∂A

∂t
− iUA + iζA− 3i

8
A|A|2 + 2U

∂A

∂t
+ 2iU2A− V

∂A

∂y

B2 = −1

2
A2 − 2iA

∂A

∂t
+ 2UA2

B3 = −3i

8
A3

Space evolution of B The space evolution of the MNLSC equation (71)
expressed by modulation of B is:

∂B

∂x
+ 2

∂B

∂t
+ 2iUB

+i
∂2B

∂t2
− i

2

∂2B

∂y2
+ iB|B|2 − 6U

∂B

∂t
− 5iU2B + 2V

∂B

∂y
− 4i

∂φ1

∂t
B

− ∂3B

∂t∂y2
− 8|B|2∂B

∂t
− 2B2∂B

∗

∂t
− 6iU

∂2B

∂t2
− 8iU |B|2B + 2iV

∂2B

∂t∂y

+20U2∂B

∂t
+ iU

∂U

∂z
B − 6UV

∂B

∂y
+ iV

∂V

∂z
B + 14iU3B = 0 (76)

and

∂φ

∂z
= −∂|B|2

∂t
when z = 0 (77)

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 when z < 0 (78)

∂φ

∂z
= 0 when z → −∞ (79)

with the following reconstruction formulas:

η = −∂φ
∂t

A = −iB − ∂B

∂t
− iUB + i

∂2B

∂t2
+ iζB − 3i

8
|B|2B + iU2B − V

∂B

∂y
A2, A3 = 0

B2 =
1

2
B2 + iB

∂B

∂t
− UB2

B3 =
3

8
B3
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Time evolution of A The time evolution of the MNLSC equation (71)
expressed by modulation of A is:

∂A

∂t
+

1

2

∂A

∂x
+ iUA

+
i

8

∂2A

∂x2
− i

4

∂2A

∂y2
+

i

2
A|A|2 + U

∂A

∂x
+ V

∂A

∂y

+i
∂φ

∂x
A− 1

16

∂3A

∂x3
+

3

8

∂3A

∂x∂y2
+

3

2
|A|2∂A

∂x
− 1

4
A2∂A

∗

∂x

+
i

2
U
∂U

∂z
A+

i

2
V
∂V

∂z
A = 0 (80)

and

∂φ

∂z
=

1

2

∂|A|2
∂x

when z = 0 (81)

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 when z < 0 (82)

∂φ

∂z
= 0 when z → −∞ (83)

with the following reconstruction formulas:

η =
1

2

∂φ

∂x
A2, A3 = 0

B = iA+
1

2

∂A

∂x
+ iζA+

i

8
A|A|2 +

i

8

∂2A

∂x2
− i

4

∂2A

∂y2

B2 = −1

2
A2 + iA

∂A

∂x

B3 = −3i

8
A3

Time evolution of B The time evolution of the MNLSC equation (71)
expressed by modulation of B is:

∂B

∂t
+

1

2

∂B

∂x
+ iUB

+
i

8

∂2B

∂x2
− i

4

∂2B

∂y2
+

i

2
|B|2B + U

∂B

∂x
+ V

∂B

∂y

− 1

16

∂3B

∂x3
+

3

8

∂3B

∂x∂y2
+

3

2
B
∂B

∂x
B∗ +

1

4
B2∂B

∗

∂x
+ i

∂φ1

∂x
B

+
i

2
U
∂U

∂z
B +

i

2
V
∂V

∂z
B − i

2
U |B|2B = 0 (84)
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and

∂φ

∂z
=

1

2

∂|B|2
∂x

when z = 0 (85)

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 when z < 0 (86)

∂φ

∂z
= 0 when z → −∞ (87)

with the following reconstruction formulas:

η =
1

2

∂φ

∂x

A = −iB +
1

2

∂B

∂x
+

3i

8

∂2B

∂x2
− i

4

∂2B

∂y2
+

i

8
|B|2B + iζB

A2, A3 = 0

B2 =
1

2
B2 − i

2
B
∂B

∂x

B3 =
3

8
B3

The CNLS4 equation by Stocker & Peregrine (1999) may be derived from
(84) by rescaling.

3.2 Current field with horizontal shear

If the current field is rotational, vorticity develops in the wave field according
to (19).

The divergence of the Euler equation for the waves (18) is:

∇ · (v · ∇v + v · ∇V + V · ∇v) = −1

ρ
∇2p (88)

The surface equations for the combined field at z = η + ζ can be written
as:

∂η

∂t
+ vtot · ∇(η + ζ) = w +W (89)

ptot = p (90)

Taylor expansions around z = 0 gives (89–90) on the form:

∂η

∂t
+ vtot · ∇(η + ζ) + (η + ζ)

∂vtot
∂z

· ∇(η + ζ) +
1

2
(η + ζ)2∂

2vtot
∂z2

· ∇(η + ζ)
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= w +W + (η + ζ)
∂

∂z
(w +W ) +

1

2
(η + ζ)

∂2

∂z2
(w +W ) + · · · (91)

ptot + (η + ζ)
∂ptot
∂z

+
1

2
(η + ζ)2∂

2ptot
∂z2

+ · · · = pa (92)

The waves are assumed on deep water, thus v, p→ 0 as z → −∞.
Let the current vary more slowly on a length scale along the x–axis, X,

than along the y–axis, Y , so that 1/(kcX) = O(ǫ) and 1/(kcY ) = O(1). In
accordance with the scaling assumptions, all equations, variables, and sizes
in the following are made dimensionless using the characteristic length and
time scales of the wave field, so that kcx → x, ǫkcx → x̄, ωct→ t, kcη → ǫη,
kcζ → ǫ2ζ , kc

ωc
v → ǫv, kc

ωc
(U, V ) → ǫ(U, V ), kc

ωc
W → ǫ4W , kc

ρg
p → ǫp, and

kc

ρg
P → ǫ3P .

Note that in Hjelmervik & Trulsen (2009) the scaling is slightly changed.
Since the waves are modulated on a length scale of order ǫ, the transversal
length scale of the current is also assumed of order ǫ. And the vertical surface
velocity of the current is assumed of one order lower.

The scaled equation for the divergence of the Euler equation for the waves
(88) to the fourth order of ǫ is:

ǫ




(
∂u

∂x

)2

+

(
∂v

∂u

)2

+

(
∂w

∂z

)2

+2
∂u

∂y

∂v

∂x
+2

∂u

∂z

∂w

∂x
+2

∂v

∂z

∂w

∂y
+2

∂v

∂x

∂U

∂y
+2

∂v

∂y

∂V

∂y





+ǫ2
(

2
∂u

∂x

∂U

∂x
+ 2

∂u

∂y

∂V

∂x

)
= −∂

2p

∂x2
− ∂2p

∂y2
− ∂2p

∂z2
(93)

The scaled Euler equation for the waves (18) to the fourth order of ǫ is:

∂u

∂t
+ ǫ

(
U
∂u

∂x
+ V

∂u

∂y
+ v

∂U

∂y
+ v · ∇u

)
+ ǫ2u

∂U

∂x
= −∂p

∂x
(94)

∂v

∂t
+ ǫ

(
U
∂v

∂x
+ V

∂v

∂y
+ v

∂V

∂y
+ v · ∇v

)
+ ǫ2u

∂V

∂x
= −∂p

∂y
(95)

∂w

∂t
+ ǫ

(
U
∂w

∂x
+ V

∂w

∂y
+ v · ∇w

)
= −∂p

∂z
(96)

The scaled surface equations for the waves (91–92) to the fourth order of
ǫ is:

∂η

∂t
+ ǫ(v + V ) · ∇η + ǫ2

(
v
∂ζ

∂y
+ η

∂v

∂z
· ∇η

)

+ǫ3
(
u
∂ζ

∂x
+ η

∂v

∂z

∂ζ

∂y
+ ζ

∂v

∂z
· ∇η +

1

2
η2∂

2v

∂z2
· ∇η

)
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= w + ǫη
∂w

∂z
+ ǫ2

(
ζ
∂w

∂z
+

1

2
η2∂

2w

∂z2

)
+ ǫ3

(
ηζ
∂2w

∂z2
+

1

6
η3∂

3w

∂z3

)
+O(ǫ4)(97)

p− η + ǫη
∂p

∂z
+ ǫ2

(
ζ
∂p

∂z
+

1

2
η2∂

2p

∂z2

)
+ ǫ3

(
ηζ
∂2p

∂z2
+

1

6
η3∂

3p

∂z3

)
= O(ǫ4) (98)

The wave field is represented by perturbation series for the surface dis-
placement, η, the velocity, v, and the dynamic pressure, p:

η = ǫη̄ + 1
2

(
B1e

i(x−t) + ǫB2e
2i(x−t) + ǫ2B3e

3i(x−t) + · · ·+ c.c.
)

v = ǫv̄ + 1
2

(
v1ei(x−t) + ǫv2 e2i(x−t) + ǫ2v3e3i(x−t) + · · ·+ c.c.

)

p = ǫp̄ + 1
2

(
p1 ei(x−t) + ǫp2 e2i(x−t) + ǫ2 p3 e3i(x−t) + · · ·+ c.c.

) (99)

We shall assume that the waves are modulated on the slow spatial scales x̄
and ȳ, and a correspondingly slow time scale ǫt = t̄. Thus η̄ = η̄(x̄, ȳ, t̄),
v = v̄(x̄, ȳ, z, t̄), and p = p̄(x̄, ȳ, z, t̄) are the mean surface displacement,
mean induced velocity, and mean dynamic pressure respectively, while Bn =
Bn(x̄, ȳ, t̄), vn = vn(x̄, ȳ, z, t̄), and pn = pn(x̄, ȳ, z, t̄) are the n’th harmonics
of the surface displacement, induced current, and dynamic pressure respec-
tively. The characteristic wavenumber is fixed appropriate for waves undis-
turbed by current, therefore the entire effect of refraction is represented by
the modulation of B1.

Both the mean functions and the harmonics, are perturbed:

η̄ = η̄1 + ǫη̄2 + · · · , Bn = Bn0 + ǫBn1 + ǫ2Bn2 + · · ·
v̄ = v̄1 + ǫv̄2 + · · · , vn = vn0 + ǫvn1 + ǫ2vn2 + · · ·
p̄ = p̄1 + ǫp̄2 + · · · , pn = pn0 + ǫpn1 + ǫ2 pn2 + · · ·

(100)

3.2.1 First order terms

First harmonic The first harmonic terms of first order of ǫ for the diver-
gence of the Euler equation (93) are:

p10 −
∂2p10

∂z2
= 0 (101)

which has the general solution:

p10 = A10(x̄, ȳ, t̄)e
z (102)

The first harmonic terms of first order of ǫ in the surface equations (97–98)
give:

A10 = B10 (103)
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The first harmonic terms of first order of ǫ in the Euler equation (94–96)
then give respectively:

u10 = B10e
z (104)

v10 = 0 (105)

w10 = −iB10e
z (106)

3.2.2 Second order terms

Zeroth harmonic The zeroth harmonic terms of second order of ǫ for the
z–component of the Euler equation (96) are:

i

4
u10w

∗
10 +

i

4
u∗10w10 +

1

4
w10

∂w∗
10

∂z
+

1

4
w∗

10

∂w10

∂z
= −∂p̄1

∂z
(107)

Using the results from first order (104, 106) gives:

|B10|2e2z = −∂p̄1

∂z
(108)

which has the solution:

p̄1 = Ā1(x̄, ȳ, t̄)e
z − 1

2
|B10|2e2z (109)

The zeroth harmonic terms of second order of ǫ in the dynamic surface
equation (98) are:

p̄1

∣∣∣
z=0

− η̄1 +
1

4
B10

∂p∗10
∂z

∣∣∣
z=0

+
1

4
B∗

10

∂p10

∂z

∣∣∣
z=0

= 0 (110)

Using the results from first order (102–103) and the solution for p̄1 (109)
gives Ā1 = η̄1.

The zeroth harmonic terms of second order of ǫ in the kinematic surface
equation (97) are:

− i

4
u10

∣∣∣
z=0

B∗
10 +

i

4
u∗10
∣∣∣
z=0

B10

= w̄1

∣∣∣
z=0

+
1

4
B10

∂w∗
10

∂z

∣∣∣
z=0

+
1

4
B∗

10

∂w10

∂z

∣∣∣
z=0

(111)

Using the results from first order (104, 106) gives:

w̄1

∣∣∣
z=0

= 0 (112)

Since no surface elevation or induced current is provoked to first order of ǫ,
η̄1 = ū1 = v̄1 = w̄1 = 0 without lack of information.
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First harmonic The first harmonic terms of second order of ǫ for the
divergence of the Euler equation (93) are:

2iv10
∂U

∂y
+ 2i

∂p10

∂x̄
= p11 −

∂2p11

∂z2
(113)

Using the results from first order (102–103, 105) gives:

2i
∂B10

∂x̄
ez = p11 −

∂2p11

∂z2
(114)

which has the solution:

p11 = A11(x̄, ȳ, t̄)e
z − i

∂B10

∂x̄
zez (115)

The first harmonic terms of second order of ǫ in the dynamic surface
equation (98) give:

A11 = B11 (116)

The first harmonic terms of second order of ǫ in the Euler equation and
the kinematic surface equation (94–97) are respectively:

∂u10

∂t̄
− iu11 + iu10U + v10

∂U

∂ȳ
= −∂p10

∂x̄
− ip11 (117)

∂v10

∂t̄
− iv11 + iv10U + v10

∂V

∂ȳ
= −∂p10

∂ȳ
(118)

∂w10

∂t̄
− iw11 + iw10U = −∂p11

∂z̄
(119)

∂B10

∂t̄
− iB11 + iUB10 = w11

∣∣∣
z=0

(120)

Using the results from first order (102–106) and the solution for p11 (115),
leads to the current modified Schrödinger equation to linear order:

∂B10

∂x̄
+ 2

∂B10

∂t̄
+ 2iUB10 = 0 (121)

and the following reconstruction formulas:

u11 = B11e
z + i

(
∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez (122)

v11 = −i
∂B10

∂ȳ
ez (123)

w11 = −iB11e
z +

(
∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez (124)
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Second harmonic The second harmonic terms of second order of ǫ for the
divergence of the Euler equation (93) are:

−1

2
u2

10 +
1

2

(
∂w10

∂z

)2

+ i
∂u10

∂z
w10 = 4p20 −

∂2p20

∂z2
(125)

Using the results from first order (104, 106) gives:

0 = 4p20 −
∂2p20

∂z2
(126)

which has the solution:

p20 = A20e
2z (127)

The second harmonic terms of second order of ǫ in the dynamic surface
equation (98) are:

p20

∣∣∣
z=0

−B20 +
1

2
B10

∂p10

∂z

∣∣∣
z=0

= 0 (128)

Using the results from first order (102–103) and the solution for p20 (127)
gives:

A20 = B20 −
1

2
B2

10 (129)

The second harmonic terms of second order of ǫ in the Euler equation
and the kinematic surface equation (94–97) are respectively:

−iu20 +
i

4
u2

10 +
1

4
w10

∂u10

∂z
= −ip20 (130)

−iv20 +
i

4
u10v10 +

1

4
w10

∂v10

∂z
= 0 (131)

−iw20 +
i

4
u10w10 +

1

4
w10

∂w10

∂z
= −1

2

∂p20

∂z
(132)

−iB20 +
i

4
u10

∣∣∣
z=0

B10 =
1

2
w20

∣∣∣
z=0

+
1

4
B10

∂w10

∂z

∣∣∣
z=0

(133)

Using the results from first order (104–106) and the solution for p20 (127–129)
gives:

u20 = v20 = w20 = p20 = 0 (134)

B20 =
1

2
B2

10 (135)
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3.2.3 Third order terms

First harmonic The first harmonic terms of third order of ǫ for the diver-
gence of the Euler equation (93) are:

u20u
∗
10 +

1

2

∂w20

∂z

∂w∗
10

∂z
− i

2

∂u20

∂z
w∗

10 + i
∂u∗10
∂z

w20

+iv11
∂U

∂y
+
∂v10

∂x̄

∂U

∂y
+
∂v10

∂x̄

∂V

∂y
+ iu10

∂U

∂x

= −1

2

∂2p10

∂x̄2
− i

∂p11

∂x̄
+

1

2
p12 −

1

2

∂2p10

∂ȳ2
− 1

2

∂2p12

∂z2
(136)

Using the results from first and second order (102–106, 115–116, 123, 134)
gives:

∂2p12

∂z2
− p12 = −2i

∂B11

∂x̄
ez − ∂2B10

∂x̄2
ez − ∂2B10

∂ȳ2
ez

−2
∂2B10

∂x̄2
zez − 2iB10

∂U

∂x
ez − 2

∂B10

∂ȳ

∂U

∂y
ez (137)

which has the solution:

p12 = A12(x̄, ȳ, z̄, t̄)e
z + α(x̄, ȳ, z̄, t̄)zez + β(x̄, ȳ, t̄)z2ez (138)

where

α = −i
∂B11

∂x̄
− 1

2

∂2B10

∂ȳ2
− iB10

∂U

∂x
− ∂B10

∂ȳ

∂U

∂y

β = −1

2

∂2B10

∂x̄2

The first harmonic terms of third order of ǫ in the dynamic surface equa-
tion (98) are:

1

2
p12

∣∣∣
z=0

− 1

2
B12 +

1

4
B20

∂p∗10
∂z

∣∣∣
z=0

+
1

4
B∗

10

∂p20

∂z

∣∣∣
z=0

+
1

2
B10

∂p̄1

∂z

∣∣∣
z=0

+
1

2
ζ
∂p10

∂z

∣∣∣
z=0

+
1

16
B2

10

∂2p∗10
∂z2

∣∣∣
z=0

+
1

8
|B10|2

∂2p10

∂z2

∣∣∣
z=0

= 0 (139)

Using the results from the first and second order (102–103, 109, 134–135)
and the solution for p12 (138), gives:

A12 = B12 +
3

8
B2

10B
∗
10 − B10ζ at z = 0 (140)
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The first harmonic terms of third order of ǫ in the Euler equation and the
kinematic surface equation (94–97) are respectively:

1

2

∂u11

∂t̄
− i

2
u12 +

1

2

∂u10

∂x̄
U +

i

2
u11U +

1

2

∂u10

∂ȳ
V +

1

2
v11

∂U

∂y
− i

4
u20u

∗
10

+
i

2
u∗10u20 +

1

4
w20

∂u∗10
∂z

+
1

4
w∗

10

∂u20

∂z
+

1

2
u10

∂U

∂x

= −1

2

∂p11

∂x̄
− i

2
p12 (141)

1

2

∂v11

∂t̄
− i

2
v12 +

1

2

∂v10

∂x̄
U +

i

2
v11U +

1

2

∂v10

∂ȳ
V +

1

2
v11

∂V

∂y
+

1

2
u10

∂V

∂x

− i

4
u20v

∗
10 +

i

2
u∗10v20 +

1

4
w20

∂v∗10
∂z

+
1

4
w∗

10

∂v20

∂z
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2

∂p11

∂ȳ
(142)

1

2

∂w11

∂t̄
− i

2
w12 +

1

2

∂w10

∂x̄
U +

i

2
w11U +

1

2

∂w10

∂ȳ
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4
u20w

∗
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+
i

2
u∗10w20 +

1

4
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∂w∗
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∂z
+

1

4
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= −1

2
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(143)
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4
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2
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2
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2
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2
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∂ȳ
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2
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8
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+
i

8
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∂u∗10
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+
i

8
|B10|2
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∣∣∣
z=0

=
1

2
w12

∣∣∣
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+
1

4
B20

∂w∗
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∣∣∣
z=0

+
1

2
B∗
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+
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2
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∂w10

∂z

∣∣∣
z=0

+
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+
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(144)

Combining these equations with the results from first and second order (104–
106, 115–116, 122–124, 134–135) and the solution for p12 (138, 140) gives the
space evolution of the current modified cubic Schrödinger equation, NLSC:

0 =
∂B11

∂x̄
+ 2

∂B11

∂t̄
+ i

∂2B10

∂t̄2
− i

2

∂2B10

∂ȳ2
+ iB2

10B
∗
10 + 2iB11U

−6
∂B10

∂t̄
U − 5iB10U

2 + 2
∂B10

∂ȳ
V +B10

∂U

∂x
− i

∂B10

∂ȳ

∂U

∂y
(145)

And the time evolution:

0 =
∂B11

∂t̄
+

1

2

∂B11

∂x̄
+

i

8

∂2B10

∂x̄2
− i

4

∂2B10

∂ȳ2
+

i

2
B2

10B
∗
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+iB11U +
∂B10
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U − ∂B10

∂ȳ
V +
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2
B10
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∂x
− i

2

∂B10
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(146)
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3.2.4 Summary

In the following B = B1 to simplify the notation.

Space evolution The space evolution of the current modified nonlinear
Schrödinger equation which allows vorticity to the first order of ǫ, NLSC is:

∂B

∂x̄
= (L + C + N )B (147)

L contains the linear terms with constant coefficients. C contains the linear
terms with variable coefficients. And N is the nonlinear term:

L = −2
∂

∂t̄
− i

∂2

∂t̄2
+

i

2

∂2

∂ȳ2

C = −2iU + 6U
∂

∂t̄
+ 5iU2 − 2V

∂

∂ȳ
− ∂U

∂x
+ i

∂U

∂y

∂

∂ȳ

N = −i|B|2

The vertical current component, W , the vertical derivatives of the current,
∂V

∂z
, and the surface displacement, ζ , associated with the current, appear to

the next order of the equation.
The reconstruction formulas are:

η̄, ū, v̄, w̄ = 0

p̄ = −1

2
|B|2e2z

B2 =
1

2
B2

u1 = Bez + i
∂B

∂t̄
ez −BUez + 2i

∂B

∂t̄
zez − 2BUzez

v1 = −i
∂B

∂ȳ
ez

w1 = −iBez +
∂B

∂t̄
ez + iBUez + 2

∂B

∂t̄
zez + 2iBUzez

p1 = Bez + 2i
∂B

∂t̄
zez − 2BUzez

u2, v2, w2, p2 = 0

Time evolution The time evolution of the current modified nonlinear
Schrödinger equation which allows vorticity to the first order of ǫ, NLSC
is:

∂B

∂t̄
= (L + C + N )B (148)
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where

L = −1

2

∂

∂x̄
− i

8

∂2

∂x̄2
+

i

4

∂2

∂ȳ2

C = −iU − U
∂

∂x̄
+ V

∂

∂ȳ
− 1

2

∂U

∂x
+

i

2

∂U

∂y

∂

∂ȳ

N = − i

2
|B|2

The reconstruction formulas are:

η̄, ū, v̄, w̄ = 0

p̄ = −1

2
|B|2e2z

B2 =
1

2
B2

u1 = Bez − i

2

∂B

∂x̄
ez − i

∂B

∂x̄
zez

v1 = −i
∂B

∂ȳ
ez

w1 = −iBez − 1

2

∂B

∂x̄
ez − ∂B

∂x̄
zez

p1 = Bez − i
∂B

∂x̄
zez

u2, v2, w2, p2 = 0

4 Numerical implementation

4.1 Numerical scheme

Space evolutions of current modified nonlinear Schrödinger equations, (76)
and (147), may be written on the form:

∂B

∂x
= (L + V)B (149)

L = L( ∂
∂t
, ∂
∂y

) contains the linear terms with constant coefficients. V = N +C
contains the nonlinear term, N = N (|B|2), and the linear terms with variable
coefficients, C = C(U, V, ∂

∂t
, ∂
∂y

).

4.1.1 Splitting scheme

The formal solution of (149) is:

B = eF (x,y,t)B0 (150)
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where B0 = B|x=0 and ∂F (x,y,t)
∂x

= L+V. If F = F (x, y, t) is weakly depending
on x, (150) may be approximated by:

B ≈ e(L+V)xB0 (151)

The exponential function may be expanded:

e(L+V)x = 1 + (L + V)x+
1

2
(L + V)2x2 +

1

6
(L + V)3x3 + · · · (152)

In numerical simulations LB and VB may be solved separately. The
accuracy of the result depends on the splitting scheme. Note that it is not
necessary with a more accurate splitting scheme than the accuracy of the
separate solutions.

LV–split With LV–split, e(L+V)x ≈ eLxeVx which may be expanded to:

eLxeVx = 1 + (L + V)x+
1

2

(
L2 + 2LV + V2

)
x2 +O(x3) (153)

The accuracy is of first order:

e(L+V)x − eLxeVx =
1

2
(VL − LV)x2 +O(x3) (154)

Note that VL do not equal LV in all cases. An an appropriate commutator
is defined by:

[V,L] ≡ VL − LV (155)

so that (154) may be written on the form:

e(L+V)x − eLxeVx =
1

2
[V,L]x2 +O(x3) (156)

VLLV–split With VLLV–split, e(L+V)x ≈ e
1

2
VxeLxe

1

2
Vx which may be ex-

panded to:

e
1

2
VxeLxe

1

2
Vx = 1 + (L + V)x+

1

2

(
L2 + LV + VL + V2

)
x2

+
(

1

6
L3 +

1

4
L2V +

1

8
LV2 +

1

4
VL2 +

1

4
VLV +

1

8
V2L +

1

6
V3
)
x3

+O(x4) (157)

This gives an accuracy of second order if [V,L] 6= 0:

e(L+V)x − e
1

2
VxeLxe

1

2
Vx =

1

24

(
2
[
L, [V,L]

]
+
[
[V,L],V

])
x3 +O(x4) (158)

31



(VLLV)3–split With (VLLV)3–splits, a fourth order scheme from Muslu
& Erbay (2004) following McLachlan (1994) is used:

e(L+V)x ≈ φ(αx)φ
(
(1 − 2α)x

)
φ(αx) (159)

where φ(χ) = e
1

2
VχeLχe

1

2
Vχ and α = (2+2

1

3 +2−
1

3 )/3. This gives an accuracy
of fourth order.

4.1.2 Fourier transform

Fourier transform is used to solved the linear part of (149) with constant
coefficients:

∂B

∂x
= LB (160)

The Fourier transform of (160) with respect to y and t is:

∂B̂

∂x
= L̂B̂ (161)

where L̂ is a complex polynomial of ky and ω. Note that ∂̂B
∂y

= ikyB̂ and

∂̂B
∂t

= −iωB̂. The exact solution of (160) is:

B̂ = eL̂xB̂0 (162)

where B̂0 = B̂|x=0.
The Fourier transform with respect to y and t is given by:

B̂ij =
1

MN

M−1∑

m=0

N−1∑

n=0

Bmne
i(Ωjtn−kyiym) (163)

where ym = m∆y, tn = n∆t, kyi = i∆ky, and Ωj = j∆ω.

4.1.3 Finite Difference

Runge–Kutta schemes are used to solve the nonlinear part and the linear
part with variable coefficients in (149):

∂B

∂x
= VB (164)

The Runge–Kutta scheme used ought to be of the same order as the splitting
scheme.
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Alternative: a b α β
A 0 1 1/2 1/2
B 1/2 1/2 1 1
C 2/3 1/3 3/2 3/2
D 1/3 2/3 3/4 3/4

Table 2: The four alternative choices for the variables in the second order
Runge–Kutta scheme.

First order A first order Euler scheme is used for the first order splitting
scheme:

Bx+△x = Bx + △xVxBx (165)

Second order A second order Runge–Kutta scheme is used for the second
order splitting scheme:

Bx+△x = Bx + △x(ak1 + bk2) (166)

where

k1 = VxBx

k2 = Vx+αx(Bx + β△xk1)

The four coefficients, a, b, α, and β, have to satisfy the following three
equations:

a+ b = 1, αb =
1

2
, βb =

1

2
(167)

The four alternatives in table 2 is studied. Lo & Mei (1985) used alternative
A. Alternative B gives the modified Euler scheme.

Fourth order The most used set of variables on the fourth order Runge–
Kutta (Gerald & Wheatley, 1994) is used with the fourth order splitting
scheme:

Bx+△x = Bx +
1

6
△x (k1 + 2k2 + 2k3 + k4) (168)

where

k1 = VxBx
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k2 = Vx+ 1

2
△x

(
Bx +

1

2
△xk1

)

k3 = Vx+ 1

2
△x

(
Bx +

1

2
△xk2

)

k4 = Vx+△x (Bx + △xk3)

4.2 Model setup

The space evolution of the current modified nonlinear cubic Schrödinger
equation which allows vorticity, NLSC, (147), is simulated. Test simula-
tions are performed in order to study the effect of the different terms (see
section 5.3).

The length of the time series are T = 2000. Using N = 1024 nodes,
the time step is ∆t = T

N
≈ 1.95 and △ω = 2π

T
≈ 0.0031. The width

of the simulation area, y = [−20, 20], with 16 nodes, gives △y = 2.5 and
△ky ≈ 0.079. Test simulations are performed with different widths (see
section 5.2).

4.2.1 Incoming waves

Unidirectional incoming waves with initial Gaussian spectrum have been
studied. The Fourier amplitudes at x = 0 are given by:

B̂j = ǫ

√
△ω√
2πσω

e
−

Ω
2

j

4σ2
ω

+iψj

(169)

The frequency is given by ωj = 1 + Ωj . The phases, ψi,j , are statistically in-
dependent and uniformly distributed on the interval [0, 2π). We have chosen
ǫ = 0.1. σω = 0.1 is the bandwidth in Fourier space.

Test simulations with an incoming Stokes wave are also performed (see
sections 5.2 and 5.4).

4.2.2 Current field

The NLSC equation may be used for a large range of prescribed currents.
Here we have chosen two types; a surface current jet given by:

U =






0 when x ≤ X and/or |y| ≥ Y

U0 sin2
(

π
2△X (x−X)

)
cos2

(
πy
2Y

)
when x > X and x < X + △X

U0 cos2
(
πy
2Y

)
when x ≥ X + △X

(170)
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and a transversally uniform current given by:

U =






0 when x ≤ X

U0 sin2
(

π
2△X (x−X)

)
when x > X and x < X + △X

U0 when x ≥ X + △X
(171)

The wave field is allowed about 32 wavelengths, x = [0, X) where X = 200,
to develop before the waves encounter a current. Y = 10 is half the width of
the jet. And △X = 100 is the current build–up length. Test simulations with
different build–up lengths and widths of the jet are performed (see sections
5.7 and 5.6).

We have studied three current cases: no current, co–current with U0 =
0.05, and opposing current with U0 = −0.05 which is not enough to reflect the
waves, but sufficient to study the characteristic features of opposing currents.
Test simulations are performed with other current strengths (see section 5.5).

Simulations and observations of tidal currents suggest that establishing
current jets are more fanned in than terminating current jets are fanned out
(Hjelmervik et al., 2005, 2008). Test simulations show that the current across
the jet, V , needed to satisfy the continuity equation, has negligible impact
on the results and may thus be set to zero in the NLSC equation (see section
5.4). Alternatively, the continuity equation can be satisfied by a vertical
current, W , which does not appear within the truncation level of the NLSC
equation.

4.3 Numerical order

Here the order of different schemes with and without currents is studied.

4.3.1 Transversally uniform currents

The transversally uniform current is given by (171) with U0 = 0, 0.05, and
-0.05. The incoming waves are unidirectional and given by (169). The incom-
ing phase is randomised in the same way in all simulations. The distributions
of η and |B| at x = 0 are shown in figure 4.

Time series of the envelope, B, at x = 900 from simulation j is used to
calculate the error:

Ej = |B|j − |B|ref (172)

The results with the smallest step, △x = 0.001, is used as the reference solu-
tion. Simulations which broke down earlier than x = 900, are not considered.
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Figure 4: The distributions of surface elevation, η, (left) and envelope, |B|,
(right) at x = 0 compared to a Gaussian and a Rayleigh distribution (smooth
line) respectively.

The errors, L1 and L2, are calculated from the following formulas:

L1 = ||Ej ||1 =
∫ ∞

−∞
|Ej|dt (173)

L2 = ||Ej ||2 = 2

√∫ ∞

−∞
E 2
j dt (174)

The simulations are of the expected order both with and without currents
(figure 5). The four alternatives in table 2 give slightly different convergence
rate (figure 6a).

4.3.2 Current jets

The current jet is given by (170) with U0 = 0, 0.05, and -0.05. The incoming
waves are unidirectional and given by (169). The incoming phase is ran-
domised in the same way in all simulations. The distributions of η and |B|
at x = 0 are shown in figure 4.

Time series of the envelope, B, for all values of y at x = 400 from simu-
lation j is used to calculate the error:

Ej = |B|j − |B|ref (175)

The results with the smallest step, △x = 0.001, used as a reference solution.
Simulations which broke down earlier than x = 400, are not considered.

L1 and L2 are calculated from the following formulas:

L1 = ||Ej||1 =
∫ ∞

−∞

∫ ∞

−∞
|Ej|dy dt (176)

L2 = ||Ej||2 = 2

√∫ ∞

−∞

∫ ∞

−∞
E 2
j dy dt (177)

The simulations are of the expected order both with and without current
for first and second order schemes (figure 7a). The four alternatives in table
2 give slightly different convergence rate (figure 6b).

36



Without any current, the simulations are of fourth order when the fourth
order scheme is used (figure 7b). The current depends on x and this is
probably the reason why the simulations with current diverge from fourth
order when the fourth order scheme is used. The function, F = F (x, y, t) in
(150) might therefore be better approximated by:

F (x, y, t) = (L + V)0x+
1

2

(
∂V
∂U

∂U

∂x
+
∂V
∂V

∂V

∂x

)

0

x2 + · · · (178)

New splitting schemes have to be constructed in order to improve the fourth
order scheme.

In the following, the second order scheme with alternative A and an
integrating step of △x = 0.2 is used.
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Figure 5: The L1 (left) and L2 (middle) errors as a function of integrating
step, △x, and the L2 errors as a function of cpu–time (right) for simulations
with unidirectional incoming waves on transversally uniform currents. The
dotted lines represent 1st, 2nd, and 4th order respectively.
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Figure 7: The L1 (left) and L2 (middle) errors as a function of integrating
step, △x, and the L2 errors as a function of cpu–time (right) for simulations
with unidirectional incoming waves on current jets. The dotted lines represent
1st, 2nd, and 4th order respectively.
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5 Numerical results

A few results from simulations with the space evolution of the NLSC equation
which allows vorticity, (147), will be presented. More results are published
in Hjelmervik & Trulsen (2009).

The reconstruction of the surface elevation according to section 3.2, is
given by:

η =
1

2

(
Bei(x−t) +

1

2
ǫB2e2i(x−t) + c.c.

)
+O(ǫ2) (179)

As pointed out by Tayfun (1980) and others the second harmonic terms
introduce a vertical asymmetry to the profile caused by the first harmonic
terms. The crest become narrower and sharper and throughs become longer
and shallower as illustrated in figure 8. Since both the envelope of the crest
and the envelope of the through are displaced upward by the second harmonic
terms, the distribution of wave heights remain the same. The mean value of
the highest third of the wave heights – traditionally used as the significant
wave height – also remains the same. The more modern definition of the
significant wave height – four times the standard deviation of the surface
elevation – is affected, but the change is negligible.

Figure 8: An illustrative reconstruction of the surface elevation and the corre-
sponding envelopes for fixed x or t. The dotted lines represent the first order
reconstruction of (179) with B = 0.5. The solid lines represent the second
order reconstruction which causes the crests to become narrower and sharper
and the throughs to become longer and shallower. The wave heights remain
unchanged.

The first order reconstruction of the surface displacement is used to cal-
culate both the significant wave height, Hs, and the kurtosis, κ, of the surface
displacement:

Hs(x, y) = 4
√
η2 = 4

√
1

2
|B|2 (180)
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κ(x, y) =
η4

η2
2 =

3

2

|B|4
|B|22 (181)

The bar represents combined time and ensemble averaging. The kurtosis
equals three when the surface elevation is Gaussian distributed.

When the waves meet an opposing current, the wave height increases
in the centre of the jet, and decreases at the sides of the jet. When the
waves meet an co–current, the wave height decreases in the centre of the jet,
and increases at the sides of the jet. The following sections show how these
changes depend on the number of simulations in an ensemble (sec. 5.1), the
width of the simulation area (sec. 5.2), the different terms in the NLSC
equation (sec. 5.3), the transversal current (sec. 5.4), the current strength
(sec. 5.5), the width of the jet (sec: 5.6), and the current build–up length
(sec. 5.7).

Figure 9: The significant wave height (upper) and kurtosis (lower) from
30 single simulations (dots) and from ensembles consisting of 5 (green), 10
(black), 20 (red), and 30 (blue) simulations.
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5.1 Number of simulations in an ensemble

In order to assure statistical and numerical convergence a sufficient num-
ber of simulations should be included. Test simulations are performed with
incoming unidirectional waves (169), and opposing current jet (170) with
U0 = −0.05.

More simulations are needed in order to calculate the kurtosis than the
significant wave height (figure 9). If only the significant wave height and
similar qualities are wanted, 10 simulations are sufficient. In the following
we have used 30 simulations in each ensemble in order to get a more reliable
result also for properties as the kurtosis.

5.2 Width of the simulation area

Test simulations are performed with different widths of the simulation area.
The current jet is kept narrow (|y| < 10). The incoming wave is a Stokes
wave. Simulations are performed with both a co–current with U0 = 0.05 and
an opposing current jet with U0 = −0.05.

When the waves encounter a co–current jet, the amplitudes decrease in
the centre of the jet and increase at the sides of the jet. The high amplitudes
created at the sides of the jet, propagate away from the jet towards the
simulation borders and seem to be reflected there (figure 10). When the
width of the simulation area is |y| < 40, the high amplitudes are not reflected
before x = 375. The amplitude in the centre of the jet seems to be periodic
with a length that depends on the width of the simulation area.

When the waves encounter an opposing current jet, the amplitudes in-
crease in the centre of the jet and decrease at the sides of the jet. The
amplitude of the waves are affected only in a narrow area limited by the
current jet (figure 11). The amplitude in the centre of the jet seems to be
periodic with a length that does not depend on the width of the simulation
area as long as the simulation area is wider than the width of the jet.

The fact that the waves converge and diverge when encountering currents,
makes it possible to create very beautiful plots of the surface elevation. Heller
(2005) published an art plot in an electronic art and animation catalog.
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Figure 10: |B| on a co–current when y < 10 (upper), |y| < 20, |y| < 40, and
|y| < 80 (lower). Nonlinear. Red is high values, blue small. The dotted lines
mark the region of the jet.
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Figure 11: |B| on a counter current when y < 10 (upper), |y| < 20, |y| < 40,
and |y| < 80 (lower). Nonlinear. Red is high values, blue small. The dotted
lines mark the region of the jet.
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5.3 Current terms

To study the effect of the different current terms, the NLSC equation which
allows vorticity (147) is simulated without one term at the time. For com-
parison, also the nonlinear term is left out. The simulations are performed
both with a co–current and a counter current jet (170). The simulation area
is given by |y| < 20. The incoming waves are unidirectional (169). The result
for significant wave height and kurtosis is shown in figure 12 and 13.

Figure 12: The significant wave height in the centre of the jet (upper) and
across the jet at x = 300 (lower) for unidirectional incoming waves when one
term at the time is left out in the simulations.

In linear simulations the variation in significant wave height is larger
than in nonlinear simulations, and the kurtosis is close to three. Among the
current terms, the UB–term has the largest impact on the results. This is
not surprising since it is of lower order than the rest of the current terms.
The UB–term is responsible for most of the refraction. The U ∂B

∂t
has small

impact on the significant wave height, but decreases the variation in kurtosis.
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Figure 13: The kurtosis across a co–current (upper) and counter current
(lower) jet at x = 300 for unidirectional incoming waves when one term at
the time is left out in the simulations.

Note that the terms that do not appear in the current modified nonlin-
ear Schrödinger equation built on potential theory, the ∂U

∂y
∂B
∂y

–term and the
∂U
∂x
B–term, have small impact on the results. The U2B–term also has minor

impact. With a stronger current, these terms may have a stronger effect.
In this case, a good approximation for the NLSC equation is the simplified

NLSC equation given by:

∂B

∂x
+ 2

∂B

∂t
+ i

∂2B

∂t2
− i

2

∂2B

∂y2
+ 2iUB − 6U

∂B

∂t
+ i|B|2B = 0 (182)

Note that in Hjelmervik & Trulsen (2009) we used a different scaling of
the modulation of the current normal to the principal propagation direction
of the waves. This causes the ∂U

∂y
∂B
∂y

–term to be left out to the truncation
level of the NLSC equation.
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5.4 Transversal current, V

The continuity equation for the current has to be satisfied:

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 (183)

During the build–up of the longitudinal current given by (170) or (171), the
first term in (183) is not zero. If both the transversal current, V , and the
vertical current, W , is set to zero, (183) is therefore not satisfied. Here
two alternatives for the current jet is discussed. The transversally uniform
current is not considered.

x<X X < x < X + △X x > X + △X
U=0 U=0 U=0

y>Y
W=0W=0 W=0

U=0 U=U0 sin2
(

π
2△X (x−X)

)
cos2

(
πy
2Y

)
e−απz U=U0 cos2

(
πy
2Y

)

|y|<Y
W=0W=−U0

1
2α△X sin

(
π

△X (x−X)
)

cos2
(
πy
2Y

)
e−απzW=0

U=0 U=0 U=0
y<−Y

W=0W=0 W=0

Table 3: A possible current jet when V = 0.

x<X X < x < X + △X x > X + △X
U=0 U=0 U=0

y>Y
V=0 V=−U0

πY
4△X sin

(
π

△X (x−X)
)

V=0

U=0 U=U0 sin2
(

π
2△X (x−X)

)
cos2

(
πy
2Y

)
U=U0 cos2

(
πy
2Y

)

|y|<Y
V=0 V=−U0

Y
4△X sin

(
π

△X (x−X)
) (

cos
(
πy
Y

)
+ πy

Y

)
V=0

U=0 U=0 U=0
y<−Y

V=0 V=U0
πY

4△X sin
(

π
△X (x−X)

)
V=0

Table 4: A possible current jet when W = 0.

At one extreme, the transversal current is set to zero. A possible current
jet is then given in table 3. The parameter α tells how quickly the current
decrease towards the bottom. If the scaling in section 3.1 or 3.2 is applied,
α has to be less than 0.05. The vertical current first appears in the current
modified Schrödinger equation to Dysthe level, and is not implemented in
numerical models for cubic Schrödinger equations.

At the other extreme, the vertical current is set to zero. A possible current
jet is then given in table 4. A few simulations are performed with the current
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jet given in table 4. The incoming wave is a Stokes wave. Both linear and
nonlinear simulations are performed with both a co–current with U0 = 0.05
and an opposing current with U0 = −0.05. The results are compared with
results from simulations with V = 0. The transversal current has little effect
in all simulations. The effect on the envelope is shown in figures 14–15.

To assume that both the vertical and the transversal currents equal zero,
seems to be a good approximation in this case.
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Figure 14: |B| on a co–current with V = 0 (upper) and V 6= 0 (lower). High
values are red, small values are blue.
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Figure 15: |B| on a counter current with V = 0 (upper) and V 6= 0 (lower).
High values are red, small values are blue.
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5.5 Current strength

Test simulations are performed with different strengths of the current jet,
(170). The simulation area is given by |y| < 20 The incoming waves are
unidirectional (169).

The significant wave height in the centre of the jet increases with in-
creasing strength of the opposing current jet, and decreases with increasing
strength of the co-current (figure 16). The significant wave height seems to
oscillate with a period depending on the strength of the current jet.

Note that in the derivation of the Schrödinger equations, U0 is assumed
of order ǫ. The spectrum is not narrow banded when |U0| = 0.25, and the
simulations seem to break down when |U0| > 0.25. On counter currents this
may be due to longitudinal refraction. When U = U(x)i the dimensionless
stopping velocity is U = −1

4
according to (7) and linear ray theory (Peregrine

& Smith, 1979).

Figure 16: The significant wave height of waves in the centre of current jets
with different strengths: |U0| = 0 (square, dotted), 0.01 (square, solid), 0.05
(triangle, dotted), 0.10 (triangle, solid), 0.25 (disk, dotted), and 0.50 (disk,
solid).

5.6 Width of the jet

Test simulations are performed with different widths, Y , of the current jet
(170). The simulation area is given by |y| < 40 The incoming waves are
unidirectional (169). Simulations are performed with both a co–current and
an opposing current jet.

The significant wave height along the centre of the jet and across the jet
changes more slowly the wider the jet is (figure 17). On an opposing current
jet, the significant wave height does not depend on the width of the jet when
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the waves are adjusted to the current jet. When the width of the jet equals
the width of the simulation area, oscillations occur due to channel effects.

Figure 17: The significant wave height in the centre of a co–current and a
counter current jet (upper) and across a counter current jet at x=300 (lower)
with different widths of the jet.

5.7 Build–up length

Test simulations are performed with different build–up lengths, △X, of the
current jet, (170). The simulation area is given by |y| < 40 The incoming
waves are unidirectional (169).

Both the significant wave height and the kurtosis in the centre of the
jet change quicker with shorter build–up lengths (figure 18). On opposing
current jets the significant wave height seems to oscillate more with shorter
build–up lengths, but stabilises around the same value after the build–up
independent of the build–up length. The kurtosis decreases more quickly
with shorter build–up lengths of opposing jets. On co–current jets channel
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effects are more pronounced for shorter build–up lengths due to a stronger
divergence during the build–up. The kurtosis increases quicker and reaches
a larger maximum with shorter build–up lengths of the co–current.

Figure 18: The significant wave height (upper) and kurtosis (lower) of waves
in the centre of current jets with different build–up lengths.
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6 Conclusion

Two new current modified Schrödinger equations have been derived; one
using potential theory, and one allowing vorticity (NLSC). The splitting
schemes are described and the corresponding numerical orders tested. Since
the current is inhomogeneous, new fourth order splitting schemes should be
constructed.

Monte–Carlo simulations are performed to estimate statistical wave prop-
erties. 30 simulations in each ensemble is found to be sufficient to assure
statistical and numerical convergence for higher order properties as the kur-
tosis. Different model setups are studied. When waves encounter a counter
current, the simulation area should be wider than twice the width of the jet.

To study the effect of each current term in the NLSC equation, simulations
are performed without one term at the time. It is found that the current
term to linear order contains most of the refraction. The nonlinear term has
larger impact than the rest of the current terms. The contribution from the
transversal current required to satisfy the continuity equation for the current,
is shown to be negligible for waves on collinear jets.

The statistical wave properties are also used to illustrate different current
jet configurations. If the strength of the counter current jet is increased, the
wave height increases and seems to oscillate with a period depending on the
strength of the jet. After the waves are adjusted to a counter current, the
significant wave height does not seem to depend on neither the width nor the
build–up length of the jet.

The current modified Schrödinger equation and model setup presented
here are expected to have a large range of application possibilities. The
occurrence of freak waves on collinear currents is discussed in Hjelmervik &
Trulsen (2009).

Here only collinear currents are studied. The transversal current is as-
sumed at the same strength as the longitudinal current in the derivation of
the current modified nonlinear Schrödinger equation which allows vorticity.
Thereby the equation may be used for oblique waves on current jets.

The current modified nonlinear Schrödinger equation for potential cur-
rents is derived to Dysthe level. It can easily be implemented in the numerical
model. And the results are expected to be interesting. Schrödinger equations
to Dysthe level are known to lower the kurtosis.

53



References

Bottin, R. R. Jr. & Thompson, E. F. 2002 Comparisons of physical
and numerical model wave predictions with prototype data at Morro Bay
harbor entrance, California. U. S. Army Engineer.

Davey, A. & Stewartson, K. 1974 On three-dimensional packets of sur-
face waves. Proc. R. Soc. Lond. A 338, 101–110.

Dysthe, K. B. 1979 Note on the modification to the nonlinear Schrödinger
equation for application to deep water waves. Proc. R. Soc. Lond. A 369,
105–114.

Dysthe, K. B. & Das, K. P. 1981 Coupling between a surface-wave spec-
trum and an internal wave: modulational interaction. J. Fluid Mech., 104,
483-503.

Forristall, G. 1978 On the statistical distribution of wave heights in a
storm. J. Geophys. Res. 83 8C5), 2353–2358.

Gerald, C. F. & Wheatley, P. O. 1994 Applied Numercial Analysis -
Fifth edition. Addison-Wesley Publishing company, Inc.

Gerber, M. 1987 The Benjamin-Feir instability of a deep water Stokes
wavepacket in the presence of a non-uniform medium. J. Fluid Mech. 176,
311–332.
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