Two phase flow including interfacial area as a variable
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ABSTRACT: Based on the procedure of (Gray & Hassanizadeh 1998) we state macroscale conservation equa-
tions for multi phase flow in porous media including interfacial area as a variable. The phases we consider are a
solid phase, a wetting phase and a non-wetting phase. Some modeling work is done to decide the functionality
of the coefficients in the equations. In particular we construct constitutive relationships for the interfacial area
as a function of saturation and capillary pressure, and the resistance terms. The final set of equations is re-
duced to a 2 x 2 system with the saturation and the interfacial area as independent variables. Some preliminary

numerical experiments are reported.

1 INTRODUCTION

Multi phase flow has been intensively studied in fields
like reservoir mechanics, ground water research and
so on. Models in these fields are normally based on
generalisations from one phase flow, e.g. Darcy’s law
is generalised through the introduction of relative per-
meability. In this work we take another approach.
Conservation equations for a complete two phase
model including all physical effects are used. These
equations are derived through a general and system-
atic procedure that employs conservations equations
at the microscale and thermodynamics analysis, see
(Gray & Hassanizadeh 1998; Gray 1999; Gray 2000).
This model is very complex and contains a large num-
ber of coefficients that must be specified for numerical
computation. In this preliminary study, assumptions
are made to reduce the number of variables and facil-
itate the study of the behaviour of the system of equa-
tions. In fact, the general set of equations is reduced
to a 2 x 2 system that has saturation and interfacial
area as the primary dependent variables.

There are three major reasons for this approach:
First, when the complete system is simplified, there
are no hidden assumptions, and hence it is easier to
see what the limitations of the model are. Secondly,
there may be practical reasons for calculating amount
of interfacial area. Third, the inclusion of interfacial
area may help in reducing apparent hysteresis in the
model. Thus, the development of models determin-
wg-ce amount of interfacial are important. Both rely
on the reasoning that it is better to simplify a gen-
eral model than to generalise a simple model. In fact,
hysteresis effects, e.g. in P, — s¥ curves, may be a re-

sult of taking one phase flow models and generalising
them directly to multi phase flow. On the other hand,
these effects can be explained and eliminated through
a more general approach.

In Section 2 the model and the conservation equa-
tions are stated. The basic assumptions are listed and
simplifications made. The model is rewritten into a
fractional flow formulation in Section 3. This is done
for computational and analytical purposes. The re-
sistances introduced in Section 2 is parameterised in
Section 4, and capillary pressure is parameterised in
Section 5. A numerical experiment is given in Section
6, and some conclusions and final remarks are given
in Section 7.

2 CONCEPTUAL MODEL

The following terminology will be used:
a’ specific area of the solid phase surface.
a™" specific interfacial area (fluid-fluid).

a®s specific area of the
as-interface (fluid-solid).

G*" geometric tensor.
S, average curvature.
permeability for the medium.
L, L, coefficients in linearised equations.
p° pressure of a-phase.
RS, resistance for the a-phase due
to the wn-interface (fluid-fluid).
RS, resistance for the -phase due
to the as-interface (fluid-solid).
s® saturation of the a-phase.
u total Darcy velocity.

u® Darcy velocity for the a-phase.



https://core.ac.uk/display/30809536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

v® velocity of a-phase.

ven velocity of the wn-interface.

s fraction of the solid surface
covered by the wetting phase.

o surface tension of the «g3-interface.

€ porosity of the medium.

et =¢es° volume fraction of the a-phase.

T viscosity for the a-phase.

% density of a-phase.

oV average contact angle.

2.1 Conservation equations

Based on the general theory in (Gray & Hassanizadeh
1998; Gray 2000) and the assumptions below we state
a simplified set of equations modeling two phase flow
in porous media that include interfacial area as a vari-
able. The basic assumptions are:

e No phase change occurs,

e isothermal system,

e immobile, non-deforming solid,

e common lines are neglected,

o the solid-fluid interface dynamics are negligible
(i.e no film flow),
massless fluid-fluid interface,

e inertial terms are negligible in the momentum

equations and

e interfacial tensions are all constant and specified.

Because the solid phase is immobile and non-
deforming we have a two phase immiscible flow sys-
tem where the wetting phase is denoted w and the
non-wetting phase n.

In addition the solid is non-deforming so that v* =
0 and we get

v¥ =v*—v=v®* a=w,n,wn,

and D g 5
S

— == -V =—.

Dt ot Y ot
Note that bold capital and lowercase letters denote
matrices and vectors, respectively.

From these assumptions, the following equations

can be stated:

Mass conservation for the w-phase:

D’(U w LW
% +e¥p"V - vY = 0. 1)

Momentum conservation for the w-phase:

—e¥Vp +epig =
)
(Rgn + Rgs) v — Rgn v
Mass conservation for the n-phase:
D'IL n n
M +e"p"V -v" = 0. (3)

Dt

Momentum conservation for the n-phase:

—e"Vp'tep'g =
4)
(Rgn + st) Vv — RZn v,

The momentum conservation equation for a mass-
less interface indicates that the interfacial velocity
is a weighted sum of the velocities of the adjacent
phases. Here, for a massless wn-interface, the follow-
ing equality is assumed:

Geometry equation for interfacial area:

oa¥" . os® B .
ot ot ot 6)

. v [Gwnawn . an].
Dynamic capillary pressure equation:

9s"
“ot

Linearised constitutive equation for surface area frac-
tion:

= —Ly[p" —p“ + ¥ Iyl (7)

at aﬂ?g — _Lm['yws _ ,yns + ,_ywn COS (I)w] (8)
ot
The Darcy velocity for phase « is given by u® =
e*v® = gs*v®. We substitute these relationships into
Equation (1)-(6). The velocity for the interface be-
tween the fluids, v*", will be kept as it is.
To further simplify the set of equations we ad-
ditionally assume incompressible flow. Equation (1)
and (3) then reduces to

osv?

— u¥ = 9
Sat +V-u 0, 9)
os"

— -u” = 0. 1
€5 +V-u"=0 (10)

In some simple models, e.g. bundle of capillary tubes,
it is reasonable to assume that there will be no pro-
duction of wn-interfacial area as saturation changes.
Therefore, the second and third terms of Equation (6)
will cancel. Application of this condition, in general,
Is a significant assumption that limits the general ap-
plicability of the system of equations. However, it
will be applied here consistent with the objective of
performing a preliminary analysis of a simplified set
of equations. This assumption eliminates the need to
model the dynamics of the ws-interfacial area, Equa-
tion (8), and reduces Equation (6) to:

aawn

ot

1V [GUm v =0, (1)



The transfer coefficient, L, , in Equation (7) is also
considered large so that Equation (7) reduces to:

Y T = 0¥ —p" = —P.. (12)

Adding Equation (9) and (10) and observing that
s¥ 4+ s™ =1 gives

V-uW4+u"|=V-u=0

where
uw’+u"=u (13)

is the total Darcy velocity. In 1D u is a constant.

We are now in the position to rewrite Equation (2),
(4), (5), (9)-(12) to a 2 x 2 system of equations in-
cluding fractional flow and capillary diffusion terms.
This will be done in the following sections.

3 FRACTIONAL FLOW FORMULATION
From Equation (5) we get

Vi = AV . u¥ + A" - u" (14)
where
A“ déf (Rgn + RZm)_l : Rgm/gaa = w,n.

Using this expression for v*™ in Equation (2) and (4)
we get

U VyY = BY - u? — RY - A"-u", (15)
_gnpnv¢n —
where ¢® = p*/p® — gz and

B"-u"—R" -A"-u”, (16)

B> & Ry, - I— A% +RY,)/e* a=w,n.
Define
cr déngn A" (Bn)ila
cv £Ry, - AV (BY)7,
Add C™ times Equation (16) to (15), and C* times

Equation (15) to (16) to get u® expressed as a sum of
the phase pressures:

u’ = — (MY) - [g¥p VY4
e"p"C" - Vi, (17)
u'=— (M) [ VY +
e¥pC¥ - V], (18)
where

M” € B” — C"- R}, - A,

M* € B"—C¥.RY, - A"

M is the total mobility for the a-phase and Equation
(17) and (18) are generalised Darcy’s laws. Note that
the superficial velocity of each phase now depends on
the potential of the other phase, and that resistances
also depends on the amount of interfacial area.

Equation (12) gives the following relationship be-
tween ™ and y*

= (V" Jgn) + (0" = p*)gz
= —P.+ (p" — p")gz (19)
We then have 6 unknowns
u’,u”,u,¢", Y* and P..
Using Equation (13), (17)-(19) we are able to express
u” and u” as a function of the total Darcy velocity u
and the capillary pressure P,.
uw=F,-u+D,- -p""g—-D, VP, (20)
u"=F, - u+D, -p""g-D, VP, (21)
where

n,w

P = (" = p")8;
F, = (e"+¢"C")-M"-N 1
F, = (e"C" +¢")-M" - N,
D, =¢"¥(1-C".C")-N!' = -D,,
and
N ="M"+"C" - M" +&¥C¥ - MY + c"M".

From Equation (14) we get the following expression
for the speed of the interface between the fluid phases

v =(AY-F,+A"-F,) - -u+
(AY-D, +A"-Dy,) - (p""g — VF)
=Fyn-u+Dy, - (0""g— VPF,)
where F,,,, and D,,, is defined implicitly.

3.1 Resulting 2 x 2 system

Substituting the above expression for u® and v*™ into
Equation (9) and (11) we get the following equations:

w

s
—+u-V-F,+g-V-D
sat u w T8 w

=V (D, VP,)



da*™ 1
((;t +§ (u- V- (Fypa"") + p""g -V - (Dyna"))

1
=3 V- (a""Dyy - VP,))

This constitutes a 2 x 2 coupled system for the satu-
ration and the interfacial area.

4 PARAMETERISATION OF RESISTANCES

To close the above system we need to specify the re-
sistances. We assume the functional form of R, to
be

RY, = pg", (a"™)hY, (s*)K "7,

RY, = 11" g%, (a"*)hy (s*)K 7,

RE, = gl (¢ hD (s K e,

RY, = 1" (0" )b (s K 6™’

The motivation for these forms is as follows:

Equation (2) and (4) are generalised forms of Darcy’s
law. We therefore expect u* and K to be terms in the
resistances. In addition, to make the dimensions on

the left and right side of the equations to match, go?
must be a factor too. The ¢’s and A’s must be non-
dimensional (and positive).

To get expressions for the g’s and ~’s we look at the
limit cases where we have only one phase. Equation
(2) and (4) should then reduce to the usual Darcy’s
law.

Case 1: No non-wetting phase
a’"/a® — 0,

sV =1, kpy — 1,

a”’/a* —-1 and a"/a® — 0.

Consider Equation (2). Since the interfacial area o™
is zero, the resistance due to this interface, R,
should also be zero and Equation (2) reduces to

—e"Vp" +e¥p"g = Ry, - v*.

Hence
RY, ="K 'e?”,
and we get
Gun(0)hy (1) = 0and g7 (0)hy (1) = 1. (22)
Case 2: No wetting phase

s" =1, ky—1, a"/a®—0,

™/ 51 and  a®/a® =0
Consider Equation (4). Since there is no (fluid-fluid)
interfacial area, the resistance due to this interface,

R? , should be zero and Equation (4) reduces to

wn!

—e"Vp" +e"p"g =R, - v".

Hence
2

Ry, ="K,
and we get
Gun(0)hey (1) = 0and g, (0)hn (1) = 1. (23)

One set of functions that satisfies the constraints
imposed by Equation (22) and (23) are:

awn

gfgn(a’wn) = as h’gn(sw) =1-3s"
n wny _ a®" A (s") =1 — s™
gwn(a ) - as ’ wn(S ) - s

ws

a
Gus () =~

ans

Ins(0™) = — ha(s") = kg () = (")

Other constraints arise if we consider the case when
the wetting fluid covers the medium (a“™/a® — 1),
and the case when the interfacial area is negligible
(a¥™/a* — 0). One possible set of functions g2, is:

ns wn

a a
wo_
gws_1+ s s
a a
q¥s qwn
n o _
gn5_1+ s s
a a

However, this choice appears to be unphysical since
the resistance due to the solid-fluid interface depend
on the area of the fluid-fluid interface. We will not use
this choice in our numerical experiments.

4.1 Resulting fractional flow and diffusion functions

In 1D we can write the fractional flow functions F,,
F, and F,,, and the diffusion functions D,,, and D,,,,
as rational polynomials in saturation and interfacial
area. The expression are generated using Maple, but
omitted because of their length. Using the parameters
given in Section 6 we get the surfaces in Figure 1 and
2. Notice that these functions are only weakly depen-
dent on interfacial area.

5 CAPILLARY PRESSURE

In this section a capillary pressure function depend-
ing on the (wetting) saturation s and on the interfacial
area a™™ is constructed. To our knowledge there are
almost no available data for P, — s* — a™™ relation-
ships. We therefore use results from network models,
see e.g. (Reeves & Celia 1996), and try to capture the
qualitative behaviour of surfaces obtained therein.

In (van Genuchten 1980) the following relationship
between capillary pressure P, and saturation s was
proposed:

p (M —1" (24)
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Figure 1: Fractional flow function for the w-phase
(upper), the n-phase (middle) and the wn-interface
(lower).
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Figure 2: Diffusion function for the w-phase (upper)
and the wn-interface (lower).

Starting out with this relationship we fix n and vary
o to get three curves satisfying

P, <P!< P

Here P! and P? are approximations to the inner and
outer envelopes for the P, — s* curves. P? is chosen
midway between the two boundary curves for interpo-
lation purposes. Along these three curves we specify
the interfacial area as

ai™(s") = ;s (1 — s¥) + BsY,

where «; is chosen such that o} < a¥" < a¥™. In
Figure 3 and 4 plots of capillary pressure and interfa-
cial area are shown for a set of parameters.

Interpolating (quadratically) from these three
curves defines the function. For a given P, we specify
a“"(s, P,) as

i=1,2,3, (25)

a’"(s, P,) = 157 + cps% + C3. (26)

Let s¥(P.) = (P!) (P.), where (P!)"! is given
by Equation (24) with ag = af. It follows that
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Figure 3: Capillary pressure P! (as a function of satu-
ration) for n = 7 and o = 0.10, 0.07, 0.05.
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Figure 4: Interfacial area a¥™ on P!, i = 1,2, 3.

a;"(s7') = a" (s (Pe)) = a"(Pe), i = 1,2,3. Us-
ing Lagragian interpolating we get the following ex-
pression for the interfacial area as a function of capil-

lary pressure and saturation:

awn(PC’ Sw) —
- (s — s3(P))(s" — s2(P,))
) Gy — sy (B) (57 (B — 53 (F)
gy = S = sy(R)

(55 (Pe) — 7 (Fe))(s5 (Fe) —

(s = 57 (Pe))(s" — 5 (Fe))
(55 (Pe) — sY(Pe)) (55 (Fe) — 55 (Fe))
Since the interfacial area is non-monotone in cap-

illary pressure, see Figure 5, it is generally impossi-
ble to find a unique expression for P, as a function

+a3™(Pe)

P_ - [kPa] 0 ' w

Figure 5: Interfacial area as a function of wetting satu-
ration and capillary pressure given by the three curves
above.

of saturation and interfacial area. In the equations we
will need the derivative of capillary pressure with re-
spect to saturation and interfacial area. If we assume
uniqueness of P. locally around a point (s*,a""™)
we can employ implicit differentiation of function to

evaluate
0P, and 0P,
05% ) um davm ) ., '

6 EXAMPLES

We have done a simple test case in 1D. Data for pa-
rameters are taken from (Dahle & Celia 1999) and
from a table over typical values of permeability and
porosity for sand stones. The specific area of the solid
phase surface is calculated using the Carman-Kozeny

equation. The following values are used:
p? = 1073 [Ns/m?
p® = 1072 [Ns/m?|
€ = 0.27
K = 13x107°[m?
v = 1.3x1073[m/s]
a® = 7.6 x10%[1/m]
a" = 0.7 x10*[1/m]
a® = 6.9 x 10* [1/m]
n = 7
a, = 107%,0.7x1073,0.5x 1073
a; = 400,800, 1200
g =0

Since we are working in 1D, gravity terms are ne-
glected. To avoid difficulties with boundaries and dis-
continuities, a smooth ramp is initially specified for
the saturation. An increased amount of interfacial area
is evenly distributed around this ramp.The equations
are solved by sequential time stepping using a straight
forward upstream/central difference scheme.

The initial data and solutions for interfacial area
and saturation are shown in Figure 6. This problem
appears to be advection dominated. It follows that



since the advective flux is nearly insensitive to inter-
facial area, the dynamics of the saturation is nearly
independent of the changes in interfacial area.
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Figure 6: Profiles for interfacial area (upper) and wet-
ting saturation (lower) at ¢ = 0, 1300, 2600 and 5200s

7 CONCLUSIONS

In this work, we have presented initial numerical solu-
tions for an enhanced model of two phase flow which
includes fluid-fluid interfacial area as a primary vari-
able. The solutions are for a simplified test problem
under a specific set of assumptions, and with a partic-
ular choice of functional forms for the nonlinear coef-
ficients. For this particular case, the saturation profiles
show little dependence on interfacial area. This re-
sult is consistent with the forms of the fractional flow
functions, which show minimal sensitivity to interfa-
cial area. This in turn is a reflection of the functional
forms chosen to parameterise the various nonlinear
resistance terms that arise in the governing equations.
Because the correct functional forms for these resis-

tance terms are not known, more general sensitivity
studies are required to assess the practical importance
of the interfacial area equations to flow modeling. In
addition, numerical solutions need to be obtained for
cases where the simplifying assumptions applied to
the governing equations are systematically examined,
so that the sensitivity of the solutions to these assump-
tions can be assessed. The results presented herein
represent a starting point for this more general analy-
sis.

While we cannot reach any general conclusions
based on our initial calculations, we can make a few
general observations about the overall system of equa-
tions. First, inclusion of the interfacial area equa-
tions allows for direct calculation of the amount of
interfacial area in the system, as a function of space
and time. Equations written for the individual phases
also incorporate effects of the interfaces through func-
tional dependences in the appropriate nonlinear coef-
ficients. In addition, inclusion of a unique functional
relationship between P,, s*, and «®™, and the associ-
ated transport equation for interfacial area, allow hys-
teresis within the P,—s™ plane to be incorporated into
the algorithm with no additional effort. This means
that arbitrary drainage and imbibition cycles can be
simulated without regard for redefinition of the con-
stitutive curves. This appears to be a major advan-
tage of this approach to multi phase flow modeling.
The cost of this additional generality and flexibility
is the requirement to identify and quantify additional
parameters, as well as their functional dependences
on interfacial area. Additional equations also need to
be solved, as compared to the traditional equations
for multi phase flow; and these additional equations
remain to be analysed mathematically, as do the as-
sociated numerical algorithms implemented for their
solution.

The overall significance of interfacial areas in
the mathematical description of multi phase flow in
porous media remains to be determined. To make this
determination, numerical simulators are required to
allow a wide range of possible functional forms for
the nonlinear coefficients to be explored. The degree
to which the governing equations can be simplified
must also be explored numerically. This requires a
systematic and comprehensive numerical approach.
The results presented herein represent a first contri-
bution to the overall numerical study.
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