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Abstract

We first point out that variance estimates for regression coefficients in expo-
sure stratified case-cohort studies (Borgan et al., 2000) can easily be obtained
from influence terms routinely calculated in standard software for Cox regres-
sion. We also place the estimators proposed by Chen (2001) for a general class
of cohort sampling designs within the Borgan et al. framework by allowing for
post-stratification on outcome. This facilitates simple variance estimation for
this class of cohort sampling designs. Finally, we extend the approach of Chen
to accommodate stratified designs with surrogate variables available for all co-
hort members, such as stratified case-cohort and counter-matching designs.
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1 Introduction

In cohort studies the event under investigation is often rare. In such situations the use
of case-control designs can considerably reduce the number of individuals for which
covariate information must be gathered without much loss in efficiency. The result-
ing savings can then potentially be spent on acquiring relevant covariates to reduce
omitted variable bias and accurate measurement of covariates to reduce measurement
error bias.

The two main variants of cohort sampling designs are the nested case-control
design (Thomas, 1977) and the case-cohort design (Prentice, 1986). In a nested case-
control design controls are sampled from the risk sets during the follow-up at event
times. In a case-cohort design, which provides the background for the approach pro-
posed in this paper, covariates are obtained for individuals who experience the event
(cases) and for a subcohort sampled at the outset of the study. Proportional hazards
models are typically fitted to case-cohort data using estimating equations that resem-
ble partial likelihoods (Cox, 1972), such as the pseudolikelihood of Prentice(1986).
Alternatively one may, similarly to for instance Self & Prentice (1988) or Chen &
Lo (1999), use weighted partial likelihoods with inverse probability weighting (e.g.
Robins et al., 1994).

Often some covariate information is available for all cohort members, including
“surrogate” variables that are predictive of the main exposure variables. For instance,
blood type may be known for an entire population whereas DNA-typing must be
performed for each individual to determine the alleles of a particular gene. If the gene
frequency is known to depend on blood type we may use blood type as a surrogate
when sampling controls for which DNA-typing is performed. A more powerful study
design can then be constructed by stratified sampling of the subcohort where the
surrogate variables define the strata (Samuelsen, 1989, Borgan et al., 2000, Kulich
& Lin, 2000). Alternatively, surrogate variables can be used for counter-matched
designs (Langholz & Borgan, 1995) with stratified sampling of controls at each event
time.

For stratified case-cohort studies Borgan et al. (2000) present large sample results
for estimators derived from weighted partial likelihoods where weights are inverse
sampling fractions to the subcohort. The large sample covariance matrix for this
estimator can be split into two components; the cohort covariance matrix and a
covariance matrix due to sampling the subcohort from the full cohort, which depends
on the stratum-specific covariance matrix of score influence terms. Borgan et al. also
argue that a more efficient estimator can be obtained by redefining the strata and
sampling fraction by using the cases as a separate stratum in addition to the original
strata (see also Chen & Lo, 1999), which amounts to post-stratification (e.g. Cochran,
1977). However, the efficiency improvement is typically modest in practice.

Self & Prentice (1988) derived the large sample properties of the original case-
cohort estimator of Prentice (1986). Their variance estimator was subsequently sim-
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plified by Samuelsen (1989) and Lin & Ying (1993). Building on the simplified rep-
resentation, Therneau & Li (1999) show that the variation due to sampling can be
calculated from estimated influence terms (“DFBETAS”). They also give concrete
examples of implementation in the software packages SAS and Splus.

The first objective of this paper is to provide similar scripts for the stratified case-
cohort estimator suggested by Borgan et al. (2000), which is possible since variance
estimators in this case also depend on DFBETAS. This was indicated in Borgan et
al. (2000) although implementation was not described.

A perusal of recent applications of stratified case-cohort designs suggests that it
is useful to explicitly state the variance estimator of Borgan et al. (2000) in a simpler
form. For instance, De Roos et al. (2005) and Li et al. (2006) appear to use robust
variance estimates (Barlow, 1994) which we will show can be very conservative for
stratified case-cohort studies. Hisada et al. (2005) claims to use an “appropriate”
bootstrapping technique but no further details were given. However, even for standard
case-cohort data bootstrapping should proceed with caution (Wacholder et al., 1989).

The second objective of this paper is to point out the relation between stratified
case-cohort analysis and the approach of Chen (2001). We show that his “local
averaging” estimators can be viewed as post-stratified case-cohort estimators where
strata are defined by both case-control status and by right-censored time grouped
into intervals. Variance estimation for the estimators within Chen’s general cohort
sampling framework can then be carried out using the script presented for stratified
case-cohort analysis.

In addition to case-cohort studies, Chen’s framework also includes nested case-
control studies and what he calls “traditional case-control studies”. Many other
sampling designs such as replenishing the subcohort (Prentice, 1986, Barlow, 1994)
are also possible within his framework. Chen argued that all these designs may be
analyzed by the same approach. This proceeds by dividing the individuals into groups
according to whether they experienced the event and into the intervals in which they
were censored or became cases. His “local averaging” approach amounts to counting
the numbers in these groups in the cohort and the sampled cohort and subsequently
weighting by the inverse of the sampling fraction in the groups. In other words:
Chen stratifies the cohort after follow-up and implicitly treats the sampled data as
post-stratified.

The third objective of this paper is to extend the class of designs discussed by
Chen (2001). Although the scope of his approach is quite general, it is confined to
designs where no surrogate variables are available for all cohort members. Moreover,
we point out that the local averaging or post-stratification technique can also be used
for the stratified case-cohort designs of Borgan et al. (2001), counter-matched designs
(Langholz & Borgan, 1995) and Bernoulli sampling designs (Kalbfleisch & Lawless,
1988, Robins et al., 1995). The connection to standard stratified case-cohort designs
makes variance estimation straightforward.

The outline of the paper is as follows. In the next section we describe the frame-
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work of Borgan et al. (2000) for stratified case-cohort analysis, present their regression
parameter estimator and variance estimator and show how the latter can be obtained
from the DFBETAS. We also present a small simulation study investigating the per-
formance of this variance estimator. In Section 3 we discuss Chen’s approach in
more detail and point out how it is related to stratified case-cohort analysis. In Sec-
tion 4 we study an extension of Chen’s generalized case-cohort design to allow for
surrogate dependent sampling and show how such data may be analyzed with the
post-stratification method. In Section 5 we use simulations to investigate the perfor-
mance of estimators which can be interpreted as poststratified case-cohort estimators.
Finally, we close the paper with a brief discussion.

2 Stratified case-cohort studies

2.1 Cohort data

We represent cohort data as survival data in counting process notation (Andersen et
al., 1993):

F = {i = 1, . . . , n; 0 ≤ t ≤ τ : (Ni(t), Yi(t), Zi)}
where, for individual i, Ni(t) is an indicator of event (case) before (or at) time t, Yi(t)
is an indicator of being at risk just before time t and Zi is a p-dimensional vector of
covariates. For notational simplicity we omit possible time-dependency for Zi.

Under the proportional hazards assumption, the hazard of the event for individual
i is given as λi(t) = exp(β′Zi)λ0(t), where β is a vector of regression coefficients and
λ0(t) a baseline hazard function. Cox (1972) suggested that β could be estimated
by maximizing the (log-)partial likelihood which in counting process notation can be
written

log(L(β)) =
n∑

i=1

∫ τ

0
[β′Zi − log(S(0)(β, s))]dNi(s)

with

S(0)(β, s) =
n∑

i=1

Yi(s) exp(β′Zi).

2.2 Stratified case-cohort sampling

Assume that the full cohort has been divided into L strata based on covariates or
surrogate variables available for all individuals. A subcohort is subsequently sampled
from the full cohort using stratified sampling. Supposing that there are n0

l individuals
in stratum l = 1, 2, . . . , L and that m0

l of these are sampled, the sampling fraction
in stratum l is π0

l,n = m0
l /n

0
l . Let V 0

i be the indicator for individual i being sampled
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to the subcohort and p0
i the corresponding inclusion probability for individual i such

that p0
i = π0

l,n when individual i belongs to stratum l.
Covariate information is obtained for the entire subcohort and for the cases in the

full cohort. From such data one may estimate β by maximizing a weighted partial
log-likelihood

l̃I(β) =
n∑

i=1

∫ τ

0
[β′Zi − log(S̃

(0)
I (β, s))]dNi(s)

where

S̃
(0)
I (β, s) =

n∑

i=1

Yi(s)
V 0

i

p0
i

exp(β′Zi).

Note that S̃
(0)
I (β, s) only depends on the subcohort, so that l̃I(β) may be computed

from case-cohort data. Maximization of l̃I(β) produces ‘Estimator I’ of Borgan et al.
(2000). For the special case where the whole cohort is a single stratum, this estimator
coincides with the Self & Prentice (1988) estimator. The estimator is asymptotically
equivalent to the original estimator of Prentice (1986), but is somewhat unstable in
small samples. Borgan et al. (2000) also suggested an alternative estimator (‘Estima-
tor III’) that coincides with the Prentice estimator when there is only one stratum.

We will in the sequel focus on ‘Estimator II’ of Borgan et al. (2000) where the
strata are redefined by excluding all cases. Let nl be the total number and ml the
sampled number of individuals in stratum l after redefining the strata. The sampling
fraction in stratum l among the non-cases is thus πl,n = ml/nl and the inclusion
probability pi for a non-case i in stratum l is pi = πl,n.

For ‘Estimator I’ the cases that have not been sampled are not represented in
S̃

(0)
I (β, s). Since covariates are available it seems more efficient to make use of this

information. This can be accomplished by weighting the contribution from the cases
by one, or equivalently using a inclusion probability pi = 1 (Kalbfleisch & Lawless,
1988, Chen & Lo, 1999). Using the modified inclusion indicator Vi = max(V 0

i , Ni(τ)),
‘Estimator II’, β̃II , can then be obtained by maximizing

l̃II(β) =
n∑

i=1

∫ τ

0
[β′Zi − log(S̃

(0)
II (β, s))]dNi(s)

where

S̃
(0)
II (β, s) =

n∑

i=1

Yi(s)
Vi

pi

exp(β′Zi).

2.3 Large sample covariance matrices

Borgan et al. (2000) present the asymptotic covariance matrix for ‘Estimator I’,
β̃I , as

√
n(β̃I − β) → N(0, Σ−1 + Σ−1∆IΣ

−1). Here Σ is defined as the limit of
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−n−1∂2l̃II(β)/∂β2 and the variation due to the sampling is given by

∆I =
L∑

l=1

q0
l

1− πl

πl

∆0
l .

Here, q0
l is the limit proportion in stratum l in the cohort, i.e. n0

l /n → q0
l , πl is the

limit of π0
l,n and ∆0

l is the limit of the stratum specific covariance matrix of the terms

X0
i =

∫ τ

0
[Zi − S̃

(1)
I (β̃I , s)

S̃
(0)
I (β̃I , s)

]Yi(t) exp(β̃′IZi)
dN•(s)

S̃
(0)
I (β̃I , s)

,

where N•(s) =
∑n

i=1 Ni(s) and S̃
(0)
I (β, s) =

∑n
i=1 ZiYi(s)(V

0
i /p0

i ) exp(β′Zi) .
Correspondingly, for ‘Estimator II’, the large sample distribution of

√
n(β̃II − β)

is multivariate normal with covariance matrix Σ−1 + Σ−1∆IIΣ
−1, where

∆II =
L∑

l=1

ql
1− πl

πl

∆l,

and ql is the limit of nl/n, πl the limit of πl,n and ∆l the limit over the non-cases in
stratum l of the covariance matrix of

Xi =
∫ τ

0
[Zi − S̃

(1)
II (β̃II , s)

S̃
(0)
II (β̃II , s)

]Yi(t) exp(β̃′IIZi)
dN•(s)

S̃
(0)
II (β̃II , s)

.

Note that since the original sampling did not depend on the outcome, the limit
sampling fraction πl in stratum l remains the same among the non-cases as before
redefining the strata.

‘Estimator II’ is asymptotically more efficient than ‘Estimator I’ for two reasons:
(1) the variation of Xi among the non-cases in stratum l, i.e. the ∆l, is smaller than
the overall variation in stratum l, i.e. ∆0

l , and (2) because ql < q0
l . However, since the

proportion of cases is typically small in case-cohort studies the efficiency improvement
is usually modest.

2.4 Variance estimation

We will only give details of the variance estimation for ‘Estimator II’, since it is more
efficient than ‘Estimator I’ and both model fitting and variance estimation is easier.

The natural estimator of Σ is n−1Ĩ, where Ĩ = −∂2l̃II(β̃II)/∂β2 is the observed
information matrix evaluated at β̃II . The covariance matrix of β̃II can be estimated
by

Ĩ−1 +
L∑

l=1

ml
1− πl,n

π2
l,n

Ĩ−1∆̃lĨ
−1
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where ∆̃l is the covariance matrix of the Xi among the sampled non-cases in stratum
l. Note that, with Di = −Ĩ−1Xi/pi and Sl denoting the set of individuals sampled in
stratum l after removal of cases, we can write the elements of the above sum as

ml
1− πl,n

π2
l,n

Ĩ−1∆̃lĨ
−1 =

ml(1− πl,n)

ml − 1

∑

i∈Sl

(Di − D̄l)(Di − D̄l)
>,

where D̄l is the average of Di in Sl. Thus, the left hand side of the equation is
proportional to the stratum specific covariance matrix of the Di.

A fair amount of programming may appear to be required to obtain Xi and Di, but
the Di are fortunately calculated by many software packages (Therneau & Li, 1999).
Specifically, the Di’s are the so-called “DFBETAS” for the controls, and approximate
the influence on parameter estimates from removing individual i. The score of l̃II(β)
can be written as

ŨII(β) = ∂l̃II(β)
∂β

=
∑n

i=1

∫ τ
0 [Zi − S̃

(1)
II (β)

S̃
(0)
II (β)

]dNi(s)

=
∑n

i=1

∫ τ
0 [Zi − S̃

(1)
II (β)

S̃
(0)
II (β)

][dNi(s)− Vi

pi
Yi(t) exp(β′Zi)

dN•(t)
S̃

(0)
II (β)

]

where ŨII(β̃II) = 0. Hence, the score contribution for a non-case simplifies to
−XiVi/pi.

Software which handles either weights or “offset”-terms is required to perform
stratified case-cohort analysis. The weights are the inverses of the inclusion proba-
bilities 1/pi and the offsets are log(1/pi). After fitting the Cox-model, the Di are
calculated and the sum of their stratum-specific covariances weighted by ml(1 − πl)
is calculated, giving the covariance matrix due to sampling.

An example script for implementation in S-Plus and R is given below:

stratcox<-coxph(Surv(time,d)~z1+z2,weights=1/p)

dfb<-resid(stratcox,type=’dfbeta’)

gamma<-numeric(0)

for (str in 1:no.strata){

indst<-(1:length(time))[stratum==str]

if (m[str]>1) gamma<-gamma+(1-m[str]/n[str])*m[str]*var(dfb[indst,])

}

adjvar<-stratcox$var+gamma

Here, time, d, z1, z2, p and stratum are, respectively, the individual follow-up
times, the case-indicators, two covariates, the individual inclusion probabilities and
the stratum variable in the case-cohort study. The inclusion probabilities have been
redefined such that cases have inclusion probability 1. The variable stratum has
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levels 1, 2, . . . , L for the non-cases and some other value for the cases. The number of
strata L is denoted no.str. To obtain the variance estimates we also need the number
sampled in each stratum m and the total number in each stratum n (after redefining the
strata) as vectors of length L. The covariance matrix due to the sampling is stored in
the variable gamma and the estimated covariance matrix for the regression coefficient
estimators adjvar is given by adding the “naive” covariance matrix estimates Ĩ−1

from stratcox$var.
For ‘Estimator I’ and ‘Estimator III’ of Borgan et al. (2000) fitting requires that

data are set up in a more complicated way because the cases outside the subcohort

do not contribute to S̃
(0)
I (β, s) =

∑n
i=1 Yi(s)

V 0
i

p0
i

exp(β′Zi). Therneau & Li (1999) give

details for standard case-cohort data, but since ‘Estimator II’ is more efficient than
the other estimators we do not pursue this.

2.5 A small simulation study

We conducted a small simulation study in order to investigate the performance of the
variance estimator. Survival times Ti were drawn from a proportional hazards model
with one covariate Zi ∼ U [0, 1], regression parameter β = 1 and a Weibull baseline
λ0(t) = 2t. Censoring times were uniformly distributed on the interval [0, 0.5] and
independent of Ti. This resulted in a proportion of cases of about 12.5%. The strata
were defined by a surrogate indicating whether Zi was smaller or greater than 0.5 and
a sampling fraction of 13% was chosen for both strata.

This simulation was replicated 5000 times with sample sizes n = 1000 and n =
10000. In each replication we estimated β̃II and its variance estimator se2 according
to the method described in Section 2.4. In addition, we recorded the robust variance
estimate (Barlow, 1994, Therneau & Grambsch, 2000). Below we report the average
of the parameter estimates, the averages variance estimates, the empirical variance,
the proportion of confidence intervals β̃II ± 1.96 se covering the true value β =1 and
the average of the robust variance estimates.

Table 1: Result from simulations for stratified case-cohort designs.

Average β̃ Mean variance Empirical Coverage Mean robust
estimator variance probability variance

n = 1000 1.023 0.198 0.210 0.944 0.250
n = 10000 1.003 0.0192 0.0186 0.952 0.0244

The estimator of the regression parameter was practically unbiased, the average
variance estimates corresponded well to the empirical variances and the coverage
corresponded well to the nominal value of 95%. There appeared to be a tendency of
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under-estimated variances with a sample size of n = 1000, but coverage should be
considered satisfactory based on only around 125 cases. The robust variance estimates
were clearly larger than the estimated variances and 95% confidence intervals based
on the robust variances had coverage of 0.97 for n = 1000 and 0.976 for n = 10000,
thus this procedure was clearly conservative.

3 Generalized case-cohort designs and post-stratification

Chen (2001) discusses a general design for sampling controls – and cases – within a
cohort study. In this section we present his framework and discuss how it is related
to stratified case-cohort studies. Importantly, the “local averaging” approach pro-
posed by Chen can be represented as post-stratification on censoring times grouped
into strata. This enables us to use the variance estimation method described in the
previous section.

Generalized case-cohort designs are defined as follows by Chen (2001, p. 793):
(a) the design consists of a number of sampling steps, (b) each step takes a random
sample of a certain size without replacement from a certain subset of the cohort and
(c) the design of the sample size and subset at each step and of the total number of
steps must not use information about the observed covariates.

In a standard case-cohort study the sampling is carried out in one step at the
outset. The subcohort sampling is carried out by simple random sampling from the
total cohort and does not depend on covariates. Thus, a standard case-cohort study
clearly falls within this generalized case-cohort design.

In a nested case-control study (Thomas, 1977, Langholz & Goldstein, 1993) con-
trols are sampled from the risk sets at event times with simple random sampling and
without knowledge of covariates. The sampling steps are thus given by the event
times and do not depend on covariates. Chen (2001) and Chen & Lo (1999) also
discuss a traditional case-control design in which controls are sampled after observing
the cases. For this design there is only one sampling step and the sampling does not
depend on the covariates of the sampled individuals. Another design captured by the
framework of Chen is studies in which new subcohorts are sampled at specified times
(Prentice, 1986).

For generalized case-cohort designs Chen (2001) suggested a weighting technique
termed “local averaging”. This involves choosing partitions, separately for cases and
controls, of the time axis and calculating weights that are assigned specifically to
individuals with exit times in the intervals defined by the partition. In contrast to
Chen we assume that covariate information is obtained on all cases and need only
consider a partition 0 = s0 < s1 < · · · < sL = τ for the controls. The weights are
then given by

w(sj−1,sj ] =

∑n
i=1 I(Yi(sj−1 = 1, Yi(sj) = 0, Ni(τ) = 0)∑n

i=1 I(Yi(sj−1 = 1, Yi(sj) = 0, Ni(τ) = 0, Vi = 1)
,

9



where Vi is the indicator that individual i was selected by the sampling design and
I(·) is the indicator function. Thus, the numerator of w(sj−1,sj ] counts the number
of individuals censored in (sj−1, sj] and the denominator the number of these that
were sampled. Individual i is then assigned weight wi = w(sj−1,sj ] if censored within
interval (sj−1, sj] and wi = 1 if the individual is a case.

Chen (2001) suggests estimating a proportional hazard model by solving the
weighted estimating equation

Ũh(β) =
n∑

i=1

∫ τ

0
[hi(t)−

∑n
i=1 wiVihi(t)Yi(t) exp(β′Zi)∑n

i=1 wiViYi(t) exp(β′Zi)
]dNi(t) = 0

where the hi(t) are some functions of the covariates. In particular, with hi(t) = Zi

this becomes the score equation of a weighted partial likelihood. Chen (2001) argues
that a properly chosen hi(t) can give an efficiency improvement as compared to the
conventional hi(t) = Zi. We will, however, only consider the standard hi(t) = Zi

here.
Defining pi = 1/wi, we see that pi can be interpreted as the proportion of in-

dividuals sampled among those who were censored in the same interval (tj−1, tj] as
individual i. Thus the weights can be interpreted as inverse sampling fractions. Also,
for the cases pi = 1 which corresponds to sampling all cases. Using this notation and
hi(t) = Zi, the estimating equation becomes

Ũ(β) =
n∑

i=1

∫ τ

0
[Zi −

∑n
i=1

Vi

pi
ZiYi(t) exp(β′Zi)

∑n
i=1

Vi

pi
Yi(t) exp(β′Zi)

]dNi(t) = 0,

which is formally identical to the estimating equation for ‘Estimator II’ within the
stratified case-cohort design. However, the strata are in this setting determined by
the length of follow-up instead of a surrogate variable for the covariates.

The method of Chen (2001) can be described as first carrying out the sampling
by any sampling scheme within the class of generalized case-cohort studies, then
dividing the cohort and the sampled data into strata according to event status and to
length of follow-up and finally fitting a model to the data as if they were obtained by
stratified case-cohort sampling. It is thus evident that the method amounts to post-
stratification (see e.g. Cochran, 1977). Indeed, redefining the strata after observing
whether the individuals are cases or non-cases, as was done for estimator II in the
stratified case-cohort study, is just a more moderate form of post-stratification.

Due to the post-stratification argument, the large sample covariance matrix of the
score of the weighted partial likelihood will be the same as if the data had originally
been obtained by stratified sampling. It follows that the large sample properties of
the estimator will also be the same as if data were originally collected by stratified
sampling. The variances can hence be expressed and calculated as for the strati-
fied case-cohort design. Specifically, this is so when the original sampling is simple
random sampling from the full cohort as in the standard case-cohort design, or by

10



stratified sampling based on case-status in the traditional case-control design. The
usual variance result with post-stratification relies on an original simple random or
stratified sampling (Cochran, 1977).

The argument is somewhat more convoluted with for instance nested case-control
sampling. Although the control sets at the different event times are all sampled by
simple random sampling this does not imply that the set of controls are sampled in
this way. Indeed, Samuelsen (1997) pointed out that the probability of ever being
sampled as a control increases with length of follow-up. Within a post-stratum de-
fined as a follow-up time in the interval < sj−1, sj] the sampling fraction can vary
considerably. However, when making the interval lengths sj − sj−1 all go to zero
as sample size increases, the sampling fraction will become approximately equal for
individuals censored in < sj−1, sj]. The sampling scheme will then correspond to
stratified sampling.

For large sample results Chen (2001) assumed that the maximum number of in-
dividuals sampled in a censoring interval grows at a smaller rate than n1/2, i.e. as
oP (n1/2). For practical purposes this implies that max(sj − sj−1) → 0. However, the
above post-stratification argument shows that this is not a necessary condition for
asymptotic normality and consistency of estimators based on standard case-cohort
and traditional case-control designs. However, for nested case-control and other sam-
pling designs with several sampling steps the requirement of Chen is necessary since
sampling fractions are usually not constant over censoring intervals. The choice of
partitions may hence require some care to avoid biased estimates.

Although it is not always necessary for consistency and asymptotic normality to let
the censoring intervals become small, there may be efficiency gains by decreasing their
length. However, since the large sample results of Borgan et al. (2001) require that
stratum sizes become large, a large number of strata can be a difficulty in particular
study. The main efficiency gain might be obtained by using only a moderate number
of censoring intervals.

4 Post-stratification for other sampling designs

The results of Chen (2001) required that sampling does not depend on covariates and
that simple random sampling is used at each sampling step. Here, we argue that
post-stratification (or local averaging) can be used in more general settings. Three
sampling designs will be considered in detail, but application may also be possible for
other designs. The main idea is that the sampling fractions within the strata should
be approximately equal after post-stratification.

4.1 Stratified case-cohort studies

In stratified case-cohort studies the sampling fractions may depend on surrogate vari-
ables available for the complete cohort. Within a stratum, sampling of a subcohort

11



is carried out with simple random sampling. For estimator II of Borgan et al. (2000)
which was discussed in Section 2, the strata and sampling fractions were redefined
after observing which individuals became cases. It is then a fairly straightforward
extension to redefine the strata for censoring, grouped into intervals, as well.

Borgan et al. (2001) discuss time-dependent weights defined as the number at
risk in the cohort at a specific time divided by the sampled number at risk at that
time, separately for each stratum. Time-dependent weighting has been shown to have
good efficiency properties (Nan, 2004, Kulich & Lin 2004), but may be cumbersome to
implement. Furthermore, a variance estimator is yet to be developed for this method.

Post-stratification on censoring (or local averaging) is a related way of improving
the correspondence between the sampled data and the cohort data throughout the
study period and may have similar efficiency gains. Furthermore, the weights are not
time-dependent, which makes estimation easier. The variance estimator developed
for estimator II of Borgan et al. (2001), modified by the censoring strata, can be
used.

4.2 Counter-matched studies

Counter-matched studies (Langholz & Borgan, 1995) are similar to stratified case-
cohort studies in the sense that the sampling depends on a surrogate variable known
for all individuals in the cohort. On the other hand, the design is an extension of
nested case-control studies since controls are sampled from the risk set of the cases.
In particular, with L levels of the surrogate variable, ml controls are sampled from
strata l except for the stratum of the case at a time tj. From stratum l′ of the case

ml′ − 1 controls are sampled. In this way the sampled risk set R̃(tj) at tj, consisting
the case and the controls sampled at that time, at all event times contains exactly
ml individuals from stratum l. With nl(tj) individuals at risk right before time tj in
stratum l this risk set gives a likelihood contribution

Lj =
exp(β′Zj)∑

k∈R̃(tj)
wjk exp(β′Zk)

where wjk = ml/nl(tj) when individual k has level l on the surrogate variable. The
counter-matching estimator under the proportional hazards assumption proposed by
Langholz & Borgan (1995) is obtained by maximizing the product of the Lj over the
event times tj as a function of β. This product possesses a partial likelihood property
and large sample inference follows from this (Langholz & Borgan, 1995).

The post-stratification approach can be applied immediately also to counter-
matched studies. We then define new strata according to event (case or non-case),
censoring interval and the surrogate variable. Weights are again given as inverse sam-
pling fractions within strata defined as the number of sampled individuals divided by
the number of individuals in the cohort.
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As for nested case-control designs the probability of being sampled will not be
constant within a censoring interval, but with a fair number of censoring intervals
it will not vary much. Large sample inference thus requires that the lengths of all
intervals tend to zero as the sample size increases. However, the situation is otherwise
similar to the nested case-control design and the post-stratification argument for
variance estimation is valid.

Similarly to post-stratification for stratified case-cohort studies we may end up
with a large number of strata. The theory of Borgan et al. (2000) also requires that
the number sampled in each stratum is large, a requirement which may be difficult
to satisfy for a given sample size. Consequently, the censoring intervals should be
chosen with care.

4.3 Bernoulli sampling designs

Kalbfleisch & Lawless (1988) and Robins et al. (1994) discuss Bernoulli sampling
where individuals are sampled independently. This design allows for inclusion prob-
abilities that depend on covariates and surrogate variables. A variance formula for
the estimated regression parameters was developed by Kalbfleisch & Lawless (1988).
This formula can be written on a similar form as the one in Section 2.4 by replacing
the central 2. order moment (1/(ml−1))

∑
i∈Sl

(Di−D̄l)(Di−D̄l)
> by the non-central

2. order moment (1/ml)
∑

i∈Sl
DiD

>
i , if the same sampling fraction is used for all

individuals in stratum Sl.
Formally this design does not belong to the class of Chen (2001) since Bernoulli

sampling is not sampling with replacement. However, after conditioning on the num-
ber actually sampled in the strata with Bernoulli sampling and using the same sam-
pling probability in each stratum, the sampling frame amounts to stratified random
sampling. Thus, after correcting the inclusion probabilities to the number actually
sampled divided by the number that could have been sampled within each stratum
and weighting by these corrected inclusion probabilities, we obtain the same large
sample results as if stratified sampling had been carried out.

Furthermore, this approach may also be extended to post-stratification on cen-
soring intervals. As for stratified case-cohort studies, we then count the total and
the sampled number of individuals in each interval and in each stratum among the
non-cases and weight by inverse sampling fractions in each group.

5 Simulation studies

In this section we investigate the behavior of the post-stratification (or local averag-
ing) method using simulations. One purpose is to discover when and to what extent
this approach produces unbiased estimates and efficiency improvements. Another
purpose is to explore the behavior of the variance estimators for stratified case-cohort
studies.
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We will use the simulation model from Section 2.5, although sometimes with
modifications. Standard case-cohort studies, nested case-control studies, stratified
case-cohort studies, counter-matched studies and Bernoulli-sampling strategies are
considered.

5.1 Case-cohort design

In our first simulation we use the same cohort model as in Section 2.5, with covariate
Z uniformly distributed on [0, 1], regression coefficient β =1, Weibull baseline hazard
λ0(t) = 2t and uniform censoring on the interval [0, 0.5], producing roughly 12.5%
cases. This model is simulated 5000 times with a total sample size of 1000 individuals.
In each replication of the simulation model a subcohort of size m0 = 130 is sampled
from the complete cohort with simple random sampling.

For each replication we obtain the Cox-estimator from the cohort data, the esti-
mator with post-stratification only on case-status and two estimators which are also
post-stratified on censoring. For the first of these the censoring interval is stratified
into 5 intervals of equal length and for the second into 10 intervals of equal length. For
all estimators the variance is estimated. In addition, we estimate the robust variance
(Barlow, 1994, Therneau & Grambsch, 2000) for the case-cohort estimators. In Panel
A of Table 2 we present the average of regression parameter estimates, the average
variance and robust variance estimates and the empirical variances of the estimates.
We also calculate the relative efficiency between the case-cohort estimators and the
cohort estimator, defined as the ratio of their empirical variances.

There was a very slight bias for the case-cohort estimates, but the magnitude was
the same for all three estimators. The variances were also very similar for all esti-
mators, although it appears that post-stratification slightly increased the variances.
This is in contrast to large sample results (Chen, 2001), but in a new round of simula-
tions with the sample size increased to n=10000 there was no difference between the
variances (results not shown). There was good correspondence between the variance
estimates and the empirical variances at least for Estimator II and with 5 interval
post-stratification. The robust variance estimator also seemed to be valid for all three
estimators.

These results are in clear contrast to the efficiency gains presented by Chen (2001).
However, in that paper the censoring times depended on the covariates. To study
this effect we will, following Samuelsen (1997), assume that the censoring time is
exactly proportional to the covariate. With known censoring times for all individuals
in the cohort we have complete cohort information and there is no need to carry out
subcohort sampling. This model is still interesting to investigate because we get an
idea of how large the efficiency gains can be and how far the weighted likelihood is
from the efficient estimator.

Thus 5000 new simulations with the same model for the time to event, but with the
censoring time exactly proportional to the covariate, were performed. The censoring
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time was uniformly distributed over an interval from 0 to a value chosen to get about
12.5% cases. Subcohorts of size m0 = 130 individuals were then sampled and the same
estimators used as in the previous simulation. The results from these simulations are
presented in Panel B of Table 2.

The variances were larger for these simulations due to smaller variation in covariate
values for late risk sets. There was no evidence of bias of the regression parameter
estimates. The correspondence between variance estimates and empirical variances
were good, but the robust variance only worked properly for post-stratification only
on case-status. Post-stratification also on censoring interval gave estimators that were
markedly efficient compared to post-stratification only on case-status and that were
not far from efficient compared to the cohort estimator. Using 10 intervals gives some
efficiency improvement compared to 5 intervals, but the main gain was achieved with
post-stratification on 5 intervals.

The relative efficiencies are somewhat better than those reported by Chen (2001)
who used a censoring variable that was not exactly proportional to the covariate. To
be able to compare with Chen we performed a third simulation with a correlation
between covariate and censoring time approximately equal to 0.9 and with a similar
model to that used above. The differences were that the hazard was λ0(t) = 2.22t
and that the censoring time was given by c = min([3.2z]/6.4 + z′/6.4, 0.5), where [x]
denotes the largest integer smaller than x and where z′ denotes another draw from a
U [0, 1] independent of z. The results for 5000 replications are shown in Panel C of
Table 2.

In these simulations the efficiency gain is still clear, but much more modest. This
contrasts with the results of Chen (2001), but may be due to higher incidences in
his simulations. There was some bias in the estimates of the regression parameter,
variance estimates corresponded well to empirical variances, but the robust variances
were clearly conservative for the estimators with post-stratification on censoring.

5.2 Nested case-control design

In nested case-control studies, controls are sampled from the risk sets of the failure
times of the cases. Traditionally such studies are fitted using the Thomas (1977)
estimator which is obtained by maximizing a Cox-type likelihood given as a product
over event times, where the sum in the denominator at an event time is over the
case and the controls sampled at that particular time. Goldstein & Langholz (1992)
showed that this likelihood is a partial likelihood under the proportional hazards
model (See also Oakes, 1981, Borgan et al., 1995).

Samuelsen (1997) instead suggested maximizing a weighted likelihood in which
the sum in the denominator at an event time is over all sampled controls and all
cases at risk at that time. The weights for the controls were given as the inverses of
the estimated inclusion probabilities pi = 1 − ∏

s[1 − Yi(s)m
dN(s)

Y (s)−1
], where m is the

number of controls sampled for each case, Y (s) is the number at risk at time t− and
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Table 2: Results from simulations of case-cohort studies with censoring time inde-
pendent of the covariate (Panel A), proportional to the covariate (Panel B), and
correlated with the covariate (Panel C).

Panel A: Censoring independent of the covariate

Cohort Case-cohort with post-stratification on
(Cox) case-status only 5 intervals 10 intervals

Mean estimate 1.006 1.029 1.030 1.032
Mean variance 0.101 0.249 0.259 0.264
Mean robust variance − 0.251 0.256 0.268
Empirical variance 0.100 0.257 0.263 0.279
Relative efficiency − 0.39 0.38 0.36

Panel B: Censoring time proportional to the covariate

Cohort Case-cohort with post-stratification on
(Cox) case-status only 5 intervals 10 intervals

Mean estimate 1.001 1.022 0.999 1.001
Mean variance 0.338 0.582 0.378 0.360
Mean robust variance − 0.587 0.605 0.607
Empirical variance 0.330 0.600 0.377 0.355
Relative efficiency − 0.55 0.88 0.93

Panel C: Censoring time correlated with the covariate

Cohort Case-cohort with post-stratification on
(Cox) case-status only 5 intervals 10 intervals

Mean estimate 1.015 1.037 1.031 1.028
Mean variance 0.269 0.518 0.465 0.443
Mean robust variance − 0.514 0.528 0.544
Empirical variance 0.268 0.523 0.467 0.438
Relative efficiency − 0.51 0.57 0.61
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N(t) represents the total number of cases in [0, t]. It follows that pi can be interpreted
as the probability of ever being sampled as a control. Note that pi will increase with
the length of follow-up and that the weights equal 1 for the cases.

As an improvement Chen (2001) suggested using local averaging weights, which we
have argued amounts to post-stratification on censoring times grouped into interval
strata. The inclusion probability for this approach will be constant over the time
interval, but it may well decrease from one interval to the next. This may reflect the
actual sampling better than the monotonous (in length of followup) pi of Samuelsen
(1997).

However, the actual choice of intervals is somewhat arbitrary and there could be
problems both with intervals that are too short and too long. An alternative inclusion
probability can be obtained by using some smooth function over time that properly
describes the proportion of sampled controls. Several ways of implementing this idea
are possible, for instance smoothing indicators of being sampled against censoring
times with generalized additive models (GAM, Hastie & Tibshirani, 1990).

As an example we simulated the model in Section 2.5 once and sampled m = 1
control per case. Estimates of the probability of being sampled as a control are
displayed in Figure 1. For post-stratification we only show the estimates based on
10 equal length intervals. A potential problem with the post-stratified estimate with
10 intervals is that some intervals do not contain controls, corresponding to a zero
sampling fraction.

We replicated simulations with nested case-control sampling of m=1 control per
case 5000 times. In each simulation we used (1) the cohort (Cox) estimator, (2) the
Thomas (1977) estimator and (3) weighted partial likelihood estimators. We used
weights from (3a) the inclusion probabilities of Samuelsen (1997), (3b) GAM, (3c)
post-stratification with 5 equal length intervals and (3d) post-stratification with 10
equal length intervals. Variance estimates were obtained for the Cox-estimator and
the traditional nested case-control estimator (as the inverse information) and for the
post-stratified estimators. Samuelsen (1997) developed a variance estimator for his
estimator, but this was not used in these simulations. For the GAM-weighting no
variance estimator is developed.

Results from the simulations are reported in Panel A of Table 3, apart from the
results for the Cox-estimator and the post-stratified estimator with 5 intervals. For
the Cox-estimator the results were very close to those in Panel A of Table 2. The
reported efficiency is relative to the Cox-estimator.

The estimators all had a slight bias. Variance estimation worked well for the
traditional nested case-control method and the post-stratified method. Both for the
inclusion probability of Samuelsen (1997) and the GAM approach the robust vari-
ances performed well. The traditional nested case-control estimator was somewhat
inefficient compared to the weighted estimators, but the inclusion probability and
the GAM approaches produced as precise estimates as the post-stratified estimator.
Post-stratification with 5 intervals gave similar results as with 10 intervals.
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Figure 1: Estimated probability of being sampled as a control as function of censoring
time based on inclusion probabilities from 1) the method of Samuelsen (1997), 2)
generalized additive models and 3) post-stratification with 10 intervals.
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To evaluate the effect of a (relatively) small sample size we performed 5000 new
simulations, increasing the sample size to n = 10000. The slight bias of the re-
gression parameter estimators vanished. Average variance estimates, average robust
variances estimates and empirical variances were in good agreement. The traditional
nested case-control estimator was still somewhat inefficient compared to the weighted
estimators.

Similar to the case-cohort study we also conducted 5000 simulations of nested
case-control studies with the censoring times proportional to the covariates. Thus,
full information about the covariate is available and the simulations were performed
only to study the behavior in this extreme case. Results are given in Panel B of Table
3.

In this case the weights from the generalized additive models produced a practi-
cally efficient estimate. Post-stratification with 10 intervals also gave an estimator
with small variation, although having a clear bias. Post-stratification with 5 intervals
was less biased, but had a somewhat larger variance (results not shown). Variance
estimation for the post-stratified estimators appeared to work well with 10 intervals,
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Table 3: Results from simulations of nested case-control studies with censoring time
independent of the covariate (Panel A), proportional to the covariate (Panel B), and
correlated with covariate (Panel C).

Panel A: Censoring time independent of the covariate

Inclusion probabilities
Traditional Post-stratified

Thomas (1977) Samuelsen (1997) GAM 10 intervals
Mean estimate 1.021 1.017 1.017 1.019
Mean variance 0.218 − − 0.190
Mean robust variance − 0.185 0.187 0.192
Empirical variance 0.221 0.190 0.192 0.198
Relative efficiency 0.46 0.54 0.53 0.52

Panel B: Censoring time proportional to the covariate

Inclusion probabilities
Traditional Post-stratified

Thomas (1977) Samuelsen (1997) GAM 10 intervals
Mean estimate 1.030 0.983 0.999 0.929
Mean variance 0.711 − − 0.350
Mean robust variance − 0.525 0.521 0.552
Empirical variance 0.725 0.479 0.354 0.377
Relative efficiency 0.48 0.72 0.98 0.92

Panel C: Censoring time correlated with the covariate

Inclusion probabilities
Traditional Post-stratified

Thomas (1977) Samuelsen (1997) GAM 10 intervals
Mean estimate 1.022 0.984 0.998 0.911
Mean variance 0.558 − − 0.346
Mean robust variance − 0.437 0.437 0.457
Empirical variance 0.581 0.416 0.348 0.363
Relative efficiency 0.47 0.65 0.78 0.75
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but these estimates were somewhat too small with 5 intervals.
The traditional nested case-control estimator is quite inefficient in this situation

with efficiency comparable to Panel A. This is not surprising as no information about
the relation between covariate and censoring is used for this estimator. The estimator
based on the inclusion probability of Samuelsen (1997) provides a great improvement
from the traditional nested case-control estimator, but is still far from efficient. How-
ever, it had little bias. The robust variance estimator exceeded the empirical variance
somewhat, which is in accordance with the variance expression in Samuelsen (1997).

The interval lengths for the post-stratified estimators were of fixed and equal
length which does not preclude that no controls could be sampled in one or more
strata. With 5 strata this happened only in 5 out of 5000 times, but with 10 strata it
occurred in more than 20% of the replications. To avoid this we also, similar to Chen
(2001), considered estimators where the intervals were determined by having an equal
number of controls sampled in each. This, however, produced very biased results with
for instance an average estimate of 1.72 with 5 intervals. The bias decreased with
more intervals, but the average estimate was as high as 1.21 even with 40 intervals.
Thus, choice of intervals may be a problem for the post-stratification approach at
least in some extreme situations. It is noteworthy that use of both the GAM-weights
and the inclusion probability weights of Samuelsen (1997) produced almost unbiased
estimates.

Additional simulations with n = 10000 were conducted. In this case the post-
stratified estimator with 10 intervals was practically unbiased as were the traditional
nested case-control estimator and the estimator based on the method of Samuelsen
(1997). The estimator based on GAM-weights showed a very slight bias (mean esti-
mate 1.023) as did the post-stratified estimator with 5 intervals (mean estimate 1.039).
The post-stratified estimators with intervals determined by having equal number of
controls, however, were as biased as for n=1000.

Variance estimates and empirical variances corresponded well for the post-stratified
estimators with both 5 and 10 intervals and had relative empirical efficiencies of 0.95
and 0.98, respectively, compared to the cohort estimator. The GAM-estimator, had
an efficiency of 1.00 compared to the cohort estimator. For the inclusion probability
estimator (Samuelsen, 1997) and the traditional nested case-control estimator the
efficiencies were as in Panel B of Table 3.

As for the case-cohort design we also performed simulations where the censoring
time had a correlation of 0.9 with the covariate, using the same model as used for
Panel C of Table 2. The results are presented in Panel C of Table 3.

Weights with post-stratification again produced clearly biased estimates and the
variance estimates were generally too small compared to the empirical variances. The
estimates based on the GAM-weights and the inclusion probability weights were much
less biased. The GAM-weights produced a smaller variance than the other estimators
with an efficiency of 0.79 compared to the cohort estimator.
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5.3 Stratified case-cohort design

We have extended the post-stratification or local averaging method proposed by Chen
(2001) to designs where sampling can depend on covariates. To study the potential
benefits of our extension we simulated the same model and sampling scheme as in
Section 2.5 with n = 1000. Thus, the surrogate variable was again an indicator for
the U[0, 1] covariate taking a value above 0.5. In addition to the surrogate we then
post-stratified the data into 5 equal length censoring intervals, giving 10 strata in
total, and to 10 intervals, giving 20 strata. Results are given in Panel A of Table 4.

The estimates appeared to be somewhat biased. However, in the similar simula-
tion reported in Section 2.5, the bias for the original stratified case-cohort estimator
was much smaller. The average estimated variance was in good agreement with the
empirical variance for 5 intervals, but perhaps a bit too small for 10 intervals. The
robust variance estimator was again markedly conservative.

The main observation from these simulations is that the variances are considerably
reduced after post-stratification on censoring intervals when censoring and covariates
are independent. This is in contrast to the effect of post-stratification in the usual
case-cohort studies discussed in Section 5.1 where a rather strong dependence was
required to demonstrate an efficiency improvement. The efficiency improvement for
stratified case-cohort studies may be explained by inspecting the DFBETAS or the

Xi =
∫ τ

0
[Zi − S̃

(1)
II (β̃II , s)

S̃
(0)
II (β̃II , s)

]Yi(t) exp(β̃′IIZi)
dN•(s)

S̃
(0)
II (β̃II , s)

.

Within standard case-cohort studies these have an average over the controls close to
zero unless covariates are strongly predictive of case-status. Taking averages within
post-strata defined by length of follow-up then typically also produces values close
to zero. In contrast, for a stratified case-cohort study the average of the Xi will
differ from zero in the different strata, but the Xi will also depend on the length of
follow-up. Taking averages over post-strata defined by both the original stratification
variable and the length of follow-up will produce systematically different Xi in the
post-strata and variation within these post-strata may be smaller than the variation
within the original strata.

5.4 Counter-matched design

Counter-matching was described in Section 4.2 where the original estimator of Lang-
holz & Borgan (1995) was presented. It was argued that we could alternatively use
a post-stratification method with strata defined as censoring intervals for each level
of the surrogate. Furthermore, it is possible to calculate an inclusion probability,
similar to that of Samuelsen (1997), of individual i ever being sampled as a control.

This is given by pi = 1−∏
s[1− Yi(s)ml(s)

dN(s)
nl(s)−1

] when individual i belongs to stra-

tum l, where ml(s) = ml − 1 if the case at time s comes from stratum l and where
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ml(s) = ml otherwise. An alternative estimator could be obtained by maximizing
a weighted partial likelihood where cases are weighted by 1 and controls by 1/pi.
Another option could be to smooth indicators of being sampled as controls against
censoring times separately for each stratum using for instance GAMs.

To investigate the performance of such methods we performed a simulation study
with the same model as used for Panel A of Table 3 with censoring independent of
the covariate. In addition we used an indicator for the uniform [0,1] covariate taking
a value above 0.5 as stratum variable. We obtained the cohort Cox-estimator, the
traditional counter-matching estimator of Langholz & Borgan (1995), an estimator
with inclusion probabilities similar to that of Samuelsen (1997) for both strata, an
estimator with inclusion probabilities based on GAM and a post-stratified estimator
with 5 equal length censoring intervals and 2 levels of surrogate variable (10 strata
in total). Variance estimates were obtained for the traditional counter-matched esti-
mator as the inverse of the information and for the post-stratified method using the
correction method described in Section 2.4.

Contrary to all other simulation results reported in this paper, the traditional
method clearly outperformed the post-stratified and all other estimators in this case.
It should be noted that the traditional counter-matched estimator attained a very
high efficiency of 0.85, higher than any other estimator based on simulations from
such a model (see Table 1 and Panel A of Tables 2, 3 and 4). The estimator thus
worked exceptionally well in this situation. The relative efficiencies for the other
methods were roughly in accord with those for stratified case-cohort studies shown
in Panel A of Table 3. However, although there was no efficiency improvement the
estimators were only slightly biased and variance estimation seemed to work well.

In order to investigate whether the observed results were due to small samples the
sample size was increased to n=10000. The original estimator for counter-matching
was clearly superior, still having a relative efficiency of 0.85. However, the other
methods came somewhat closer with efficiencies of 0.71 for the inclusion probabilities
of Samuelsen (1997), 0.77 for GAM probabilities and 0.74 for post-stratified inclusion
probabilities. The bias practically vanished for all estimators, except for the scenario
with 5 intervals where the average estimate was 0.83.

5.5 Bernoulli sampling design

In Section 4.3 we argued that we could also invoke the post-stratification method if the
subcohort was sampled with Bernoulli sampling. The standard approach to analyzing
such data would be to weight by the inverse of the sampling fractions. Alternatively,
the redefined weights after observing how many were sampled in each interval should
give a closer correspondence to the cohort data and might thus produce more precise
estimates.

To demonstrate this we performed a simulation similar to the one in Section 2.5,
but with Bernoulli sampling in both strata. As previously, the strata were determined
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Table 4: Results from simulations of stratified case-cohort studies (Panel A), counter-
matched studies studies (Panel B), and Bernoulli-sampling (Panel C). In all cases the
censoring time is independent of the covariate.

Panel A: Stratified case-cohort studies

Original stratifi- Post-stratified Post-stratified
cation scheme 5 intervals 10 intervals

Mean estimate 1.040 1.038 1.043
Mean variance 0.198 0.159 0.157
Mean robust variance 0.251 0.263 0.282
Empirical variance 0.208 0.164 0.176
Relative efficiency 0.50 0.63 0.59

Panel B: Counter-matched studies

Inclusion probabilities
Traditional Similar to Post-stratified

counter-matching Samuelsen (1997) GAM 10 intervals
Mean estimate 1.010 1.027 1.036 1.029
Mean variance 0.122 − − 0.145
Mean robust variance − 0.195 0.198 0.206
Empirical variance 0.123 0.157 0.147 0.151
Relative efficiency 0.85 0.67 0.71 0.69

Panel C: Bernoulli sampling

Original sampling Corrected sampling Post-stratified
fraction fraction scheme

Mean estimate 1.040 1.035 1.030
Mean variance 0.249 0.200 0.160
Mean robust variance 0.251 0.253 0.266
Empirical variance 0.277 0.212 0.167
Relative efficiency 0.37 0.48 0.61
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by whether the uniform [0, 1] covariate Z was above or below 0.5. The sampling
fraction for the Bernoulli sampling was 0.13 which was also the fixed sampling fraction
for the stratified case-cohort studies.

Based on 5000 replicated datasets generated from this model we obtained the co-
hort Cox-estimator, the weighted Cox-estimators with the original weights of 0.13,
the modified weights after observing how many censored individuals were actually
sampled in each stratum and also estimators post-stratified both on stratum and cen-
soring interval. Robust and adjusted variances were also recorded for all estimators.
The results are given in Panel C of Table 4.

The variances based on the original sampling fractions were clearly larger than
for the sampling weights corrected for stratum. An additional efficiency improvement
was obtained after post-stratifying also on censoring interval. Indeed, the behavior of
the post-stratified estimators with Bernoulli sampling in Panel C of Table 4 is in very
good agreement with the post-stratified estimators for stratified case-cohort sampling
in Panel A of the same table. The robust variances in Panel C were only valid when
using the original sampling fractions.

6 Discussion

We have shown that proportional hazards models can easily be fitted for stratified
case-cohort data by using standard Cox regression software accommodating inverse
probability weighting. In particular, estimation of the covariance matrix for the re-
gression coefficients can proceed based on the DFBETAS. Simulation studies indicated
that such variance estimation performs well. In contrast, robust variance estimates
can be markedly conservative for stratified case-cohort studies.

We have also pointed out a relation between post-stratification on censoring in-
tervals and the local averaging weights of Chen (2001) for a general class of sampling
designs. The use of stratified case-cohort methods to adjust variance estimates was
investigated and such methods appeared to work well. However, for nested case-
control studies the estimates were sometimes clearly biased. Some care should thus
be exercised in choosing the censoring intervals that constitute the strata for post-
stratification. It is interesting to note that the inclusion probabilities of Samuelsen
(1997) or smoothed inclusion probabilities based on generalized additive models pro-
duced practically unbiased estimates.

Chen (2001) showed that his local averaging estimator was large sample efficient
compared to other estimators. In our simulations we found clear efficiency improve-
ments when censoring depended strongly on a covariate, but with independence there
was little improvement. In small samples there may even be an efficiency reduction
compared to traditional methods.

We have also shown that local averaging can be used for covariate (or surrogate
variable) dependent sampling such as stratified case-cohort and counter-matched de-
signs. For stratified case-cohort designs our simulations were very promising since we
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obtained efficiency gains even when censoring and covariates were independent. For
counter-matching, on the other hand, the method of Langholz & Borgan (1995) was
found to be more efficient than post-stratification in our simulation. The generality
of this result should be investigated.

Most of the methods discussed in this paper are based on maximizing weighted
partial likelihoods. A merit of probability weighting is that it is a very general ap-
proach that can be used for a multitude of models, including parametric survival
models (Kalbfleisch & Lawless, 1988, Samuelsen, 1997) and semi-parametric additive
hazard models (Kulich & Lin, 2000). Furthermore, for competing risk models with
nested case-control and counter-matched designs, controls sampled to cases of one
type of event can only be used in relation to this type of event when using the tradi-
tional estimation techniques. In contrast, weighting makes it straightforward to use all
sampled controls for all types of events just as for case-cohort studies. Also, for time-
matched designs, the traditional methods do not allow the time-scale to be changed
from the original scale (for instance age) to another scale (such as calendar time or
time in study). With weighting techniques this does not pose a problem. Another
advantage of weighting methods for nested case-control and counter-matched studies
is that the efficiency loss due to missing covariates can be reduced. This is so because
the traditional methods require that matched sets (both case and controls) with a
missing covariate value must be excluded from the analysis. In contrast, weighting by
inverse inclusion probabilities enables us to make use of all individuals with complete
covariate information. Thus, although our simulations of counter-matched studies
did not demonstrate an efficiency improvement from using weighted methods, this
approach may still be useful in practice.

Recently semi-parametric maximum partial likelihood estimators for case-cohort
studies (Scheike & Martinussen, 2004), for stratified case-cohort studies (Kulich &
Lin, 2004) and nested case-control studies (Scheike, & Juul , 2004) have been de-
veloped. These methods may sometimes perform better than our approach based
on inverse probability weighting. However, the estimators suggested in this paper
generally perform very well and model fitting and variance estimation is very easy to
carry out using standard software.
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