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Abstract: In this paper, we outline a geostatistic method to simulate the relative precision (coefficient of variation,
CV) of total abundance estimates of one species in a predetermined, stratified area when it is appropriate to treat the
observations within each stratum as realizations of a second-order homogenous and ergodic random process. To model
the spatial correlations, a variogram is fitted to normal-transformed values of the original observations. Based on the
variogram and its corresponding covariance matrix, extensive simulations on a fine grid that includes the sample loca-
tions provide random realizations of the process. The normal values are back-transformed to original observation space
by nonparametric reversed bootstrap, as well as by a parametric Weibull approach. The method is applied to a total of
1069 shrimp (Pandalus borealis) abundance observations from 11 annual surveys in the Barents Sea (1992–2002)
where a 20 nautical mile sampling grid has been applied. On average, the CV was estimated to be 6.4% for the ap-
plied regular grid when the simulations were conditional on the observations, compared with 8.1% when the sampling
locations within each of the six strata were random.

Résumé : On trouvera ici la description d’une méthode géostatistique pour simuler la précision relative (coefficient de
variation, CV) des estimations d’abondance totale d’une espèce dans une aire prédéterminée et stratifiée, lorsqu’il est
approprié de traiter les observations dans chacune des strates comme les résultats d’un processus aléatoire de second
degré homogène et ergodique. Afin de modéliser les corrélations spatiales, nous ajustons un variogramme aux valeurs
normalisées des observations originales. Des simulations répétées, basées sur le variogramme et sa matrice de cova-
riance correspondante et faites sur une grille fine qui comprend les stations d’échantillonnage, fournissent des résultats
aléatoires du processus. Les valeurs normalisées sont retransformées dans l’espace original d’observation au moyen
d’un bootstrap non paramétrique inversé, ainsi qu’au moyen d’une approche paramétrique de Weibull. La méthode est
utilisée sur un total de 1069 observations d’abondance de crevettes (Pandalus borealis) provenant de 11 inventaires
dans la mer de Barents (1992–2002) qui emploient une grille d’échantillonnage de 20 milles marins. En moyenne, le
CV est estimé à 6,4 % pour la grille utilisée lorsque les simulations sont dépendantes des observations, alors qu’il est
de 8,1 % lorsque les sites d’échantillonnage dans chacune des six strates sont aléatoires.

[Traduit par la Rédaction] Harbitz and Aschan 1551

Introduction

In classical sampling theory, random sampling locations
are often advocated in order to get design-unbiased estimates
of abundance (Cochran 1977). In these cases, the population
of all possible sample outcomes in terms of abundance ob-
servations is considered fixed, while the randomness is in-
cluded in the sampling design. In the so-called model
approach (Thompson 1992; Thompson and Seber 1996) ap-
plied in this paper, the opposite is true. Using this approach,
sampling sites are fixed and the sample outcomes are sto-
chastic. If the sampled abundance observations can be con-
sidered a random sample from the population distribution of
all possible sample outcomes, then an unbiased abundance
estimate can be provided with respect to the population dis-
tribution.

There is no general rule saying that one of the above ap-
proaches is superior to the other. The random sampling ap-
proach is the most robust one in the sense that there is no
need to model either the population distribution of possible
abundance observations or spatial correlations. Another advan-
tage is that the minimum sailing distance tends to be shorter
than for regular sampling (Beardwood et al. 1959; Christofides
and Eilon 1969). It is also clear that the model approach must
assume some kind of randomness in the spatial distribution of
the abundance to provide unbiased abundance estimates. On
the other hand, when spatial correlations between observa-
tions are present and the spatial structure can be appropri-
ately modelled, more precise abundance estimates may be
obtained with a regular sampling design than by random lo-
cation sampling (Cochran 1977; Rivoirard et al. 2000). An-
other argument in favour of regular sampling is that the tidy
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handling of the samples could be very complicated with suc-
ceeding stations close to each other (Harbitz et al. 1998).

In this paper, the abundance observations during a survey are
considered as realizations of a second-order homogenous ran-
dom process, which is in accordance with the intrinsic hypothe-
sis in geostatistics (Rivoirard et al. 2000). This means that a
possible spatial correlation between two observations is de-
pendent on the distance between their locations only. This is a
situation that is realistic for many surveys but is especially true
in the open sea (Harbitz and Lindstrøm 2001). The term “ho-
mogenous process” was deliberately chosen over the more tra-
ditional term “stationary process”. This is partly because the
focus is on the spatial properties of the process and partly be-
cause the process is a spatial–temporal process where different
terms in space and time are useful. The term “stationary” is, in
our opinion, a more natural term to use with respect to time.

Even if a regular grid under the homogeneity assumption
provides classical unbiased abundance estimators, it is more
difficult to obtain unbiased variance estimators due to the
possible spatial correlations between the samples. To exam-
ine if such correlations exist and to take this into account in
the variance, geostatistics has proven to be an appropriate
tool. During the last decade, there has been an increased fo-
cus on spatial statistics within marine resource abundance
estimation (Petitgas 1993; Rivoirard et al. 2000).

In this paper, a general two-dimensional simulation method
is outlined that provides good estimates of abundance esti-
mator precision, taking the spatial correlation appropriately
into account. A major feature of this approach is that there is
no need to establish a good model for the spatial correlations
in original observation space. It is sufficient to have a good
model in normal-transformed space, which in practice is
much easier to obtain.

Though many of the different elements of the method are
not new, the composition and focus differ from earlier work
(e.g., Petitgas 1993; Kern and Coyle 2000). As an example,
the method includes a nonparametric approach in which the
empirical abundance distribution can be used in the back-
transformation from normal space to abundance space (re-
versed bootstrap; Harbitz and Lindstrøm 2001). In addition,
it is straightforward to implement irregular contours that en-
close the study area.

An important element of the method is that it accounts for
the fact that the expected sampling variance in cases in which
density observations are positively correlated will be smaller
than the variance in the process distribution that generates
random realizations of the process. This difference is due to
a finite study area and is important when the correlation
length, i.e., the distance between two observations beyond
which the spatial correlation disappears, is not negligible
compared with the extension of the area.

The method can, in principle, be applied to any sampling
design and so is useful for comparing different sampling de-
signs. A major goal of the present study is to offer an easily
applied and useful supplement to the geostatistic tool kit for
estimating the precision of abundance estimates.

Materials and methods

Notations are given in Appendix A and a detailed chart of
the simulation procedure is given in Appendix B.

The Barents Sea shrimp data
The Barents Sea is delineated by the coastline of northern

Norway and Russia in the south, by Bear Island and
Spitzbergen towards the west, and by Novaja Zemlja and
Frans Josef Land at the east and the north (Fig. 1). It is a rel-
atively shallow shelf sea with a mean depth of 230 m, cover-
ing approximately 1.4 million km2. The Atlantic water from
the south and the colder, less saline Arctic water from the
north meet in the Polar Front. During winter, the Arctic wa-
ter is covered with ice, but most of the Barents Sea is ice-
free during summer (Loeng 1991). The shrimp stock is dis-
tributed throughout the area at depths deeper than 150 m.
Norway has conducted annual shrimp surveys in the Barents
Sea in April–May since 1982. The study area is divided into
six strata (A–F) and covers approximately 50 000 nautical
miles2 (n.mi.2) (Fig. 1). A Campelen 1800 survey trawl was
towed at 3 knots for 20 min, resulting in a tow distance of
1 n.mi. Since 1992, a 20 n.mi. regular grid has been used to
locate trawl stations (Fig. 1), and data from 1992–2002 are
used in this study. The actual trawl stations in 1992 (shown
as solid circles in Fig. 1) are close to the idealized nodes in
the grid. In 1996, a 10 n.mi. sampling grid was used in the
area where shrimp were most abundant (stratum E) to study
the abundance variation on a finer scale than 20 n.mi. Stra-
tum E had the greatest abundance of shrimp (Pandalus bore-
alis), but it was also the stratum with the most difficulties
caused by ice (Fig. 2). The location of the fine 2 n.mi. simu-
lation grid nodes applied in this stratum are shown as dots,
along with the actual sampling sites (solid circles) in 1996
approximated to the nearest 2 n.mi. grid node. For the other
strata, a 4 n.mi. simulation grid was chosen.

A total of 1069 trawl stations with distinct sampling loca-
tions for each survey are included in the analyses of the co-
efficient of variation. In addition, in several surveys the same
locations have been repeatedly trawled within a few hours.
These observations provided a total of 115 different within-
survey observation pairs. Aschan and Sunnanå (1997) gave a
detailed description of the surveys.

The abundance and its estimator
Let b denote density, e.g., in tonnes·n.mi.–2. Density, b =

b(x,t), is generally a function of time, t, and horizontal loca-
tion in space, x = (x, y). For simplicity, the vertical compo-
nent is omitted here. The abundance (biomass or number) to
be estimated, B, is then

(1) B(t) = µ(t)A = b
Ω
∫ ( ) ( )x xd

where A is the area of the predetermined region Ω of interest.
Further, µ is the average density and dx = dxdy. For simplic-
ity, only one stratum is considered initially; the extension to
m nonoverlapping strata will be discussed later. It is as-
sumed that B is varying slowly in time on a time scale corre-
sponding to the duration ∆ t of a survey. Because the area is
assumed to be known, estimation of B is synonymous with
estimation of µ.

Let bs = (b1, …, bn) denote a density sample vector consist-
ing of n density observations at the location xs = (xs1, …, xsn),
where subscript “s” is used as an abbreviation for sample ob-
servation. The classical abundance estimator, �B, for the abun-
dance is now
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where a bar over a variable denotes arithmetic average and q
is catchability. For simplicity, q is assumed to be constant;
then q disappears from the CV expressions to follow and
will from now on be set equal to one. In a fixed-population
approach, the estimator above is unbiased under a random-
ized design, e.g., when the n observation locations are cho-
sen randomly. Under the intrinsic geostatistic hypothesis,
which is the approach used in this paper, the estimator is un-
biased under any sampling design that is not dependent on
the observation variable, e.g., a regular sampling grid
(Petitgas 1993). The term unbiased, as used in this intrinsic
geostatistic context, implies that E( �µ |µ) = µ (conditional un-
biasedness), where �µ = b and the expectation is taken with
regard to the distribution of all possible realizations of the
process providing µ and �µ.

If all bjs are uncorrelated, the following estimator, �
�

σ
B
2 , will

be an unbiased variance estimator for σ
�B
2 = var( �B), independ-

ent of population distribution:

(3) �
�

σ
B
2 = S2A2/n

where S n b b
j

n
j

2 2= − −
=∑( / ( )) ( )1 1

1
is the sample variance,

which in this case is an unbiased estimator for σ2 = var(bj).

A reasonable (though in general biased) estimator CV0
^

for
the coefficient of variation CV0 = σ �B /B is in this case

(4) CV0

2
^

=
�

�

�
σ

B

B

If spatial correlations between observations are present, the
variance estimator in eq. 3 is biased (unless the sample loca-
tions are random). A key focus in this paper is to provide a
CV estimator with negligible bias that takes such spatial cor-
relations into account, assuming that it is reasonable to treat
the set of possible density samples in a survey as a realiza-
tion of a second-order homogenous random process. The
geostatistic variogram is applied as the structural tool, and
the corresponding covariance is applied for simulations of
random realizations of the process.
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Fig. 1. The location of the Barents Sea shrimp (Pandalus borealis) study area, along with its six main strata A–E. Idealized regular
20 nautical miles (n.mi.) sampling grid nodes are indicated by plus signs (+), and the actual sampling sites in 1992 are indicated by
solid circles (�).
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Variogram and covariance
The realization bs = (b1, …, bn) of n density observations

at a particular time, t, is considered a realization of a sec-
ond-order homogenous random process, b, with properties

(5) Eb(x + h) = Eb(x)

cov(b(x),b(x + h)) = Cb(h)

The expectation and the covariance are with respect to all
possible realizations of the process, and Cb denotes the co-
variance matrix of the process.

To get the necessary link between statistics of different re-
alizations and the statistics in space for a given realisation
(where we have data), we assume that the process is ergodic
(Cressie 1993). In other words, averaging over realizations
(ensemble average) at any given location in space is equiva-
lent to averaging in space over an infinite area for any real-
ization.

The sample and process distributions
However, because the study area is limited, the statistics

of the sampled densities within the area for a given realiza-
tion will differ from the infinite situation. To distinguish the
finite and infinite cases, the terms sample and process (pop-
ulation) distributions will be distinguished. The sample dis-

tribution is the empirical distribution of the real density ob-
servations, or a fitted parametric distribution. The process
distribution is the distribution of a single density observation
drawn randomly at any location from the distribution of pos-
sible process realizations and is the appropriate one to be
used in the density simulations (to which we return later).
Because of the assumption of ergodicity, the process distri-
bution is synonymous with the sample distribution of an in-
finite number of observations evenly spread over an infinite
area.

The sample distribution will depend on the sampling de-
sign and will tend to be less dispersed (possess a smaller
variance) than the process distribution resulting from a finite
study area (Fig. 3). For a fixed area, the similarities between
the two distributions will increase with a decreasing range
(correlation length) and an increasing number of evenly dis-
tributed sampling locations. An important feature of the sim-
ulation method is the ability to account for the difference
between the sample and process distributions with regard to
the variance.

Variogram, covariance, and normal transformation
The variogram in observation space, γb(h), and its corre-

spondence with the covariance matrix, Cb(h), are

(6) γb(h) = ½var(b(x + h) – b(x)) = Cb(0) – Cb(h)

where the latter equality follows from the homogeneity as-
sumptions given by eq. 5 and Cb(0) equals the variance in
the process distribution. For convenience, only isotropic
variograms will be considered; in which case, the variogram
becomes a one-dimensional function of the lag, h = |h|.

There exist several theoretical models for the variogram
(Rivoirard et al. 2000). To be considered, the candidate
model must be consistent with a positive definite covariance
matrix, Cb. Before a model is chosen, an empirical vario-
gram should be examined. Because of the generally skewed
population distributions of abundance observations, it is rec-
ommended (Petitgas 1993) that the observations be normal-
ized before the empirical variogram is calculated. This is
partly to examine if a structure exists and, if so, to stabilize
the variogram. Nonparametrically, the Φ transformation can
be applied, transforming the original observations b1,…, bn
to quantiles z1,…, zn in the standard normal N(0,1) distribu-
tion based on the ranks of the original observations (Petitgas
1993):

(7) zj = kΦ–1(rank(bj)/(n + 1)), j = 1,…, n

where k is a correction factor (close to one) to obtain a sam-
ple variance of the z values equal to one and independent of
n. The corresponding normalized variogram is denoted γz(h),
and the corresponding covariance matrix is Cz(h) = 1 – γz(h).

A widely used variogram model made of a nugget effect
and a spherical function was chosen to fit the empirical
shrimp variograms:

(8) γZ h( ) =

NU SI NU 1.5 0.5 0

SI, >

3+ − − ≤ ≤



( )( ( / ) ( / ) ),h r h r h r

h r
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Fig. 2. The most abundant shrimp area, Hopen area (stratum E),
with the fine 2 nautical mile simulation grid nodes indicated by
dots. The actual sampling sites in 1996 approximated to the
nearest simulation grid nodes are indicated by solid circles (�).
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The three parameters are NU (expressing the nugget effect),
SI = Cz(0) (the asymptotic value of the variogram (the sill)),
and r, the range beyond which the spatial correlation disap-
pears. The critical parameter is NU, which expresses the
variance contribution due to random (nonstructural) variation
as well as local spatial variations on a much finer spatial
scale than what is possible or practical to detect at the sam-
pling scale.

To get a first visual impression of the empirical variogram
� ( )γZ h , this is often done by averaging within equidistant dis-
tance bins:

(9)

� ( ) ( ) , , ,
,

γZ
h

j
j k

k jkh
n

z z h h
dh

h
dh= − ∈ − +





∑1
2 2

2

2

h dh dh n dh= , , ...,2 lag

where the lag resolution, dh, may correspond to the average
distance between two adjacent observations. The sum is over
all nh pairs of observations with distance hjk within the inter-
val given by the brackets, and h is divided into equidistant
steps dh,2dh,…,nlagdh. The shape of the empirical variogram
is an important first validation check of the homogeneity as-
sumption, where the absence of an apparent horizontal as-
ymptote (possibly superimposed by cyclic oscillations) is an
indication of nonhomogenous conditions.

Note that there is generally no trivial correspondence be-
tween the variogram γz in normal-transformed space and the
variogram γb in original observation space, though transfor-
mation formulas exist for special cases (Rivoirard et al.
2000). Even if the same model applies in both cases (e.g.,
the nugget + spherical model), the NU-to-SI ratio (NU:SI)
will, in general, differ. A great advantage of the simulation
approach is that a good variogram model in normal-
transformed space is sufficient, precluding the need to know
the variogram in original observation space.

Estimation of variogram parameters for a regular sampling
grid

For a regular sampling grid, there are a limited finite num-
ber of distinct h values with rather many observations at many
of the discrete hs. By using this, the need for smoothing in
eq. 9 is avoided, and a better basis is obtained for the esti-
mation of the variogram parameters. Let hd, γd and nd denote
the lag, the variogram, and the number of observations with
a distance hd apart, respectively, by this discrete approach,
where d = 1, …, nd, and nd denotes the number of discrete
lags. The parameters NU, SI, and r can be estimated by min-
imizing a sum of (weighted) squares of terms that reflect the
differences between the theoretical and empirical variograms
at each lag. The following sum appeared to give better re-
sults for the shrimp data than the more common sums given
in the theory chapter in Rivoirard et al. (2000):

(10) Q h h n
d

d d d d d

nr

=
=
∑ ln (� ( )/ ( ))2

1

γ γ

where �γd is calculated analogous to eq. 9, and nr is equal to
the number of distinct hd values less than or equal to r, or a
slightly larger value based on a rough estimate of r from the
variogram provided by eq. 9. The reason for this restriction
on nr is that NU is considered to be the most important pa-
rameter, and its estimator should not be influenced by vario-
gram values at lags beyond the range r. The rational for
using the logarithm of the variogram values is that the coef-
ficient of variation of (z(x + h) – z(x))2 at each lag hd = |h| is
constant, thus each term in the sum is expected to have ap-
proximately the same variance if the variogram model is ap-
propriate.

Studying the summation terms before they are squared as
a function of hd is considered a fair model validation check,
where independence, homoscedasticity (constant variance),
and absence of trends are model-supporting properties. Note,
however, that many of the variables contributing to each
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Fig. 3. Illustration of the difference between the process distribution and the less dispersed sampling distribution in a realization of a
one-dimensional (1D), 2nd-order homogenous and ergodic random process with NU = 0.4 and r = 75. The broken line illustrates a
more extensive part of the “infinite” process realization than the solid line, which is limited by the sampling domain.
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term in the sum are dependent, which complicates the chal-
lenge of finding an optimal construction of the square sum
to be minimized. The properties (accuracy, precision, and
covariation) of the estimators determined by this approach
can be assessed by Monte Carlo simulation as described
later.

An important validation technique (Chilès and Delfiner
1999) is to analyze scatterplots for the pairs of z values at lo-
cations providing the same lag, h. These should be ellipti-
cally shaped with a correlation coefficient similar to the
covariance, Cz(h), in normal-transformed space calculated
from the variogram model and in accordance with a bi-
normal distribution.

The expectation of the sample variance equals the mean
of the empirical variogram values for positive lags, i.e.,
ES2 = γ+. Thus for evenly distributed sampling locations
(regular or random) and a small range compared with the ex-
tension of the area, the estimated SI should be close to one
under the assumptions made.

Monte Carlo simulation
The simulation procedures are first outlined for one area

and for nonconditional simulations, i.e., simulations that are
not dependent on the actual density observations at the sam-
pling sites. To distinguish nonconditional from conditional
simulations introduced later, the subscripts “nc” and “c” will
be used, respectively. At the end of the section, how to treat
a study area consisting of m adjacent strata is outlined.

The simulation grid and random N(0,1) realizations
A variogram model consistent with an isotropic and ho-

mogenous process of second order is synonymous with a
one-to-one correspondence between the covariance of nor-
malized variables at two different locations and the vario-
gram

(11) cjk = cov(zj, zk) =
1

1

− ≠
=





γZ jkh j k

j k

( ),

,

where hjk = |xj – xk| denotes the distance between the loca-
tions xj and xk.

Now define a fine, regular simulation grid, with N grid
nodes at xg = (xg1, …, xgN) located so that a minimum dis-
tance between the sampling sites and the nearest nodes in
the simulation grid is obtained. These approximate sampling
locations will be denoted sampling nodes. The resolution in
the simulation grid (distance between adjacent nodes) should
be so fine that a negligible difference between the true den-
sity µ and the average of the N densities at the grid nodes is
obtained.

Let C(xg,xg) = {cjk} denote the N × N grid covariance ma-
trix found by using eq. 11 with hjk = |xgj – xgk|, and let D de-
note a decomposition of C(xg,xg) so that DDT = C(xg,xg). A
random realization vector of normalized densities at all nodes,
znc(zg), with the appropriate spatial correlation structure can
then be generated as follows:

(12) znc(xg) = Dziid, DDT = C(xg,xg)

where superscript “T” denotes transpose, and ziid is a N × 1
vector of independent N(0,1) variables. The simulation by
eq. 12 is repeated nsim times to obtain a sufficient number of

random realizations. For the variogram in eq. 8, it is conve-
nient to split the simulations into one structural part and one
white-noise part as follows:

(13) znc(xg) = (1 – NU)½D0ziid,1 + (NU)½ ziid,2

where D0 D0
T = C0 = C(xg,xg; NU = 0, SI = 1) and ziid,1 and

ziid,2 are independent N × 1 vectors of independent N(0,1)
variables. If, for example, different nugget values are to be
used, D0 is the only decomposed matrix needed.

There are several candidates for D, where a very fast nu-
merical solution is to define D as a Cholesky decomposition
of C (Ripley 1987). Note, however, that if the Cholesky
factorization creates an upper-triangular matrix D, not a
lower-triangular matrix as defined by Ripley (1987), D in
eq. 12 should be replaced by DT. This is the case in Matlab
(The Mathworks, Inc., Natick, Mass.), the computer program
used to provide the results in this paper. Another important
precaution that should be considered with regard to a
Cholesky decomposition is that a variety of numerical inac-
curacies might occur if D is large, e.g., greater than 1000 ×
1000 (Cressie 1993). An easy way to check this is to calcu-
late DDT after the decomposition and see if each element de-
viates from the corresponding element in the original C
within the accuracy of the computer. In the Barents Sea ap-
plication (returned to later), D is a 5035 × 5035 Cholesky
decomposition matrix, and no numerical problems occurred.
Other more robust (and slower) decomposition techniques
are described by Chilès and Delfiner (1999, p. 465).

Conditional simulation
Conditional simulation in a geostatistic context is synony-

mous with simulations of random realizations of a process
with the constraint that the simulations are conditional on the
observed values at the sample locations (Cressie 1993; Chilès
and Delfiner 1999). This is an appealing feature, because it
intuitively takes peculiarities of the realization providing the
observations into account better than nonconditional simula-
tion. Mathematically, the multinormal distribution of zg, con-
ditional on the normal-transformed observations zs, is the
basis for the conditional simulations. This distribution,
f(xg|xs), was outlined based on standard multivariate calcula-
tions (Mardia et al. 1992), modelling the process as the sum
of a pure spatial structure component and a white-noise
(nugget) component. As a result, the following expressions
were found for the conditional expectation E(zg|zs) and co-
variance matrix Cc = E(zgzg

T|xs), where subscript c denotes
conditional:

(14) E(zg|zs) = (1 – NU)C0(xg, xs)C(xs, xs)–1zs

Cc = E(zgzg
T|zs) = C(xg, xg) – (1 – NU)2

× C0(xg, xs)C(xs, xs)–1C0(xs, xg)

Subscript 0 in the expressions above denotes, as before,
that the actual matrix is calculated with NU = 0 and SI = 1.
Note that the dimensions of the matrices above are given by
the subscript on the xs. As an example, C0(xg,xs) is an N × n
matrix where the elements are calculated as follows:

(15) C0(xg,xs) = {cov0(|xgj – xsk|)},

j = 1,…, N, k = 1,…, n
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where cov0 denotes the covariance with NU = 0 and SI = 1.
Based on eq. 14, the following procedure can be used to

generate random realizations of the process conditional on
observations, zc(xg) = z(xg|zs):

(16) zc(xg) = (1 – NU)C0(xg,xs)C(xs,xs)–1zs + Dc ziid

where Dc is a decomposition of Cc (e.g., Cholesky), i.e.,
Cc = Dc Dc

T, and ziid is a N × 1 vector of iid N(0,1) variables.

Parameter uncertainties
Based on the random realizations by using eq. 12 or eq. 13,

the properties of variogram parameter estimators such as the
least squares estimators defined by minimizing the square
sum in eq. 10 can be estimated. In these simulations, the pa-
rameter estimates based on normal-transformed real data are
used as true values except that SI is set equal to one, which
is the appropriate value in the process distribution. Then the
covariance matrix to be used in the simulations is estab-
lished with elements defined by eq. 11. Note, however, that
now only the n sampling nodes are used.

For each random realization at the sampling nodes, new
estimates of the involved variogram parameters are estimated.
The properties of the estimators are then assessed based on
the simulated estimates. To obtain reasonable estimates of
bias and variance, about 1000 simulations are sufficient for
most practical situations. If the absolute value of the bias is
considerably less than the standard deviation, the bias is nor-
mally considered to be negligible.

Backtransformation from N(0,1) to biomass densities and
estimation of scaling factor between standard deviations
in sampling and process distributions

The simulated normal variates at the sampling nodes can
also be used to simulate the scaling factor needed to take ac-
count of the different dispersions in the process and sam-
pling distributions. This can be done either based on the
empirical sampling distribution, which is called reversed
bootstrap (Harbitz et al. 2001), or by use of a fitted paramet-
ric distribution. First the cumulative N(0,1) value Φ is calcu-
lated for each generated N(0,1) value z. If a parametric
cumulative sampling distribution, F, is applied, each z value
is then back-transformed to a density b by the equation b =
F–1(Φ(z)), where F–1 denotes the inverse cumulative distribu-
tion function. In the reversed bootstrap case, the Φ values are
first made discrete by the formula R = int(Φn) + 1, where
“int” rounds Φn to the nearest integer towards zero. The as-
signed observation value is then the observed density with
rank equal to R. The rational for the bootstrap term in this
context is that the empirical population distribution is used
to mimic the true population distribution, which is a basis
for bootstrap.

The sample distribution is now treated as the true process
distribution, and the distribution of the back-transformed
densities from the N(0,1) realizations are treated as simu-
lated sample distributions. This is analogous to the change
of roles between an unknown parameter and its estimate
from data when simulations are performed to examine the
properties of the estimator. Because of the finite area effect,
the average standard deviation, SMC, of the simulated sample
distributions should be less than the standard deviation, S, in
the empirical sample distribution. In the CV expressions to

follow, the lack of dispersion by applying the sample
distribution to mimic the process distribution is taken into
account by using S/SMC as a scaling factor.

Estimation of precision
Let the true abundance density, µ, with estimator, �µ, at the

time of sampling correspond to one realization of the pro-
cess. The challenge is to find an appropriate estimator for
the CV of �µ. Based on the previously described procedures,
nsim random realizations in N(0,1) space are generated with
one value in each simulation grid node. For each realization,
the normal values are back-transformed to density values
parametrically or nonparametrically as described before. The
average based on simulations in each of the fine grid nodes,
bg , is treated as the true density of that particular realization.
The simulated density estimate is the average, bs, of the sim-
ulated values at the sampling nodes. An appropriate estima-
tor for CV( �µ) is then obtained as follows:

(17) CV stdMC s g
^ ^

= ( / ) ( / )S S b b

where std
^

is the standard deviation of the nsim simulated val-
ues of the ratio within the parentheses. The estimator above
applies to conditional as well as to nonconditional simula-
tions, though the correction factor (S/SMC) may vary some-
what between the two alternatives.

If the study area consists of m adjacent strata and we ne-
glect the effect of spatial correlation between strata, the CV
estimator corresponding to eq. 17 becomes

(18) CV

CVs
2 2

s

^
m

i
i

m

i i

i
i

m

i

b A

b A

= =

=

∑

∑
1

1

where Ai is the area of stratum i, b is is the mean of observed
densities in stratum i, and CVi is calculated for each stratum
separately by applying eq. 17.

A considerable improvement of the method can be ob-
tained if the standardized density obtained by dividing each
individual density observation with the stratum expectation
value follows a common distribution and the standardized
variogram γ z is independent of stratum, or even better, inde-
pendent of survey (time) as well. The CV estimator in eq. 18
can then be expressed as follows:

(19) CV std s g MC
^ ^

m i
i

m

i i
i

m

ib A b A S S=












= =
∑ ∑

1 1

( / )

where a common correction factor (S/SMC) is calculated for
the entire study area, and the terms b is and b ig are the simu-
lated estimates and true densities in stratum i. In this case,
within-stratum spatial correlations might be taken into ac-
count, and far more observation pairs will be available for
the empirical variogram. This is demonstrated in the shrimp
case study to follow.
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Results

Sample population model
A rather linear relationship independent of year and stra-

tum was found between the logarithmic value of the strata
means, ln(bi), and the strata sampling standard deviations,
ln(Si), with a slope β close to one (Fig. 4). In addition, a
smooth shape of the relative frequency distribution of the
1069 standardized density values (observed density divided
by empirical stratum mean) appeared where a fitted Weibull
distribution gave a good fit (Fig. 5). A standard χ2 test based
on the fitted distribution (the bins from z = 3.2 to z = 5 were
lumped together) resulted in an estimated significance value
(p value) of �PW = 0.45. In the further simulations, the
Weibull distribution was therefore applied as a parametric
sample distribution, along with the empirical standardized
distribution when applying reversed bootstrap, as common
sample distributions of standardized densities for all strata
and years.

Normalized variogram
The normalized empirical variograms were based on the

normal-transformed values of the standardized densities year
by year, treating the entire study area as one stratum. No ap-
parent anisotropy was seen from the directional variograms.
Isotropic annual variograms were calculated applying eq. 9
with a lag resolution (dh) of 20 n.mi. At the first lag, all dis-
tances between 0 and 30 n.mi. were included, 0 exclusive.
All variograms appeared to have the same concave shape
with a horizontal asymptote (Fig. 6, thin lines), and their av-
erage was calculated by using weights proportional to the
number of observation pairs for each year at each lag
(Fig. 6, �). In addition, the variogram parameters were esti-
mated by applying a modified version of eq. 10, accumulat-
ing 5 × 5 succeeding discrete lags to obtain a sufficient
number of pairs at each lag (Fig. 6, �). Each sample loca-
tion was approximated to the nearest simulation grid node.
The results were �r = 77.4 n.mi., NU

^
= 0.406, and SI

^
= 1.07,

and the resulting variogram is shown by the broken line in
Fig. 6. Based on 5000 simulations and eq. 10, the corre-
sponding empirical standard deviations were 4.5 n.mi.,
0.063, and 0.032, respectively, and considerably smaller bias
estimates. For mathematical convenience, the values r =
75 n.mi and NU = 0.4 were used in the simulations of ran-
dom realizations of the process, which were close to the bias
corrected estimates 0.39 n.mi., and 75.1 n.mi., respectively.
Further, SI = 1 was used for the sill parameter, which is the
appropriate value in N(0,1) space.

The summation terms (before squaring) in the weighted
least square sum defined by eq. 10 appeared to be rather in-
dependent, with a constant variance independent of lag
(Fig. 7) and no apparent trends. A scatter plot of the normal-
transformed observations with sampling nodes 20 n.mi. apart
showed no apparent deviation from a binormal distribution,
with a correlation coefficient given by the model (Fig. 8).
Applying the latter (ρ = 0.37), a 95% ellipse was con-
structed, and the number of observations outside the ellipse
did not deviate significantly (5% test level) from the bi-
normal hypothesis. The independent empirical estimate of
the nugget parameter based on the normal-transformed val-
ues of the standardized 115 observation pairs with h = 0 was

0.37, i.e., rather close to the nugget estimate when the obser-
vations at lag h = 0 were excluded. Thus several model-
supporting features were seen from the data.

Correction factor S/SMC
The correction factor S/SMC based on 5000 nonconditional

simulations was 1.089 when applying the Weibull distribu-
tion fit and 1.083 when applying reversed bootstrap. These
close values were seen as a support to both approaches. For
the conditional simulations, a slightly smaller correction fac-
tor S/SMC = 1.074 was found based on reversed bootstrap.

Note that the factors do not contain the finite area effect
alone, but also the finite sample size effect resulting from
the use of empirical means instead of unknown expectation
values in the establishment of the standardized empirical
sample distribution. To separate the finite sample size effect,
simulations were conducted with NU = 1 (no spatial struc-
ture), because in this case, the finite area effect disappears.
The result was a scaling factor S/SMC = 1.035, with a negligi-
ble difference between conditional and nonconditional simu-
lations.

Abundance precision
A 5035 × 5035 covariance matrix C(xg,xg) for the process

in normal-transformed space was calculated based on all of
the 5035 4 and 2 n.mi. nodes in the simulation grid and the
previously established variogram. The nonconditional ran-
dom normal N(0,1) realizations for the entire study area at
each grid node were generated applying eq. 12, and the con-
ditional simulations were generated by use of eq. 16. These
were transformed to standardized biomass densities by ap-
plying the empirical distribution of standardized densities as
well as the Weibull fitted distribution and then were multi-
plied by the empirical strata means. The simulated CV was
calculated by applying eq. 17. The Cholesky decomposition
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Fig. 4. Empirical stratum means vs. stratum standard deviations
on a log–log scale. The fitted curve has slope equal to one,
which is equivalent to a proportional relationship.
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of C(xg,xg) with Matlab 5.3 took 36 s of CPU time on a PC
with 2.2 GHz processor and 768 Mb RAM, with similar
computing times required for the other analyses.

Based on 5000 reversed bootstrap simulations, the average
CV value over years was 6.4%, based on regular sampling
and conditional simulations (Table 1). For nonconditional
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Fig. 5. Empirical sample distribution of 1069 biomass values from 1992–2002 divided by their empirical stratum mean at the year at
which they were sampled, with fitted Weibull distribution.

Fig. 6. Shrimp (Pandalus borealis) variograms based on Φ-transformed, standardized biomass values. Thin lines illustrate annual empir-
ical variograms for each of 11 years (20 nautical mile (n.mi.) resolution), and solid circles (�) indicate average over years. Smaller,
open circles (�) indicate more discrete empirical estimates, accumulating 5 × 5 succeeding distinct lags. The dotted line illustrates the
fitted theoretical variogram with estimated parameters.
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simulations, the corresponding average was 7.4% for the re-
versed bootstrap simulations and 7.2% for the Weibull simu-
lations. The same marginal difference between the reversed
bootstrap and Weibull approaches was seen for non-
conditional simulations and random sampling, i.e., with ran-
dom locations within each stratum (average CV = 8.2% and
8.0%, respectively). These results indicate that an appropri-
ate CV estimator is found by the conditional simulation ap-
proach and that the regular design in this case is
substantially better than the random design. On average, the
conditional CV estimator is also considerably smaller than
the wrongly calculated CV based on data alone and neglect-
ing spatial correlations. An exception is 1996 when a rather
dramatic increase in CV is seen (CV = 7.8%), whereas a
rather small CV is calculated assuming uncorrelated data
(CV = 6.0%). This clearly indicates the need to take spatial
correlations into account in this case.

The CV was also simulated for different values of NU
(nsim = 2000, r = 75 n.mi.) based on perfect regular sampling
by applying the 118 idealized sampling grid nodes instead of
real locations and with strata means proportional to the aver-
age strata means over years (µ = 10k, 15k, 20k, 10k, 30k, and
15k for strata A, B, C, D, E, and F, respectively, with k an
arbitrary scaling constant). For NU = 0.4, the CV based on
random locations was 30% larger than that based on regular
sampling, i.e., comparable to the relative difference between
random and regular results from the Barents Sea data. The
CV dependence on NU for the idealized regular case ap-
peared to be rather linear, with a CV value of 3.1% for NU =
0 (Fig. 9), i.e., about half of the CV obtained with random
sampling. Again a negligible difference is seen between the
Weibull simulations and reversed bootstrap, also regarding
the CV for random sampling. More interestingly, a negligi-

ble difference between conditional (Fig. 9, heavy broken
line) and nonconditional simulations is seen as well. For ran-
dom locations, we also see that the results based on only the
sample nodes (Fig. 9, � and +) are similar, but more stable,
than the results obtained by use of all simulation grid nodes
(Fig. 9, solid and dotted lines).
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Fig. 7. (a) Summation terms ln(� /γ γZ Z )nd minimizing weighted square sum used to define estimates for NU, SI, and r, see eq. 10, as a
function of lag, hd. (b) Random normal plot of independent normal variables with mean and variance equal to series in (a). Nautical
mile, n.mi.

Fig. 8. Scatter plot of normal-transformed values of densities
with sampling node locations 20 nautical miles (n.mi.) apart. The
dotted line indicates model-based 95% ellipse.
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Discussion

The dramatic difference in CV between conditional and
nonconditional simulations for 1996 is explained by the ice
coverage in the stratum where shrimp were most abundant,
preventing evenly distributed samples over the area. The ex-
tension of the sampled subarea was about the same as the
extension of the noncovered subarea and comparable to the
correlation length, r. Using nonconditional simulations, we
expect several realizations with substantially larger abun-
dance in the sampled subarea than in the noncovered sub-
area, and vice versa, which will increase the simulated CV.

By conditional simulations, however, the abundance differ-
ence between the two subareas will remain more constant, as
a consequence of the constraint that the simulations are con-
ditional on the actual observations of density.

A large difference in CV between conditional and non-
conditional simulations was also seen for the 2002 data.
In this case, some clusters of very close sampling points
(2 n.mi. grid) were chosen to study spatial correlations at a
fine scale. One of these clusters consisted of nine points in a
square in the most abundant stratum (Fig. 1, stratum E).
Using nonconditional simulations, sometimes the mean den-
sity in a cluster will be considerably larger than the true stra-
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CV, regular sampling,
nonconditional simulation (%)

CV, random sampling,
nonconditional simulation (%)

CV, regular sampling,
conditional simulation (%)

CV, spatial correlation
neglected (%)

Year Weibull Bootstrap Weibull Bootstrap Bootstrap Data only

1992 5.7 5.9 7.1 7.1 5.3 5.6
1993 6.8 7.0 8.0 8.0 6.4 6.2
1994 6.8 6.8 8.1 8.5 6.3 8.6
1995 6.1 6.5 7.8 8.2 5.9 9.4
1996 10.6 10.6 9.9 9.8 7.8 6.0
1997 7.3 7.4 8.1 8.6 6.7 9.3
1998 8.4 8.5 8.0 8.1 7.7 8.0
1999 6.0 6.4 8.0 8.2 5.9 8.2
2000 6.3 6.3 7.5 8.1 5.9 7.2
2001 6.8 7.3 8.4 8.6 6.4 6.2
2002 7.9 8.3 7.3 7.5 6.3 7.9
Average 7.2 7.4 8.0 8.2 6.4 7.5

Note: The far-right column contains CV results when spatial correlation is neglected.

Table 1. Comparison of coefficient of variation (CV) values for the Barents Sea data by parametric (Weibull) and nonparametric (boot-
strap) approach, conditional and nonconditional simulations, and by the actual sampling sites (approximately regular grid) and random
sample locations.

Fig. 9. Simulated abundance (%) coefficient of variation (CV; 2000 simulations) for different values of NU in the normalized
variogram and with r = 75 nautical miles. Heavy broken line illustrates results based on conditional simulations, the others are based
on nonconditional simulations. Lower curves are based on regular sampling with sampling locations at the 118 idealized 20 nautical
mile sampling grid nodes. Upper curves are based on 118 random sampling locations with the same number of values within each
stratum as for regular sampling. Solid lines are based on reversed bootstrap; dotted lines are based on Weibull fit. Solid circles (�;
reversed bootstrap) and plus signs (+; Weibull fit) indicate random location results based only on sampling nodes.
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tum average, and sometimes considerably smaller. This will
increase the simulated CV. However, using conditional sim-
ulations, the difference between the cluster average and the
true stratum average will remain more constant.

The CV differences between conditional and non-
conditional simulation for the regular design clearly illus-
trate that the CV is sensitive to deviations from an idealized
grid, because no apparent difference is seen in the latter
case. This also provides a plausible explanation for why the
change in CV among methods (regular vs. random) does not
correspond well over time. The general change in CV be-
tween years is also due to annual variations in sample size
and the relative importance (i.e., abundance of shrimp) of
each stratum.

As expected, the CV results for random locations can be
estimated by using the sampling nodes alone, ignoring the
other grid nodes, as verified by the simulations. In this case,
the CV can be simply estimated from data without simula-
tions, ignoring possible spatial correlations. Similar results
would come from data in a sufficiently ideal regular grid.
Thus data from a regular grid can be used to estimate the
CV that would be obtained by random locations, independ-
ent of a spatial structure or not, without the need for simula-
tions. In practice, however, an idealized sampling design will
often not be used, and in these cases, simulations are useful
for “almost random” situations.

The assumption of a second-order homogenous process is
crucial for this method to be appropriate. An objection to the
homogeneity assumption in the shrimp case study is related
to border effects. The irregular border of the study area is
closely related to the depth contours, because the shrimp
abundance is negligible in shallow areas. It is therefore natu-
ral to question if the spatial structure will be different close
to the border contrary to the centre of the area. No such be-
haviour is apparent at first glance, probably because of
slowly changing depths. The effect of the border enclosing
the study area is a task for further studies.

The assumption of having homogenous conditions within
each stratum with different average densities in the different
strata is obviously a simplification, because this implicitly as-
sumes a very steep gradient at the strata borders. In practice,
density will vary more smoothly between strata, equivalent to
the presence of local trends. These trends may influence the
concave shape of the variogram at small lags. To examine
this, a “nonergodic” covariance and corresponding variogram
can be constructed (Isaaks and Srivastava 1988) consisting
of the covariance of the “head” and “tail” observation for
each observation pair at each lag. A preliminary analysis ap-
plied to the shrimp data using the northernmost location as
the head location and the southernmost location as the tail
location revealed that the concave shape of the variogram
was modified only slightly.

The term “process distribution” was introduced as a term
for the distribution of densities to be used in the simulations
of random process realizations. Applying an appropriate scal-
ing (variance adjustment) of the sampling distribution of den-
sities provided a reasonable estimate of the process
distribution. This idea could be extended to also take into ac-
count properties other than the variance, which can vary from
the process to the sampling distribution. If, for example, the
Weibull distribution appears to give a good fit to the sampling

distribution, as well as to the simulated sampling distribution
provided by applying the sampling distribution as process dis-
tribution, then the Weibull parameters in the latter can be ad-
justed. In this manner, not only the variance difference, but
also the difference in shape between the process and sampling
distributions, can be taken into account. To examine if such
an approach is reasonable, an extensive and hierarchical sim-
ulation scheme could be applied, in some analogy to double
bootstrap or calibration (Efron and Tibshirani 1993; Davison
and Hinkley 1997).
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Appendix A. Notations.

A area
B abundance, e.g., biomass in study area
b density, e.g., tonnes per square nautical mile

bs mean empirical density based on data or simulations at
sample nodes

bg mean simulated density based on simulations in all grid
nodes

bi empirical stratum mean
c subscript for conditional

C covariance matrix C = {cjk} in N(0,1) space with SI = 1
C0 covariance matrix with NU = 0 and SI = 1
cjk element in C, cjk = cov(b(xj),b(xk))
D matrix with property DDT = C, e.g., a Cholesky decom-

position of C
CV coefficient of variation (standard deviation divided by

mean)
F cumulative sample distribution
g subscript for grid
h vector lag, i.e., vector distance between two observation

sites
h lag, scalar distance between two observation sites, h = |h|
i index for stratum, i = 1,…, m

iid abbreviation for independent and identically distributed
j and k index for spatial location

il composed index for location l in stratum i
m number of strata

MC abbreviation for Monte Carlo
n number of samples

nc subscript for nonconditional
N number of grid nodes in simulation grid

n.mi. nautical mile
nsim number of simulations
NU nugget parameter in variogram

q catchability
r correlation length, parameter in variogram

Q weighted sum of squares to estimate variogram parameters
s subscript for sampling
S sample standard deviation

SMC estimated sampling standard deviation applying S as true
process standard deviation

SI sill parameter in variogram
R rank

rnd abbreviation for random
x spatial coordinate vector in two-dimensional Cartesian

coordinate system, x = (x,y)
x spatial coordinate in Cartesian coordinate system
y spatial coordinate in Cartesian coordinate system
z normal N(0,1) variable

Φ−1 inverse cumulative N(0,1) distribution

γ variogram
µ expected average density in defined area
σ standard deviation in process distribution

Appendix B. Simulation procedure for
conditional simulation.

1. Transform from data, b1,…,bn, to normal N(0,1) vari-
ables z1,…,zn, e.g.,

zj = Φ–1(rank(bj)/(n + 1)), j = 1,…, n

2. Calculate empirical variogram � ( )γZ h based on z1,…,zn
and fit theoretical variogram, e.g.,

γZ h
h r h r h r

( )
( )( ( / ) ( / ) ),= + − − ≤




NU SI NU 1.5 0.5

SI, >

3

h r

3. Calculate N × N grid correlation matrix Cg = C(xg,xg) =
{cjk} with SI = 1:

cjk = 1 – γ z(hjk; SI = 1), j ≠ k, j,k = 1,…,N

cjj = 1, j = 1,…,N

hjk = |xgj – xgk|

4. Calculate n × n sampling correlation matrix Cs =
C(xs,xs) = {cjk} as in point 3, but now with hjk = |xsj –
xsk| and with N replaced by n.

5. Calculate N × n cross covariance matrix C0 = C0(xg,xs),
but now with

cjk = 1 – γz(hjk; NU = 0, SI = 1),

hjk = |xgj – xsk|, j = 1,…,N, k = 1,…, n

6. Calculate N × N conditional grid covariance matrix Cc
and corresponding N × N decomposition matrix Dc:

Cc = Cg – (1 – NU)2C0C Cs 0
T−1

D Dc c
T = Cc

7. Calculate random conditional simulations zc(xg) =
(zc1,…,zcN)T in all grid nodes:

zc(xg) = (1 – NU)C0 Ds
−1zs + Dcziid

where ziid is a N × 1 vector of independent N(0,1)vari-
ables.

8. Backtransform to observation space by, e.g., reversed
bootstrap:

R = int(nΦ(zcj)) + 1;

bcj = b Rj( ), j = 1,…,N

where b Rj( ) is the Rjth lowest observed density value.
9. Repeat steps 7–9 nsim times and calculate CV = std(b bs g/ ),

i.e., the standard deviation of the nsim values of the ratio
between “observed” and “true” density.

10. Multiply CV with correction factor S/SMC, where S is
the empirical sample standard deviation and SMC is the
average sample standard deviation from the simulations.
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