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Risk Indifference Pricing of Functional Claims of the

Yield Surface in the Presence of Partial Information

TA THI KIEU AN1, FRANK PROSKE1 and MARK RUBTSOV1

Abstract. In this paper we study the problem of risk indif-
ference pricing of interest rate claims which are functionals of
a bond yield surface under partial information. Our approach
to solve this problem relies on a maximum principle for par-
tial information control of stochastic differential games based on
generalized bond portfolios. The latter method enables us to
establish an explicit representation of the risk indifference price
of such claims.

1 Introduction

In this paper we aim at analyzing the pricing (and hedging) of functional
claims of the yield surface in the presence of partial information. To be more
precise, we want to consider interest rate derivatives which are functions of
the yield surface

((t, x) 7→ R(t, t+ x)), (1)

where R(t, T ) denotes the interest rate at time t with time-to-maturity x =
T − t. Here we assume that pricing of such claims is based on limited access
to market information.

Examples - out of a vast variety of claims traded on fixed income or
over-the-counter markets worldwide - are bond options, swaptions, floors or
caps (see e.g. [20]). For example, a cap (or a caplet), which provides the
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holder with protection against rising interest rates, has the following payoff
at time T = t+ x:

Capletx(t) = N · x ·max(R(t, t+ x)−K, 0), (2)

where N is the notional amount and K the fixed cap rate.
Another type of a claim, which - in contrast to (2) - is a function of the

whole yield surface (1) is the Asian option of a cap, with payoff given by

1

(T2 − T1)(x2 − x1)

∫ T2

T1

∫ x2

x1

Capletx(t) dx dt. (3)

We remark that due to its averaging property the latter claim exhibits the
advantage of reducing the volatility risk inherent in the option.

Popular stochastic models for the dynamics of R(t, T ), 0 ≤ t ≤ T (T
fixed), which can be found in the financial literature, are e.g. the Heath-
Jarrow-Morton or the LIBOR model. See [16] or [25] and the references
therein. Assuming full access to market information in such models, it
is well known that replicating strategies with respect to bonds of a given
maturity can be used to determine the fair price of the cap in (2). On
the other hand, taking into account the existence of maturity-specific risk
of bonds with different maturities, pricing of functional claims of the yield
surface - such as the Asian option (3) - is in general impossible within the
above mentioned models. A model that takes into account maturity-specific
risk is e.g. the Musiela equation. See e.g. [5] or [10]. This model, which is
based on a stochastic partial differential equation, describes the fluctuations
of the entire yield surface. This approach leads to an infinite dimensional
model, which has the attractive feature that hedging strategies of claims for
generalized bond portfolios (i.e. portfolios of bonds of arbitrary maturities)
are unique.

A deficiency of a bond market model based on the Musiela equation is
that it is in general incomplete, even if there exists a unique martingale
measure (see e.g. [5]). Thus, the determination of the arbitrage-free price of
a claim based on exact replicating trading strategies is not always possible.
Of course, if we in addition assume that the portfolio manager only has
restricted access to market information, then pricing of both types of options
(2), (3) converts into a pricing problem on incomplete markets.

One approach to option pricing on incomplete markets is e.g. utility
indifference pricing. This method has been studied by many authors in
literature from different points of view. See e.g. [18], where the authors
consider a hedging problem under certain model constraints. Further, the
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authors in [15] apply similar techniques to a stochastic volatility model.
The work of [28] also deals with a financial application under incomplete
information. See also [8], [6], [17], [24] and [23].

The utility indifference price of a claim is defined at a level which makes
the issuer of the claim utility indifferent between the investment strategies
of either selling the claim and entering the market with the collected initial
payment, or entering the market without selling the contract. In contrast to
that approach, in this paper we want to employ risk indifference pricing to
address the problem of pricing (and hedging) of functional claims of the yield
surface under incomplete market information. The latter pricing principle
is related to utility indifference pricing but it is based on a risk measure
instead of the utility function. For more information on risk measures the
reader may consult [13] and the references therein. Regarding the topic of
risk measure pricing we refer the reader to [29], [4] and [22].

The main result of our paper is a formula for the risk indifference price
of an interest rate claim under partial information with respect to a certain
class of risk measures. Our approach to deriving this formula rests on a
stochastic maximum principle for differential games based on generalized
bond portfolios, which are described by a stochastic evolution equation on
a Hilbert space. This technique is inspired by [3], where the authors study
a jump diffusion market modelled by an SDE. See also [2]. A paper related
to the latter article is [27], which treats the case of Markovian controls in
the framework of stochastic dynamic programming. Finally, we mention
[7], where the authors analyze hedging of generalized bond portfolios in
a Markovian setting by means of Hamilton-Jacobi-Bellman equations on
Hilbert spaces.

Our paper is organized as follows: In Section 2 we introduce the mathe-
matical tools we will use throughout the paper. Further, in Section 3 we give
the precise statement of our pricing problem in the context of generalized
bond portfolios. Sections 4 and 5 are devoted to establishing a stochastic
maximum principle based on stochastic evolution equations, which is used
in Section 6 to derive a formula for the risk indifference price of functional
interest rate claims.

2 The general model

In this section we elaborate on some concepts essential for our further pre-
sentation. We begin by briefly recalling the classical Heath-Jarrow-Morton
(HJM) framework for term structure modelling.

3



Let us denote by P (t, T ) the price at time t of a zero-coupon bond,
that is a security that pays one unit of a given currency at maturity T . In
the sequel the bond prices are modelled by non-negative adapted processes
{P (t, T )}0≤t≤T for each T > 0 on a filtered probability space

(Ω,F , {Ft}0≤t≤T ,P), (4)

where Ft is P-completed and generated by independent one-dimensional

Brownian motions B
(j)
t , 0 ≤ t ≤ T, j = 1, . . . , d.

In the HJM model the bond prices P (t, T ) are modelled as

P (t, T ) = exp
(
−
∫ T

t
f(t, s) ds

)
, (5)

where f(t, T ), 0 ≤ t ≤ T <∞ are instantaneous forward rates described by
the SDE

df(t, T ) = α(t, T ) dt +
d∑
j=1

σ(j)(t, T )dB
(j)
t , (6)

where α(t, T ), σ(j)(t, T ), 0 ≤ t ≤ T are predictable processes. In order
to rule out arbitrage opportunities in this setting one has to impose the
following restriction on the drift coefficient α(t, T ) in (6):

α(t, T ) =

d∑
j=1

σ(j)(t, T )

(∫ T

t
σ(j)(t, s)ds+ λ(t)

)
, (7)

where λ(t) is a risk premium process.
A shortcoming of the HJM model is that the implied hedging strategies

are not unique. This is a consequense of the finite dimensional character of
the model, i.e. it assumes that the noise is driven by finitely many Brownian
motions. This assumption leads to the situation that e.g. in the HJM model
driven by 3 Brownian motions, an option writen on a 5-year bond can be
hedged with bonds of maturities e.g. 20, 25 and 30 years - a rather unrealistic
implication from the point of view of a fixed income trader.

One way to extend the HJM model is to incorporate the notion of a
maturity specific risk. This is done by explicitly recognizing the infinite
dimensional character of the term structure. The latter leads to the Musiela
formulation of the HJM model, which is given by the following stochastic
partial differential equation (SPDE).

dft(x) =

(
d

dx
ft(x) + αt(x)

)
dt +

∞∑
j=1

σ
(j)
t (x)dB

(j)
t , (8)
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where B
(j)
t , j ≥ 1 are independent one-dimensional Brownian motions. Here

we use the notation ft(x) := f(t, t+x) and x := T−t is the time-to-maturity

of the forward rate;αt(x) := α(t, t+x), σ
(j)
t (x) := σ(j)(t, t+x) for predictable

processes σ
(j)
t (T ), j ≥ 1, 0 ≤ t ≤ T .

One can now look at the forward curve x 7→ ft(x) as a single element of
an appropriate function space H. It is natural to require that this space has
the property that the evaluation functionals

δx : H → R, f → f(x) (9)

are continuous for all x. In addition we shall assume that the generator
A := d

dx in (8) has a strongly continuous semigroup St on H. The semigroup
St is the left shift operator given by(

Stf
)
(x) = f(t+ x) (10)

An example of a suitable function space on which one can properly de-
scribe the evolution of forward curves is the Hilbert space of Sobolev type:

H :=

{
f : [0,∞)→ R : f is absolutely continuous and

∫ ∞
0

(
d

dx
f(x)

)2

w(x) dx <∞

}
(11)

with the scalar product given by

〈f, g〉H := f(0) · g(0) +

∫ ∞
0

d

dx
f(x) · d

dx
g(x)w(x) dx (12)

The function w : [0,∞)→ (0,∞) is required to be increasing and to satisfy
the following condition ∫ ∞

0

1

w(x)
dx <∞ (13)

See e.g. [5] for details.
In what follows suppose that

αt(·), σ(j)
t (·) ∈ H, a.e., ∀t ≥ 0

Now we want to rewrite Equation (8) as a stochastic evolution equation on
the Hilbert space H. For that purpose consider a Q-Wiener process Wt,
where Q is a symmetric non-negative operator on a separable Hilbert space
U with Trace(Q) <∞. Define the Hilbert space U0 = Q1/2(U), with norm

‖h‖0 := ‖Q−1/2(h)‖, h ∈ U0
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Further, we shall denote by L2(U,H) the space of Hilbert-Schmidt operators
from U to H with the norm ‖ · ‖L2 . Let uj , j ≥ 1, be an orthonormal basis
of U , and suppose that there exists a Borel-measurable function

σ : [0, T ] −→ L(U0,H)

such that

σt

[
Q1/2(uj)

]
= σ

(j)
t (·)

and

σt ◦Q1/2 ∈ L2(U,H)

for all t, j in Equation (8), where ◦ refers to the composition of mappings.

Then
{
B

(k)
t

}
0≤t≤T , k ≥ 1, in Equation (8) can be regarded as a Wiener

process Bt cylindrically defined on U , and Equation (8) can be recast as

dft =
(
Aft + αt

)
dt+ σt dBt (14)

In the following we assume that there is a predictable unique mild solu-
tion (

t 7−→ ft(·)
)
∈ C([0, T ];H)

to the SPDE (14). As for sufficient criteria for the existence and uniqueness
of mild, weak or even strong solutions of SPDE’s we refer the reader to [21].

In order to rule out arbitrage opportunities with respect to our forward
curve model (14) we shall require that the forward curves ft satisfy the
generalized HJM no-arbitrage condition:

αt(x) =
∑
j≥1

σ
(j)
t (x)

(
Jx(σ

(j)
t ) + λ

(j)
t

)
, (15)

where Jx is a continuous linear functional on H defined by

Jx(f) :=

∫ x

0
f(u) du

and where the processes λ
(j)
t , j ≥ 1 are the components of the H-valued

process

λt =
∑
j≥1

λ
(j)
t vj (16)

Here vj , j ≥ 1 is an orthonormal basis of H. The processes λ
(j)
t , j ≥ 1 can

be financially interpreted as risk premiums with respect to different times-
to-maturity, that is these premiums entice investors to bear the volatility
risk of bonds of different maturities.
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3 The risk indifference price of an interest rate
claim as a solution of a stochastic differential
game

This Section explains the concept of risk indifference pricing. In simple
words, this pricing technique relies on minimization of a chosen risk mea-
sure. We need to resort to this pricing method because of incompleteness
of the infinite dimensional bond market that we are studying. Our ap-
proach involves reformulating the risk indifference pricing problem into a
stochastic differential game and then using available mathematical tools to
obtain a simplified pricing formula. The particular choice of a benchmark
risk measure is unimportant. Instead, in our derivations we use a general
representation formula for a convex risk measure. In accordance with that
representation formula, we choose a risk measure that will enable us to ob-
tain closed-form results.

We begin by describing the market and the problem faced by the investor.
Assume that the filtration {Ft} in (4) is generated by the Wiener process
Bt in (14). Define Pt(x) := P (t, t + x) to be the bond price at time t with
constant time to maturity x. Further, let m : [0,∞)×H → R and g : H → R
be Borel measurable functions, where H ⊆ C([0,∞)) is a Hilbert space as
in Section 2. Our objective is to price an option of the following form:

Gτ :=

∫ τ

0
m (t, Pt(·)) dt + g(Pτ (·)) (17)

where τ is the time at which the option expires. All prices are measured
in the units of the bank account, so we consider discounted quantities. We
assume that there are the following investment possibilities:

• Bank account: B0
t = 1, ∀t ∈ [0, τ ]

• Bonds with date of maturity T <∞, P (t, T ).

In the sequel let us assume that the conditions

E
[
exp
{∫ t

0
〈λs, dBs〉0 −

1

2

∫ t

0
‖λs‖20 ds

}]
= 1 (18)

and ∫ t

0

(∫ s

0
‖δs−u ◦ σs‖2L2

0
du
) 1

2
ds <∞ (19)
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hold for all t ≥ 0, where ‖L‖L2
0

:= ‖L ◦ Q
1
2 ‖L2 for each L ∈ L2(U0,H).

Then in our HJM framework one can show by Itô’s formula and Girsanov’s
theorem that

P (t, T ) = P (0, T )−
∫ t

0
P (s, T ) JT−s ◦ σs dB̃s, (20)

where B̃t = Bt −
∫ t

0 λs ds is a Wiener process under a local martingale

measure P̃. Further, let us require that σ̃ given by

σ̃t(ω, x) := Pt(x) Jx ◦ σt (21)

is a predictable L2(U0,H)-valued process, such that
∫ T

0 ‖σ̃s‖
2
L2
0
ds <∞ a.e.

Then the bond price curves Pt are H-valued and fulfil

dPt = APtdt− σ̃t dB̃t (22)

or

dPt =
(
APt + σ̃t(λt)

)
dt− σ̃t dBt (23)

in the mild sense, where as before A = d
dx .

Using our notation in Section 2, Equation (23) can be equivalently writ-
ten as

dPt(x) = (APt(x) + Pt(x) · bt(x)) dt

−
∑
j≥1

Pt(x) δ
(j)
t (x) dB

(j)
t , (24)

where δ
(j)
t (x) := Jx(σ

(j)
t ) and bt(x) :=

∑
j≥1 Jx(σ

(j)
t )λ

(j)
t .

In the sequel we assume (the rather strong condition) that there exists
a unique strong solution Pt ∈ H to Equation (22). See [21] for sufficient
criteria.

In this paper we aim at using risk indifference pricing to price options
of the form (17) in the presence of partial information. We are now going
to explain the idea behind this pricing concept, but first we introduce the
concept of a convex risk measure. Let F be the space of all equivalence
classes of real-valued random variables defined on Ω.

Definition 3.1. ([11], [14]) A convex risk measure ρ : F → R ∪ {∞} is a
mapping satisfying the following properties, for X,Y ∈ F,
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(i) (convexity): ρ(λX + (1−λ)Y ) ≤ λρ(X) + (1−λ)ρ(Y ), λ ∈ (0, 1);

(ii) (monotonicity): If X ≤ Y , then ρ(X) ≥ ρ(Y );

(iii) (translation invariance): ρ(X +m) = ρ(X)−m, m ∈ R.

As its name suggests, a risk measure serves to evaluate the risk exposure
associated with a certain financial asset or a project. The defining properties
of the risk measure have concrete economic interpretations. Thus, the latter
property in the above definition means that adding an amount of cash m
to the portfolio reduces the portfolio’s risk by the same amount, while the
second property implies that a financial project Y , which generates higher
profits than another project X, must have a lower risk measure. The first
property, which is a relaxation of a stronger sub-additivity property, i.e.
ρ(X+Y ) ≤ ρ(X)+ρ(Y ), that characterizes coherent risk measures, demon-
strates the virtue of diversification. It can be illustrated as follows. The
risk measure associated with e.g. financial operations of a bank must not
exceed the sum of risk measures associated with the work of its individual
departments. Had it been otherwise, it would have made more sense to split
the bank and operate its departments as separate entities.

A popular example of a convex risk measure is the Expected Shortfall,
which has the following interpretation. The expected shortfall at a q %
confidence level is the expected loss of the portfolio in the worst (1 − q) %
of the cases. This risk measure is computed according to the folrmula

ESq(X) := E [x|x < µ] , (25)

where µ is the (1 − q) %-quantile of the distribution of X. Another risk
measure routinely used in practice is Value at Risk. However, there is a
lot of criticism against the use of this risk measure. In particular, it is not
convex as it often violates the convexity requirement.

Coming back to our issue at hand, if an investor sells a liability to pay
out the amount Gτ at the time moment τ and receives an initial payment p
for such a contract, then the minimal risk involved for the seller is

ΦG(v + p) = inf
ϕ∈P

ρ
(
V v+p
τ (ϕ)−Gτ

)
, (26)

where V v+p
τ (ϕ) denotes a replicating portfolio at the time moment τ under

a self-financing strategy ϕ with initial wealth being equal to v, and P is the
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set of self-financing strategies such that V v
t (ϕ) ≥ c, for some finite constant

c and for 0 ≤ t ≤ τ .
If the investor does not issue a claim (and hence no initial payment p is

received), then the minimal risk for the investor is

Φ0(v) = inf
ϕ∈P

ρ(V v
τ (ϕ)). (27)

We formulate the risk indifference pricing principle in the form of the
following definition.

Definition 3.2. The seller’s risk indifference price, p = psellerrisk , of the claim
G is the solution p of the equation:

ΦG(v + p) = Φ0(v). (28)

Thus psellerrisk is the initial payment p that makes an investor risk indiffer-
ent between selling the contract with liability payoff G and not selling the
contract.

We are now going to recast the risk indifference pricing problem in the
context of stochastic differential games. For that purpose we are going to
need the following representation formula for a convex risk measure, sug-
gested in [12].

Theorem 3.3. (Representation Theorem [12], [11], [14]) A map ρ :
F → R is a convex risk measure if and only if there exists a family L of
measures Q� P on Fτ and a convex ”penalty” function ζ : L → (−∞,+∞)
with infQ∈L ζ(Q) = 0 such that

ρ(X) = sup
Q∈L
{EQ[−X]− ζ(Q)}, X ∈ F. (29)

This representation shows that every convex risk measure ρ is defined
by the corresponding family of measures L, and the penalty function ζ.
Equalities (26) and (27) now look as follows:

ΦG(v + p) = inf
ϕ∈P

(
sup
Q∈L
{EQ[−V v+p

τ (ϕ) +Gτ ]− ζ(Q)}
)
, (30)

and
Φ0(v) = inf

ϕ∈P

(
sup
Q∈L
{EQ[−V v

τ (ϕ)]− ζ(Q)}
)
, (31)

for a given penalty function ζ and the family of measures L.
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In the case of (local) martingale measures Q ∈ L, these equalities can
be seen as two stochastic differential games, in which Player 1 - the trader
- wants to minimize his risk exposure by choosing an appropriate trading
strategy ϕ; while Player 2 - the market - seeks to maximize the corresponding
expectation defining the risk measure ρ, by choosing the optimal measure Q.
As we will show in the following sections, one can use the tools, such as the
stochastic maximum principle, available in the field of stochastic differential
games to simplify these problems in a way that will enable us to give a
simplified formula for the risk indifference price of an interest rate claim.

4 Modelling framework

We consider the situation in which the investor is able to construct a repli-
cating portfolio only by holding traditional bonds, i.e. bonds with fixed
dates of maturity, T ∈ (0,∞). In such a situation, to replicate the payoff of
an option written on bonds with constant time to maturity will in general
require an infinite dimensional portfolio, i.e. the one containing infinitely
many bonds with different dates of maturity. In order to better explain
the construction of such an infinite dimensional portfolio we begin with a
simple case. Suppose there are just 2 bonds with dates of maturity T1 and
T2. Then the portfolio value will be given by:

Vt(π) := π0
t · 1 + π1

t · P (t, T1) + π2
t · P (t, T2), (32)

where π0
t is the number of units of the bank account held in the portfolio;

and πit, i = 1, 2 are the number of units of bonds with dates of maturity T1

and T2 correspondingly.
The dynamics of the portfolio value will look as follows:

dVt(π) := π1
t · dP (t, T1) + π2

t · dP (t, T2) (33)

= π1
t · [P (t, T1) bt(T1 − t)] dt−

−π1
t ·
∑
j≥1

P (t, T1) δ
(j)
t (T1 − t) dB(j)

t

+π2
t · [P (t, T2) bt(T2 − t)] dt−
−π2

t ·
∑
j≥1

P (t, T2) δ
(j)
t (T2 − t) dB(j)

t =

=
[
π1
t · P (t, T1) · bt(T1 − t) + π2

t · P (t, T2) · bt(T2 − t)
]
dt

−
∑
j≥1

[
π1
t · P (t, T1) δ

(j)
t (T1 − t) + π2

t · P (t, T2) δ
(j)
t (T2 − t)

]
dB

(j)
t
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Consider an H∗-valued process ϕt given by

ϕt := β1 · δT1−t + β2 · δT2−t, (34)

where δx is the evaluation functional and βi(t) :=
πi
t·P (t,Ti)
Vt(π) , if Vt(π) 6= 0, is

a fraction of wealth invested in the bond with date of maturity Ti, i = 1, 2.
Then equation (33) becomes

dVt(ϕ) = Vt(ϕ) · ϕt(bt(·)) dt
−Vt(ϕ) ·

∑
j≥1

ϕt(δ
(j)
t (·)) dB(j)

t (35)

We can view the process ϕt in (35) as representing a generalized portfolio
strategy, which can now be infinite dimensional.

In the sequel we say that an H∗-valued process ϕt is a self-financing
strategy if the risk-neutral evolution of the discounted portfolio value is
given by

dVt(ϕ) = −Vt(ϕ) ·
∑
j≥1

ϕt(δ
(j)(·)) dB̃(j)

t , (36)

where B̃
(j)
t = B

(j)
t −

∫ t
0 λ

(j)
s ds, j ≥ 1 are Brownian motions under a mar-

tingale measure and λ
(j)
t , j ≥ 1 are the risk premium processes.

Let P be the class of such self-financing strategies. In what follows we
want to consider hedging strategies ϕ ∈ P of traders with limited access
to market information, i.e. we assume that ϕ ∈ P is Et-predictable, where
Et ⊆ Ft. We shall also call a strategy ϕ ∈ P admissible if ϕ is Et-predictable,
solves (36) in the strong sense and satisfies∫ τ

0

{
|Vt(ϕ) · ϕt(bt(·))|+

∑
j≥1

Vt(ϕ)2 · ϕt(δ(j)
t (·))2

}
dt <∞.

The collection of such strategies is denoted by Π.
Let us consider the case of unrestricted access to market information.

Then a market with respect to our model is referred to as complete if each
contingent claim can be replicated. This means that for all square-integrable
(non-negative) Fτ -measurable random variables h there exists an admissible
strategy ϕ such that

Vτ (ϕ) = h

An advantage of our generalized bond model (24) is that replicating strate-
gies are unique (under certain conditions on σ̃t in (21)). See [5]. Further-
more, this model satisfies the intuitive requirement that bond maturities
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used in the hedging strategies do correspond to those of the underlying of
the claim. These natural properties, however, cannot be captured by finite-
rank models, such as (6). In such models replicating hedging strategies
are not unique in general and call options written on a 5-year bond can
be hedged by e.g. a 30-year bond. This is a shortcoming that contradicts
market practice.

On the other hand, a deficiency of our infinite-dimensional HJM frame-
work is that the existence of the unique martingale measure does not in
general imply the completeness of our bond market model. This is actually
a property not exhibited by finite rank models. However, one can show that
if the kernel of σ̃t in (21) is zero (t, ω)-a.e. then our bond market is approx-
imately complete, that is for all contingent claims h and all ε > 0 there is
an admissible strategy φε such that

EP̃

[(
EP̃(h) +

∫ τ

0
φεt ◦ σ̃t dB̃s − h

)2]
< ε

See [5].

Now we define the measures Qq parametrized by given Et-predictable

processes qt :=
{
q

(j)
t

}
j≥1

such that

dQq(ω) := Kτ · dP(ω) on Fτ , (37)

where P is the objective probability measure and Qq is a measure absolutely
continuous with respect to P. The Radon-Nikodym derivative Kτ is defined
as follows:

dKt :=
∑
j≥1

Kt q
(j)
t dB

(j)
t , K0 = k (38)

We say that the control q is admissible, and write q ∈ Θ, if q
(j)
t is adapted

to the sub-filtration Et for all j, such that∫ τ

0

∑
j≥1

(
q

(j)
t

)2
dt <∞

and
E[Kτ ] = k > 0. (39)

Further, we define L in Theorem 3.3 to be the class of measures given
by

L := {Qq : q ∈ Θ} (40)
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Thus, the control process - denoted by ut - in our stochastic control

problems (30) and (31) consists of the processes
{
q

(j)
t

}
j≥1

determining the

risk measure, chosen by the market, and the portfolio strategy ϕt chosen by
the investor:

ut =

[ {
q

(j)
t

}
j≥1

ϕt

]
(41)

Our state process is given by

Yt =

 Kt

Pt(·)
Vt(ϕ)

 :=

[
Ỹt

Vt(ϕ)

]
, y := Y0 =

 k
P0(·)
V0(ϕ)

 (42)

Its dynamics is described by the following SPDE:

dYt =

 0
APt(·) + Pt(·) · bt(·)
Vt(ϕ) · ϕt(bt(·))

 dt+ (43)

+

 Kt q
(1)
t Kt q

(2)
t . . .

−Pt(·) δ(1)
t (·) −Pt(·) δ(2)

t (·) . . .

−Vt(ϕ) · ϕt(δ(1)
t (·)) −Vt(ϕ) · ϕt(δ(2)

t (·)) . . .

 ·
 dB

(1)
t

dB
(2)
t
...



We now define another set M of measures as follows:

M := {Qq; q ∈M}, (44)

where
M := {q ∈ Θ : E[bt(x)−

∑
j≥1

δ
(j)
t (x)q

(j)
t |Et] = 0, ∀t, x}. (45)

Thus, if k = 1 in (39) then the measures Qq in M become equivalent
martingale measures with respect to bond prices given by

dP t(x) =
(
AP t(x) + P t(x)E[bt(x)|Et]

)
dt

+P t(x)
∑
j≥1

E[δ
(j)
t (x)|Et] dB(j)

t (46)

14



To complete the definition of our benchmark risk measure, as given in
(29), we require that the penalty function ζ takes the form

ζ(Qq) := EP

[∫ τ

0
Λ
(
t, qt, Ỹt

)
dt + h(Ỹτ )

]
(47)

for some convex functions Λ : [0,∞)×H×R×H → R and h : R×H → R,
such that

E
[ ∫ τ

0
|Λ
(
t, qt, Ỹt

)
|dt+ |h(Ỹτ )|

]
<∞,

for all q = (qj)j≥1 ∈ Θ. Thus, the risk measure ρ, which we are going to use,
is given in Equation (29) with L defined in (40) and ζ(Q) as given above,
in Equation (47).

Now we formulate our stochastic differential game problem correspond-
ing to equation (30), incorporating the form of the option payoff (17) and
the representation formula (29) for our benchmark risk measure ρ.

Problem A: Determine ΦA,E
G (t, y) and (q∗, ϕ∗) ∈ Θ×Π, such that

ΦA,E
G (t, y) = inf

ϕ∈Π

(
sup
q∈Θ

Jq,ϕA (t, y)
)

= Jq
∗,ϕ∗

A (t, y), (48)

where

Jq,ϕA (t, y) := EyP

[∫ τ

0
−Λ

(
s, qs, Ỹs

)
ds − h(Ỹτ ) +

∫ τ

0
Ks ·m(s, Ps(·)) ds+

+ Kτ · g(Pτ (·))−Kτ · Vτ (ϕ)]

= EyP

[∫ τ

t
−Λ̃

(
s, qs, Ỹs

)
ds + Ψ(Yτ )

]
, (49)

where the functions Λ̃ : [0,∞)×H×R×H → R and Ψ : R×H×R→ R
are defined as

Ψ(Kt, Pt(·), Vt(ϕ)) := −h(Kt, Pt(·)) + Kt · g(Pt(·))−Kt · Vt(ϕ) (50)

and
Λ̃ (t, qt,Kt, Pt(·)) := Λ (t, qt,Kt, Pt(·))−Kt ·m(t, Pt(·)). (51)

Here we assume that Λ̃ ∈ C1,1
b

(
[0,∞) × H × H̃

)
for H̃ := R × H, i.e.

Λ̃ is continuously Fréchet differentiable w.r.t. (t, qt) ∈ (0,∞) × H and
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(Kt, Pt(·)) ∈ H̃, ∀t, with bounded partial derivatives, which have contin-
uous extensions to [0,∞) × H × H̃. Further, suppose that Ψ ∈ C1

b (X),
where X := R×H× R .

Later in this paper we want to exploit a certain connection between
Problem A and the following stochastic control problem:

ΦB,E
G = sup

Q∈M
{EQ[Gτ ]− ζ(Q)} (52)

The latter will enable us to simplify the problem setting by removing one of
the controls, namely the trading strategy ϕ. Using our notation for Ỹt, this
new problem can be stated as follows:

Problem B: Search for ΦB,E
G (t, ỹ) and q̌ ∈M, such that

ΦB,E
G (t, ỹ) = sup

q∈M
JqB(t, ỹ) = J q̌B(t, ỹ), (53)

where

ỹt =

[
k

P0(·)

]
(54)

and

JqB(t, ỹ) := EỹP

[∫ τ

t
−Λ

(
s, qs, Ỹs

)
ds − h(Ỹτ ) +

∫ τ

t
Ks ·m(s, Ps(·)) ds+

+ Kτ · g(Pτ (·))]

= EỹP

[∫ τ

t
−Λ̃

(
s, qs, Ỹs

)
ds + Φ(Ỹτ )

]
, (55)

where the function Φ : R×H → R is given by

Φ(Kt, Pt(·)) := −h(Kt, Pt(·)) + Kt · g(Pt(·)). (56)

We require here that Φ ∈ C1
b (V ), for V := R×H.

As for Problem A, we aim at introducing the following Hamiltonian
HA : [0,∞)×R×H×R×H×H∗× (R×H×R)× (H×L2(U,H)×H)→ R
given by

HA(t,Kt, Pt(·), Vt(ϕ), qt, ϕt,p
A,qA) := −Λ̃ (t, qt,Kt, Pt(·)) + 〈(Pt bt)(·), pA2 〉K

+ Vt(ϕ) · ϕ(bt(·)) · pA3
+ Kt · 〈qt, qA1 〉K −

∑
j≥1

〈(Pt · δ(j)
t (·), qA,(j)2 〉K

−
∑
j≥1

Vt(ϕ) · ϕ(δ
(j)
t (·)) · qA,(j)3 , (57)
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where

pA =

 pA1
pA2
pA3

 , and qA =

 qA1
qA2
qA3

 , (58)

with qAi =
∑

j≥1 q
A,(j)
i uj , i = 1, 3, qA2 = {qA,(j)2 }j≥1 for an orthonormal basis

uj , j ≥ 1 of H.
On the other hand, we can define the Hamiltonian for Problem B as a

map HB : [0,∞)× R×H×H× (R×H)× (H× L2(U,H))→ R given by

HB(t,Kt, Pt(·), qt,pB,qB) := −Λ̃ (t, qt,Kt, Pt(·)) + 〈(Pt(·) bt)(·), pB2 〉K
+ Kt · 〈qt, qB1 〉K −

∑
j≥1

〈(Pt · δ(j)
t (·), qB,(j)2 〉K ,(59)

where

pB =

[
pB1
pB2

]
, and qB =

[
qB1

{qB,(j)2 }j≥1

]
, (60)

Let us require that HA and HB are Fréchet differentiable with respect
to (Kt, Pt(·), Vt(ϕ)) ∈ R ×H × R and (Kt, Pt(·)) ∈ R ×H, respectively. In
the sequel we denote by ∇g the gradient of a function g : Z → Z on a
Hilbert space Z. We recall that ∇g : Z → Z is a function characterized by
the equation

〈(∇g)(x), h〉Z = (Dg)(x)(h), (61)

for all x, h ∈ Z, where (Dg)(x)(h) is the directional derivative at point x in
the direction of h.

The adjoint equations with respect to HA are given by the following
backward stochastic (partial) differential equations:{
dpA1 (t) =

[
∇KtΛ̃

(
t, qt, Ỹt

)
− 〈qt, qA1 (t)〉K

]
dt+

∑
j≥1 q

A,(j)
1 (t) dB

(j)
t

pA1 (τ) = −∇Kth(Ỹτ )− g(Pτ (·))− Vτ (ϕ)
(62)


dpA2 (t, x) =

[
−∇Pt(·)F (t, qt, Ỹt, p

∗
t , q
∗
t )−A∗pA2 (t, x)

]
dt

+
∑

j≥1 q
A,(j)
2 (t, x) dB

(j)
t

pA2 (τ, x) = −∇Pt(·)h(Ỹτ ) + Kτ · ∇Pt(·)g(Pτ (·)),
(63)
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where A∗ is the adjoint operator for the differential operator A in (22) and
F is a function given by

F (t, qt,Kt, Pt(·),pA,qA) := −Λ̃ (t, qt,Kt, Pt(·))+〈(Pt·bt)(·), pA2 〉K−
∑
j≥1

〈(Pt·δ(j)
t )(·), qA,(j)2 〉K

(64)


dpA3 (t) =

[
− ϕt(bt(·)) · pA3 (t) +

∑
j≥1 ϕt(δ

(j)
t (·)) · qA,(j)3 (t)

]
dt

+
∑

j≥1 q
A,(j)
3 (t) dB

(j)
t

pA3 (τ) = −Kτ

(65)

On the other hand, the adjoint equations with respect to the Hamiltonian
HB take the form{
dpB1 (t) =

[
∇KtΛ̃

(
t, qt, Ỹt

)
− 〈qt, qB1 (t)〉K

]
dt+

∑
j≥1 q

B,(j)
1 (t) · dB(j)

t

pB1 (τ) = −∇Kth(Kτ , Pτ (·)) + g(Pτ (·))
(66)


dpB2 (t, x) =

[
−∇P (·)F̃ (t, qt, Ỹt,p

B
t ,q

B
t )−A∗pB2 (t, x)

]
dt

+
∑

j≥1 q
B,(j)
2 (t, x) · dB(j)

t

pB2 (τ, x) = −∇P (·)h(Ỹτ ) + Kτ · ∇P (·)g(Pτ (·)),
(67)

where F̃ is a function defined by

F̃ (t, qt,Kt, Pt(·),pB,qB) := −Λ̃ (t, qt,Kt, Pt(·))+〈(Pt·bt)(·), pB2 〉K−
∑
j≥1

〈(Pt·δ(j)
t )(·), qB,(j)2 〉K

(68)
Regarding the conditions ensuring the existence and uniqueness of (strong)
solutions of such B(S)PDEs the reader may consult e.g. [19], [26] and the
references therein.

The next auxiliary result gives a link between the solutions of the adjoint
equations (62), (63) and (65) for Problem A and (66) and (67) for Problem
B, as well as the relation between Hamiltonians HA and HB in Problems A
and B, respectively.

Lemma 4.1. Choose ∀q ∈ Θ and ∀ϕ ∈ Π. If the chosen q ∈ M, then
the solutions of the adjoint equations for Problem A and Problem B are
connected as follows:

pA1 (t) := pB1 (t)− Vt(ϕ) (69)

pA2 (t, x) = pB2 (t, x) (70)

pA3 (t) = −Kt (71)
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where pB(t) = (pB1 (t), pB2 (t)) is a (strong) solution of the corresponding ad-
joint equations (66) and (67) for Problem B, and pA(t) = (pA1 (t), pA2 (t), pA3 (t))
is a (strong) solution of the adjoint equations (62), (63) and (65) for Prob-
lem A. Moreover, the Hamiltonians in Problem A and Problem B are related
to each other as follows:

HA(t, Yt, qt, ϕt,p
A,qA) = HB(t, Ỹt, qt,p

B,qB) (72)

+ Kt · Vt(ϕ)

ϕt
2

∑
j≥1

q
(j)
t · δ

(j)
t (·)− bt(·)


Proof. Our proof closely follows the arguments in [3], Lemma 3.1, where the
finite dimensional case was treated. Using the dynamics of pA1 (t), pB1 (t) and
Vt(ϕ) we find that

dpA1 (t) = dpB1 (t)− dVt(ϕ) (73)

=

∇KtΛ̃
(
t, qt, Ỹt

)
−
∑
j≥1

q
(j)
t · q

B,(j)
1 (t)

 dt+
∑
j≥1

q
B,(j)
1 (t) dB

(j)
t

− Vt(ϕ) · ϕt(bt(·)) dt+ Vt(ϕ) ·
∑
j≥1

ϕt(δ
(j)
t (·)) dB(j)

t

=

∇KtΛ̃
(
t, qt, Ỹt

)
−
∑
j≥1

q
(j)
t · q

B,(j)
1 (t)− Vt(ϕ) · ϕt(bt(·))

 dt
+
∑
j≥1

[
q
B,(j)
1 (t) + Vt(ϕ) · ϕt(δ(j)

t (·))
]
dB

(j)
t

So, it follows from (62) that

−
∑
j≥1

q
(j)
t · q

A,(j)
1 (t) = −

∑
j≥1

q
(j)
t · q

B,(j)
1 (t)− Vt(ϕ) · ϕt(bt(·)), (74)

and
q
A,(j)
1 (t) = q

B,(j)
1 (t) + Vt(ϕ) · ϕt(δ(j)

t (·)) (75)

One can see that (74) holds, provided that ϕt(
∑

j≥1 δ
(j)
t (·) q(j)

t ) = ϕt(bt(·)).
Since the latter equality must be satisfied for every admissible strategy ϕt
one concludes that

∑
j≥1 δ

(j)
t (x) q

(j)
t = bt(x), for all x, which also implies

that q ∈M, as claimed.
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Doing the same thing for equation (71) we observe that

−ϕt(bt(·)) · pA3 (t) +
∑
j≥1

ϕt(δ
(j)
t (·)) · qA,(j)3 (t) = 0 (76)

and
q
A,(j)
3 (t) = −Kt q

(j)
t . (77)

Substituting (77) into (76) we see that the latter is satisfied provided

that pA3 (t) = −Kt and
∑

j≥1 δ
(j)
t (x) q

(j)
t = bt(x), for all x, as claimed.

Now, the Hamiltonian in Problem A and the one in Problem B are related
to each other as follows:

HA(t, Yt, qt, ϕt,p
A,qA) = HB(t, Ỹt, qt,p

A,qA) +

+ Vt(ϕ) · ϕt(bt(·)) · pA3 (t)−
−

∑
j≥1

Vt(ϕ) · ϕt(δ(j)
t (·)) · qA,(j)3 (t) (78)

Using (69), (70), (71) and (75), as well as assuming that qt ∈ M, ∀t ∈
[0, τ), we obtain

HA(t, Yt, qt, ϕt,p
A,qA) = HB(t, Ỹt, qt,p

B,qB)

+
∑
j≥1

Kt q
(j)
t · Vt(ϕ) · ϕt(δ(j)

t (·))− Vt(ϕ) · ϕt(bt(·)) ·Kt

+
∑
j≥1

Vt(ϕ) · ϕt(δ(j)
t (·)) ·Kt q

(j)
t (79)

= HB(t, Ỹt, qt,p
B,qB) +Kt · Vt(ϕ)

ϕt
2

∑
j≥1

q
(j)
t · δ

(j)
t (·)− bt(·)



Thus, Lemma 4.1 claims that the Hamiltonians, as well as the solutions
to adjoint equations for Problems A and B are connected in the above stated
way, provided that q ∈ M. The following Lemma states the connection
between Problems A and B working in the opposite direction. Namely,
if Equations (69), (70) and (71) hold and certain optimum conditions are
satisfied, then indeed q ∈M.

Lemma 4.2. Suppose that pA1 (t), pA2 (t) and pA3 (t) are given by Equations
(69), (70) and (71), with pB(t) = (pB1 (t), pB2 (t)) being a (strong) solution of
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the adjoint equations (66) and (67) for Problem B, as in Lemma 4.1. Also,
let the function

q = {q(j)}j≥1 7→ E[HA(t, Yt, qt, ϕt,p
A,qA)|Et], q ∈ Θ,

have a maximum point at q̂ = {q̂(j)}j≥1 = {q̂(j)(ϕ)}j≥1, for all ϕ ∈ Π, and
the function

ϕ 7→ E[HA(t, Yt, q̂t(ϕ), ϕt,p
A,qA)|Et], ϕ ∈ Π,

attain a minimum point at ϕ̂ ∈ Π. Then,

q̂(ϕ̂) ∈M. (80)

Proof. In what follows we want to use the following notation: q = {qj}j≥1

and ϕ = {ϕi}i≥1 if q =
∑

j≥1 qj uj and ϕ =
∑

j≥1 ϕi vi for an orthonormal
basis uj and vi in H and H∗, respectively.

The assumption that the function E[HA(t, Yt, qt, ϕt,p
A,qA)|Et] has a

maximum at q̂(j) = q̂(j)(ϕ) implies that

E[∇q(j)(H
A(t, Yt, qt, ϕt,p

A,qA)q(j)=q̂(j)(ϕ)|Et] = 0, j ≥ 1, ∀ϕ ∈ Π (81)

Similarly, the necessary condition for the function E[HA(t, Yt, q̂t(ϕ), ϕt,p
A,qA)|Et]

to attain a minimum at ϕ̂ is

E
[(∑

j≥1

∇q(j)(H
A(t, Yt, qt, ϕt,p

A,qA) · ∇ϕi

(
q̂(j)(ϕ)

)
(82)

+∇ϕi

(
HA(t, Yt, qt, ϕt,p

A,qA)
)
ϕi=ϕ̂i

q(j)=q̂(j)(ϕ̂)

∣∣∣Et] = 0, i ≥ 1,

Choose ϕ = ϕ̂. Then, by (81) and (82), we obtain

E
[
∇ϕi

(
HA(t, Yt, qt, ϕt,p

A,qA)
)
ϕ=ϕ̂
q=q̂(ϕ̂)

∣∣∣Et] = 0, i ≥ 1 (83)

Thus, after differentiating the Hamiltonian we obtain

E

[((
Vt(ϕ)·∇ϕiϕ(bt(·)

)
·pA3 (t)−Vt(ϕ)·∇ϕi

(∑
j≥1

ϕ(δ
(j)
t (·)

)
·qA,(j)3 (t)

))
ϕ=ϕ̂
q=q̂(ϕ̂)

∣∣∣Et] = 0.

(84)
Combining this result with Lemma 4.1 yields

Vt(ϕ) ·Kt · vi

(
E

[(
bt(·)−

∑
j≥1

δ
(j)
t (·) · q(j)

t

)∣∣∣Et])
ϕ=ϕ̂
q=q̂(ϕ̂)

= 0, i ≥ 1, (85)
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where we have used the fact that vi ∈ H∗. The condition that equality

(85) holds for all i ≥ 1 implies that for ϕ = ϕ̂ and q = q̂(ϕ̂) E

[(
bt(x) −

∑
j≥1 δ

(j)
t (x)·q(j)

t

)∣∣∣Et] = 0, for all j ≥ 1 and any x ∈ [0,∞), i.e. if q̂(ϕ̂) ∈M,

as claimed.

5 Maximum principle for stochastic differential games
on a generalized bond market

Analogues of Problem A were studied by a number of authors. See e.g. [2],
[3] and [1]. Adapting their results to the present setting, we formulate the
following result, which is an extension of Theorem 2.1 in [2].

Theorem 5.1. (Maximum principle for stochastic differential games
[2, 9]) For controls (q̂, ϕ̂) ∈ Θ×Π, suppose that the following partial infor-
mation maximum principle holds

sup
q∈Θ

E[HA(t, Yt, qt, ϕ̂t, p̂
A, q̂A)

)
| Et]

= E[HA(t, Yt, q̂t, ϕ̂t, p̂
A, q̂A) | Et]

= inf
ϕ∈Π

E[HA(t, Yt, q̂t, ϕt, p̂
A, q̂A) | Et]. (86)

for all t ∈ [0, τ ], with (p̂A, q̂A)) being the strong solutions of the adjoint equa-
tions (62), (63) and (65) in Problem A. Moreover, require that the function
q 7→ Jq,ϕA (t, y) defined in (49) is concave, while ϕ 7→ Jq,ϕA (t, y) is convex.
Then (q∗, ϕ∗) := (q̂, ϕ̂) is the optimal control and

ΦA,E
G (t, y) = inf

ϕ∈Π

(
sup
q∈Θ

Jq,ϕA (t, y)
)

= sup
q∈Θ

(
inf
ϕ∈Π

Jq,ϕA (t, y)
)

= sup
q∈Θ

Jq,ϕ̂A (t, y) = inf
ϕ∈Π

J q̂,ϕA (t, y) = J q̂,ϕ̂A (t, y) (87)

We have come to the main theorem of the article. It provides the key
result, which is used in the following Section to derive a formula for the risk
indifference price of an interest rate claim. Its proof relies on the maximum
principle stated above.

Theorem 5.2. Let pB1 (t), pB2 (t, x) be strong solutions of the adjoint equa-
tions (66) and (67) of Problem B and pA1 (t), pA2 (t, x), pA3 (t) be defined
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by Equations (69), (70) and (71) as in Lemma 4.1. Then, if the map
q 7→ HB(t, Ỹt, qt,p

B,qB) of Problem B is concave, then the optimal con-
trol q̌ for Problem B is the same as the corresponding optimal control q̂(ϕ̂)
for Problem A, i.e.

q̌ = q̂(ϕ̂) (88)

Proof. The proof is similar to that of Theorem 4.2 in [3]. Applying Theorem
5.1 to Problem B, one finds that q̌ is the optimal control, provided that

sup
q∈M

E[HB(t, Ỹt, qt,p
B,qB)|Et]

= E[HB(t, Ỹt, q̌,p
B,qB)|Et], (89)

The corresponding first order conditions for the constrained maximization
problem (89) imply that

E

5q(j)

HB(t, Ỹt, qt,p
B,qB) + Ct ·

∑
j≥1

δ
(j)
t (x) q(j) − bt(x)


q=q̌

|Et

 = 0,

(90)
for ∀j ≥ 1 and x ∈ [0,∞), with Ct being the corresponding Lagrange mul-
tiplier. Moreover,

E

[∑
j≥1

δ
(j)
t (x) q(j) − bt(x)


q=q̌

|Et

]
= 0, ∀x ∈ [0,∞) (91)

On the other hand, let ϕ̂, q̂(ϕ̂) be the optimal controls for Problem A.
Then,

E[5q(j)(H
A(t, Yt, qt, ϕ̂t,p

A,qA)q=q̂(ϕ̂(t))|Et] = 0, j ≥ 1 (92)

and by Lemma 4.2, q̂(ϕ̂) ∈ M. Hence, using equality (72) in Lemma 4.1
yields

E
[
5q(j)

{
HB(t, Ỹt, qt,p

B,qB) + (93)

+ Kt · Vt(ϕ)

ϕt
2

∑
j≥1

q
(j)
t · δ

(j)
t (·)− bt(·)


q=q̂(ϕ̂(t))

∣∣∣Et] = 0,
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for all j ≥ 1 and all ϕ ∈ Π. Then, for any fixed x ∈ [0,∞) we can rewrite
(93) as follows

E
[
5q(j)

{
HB(t, Ỹt, qt,p

B,qB) + (94)

+ Kt · Vt(ϕ) · βt(x) ·

2
∑
j≥1

q
(j)
t · δ

(j)
t (x)− bt(x)


q=q̂(ϕ̂(t))

∣∣∣Et] = 0,

where βt(x) is a fraction of wealth invested in Pt(x) at the time moment t.
Since neither bt(·) nor any of the terms outside of the brackets depend

on q(j), we see that equation (94) is the same as equation (90), with Ct(·) =
2Kt · Vt(ϕ)βt(x). Moreover, by Lemma 4.2 the optimal market control in
Problem A corresponds to a martingale measure, i.e. q̂(ϕ̂) ∈ M, which
implies that

E

[∑
j≥1

δ
(j)
t (x) q(j) − bt(x)


q=q̂(ϕ̂)

|Et

]
= 0, ∀x ∈ [0,∞) (95)

We immediately observe that the optimal control q̂(ϕ̂) for Problem A also
satisfies the first order conditions (90) and (91) corresponding to Problem
B. Hence, by the uniqueness of the solution, we conclude that q̌ = q̂(ϕ̂), as
claimed.

6 Risk indifference pricing of claims of the yield
curve

In this section we aim at establishing a relation between the value function
in Problem A and that in Problem B. Theorem 5.2 provides the key result
needed for this purpose. Let (q∗, ϕ∗) = (q̌, ϕ̂) be the optimal controls for
Problem A with q̌ being optimal for Problem B, as in Theorem 5.2. Also,
denote by Ỹ ∗ = Ỹ q∗ the state process corresponding to the optimal control
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q̌. The value function ΦA,E
G of Problem A then becomes

ΦA,E
G (t, y) = inf

ϕ∈Π

(
sup
q∈Θ

Jq,ϕ(t, y)
)

(96)

= inf
ϕ∈Π

(
sup
q∈Θ

EyP

[∫ τ

t
−Λ̃

(
s, qs, Ỹs

)
ds − h(Ỹτ ) +

+ Kτ · g(Pτ (·))−Kτ · Vτ (ϕ)]
)

= inf
ϕ∈Π

(
EyP

[∫ τ

t
−Λ̃

(
s, q∗s , ϕs, Ỹ

∗
s

)
ds − h(Ỹ ∗τ ) +

+ K∗τ · g(Pτ (·))−K∗τ · Vτ (ϕ)]
)

Since the first part of equation (96) does not depend on the parameter ϕ, it
can be rewritten as follows

ΦA,E
G (t, y) = EyP

[∫ τ

t
−Λ̃

(
s, q∗s , ϕs, Ỹ

∗
s

)
ds − h(Ỹ ∗τ ) +

+ K∗τ · g(Pτ (·))]− inf
ϕ∈Π

(
EyP [K∗τ · Vτ (ϕ)]

)
(97)

Also, by the original assumption, ϕ∗ is optimal for Problem A and by
Theorem 5.2, q̌ = q∗ is optimal for Problem B. Hence, by the formulation
of Problem B q̌ ∈M and Qq∗ defined by the Radon-Nikodym derivative K∗τ
is a martingale measure. Therefore, EyP[K∗τ · Vτ (ϕ)] = k · V0 , for all ϕ ∈ Π,
and the previous expression becomes

ΦA,E
G (t, y) = EyP

[∫ τ

t
−Λ̃

(
s, q∗s , ϕs, Ỹ

∗
s

)
ds − h(Ỹ ∗τ ) +

+ K∗τ · g(Pτ (·))]− k · V0

= sup
q∈M

JqB(t, ỹ)− k · V0

= Φ̃B,E
G (t, ỹ)− k · V0, (98)

where we once again used the claim of Theorem 5.2. This result is analogous
to the one stated in [1].

Coming back to our original problem, we want to find the risk indiffer-
ence price p = psellerrisk of an interest rate claim, which is determined by the
Equation (28):

ΦAE
G (V0 + p) = ΦAE

0 (V0). (99)
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By the result in Equation (98), one can immediately see that the equality
(28) becomes

ΦBE
G (t, ỹ)− k · (V0 + p) = ΦBE

0 (t, ỹ)− k · V0, (100)

which implies that the risk indifference price is given by

p = psellerrisk = k−1 ·
(

ΦBE
G (t, ỹ)− ΦBE

0 (t, ỹ)
)

(101)

The latter expression provides the main result of this paper. For k = 1,
we obtain the following representation for the risk indifference price of func-
tional claims of the yield curve under partial information, which is similar
to the one derived in [3]. We formulate it in the form of a theorem.

Theorem 6.1. (Risk indifference price of functional claims of the
yield curve under partial information) Given that the conditions of
Theorem 5.2 hold, the risk indifference price psellerrisk (Gτ , E) for the seller of
an interest rate claim Gτ is given by

psellerrisk (Gτ , E) = sup
Q∈M

{EỹQ[Gτ ]− ζ(Q)} − sup
Q∈M

{−ζ(Q)}. (102)
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