
UNIVERSITY OF OSLO
Department of Informatics

Investigating Passive
Operating System
Detection

Petter Bjerke Falch

Network and System Administration

Oslo University College

May 24, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30808499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Investigating Passive Operating System
Detection

Petter Bjerke Falch

Network and System Administration
Oslo University College

May 24, 2011

Abstract

Today computer and network security are a big part of a system administra-
tors life. New methods and applications appear and several makes the system
administrator’s job easier.

Gathering information is a big part of detecting threats and staying one
step ahead of the black hats.

This thesis looks at and investigates a specific area in network security,
namely passive operating system detection. Information is important in net-
work security and knowing your enemies are important in securing your net-
work. Passive operating system detection helps collecting information pas-
sively, which can be used to the administrators advantage.

The thesis looks at passive operating system detection applications and
looks especially on the applications p0f and prads.

By running both applications in a larger network and testing them in a
controlled environment, the weaknesses of both applications are revealed and
improvements suggested and tried implemented.

Improvements discussed and tried implemented in this thesis, are adding
new signatures and creating Perl scripts that improves the applications itself.
The scripts deals with the output from the applications which tends to be over-
whelming and needs new presentation methods.

Acknowledgements

I would like to express my gratitude to the following people:

• My supervisor Hårek Haugerud for helping me and guiding me through
a hectic master thesis.

• Kyrre Begnum for useful thesis seminars throughout this semester

• The other teachers at Oslo university College for a friendly attitude.

• My classmates for good discussions and nice lunches

• Edward Fjellskål for introducing me to the topic and answering my ques-
tions concerning prads

• Jonas Taftø Rødfoss for lending me his network setup

• My patient and lovely wife and my soon to be born child, for waiting a
little bit longer

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Problem statement . 5

2 Background and literature 6
2.1 History of Network Security and Operating System detection . 6
2.2 Operating system detection / fingerprinting 7

2.2.1 Active operating system detection 7
2.2.2 Passive operating system detection 8
2.2.3 Passive fingerprinting methods 9
2.2.4 Fingerprinting applications 11
2.2.5 Counter measures / Fingerprint scrubbing 17

2.3 Honeyd . 19
2.4 Tcpdump . 20
2.5 Previous work . 21
2.6 Summary background chapter 22

3 Approach 24
3.1 Test environment . 24
3.2 Comparing p0f and prads in the 128.39.73.0 network 26

3.2.1 Installing applications . 26
3.2.2 Running Tcpdump . 27

3.3 Running p0f on the Tcpdump . 28
3.4 Running prads on the Tcpdump 29
3.5 Comparing p0f and prads . 29
3.6 Summary comparing p0f and prads in the 128.39.73.0 network 30
3.7 New signatures . 30

4 Results 34
4.1 Comparing p0f and prads in the 128.39.73.0 network 34

4.1.1 Running the applications 34
4.1.2 Run time command on the applications 39
4.1.3 Counting ip addresses and operating systems 45
4.1.4 Look at ip address 128.39.73.66 52

4.2 New signatures . 53

5 Discussion and conclusions 56
5.1 Discussion . 56

2

CONTENTS

5.1.1 Future work . 59
5.2 Conclusions . 60

Bibliography 62

List of figures 65

6 Appendix 66
6.1 oscounter p0f.pl . 66
6.2 oscounter prads.pl . 68

3

Chapter 1

Introduction

1.1 Motivation

The big increase in computing worldwide and the ”Internet revolution” de-
mands better and better security in computing and networking in today’s
complex society. Today ”everyone” are connected to the Internet and this is
why the security is so important. What would happen if the stock market or
banks were hacked and taken down? Or what would happen if a regular busi-
ness depending on Internet for selling their goods went down for only a day?
Downtime today could be catastrophic to any company or business, therefore
computer security and network security are incredible important to anyone
with their computers connected to the ”outside”.

Today worldwide network security is used to prevent and monitor unau-
thorised access, misuse, modification, or denial of the computer network and
network-accessible resources. There are different ways of monitoring net-
works, like intrusion detection systems that monitors network threats from the
outside and network monitoring systems that monitors the internal systems
problems caused by overloaded or crashed servers and network connections.

Most hackers and script kiddies are trying to get through the security mea-
sures that protects the computer assets from the outside. Security measures
protecting the network and computers from the outside are firewalls, network
intrusion detection and protection systems, antivirus and authentication and
identification systems. Even if we got all these systems, they won’t protect us
from employees or students doing something stupid like connecting an inse-
cure wireless network or an unpatched computer leaving the machine totally
open.

The article ”Top 10 vulnerabilities inside the network”[1] looks at a com-
puter network different than usual. Inside a computer network we encounter
threats that are not that obvious to the everyman. Threats like unidentified
thumb drives, miscellaneous USB devices, social engineering, optical media
and e-mail are things that should be considered as inside security threats. Also
unknown laptops, wireless access points and smart phones constitute a major
threat when connected in the network inside a company or school. Security
policy’s and common sense aren’t enough to protect the network and the net-

4

1.2. PROBLEM STATEMENT

work administrators need tools that can be used to monitor and protect their
network.

The ”network security race” consists of many applications trying to keep
networks and computer secure. Most companies and schools use several se-
curity applications but can’t keep up with the hackers. It’s a constant war.
In addition to firewalls, intrusion detection and prevention systems. Applica-
tions like operating systems detection play an important role in the security
realm. This thesis will look deeper into operating system detection more accu-
rate, passive operating system detection.

1.2 Problem statement

The questions and formulations asked in the problem statement will be worked
on throughout the thesis, and the conclusion will be based on what the prob-
lem statement says. Since this is an investigative thesis, all the problem state-
ments are related to what passive operating system detection is and does. The
focus will be on existing passive operating system detection applications[2].

The problem statements are:

Investigate Passive Operating System Detection

• Investigate which passive operating system detection systems that exist today.

• Compare p0f and prads in the 128.39.73.0 network.

• Discover the weaknesses in existing fingerprinting methods.

• Investigate which improvements that can be done to make operating system de-
tection a helpful tool for network administrators.

5

Chapter 2

Background and literature

This chapter will introduce the reader to basic concepts of network security[3]and
operating system detection/fingerprinting. The focus will be on giving the
reader basic knowledge, to be able to keep up in the rest of the thesis, and to
look at previous work done in this area of network security.

2.1 History of Network Security and Operating System
detection

Network security has existed a long time, and even if network security had
existed for a while before the Internet, the Internet gave network security a
real boost. When the Internet spread a cross the world, administrators were
forced to take security measures to protect their assets, networks and comput-
ers against attacks from the ”outside”. One of the most famous hackers, Kevin
Mitnick [4]has contributed to network security.[5] By showing how easy it was
to steal intellectual property from many worldwide companies, he showed
that there exists a threat and that we need network and computer security.

There have been some important phases in computer and network security.
In the paper Network Security: History, Importance, and Future written by
Bhavya Daya [6] we see a timeline that spans all the way from about 1930 to
todays ”Internet age”.

The first Polish encryptor’s created the famous enigma encryption machine
that was hacked or decrypted by the mathematician Alan Turing.

In the 1960s, ARPANet[7], the predecessor to todays Internet, where made
by the Department of Defence. Arpanet was a conduit for electronic exchange
of information.
In the 1970s the telnet protocol was made. This protocol made data networks
open for the public and also invited hackers to participate in the computer net-
works.
During the 1980s hacking became more and more common. Hackers like the
414 gang and Ian Murphy, that stole information from military computers, en-
forced the Computer Fraud and Abuse Act in 1986. At about the same time the
student Robert Morris was convicted to have made and unleashed the Morris

6

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

Worm, that again made the authorities to establish the CERT or the Computer
Emergency Response Team. CERT’s main goal was to alert the crowd of net-
work security issues.
In the 1990s, the security threats increased drastically. The Internet became
public and more and more people were connected. Today you belong to the
exception if you don’t have Internet access, and the security industry is bigger
than ever.
Operating system detection or operating system fingerprinting have not been
around for a long time. Nmap[8]that is a famous tool for doing active finger-
printing didn’t introduce fingerprinting before December 12, 1998. The first
passive operating system detection tools where not developed before early
2000.

2.2 Operating system detection / fingerprinting

In computer security, operating system detection is a way to detect what is
running on your network. Not only can fingerprinting be used to detect which
operating systems a computer has, but also detect what kind of network com-
ponents there are in the network. This way a system administrator can get an
overview over his own network.

Operating system detection can be looked at in two ways, either from the
hacker’s point of view, or the network or system administrators point of view.
At first sight, it is easy to see what a hacker could do using fingerprinting.
An example of use, is to detect vulnerabilities in the sense of an old operating
system. Which are easy to exploit for an experienced hacker. When it comes
to the network or system administrator, it’s maybe not that implicit how this
”tool” can be used. In computer security and for most administrators, it is
important to collect as much knowledge about their network as possible. For
example it could be wise to know which network components and computers
you have in the network. It could be that one of the employees has hooked up
a dodgy wireless router with no security, to your companies network, which
again means that your network is exposed for attacks from the outside. It
could also be that one of your machines runs an old version of an operating
system, that could be easy to exploit. The bigger the networks are, the more
difficult and important it is to have full control of what is connected to the net-
work. For the system administrator, it’s always important to be one step ahead
of the attacker. This way, the attacker can’t make use of the latest vulnerabili-
ties.

There are two main ways of doing operating system detection in a network,
active and passive.

2.2.1 Active operating system detection

The active version of doing operating system detection[9] rely on stimulus-
response. Meaning that the source will send a special packet, that we can
call stimulus, to the target, and get a response that the source can analyse to

7

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

identify the operating system of the target.[10] There is actually a legal matter
when it comes to active fingerprinting, meaning that in many countries it is
illegal to perform an active fingerprint against others. This is one of the rea-
sons why the passive fingerprinting method is developed. Active and passive
fingerprinting have a lot in common when it comes to the detection of the op-
erating system. They both use signatures that they match against to discover
the operating system.

2.2.2 Passive operating system detection

Contrary to the active way of doing operating system detection, the passive
[9]way is about sniffing packets instead of making a special packet and send-
ing it to a remote host. Most passive fingerprinting tools looks at the headers
of the TCP SYN packet, and from there determines which operating system
we are dealing with. When a SYN packet is sniffed, it can be compared with a
database, that contains signatures from different operating systems, and then
determine what operating system this packet comes from. Looking at the sig-
natures, they often consist of the TCP SYN packets headers. Different operat-
ing systems have different headers, and therefore we can determine the oper-
ating system based on the signatures.

For many network administrators today, it’s important to have a passive
way of doing fingerprinting. Many IDS deployments consist of a computer
/ devices with two network interfaces. One contains a promiscuous link to a
remote network and the other link is for management and lives in the DMZ.
The problem then with active scanners is that the IDS team do only have a
one- way link into the network. Meaning that they only can listen to traffic,
not being able to produce any traffic.

The figure 2.1 is a typical packet, captured in snort, with fields that can be
analysed to do passive operating system detection. We see the Time To Live,
type of service, window size and so on. Looking at these fields, an operating
system detection application can determine which operating system it is.

Figure 2.1: TCP header

For the detection, important fields in the header are TTL, window size,
don’t fragment bit(DF) and type of service(TOS). Only looking at one of the
fields don’t give which operating system it is, but when adding these together,
detecting the operating system can be done. The more fields set, the more
accurate is the detection.

8

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

The big advantage with passive fingerprinting is that you can learn about
the enemy without them knowing it. Though not 100% accurate, you can de-
termine the assets of a remote host without leaving any traces. [11]

Below is the format of how a signature could look like. This is taken from
the signature file p0f.fp in p0f, one of the more known passive operating sys-
tem detection systems. p0f.fp contains the SYN signatures used in p0f. We see
the format of the entry and what the different entries mean. Together, all these
fields can determine an operating system and the more fields known, the more
precise is the determination of the operating system.

Fingerprint entry format:

wwww:ttt:D:ss:OOO...:QQ:OS:Details

wwww - Window size

ttt - Initial TTL

D - don’t fragment bit

ss - overall SYN packet size

OOO - option value and order specification

QQ - quirks list

OS - OS genre (Linux, Solaris, Windows)

details - OS description

2.2.3 Passive fingerprinting methods

There is not only one way of doing passive fingerprinting. Several methods
exist, and different applications use different methods. Typical methods are:

• TCP SYN

• TCP SYNACK

• TCP RST

• TCP FIN

• Telnet data

• ICMP echo request

Looking at the TCP/IP header in figure 2.2, the TCP packet has several flags
that can be set. These flags indicate the connection status of a TCP connection.
TCP is a stateful protocol that means that it is imperative that one knows the
purpose of each and every packet.

9

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

Figure 2.2: The TCP header [Wikimedia commons]

An initiation of a TCP connection always starts with the 3-way handshake.
First the initiator sends a request, that is a TCP packet with the SYN flag set,
to for example to a web server. Then the server either reply with a SYNACK,
if the server is ready to open a connection, or the server could send a RST that
tells the initiator that the server is not open for connection. Then as the last
packet in the 3-way handshake the initiator replays with the ACK packet, and
the connection is established. The reason for looking at the 3-way handshake
is that passive fingerprinting takes use of the different states of the TCP con-
nection. As mentioned above, important states are the SYN, SYNACK, RST
and FIN. When a packet has one of these flags set, often a passive detection of
the operating system can be done. The nice way of doing operating system de-
tection this way is that the sniffer doesn’t need to collect many packets. Often
the first TCP SYN packet is enough to determine the operating system

10

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

2.2.4 Fingerprinting applications

When it comes to applications that are developed to do fingerprinting, there
are a few that are worth mentioning, most are open source and under develop-
ment. Beneath several are mentioned, but not explained in detail. Only three,
p0f, PADS and prads will be look at in detail. Figure 2.3 shows an overview of
the different applications discussed in this thesis.

Operating system
detection

Passive Active

p0f PADS prads Satori XProbe2 Nmap

Network
miner

Ettercap

SinFP

Figure 2.3: A figure of different fingerprinting applications

p0f

p0f[12]is a tool designed to only do passive operating system fingerprinting.
p0f can run in different modes, SYN, SYNACK and RST mode. It is said that
p0f can detect firewalls, the existence of a load-balancer, the distance to the
remote system and it’s uptime and others network connection and ISP. p0f is
now in version 2 and has been under development for some years. It looks
like p0fv2 is the most used passive operating system detection tool, reading
at forums and webpages. It gets honour for it’s simplicity and it’s ease of
use. The new p0f is easy to install with aptitude or yum, and requires few
additional packages. The most important package it demands is the libcap
library.

11

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

p0f looks at the signature of a TCP packet and compares this to the signa-
ture file that contains signatures for different operating systems. There is one
file for each mode p0f runs. One for SYN, one for RST or reset and the last one
is for the SYNACK mode. In the signature file, the signatures are given one
line each. As an example, we can see the signature for a windows 98 operating
system.

S44:32:1:48:M*,N,N,S:.:Windows:98 (low TTL) (1)

The p0f signature has the following format:

wwww:ttt:D:ss:OOO...:QQ:OS:Details

And the different fields have the following meaning:

wwww:ttt:D:ss:OOO...:QQ:OS:Details

wwww - Window size

ttt - Initial TTL

D - don’t fragment bit

ss - overall SYN packet size

OOO - option value and order specification

QQ - quirks list

OS - OS genre (Linux, Solaris, Windows)

details - OS description

Window size Is the size of the receive window, that specifics the number of
bytes that the receiver is currently willing to receive. The limit of the win-
dow size[13] can be between 2 and 65,535 bytes. In high-bandwidth networks,
increasing the window size can help the efficiency of the network.

TTL The time to live[13] is a limit of how long a network or computer net-
work technologic item can transmit before it should be stopped. Typical, is
for how long a packet should be able to retransmitted before it should be dis-
carded.

Don’t fragment bit If the don’t fragment bit[13] is set on a packet the packet
won’t be fragmented under any circumstances. This means that if the packet
can’t be delivered without fragmenting it, the packet would be discarded in-
stead .

SYN packet size Is a field where the size of the SYN packet i set.

12

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

Options Options provide some extra control functions that could be useful,
but not necessary for the most of time. The different options are end of list,
no operation, windows scaling, maximum segment size, selective ACK OK,
timestamp, timestamp with zero value and unrecognised option number.

Quirks Some systems could have bugs that set certain values that should
be zeroed in a TCP packet ton non-zero values. This information could be
valuable since it could be specific for one operation system.

OS genre Is the main name of the operating system. This is what the previ-
ous fields lead up to.

Details Is a more detailed explanation of the operating system. It often states
which kernel, or version number the operating is.

Since there always comes new operating systems there will always be a
need of updating the signature databases. The developers of p0f have made a
solution to this by making a web page where people using p0f can add new
signatures. Even though this web page exists, it looks like the signatures need
a major upgrade to meet today’s new operating systems.

PADS

PADS[14] or Passive asset detection system is a tool to help the system admin-
istrator to keep track of the networks assets. Pads do not include operating
system detection, only asset detection. Similar to a passive operating system
detection tool, PADS uses signatures to detect the networks assets. PADS com-
plement IDS technology by providing context to IDS alerts. In PADS man-
ual pages, it says that PADS has the aim of being passive, lightweight and
portable. Passive in the meaning that it will record traffic, but never send
any packets out from the application. Lightweight in the sense that there is
no need for any database or any repository installed on the local machine.
Portable, meaning that it can be placed on remote system without requiring
any additional libraries expect those associated with libpcap.

Some features that PADS possess is the possibility to:

• Retrieval of MAC addresses via ARP reply packets

• ICMP support, via ICMP echo replay packets

• A network or several networks can be specified, meaning that it will only
record assets from those networks.

• SLL Frame Relay Support

• The ability to work in the background as a daemon

13

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

• Tools for archiving PADS data to permanent storage and making struc-
tured reports out of PADS data.

Running asset detection gives the following output.

root@gateway:/etc/pads# cat assets.csv

asset,port,proto,service,application,discovered

128.39.73.249,22,6,ssh,OpenSSH 4.7p1 (Protocol 2.0),1304678612

First is the ip address, then comes the port number on which the service
is running, then the protocol, service type and which applications. The last
number is a timestamp of when the service was detected.

PADS has several signature files that is used when doing detection. One is
the pads-ether-codes that is a list of mac addresses and vendors of computer
equipment. This file contains vendor codes used to map MAC addresses to
vendor names.

00:03:93 Apple Computer, Inc.

00:05:02 Apple Computer

00:0A:27 Apple Computer, Inc.

00:0A:95 Apple Computer, Inc.

00:30:65 Apple Airport Card 2002

00:50:E4 Apple Computer, Inc.

00:A0:40 Apple Computer

08:00:07 Apple Computer Inc.

The other, and more important signature file, is the pads-signature-list.
This file contains a database of device signatures to be used with the passive
asset detection system.

This file has the following format:

<service>,<version info>,<signature>

Service Describes the service name used by the signature. It could be SSH,
SMTP, FTP, HTTP, etc.

Version info Contains an NMAP-like template for the service discovered by
the signature. The format of the version info is as follows:

v/vendorproductname/version/info/

14

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

Signature The signature is a PCRE compatible regular expression without
the surrounding slashes (/). PCRE means that it is using the same syntax and
semantics as Perl 5. The signature should have one or two sets of parenthesis
() depending on the version Info field.

A typical line in the pads-signature-list could look something like this

ssh,v/OpenSSH/$2/Protocol $1/,SSH-([.\d]+)-OpenSSH[_-](\S+)

Where ssh is the service, OpenSSH is the vendor product name $2 is a vari-
able used in a regular expression to pick out a string in the line the regular
expression works on. $2 is the version, and Protocol $1 is the protocol name.
Next comes the main signature, a regular expression where one uses parenthe-
sis to pick out strings to use in the version info.

prads - Passive real-time asset detection system

prads[15] or passive real-time asset detection system, listens passively in a
network and gathers information about hosts and services it sees in the net-
work. The information can be used to map a network, or figure out which
hosts/services that exists. prads has a Perl implementation, but after talking
to one of the developers, Edward Fjellskl he gave the impression that a new C
implementation is soon to be released.

prads is not only an operating system detection tool like p0f, but it also tries
to detect assets. Meaning that it can detect what is running on the detected
computer.

In contrast to p0f, prads has the ability to run detection on all the different
states, regarding the TCP packet. When running p0f, one must decide if one
should run in SYN, SYNACK or RST mode. prads covers all these modes at
the same time, meaning that it can detect packets with SYN, SYN+ACK, RST
and FIN at the same time. Even though RST and FIN modes exist, SYN and
SYNACK are the most important modes for doing operating system detection.
Meaning that the signature files for these modes contain the majority of signa-
tures.

prads has a lot in common with p0f and PADS. The operating system detec-
tion side of prads is similar to p0f, and the asset detection is similar to PADS.
prads uses the same format on the signatures as p0f does. Meaning that the
same signature files can be used in both applications. Reading the TCP-syn.fp
file, that consist of the TCP SYN fingerprints, in prads/etc directory shows
that it is taken directly from p0f. The same can be said about the vendor/mac
address file that is almost a direct copy of the pads-ether.sig file.

Below is a typical output from prads. Looking closer one can see that it
looks much like the PADS output. The difference is that there also is detected
an operating system.

128.39.73.90,0,1033,6,SYN,[65535:127:1:48:M1460,N,N,S:.:Windows:2000 SP4, XP SP1+:link:ethernet/modem]

15

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

The next output is an asset detection from prads. Looking at the service it
is a ssh service running the OpenSSH 4.7p1 implementation.

128.39.73.90,0,22,6,SERVER,[ssh:OpenSSH 4.7p1 (Protocol 2.0)],0,1302891973

Collecting all these lines in the detection, one can tell a lot about one ip
address. With the tool asset-report, prads gather everything about every ip
address and prints it in a report giving a better view of what the ip contain.
Below is a typical example of how ip address 195.93.80.36 is shown in this
report. Seeing what operating systems and services it runs. In this case ip
195.93.80.36 runs a web server at Windows 2008 server. Interesting is it also to
see that prads is rating how good the operating system detection is. Looking at
the unknown operating system it is of course 0% but looking at the Windows
server 2008 it is a 60% chances that this is correct.

167 --

IP: 195.93.80.36

DNS: blog-win-cs-blogs-frr.evip.aol.com

OS: Windows Server 2008 (UC) (60%) 1

Port Service TCP-Application

80 SERVER @www

168 --

IP: 198.78.205.126

OS: unknown unknown (0%) 1

Port Service TCP-Application

80 SERVER @www

Having worked with p0f, PADS and prads one fast realise that prads is a
direct merge between p0f and PADS.

Ettercap

Ettercap[16] is not only a passive fingerprinting tool, but also a suite for the
man in the middle attack. Ettercap has a lot of functions some of them are
sniffing of live connections, content filtering on the fly and so on.

NetworkMiner

Networkminer[17] is a network forensic tool for Windows. Passive operating
system detection is one of Networkminer’s features. Networkminer focuses
on the host rather than the packets. A good example is that the information
created by Networkminer is grouped by host, rather than as a list of packets.

16

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

Nmap

Nmap[18] or network mapper is one of the most famous security tools known
to system administrators. Nmap was actually Security Product of the Year by
Linux Journal, Info World, LinuxQuestions.Org, and Codetalker Digest. Ac-
tive fingerprinting is only one of Nmap’s many features. Nmap can do port
scanning, operating system detection, version detection, ping sweeps, and
more.

Satori

Satori[19] that is another passive fingerprinting tool, uses WinPCap. This pro-
gram listens on the wire for all traffic and does operating system Identification
based on what it sees. Satori does not only look at the TCP’s SYN or SYN+ACK
packet but also looks at the rest of the IP stack. Satori can identify: Windows
Machines, HP devices (that use HP Switch Protocol), Cisco devices (that do
CDP packets), IP Phones (that send out Skinny packets), and a lot of DHCP
related stuff recently, plus some other things

SinFP - single-port active/passive fingerprinting

SinFP[20] is and passive and active fingerprinting tool, developed in Perl.

XProbe2

XProbe2[21] is an active fingerprinting tool, that not uses the TCP protocol,
but rather uses a combination of the ICMP(Internet Control Message Protocol)
and the UDP(User Datagram Protocol) protocol.

2.2.5 Counter measures / Fingerprint scrubbing

Looking at network security and fingerprinting, there always is two sides. In
this case, those who do the operating system detection, and those who want
to deny it. Looking at active fingerprinting, preventing fingerprinting can be
done by limiting the type and amount of traffic going in and out from a net-
work. Typical with a firewall. But when it comes to passive fingerprinting, no
traffic is sent, meaning that it does not help with a firewall. Maybe the simplest
way to defeat passive fingerprinting must be to modify the default values of
the TCP/IP stack implementation. It could be to modify the TTL, some TCP
options or the window size. This way the fingerprinting applications will not
be able to detect the correct operating system. Fingerprint scrubbing is another
approach that is interesting. Doing Fingerprint scrubbing we have applica-
tions often called a TCP/IP fingerprint obfuscator. There exist applications for
all the major operating systems Windows, Linux and MacOS. The obfuscator
or ”fingerprint scrubber” is often placed between the internet, and the network
under protection. Typically in the firewall. Here the obfuscator conduct a set
of kernel modifications to avoid recognition of the operating system based on
the characteristics of IP and TCP implementations. An application called IP

17

2.2. OPERATING SYSTEM DETECTION / FINGERPRINTING

Personality is a patch to the Linux kernel. IP Personality[22] has the ability to
have different ’personalities’ network wise, that means to change some char-
acteristics of the network traffic, depending on different parameters.

The characteristics that can be changed are:

• TCP Initial Sequence Number (ISN)

• TCP initial window size

• TCP options (their types, values and order in the packet)

• IP ID numbers

• answers to some pathological TCP packets

• answers to some UDP packets

This patch depends on the framework created by Rusty Russel called Netfilter[23].
More precisely, the patch adds a new Iptables target (in a kernel module) that
can be used in the mangle table with (a patched) Iptables. This target is very
configureable.

Another application is OSfuscate[24]. This is an application made for Win-
dows. This application takes use of profile files(.ini-files) that gives the user
the ability to change the profile of the operating system. This application has
a very simple graphical user interface, like shown in figure 2.4. Here one can
change the profile of the operating system tricking applications like p0f and
prads.

Figure 2.4: Screenshot of Osfuscate

18

2.3. HONEYD

2.3 Honeyd

Honeyd[25] is a small daemon that creates virtual hosts on a network. The
hosts can have different ”personalities” and services. Honeyd makes a single
host have the possibility to have several ip addresses, the author of Honeyd
Niels Provos has tested up to 65536 on a lan for network simulation. Hon-
eyd was made to improve cyber security by providing mechanisms for threat
detection and assessment. Honeyd can also be used to hide real systems in
the middle of a virtual system. Even though Honeyd is open source, released
under GNU General Public License, several bigger companies use Honeyd.

The big advantage with Honeyd is the possibility to run several different
operating systems on the same computer. If this should be done without run-
ning it virtual it would demand many computers and operating system li-
censes. Also running this with a real virtual system like Xen or VMware, it
would demand a powerful server and costly licenses. Now running and test-
ing operating system detection can be done on every operating system that
exist.

With Honeyd, not only computers can be virtualised the whole network
can be made, with routers and switches like a real computer network. All the
common network distributors like Cisco and Zyxel, are in the database over
which vendors and what equipment can be virtualised.

So how does Honeyd work? The installation of Honeyd is actually quite
straightforward. The latest release of Honeyd makes us install it with aptitude
in Ubuntu. When installing Honeyd with aptitude several other packages goes
along with Honeyd. Packages that must be installed with Honeyd to make it
work are:

libevent The API libevent[26] gives a way of executing a callback function
when a specific event occurs on a file descriptor or after a timeout has been
reached. It also support callbacks due to signals or regular timeouts. Libevent
can be used to replace the event loop that can be found in event driven network
servers.

libpcap Libpcap the packet capture library gives to user a high level interface
to packet capture systems. This gives the user the possibility to access all the
packets on the network even those that are destined for other hosts on the
system.

libnet-dev What libnet does is to make a generic interface to many different
network drivers. What this again does, is to help us write network applications
without having to pin it to a particular type of network.

libdumbnet Libdumbnet[27] or libdnet is a library that provide a simplified,
portable interface to several low-level networking routines.

19

2.4. TCPDUMP

libedit-dev Libedit[28] is a non-GPL replacement for readline library. A spin-
off from Net BSD code.

zlib1g-dev zlib[29] is a library that is used to deal with lossless data-compression
on almost every hardware and operating system that exist. The authors of zlib,
Jean-loup Gailly, that has done the compression part, and Mark Adler that has
done the decompression part, are both known for their work in the ”compres-
sion world”. Both have worked on gzip which is much used in the Linux
world, and Mark Adler was also the author of Zip a very known compression
method.

2.4 Tcpdump

Tcpdump[30] is a packet analyser that typical runs under the command line
in a linux based operating system. Tcpdump can capture and display TCP/IP
and other packets going through or into the machine containing Tcpdump.
Tcpdump is distributed under the BSD license and is free software. Tcpdump
uses the libpcap library to capture packets in Unix-like operating systems, but
it also exist a port to windows that is called WinDump. This port uses the
WinPcap library which is a port of libpcap to windows. Many network ap-
plications support the pcap format which is the way Tcpdump stores packet
sniffed by Tcpdump. This way different applications can be run on the same
Tcpdump. This is typical used in forensics or network analysis. Below one can
see a typical output from Tcpdump[31].

12:00:19.042948 IP 52.210.16.62.customer.cdi.no.60552 > gateway.ssh: . ack 357824 win 33208 <nop,nop,timestamp 571221253 1035533192>

12:00:19.042950 IP 52.210.16.62.customer.cdi.no.60552 > gateway.ssh: P 289:337(48) ack 357440 win 33304 <nop,nop,timestamp 571221253 1035533192>

12:00:19.043157 IP gateway.ssh > 52.210.16.62.customer.cdi.no.60552: P 364624:365360(736) ack 337 win 478 <nop,nop,timestamp 1035533201 571221253>

2010 packets captured

2010 packets received by filter

0 packets dropped by kernel

root@gateway:~#

20

2.5. PREVIOUS WORK

2.5 Previous work

In the area of passive operating system fingerprinting or active operating sys-
tem fingerprinting, not many research papers are written.

In the article ”Passive fingerprinting” by Lanze Spitzner[11] He explains
what passive fingerprinting is, how it works and how to use it. It covers the
difference and similarities in passive and active fingerprinting. The article de-
scribes the different TCP packet headers and how these can be used to do a
passive fingerprint against a remote host.

The same author Lanze Spitzner talks also about knowing your enemy in
the article ”Know your enemy”[32]. In networking knowing your enemy and
your assets are really important. Knowing your enemy makes it much easier
to protect yourself against dangers. The threat Spitzner talks about is a typical
threat, and that is the script kiddie. What the script kiddie does is to focus
on a small number of exploits and then searching the internet for just these
vulnerabilities which his exploits can take use of. Becoming a script kiddie is
easy and almost everyone with some knowledge to computing can use tools
for hacking. this means that eventually you will be hacked.

Another article, not actually covering fingerprinting but covering impor-
tant basic security, by Gerald A. Marin Network ”Security Basics” [33] looks
at general network security. The author describes different attacks like Smurf
attack, land attack and the DDos attack. It also looks at different countermea-
sures, looking at what intrusion detection system is and how to stop worms,
trojans and malicious code.

Masking approach to secure systems from Operating system Fingerprint-
ing by Surbhie Kalia and Manider Singh is about the vulnerability the operat-
ing system is. When the hacker knows which operating systems is running on
a host, it is much easier for the hacker to make an attack. Different operating
systems have different vulnerabilities. Further more the paper discusses the
primary phases that every operating system fingerprinting tool uses to detect
the operating system of a remote system. The paper looks at tools like Nmap
and Xprobe2 that are tools for active operating system detection. The most
important coming out from this paper are countermeasures that shall prevent
operating system detection.[34]

In the paper Ambiguity Resolution via Passive OS Fingerprinting by Greg
Taleck [35] he looks at attacks that exploit differences in common operating
systems to evade IDS detection. The paper describes an approach to use pas-
sive operating system detection to correctly resolve ambiguities between dif-
ferent network stack implementations. The paper also looks at a new tech-
nique to increase the confidence level of a operating system detection, looking
closer at the TCP connection negotiations.

21

2.6. SUMMARY BACKGROUND CHAPTER

2.6 Summary background chapter

There are to main types of fingerprinting. Active and passive. The active way
uses an application to make a custom made packet that can be used to de-
termine a remote hosts operating system. The passive way contains a packet
sniffer that sniffs packets and compares the packet to a database or files with
signatures. The database/files consist of different fields that are demanded to
determine which operating system it is. Not all the fields in a signature ex-
ist for every operating system, but put together the operating system can be
detected, though not with 100% accuracy. Even though calling it operating
system fingerprinting or detection, we can also use some of these applications
to determine services running on the remote host. Therefore the name asset
detection. Later in this thesis I will use some of the passive operating system
detection applications mentioned earlier to do some testing. The research done
in the area for passive operating system detection is not extensive. Looking a
bit wider in the network security realm, more research is done. The reason for
looking at Honeyd is to use this application in testing detection. Honeyd can
simulate different network profiles and can maybe be used to simulate many
operating systems.

22

2.6. SUMMARY BACKGROUND CHAPTER

23

Chapter 3

Approach

This is an investigative study and the investigation will be based on methods
that will be described in this section. The experiments will be based on the
problem statements, and will be described in detail.

3.1 Test environment

Experiments that will be conducted in this thesis will be either run virtually
on a Xen server or on a computer connected to the 128.39.73.0 network. Later
in the thesis, a controlled environment is mentioned. What this means is a set
up where we control all the computers, meaning that we can control the traffic
going in and out of all the computers. The virtual controlled setup, is a setup
of six virtual computers connected together in a virtual network. The gateway
has a public ip address, that is 128.39.73.249. This gives the ability to connect to
the computer remotely through ssh and vnc. The figure of the virtual network
can be looked closet at in the figure 3.1.

The virtual computers in the network will have different operating sys-
tems, Windows and Linux distributions. This virtual system can be accessed
through the gateway from everywhere, just having a computer with an inter-
net connection.

In figure 3.2 we see an illustration of how the other test environment looks
like. All traffic going through port 16 is mirrored with the mirror port and this
traffic is being captured on the computer 128.39.73.9. To port x are computers
in the 128.39.73.0 connected and when those computers connect out of this
network the traffic most pass through port 16 that is mirrored

24

3.1. TEST ENVIRONMENT

Figure 3.1: Test environment [Haarek Haugerud]

128.39.73.9

eth2

Main switch

Mirror
port

Port 16

Gateway

eth1
128.39.73.1

128.39.73.x network

Port x Port x Port x

eth0
xxx.xx.xx.x

Internet

Port xPort xPort x

128.39.73.x network

Figure 3.2: 128.39.73.0 Network

25

3.2. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

3.2 Comparing p0f and prads in the 128.39.73.0 network

In this experiment, learning about passive operating system detection, and
finding out how p0f and prads works, is the main goal. This means to discover
the applications functions and their limitations. How this will be done is to
first collect packets that are going to be processed by the applications. Then,
running the applications on these packets with different options enabled. At
the end try to find some options that will give as similar output as possible
to make a comparison and see how the applications differ and are alike. The
comparison will be made out of observations and not through any thorough
investigation or analysis.

When both applications are to be compared to each other, the importance
of working on equal data is present. Meaning that when comparing p0f and
prads, a comparison can’t be done without a identical base. Both applications
have the ability to read from pcap files(Tcpdump) instead of doing a live run
and this gives the assignment the predictability it needs.

The first important decision to make is where to gather the data to run
through the applications. To make the test as real as possible, running the Tcp-
dump in the schools 128.39.73.0 network is being done. This is accomplished
by creating a mirror port on one of the important switches in this network.
In this network we find the lab computers that are used in computer classes
in the school. Using a mirror port gives the ability to capture all the traffic
going in and out of the network and it also gives a predictability in the form
that we have knowledge of when there is the most traffic on this system. In
a school situation the most traffic are during the school day. More specific,
during scheduled lab hours.

Connected to the mirror port is a Linux machine. On this computer is a user
with super user privileges made. This computer has a public ip address and
has the possibility to be connected to remotely. On this computer there will be
installed Tcpdump, p0f and prads. These applications will also be installed on
the virtual controlled system.

The Tcpdump will be run two times. One time for one day, the other will
be for about four days. Being able to detect operating systems on both dumps
is important in comparing the applications.

3.2.1 Installing applications

To be able to use the applications mentioned in this section, installing them
must be done. Most applications are easily installed with aptitude, but prads
need some additional configuring.

The first application to be installed is Tcpdump. Tcpdump is installed with
the following command:

apt-get install Tcpdump

Installing Tcpdump it asks for some additional packages to be installed.
Important is libpcap.

26

3.2. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Next to be installed is p0f. As with Tcpdump, p0f can be installed with
aptitude and the following command will install p0f.

apt-get install p0f

The last application is prads. prads cannot be installed with aptitude as the
rest of the application, but with git. The procedure for installing prads is taken
from its INSTALL documentation and it states as follows

sudo aptitude install libnet-pcap-Perl libgetopt-long-descriptive-Perl git-core libdbd-sqlite3-Perl

git clone git://github.com/gamelinux/prads.git

sudo ln -s $PWD/prads/etc /etc/prads

sudo Perl prads/sbin/prads.pl --help

Problems occurred trying to install prads this way, so after talking to the
developer of prads he came up with the solution of doing it this way:

sudo aptitude install libnet-pcap-Perl libgetopt-long-descriptive-Perl git-core libdbd-sqlite3-Perl

git clone git://github.com/gamelinux/prads.git

cd prads/src/

make

sudo ln -s $PWD/prads/etc /etc/prads

sudo Perl prads/sbin/prads.pl --help

Now when running this application it is important to be in the correct di-
rectory. The directory to run the application from is the src folder of prads.

3.2.2 Running Tcpdump

Tcpdump needs some options set to be able to dump from the correct network
interface and to enable to dump to a file instead of only dumping to the screen.
A snapshot from Tcpdump’s manual[36] says the following about choosing
which interface to listen to:

-i Listen on interface. If unspecified, Tcpdump searches the system interface list for the lowest

numbered, configured up interface (excluding loopback). Ties are broken by choosing the earli-

est match.

One can see that the way Tcpdump is to be run is with the options -i that is
the interface option. Meaning that if a computer has several network interfaces
one have to choose which network interfaces to dump from.

Next is to write the packets to a file instead of printing them out in the
terminal window. This is also described in the Tcpdump manual pages:

-w Write the raw packets to file rather than parsing and printing them out. They can later be

printed with the -r option. Standard output is used if file is -.

27

3.3. RUNNING P0F ON THE TCPDUMP

The following Linux command will run Tcpdump on the correct network
interface and save to the correct file

Tcpdump -i eth2 -w petter.Tcpdump

After the Tcpdump is run and the collection of packets are completed, both
p0f and prads must be tested with the Tcpdump. Default both applications run
on a network interface, so to be able to run these applications towards a Tcp-
dump, specifying a file instead of a network interface must be done. For test-
ing the performance of the applications, running the time command in linux
will be done. This command will show how long each of the applications will
run when doing an operating system detection. Running this ten times will be
sufficient to say something about how long each application uses to run the
operating system detection.

3.3 Running p0f on the Tcpdump

Below we can read from the snapshot of the p0f manual[37]. Here we see that
we read from a pcap file by using the -s option followed by the pcap file name.
As also seen in the Tcpdump manual, the p0f manual gives us the advice of
running Tcpdump with the -w option that means that it writes to a file instead
of just showing what is happening in the terminal window.

-s file

read packets from Tcpdump snapshot; this is an alternate mode of operation,

in which p0f reads packet from pcap data capture file,

instead of a live network.

Useful for forensics (this will parse Tcpdump -w

output, for example).

To log the output from p0f there is another option that must be set, and that
is the -o option.

-o file

write to this log file. This option is required for -d and implies -t.

The way p0f was run is with the following Linux command:

p0f -s /home/petter/logfiles/petter.Tcpdump -o /home/petter/log files/petter_Tcpdump.p0f

To collect the time p0f uses to run, just add time before p0f.
In the result chapter, the results from this run will be presented.

28

3.4. RUNNING PRADS ON THE TCPDUMP

3.4 Running prads on the Tcpdump

From the prads manual pages[38], we see that reading from a pcap file has the
option -r. Logging to a file has option -l followed by the filename.

-r <file>

Read pcap <file>.

-l <file>

Log assets to <file> (default: ’/var/log/prads-asset.log’)

This way prads was run:

prads -r /home/petter/tcpdump/petter.Tcpdump -l /home/petter/log files/petter_tcpdump.prads

Important is to be located in the correct directory when running prads. The
directory is the src directory of prads. When running prads this way, prads
will test all different methods of fingerprinting it knows. Not only SYN, but
SYNACK, FIN and RST as well.

When comparing the applications, timing them, can show their perfor-
mance. In Linux, there is a time[39] command that collects different statis-
tics about the time the applications run with time, uses. This will be used to
measure the performance of p0f and prads.

In the results chapter the results will be presented.

3.5 Comparing p0f and prads

Both p0f and prads have an extensive output with a lot of lines of text as out-
put. In some way this has to be organised to be able to directly compare these
two applications output. The lack of a good statistical tool in prads and p0f is
the main motivation for a script, that will count the instances of an operating
system and list this together with the operating system. This script will also
count how many operating systems each ip address has got.

The way chosen to do this, is to make a Perl script that counts the operating
systems detected either in p0f or prads. It’s important that the same operating
system is not counted several times for a single ip address. Still, one ip can
have different operating systems in example, when a computer is used to do
NATing. The script will also count the number of operating systems on every
ip address. The script must be able to receive a file, either from p0f or prads
and have the possibility to output a file with statistics about the detection.
There will be made two script. One for p0f and one for prads. This script will
enhance the operating system detection and help the system administrator by
providing a better statistical view of the detection.

29

3.6. SUMMARY COMPARING P0F AND PRADS IN THE 128.39.73.0
NETWORK

The other approach to comparing these to applications is to look directly
into different ip addresses and check the operating system detection for those
specific ip addresses. This approach will be interesting because of looking at
a single ip address, one can look at the details of the passive detection, also
being able to see if the detection is correct or not. The way this will be done
is to grep[40], that means to search for something in a detection and print the
line matching the grep, for the ip address. This way one can compare single ip
addresses in p0f and prads.

A grep command will look like this:

cat petter_1504.prads | grep 128.39.73.73

This command will pick out all lines containing the ip address 128.39.73.73
from the prads file.

3.6 Summary comparing p0f and prads in the 128.39.73.0
network

The problem statements says that one should compare p0f and prads in the
128.39.73.0 network. The approach to this problem statement will be to try out
the applications and compare them through observation. Observations means
to look at the output from each application and explain what they are and
what they could mean.

The idea by running both of the applications with a Tcpdump, instead of
running each application live, is that one can work on the same material. To
measure the actual output of the applications comparing the two, will not only
be done by observing their output, but by writing some Perl scripts that will
make statistics for each application. The script will count each instance of an
operating system in this network, and count number of operating systems for
a specific ip address.

3.7 New signatures

The background for this experiment is to investigate on the weaknesses on ex-
isting fingerprinting methods and at the same time look at what can make fin-
gerprinting better. This experiment will be about exploring the signatures and
their role in passive operating system detection. The idea behind the method
used in p0f is used in many passive fingerprinting applications and it is this
method this investigation will be about. Both prads and p0f uses the same
method in doing operating system detection. So the application that will be
tested in this experiment is prads. A typical passive fingerprinting application
first sniffs packets, then based upon what kind of packet and what the packet
contains, makes a decision of which operating system it is. Many of todays
passive operating system detection systems bases their detection on the TCP

30

3.7. NEW SIGNATURES

SYN and TCP SYNACK packets. In this experiment the testing has been done
using prads. Since the signatures are different in the different modes prads
operate, the focus will be on the SYN signatures and SYN signature file.

Often passive operating system detection does not do what it was intended
to do. Meaning that the applications says that the operating system is ”un-
known”. This is the motivation for this experiment. Adding new signatures is
a way to improve the passive operating system detection applications. In short
terms, this experiment will consist of first running prads, and provoke prads
to produce an unknown operating system. Then add a new signature together
with the new operating system, then run prads one more time to prove that
the new signature works.

The approach to this assignment will differ a bit from the first assignment.
As for the detection application, prads will be used not p0f. As in the first
experiment, Tcpdump will be used together with prads. Tcpdump will be
run in the controlled environment. The controlled environment is a setup of
six virtual machines. 3.1 The test environment consist of five linux machines
and one Windows machine. The gateway and choke is Ubuntu 8.04 machines.
The desktop, laptop and server1 are Debian 4.0 (etch). The Windows machine
called server2 is a Windows XP SP 3 machine. To be able to make a regular
TCP connection from one computer to the other, in the network, a decision is
made of installing a web server on the gateway. This way, using a browser,
a TCP connection can be made from every computer to the gateway. As for
web server software apache2 is preferred because of the ease of use and the
simple installation process. In figure 3.3 we can see how the network will be,
and what is installed where.

31

3.7. NEW SIGNATURES

Gateway with apache web server

Server1
with lynx

Server2
with IESwitch

Choke with lynx

eth1 eth2

eth1

eth0

Laptop with
lynx

Desktop
with lynx

Figure 3.3: An overview of the network with the applications installed

32

3.7. NEW SIGNATURES

Installing apache2 web server on the gateway is done with the following
command:

apt-get install apache2

Testing the web server when finished installing, is done with opening a
web browser and input the gateway’s ip address. If it is working you get ”it
works” in the browser window.

In this experiment, Tcpdump must be run on one of the computers in the
network. The question is on which. Looking at the overview of the network
figure 3.1, the decision was made to run it on the gateway. This way when
the computers connect to the apache web server on the gateway, all computers
connect to it through the same network interface eth1. To be able to connect to
the web server, an web browser must be installed on all of the computers. Since
most of the computers are command-line based, a text based web browser
called lynx will be installed. The installation was done with following the
command:

apt-get install lynx

Next step is to do the testing. The testing will consist of one computer con-
necting to gateway that has a web server. This connection will be intercepted
by Tcpdump that records what is happening on network interface eth1 on the
gateway. This will then be done for all the computers in the virtual network,
one by one.

After the Tcpdump is collected, prads will be run on the Tcpdump. From
the output from prads, hopefully some unknown signatures will appear. If
there exist an unknown signature there will be created a new signature with
the knowledge of the unknown operating system.

Next, the same test will be conducted one more time, to see if there still
exist any unknown signatures.

33

Chapter 4

Results

In the result chapter, the results given from running p0f and prads will be
shown. The superior goal of this thesis is to investigate passive operating sys-
tem detection The following chapter will first look at how p0f and prads work,
it will look at the performance of the applications and the output from the ap-
plications.

4.1 Comparing p0f and prads in the 128.39.73.0 network

This section will first consist of running the applications, then timing the appli-
cations, next is to count instances of operating systems and at the end compar-
ing one specific ip address. All this will be done for both p0f and prads and
each section will have a comparison section that will look at the similarities
and difference of p0f and prads.

4.1.1 Running the applications

This results will look at both of the applications, when running the applica-
tions. The focus will be on the behaviour of the applications during run and
when the run is finished.

Running p0f

This result shows how p0f looks like when it does a regular run, and running
p0f gives the following output in the terminal window 4.1

Figure 4.1: p0f terminal output petter.Tcpdump

34

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

The output shows that p0f is the version 2.0.8. It also states that it runs in
SYN mode on the file petter.Tcpdump. When p0f is running, it shows the line
that starts with p0f: and so on. When p0f is finished it writes

[+] End of input file.

p0f’s interface is command-line based. It gives little information when p0f
is running. If the run of p0f don’t work, it will feedback an error message. Of-
ten this error message is cryptic and not very informative. When running p0f
without a log file to write to, p0f writes directly to the screen. When cancelling
a live run, p0f writes out the average packet ratio.

Next the output from p0f will be presented. It will be presented by a screen-
shot taken from the p0f log.

In figure 4.2 we see the log file, that has been constructed by p0f. Every
entry in the log file have two lines in the file. The first line contains the date
and time of when the detection has found place. Then comes the ip address
of the computer where p0f detected the operating system. Next comes the
main operating system, with specific information of kernel or version of the
operating system together with different version information. On the next line
we see the ip address of the destination computer.

Figure 4.2: head petter Tcpdump p0f

35

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

p0f’s output is not extensive. It contains the most important information,
the ip address and the operating system. If the operating system could not be
detected, p0f prints UNKNOWN - and the signature of the operating system.
This way one can add this signature to the signature file, of course, if one
knows which operating system that is detected. p0f does not tell what kind
of detection the packet has gone through, so which signature file to add the
signature to, must be checked in advance.

36

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Running prads

Running prads gives the following output in the terminal windows shown in
figure 4.3

Figure 4.3: prads terminal output petter.Tcpdump

The output from prads is extensive. First prads shows where the signa-
ture files are located. Next prads shows which version it is and which libpcap
version it uses. Then prads shows which signatures it is testing, in this case
it is all possibilities. SYN, SYNACK, RST, FIN and ACK. prads tells which
services it looks for and from which file it reads from. Then it says sniffing...

37

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

When prads is doing the operating system detection prads says sniffing... This
means that prads is still running. When the sniffing is done, the statistics is
shown. Both when prads runs a live detection and when it runs a detection
from a Tcpdump, it does not print the detection to the screen. If not specified,
it uses the default log file called prads-asset.log. Using an option, prads can
print the log to a self chosen file.

After prads is finished detecting operating systems it prints some statistical
information. The statistical information given is different information about
what kind of packets that have been processed by prads. It also says some-
thing about the detection done, when it comes to asset and operating system
detection.

In figure 4.4 we see a snapshot from the prads log file. Every entry in the
log file contain one line and one line only. The line start with the ip address
of the computer which are fingerprinted, then comes what kind of vlan the
computer is in. Next comes the port number. After the port number we see
packet information if there is a SYN, ACK, SYNACK, RST or FIN. After that
a lot of information like the fingerprint itself, and the operating system with
version or kernel information. Followed by uptime and distance, at last, when
the packet was discovered.

Figure 4.4: head petter Tcpdump prads

prads prints the format of what is what in the log file. This is the start
line in every log file prads makes. The different fields are more or less self
explanatory. One field, the field called proto in the log file is the protocol.
The protocol is stated as a number, so to know which protocol the detection is
about, one must know the number of the protocols. In the first line in figure
4.4, the protocol states number 6, this is actually the TCP protocol.

The detection prads does is smart. This means that prads does not print
every detection to the log file. If prads detects an operating system with a
specific ip address one time, this detection will not happen again. A problem is
that since prads runs in different modes, a specific operating system can have
small name differences meaning that one operating system can be detected
several times. When running detection in a bigger network, the prads output
can seem a bit overwhelming. There is no sorting and there is now other way
of viewing the detection other than viewing them in the log file or running
them through the prads-asset-report script. This script sorts the detections

38

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

based on ip address. The problem is that when there is many ip addresses,
this report also get very chaotic.

4.1.2 Run time command on the applications

Testing the performance and to see what resources both applications uses is
important in comparing the two applications. Knowing what resources both
applications use can be an important factor in choosing which application to
use, and also looking at what hardware one needs, to run the applications.

To test the performance of p0f and prads, running a comparison on how
long each applications uses has been done. Using the time command in Linux,
the time it takes to run each application will be recorded. This command to-
gether with the application command itself, will give an output in the form of
three different times. The real time, user time and sys time. The real time is
the total time the application uses. The user and sys time is processor times.

When running the command with time, both applications are tested with
the Tcpdump file collected through a day.

Timing p0f

The following command will time p0f running on the Tcpdump file collected
through a day.

time ./p0f -s petter_1504.Tcpdump -o petter_Tcpdump.p0f

To be sure of the results, the test has been run ten times. A small difference
will always occur, but if there is not much of a difference in the testing, the test
is more or less reliable. Beneath is a table that shows the time in the ten runs.

real user sys
0m17.315s 0m1.232s 0m1.288s
0m16.863s 0m1.396s 0m1.340s
0m19.346s 0m1.324s 0m1.272s
0m18.609s 0m1.412s 0m1.240s
0m18.009s 0m1.336s 0m1.280s
0m20.509s 0m1.268s 0m1.528s
0m17.622s 0m1.396s 0m1.260s
0m18.989s 0m1.200s 0m1.320s
0m19.453s 0m1.444s 0m1.244s
0m20.820s 0m1.432s 0m1.168s

The focus will be on the real time. Real time is for how long the applications
uses to run.

From the time numbers one can find the mean. The mean is all the num-
bers added together divided by the number of numbers. In this particular case
the mean is 18,753 seconds. Looking at the numbers, there is not a big differ-
ence from the biggest to the smallest number, so stating that p0f uses about 18
seconds on the particular Tcpdump, is well documented.

39

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Another and maybe better view of these number is the graph in figure 4.5.
Here one can see that there is little difference from the shortest to the longest
time. The graph consist of the ten runs, and the mean line is also added to see
how the different runs differ from the mean.

1 2 3 4 5 6 7 8 9 10

16

18

20

22

Timing p0f

Timing p0f

Name of the run

T
im

e
in

 s
ec

o
n

d
s

Figure 4.5: Graph over p0f time command

40

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Timing prads

As with p0f, the time command has been used to time prads. Again the test is
run ten times and on the same Tcpdump file.

The following command gives the time of the prads command:

time ./prads -r petter_1504.Tcpdump -l petter_Tcpdump.prads

The following numbers are the results of the ten runs.

real user sys
5m53.070s 5m48.730s 0m1.112s
5m52.408s 5m47.930s 0m1.872s
5m44.270s 5m40.205s 0m1.216s
6m2.244s 5m58.046s 0m1.292s
5m57.201s 5m53.202s 0m1.132s
5m52.141s 5m46.890s 0m1.344s
5m55.507s 5m51.586s 0m1.336s
5m46.596s 5m42.801s 0m1.032s
5m53.928s 5m50.466s 0m1.192s
5m47.690s 5m43.821s 0m1.320s

prads differ a bit from run to run. The mean which is 5,52 is good measure
for how long prads takes to run on this particular Tcpdump is correct.

In figure 4.6 we see a graph that describes the prads run, also added is the
mean line. This line shows how the runs differ from the mean. It’s important
to know that the times is converted to seconds from minutes.

41

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

1 2 3 4 5 6 7 8 9 10

340

345

350

355

360

365

Timing prads

Timing prads

Name of the run

T
im

e
in

 s
e

c
o

n
d

s

Figure 4.6: Graph over prads time command

Some of the runs is a bit away from the mean and a possible explanation
is that other processes could be running in the background when prads is run.
Since the computer that the test is run on is shared with someone else, knowing
what is running at the same time is difficult to be aware of.

42

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Timing prads with the -XS option

To compare the applications, running prads with the -XS option produces a
more similar test. Running prads with -XS turns of asset detection and will let
us test prads with only the SYN fingerprints. If this will make prads use less
time, will be interesting two observe.

The following command tests prads with only SYN operating system fin-
gerprinting.

time ./prads -XS -r petter_1504.Tcpdump -l petter_Tcpdump.prads

As the other tests, this will be tested ten times to see that the numbers given
are more or less correct

real user sys
5m6.942s 5m3.003s 0m0.804s
5m20.456s 5m16.400s 0m1.200s
5m29.931s 5m24.840s 0m1.376s
5m27.756s 5m22.692s 0m1.384s
5m36.948s 5m31.769s 0m1.180s
5m24.304s 5m19.604s 0m1.360s
5m30.169s 5m25.268s 0m1.180s
5m32.451s 5m27.624s 0m1.288s
5m26.580s 5m22.036s 0m1.196s
5m28.133s 5m23.208s 0m1.240s

The result indicates that only running SYN detection decreases the run
time, but the time is still far away from p0f.

The results can also be viewed in figure 4.7.

43

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

1 2 3 4 5 6 7 8 9 10

320

322

324

326

328

330

332

334

336

338

Timing prads -XS

Timing prads -XS

Name of the run

Ti
m

e
in

 s
ec

o
nd

s

Figure 4.7: Graph over pradsXS time command

Summary of comparing run time for p0f and prads

Looking at the run time, it’s quite interesting to see how fast p0f can do the
detection. With only 18 seconds p0f runs detection on the same amount of
packets that prads do. Before running the test where prads was run only with
SYN mode, the suspicion was that since prads runs detection on all the differ-
ent modes and asset detection, the run time is much longer, but after testing
only running prads with SYN detection and no asset detection, prads still uses
much more time than p0f does. As mentioned earlier prads is smarter than
p0f. It could be that this ”smartness” has a big impact on prads performance. It
could be the test that checks if the operating system is detected before, that has
an impact on the performance. Even though this could have some impact on
the run time, it would probably not mean several minutes in difference. Com-
paring source code could be an approach to see the actual reason for prads
using much more time than p0f.

44

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

4.1.3 Counting ip addresses and operating systems

prads and p0f is applications yet to be developed further. They can detect
operating systems, but both applications have problems especially with the
presentation of the data coming out from the applications. The results pre-
sented in this section, is from the output of some scripts, created by the author
of this master thesis, to improve the applications further. This script looks at
the ip address and the operating system and tries to count the number of op-
erating systems existing in the network. It’s important that this script exclude
operating systems that is already counted. Meaning that for one ip address,
a specific operating system will not be counted several times. In addition to
counting instances of operating systems, the script also counts how many op-
erating systems each ip address have. Unknown operating systems is also
counted. Looking at each ip address one can see if the detection is correct or if
the detection has detected to many or to few operating systems. In the result
chapter will only a few ip addresses be shown or else the list of ip address
would be to long. To see how p0f and prads works, looking into the data from
both applications will be done.

In the appendix chapter is the scripts oscounter p0f.pl section 6.1 and os-
counter prads.pl section 6.2 added. The script is tested both with outputs from
p0f and prads. Both with a Tcpdump run over one day and over four days.

Counting operating systems p0f

Counting instances of operating systems is done with following command:

oscounter_p0f.pl -f petter_1504.p0f -o petter_1504_p0f.counted

The output from the script could either be written to a file or written to the
screen.

Operating system Number of instances
Linux 2.6 (newer, 1) 36
Windows XP/2000 (RFC1323+, w+, tstamp-) 8
Linux 2.6 (newer, 3) 7
Windows 2000 SP2+, XP SP1+ (seldom 98) 2
Linux 2.6 (newer, 2) 1
Linux 2.6, seldom 2.4 (older, 4) 1
UNKNOWN [S4:64:1:60:M1460,S,T,N,W4:.:?:?] 1
UNKNOWN [S4:62:1:60:M1460,S,T,N,W4:.:?:?] 1

The script also prints out the total number of ip addresses that have been
detected, containing an operating system, in the specified network, that is the
128.39.73.0. The total number of ip addresses that have been detected is 45.
Summarising the total number of operating systems we get 57. This means that
in average there is: the number of operating systems divided by the number
of ip addresses detected. Which is 57 / 45 = 1,26 operating systems per ip
address.

45

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

The scripts is also tested on the Tcpdump that has been run over four days.

Operating system Number of instances
Linux 2.6 (newer, 1) 38
Linux 2.6 (newer, 3) 33
Windows XP/2000 (RFC1323+, w+, tstamp-) 11
Linux 2.6 (newer, 2) 7
Windows 2000 SP2+, XP SP1+ (seldom 98) 7
Linux 2.6, seldom 2.4 (older, 4) 1
UNKNOWN [S4:64:1:60:M1460,S,T,N,W7:Z:?:?] 3
UNKNOWN [S4:63:1:60:M1460,S,T,N,W4:.:?:?] 2
UNKNOWN [S4:64:1:60:M1460,S,T,N,W5:Z:?:?] 2
UNKNOWN [1024:56:0:44:M1460:.:?:?] 1
UNKNOWN [3072:46:0:44:M1460:.:?:?] 1
UNKNOWN [3072:50:0:44:M1460:.:?:?] 1
UNKNOWN [3072:58:0:44:M1460:.:?:?] 1
UNKNOWN [2048:41:0:44:M1460:.:?:?] 1
UNKNOWN [S4:64:1:60:M1460,S,T,N,W10:.:?:?] 1
UNKNOWN [S4:62:1:60:M1460,S,T,N,W4:.:?:?] 1
UNKNOWN [3072:54:0:44:M1460:.:?:?] 1

In four days, the total number of ip addresses detected is 65. Summarising
the total number of operating systems we get 112. This means that in average
there is: the number of operating systems divided by the number of ip ad-
dresses detected. Which is 112 / 65 = 1,72 operating systems per ip address.

In principle one could believe that the total number of operating systems
should be equal to the number of ip addresses. This is not the case. Looking
at the total number of operating system detected in both cases, we see that
there is detected more operating systems than ip addresses. The majority of
the operating systems is Linux. Looking at the output we can see that there
are different Linux 2.6 versions. Called newer 1, newer 2 and so on. Could this
actually be the same operating systems detected several times?

One possible explanation to why it is detected more operating systems,
than ip addresses, is that in this network there can be several computers and
operating systems behind an 128.39.73.0 ip address. Often there is one Linux
computer and one windows machine. But there also occur cases where there
is five Linux machines and one windows machine behind a single ip address.
Looking at the output one can see that there is some UNKNOWN signatures.
These are signatures where p0f could not detect the operating system. Know-
ing what these are, one can add these signatures to the signature file and detect
those operating systems on a later point.

Counting Operating system for a specific ip address p0f

Since there are so many ip addresses detected, there will be a small selection
of ip addresses in this result. The ip address selection is chosen because in

46

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

this range of ip address, we know that there should only exist two operating
system on each ip address. Every ip should have one Linux and one Windows
computer.

IP address Number of operating systems
128.39.73.71 1
128.39.73.72 1
128.39.73.74 1
128.39.73.75 2
128.39.73.78 1
128.39.73.79 1
128.39.73.249 2

The results indicate that there is some ip addresses with one operating sys-
tem, and a couple with two operating systems. The reason for this is that only
one of the computers could have been used when the tcpdump was collected.

The results shown is interesting, and to be able to understand why the
results shows different number of operating systems, one has to look closer at
the ip address. In this case looking at two different ip addresses. One ip that
has two operating systems, and one ip that has one operating system detected.

The first ip address is 128.39.73.73. Beneath we see that the detection has
been as expected. Two computers is located under the ip address. One Linux
machine and one Windows machine.

<Sat Apr 16 01:05:29 2011> 128.39.73.75:43484 - Linux 2.6 (newer, 1) (up: 10 hrs)

<Sat Apr 16 01:06:09 2011> 128.39.73.75:1158 - Windows 2000 SP4, XP SP1+

The next ip address 128.39.73.74 has only detected one operating system.
This is ok, since it could be that the Windows machine could have been ”silent”
when the Tcpdump has been collected.

<Sat Apr 16 00:45:31 2011> 128.39.73.74:54890 - Linux 2.6 (newer, 1) (up: 10 hrs)

Even though there is only shown a few lines in the example above, p0f has
detected the same operating system for one ip address many times.

47

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Counting operating systems prads

An almost equal script to the p0f script, that counts operating systems for p0f,
is also made to count the instances of operating systems for prads. The script
will be tested on the Tcpdump running one day and four days. In addition it
will be tested on the prads file that is run with the -XS option meaning that
it will be more similar to p0f. This way it will be easier to compare p0f and
prads.

Running the script oscounter prads.pl 6.2 on the prads file run for one day,
gives the following results:

Operating system Number of instances
Linux 2.6 (Generic 2, SYN from Windows) 128
Linux 2.6 (newer, 5) 76
Linux 2.6 (newer, 7) 55
Linux 2.6 45
Linux Ubuntu 8.04 36
Linux recent 2.4 (2) 10
Windows XP/2000 (RFC1323+, w+, tstamp-) 8
Windows 2000 SP4, XP SP1+ 7
Linux 2.6 (newer, 6) 4
Windows 2000 SP2+, XP SP1+ (seldom 98) 2
Windows 98 (SE) 2
Linux 2.6 (Generic dfrag+) 2
Linux 2.6 (newer, 3) 1
Linux 2.6, seldom 2.4 (older, 4) 1
Windows 2000 SP4 1
Linux recent 2.4 (1) 1
Linux 2.6 (Syn from Unknown) 1
Brother HL-1270N 1
unknown unknown 64:1:52:N,N,T:ATFN 81
unknown unknown 63:1:52:N,N,T:ATFN 5
unknown unknown 127:1:52:M1460,N,W0,N,N,S:A 2
unknown unknown 64:1:48:M1460,S,E,E:PA 2
unknown unknown 64:1:52:M1260,N,W4,S,E,E:PA 2
unknown unknown 120:1:44:M1460:A 1
unknown unknown 64:1:60:M1460,S,T,N,W10:ZAT 1
unknown unknown 64:1:*(787):N,N,T:ATFDN 1
unknown unknown 64:1:44:M1460:A 1

Number of total ip addresses detected in the 128.39.73.0 network were 141.
Summarising the total number of operating systems we get 477. This means
that in average there is: the number of operating systems divided by the num-
ber of ip addresses detected. Which is 477 / 141 = 3,4 operating systems per ip
address.

48

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Running the same test on the four day file gives the following results:

Operating system Number of instances
Linux 2.6 (Generic 2, SYN from Windows) 150
Linux 2.6 (newer, 5) 102
Linux 2.6 58
Linux 2.6 (newer, 7) 45
Linux Ubuntu 8.04 38
Linux recent 2.4 (2) 31
Windows XP/2000 (RFC1323+, w+, tstamp-) 11
Linux 2.6 (newer, 6) 9
Windows 2000 SP4, XP SP1+ 7
Windows 2000 SP2+, XP SP1+ (seldom 98) 7
Linux 2.6 (Generic dfrag+) 4
Linux 2.6 (newer, 7 fedora12) 3
Linux 2.6 (newer, 3) 2
SunOS 4.1.x 2
Linux 2.6 (newer, 4) 2
Linux recent 2.4 (1) 1
Windows 2000 SP4 1
Windows 2000 (1) 1
Linux 2.6, seldom 2.4 (older, 4) 1
Windows 98 (SE) 1
Brother HL-1270N 1
Unknown signatures 207

Total number of ip addresses detected in the 128.39.73.0 network is 159.
Summarising the total number of operating systems we get 684. This means
that in average there is the number of operating systems divided by the num-
ber of ip addresses detected. Which 684 / 159 = 4,3 operating systems per ip
address. The unknown operating systems is added together to keep the list

short enough for displaying it in the thesis.

The next results is from the prads -XS option that only looks at the SYN
packets. The test is run on the Tcpdump that was captured during one day.

Operating system Number of instances
Linux Ubuntu 8.04 36
Windows XP/2000 (RFC1323+, w+, tstamp-) 8
Windows 2000 SP4, XP SP1+ 7
Linux 2.6 (newer, 7) 7
Linux 2.6 (Generic dfrag+) 2 Windows 2000 SP2+, XP SP1+ (seldom 98) 2
Linux 2.6, seldom 2.4 (older, 4) 1
Linux 2.6 (newer, 6) 1

Total number of ip addresses detected in the 128.39.73.0 network is 46.
Summarising the total number of operating systems we get 62. This means

49

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

that in average there is the number of operating systems divided by the num-
ber of ip addresses detected. Which 62 / 42 = 1,47 operating systems per ip
address.

Looking at prads, it detects many more operating systems than p0f does.
prads also detects more unknown signatures. This must be because prads tests
many more packets than p0f does. It does testing not only on SYN packets, but
also on SYNACK and FIN. Looking at the test where prads is run with the -XS
command, p0f and prads have detected about the same amount of operating
systems. The operating system that is counted 36 times both in prads and p0f
have actually the same signature. The reason for it being Linux 2.6 (newer, 1)
in p0f and Linux Ubuntu 8.04 in prads is that the signature file is changed in
prads. Meaning that Linux 2.6(newer,1) equals Linux Ubuntu 8.04.

In prads and as with p0f, in theory one could think that there should be as
many operating systems that there is ip addresses. But there are many more
operating systems. In every test run. ”Worst” is the test that is run over four
days. As with p0f it looks like some of the same operating systems can have
small variations in the signature. This small variation means that detection for
one operating system with a specific ip addresses could be done several times.
Does this mean that a computer can send packets with small variations in the
header? To investigate this, we have picked out an ip address to see how the
detection is done on this address.

mln6:/home/petter/Tcpdump# cat petter_1504.prads | grep 128.39.73.72

128.39.73.72,0,53,17,CLIENT,[unknown:@domain],0,1302874507

128.39.73.72,0,45743,6,SYN,[S4:64:1:60:M1460,S,T,N,W5:.:Linux:Ubuntu 8.04

128.39.73.72,0,80,6,CLIENT,[unknown:@www],0,1302874507

128.39.73.72,0,22,6,SYNACK,[S4:64:1:48:M1460,N,N,S:ZA:Linux:2.6 (Generic 2, SYN from Windows)

128.39.73.72,0,80,6,SYNACK,[S4:64:1:52:M1460,N,N,S,N,W5:ZA:Linux:2.6 (newer, 5)

128.39.73.72,0,80,6,CLIENT,[http:Apache 2.2.8 ((Ubuntu)],0,1302877367

128.39.73.72,0,80,6,SYNACK,[5792:64:1:60:M1460,S,T,N,W5:ZAT:Linux:2.6 (newer, 5)

128.39.73.72,0,80,6,CLIENT,[unknown:@www],0,1302889616

128.39.73.72,0,3167,6,SYN,[65535:127:1:48:M1460,N,N,S:.:Windows:2000 SP4, XP SP1+

128.39.73.72,0,22,6,SERVER,[ssh:OpenSSH 4.7p1 (Protocol 2.0)],0,1302891972

The knowledge we have about the 128.39.73.72 ip address, says that it
should contain two operating systems. A Linux and a Windows operating
system. Instead this ip address has four different operating systems, in addi-
tion a fifth that is the Linux 2.6 (newer 5) with a different signature than the
other Linux 2.6 (newer 5). This means that when detecting an operating sys-
tem, there can be small differences in the signatures. These small differences
can trick prads into believing there are more operating systems than it should
be. Another possibility can be that when there is a network where one com-
puter does NATing this computer has an impact on the signature of the other
computers, again tricking prads into believing that there are more operating
systems than there actually is.

50

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

Counting Operating system for a specific ip address prads

A similar selection of ip address to p0f is selected to be able to compare the
two applications. The two applications could not detect every ip address, so
this is why not all the ip address is used in both tables.

IP address Number of operating systems
128.39.73.72 5
128.39.73.73 3
128.39.73.74 4
128.39.73.75 8
128.39.73.76 3
128.39.73.77 3
128.39.73.78 5
128.39.73.79 4
128.39.73.80 3
128.39.73.249 3

Again to be able to compare to p0f, we have taken out two of the ip ad-
dresses where we have counted the number of operating systems.

Looking at the ip address table, this ip address should contain three operat-
ing systems. This is correct according to prads, but according to the knowledge
we have, this is wrong. This ip address should only contain two operating sys-
tems. One Linux and one Windows.

mln6:/home/petter/Tcpdump# cat petter_1504.prads | grep 128.39.73.73

128.39.73.73,0,22,6,SYNACK,[S4:64:1:48:M1460,N,N,S:ZA:Linux:2.6 (Generic 2, SYN from Windows)

128.39.73.73,0,53,17,CLIENT,[unknown:@domain],1,1302877681

128.39.73.73,0,1060,6,SYN,[65535:127:1:48:M1460,N,N,S:.:Windows:2000 SP4, XP SP1+

128.39.73.73,0,80,6,CLIENT,[unknown:@www],1,1302877682

128.39.73.73,0,1062,6,FIN,[65390:127:1:40:.:AFN:unknown:unknown],1,1302877684

128.39.73.73,0,22,6,SYNACK,[5792:64:1:60:M1460,S,T,N,W5:ZAT:Linux:2.6 (newer, 5)

128.39.73.73,0,22,6,SERVER,[ssh:OpenSSH 4.7p1 (Protocol 2.0)],0,1302891973

The ip address 128.39.73.74 should have four operating systems according
to the table, looking at the raw output from prads we can backup that this is
correct. But again according to the knowledge we have about these computers
there should only be a Linux and a Windows computer.

mln6:/home/petter/Tcpdump# cat petter_1504.prads | grep 128.39.73.74

128.39.73.74,0,53,17,CLIENT,[unknown:@domain],0,1302874529

128.39.73.74,0,55867,6,SYN,[S4:64:1:60:M1460,S,T,N,W5:.:Linux:Ubuntu 8.04

128.39.73.74,0,80,6,CLIENT,[unknown:@www],0,1302874529

128.39.73.74,0,55867,6,FIN,[2003:64:1:52:N,N,T:ATFN:unknown:unknown:uptime:1hrs]

128.39.73.74,0,22,6,SYNACK,[S4:64:1:48:M1460,N,N,S:ZA:Linux:2.6 (Generic 2, SYN from Windows)

128.39.73.74,0,22,6,SYNACK,[5792:64:1:60:M1460,S,T,N,W5:ZAT:Linux:2.6 (newer, 5)

128.39.73.74,0,22,6,SERVER,[ssh:OpenSSH 4.7p1 (Protocol 2.0)],0,1302891972

51

4.1. COMPARING P0F AND PRADS IN THE 128.39.73.0 NETWORK

4.1.4 Look at ip address 128.39.73.66

To be able to compare the detection in both p0f and prads, a specific ip address
has been chosen. Looking at this specific ip address in both p0f and prads lets
us see how the passive detection applications work differently.

Looking at the ip address 128.39.73.66 in p0f

To be able to compare one specific ip address, the following command has
been run on the p0f file, that had run for one day.

cat petter_1504.p0f | grep 128.39.73.66

This command prints every line with the ip address 128.39.73.66 to the screen.

petter@mln6:~/Tcpdump$ cat petter_1504.p0f | grep 128.39.73.66

<Fri Apr 15 15:55:19 2011> 128.39.73.66:49295 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 17:37:23 2011> 128.39.73.66:49296 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 19:34:27 2011> 128.39.73.66:49297 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:25:31 2011> 128.39.73.66:49298 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:25:35 2011> 128.39.73.66:49299 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:15 2011> 128.39.73.66:49300 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:23 2011> 128.39.73.66:49301 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:24 2011> 128.39.73.66:49302 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:35 2011> 128.39.73.66:49303 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:37 2011> 128.39.73.66:49304 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:38 2011> 128.39.73.66:49305 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:39 2011> 128.39.73.66:49306 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:40 2011> 128.39.73.66:49307 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:41 2011> 128.39.73.66:49308 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:43 2011> 128.39.73.66:49309 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:46 2011> 128.39.73.66:49310 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:48 2011> 128.39.73.66:49311 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:50 2011> 128.39.73.66:49312 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:52 2011> 128.39.73.66:49313 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:54 2011> 128.39.73.66:49314 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:55 2011> 128.39.73.66:49315 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:27:58 2011> 128.39.73.66:49316 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:28:07 2011> 128.39.73.66:49317 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:28:09 2011> 128.39.73.66:49318 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:28:11 2011> 128.39.73.66:49319 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:28:12 2011> 128.39.73.66:49320 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:28:15 2011> 128.39.73.66:49321 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 21:28:17 2011> 128.39.73.66:49322 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 22:28:33 2011> 128.39.73.66:49323 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Fri Apr 15 23:57:37 2011> 128.39.73.66:49324 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Sat Apr 16 00:08:54 2011> 128.39.73.66:49325 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Sat Apr 16 00:08:54 2011> 128.39.73.66:49326 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Sat Apr 16 00:09:06 2011> 128.39.73.66:49327 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Sat Apr 16 00:09:20 2011> 128.39.73.66:49328 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Sat Apr 16 00:09:24 2011> 128.39.73.66:49329 - Windows XP/2000 (RFC1323+, w+, tstamp-) [GENERIC]

<Sat Apr 16 00:18:03 2011> 128.39.73.66:44476 - Linux 2.6 (newer, 3) (up: 562 hrs)

52

4.2. NEW SIGNATURES

Looking at the ip address 128.39.73.66 in prads

To be able to compare one specific ip address, the following command has
been run on the prads file, that had run for one day.

cat petter_1504.prads | grep 128.39.73.66

128.39.73.66,0,22,6,SYNACK,[S4:64:1:48:M1460,N,N,S:ZA:Linux:2.6 (Generic 2, SYN from Windows)

128.39.73.66,0,53,17,CLIENT,[unknown:@domain],0,1302875590

128.39.73.66,0,49295,6,SYN,[8192:127:1:52:M1460,N,W8,N,N,S:.:Windows:XP/2000

128.39.73.66,0,443,6,CLIENT,[ssl:TLS 1.0 Client Hello],1,1302875719

128.39.73.66,0,22,6,SYNACK,[5792:64:1:60:M1460,S,T,N,W6:ZAT:Linux:2.6 (newer, 6)

128.39.73.66,0,22,6,SERVER,[ssh:OpenSSH 5.5p1 (Protocol 2.0)],0,1302891971

128.39.73.66,0,22,6,FIN,[124:64:1:52:N,N,T:ATFN:unknown:unknown:uptime:559hrs],0,1302891977

128.39.73.66,0,80,6,CLIENT,[unknown:@www],1,1302895535

128.39.73.66,0,80,6,FIN,[108:64:1:52:N,N,T:ATFN:Linux:2.6:uptime:562hrs],0,1302904477

128.39.73.66,0,44476,6,SYN,[S4:63:1:60:M1460,S,T,N,W7:.:Linux:2.6 (newer, 3)

The interesting difference between the two applications is that p0f collects
many more lines than prads does. p0f has many identical lines, that don’t need
to be presented at all. As for the detection both applications have detected the
same operating systems. One Linux 2.6 and a Windows XP/2000 machine. In
addition prads has detected two extra Linux machines. This with the SYNACK
packet. Even though this SYNACK detection has another signature, it’s likely
that this is the same operating system that was detected with SYN. With the
background knowledge we have, we know that some of the ip addresses con-
tain a Linux machine and a Windows machine. Could this be such a set up?
Or could it be that this is a set up of five Linux machines and one Windows
XP?

4.2 New signatures

The following results is captured by trying to improve prads further. What
have been done is to capture some unknown signatures. Then adding those
signatures to the signature file together with the knowledge we have about the
operating system. Next time prads detects the same signature, prads will not
detect the operating system as an unknown operating system.

To detect an unknown signature with an operating system that is known,
collecting packets in the virtual network is done. Below we see the output
from prads running on the Tcpdump given from the virtual network. Several
unknown signatures are present.

asset,vlan,port,proto,service,[service-info],distance,discovered

10.0.0.2,0,22,6,SERVER,[unknown:@ssh],0,1304497807

10.0.0.2,0,55835,6,SYN,[S4:64:1:60:M1460,S,T,N,W5:.:unknown:unknown

10.0.0.1,0,80,6,SYNACK,[5792:64:1:60:M1460,S,T,N,W5:ZAT:unknown:unknown

10.0.0.2,0,80,6,CLIENT,[unknown:@www],0,1304497807

10.0.0.1,0,80,6,SERVER,[unknown:@www],0,1304497807

53

4.2. NEW SIGNATURES

10.0.0.1,0,80,6,FIN,[215:64:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],0,1304497807

10.0.0.2,0,55835,6,FIN,[216:64:1:52:N,N,T:ATFN:Linux:2.6:uptime:2512hrs],0,1304497807

10.0.2.2,0,22,6,SERVER,[unknown:@ssh],1,1304497808

10.0.2.2,0,4548,6,SYN,[S4:63:1:60:M1460,S,T,N,W3:.:unknown:unknown

10.0.2.2,0,80,6,CLIENT,[unknown:@www],1,1304497808

10.0.2.2,0,4548,6,FIN,[864:63:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],1,1304497808

10.0.0.4,0,22,6,SERVER,[unknown:@ssh],0,1304497810

10.0.0.4,0,34935,6,SYN,[S4:64:1:60:M1460,S,T,N,W4:.:Linux:2.6 (Generic dfrag+)

10.0.0.4,0,80,6,CLIENT,[unknown:@www],0,1304497810

10.0.0.4,0,34935,6,FIN,[432:64:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],0,1304497810

10.0.1.2,0,22,6,SERVER,[unknown:@ssh],1,1304497813

10.0.1.2,0,1790,6,SYN,[S4:63:1:60:M1460,S,T,N,W3:.:unknown:unknown

10.0.1.2,0,80,6,CLIENT,[unknown:@www],1,1304497814

10.0.1.2,0,1790,6,FIN,[864:63:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],1,1304497814

Looking for an unknown signature we find several. The signatures that will be
added is SYN signatures for the ip address 10.0.1.2 and 10.0.2.2, which is the same.
And for the ip address 10.0.0.2.

Below is the new signatures made to be able to do the detection in the
virtual network. The signatures were taken from the first output from prads.
Adding them, together with what is known about the operating system in the
virtual network. When collecting a new signature from an unknown list, it’s
important that not every field can be copied literally when adding the new
signature. The initial TTL has to be checked in the documentation of the oper-
ating system and is not to be copied directly from the detection application. In
the prads signature file it says that you should always wildcard the maximum
segment size.

New signatures

S4:63:1:60:M*:.:Linux:2.6.18_6_Xen_amd64

S4:64:1:60:M*,S,T,N,W5:.:Linux:Ubuntu 8.04

The signatures in general are explained in detail earlier in the thesis. More
specific about these two signatures is that they don’t have all the signature
fields set. Common for the signatures is that both have windows size, initial
TTL, don’t fragment bit and the SYN packet size. The first signature has an
maximum segment size as a wild card meaning that it can contain any value.
The second signature has several options set like maximum segment size, se-
lective ACK OK, NOP option and the window scaling option.

After adding the new signatures, the two operating system added in the
signature file is detected. Both the Ubuntu 8.04 and the Xen amd64.

asset,vlan,port,proto,service,[service-info],distance,discovered

10.0.0.2,0,22,6,SERVER,[unknown:@ssh],0,1304497807

10.0.0.2,0,55835,6,SYN,[S4:64:1:60:M1460,S,T,N,W5:.:Linux:Ubuntu 8.04

10.0.0.1,0,80,6,SYNACK,[5792:64:1:60:M1460,S,T,N,W5:ZAT:Linux:2.6 (newer, 5)

54

4.2. NEW SIGNATURES

10.0.0.2,0,80,6,CLIENT,[unknown:@www],0,1304497807

10.0.0.1,0,80,6,SERVER,[unknown:@www],0,1304497807

10.0.0.1,0,80,6,FIN,[215:64:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],0,1304497807

10.0.0.2,0,55835,6,FIN,[216:64:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],0,1304497807

10.0.2.2,0,22,6,SERVER,[unknown:@ssh],1,1304497808

10.0.2.2,0,4548,6,SYN,[S4:63:1:60:M1460,S,T,N,W3:.:Linux:2.6.18_6_Xen_amd64

10.0.2.2,0,80,6,CLIENT,[unknown:@www],1,1304497808

10.0.2.2,0,4548,6,FIN,[864:63:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],1,1304497808

10.0.0.4,0,22,6,SERVER,[unknown:@ssh],0,1304497810

10.0.0.4,0,34935,6,SYN,[S4:64:1:60:M1460,S,T,N,W4:.:Linux:2.6 (Generic dfrag+)

10.0.0.4,0,80,6,CLIENT,[unknown:@www],0,1304497810

10.0.0.4,0,34935,6,FIN,[432:64:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],0,1304497810

10.0.1.2,0,22,6,SERVER,[unknown:@ssh],1,1304497813

10.0.1.2,0,1790,6,SYN,[S4:63:1:60:M1460,S,T,N,W3:.:Linux:2.6.18_6_Xen_amd64

10.0.1.2,0,80,6,CLIENT,[unknown:@www],1,1304497814

10.0.1.2,0,1790,6,FIN,[864:63:1:52:N,N,T:ATFN:unknown:unknown:uptime:2512hrs],1,1304497814

When adding signatures, it’s important to know that prads checks the sig-
nature from the top to the bottom. This means that if a packet could hit two
signatures, only the first signature would matter. This is important to know
when adding signatures. It could be wise to add the most known signatures
in you network, at the top of the signature list.

Adding signatures is straight-forward, but when adding signatures it’s im-
portant to test the signature afterwards. If using to many wildcards, several
different operating systems could hit the same signature.

An improvement to prads would be to create a better way to add signa-
tures. The signatures is the main core of the application, so it’s important that
these will have quality of assurance. Also having the ability to share signatures
among system administrators could help the signature database to expand.
Maybe through an Internet community. Looking at p0f it has an Internet site
where people can add their signature. But it looks like that this doesn’t work
as planned. The problem is that the author must add new signature files all
the time. This is not being done.

55

Chapter 5

Discussion and conclusions

In the discussion and conclusion chapter are the results, the process, and the
design discussed. In the discussion and conclusion, one tries to look at the
approach in a bigger perspective.

5.1 Discussion

Two passive operating system detection tools have been compared. Both ap-
plications were compared in the 128.39.73.0 network and the results were ob-
served and run through self-made Perl scripts that collected important statis-
tics about the operating system detection.

The results given from the applications describes the applications and how
they work. The results also describes what operating systems that is supposed
to exist in the 128.39.73.0 network.

Both p0f and prads is command-line based applications created to be run in
a Linux environment. When being run default, p0f prints the detection directly
to screen, in opposite to prads that creates a log-file that is written to. Having
the possibility to print directly to the screen should have also been included in
prads. The statistical output prads gives after each run is a good addition. This
helps the user in analysing the detection. This way one knows the amount of
packets going through the application.

When investigating the output from the applications one realises that it’s
difficult to compare the operating system detection. The ”problem” with p0f
is that it is ”greedy”. Meaning that it does operating system detection on as
many packets as it can. Looking at the p0f output it has as many as 652288
lines in contrast to prads that only has 3296 lines in it’s output. Both run on
the same Tcpdump! Even though p0f has at most three lines on each detection,
p0f has much more lines in it’s output. Why is this?

The main reason for this is because prads is ”smarter” than p0f in the sense
that if one operating system is detected for an ip address, for that ip address,
prads does not detect this operating system more than once. This is a truth
with modifications. When running the detection over a larger amount of time,
prads tends to detect the same operating system over again. Also if the de-
tected operating system has differences in the signature, it tends to be detected

56

5.1. DISCUSSION

several times. Small differences in the signatures, does not always mean that
it is another operating system. In the signature file, this has been handled by
adding a wildcard instead of the concrete signature.

At the same time as p0f gives much more lines than prads, p0f is much
faster than prads when running the detection. After testing for some time,
overall prads uses much more time in it’s operating system detection. Test-
ing prads with no asset detection and no other method than SYN, the time
decreases, but not significantly. This is proved by looking at results from the
prads -XS run.

Another thought to why prads uses more time is that it has a longer sig-
nature file. But this is not the case either. To figure out why prads uses much
more time than p0f, looking at the source code itself could give some clues, but
this is not done due to time constraints.

The testing run in this thesis has always been on a tcpdump. Running it
without this tcpdump, and instead in a live network situation could be inter-
esting. This way one could have run a test that checked the cpu, hard drive
and memory usage when the applications is running. Comparing the applica-
tion this way, one could have determined which of the applications that is the
most resource hungry. This could be done, expanding the thesis further in the
future.

Looking at the detection, prads has detected many more operating systems
than p0f has done, even if it is for the same ip address. Why is this? Is this be-
cause prads tests more TCP states? When running prads with -XS it looks like
the detections is much the same, so the different tests prads do, must have an
impact of total detected operating systems. But should running in the different
modes affect the detection? Of course, this is why prads test SYN, SYNACK
and RST, not only SYN as p0f does.

The most obvious reason is that for every ip address there can be several
operating systems. In the 128.39.73.0 network, many of the ip address contain
two computers. A Linux and a Windows computer. So this is a obvious reason,
but this is not the only reason for detecting many more operating systems than
ip addresses.

What if the same computer is detected several times, under different names?
This would be a big fault in the application. This leads to the question that is,
is the detection correct every time? From the results chapter it’s tempting to
say that many of the detections is incorrect. Or if we look at the number de-
tected operating systems on each ip address, this is way to many, mostly when
running prads. But saying that the detection is wrong, is a bold statement. The
operating system in itself is the correct operating system, the problem is that
there are to many of each operating system.

Looking closer at the detection and the signature files, it’s obvious that the
same operating system can be named differently from one signature file to
another. This way the script and the detection counts the wrong number of
operating systems and lists the same operating system several times for an ip
address in the detection. Even if these operating systems is counted wrong and
the number is wrong, the detection is correct, and this is maybe what is most
important. Knowing which operating systems that is located in your network

57

5.1. DISCUSSION

is the main priority.
A solution to this problem, could be to do a better job in the quality of

assurance of these signature files. New signatures should have some kind of
quality checking. Matching the signature files to each other could also be a way
to secure that the same operating system is named the same in the different
files.

When discussing signatures, another questions comes up. Are the signa-
tures unique? The importance of each signature of being unique is important,
if they are not, which operating system will be detected? The answer to this
is actually answered earlier in the thesis. The detection has a top-to-bottom
approach. The signatures placed early in the signature file will be hit first. But
this don’t mean that it is not important checking if the signature are unique.
An improvement further to the application could be to have a another way of
adding signatures. Not being allowed to add signature mere through a sig-
nature file, but maybe through a script that checks for different criteria when
adding a new signature. This way the script could check for, for example, the
uniqueness of the signature. It could also check if the operating system already
exist in any of the other signature files.

The importance of data being collected in a thesis, being reliable, is a key
element in making a good thesis. Throughout this thesis this has been a goal.
The data collected should describe and be able to complement the findings in
the thesis. The data collected from the schools network and the data collected
in the virtual network are both complementing this thesis the way wanted. Of
course doing more tests would further help in comparing the applications.

When it comes to results itself, the results were not surprising. That the
applications always didn’t do what they were supposed to do, was interesting.
Since this has been an investigation starting from scratch, not having had any
expectation to the results, no surprises were given.

For another student or researcher to reproduce these results, shouldn’t of-
fer any greater problems. Since the data tested in this thesis was collected in a
live running network, the exact same data wouldn’t be possible to reproduce,
but collecting data in another network could do the same job.

The research in this field of computer security is not extensive. Doing re-
search in the start of this thesis, no one else have done something similar to
this thesis, and being able to find someone confirming or contradicting these
findings is difficult.

When it comes to the process of the thesis some obstacles were met. At
first, starting off with trying some alternative approaches on how to solve the
thesis. First trying to install several operating systems on a desktop machine.
Experiencing that only three operating systems could be installed on the same
computer. Secondly trying to experiment with Honeyd as operating systems.
Using Honeyd one should be able to simulate different operating systems, but
this plan didn’t work at all. Making Honeyd work took a long time, and finally
getting it to work, trying to do detection on Honeyd didn’t work at all.

Designing and performing an approach can be a little bit tricky. Starting off
a thesis one has a thought on how to perform the following approach. When
designing the approach one can believe that this is the right way to do it. But

58

5.1. DISCUSSION

when performing the approach one can realise that it does not always work
as intended. In retrospect comparing p0f and prads in itself is maybe a wrong
approach in investigating passive operating system detection. These two ap-
plications do fingerprinting in almost the same way, and will therefore have
much of the same results. When comparing the applications, looking deeper
at the performance and the usability of the applications could have been done.
Also having a closer conversation with the developers of both applications,
especially Edward Fjellskål the author of prads, could help me further in in-
vestigating and improving the applications. Comparing passive with active
operating system detection could also be interesting and should maybe have
been done in this thesis. Also looking at asset detection with prads could have
been interesting but due to time constrains this wouldn’t be possible.

Looking at the big picture, what has this thesis given the system admin-
istrators? First off is the knowledge about both p0f and prads and passive
operating system detection. Not much is written in this subject and therefore
by creating this thesis, it will help system administrators and researches to
look at passive operating system detection. Also coming up with ideas and
prototypes of how to further improve passive operating system detection has
been a running theme through out this thesis.

5.1.1 Future work

When doing a thesis like this, along the way new ideas tend to emerge. Also
knowing that there is not time enough to pursue these ideas, they have to been
worked with in the future.

These days, virtual computing is more used than ever. Further testing of
passive detection in an virtual environment could be a good idea. Testing if
the virtual computers have other signatures than the physical ones, or if this
actually has no impact on the detection at all.

An idea of developing prads further, is to develop a web interface or a
GUI for the application. This way one could click on for example an operat-
ing system and the ip addresses having this operating system could pop up.
Also using the information to set of alarms. Meaning that if prads finds an un-
patched operating system in your network, this would set of an alarm, telling
the system administrator to fix it.

An natural development to a passive operating system detection system
would be to complement the IDS in the network. Giving the IDS all possible
information concerning the network.

Also looking closer at obfuscators and ways to trick the detection could be
interesting.

59

5.2. CONCLUSIONS

5.2 Conclusions

In this master thesis passive operating system detection was investigated. The
main problem statements in this investigation were as follows:

• Investigate which passive operating system detection systems that exist
today

• Compare p0f and prads in the 128.39.73.0 network.

• Discover the weaknesses in existing fingerprinting methods.

• Investigate which improvements that can be done to make operating sys-
tem detection a helpful tool for network administrators.

The main way of answering these problem statements was to investigate
passive operating system detection by running and testing some passive op-
erating system detection applications. By testing these applications, one gets
the knowledge of how they work and the difference and similarities in the
detection applications.

Looking back at the discussion and the result, all this questions have been
answered in some way. This master thesis looks at which applications that
exist today. It takes a look at many of todays passive operating system detec-
tion applications, and goes deep into two of the applications. p0f and prads
are tested by running them and also adding new signatures in prads. Both
applications are tested by running them in small and a bigger network.

A comparison is done of p0f and prads in the 128.39.73.0 network, by look-
ing at the performance, the output and the way p0f and prads works, in the
128.39.73.0 network. prads and p0f have a lot in common when it comes to
detection, but the performance of p0f looks to be extremely faster than prads.
prads on the other hand has the ability to run detection not only in SYN mode,
but also on SYNACK and RST mode. In addition prads can do asset detection,
being able to detect the services run on the operating systems. Even though
prads uses a lot more time than p0f when running on the tcpdump collected
through a day, we can conclude that since it uses only about five minutes on a
file collected through a day the resources it demands running a live detection
are minor.

Some weaknesses in the passive operating system detection methods are
discovered by running p0f and prads and comparing the output with the knowl-
edge we possess about the 128.39.73.0 network. The most obvious weaknesses
are that p0f runs detection on every packet collected. prads does detect too
many operating system due to prads ”messy” signature files. Also both appli-
cations lacks good ways to present their detection.

Improvements are suggested and tried implemented. Also in future work
several more improvements are mentioned for other to work on further. The
weaknesses and improvements are directly related to each other. The weak-
ness that deals with the lack of good ways to present the detection has been
a focus in improving the application. A prototype script has been made to

60

5.2. CONCLUSIONS

present the data in a better manner. Creating new signatures are also a way of
improving the application so the application can be a helpful tool for network
administrators. A lot of more ideas about improving the applications are also
mentioned in the future work and will be interesting working on in the future.

61

Bibliography

[1] Derek Manky. Top 10 vulnerabilities inside the network.
http://www.networkworld.com/news/tech/2010/110810-network-
vulnerabilities.html.

[2] Michal Zalewski. Silence on the Wire : A Field Guide to Passive Reconnais-
sance and Indirect Attacks. No Starch Press, Incorporated, 2004.

[3] Neal Krawetz. Introduction to Network Security. Course Technolgy, 2006.

[4] Parker et al. Cyber Adversary Characterization : Auditing the Hacker Mind.
Syngress Publishing, 2004.

[5] Redhat. Red hat documentation, chapter 1. security overview.
http://docs.redhat.com/docs.

[6] Bhavya Daya. Network security: History, importance, and future. Univer-
sity of Florida Department of Electrical and Computer Engineering, unknown.

[7] V. Preetham, editor. Internet Security and Firewalls. Course Technolgy,
2002.

[8] Stanger et al. Hack Proofing Linux : A Guide to Open Source Security. Syn-
gress Publishing, 2001.

[9] McClure et al. Hacking Exposed (5th Edition). McGraw-Hill Professional
Publishing, 2005.

[10] Security Wizard. Active os fingerprinting tools.
http://www.securitywizardry.com/index.php/products/scanning-
products/active-fingerprinters.html, 2010.

[11] L. Spitzner. Passive fingerprinting. May, 3:1–4, 2003.

[12] Michal Zalewski. P0f. http://lcamtuf.coredump.cx/p0f.shtml.

[13] Rfc: 791. http://www.ietf.org/rfc/rfc0791.txt, 1981.

[14] Matt Shelton. Pads. http://passive.sourceforge.net/about.php.

[15] Edward Fjellskål. Prads homepage. http://gamelinux.github.com/prads/.

[16] Alberto Ornaghi. Ettercap. http://ettercap.sourceforge.net/.

62

BIBLIOGRAPHY

[17] Hjelmvik. Networkminer homepage.
http://networkminer.sourceforge.net/.

[18] Gordon “Fyodor” Lyon. Nmap reference guide. http://nmap.org/.

[19] Eric Kollmann. Satori homepage. http://myweb.cableone.net/xnih/.

[20] SinFP. Sinfp - an overview. http://www.gomor.org/bin/view/Sinfp/WebHome.

[21] Gregory Lajon. Intrusion detection faq: What is xprobe?
http://www.sans.org/security-resources/idfaq/xprobe.php.

[22] Gaël Roualland and Jean-Marc Saffroy. Ip personality.
http://ippersonality.sourceforge.net/doc/ippersonality-en.html.

[23] Pablo Neira Ayuso. Netfilter homepage. http://www.netfilter.org/.

[24] Adrian Crenshaw. Hompage osfuscate.
http://www.irongeek.com/i.php?page=security/osfuscate-change-
your-windows-os-tcp-ip-fingerprint-to-confuse-p0f-networkminer-
ettercap-nmap-and-other-os-detection-tools.

[25] et al. Ken Potter. OS X for Hackers at Heart. Syngress Publishing, 2005.

[26] Niels Provos. libevent - an event notification library.
http://monkey.org/ provos/libevent/.

[27] Dug Song. libdumbnet homepage. http://code.google.com/p/libdnet/.

[28] Stanislav Malyshev. Libedit. http://libedit.sourceforge.net/.

[29] Greg Roelofs. zlib homepage. http://zlib.net/.

[30] Homepage tcpdump. http://www.tcpdump.org/.

[31] et al. Orebaugh. Ethereal Packet Sniffing. Syngress Publishing, 2004.

[32] L. Spitzner et al. Know your enemy. Parts I, II, III.” Available online: www.
linuxnewbie. org/nhf/intel/security/enemy. html.(For Parts II and III, replace”
enemy” with” enemy2” and” enemy3,” respectively.), 2001.

[33] G.A. Marin. Network security basics. Security Privacy, IEEE, 3(6):68 – 72,
2005.

[34] S. Kalia and M. Singh. Masking approach to secure systems from operat-
ing system fingerprinting. In TENCON 2005 2005 IEEE Region 10, pages 1
–6, no, November 2005.

[35] G. Taleck. Ambiguity resolution via passive os fingerprinting. In Recent
Advances in Intrusion Detection, pages 192–206. Springer, 2003.

[36] Tcpdump man page. http://www.tcpdump.org/tcpdump man.html.

[37] William Stearns. p0f man page. http://linux.die.net/man/1/p0f.

63

BIBLIOGRAPHY

[38] Edward Fjellskål. prads man page.
https://github.com/gamelinux/prads/blob/master/doc/prads.man.

[39] David Keppel. Time(1) man page. http://linux.die.net/man/1/time.

[40] grep man page. http://unixhelp.ed.ac.uk/CGI/man-cgi?grep.

64

List of Figures

2.1 TCP header . 8
2.2 The TCP header [Wikimedia commons] 10
2.3 A figure of different fingerprinting applications 11
2.4 Screenshot of Osfuscate . 18

3.1 Test environment [Haarek Haugerud] 25
3.2 128.39.73.0 Network . 25
3.3 An overview of the network with the applications installed . . . 32

4.1 p0f terminal output petter.Tcpdump 34
4.2 head petter Tcpdump p0f . 35
4.3 prads terminal output petter.Tcpdump 37
4.4 head petter Tcpdump prads . 38
4.5 Graph over p0f time command 40
4.6 Graph over prads time command 42
4.7 Graph over pradsXS time command 44

65

Chapter 6

Appendix

6.1 oscounter p0f.pl

#Script that counts the instances of ip addresses and

#operating systems for p0f files.

#! /usr/bin/Perl

use Getopt::Std;

use strict;

use warnings;

my $opt_string = ’f:o:’;

getopts("$opt_string",\my %opt) or exit 1;

Declare variables

my $file = "$opt{’f’}";

my $line1;

my $line2;

my $cnt=0;

my %unique;

my $os = "empty";

my $file1 = "$opt{’o’}";

my $ip = "empty";

my $os = "";

my %HoH;

my %iphash;

my %nr;

my $ips;

chomp ($file);

Open the file

open (FILE, "$file") || die "wrong filename";

66

6.1. OSCOUNTER P0F.PL

while ($line1 = <FILE>)

{

if($line1 =~ /^\<.*\> (128\.39\.73\.\d+):\d+ - (.*?\(.*?\))/)

{

$os = "$2";

$ip = "$1";

}

if($line1 =~ /^\<.*\> (128\.39\.73\.\d+):\d+ - (UNKNOWN \[.*\])/)

{

$os = "$2";

$ip = "$1";

}

$HoH{$os}{$ip} = "T";

$iphash{$ip}{$os} = "T";

$unique{$os}++;

$nr{$ip} = "T";

}

Close file

close FILE;

print "#### Number of detected operating systems on the specific ip address \n";

foreach my $ip (keys %iphash) {

my $n = 0;

foreach my $os (keys %{$iphash{$ip}}) {

$n++;

}

print "$ip $n\n";

}

print "########## Number of each operating system #######################\n";

foreach my $os (keys %HoH) {

my $n = 0;

foreach my $ip (keys %{$HoH{$os}}) {

$n++;

}

print "$os $n\n";

}

$ips = keys %nr;

67

6.2. OSCOUNTER PRADS.PL

6.2 oscounter prads.pl
#Script that counts the instances of ip addresses and

#operating systems for p0f files.

#! /usr/bin/Perl

use Getopt::Std;

use strict;

use warnings;

my $opt_string = ’f:o:’;

getopts("$opt_string",\my %opt) or exit 1;

Declare variables

my $file = "$opt{’f’}";

my $line1;

my $line2;

my $cnt=0;

my %unique;

my $os = "empty";

my $file1 = "$opt{’o’}";

my $ip = "empty";

my $os = "";

petter@mln6:~/Tcpdump$ cat newoscounter_prads.pl

#! /usr/bin/Perl

use Getopt::Std;

use strict;

use warnings;

my $opt_string = ’f:o:’;

getopts("$opt_string",\my %opt) or exit 1;

my $file = "$opt{’f’}";

my $file1 = "$opt{’o’}" || die "Must enter a output file";

my $line1;

my $line2;

my $cnt=0;

my %unique;

my $os = "empty";

my $ip = "empty";

my %HoH;

my %nr;

my %iphash;

my $ips;

chomp ($file);

open (FILE, "$file") || die "wrong filename";

while ($line1 = <FILE>)

{

if($line1 =~ /^(128\.39\.73\.\d+),\d+,\d+,\d+,\w+,\[(.*?:.*?:.*?:.*?:.*?:.*?):(.*?):(.*?):.*\],\d+,\d+/)

{

$os = "$3 $4";

$ip = "$1";

}

if($line1 =~ /^(128\.39\.73\.\d+),\d+,\d+,\d+,\w+,\[.*?:(.*?:.*?:.*?:.*?:.*?):(unknown):(unknown):.*\],\d+,\d+/)

{

$os = "$3 $4 $2";

$ip = "$1";

68

6.2. OSCOUNTER PRADS.PL

}

$HoH{$os}{$ip} = "T";

$iphash{$ip}{$os} = "T";

$unique{$os}++;

$nr{$ip} = "T";

}

close FILE;

open (FILE1, ">$file1");

Count operatingsystems for ip address

print "########## Number of detected operating systems on the specific ip address ##########\n";

foreach my $ip (keys %iphash) {

my $n = 0;

foreach my $os (keys %{$iphash{$ip}}) {

$n++;

}

print "$ip $n\n";

}

Count instances of operating systems

print "########## Number of each operating system ##\n";

foreach my $os (keys %HoH) {

my $n = 0;

foreach my $ip (keys %{$HoH{$os}}) {

$n++;

}

print "$os $n\n";

}

$ips = keys %nr;

69

