
UNIVERSITY OF OSLO
Department of Informatics

MODI framework -
A model-based
approach to data
integration

Master thesis

Mohammad Asaf
Khan

Khudija Mahmood

30 July 2005

i

Acknowledgement

This master thesis is submitted in fulfilment of the Master degree in Informatics at the
Department of Informatics, University of Oslo, 2005. The work on this thesis was
done at SINTEF, Department of Information and Communication Technology (ICT),
Cooperative and Trusted Systems.

We would like to thank our supervisor Arne-Jørgen Berre for his guidance and
patience. We would also like to give many thanks to Ida Solheim for providing so
much help about writing style and motivated us to work hard. Also, we are very
grateful for help from Andreas Limyr and Tor Neple. In addition, we would like to
thank our contact person Jeanine Lilleng, who has contributed with information
concerning the project case NDR. Further, we thank SINTEF for giving information
about the ATHENA project and a place to work on this thesis. Lastly we would like to
thank our families for support and patience through this period.

ii

iii

Abstract

In this thesis we propose a model-based approach to support data integration between
heterogeneous enterprise systems. It reviews literature about interoperability, and
presents several aspects of data integration problems. Further, it intends to give the
reader an understanding of model-driven development which offers different
standards for modeling and model transformation. The work of this thesis presents
difficulties encountered in data integration by analysing problem examples. Based on
the analysis, data integration problems are defined. We examine technologies related
to interoperability, data integration and mapping. In addition, we present existing
solution approaches to deal with the problem examples. The main goal is to specify
how to develop tools for solving data integration problems by describing and realizing
mapping between models. The technique which is specified to realize the mapping is
presented in our proposed solution, which we have called the MODI Framework.

iv

v

Table of contents

1 INTRODUCTION..1
1.1 INTEROPERABILITY – A REVIEW..1

1.1.1 Levels of interoperability ..1
1.1.2 Interoperability problem ...4
1.1.3 Complexity of interoperability ..5

1.2 MODEL DRIVEN ARCHITECTURE (MDA) TO FACILITATE INTEROPERABILITY.........................7
1.2.1 Platform Independent Model (PIM)..9
1.2.2 Platform Specific Model (PSM) ..9
1.2.3 Mapping and transformation ..9
1.2.4 Integrating legacy systems ..11
1.2.5 MDA – a middleware ..11
1.2.6 MDA tools..11

1.3 GOAL OF THIS THESIS ..11
1.4 METHODOLOGY OF WORK...12
1.5 STRUCTURE OF THIS THESIS ..12

2 PROBLEM EXAMPLES..15
2.1 NATIONAL DATA REGISTRY (NDR) ...15

2.1.1 OR system design and architecture...15
2.2 CASE: NDR – METADATA PROBLEM ...17

2.2.1 OR and overlap detection..17
2.2.2 Metadata problem leading to data integration problems...21

2.3 THE ATHENA PROJECT ...22
2.4 CASE: AUTOMOTIVE SCENARIO – DATA INTEGRATION PROBLEM...23

2.4.1 Problem description ..24
2.5 PROBLEM SPECIFICATION..30
2.6 REQUIREMENTS TO SOLUTIONS FOR DATA INTEGRATION...31
2.7 SUMMARY ...32

3 RELATED TECHNOLOGIES ..33
3.1 EXTENSIBLE MARKUP LANGUAGE (XML) AS A SYNTACTIC STANDARD33
3.2 XSL TRANSFORMATIONS (XSLT)..34
3.3 ELECTRONIC BUSINESS XML (EBXML) ..34

3.3.1 ebXML specifications ..34
3.3.2 ebXML Registry/Repository Example ...35
3.3.3 ebXML Core Component - Unified Business Language (UBL)37

3.4 META OBJECT FACILITY (MOF)...38
3.4.1 MOF defining metadata and data...39
3.4.2 Metadata architecture ...39
3.4.3 MOF repository Interface – Java Metadata interface (JMI) ...41
3.4.4 MOF and interchange – XML Metadata Interchange (XMI)...42
3.4.5 Query, View, Transformation (QVT) ..43

3.5 BIZTALK ...45
3.5.1 BizTalk Mapper – a data integration tool ..46

3.6 ALTOVA MAPFORCE 2005 ..49
3.6.1 MapForce mapping tool..50

3.7 EVALUATION OF RELATED TECHNOLOGIES...52
3.8 SUMMARY ...53

4 EXISTING SOLUTION APPROACHES...55
4.1 THE TOR APPROACH ..55

4.1.1 Using models to organize information and define data definition...................................56
4.1.2 TOR system ..58
4.1.3 TOR and data integration ...60
4.1.4 Evaluation of the TOR approach ..61

vi

4.2 THE ATHENA APPROACH..62
4.2.1 ATHENA architecture ...62
4.2.2 Project A6: Model-Driven and Adaptive interoperability Architectures.........................64
4.2.3 Evaluation of the ATHENA approach...68

4.3 SUMMARY ...69
5 MODI FRAMEWORK ...71

5.1 PRINCIPLES OF MODI ...72
5.1.1 Eclipse – platform for tool integration ...73

5.2 MODI ARCHITECTURE ...74
5.2.1 Component Interface specification ...74

5.3 REVERSE ENGINEERING – IMPLEMENT MODI REVERSE ..75
5.3.1 MODI Reverse components...76
5.3.2 MODI Reverse component interaction ...76
5.3.3 Transformation example (PSM-to-PIM)...77
5.3.4 Interfaces for MODI Reverse ..78

5.4 MAPPING RULES ..78
5.4.1 Strategies for executing mapping rules...80

5.5 MODEL MAPPING – IMPLEMENT MODI MAPPER..85
5.5.1 MODI Mapper components...86
5.5.2 MODI Mapper component interaction ...86
5.5.3 Interfaces for MODI Mapper ..87
5.5.4 Functionality of MODI Mapper ..88

5.6 SUMMARY ...91
6 MODI FRAMEWORK APPLIED TO NDR..93

6.1 USE OF MODI REVERSE ...93
6.2 USE OF MODI MAPPER...100

7 MODI FRAMEWORK APPLIED TO AUTOMOTIVE SCENARIO105
7.1 REVERSE ENGINEERING ..105
7.2 USE THE MODI MAPPER ..108

8 EVALUATION OF MODI FRAMEWORK ..113
8.1 BENEFITS WITH A MODEL-BASED APPROACH TO DATA INTEGRATION..................................113

8.1.1 Arguments for basing our approach on MDA ..114
8.2 EVALUATION OF MODI FRAMEWORK – A MODEL-BASED APPROACH114

8.2.1 Metadata enrichment...114
8.2.2 Mapping rules..115
8.2.3 Platform independent data model ...115
8.2.4 Tool support – MODI Reverse and MODI Mapper ...115

8.3 ALTERNATIVE SOLUTION TO MODI MAPPER...116
8.4 SUMMARY ...118

9 CONCLUSION AND FUTURE WORK...119
9.1 CONCLUSION...119
9.2 FUTURE WORK...119

APPENDIX.A...121
A.1 DEFINITIONS ...121

APPENDIX.B ...124
B. 1 XML AND XSLT EXAMPLE..124
B.2 MOF METAMODEL ..125

APPENDIX.C...126
C.1 DESCRIPTION OF THE SUBSET OF UML...126

APPENDIX.D...126
D.1 A DESCRIPTION OF ATHENA A PROJECTS:..126

vii

List of figures

FIGURE 1-1 DIFFERENT LEVELS OF INTEROPERABILITY...2
FIGURE 1-2 BUSINESS INTEROPERABILITY ...3
FIGURE 1-3 ENTERPRISE SYSTEMS USING SAME SET OF FORMAT AND EXECUTION PLATFORMS..................5
FIGURE 1-4 POINT-TO-POINT SOLUTION ...6
FIGURE 1-5 ENTERPRISES THAT ADOPT SAME SET OF AGREEMENTS..6
FIGURE 1-6 OMG’S MODEL DRIVEN ARCHITECTURE ...8
FIGURE 1-7 MDA METAMODEL DESCRIPTION..10
FIGURE 1-8 GOAL MODEL...12
FIGURE 1-9 STRUCTURE OF THIS THESIS ..13
FIGURE 2-1 OVERVIEW OF THE OR SYSTEM...16
FIGURE 2-2 ORDER PRODUCT USE CASE...23
FIGURE 2-3 SEND INVOICE USE CASE ...23
FIGURE 2-4 INTERACTION BETWEEN CUSTOMER AND SUPPLIER ..24
FIGURE 2-5 INCONSISTENT STATE BETWEEN CUSTOMER AND SUPPLIER..25
FIGURE 2-6 SQL RELATIONAL MODEL – ER MODEL ..27
FIGURE 3-1 A SCENARIO FOR USING EBXML REGISTRY/REPOSITORY..36
FIGURE 3-2 SIMPLIFIED MOF MODEL ..39
FIGURE 3-3 METADATA ARCHITECTURE ..40
FIGURE 3-4 RELATIONSHIP BETWEEN A MODEL, METAMODEL AND A PLATFORM41
FIGURE 3-5 RELATIONSHIP BETWEEN UML MODEL, XMI, XML SCHEMA AND XML43
FIGURE 3-6 OVERVIEW OF TRANSFORMATIONS ...44
FIGURE 3-7 BIZTALK ARCHITECTURE ..45
FIGURE 3-8 BIZTALK MAPPER INTERFACE ..47
FIGURE 3-9 TRANSFORMATION PROCESS FOR MAPPING...48
FIGURE 3-10 MAPFORCE MAPPING TOOL ARCHITECTURE ...49
FIGURE 3-11 MAPFORCE WITH CODE-GENERATION..50
FIGURE 3-12 MAPFORCE MAPPING TOOL ...51
FIGURE 4-1 SUBSET OF UML ...56
FIGURE 4-2 MODELS IN TOR AND THEIR RELATIONSHIP ...57
FIGURE 4-3 SEMANTIC AND TECHNICAL INTEROPERABILITY BETWEEN TWO LEGACY SYSTEMS...............58
FIGURE 4-4 TOR SYSTEM...59
FIGURE 4-5 ATHENA’S ACTION LINE A OVERVIEW ...64
FIGURE 4-6 ATHENA INTEROPERABILITY FRAMEWORK FOCUSING ON ICT ..65
FIGURE 4-7 REFERENCE MODEL FOR CONCEPTUAL INTEGRATION...66
FIGURE 4-8 REFERENCE MODEL FOR TECHNICAL INTEGRATION ..67
FIGURE 4-9 REFERENCE MODEL FOR APPLICATIVE INTEGRATION ...68
FIGURE 5-1 MODI PROCESS ...72
FIGURE 5-2 ECLIPSE PLUG-IN ARCHITECTURE..73
FIGURE 5-3 MODI ARCHITECTURE ..74
FIGURE 5-4 COMPONENT INTERFACE MODEL...75
FIGURE 5-5 MODI REVERSE PROCESS ...77
FIGURE 5-6 INTERFACES FOR MODI REVERSE ..78
FIGURE 5-7 GENERIC MAPPING METAMODEL ...80
FIGURE 5-8 SYNONYMMAPPING METAMODEL...81
FIGURE 5-9 REPRESENTATIONMAPPING METAMODEL...82
FIGURE 5-10 PROPERTYMAPPING METAMODEL...83
FIGURE 5-11 PRECISIONMAPPING METAMODEL ..83
FIGURE 5-12 DEFAULTVALUEMAPPING METAMODEL ...84
FIGURE 5-13 TYPEMAPPING METAMODEL ...84
FIGURE 5-14 DATALACKINGMAPPING METAMODEL ...85
FIGURE 5-15 MODI MAPPER PROCESS ..87
FIGURE 5-16 INTERFACES FOR MODI MAPPER ...88
FIGURE 5-17 MODI MAPPER TOOL..89
FIGURE 6-1 ER MODEL FOR ENTERPRISE A ..94
FIGURE 6-2 MODI REVERSE PROCESS FOR DEPARTMENT A..96
FIGURE 6-3 MODI REVERSE PROCESS FOR DEPARTMENT B..97
FIGURE 6-4 PIM FOR ENTERPRISE A ..97

viii

FIGURE 6-5 PIM FOR ENTERPRISE B...98
FIGURE 6-6 MODI MAPPER WITH PIMA AND PIMB ...100
FIGURE 6-7 MODI MAPPER WITH MAPPING RULES ..102
FIGURE 7-1 MODI REVERSE PROCESS FOR FIAT ..105
FIGURE 7-2 MODI REVERSE PROCESS FOR BOSCH ..106
FIGURE 7-3 PIMA FOR CUSTOMER FIAT ...106
FIGURE 7-4 PIMB FOR SUPPLIER BOSCH...107
FIGURE 7-5 PIMS LOADED IN MODI MAPPER TOOL..109
FIGURE 7-6 MAPPING BETWEEN PIMS ...111
FIGURE 8-1 ALTERNATIVE SOLUTION WITH USE OF QVT ..116

ix

List of tables

TABLE 2-1 FORM 1 ...19
TABLE 2-2 FORM 2 ...20
TABLE 2-3 FORM 3 ...21
TABLE 2-4 SQL CODE FOR CUSTOMER...26
TABLE 2-5 XML SCHEMA FOR SUPPLIER ...28
TABLE 2-6 DETAILED MAPPING BETWEEN SQL AND XML ...29
TABLE 2-7 GENERAL DATA INTEGRATION PROBLEMS ...31
TABLE 2-8 REQUIREMENT TO SOLUTIONS FOR DATA INTEGRATION ..32
TABLE 3-1 EVALUATION OF RELATED TECHNOLOGIES ..53
TABLE 4-1 TOR MODELS..57
TABLE 4-2 EVALUATION OF THE TOR APPROACH ...62
TABLE 4-3 ATHENA PROJECT...63
TABLE 4-4 EVALUATION OF ATHENA..69
TABLE 6-1 SQL CODE FOR THE CUSTOMER..93
TABLE 6-2 XML SCHEMA FOR SUPPLIER ...94
TABLE 6-3 MAPPINGS FROM CODE/ PSM TO PIM FOR DEPARTMENT A ..99
TABLE 6-4 MAPPING FROM XML TO PIM FOR DEPARTMENT B ..99
TABLE 6-5 MAPPING TABLE ...101
TABLE 7-1 DIFFERENCES FROM PSM TO PIM FOR FIAT ..108
TABLE 7-2 MAPPING TABLE ...110
TABLE 8-1 EVALUATION OF MODI FRAMEWORK ...117

x

1

1 Introduction

Nowadays, enterprise information systems have a growing need to respond more
effectively to changing market conditions and new emerging technologies. For this
reason, enterprises have for the past years increasingly been looking for opportunities
to utilize innovative Internet technologies to improve communication and
collaboration in providing information and services. The interest in system
interoperability is driving the continuous need for integration of new, legacy and
evolving systems, particularly in the context of networked businesses and e-
Government.

While enterprises are trying to move to this arena, they are often hindered by their
large, heterogeneous, distributed and evolving information systems. These systems
are typically legacy systems that are highly complicated, time-consuming and
expensive. In spite of this hinder, some enterprises have made a significant
contribution to productivity and inventory control when collaborating electronically
without redesigning their systems. Unfortunately, integration with newer systems is
difficult because new software may use completely different technologies.
Furthermore, it is complex, time-consuming and costly to implement proprietary
converting solutions. The proprietary formats generally have quite different syntaxes,
structure and semantics to process the same information, which makes it hard to
integrate data. Before enterprise systems can integrate data they need to support
mutual understanding of shared information through interoperability.

1.1 Interoperability – a review
Interoperability, in a general sense, refers to “the ability of two or more systems or
components to exchange information and to use the information that has been
exchanged” [1]. It requires compatibility between the communicating systems, on
formats and application domain concepts, to enable correct interpretation of
transferred data.

1.1.1 Levels of interoperability
Interoperability at different levels is needed to integrate enterprise systems. Figure 1-1
shows how interoperability between two enterprise systems can be achieved on
different levels of abstraction and complexity; namely organisational-, business- and
technical level [2, 3]. An important fact is that these levels are interdependent, where
each level depends on a lower level being functional.

2

Figure 1-1 Different levels of interoperability

Organisational interoperability
This level of interoperability deals with organisational processes, goals, objectives
and how they interoperate through business services. Organisational interoperability is
concerned with enabling the collaboration of organisations that wish to exchange
information and may have different internal structures and processes.

Business interoperability
This level deals with business services, processes and objects. As illustrated in Figure
1-2, business interoperability is concerned with bringing about collaboration of
enterprises’ from different aspects. The figure shows interaction between one business
service, but the enterprises can have more business services.

3

Figure 1-2 Business interoperability

 Service interoperability deals with achieving interoperability between

different enterprise systems’ business services. Services can be seen as an
abstraction of functionality encapsulated and provided by an autonomous
entity. Typically these services are provided through interfaces and contracts
guiding their usage and behaviour.

 Process interoperability deals with comparing and integrating business

processes. Syntactic, structural and semantic differences need to be taken into
account when comparing these. Processes describe sequencing of work in
terms of actions, control flows, information flows, interactions, protocols etc.
They can be applied to business aspects as well as technical aspects.

 Information interoperability deals with comparing and integrating enterprise

systems’ data. Similar to process comparing syntax, structure and semantics of
the data needs to be taken into account. This is because data can be
represented in many ways at different enterprise systems. Comparing syntax
focuses on the representation of data to be exchanged. However, semantic
comparison centres on the meaning of data to be exchanged. The aim is to
make the precise meaning of exchanged data understandable by any enterprise
system supporting other semantic notations.

4

Additionally, Non-Functional Aspects (NFA) [2] needs to be considered for
collaboration between enterprise systems. NFA are driven by need for separation of
concerns. These aspects include quality properties such as:

 Security describes a solution’s ability to protect enterprise resources and
control access to them, including authentication, authorization, and data
encryption.

 Scalability refers to a solution’s ability to adjust to an increased number of
business tasks.

 Evolution refers to the ability of the system to react to changing requirements.
E.g. when new functionality is required existing software often needs to be
upgraded as a whole. Alternatively, only those components could be
exchanged that are affected by required changes. A solid architecture of the
system is required.

 Performance refers to a solution’s ability to rapidly execute a business task
and to retrieve and return information in a timely manner.

 Availability is a solutions availability to be accessible.
 Portability refers to a solution’s ability to be used on different hardware

platforms, operating systems, and run-time environments with little
modifications of the solution.

Technical interoperability
This level deals with linking computer systems and services. Some examples are
middleware, open interfaces, interconnection services, data presentation and exchange,
accessibility and security services. Technical interoperability makes it possible for
computers to exchange signals.

1.1.2 Interoperability problem
Enterprise systems often use different syntax, structure and semantic to represent their
data. This becomes a problem when these enterprise systems want to collaborate
electronically. The interoperability problem may be considered from various aspects
and on increasing levels of complexity. Definition of service, process and information
for different enterprise systems can differ from each other in different ways.

Enterprise systems may be poorer at semantic definition, than syntax and structure.
Examples are description of what a service does, how well the service works, how the
service is carried out, which processes it contains etc. may be missing or insufficient.
This can be referred to as service interoperability problems.

Another example is differences in processes that may cause process interoperability
problems. First of all, one process may require a set of activities to be carried out in
sequence, while another similar process allows them to be carried out in parallel.

5

Second, one process may require an acknowledgement message, while a similar
process does not. Third, one process may send and receive complex messages in one
single activity, while a similar process divides the message between several activities.

Further, the information provided by the process, such as arguments may be defined
differently. One of the information interoperability problems which have been
investigated for the past years is integration of heterogeneous data [4]. Data
integration problems occurs when there is disagreement about data, such as the data’s
meaning, representation and structure among enterprise systems.

Requirements to any interoperability solution would be to deal with these problems.
However, the core of our research is information interoperability dealing with data
integration. Service and process interoperability, and NFA are left for further work.

1.1.3 Complexity of interoperability
In recent years much technical and scientific work has been committed to solve
information interoperability problems, and suggests how interoperability can be
addressed in different ways. In the field of interoperability for enterprise applications
and software, interesting results have been produced [5]. Another important area is
represented by Enterprise Application Integration (EAI) [6, 7]. Important results have
been achieved in the area of databases, aiming at the integration of heterogeneous data
[4]. The complexity of interoperability lies in synchronizing heterogeneous enterprise
systems, typically built at different times, by different people, usually by means of
different technologies.

Figure 1-3 shows two compatible enterprises systems using the same set of format,
and execution platforms.

Figure 1-3 Enterprise systems using same set of format and execution platforms

However, this is not the situation for those enterprises systems that use proprietary
formats. A challenge is to make collaboration possible without requiring enterprise
systems to modify their software or their data organisation. The next two solutions
consider the case where two enterprise systems need to exchange information with
different formats.

One solution deals with enterprises utilizing different solutions than others. An
example is by providing a piece of software such as an adapter which in principle is

6

able to transform data produced by one enterprise system in the format required by the
other enterprise system. There are many disadvantages with this solution [8]. Firstly,
it is technically difficult to build adapters. An adapter is complicated since it requires
a complete understanding of the data organisation within two enterprise systems.
Unfortunately, there is not often sufficient knowledge about the data organisation
such as the semantics of data. For data to be correctly transformed and interpreted,
knowledge of semantic data is necessary. Secondly, this solution is suitable in an
environment involving only a few cooperating partners. However, in the case where
more and more enterprise systems become involved, this approach becomes complex.
To maintain as many different solutions to communicate as there are enterprises
involved is inefficient, and leads to high costs. Given N systems that need to
cooperate, it needs to be developed N2 – N adapters. This solution is referred to as
point-to-point, and illustrated in Figure 1-4. The squares to the left and right shows
two enterprise systems, and the square in the centre shows an adapter.

Figure 1-4 Point-to-point solution

Another solution which reduces the development of adapters is the case where
enterprise systems adopt the same set of agreements for interoperability solutions, e.g.
by using a middleware. This solution is represented by the definition of a common
interchange format or standard which is to be imposed to every enterprise system
involved. Further, each of the involving enterprises can get benefits of a single
solution that needs to be developed only once. A drawback is that it can for many
reasons be difficult for large enterprises to standardise on a single middleware
platform [9]. The difficulty includes differing requirements in different departments,
mergers, interoperability with customer and suppliers, and Business-to-Business (B2B)
markets. This solution is shown in Figure 1-5. The outer squares show enterprises,
and the centre square represents the same set of agreements for interoperability
solutions. The inner squares, between the outer and centre squares, refers to
conversion from proprietary format to same set of agreement.

Figure 1-5 Enterprises that adopt same set of agreements

Enterprises need a way to maintain middleware flexibility. We consider an approach
where interoperability solutions should be driven by business needs first and software
solutions second.

7

An area that addresses the problem of interoperability in distributed developing
environments, is the model-driven development (MDD) and in particular the Object
Management Group’s (OMG) [10] Model-Driven Architecture (MDA) [11, 12].
OMG is a non-profit organisation established in 1989. Its mission is to help computer
users solve integration problems by supplying open, vendor-neutral interoperability
specifications. MDD is an architectural business-driven approach for developing
software systems based on requirements derived from enterprise and business models.
In MDD models are the prime artefacts. Essentially meaning, models are in use from
the early capture of user requirements to the production of executable code. Model
reuse is essential and also model transformation, which preferably should be
automated. MDA can be seen as a specific implementation of MDD with respect to
software systems development. According to [13] MDD can contribute with model-
driven information integration by addressing MDA. MDA provides an approach that
separates what systems must do from how it is implemented.

1.2 Model Driven Architecture (MDA) to facilitate
interoperability

MDA is “an approach to using models in software development” [14] and aims to
provide a platform-independent approach to domain-specific application development.
It promotes the creation of software systems through modeling machine-readable
highly abstract models and model transformation. These models are developed
independently of the implementation technology and stored in standardized
repositories. The strength of storing models in repositories is their repeated
accessibility and ability to be transformed automatically by tools into schemas, code
skeletons, test harnesses, integration code and deployment scripts for different
platforms. Models are no longer merely used as a sketch before starting to code on a
software project. Instead, the models are understood by computers enabling them to
be consistent with the code at all times during the project. MDA integrates what has
been built, with what is being built and what will be built in the future.

The MDA approach promotes to create good designs that cope with multiple-
implementation technologies and extended software lifetime. Figure 1-6 shows
MDA’s three main parts and is taken from [15]. The core of MDA is shown in the
centre of this figure which includes widely-used OMG modeling standards: Unified
Modeling Language (UML) [16], Meta Object Facility (MOF) [17] and Common
Warehouse Metamodel (CWM) [18]. The modeling language UML has in the recent
years outgrown its initial purpose as a standard notation for constructing models of
object-oriented software. UML allows an application model to be constructed, viewed,
developed, and manipulated in a standard way at analysis and design time. Just as
blueprints represent the design for an office building, UML models represent the
design for an application. In MDA, UML is used for visualizing, storing, and

8

exchanging software design and models. MOF is a model-driven framework for
specifying, constructing, managing interchange and integrating metadata in software
systems. It represents metamodels and how to manipulate them. In addition, it has a
repository service for storing abstract models used in distributed object-oriented
software development. Also, it is a metamodeling language for the rapid specification,
construction and management of domain-specific technology-neutral modeling
languages. CWM is a specification that describes metadata interchange among data
warehousing, business intelligence, knowledge management and portal technologies.

Figure 1-6 OMG’s Model Driven Architecture

The next circle includes the proprietary target platforms which are current targets of
MDA. These are CORBA, JAVA, .NET, XMI/XML and Web-based platforms. The
outermost circle shows the pervasive services that are common for all enterprise
systems regardless of what platforms they are based on. These services are directory,
transactions, events and security. The arrows indicate that MDA can be used in many
market places.

The MDA defines an architecture for models which provides a set of guidelines for
structuring specifications which are expressed as models. In the MDA development
life cycle, models that can be understood by computers are created: Platform
Independent Model (PIM) and Platform Specific Model (PSM).

9

1.2.1 Platform Independent Model (PIM)
PIM is a model with a high level of abstraction defined in UML. It specifies services
and interfaces independent of software technology platforms. A PIM looks at the
enterprise system from the viewpoint of how it can best support the enterprise. It is
concerned with modeling business processes and functionality on a platform-
independent level. For example a PIM may allocate several logical business objects to
one software component. These models are computational in that they may be
converted into executable software. The PIM may incorporate decisions regarding
distribution of components to meet performance and security requirements.
Additionally, an MDA application can be produced on multiple middleware platforms
from a single PIM.

1.2.2 Platform Specific Model (PSM)
In the same way as PIMs are constrained by platform-independent UML profile,
PSMs are constrained by profiles specific to the technologies they represent, such as
UML profile for CORBA. A PSM adds more details to a PIM. The PSM adheres to
constraints and conventions imposed by a specific software technology platform, such
as CORBA, J2EE or Web Services. The PSM stands relatively close to the actual
code, e.g. Java code.

1.2.3 Mapping and transformation
One of the core characteristics in MDA is mapping of models. The mapping process
uses a set of rules and techniques to modify one model to obtain another. When
transforming from one model to another, mapping is used at several occasions. Figure
1-7 shows the MDA metamodel description which illustrates various mappings and is
taken from [19].

10

Figure 1-7 MDA metamodel description

Mappings are used for transforming of models from:

PIM to PIM: Transformations between these models at this level are related to model
refinement, filtering of the model, omitting platform dependent issues. PIM to PIM
mapping is an iterative process independent of platform details. In each iteration the
generated output model contains more details about the problem domain than the one
in the previous iteration. For example some details are abstracted in the analysis
model, but are elaborated in the design model.

PIM to PSM: This transformation is used when the PIM is refined enough with
complete details and has to be projected to some specific technology platform. For
example, a mapping can be transforming from a logical model to a specific platform
like CORBA. PIM to PSM mapping is also an iterative process, but dependent on
platform specific details.

PSM to PSM: This transformation deals with model refinement during realization
and deployment of components. An example for this transformation is the selection of
services and preparation of their configuration.

PSM to PIM: This transformation is concerned with reverse engineering operations.
These transformations are needed to abstract models from existing implementations in
a specific technology into a PIM.

11

1.2.4 Integrating legacy systems
In addition to the MDA approach, the OMG define an approach which specifies how
to integrate and modernise existing legacy systems according to new business needs.
This is a reverse engineering approach known as the Architecture-Driven
Modernization (ADM) [20]. It allows any legacy system based on a UML model and
a supported middleware platform to be included in an enterprise’s circle of MDA
interoperability. In particular, ADM aims at assessing and synthesizing several MDA
related standards for the purpose of mining legacy systems, recovering their
architecture, identifying inconsistencies in them. Also, migrating them into new,
revitalized system.

1.2.5 MDA – a middleware
It is usual that enterprises typically define computing standards in a specific
technology. This is necessary to guarantee interoperability, but requires every
enterprise to use the same middleware. Another disadvantage is the case where
enterprises advances and the chosen middleware platform are superseded, the
standard and all of its users are forced to change to something new. By defining
standards in the MDA, enterprises avoid both of these severe disadvantages. Their
standard can be implemented equivalently and interoperable on multiple middleware
platforms by defining their business services and interfaces as a PIM. Over time, if
one or some of these platforms become obsolete, the enterprise can define new
implementations on new platforms from the original PIM.

1.2.6 MDA tools
There exist MDA-oriented tools that are available. Certain tools are pure code
generation tools and others are more completely developed model-driven tools. UML
tools can also be thought of as MDA tools. Examples of these kinds of tools are:
OptimalJ, UMT, ATL, MOFScript. For a more detailed description of these and other
related tools, see [21].

1.3 Goal of this thesis
The goal for this thesis is to outline a model-based approach to data integration with
main emphasis on how to integrate heterogeneous data from one enterprise’s format
into another enterprise’s format with aid of models. Further, to provide syntactic,
structure and semantic integration of data.

The enterprises should have common understanding of the data to be exchanged. With
common understanding enterprises can more easily do business, and more efficient
collaboration with several business partners without being concerned about who is

12

using which format. Figure 1-8 below shows a goal model with the goals defined
above.

Figure 1-8 Goal model

1.4 Methodology of work
We are two students who have worked on this thesis. For this reason we have divided
the work in two parts. Two projects have been examined while using cases to define
the problem areas. We divided responsibility for each case, but changed the
responsibility on the way so both of us could have the same understanding and
knowledge about the research areas. The remaining work on this thesis has been done
together.

Resources that have been used are mainly books related to the research area and the
Internet. In addition, we have used project documentation as input to the cases defined
and the existing solution approaches. The resources used for these cases and existing
solution approaches have been available on the Internet and given by our supervisor.
These resources have not been sufficient since the projects are at the time of writing
ongoing. Also, the documentation has been dynamic. However, these resources have
been useful for describing the problem area and for input to our proposed solution.

1.5 Structure of this thesis
The structure of this thesis is illustrated in Figure 1-9 and is organized in the
following way. There are 9 chapters, and chapter 2 and onwards are built in a manner
where a new chapter builds on a previous chapter. In chapter 2, two problem
examples are presented to give an understanding of the problem in detail. These are
project cases considering enterprise collaboration with metadata and data integration
problems. Further, general data integration problems related to information
interoperability is defined. With these problems in mind, requirements to solutions for
data integration are specified. The goal for chapter 3 is to examine technologies

13

related to the problem area, and evaluate them according to the requirements. Chapter
4 analyses existing solution approaches to the project cases presented in chapter 2,
and evaluate the approaches according to the requirements. In chapter 5, our proposed
solution, MODI Framework is presented. It is a solution for data integration
established with a model-based approach. In chapter 6 and 7 the MODI Framework is
applied to the two project cases. In chapter 8 an evaluation of the MODI Framework
is given. Finally, chapter 9 contains a conclusion and suggestions for possible
improvements that could be applied to in future work.

Figure 1-9 Structure of this thesis

14

15

2 Problem examples

The problem we address in this chapter is based upon projects we have analyzed. The
main discussion topic is interoperability, with focus on metadata and data integration.
First, we present the OR project, and then we present a case where metadata problem
is discussed. Second, we present the ATHENA project. Based on the latter project, we
present a case where data integration problems are discussed. This case describes a
scenario which is used to show data integration problems between two heterogeneous
enterprises. At the end of this chapter, we present the problem specification, and
requirements to solutions for data integration.

2.1 National Data Registry (NDR)
National Data Registry (NDR) is the name we use to refer to the project concerning
The Register of Reporting Obligations of Enterprises (OR1). OR was established by
the Brønnøysund Register Centre in 1997 [22]. It is a national infrastructure for
handling reporting obligations and one of many governmental registries in the
Brønnøysund Register Centre. OR keeps track of all reporting obligations of
enterprises in Norway, and develop implementation strategies for data collection
related to these obligations. OR’s intention is to achieve correct and efficient
reporting, e.g. by identifying and preventing multiple reporting of the same
information from enterprises and citizens to government departments. Thus, prevent
superfluous collection and registration of information from enterprises.

OR was originally created to obtain an overview over all forms that are reported to
government departments. Gradually information about fields in the forms were added.
Further, it was realized that this could be used to create XML Schema definitions to
define content in electronic forms, but then representation format had to be added.
OR’s main responsibility is to have an overview of reporting obligations, and over all
forms (including fields) reported from enterprises to the government departments. In
addition, OR offers XML Schema definitions in connection with electronic forms.
The challenge with this solution, according to OR, is overlap detection and
information exchange between the departments.

2.1.1 OR system design and architecture
Enterprises report obligations to departments, also called central government or just
receivers, through a reporting service. The reporting service is a web portal, and
Altinn [23] is an example of this kind of web portal. Altinn is used to send public

1 In Norwegian: Oppgaveregisteret

16

forms through Internet. Altinn uses metadata from OR to generate forms. In addition,
it centres on message- and application descriptions for different forms. A message
description is an XML message describing how data should be represented on a form.
An application description is generated by XForm [24] and describes how data
definitions (metadata) shall be used to build a web-based application. In addition, it
describes how data from the web-application shall be represented, modelled and
validated.

The OR system contains data definitions which is reported by departments. This
solution resembles the early data dictionary initiatives that attempted to create a
central repository for storing and accessing technical definitions for the attributes and
entities used in a company’s IT system [25]. The data definitions describes the
information requested by departments and are gathered in a database. All the data
definitions can be found listed at [26]. This list is tabulator divided: Data identifier
(id_id), Name, Group, Type, Category. Group, Type and Category is used to easier
find the correct data definitions for reuse. More about the structure can be found here
[27].

The OR system is divided into the following parts; ORdb, ORsys, ORetat and ORnett.
Figure 2-1 shows the OR system and how the different parts are related to each other.

Figure 2-1 Overview of the OR system

17

 ORdb is the database of data definitions pertaining to reporting obligations.
Every field in a form is identified in conformity with the minimum
requirement formulated in Metadata registries, ISO-11179 [28].

 ORsys is the case handler system of OR. It is an internal system which is

used by OR and the case handlers at OR. ORsys is used to maintain a list
over registered metadata. In ORsys the metadata’s format and semantics is
not separated.

 ORetat is a data modeling tool based on the metadata in ORsys. The

metadata are listed as attributes and further used in a specific message data
model. It is available externally to departments through Altinn. ORetat
transforms the data model to an XML Schema model and X-Forms

 ORnett is the open web-sites of OR and giving access to published

messages and guidance from ORetat.

Metadata involved for the different reporting obligations are registered in OR.
Additionally, the departments and enterprises involved for a reporting obligation are
registered. OR, only coordinates data models and other general information about data
definitions.

2.2 Case: NDR – metadata problem
Due to the departments’ different assignments, they handle their information in
different ways, such as use of different representation format. The reason for OR to do
overlap search is to check if other departments already are using requested data
definitions. Assume that two or more departments demand the same information from
the same type of enterprise. Then, the department which needs the information
already in use has to request it from the department that has the needed information in
order to issue one information request. OR has to know which departments need to
collaborate, and has to inform the departments involved about this overlap case.

2.2.1 OR and overlap detection
The departments are responsible for collecting information from enterprises, and for
processing this information in their respective systems. The departments’ systems are
heterogeneous. Departments and OR collaborate as follows: A case handler from a
department informs OR about data (attributes) to be reported. Then OR ensures that
data definitions are consistent with the rules specified for the register, and identifies
overlap with previously defined reporting obligations. Overlapping information is
identified by comparing forms from different departments. Additionally, attributes not
already registered in OR, are entered in the register. Further, the department places the
attributes in one or several message data models. This approach is similar to the

18

ebXML Core Component and Business Information Entity (BIE) modeling
methodology [29].

The information submitted by enterprises and citizens is often submitted several times,
but to different departments. Every department has to verify the collected information.
In the following tables we show an example of three forms we use to illustrate this.
The forms presented are parts of a bigger form. Further, these forms contain some
similar information and have some overlaps. In this example each of the forms are
represented by different departments collecting same kind of information from same
type of enterprise. The departments shown in the examples are: Directorate of tax
(Form 1) shown in Table 2-1, Food supervision (Form 2) shown in Table 2-2 and
Food supervision 2 (Form 3) shown in Table 2-3.

19

Table 2-1 Form 1

Form 1
 Directorate of tax

 Name:
Personal identification
number

 Firstname Lastname
Personal identification
number Land No

Title
number

Overview of
animal

 Per 31.12.04 per 31.12.03
 Horse Horse Horse
 Cattle Cattle Cattle
 Pigs Pigs Pigs
 Sheep Sheep Sheep
 Goat Goat Goat
 Chicken Chicken Chicken

 Other feather animal
other feather
animal Other feather animal

 Fur-bearing animal Fur-bearing animal fur-bearing animal
 Reindeer Reindeer Reindeer

 Renting: Completely/
 Type home unity Type home unity
 Name of renter firstname Lastname
 Renting period Start: Startdate end: enddate

 Rented completely / partially cost free?
Rented completely /partially
cost free

 Rented as a part of working conditions
Rented as a part of working
conditions

 Rent value free of charge Rent value free of charge
 Paid rent Paid rent

 Expenses on rented homes
 Capitalized costs Capitalized cost
 Running expenses Running expenses
 Maintenance expenses Maintenance expenses

Form 1, Form 2 and Form 3 are taken out of a larger form to make the understanding
of overlap easier. Form 2 is a real subset of Form 1. The department using Form 2 is
demanding exactly the same information as the department using Form 1. If the Food
supervision knows that Directorate of tax already collects the same information, they
could request it from them. Consequently, it helps eliminate a lot of work with issuing
forms and collecting and verifying the same information.

20

Table 2-2 Form 2

Form 2
 Food supervision

 First name: Lastname
Personal identification
number

 Firstname Lastname
Personal identification
number Land No

Title
number

Overview of
animal

 per 31.12.04 per 31.12.03
 Horse Horse Horse
 Cattle Cattle Cattle
 Pigs Pigs Pigs
 Sheep Sheep Sheep
 Goat Goat Goat
 Chicken Chicken Chicken

 Other feather animal
other feather
animal other feather animal

 Fur-bearing animal fur-bearing animal fur-bearing animal
 Reindeer Reindeer Reindeer

Form 3 and Form 1 collect much identical information. At the same time each form
collects different information. For instance, one of the differences contained in Form
1 allows entry of renting and in addition registration of animals at two occasions.
However, Form 3 contains a field not included in Form 1 which is Dead animals last
year. This problem can be solved in two ways. A suggested solution is to make one
collective form with all the required information or by keeping two forms, where one
form contains the common information and the other with the remaining information.
Another problem with Form 1 and Form 3 is that they collect the same information,
but at different points in time. This is not necessarily an overlap, but there is potential
for simplification by collecting the information at the same time. This is also
considered as an important type of overlap.

21

Table 2-3 Form 3

Form 3
 Food supervision 2

 Name:
Personal identification
number

 Firstname Lastname
Personal identification
number Land No

Title
number

Overview of
animal

 Per 31.07.04
 Horse Horse
 Cattle Cattle
 Pigs Pigs
 Sheep Sheep
 Goat Goat
 Chicken Chicken

 Other feather animal
other feather
animal

 Fur-bearing animal Fur-bearing animal
 Reindeer Reindeer

 Dead animals last year
Dead animals last
year

In the case where there is not need to exchange information between the departments,
different information handling is not a problem. However, in the opposite case it is
not possible to exchange information electronically between different databases of
departments directly. Our next discussion topic is the way departments collaborate to
issue one information request and which problems arise.

2.2.2 Metadata problem leading to data integration problems
Presently, OR has already created a number of data definitions only for the name of
an enterprise because of different proprietary solutions at the various departments. To
view an example see here [30]. The terminology’s intended meaning at the different
departments is not clear between them. Further, if a department wants another format
on a data definition which already exists, it will result in that OR has to create a new
data definition. In this case the semantic meaning is the same, but the format is
changed. This can be referred to as semantic heterogeneity, which in this case leads to
different identification and treatment of forms that in principal are the same. The
problem is to identify data definitions that refer to the same concept, since the
departments define data according to their systems. This fact makes it harder to reuse
data, since they are too specific and they do not separate syntax from semantics.
Consequently, causes multiple reporting of the same information. Additionally, it is

22

hard to find data definitions for reuse because they exist in many versions. The lack of
reuse also reduces the possibility for overlap detection, since it is not known to which
extent different data definitions are semantically equivalent. Further, few identical
data definitions are identified when OR does overlap detection, since the metadata
about format is included in the XML Schema description .

The Brønnøysund Register Centre has, at the time of writing, an ongoing project to
solve the problems mentioned above. This project is further described as an existing
solution approach in chapter 4. As the departments have information represented
differently, it is hard to exchange the information between them. A department model
their information differently according to their needs and demands. After studying the
NDR case, we conclude that several data integration problems may arise in the case
departments need to collaborate. The problems defined above needs to be solved
before departments can start integrating data.

2.3 The ATHENA Project
Advanced Technologies for interoperability of Heterogeneous Enterprise Networks
and their Applications (ATHENA) is an Integrated Project funded by the European
Commission, initiated in 2004, and scheduled to last 36 months [31]. The ATHENA
consortium consists of 19 partners which are, Aidima and ESI (Spain), Computas and
Sintef (Norway), Cr-Fiat, Leks, TXT and Formula (Italy), Dfki, FHG IPK Simens and
SAP AG (Denmark), Eads-ccr, Graisoft and University Bordeaux I (France), IBM and
IC-Focus (Great Britain), Intracom (Germany), Uninova (Portugal).

The ATHENA project is concerned with enterprises that are transforming themselves
into networked organisations. ATHENA’s main objective is to remove
interoperability barriers. In addition, they will enable interoperability by providing a
comprehensive Interoperability Framework.

Furthermore, ATHENA has defined four business scenarios that capture industry
specific requirements: Collaborative Product Design (automotive sector), Supply
Chain Management (aerospace sector), e-Procurement (furniture sector) and Product
Portofolio Management (telecommunication sector) [32].

We have analyzed the automotive sector, Fiat Auto case. This case focuses on the
Product Development Process (PDP) portion which prescribes suppliers involvement
in the objectives definition and on product planning, called Collaborative Product
Development (CPD). The main emphasis is on collaboration between FIAT and
suppliers, and integration aspects between the two actors.

With the automotive sector in mind, we and some other students from the University
of Oslo have described a case. The case deals with data integration problems that may

23

arise between two enterprise systems using different formats. We have called the case
Automotive scenario.

2.4 Case: Automotive scenario – data integration problem
In the Automotive scenario, a car manufacturer spends considerable resources to
handle logistics, warehouse and contracts. It is therefore desirable to reduce the
administrative overhead and warehouse costs. In addition, it is vital for enterprises in
the car manufacturing supply chain to be able to share information. The Automotive
scenario presents a case where enterprise systems using different formats face
interoperability problems. In this scenario, information interoperability problems
about data integration are considered.

The scenario’s main focus is order and invoice, by which customers can order
products from suppliers. To simplify the situation, we include only one customer and
one supplier. Both customer and supplier provide interfaces to their systems, enabling
to order products and send invoice by using a so-called Application Program
Interface (API). Two UML use case diagrams illustrate views of the customer’s and
the supplier’s system functionality. Figure 2-2 shows a use case diagram depicting a
customer ordering products.

Figure 2-2 Order Product use case

Figure 2-3 shows a use case diagram depicting a supplier sending an invoice.

Figure 2-3 Send invoice use case

The UML sequence diagram in Figure 2-4 illustrates how customer and supplier
interact with messages. The messages contain arguments referring to the information
to be exchanged. We only consider a happy scenario in which the customer first
orders the product, and then receives an invoice from the supplier with no negative
occurrence, such as products being out of stock etc. Further, we assume that the
customer to be a car company like Fiat and supplier to be a broker that purchases
small car parts like lights, bumpers, etc. like Bosch.

24

Figure 2-4 Interaction between customer and supplier

From the figure above we can describe the following messages:

1. Customer orders products from supplier
2. Supplier responds with accept
3. Supplier sends fulfillment notification to the customer
4. Supplier sends invoice to the customer

In the next section we discuss various data integration problems that may arise
depending on several conditions.

2.4.1 Problem description
In the case where the customer’s and the supplier’s systems are heterogeneous,
different data integration problems need to be considered in order to achieve
information interoperability. The way the customer and the supplier define data may
differ syntactically and semantically. If these differences are not identified and dealt
with, collaboration between the customer and the supplier is inconsistent. Figure 2-5
shows an inconsistent state between the customer and the supplier, since they are
using different technologies. The bold line in the middle of the figure indicates
incompatible message exchange.

25

Figure 2-5 Inconsistent state between customer and supplier

From the figure we see that the customer uses Structured Query Language (SQL) [33]
when specifying order and invoice. SQL is a query language based on the relational
model of database systems. Further, it includes statements for modifying the database,
and for declaring a database schema. It serves as both a data manipulation language
(DML) and a data definition language (DDL). The DDL code for the customer is
shown in Table 2-4.

26

Table 2-4 SQL code for customer

SQL code for customer expressed in DDL

CREATE TABLE Order(
 orderID INTEGER(10),
 issueDate DATE,
 comment VARCHAR(50),
 expireDate DATE,
 ID INTEGER(5),
)
CREATE TABLE Orderline (
 orderID INTEGER(10),
 comment VARCHAR(50),
)
CREATE TABLE LineItem(
 ItemID INTEGER(10),
 quantity INTEGER(10),
 taxAmountTotal INTEGER(15),
 lineStatusCode VARCHAR(10),
 comment VARCHAR(50),
 orderID INTEGER(10),
)
CREATE TABLE Buyer(
 ID INTEGER(5),
 firstName VARCHAR(15),
 lastName VARCHAR(15),
 address VARCHAR(15),
 city VARCHAR(10),
 country VARCHAR(15),
 telephonenr VARCHAR(8),
)

CREATE TABLE Invoice(
 invoiceID INTEGER(10),
 issueDate DATE,
 comment VARCHAR(50),
 lineItemCount INTEGER(10),
)
CREATE TABLE InvoiceLine(
 invoiceID INTEGER(10),
 lineStatusCode VARCHAR(10),
 comment VARCHAR(50),
 itemID INTEGER(10),
)
CREATE TABLE Item(
 itemID INTEGER(10),
 name VARCHAR(25),
 description VARCHAR(30),
 packquantity INTEGER(10),
)

27

Figure 2-6 presents the customer’s data in a Entity Relationship (ER) model.

Figure 2-6 SQL relational model – ER model

A segment of the supplier’s XML Schema is shown in Table 2-5. The XML Schema
represents the data in elements. The elements can either be of a complex type or simple type.
The complex type contains other elements, such as simple types. However, simple types do
not contain other elements. The relational model represents the data in tables and attributes.
Only information relevant to our scenario is taken into account in the models. The models
define the information used by the customer and the supplier differently. The differences are
listed below:

• The models are structured differently; XML uses inheritance in contrast to the SQL
relational model. In addition, they use totally different syntax, e.g. a complex type in
XML corresponds to a table in SQL.

• They are using different names on most of their data.
• Some data in XML are not managed in SQL, and the other way aorund.
• They use different datatypes in some cases.

28

Table 2-5 XML Schema for supplier

XML Schema for supplier

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.automotivescenario.com"
xmlns="http://www.automotivescenario.com"
elementFormDefault="qualified">

<xs:element name="Customer" minOccurs=”1” maxOccurs="1”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:integer"/>
 <xs:element name="firstName" type="xs:string"/>
 <xs:element name="middleName" type="xs:string"/>
 <xs:element name="lastName" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="country" type="xs:string"/>
 <xs:element name="phone" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="PrisedDocument">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:integer"/>
 <xs:element name="orderDate" type="xs:date"/>
 <xs:element name="note" type="xs:string"/>
 <xs:element name="lineItemCount" type="xs:integer"/>
 <xs:element name="prisingCurrencyCode" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="PurchaseOrder" type=”PrisedDocument”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="earliestDate" type="xs:date"/>
 <xs:element name="expiryDate" type="xs:date"/>
 <xs:element name="totalPackageQuantity" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Table 2-6 shows a detailed mapping between SQL table Order and XML element
PurchaseOrder, and SQL table Buyer and XML element Customer. From the table we can see
that the two models use different syntax to denote the same information. Below we elaborate
for the differences arising when comparing the two different formats. These differences lead
to data integration problems.

29

Table 2-6 Detailed mapping between SQL and XML

SQL XML
OrderProductsService
Order PurchaseOrder
ordered ID
issueDate orderDate
comment note
Not handled lineItemCount
Not handled prisingCurrencyCode
Not handled earliestDate
expiryDate expiryDate
Not handled totalPackageQuantity
ID (foreign key,primary key in table Buyer) Not handled
Buyer Customer
ID ID
firstName firstName
Not handled middleName
lastName lastName
address Not handled
city city
country country
telephonenr phone

Mapping between Order and PurchaseOrder
The SQL table Order uses the terms orderID, issueDate and comment. While, the XML
element PurchaseOrder uses the terms ID, orderDate and note to define the same semantic
concepts.

Another concern is that XML uses inheritance, and SQL does not. Some of the terms are
represented at different aggregation levels in XML. In this case the attributes ID, orderDate,
note and lineItemCount are part of the super-class PricedDocument in XML.

Further, some terms are represented differently. issueDate and expiryDate for SQL table
Order are represented as dd.mm.yy, but orderDate and expiryDate for XML element
PurchaseOrder are represented as yy.mm.dd.

Additionally, some of the terms in XML element PurchaseOrder are not handled in SQL table
Order. These terms are: lineItemCount, earliestDate, totalPackageQuantity and
prisingCurrencyCode. Since SQL uses foreign key as relation, the foreign key ID from table
Buyer is contained in table Order. For this reason, the latter mentioned term is not handled in
XML element PurchaseOrder.

30

Mapping between Buyer and Customer
The SQL table Buyer and the XML element Customer uses the term ID to denote completely
different concepts. In table Buyer the term ID is a system generated number which identifies
the buyer. However, in element Customer the term ID is a national identity number. These
identical terms are semantically unrelated concepts.

Some properties are modelled differently in table Buyer and element Customer. Table Buyer
uses firstName and lastName to denote name, while element Customer uses middleName in
addition to firstName and lastName. Besides, the term address in table Buyer is not handled in
element Customer.

The terms telephonenr in table Buyer, and phone in element Customer are synonymous. In
addition the terms are represented by different datatypes. The term telephonenr uses the
datatype VARCHAR and the term phone uses the datatype INTEGER.

Finally, another conflict that is not considered in the mapping above is the case where same
term uses different default values. For instance a term tax has the default value 20% one place
and 25% at the other.

2.5 Problem specification
After looking at the two cases, we conclude that both have data integration problems. The
NDR case takes into account metadata problems, which leads to the difficulty of integration
of heterogeneous data between departments. The Automotive scenario case is concerned
about data integration problems that may arise between enterprise systems using different
formats. The problem of different format use can be divided into two parts. The first part is
concerned about dealing with different possibilities of representing information. The second
part has to do with interpreting the information.

Data integration between enterprise systems is a very general interoperability problem. It can
be explained in some interrelated sub-problems, such as data value- , schema- , data model- ,
syntactic- and semantic conflicts:

 Data value conflicts are related to the representation or interpretation of the data
values. For example these conflicts are discrepancies of type, unit, precision,
allowed values or spelling.

 Schema conflicts are concerned about different alternatives provided by one

datamodel to develop schemas for the same situation. For instance what is
modelled as an attribute in one relational schema might be modelled as a relation
in another relational schema for the same application domain. This can also be
referred to as a data precision conflict.

31

 Data model conflicts arise when databases uses different data models. E.g. one
database is designed according to the relational model and another one object-
oriented.

 Syntactic conflicts refer to data representation discrepancies. In other words, when

data involved in an integration process is designed with different approaches.

 Semantic conflicts refer to difference of opinion about the meaning or
interpretation of the same data. Consequently, it refers to discrepancies associated
with representation with real world objects and phenomena. The case where
syntactic conflicts can have a semantic counterpart is not considered.

From the discussion above general data integration problems are defined in Table 2-7. These
problems are based on the conflicts described in [4]. Mostly we consider the representation
and interpretation concerns, accordingly syntactic-, structural and semantic conflicts.

Table 2-7 General data integration problems

Problem Description
Synonyms Semantic equivalence: Different terms referring to same semantic

concept, ergo same information, different attribute names
Homonyms Semantic incompatibility: Same term used to denote different

concepts, ergo different information, same attribute names

Data representation
conflicts

Semantic equivalence: Type mismatch, e.g. different units of
measurements used (cm vs. km)

Differences in properties Two systems model properties differently. (first name, middle
name, last name, vs. name)

Data precision Semantic relationship: Some elements are represented as
relation/attribute, also called different aggregation level.

Default value Semantic relevance: Different default values for e.g. tax

Attribute integrity
constraint

Semantic resemblance: Different data types for same attribute
(string vs. integer)

Data lacking Information elements are missing or not accounted for in one
specification and provided in the other.

2.6 Requirements to solutions for data integration
The data integration problems can be overcome. Several requirements are vital to enable
enterprises systems with different representation, structure and meaning of data to integrate
their data. The solution should be a general description of a framework for enabling enterprise
systems using proprietary formats to integrate data.

Metadata enrichment is an important requirement to support semantic matching among data
items from different enterprise systems. This helps obtain the correct meaning of data.

32

Metadata is vital for identifying differences in data such as synonyms, homonyms, data
representation conflicts etc.

Another important requirement is requiring enterprise systems to support use of platform
independent data model as exchange format. The data model should allow for identification of
differences in their information systems data at a platform independent level.

Further, tool support to manage data mapping and integration is another vital requirement. A
tool will provide interactive ways to manipulate data and perform mapping. Enterprises
should be able to combine their information systems with modern mapping techniques in a
consistent manner. This requirement will allow enterprises to perform the actual mapping.
From the considerations above, reasonable requirements we find to solutions for data
integration are defined in Table 2-8.

Table 2-8 Requirement to solutions for data integration

Requirements Description
Metadata enrichment The solution shall specify how to integrate data with different syntax,

structure and semantic, by obtaining correct meaning of data.
Synonyms The solution shall specify how to integrate data that are synonyms
Homonyms The solution shall specify how to integrate or manage data that are

homonyms

Data representation
conflicts

The solution shall specify how to integrate data with different
representations.

Differences in
properties

The solution shall specify how to integrate data with differences in
properties.

Data precision
conflicts

The solution shall specify how to integrate data concerning precision
conflicts

Default value
conflicts

The solution shall specify how to integrate data with different default values

Attribute integrity
constraint conflicts

The solution shall specify how to integrate data concerning attribute
integrity constraint conflicts

Data lacking The solution shall specify how to deal with data lacking

Platform independent
data model

The solution must have support for data integration through a data model
which shall not be based on any specific implementation platform. The
data model for data integration must be versatile and self-explanatory.

Tool support The solution must have support for tools to manage data mapping and
integration.

2.7 Summary
In this chapter we have presented two problem examples and analysed them. With these
problem examples in mind we have identified and given an insight to some general data
integration problems. At the end of this chapter requirements to solutions for data integration
are defined. In the continuation, we look into related technologies dealing with
interoperability and data integration.

33

3 Related technologies

Different consortiums, such as IBM, Microsoft, OASIS have initiated technologies to
facilitate interoperability and support data integration. The technologies that are examined in
this chapter are XML, XSLT, ebXML, MOF, BizTalk and Altova MapForce 2005. At the end
of this chapter these technologies are evaluated according to the requirements described in the
previous chapter.

3.1 Extensible Markup Language (XML) as a syntactic standard
A standard format for data representation and exchange in the Internet which recently has
emerged is XML [34]. XML allows parties to exchange and integrate structured data, similar
to information stored in databases, over the Internet. It is an open and freely available
document from World Wide Web Consortium (W3C) [35]. Besides, it has the support of the
leading technology companies who are mowing toward adopting it. They are either using it as
an internal data representation model for their software or for data exportation and
importation among different applications and platforms. Another good thing, XML supports
Unicode that enables the display and exchange of most of the world’s written languages.

Like HTML, XML employs tags to structure data, but in XML tags are defined for each
application and can be used to identify the meaning of data. Web servers and enterprises’
systems encoding their data in XML can quickly make their information available in a simple
and generally accepted format. Information content is separated from information rendering,
making it easy to provide multiple views of the same data.

Enterprises systems can represent their data more generally and flexible by using XML than
other standards, including the relational data model. Furthermore, the data in XML format can
make the Internet a huge data source for all sorts of information. Using XML as a data
representation standard can bring many benefits for data integration. Since XML is a semi-
structured data model it can increase flexibility, and aid in data representation. The activities
involved in the data integration process can be simplified and distributed, if semantics are
associated to XML data and their markup. In the case where XML is without agreement upon
semantics associated to data and tags, it does nothing to support integration except for
providing common syntax.

We may verify that use of XML as a standard enables heterogeneous enterprise systems to
integrate data by comparing syntax and structure, but not semantics. XML does not by itself
support semantic description. To achieve information interoperability with XML it is
necessary to establish multiple agreements on application domain terminologies, taxonomies
and representations. Although there are advantages with XML such as that it is low-risk,
stable and reliable way of transporting data.

34

Furthermore, there is existence of different XML versions for definition of message exchange.
Enterprises using different XML formats can collaborate by using a transformation
technology for XML documents.

3.2 XSL Transformations (XSLT)

W3C has developed an XML-based style sheet language, called EXtensible Stylesheet
Language (XSL) [36]. A part of XSL is XSL Transformations (XSLT) [37]. XSLT is a
language for transforming an XML document into another XML document. To discover
information in an XML-document, XSLT uses XPath [38] to navigate in a XML document
through elements and attributes.

In the transformation process XSLT defines parts of the source document that should match
one or more predefined templates. When a matching is found, XSLT transforms the matching
part of the source document into the result document. An example of and XML file with the
belonging XSL file is shown in Appendix B.

3.3 Electronic Business XML (ebXML)
Electronic Business XML (ebXML) [39] is an initiative started by Organization for the
Advancement of Structured Information (OASIS) and Unified Nations Centre for Trade
Facilitation and Electronic Business (UN/CEFACT) in 1999. OASIS is an international
nonprofit consortium that promotes open collaborative development of interoperability
specifications [40]. UN/CEFACT is a body of the United Nations whose mandate is to
support the worldwide development in the area of trade facilitation and electronic business
[41]. ebXML is a technology where XML is one of its technical foundations and enterprises
are enabled to conduct business over the Internet by adopting its specifications. It is a set of
specifications which enables enterprises to conduct business over the Internet, independent of
their size and geographical location. It intends to support description, discovery, composition
and execution of business processes and services across the Internet. The goal of ebXML is to
provide an infrastructure for a single global electronic market.

3.3.1 ebXML specifications
ebXML includes specifications for public repositories of industry business processes,
messages and common data objects that companies need to get started exchanging data,
additional to register their capabilities to engage in electronic business. Then, enterprises can
use these registries to access the stored data objects and find new suppliers or customers with
the ability to provide electronic messages or services. The specifications enable dynamic B2B
collaborations which cover the following bases [42]:

35

Core Components: provides reusable data structures such as party, address, phone, date,
currency. They form a single, consistent lexicon used to define business process and
information models that facilitates interoperability between heterogeneous enterprise systems.
Universal Business Language (UBL) [43] is an example on a Core Component which defines
a reusable, generic XML interchange format. Besides it defines hierarchical relationships
between processes. These relationships are typically used as instruments in both composition
and decomposition of processes. UBL is discussed further in section 3.3.3.

Registry/Repository: is an information system which stores XML artefacts (XML schemas,
data elements etc.) and supportive documents which are not XML artefacts and metadata of
the artefacts. The part of the information system which manages the metadata for the
registered objects, is called Registry. The storage unit which keeps Registry objects is called
Repository [44].

Collaborative Protocol Profile (CPP): is a concrete specification of a company’s offerings,
which are the business scenarios one support, the service interfaces one implements,
document format exchanged, technical requirements and options for protocols, security and
reliability. The profile is composed of business process models, information models, and
context rules. The information model defines the documents, and the industry-specific context
in which the transactions take place.

Collaboration Protocol Agreements (CPAs): Examination of an enterprise’s CCP is done
after finding a registry and search for partners in order to ascertain compatibility of the
business process and technical specifications. “Rules of engagement” are stipulated and a
CPA is produced.

Message Service: is a secure XML messaging service which is required to enforce the rules
of engagement in the CPA. The message service is defined transport independent.

3.3.2 ebXML Registry/Repository Example
Figure 3-1 is based on the ebXML Technical Architecture Specification and illustrates a
scenario for using the ebXML Registry/Repository. The figure is taken from [45]. The
scenario consists of six steps that are further explained:

36

Figure 3-1 A scenario for using ebXML Registry/Repository

1. Request Business Details
COMPANY A wants to see the content in an ebXML Registry. The company searches in
the Registry/Repository bases to find out which collaboration models are available and
suited for its business. The collaboration of interest and a core library, a set of standard
“parts” which can be applied on large ebXML elements, will be downloaded. The core
library and maybe other registered business processes will allow COMPANY A to
determine the requirements for their own implementation of ebXML and if ebXML is
suitable for their business needs.

2. Build Local System Implementation
An adjustment to own system is done. COMPANY A has the opportunity to build or buy
an ebXML implementation that fits to their expected ebXML transactions, based on a
view of information which is available from an ebXML Registry. Afterwards the
COMPANY A’s local systems are adapted to the collaboration model.

3. Register Implementation Details- Register COMPANY A Details
The next step is to publish own use. COMPANY A creates and registers a CPP with a
Registry. The company can contribute with new business processes to the Registry, or
refer to available ones. CPP will consist of information which is necessary so a potential
partner can determine business roles which COMPANY A is interested in.

37

4. Query about COMPANY A profile
Finding collaboration partners is the next step. After COMPANY A is registered,
COMPANY B accesses the Registry/Repository bases to look for potential collaboration
partners, in this case COMPANY A. COMPANY B can now see Company A’s CPP and
determine if it is compatible with its CPP and requirements.

5. Agree on Business Agreement
COMPANY A and B enter into a collaboration agreement to do e-commerce according to
some collaboration model. Their systems are configured to mutually be able to do
business transactions according to this collaboration model.

6. Do Business Transactions
Then the companies can start actual transactions. These transactions involve business
messages that further confirm to ebXML standards and recommendations.

ebXML does not just support messages and services among businesses (B2B), but also
between businesses and consumers (B2C). However, only the services and architecture are
defined by the specifications on the business end, not customer screens or interactions.

3.3.3 ebXML Core Component - Unified Business Language (UBL)
In the case where an enterprise already has agreed on an XML vocabulary, it might need to
change its message structure to meet the requirements of ebXML. It offers a common
message structure and syntax for exchanging business data over data networks like the
Internet using XML. This offer replaces the prospect for interacting with multiple
vocabularies. UBL was initiated by OASIS in 1999.

UBL defines a standard of electronic XML business syntax documents such as purchase
orders and invoices. It replaces the widespread use of proprietary XML versions for definition
of message exchange in electronic commerce. The existence of different formats to
accomplish the same purpose in different business domains consists of a number of
disadvantages. First, developing and maintaining multiple versions of common business
documents leads to duplication. Second, creating and maintaining multiple adapters to enable
trading relationships across domain boundaries is ineffective. Third, the existence of multiple
XML formats makes it much harder to integrate XML messages. Fourth, the need to support a
random number of XML formats makes tools more expensive and trained workers harder to
find.

UBL’s intention is to solve these disadvantages by providing a library of XML Schemas for
reusable data components such as “Address,” “Item,” and “Payment”, common data elements
of everyday business documents. Further provide for a small set of XML Schemas for
common business documents such as “Order”, “Despatch Advice” and “Invoice”. These
business documents are constructed from the UBL library components and can be used e.g. in

38

a generic order-to-invoice trading context. Additionally, UBL supports for customization in
specific trading relationships.

As mentioned, UBL is designed to operate within a standard business framework such as ISO
15000 (ebXML). The purpose is to provide a complete, standards-based infrastructure that
can extend the benefits of existing EDI systems to businesses of all sizes.

UBL schemas are modular, reusable, and extensible in XML-aware ways. Designed as an
implementation of ebXML Core Components Technical Specification 2.01, the UBL Library
is based on a conceptual model of information components known as Business Information
Entities (BIE). These components are assembled into specific document models such as Order
and Invoice. These document assembly models are then transformed in accordance with UBL
Naming and Design Rules into W3C XSD schema syntax. This approach facilitates the
creation of UBL-based document types beyond those specified in this 1.0 release. This
document describes the basic order-to-invoice business process that the UBL document types
are designed to support.

An alternative to ebXML is EDIFACT [41]. Similar with ebXML, EDIFACT is a message
platform for message-oriented computing. However, ebXML bases its approach on replacing
earlier EDIFACT/EDI standards with similar XML messages and documents. ebXML is
complimentary with existing standards, not competitive, such as UN/EDIFACT, etc. Thus
preserving much of the existing investment in these applications characteristics with
EDIFACT is that it focuses on technical aspects and has little support to semantics. However,
UBL is much stronger, easier and better to use than EDIFACT.

In an environment where heterogeneous enterprise systems use the shared repository ebXML
they adopt the same set of agreements for interoperability solutions. Further, they conduct
business by integrating data. Different from XML, ebXML specifies the use of the core
component UBL as format. Enterprises can achieve information interoperability through
multiple agreements on application domain terminologies, taxonomies and representations.
The disadvantage is that heterogeneous enterprise systems have to adopt the new format to
conduct business.

3.4 Meta Object Facility (MOF)
To support the investigation of semantic matching among data items from different enterprise
systems, involves metadata enrichment. The MOF specification is one of OMG’s standards
for modeling distributed software architectures. It is an extensible model-driven integration
framework for defining, manipulating and integrating metadata and data in a platform
independent manner. Nowadays, many of the available metadata standards are being aligned
with XML.

39

3.4.1 MOF defining metadata and data
The MOF standard is platform-independent, and it is a meta-language which allows us to
define an abstract language. Additionally, it allows a way to specify, build and handle
technology neutral metamodels. A metamodel is essentially an abstract language for some
metadata. Examples are UML, CWM and MOF itself. The reason for these modeling
languages to have a formal definition is so tools can automatically transform the models
expressed in these languages. UML and CWM are in use for integrating tools, applications
and data. As these languages are defined, tools are able to read and write the standardized
languages. An advantage of having a shared metamodel is that generic tools cooperating on
any MOF-compliant model can be built.

Figure 3-2 shows a simplified version of the MOF model [11]. To see the whole MOF model,
see Appendix B. From the figure we see that the classes constitute the basis for the definition
of any modeling language. The elements are used to define metamodels. MOF uses a subset
of UML to describe modeling concepts. However, MOF’s semantics are more precise and
more limited than general UML.

Figure 3-2 Simplified MOF model

3.4.2 Metadata architecture
Since the meta-language MOF is a language itself, it is natural that it can be defined by a
metamodel expressed in another meta-language. This can go on and on until we reach an
infinite number of layers of relationship. OMG use four layers for modeling architecture and

40

MOF represent the top-level language in the metadata hierarchy shown in Figure 3-3. The
central idea is to define metadata architecture, in a way that metamodels and models based on
it can be linked together using a simple language. As MOF correspond to the topmost layer, it
can be used to define the semantics and structure of generic meta-models or domain specific
ones. More traditional models, like the relational one, can also be represented using the MOF.
The advantage with the metadata architecture is semantic constructs refinement through its
application on consecutive layers. The elements in a given layer describe elements in the next
layer down.

Figure 3-3 Metadata architecture

M3 Layer: Meta-Metamodel
The meta-metamodel is the infrastructure for a metamodeling architecture which defines the
language for specifying metamodels. The MOF meta-metamodel is used to define the
metamodel UML, e.g. the metaclass MOF class defines the UML class. MOF links the gap
between different metamodels by providing a common basis for metamodels. In the case
where two dissimilar metamodels are both MOF-conformant, then models based on them can
reside in the same repository.

M2 Layer: Metamodel
The metamodel is an instance of the meta-metamodel which defines the language for
specifying a model. The UML metamodel is used to define UML models, e.g. class Car is

41

defined with its properties carnr, manufacturer and manufacturerYear. The Car class is and
instance of UML class and its properties are instances of UML attribute.

M1 Layer: Model
The model is an instance of the metamodel which defines the language to describe an
information domain. The UML model is used to define aspects of a computer system. E.g.
The Car class specify how the information or instances of this class would look like.

M0 Layer: Information
The actual information exists on this level and is an instance of model which defines a
specific information domain. E.g. the car “Car” has the carnr “12345”, manufacturer “mazda”
and manufacturerYear “2005”. There are usually many car instances, with their own data.

MOF defines a model as an instance of a metamodel which can describe properties of a
specific platform. Figure 3-4 shows the relationship between a model, metamodel and
platform.

Figure 3-4 Relationship between a model, metamodel and a platform

An issue to note is that the layers of modeling give an understanding of the relationship
between the various OMG standards used within the MDA framework. In addition, to
defining modeling languages, the MOF is used to enable building of tools for defining
modeling languages. Some of the additional functionality provided by MOF is a MOF
repository and model interchange.

3.4.3 MOF repository Interface – Java Metadata interface (JMI)
MOF also defines a framework for developing repositories containing metadata, such as
models described by metamodels. This framework provides for transformation of MOF
metamodels into metadata API’s by using standard technology mappings. This gives
compatible and interoperable metadata repository APIs for various implementations
technologies. The interface for a MOF repository makes it possible to get information about
M1 models from a MOF-based repository. This interface is usable in many environments,
particular for Java called Java Metadata Interface (JMI). The development of JMI is being
led by Unisys and includes the participation of Sun Microsystems, Hyperion, IBM, Oracle,
and a number of other industry leaders [46].

JMI provides a platform-independent infrastructure for modeling, representing and querying
the meaning of a data source’s metadata, application, tool, and data integration can be
improved. In addition, it provides a metadata framework that has the ability to capture the
semantics of data and a common semantic model for describing metadata, a common Java-

42

based programming model for handling metadata and a common interchange format for
exchanging metadata.

JMI is a mapping of the MOF model to the Java Programming Language. JMI basically take a
MOF metamodel and generates Java interfaces that can be used to access model instances at
run-time. This means that a Java implementation of any MOF-based metadata service can
expose both the generic and metamodel-specific interfaces derived from the MOF's interface
mapping rules. Java clients have completely portable access to metadata services via JMI.
JMI provides an easy mapping from a MOF-compliant data abstraction, usually defined in
UML, to the Java programming language. All the Java interfaces for metadata access are
automatically generated from the information in the metamodels. In the case where
metamodels are in change the interfaces will automatically be changed to reflect it.

The implementation of the JMI specification facilitates the integration of applications, tools
and services. JMI helps to reduce the complexity of interoperability and data integration A
JMI implementation allows for the generation of pure Java interfaces for programmatic and
XMI-based access to repository-based MOF metamodels and their instances. In addition,
MOF is used to define file-based interchange format for M1 models.

3.4.4 MOF and interchange – XML Metadata Interchange (XMI)
MOF defines a standard way to generate an interchange format for models in the language
defined using a metamodel described in the MOF. This interchange format is an OMG
standard called XML Metadata Interchange (XMI) [47]. In addition, XMI can be used to
generate standard interchange formats for metamodels as well, since MOF is defined using
itself. XMI is a standard for representing models and exchanging models in a standardized
format using XML technology. XMI provides mechanisms to define, to manipulate and to
interchange XML data and objects. XMI is mostly used as an interchange format for UML
models. It specifies how to create XML Schemas for UML models. This articulates the value
needed to overcome some interoperability problems.

Figure 3-5 shows how a UML model is generated to an XML Schema by XMI. Further it
shows the relationship between XML document and XML Schema. The XML document is
validated according to the XML Schema.

43

Figure 3-5 Relationship between UML model, XMI, XML Schema and XML

XMI uses XML technologies and enables to use modeling with XML. Further, there are
available software that supports XMI to create schemas from models and XMI to provide a
higher level of abstraction than XML elements and attributes. All tools that support XMI can
read models made in different tools. Besides, XMI helps to produce XML documents that can
easily be exchanged and enables to create simple documents and make more advanced ones as
an application evolves. In addition XMI enables to tailor the XML representation of objects
and document choices in the models and one to work with data and metadata. XMI can be
used for any metadata whose metamodels can be expressed in MOF. However, there are some
drawbacks with XMI. Visual diagrams can not be interchanged through XMI, only the
information from the diagrams is saved. For this reason, XMI-based models are appropriate
for interchange between, e.g. a drawing tool and a code generator or model checking tool, but
not to exchange diagrams between picture-based tools.

A standard specification of a language suitable for querying and transforming models which
are represented according to a MOF metamodel is at the time of writing, currently in the
standardization process [48].

3.4.5 Query, View, Transformation (QVT)
The standard specification, called Query, Views, and Transformation (QVT) [11] is supposed
to be standard language to write transformation definitions. QVT is a part of MOF since it
addresses the way transformations are achieved between models whose languages are defined
using MOF. It is suppose to be a language for creating views on a model, querying on a model
and writing transformation definitions. QVT is concerned about navigation across related
models and propose a unified approach to model transformation. In Figure 3-6 an overview of
the transformation part of QVT is shown.

44

Figure 3-6 Overview of transformations

The fundament is to enable the possibility of defining a transformation between two
metamodels, and in addition use QVT as input to a transformation engine that will perform a
transformation from a model according to one metamodel to another model adhering to
another metamodel. Both metamodels need to adhere to the same meta-metamodel, usually
MOF.

Atlas Transformation Language (ATL)
An example of a QVT-based transformation language is the Atlas Transformation Language
(ATL) Engine [49]. The engine is, at the time of writing, currently available as open source
under Eclipse Generative Model Transformer (GMT) [50]. ATL is developed as a set of
Eclipse plug-ins, and works as a development Integrated Development Environment (IDE) for
transformations, including execution and debugging. ATL is a combination of declarative and
imperative constructions; a hybrid language. It is intended to express model transformations
as required by the MDA approach to answer the QVT Request for Proposal (RFP) [48]. RFP
is one of a series of RFP’s associated to developing the next revision of the OMG MOF. An
abstract syntax such as MOF meta-model, a textual concrete syntax and additional graphical
notation describes ATL. This permits modellers to denote partial views of transformation
models. ATL expresses a transformation model as a set of transformation rules. For example,
it is possible to write transformations from PIM to PSM. In addition, ATL provides for a
repository of models. It supports creation of a library including transformations ranging from
uncomplicated examples to reusable components.

UML Model Transformation Tool (UMT) – QVT
An open source tool implemented in Java to support MDD and MDA is UMT-QVT [51]. It is
a tool for model transformation, and code generation of UML/XMI models. The tool enables
new generators to be plugged in, where the generators are either implemented in Java or

45

XSLT. It is important to specify that this tool is not an implementation of the approaching
OMG QVT standard.

In addition to standard formats and standards for integrating metadata, there are technologies
or mapping tools available aiming to integrate heterogeneous data. Mapping is a complicated
activity that has been an object of study in various research domains, including distributed
databases, digital libraries, and schema integration. The mapping process is about mapping
the content of one component to another component. It allows translation between
specifications. During mapping, a source specification is compared to a target specification
resulting in a collection of partial mappings between elements of the both specifications.
BizTalk [52] and Altova MapForce 2005 [53] are examples on these kind of technologies.
These technologies support integration of data over the Internet using among other factors
XML.

3.5 BizTalk
As earlier mentioned, XML shows some limitations when it comes to integrating different
enterprise systems. XML is mostly useful when agreeing on how data should be described. In
some cases the document needs to be transferred and received in a commonly recognized
format available on all platforms.

BizTalk is an initiative by Microsoft [54] that aims to create a database for XML-based
document formats. It is a server which integrates separate enterprise systems together to
create a larger system in a B2B environment. BizTalk carries text structured in XML between
enterprise systems. The XML document is exchanged by two BizTalk servers over a network.
Instead of writing integration code into the system itself, the BizTalk server operates as a
messaging hub and allows keeping the integration code on its central server. Figure 3-7 shows
the overall BizTalk architecture, taken from [55]. It illustrates XML’s role for exchanging
data between enterprises systems. The enterprises’ systems manage documents in their own
formats on their own platforms. Despite architectural differences data can be exchanged with
XML.

Figure 3-7 BizTalk architecture

46

In addition, the BizTalk server supplies a tool for translating between message specifications.
The tool is called BizTalk Mapper [56].

3.5.1 BizTalk Mapper – a data integration tool
The BizTalk Mapper is a translation design tool which allows for displaying two
specifications or XML documents, the source and the destination. Further it gives a
programmer permission to specify how records and fields can be mapped to each other. This
facilitates data integration between two message specifications with different syntax.

Figure 3-8 shows the BizTalk Mapper tool and it is taken from [57]. The tool displays a
mapping diagram on the top. The diagram displays three panes: on the left and right panes
tree representation of the source and destination message specification are displayed and a
mapping grid in the middle. The lines displayed in the mapping grid between the source and
destination message specification are linking the source fields to destination fields. A link is
established by dragging a field or record in one specification to the appropriate field or record
to the other. This way simple relationship between fields is mapped. The content of the source
field or record is copied into the incoming message into the mapped field or record in the
destination message specification. The mapper does not only allow for one-to-one
relationships, but also one-to-many relationship or reverse. Besides it facilitates data
processing during mapping.

47

Figure 3-8 BizTalk Mapper interface

BizTalk mapping operations
BizTalk Mapper offer solutions for several mapping scenarios. According to [57], the
complexity of a mapping scenario principally depends on an enterprises preferences and
business need. The mapping scenarios basically comprises of two mapping categories: Basic
mapping and complex mapping.

 Basic mapping: Input and output items have a one to one relationship where they are
mapped to each other. Even though several types of transformations and translations
are possible with basic mapping, for instance use of multiple functoids and cascading
functoids to manipulate the value being copied. In addition, these mapping operations
comprise mapping fields from two different parent records to fields under a single
parent record in the destination specification (or schema). This enables mapping
between data at different aggregation levels, data referring to the same with different
terms.

 Complex mapping: this mapping is taken into account in the case where records or

fields occur several times for a single instance of the record or field element.

48

Some of the processing that arise during mapping can be complicated. For example, several
source fields may need to be combined to form the contents of the destination field. Another
issue might be when some data processing may need to be performed on the contents of the
source specification field to produce the required contents of the destination field. This solves
among other factors the problem with differences in properties described in section 2.5, Table
2-7.

The BizTalk Mapper provides two ways to introduce intermediate data that is processed
during the mapping process: functoids and scripts. Functoids are functional objects that
perform simple predefined operations, such as string manipulation or mathematical operations.
They range from simple calculations to elaborate script functionality. Short user-written
scripts are executed by the script functoid. This allows for more complex data processing. In
Figure 3-8, the box containing A in the middle pane is the way functoids and scriptlets are
represented in the mapping grid. The BizTalk Mapper uses a map to graphically represent the
structural information relationship between the specification data elements. The map provides
a set of instructions that defines the relationship. When the mapping is completed, a
programmer compiles the map using the Mapper. The BizTalk server uses the data provided
in the map to generate XSLT. This is shown in Figure 3-9, also taken from [57].

Figure 3-9 Transformation process for mapping

A facility which the BizTalk Mapper does not support is manipulation of generic XML files
or non-XML files. In the case there is a need to translate between two generic XML files, it is
necessary to import them and save them as specifications into BizTalk Mapper.

The BizTalk Mapper provides for interoperability by allowing for data integration between
XML files. It is not adequate enough according to the requirements defined because it is
single-vendor, and single-platform. Also, it does not have support for mapping between other
formats than XML. Another tool for data integration is the Altova MapForce 2005 [58].
Different from the BizTalk Mapper it supports mapping between other formats besides XML.

49

3.6 Altova MapForce 2005
Altova MapForce 2005 (MapForce) is a mapping tool for exchanging data between XML,
database, flatfile and Electronic Data Interchange (EDI) platforms. It can generate custom
mapping code in different programming languages such as XSLT 1.0 and 2.0, XQuery, Java,
C#, C++. It supports various mappings such as Schema-to-Schema mapping, Database-to-
Schema/XML mapping and vice versa, Database-to-Database mapping, Flat file mapping
(CSV and text files). Figure 3-10, taken from [58], illustrates the MapForce architecture.

Figure 3-10 MapForce mapping tool architecture

An example on mapping between two different formats: For instance, an XML can be
mapped to a different target XML document or database. The mapping is accomplished by an
automatically generated XSLT 1.0 or 2.0 Stylesheet, the built in MapForce engine, or
generated program code. A source schema is mapped to a target schema by connecting their
elements or attributes, when creating an XSLT transformation. In fact one end up mapping
two XML documents, since an XML document instance is associated to and defined by a
schema file. Figure 3-11, also taken from [58], illustrates MapForce with Code-Generation.

50

Figure 3-11 MapForce with Code-Generation

3.6.1 MapForce mapping tool
Figure 3-12 is taken from [58] and shows the MapForce mapping tool which consists of four
main areas: the Library pane at left, the Mapping Project tab at right, Overview and
Validation panes below. Language specific and user defined libraries are displayed, and
individual library functions are displayed in the Library pane. These functions can directly be
dragged into the Mapping Project where the actual mapping process is achieved. The
graphical elements that are used to create the mapping between two schemas are displayed in
the Mapping Project tab. A preview of the mapping depending on the specific language
selected is displayed in the XSLT tab and a preview of the mapping or the mapped data in a
text view is displayed in the Output tab. The mapping area is displayed as a red rectangle in
the Overview tab. Any validation and warnings or error messages that might occur during the
mapping process are displayed in the Validation pane.

51

Figure 3-12 MapForce mapping tool

MapForce data processing functions
MapForce supports for defining custom data mapping functions between source and target
files. It provides an extensible library of data processing functions for manipulating data
according to the needs of users’ data integration application. Additionally, it has a unique
visual function builder for defining custom functions that are able to combine multiple
operations. It is possible to transmit the output of one function into the input of another
function, chaining them together before finishing the data transformation. These kinds of
functions can be saved and reused via the visual function builder. To use a data processing
function it is simply to drag en drop the wanted function from the function library. A user
connects the desired elements from the source file to the data processing function as inputs.
Further, the output of the processing function is connected to the target file.

By providing a unique approach to enterprise data integration, MapForce solves some of the
general data integration problems defined in section 2.5, Table 2-7. It handles data conversion
scenarios with aid of a comprehensive data mapping function library. The library allows for
defining mapping rules based on conditions, including string operations, mathematical
computations, any user defined operations etc.

52

Altova MapForce 2005 addresses the synonym problem; the condition is that one has to know
which one of the terms are synonyms. Altova MapForce 2005 has a function called Auto-
mapping. This function allows one to automatically connect child elements with identical
names in both schemas. (Child elements are referred to elements inside a complex type or
inside a class) This function hinders the ability to detect if these elements are homonyms.
Differences in properties are handled with concatenation and constant functions. In the case
where data is missing, Altova MapForce 2005 uses a filtering technique. This technique is
about filtering out elements which are not available in the target schema, and only passing
those elements that are matching. Another service by MapForce is allowing one to produce
default values to use for a particular element in the case an output of a mapping is null or
absent.

3.7 Evaluation of related technologies
Since MOF- metamodels provide for defining, manipulating and integrating metadata and
data in a platform independent manner, it can support metadata enrichment. BizTalk and
MapForce are data integration tools which aim at integrating data between two enterprises.
However, they emphasise on integrating syntax and structure of data. The data integration
tools are poor at availability of data semantic. Both of the tools use a tree representation to
represent the specifications to be mapped. This makes it difficult to see the relationship
between elements/classes in the specifications.

Both BizTalk and MapForce enables mapping between synonyms, but the condition is that it
has to be known which one of the elements are referring to the same semantic concept.
MapForce provides for automatic linking, which is a hinder for recognizing homonyms. Also,
BizTalk does not provide for recognizing homonyms, e.g. through annotation. This needs to
be known in advance. BizTalk and MapForce provides for solving data integration problems
concerning differences in properties. In addition, BizTalk and MapForce allows for mapping
at different aggregation levels. The data lacking problem can be solved. However, in the case
where an enterprise needs to receive information which it does not have support for it can get
difficult. However, MapForce provides a mechanism for users to filter out information from
certain data. For another case it provides the use of default values for a particular element in
the case an output of mapping is null or absent.

XML can be used as a standard for exchanging information, but where XML is without
agreement upon semantics associated to data and tags, it does nothing to support integration
except for providing common syntax. XSLT can be used to transform between different
versions of XML documents. ebXML provides for a repository where enterprises can share
business and use UBL as a standard business syntax. By using MOF as a shared metamodel
can contribute in using a platform independent data model. Data integration can be supported
through this data model, since ATL (QVT) can be used to write transformation definition
between models. To solve the homonym problem, semantic annotation is required. Without
knowing that data which are to be integrated are homonyms, the mapping can result in an
inconsistent mapping. BizTalk and MapForce are data integration tools. UMT-QVT is a tool

53

for model transformation and code generation of UML/XMI models. In Table 3-1 the related
technologies are evaluated according to the requirements defined in the previous chapter.

Table 3-1 Evaluation of related technologies

Requirements Evaluation
Metadata enrichment MOF can support metadata enrichment.
Synonyms ATL, BizTalk and MapForce enables mapping between synonyms.
Homonyms BizTalk and MapForce does not provide for recognizing homonyms.

Data representation
conflicts

ATL can be used to write transformation definitions to specify this conflict.

Differences in
properties

ATL can be used to write transformation definitions to specify this conflict.
BizTalk and MapForce provides for solving problems concerning
differences in properties.

Data precision
conflicts

ATL can be used to write transformation definitions to specify this conflict.
BizTalk and MapForce allows for mapping at different aggregation levels.

Default value
conflicts

ATL can be used to write transformation definitions to specify this conflict.

Attribute integrity
constraint conflicts

ATL can be used to write transformation definitions to specify this conflict.

Data lacking MapForce has some solutions to solve this problem.
ATL can be used to write transformation definitions to specify this conflict
to some extent.

Platform independent
data model

 XML can be used as a standard which have support for data integrating
by using XSLT. ebXML proposes use of UBL.
MOF as a shared metamodel can contribute in using a data model and use
the QVT as transformation languages between the models.

Tool support UMT-QVT, MapForce and BizTalk Mapper.

3.8 Summary
In this chapter related technologies facilitating interoperability, and supporting data
integration have been examined and evaluated. In the next chapter we present existing
solution approaches to the problem examples introduced in chapter 2.

54

55

4 Existing solution approaches

In this chapter existing solution approaches are presented and analysed. These solution
approaches are found within existing projects that propose solutions to problems defined in
chapter 2, section 2.2.2 and 2.4.1. For this reason, our analysis is based on deliverable project
documentation, and in addition on available public documentation about the solution
approaches. The TOR2 project is an existing solution approach to OR. The ATHENA project
is analysed as a proposed solution to Automotive scenario case. At the end of this chapter the
existing solution approaches are evaluated.

4.1 The TOR approach
The TOR project is a continuation of the OR project, and has in likeness with the OR project
been initiated by the Brønnøysund Register Centre [59]. The TOR project intends to develop
further on OR based on the problems mentioned in chapter 2. Additionally, the TOR project
has the same aim as OR to minimize reporting workload for enterprises and citizens. Further,
their aim is to increase the possibilities for reuse of data definitions by identifying identical
information request from departments. By finding identical information, an enterprise can
send the information to one department, and other departments can get the information needed
from the department who collects it. This will release time both for enterprises and
departments, and save expenses for the society. As presented in chapter 2, OR has the same
intention to avoid multiple submission of the same data from enterprises, but their solution
does not detect overlap. Different departments want to define data definitions according to
their systems. For this reason, it is impossible for OR to detect identical information. Based
on this, OR do not know which departments that need to collaborate to collect the same
information.

The TOR approach proposes a solution to the problem concerning semantic not being
separated from the format when defining data definitions. It suggests how to separate format
and semantics of the information by using models. The two main goals of the TOR project is
to simplify the creation of electronic forms for reporting, and provide for that it is again
possible to do overlap detection for OR.

2 The project is named after a Norse god

56

4.1.1 Using models to organize information and define data definition
Models are a central aspect for the TOR approach. The models are used to describe and define
information. All of the information users operate on is in a model. The TOR project uses
UML as a modeling language to describe their models. As UML is a huge language, TOR
only uses a subset of UML. The subset of UML is shown in Figure 4-1 is taken from [60].
Description of this subset is given in Appendix C.

Figure 4-1 Subset of UML

The TOR project operates on the following models; information-, document-, blank form-,
message and submitter model. Table 4-1 gives an overview and description of these models.

57

Table 4-1 TOR models

Modell Description
Information model

Metadata are structured into an information model to facilitate retrieval by
semantic navigation. This model is supposed to describe the information
which is going to be reported and relationship between different elements. In
other words, this model presents the meta information about the reported
information.

Document model

The document model is a segment of the information model. Document
models are used to limit the big information model so users making a blank
form or a message only need to deal with a smaller part of the information
model.

Form model

A form model is a model of a blank form under design. This model deals with
formatting: where the different fields shall be, and how the form shall look
like. This model consists of components that are put together to describe a
blank form. Some of these components are fields that are going to be used
for reporting information. These shall contain links to attributes in the
information model. A form model can be connected to a document model.

Message model

A message model is a model of a message under design and is an enriched
document model. A message model contains attributes. It is the connection
between document model and form model.

Submitter model The submitter model is used for internal reasoning in the system, and can
currently not be serialized [61]. It gives information about who shall submit
information, and at what time.

The TOR approach enables departments to reuse the information model or the pre-designed
form elements. Further, Figure 4-2 shows how the models in TOR are related and their
relationships to each other. The figure is taken from [61].

Figure 4-2 Models in TOR and their relationship

58

These models is supposed to facilitate the separation of syntax and semantic of the data.
Further, it will be possible to detect overlapping information since they can define data
according to semantics and the departments can choose to use the format that their respective
system uses. The format is not taken into account when detecting overlapping information.

Furthermore, the TOR project proposes creation of a system, called TOR system. Next it is
given a brief description on how the TOR system is build and what it does.

4.1.2 TOR system
The TOR system is based on the OR system, recall section 2.1.1. The TOR system’s main
funtion is the ability to detect overlapping information from same kind of enterprise. The
system’s goal is to achieve semantic interoperability. Semantic interoperability allows for
understanding received data and creation of information. Further, technical interoperability is
recommended as a necessity to achieve semantic interoperability. Technical interoperability
allows for data transfer. Figure 4-3 is taken from [60] and illustrates semantic- and technical
interoperability between two legacy systems.

Figure 4-3 Semantic and technical interoperability between two legacy systems

TOR does not use the same architecture of the present OR system, but TOR intends to reuse
the parts which are good designed, and add new functionality where necessary.

The TOR system is divided in the following parts; ORsys, ORdb, TORnett, TORmodell,
TORdesign and TORdb. The description of ORsys and ORdb in this section is a refinement of
their previous descriptions in section 2.1.1. Some parts of the present ORsys are kept, such as
authorities, reporting obligations and statistics of load. These parts are covered by ORdb. The
remaining parts are moved to the TOR system. TORnett authenticate and authorize users. It is

59

a portal where all users of the TOR system can access the system. Anonymous users, such as
users without username and password, only have access to minimum sites. However, users
with authorization will have the authority to login and access a major part of the functionality
of the system. While OR uses one tool, ORetat, for information modeling and forms, TOR
proposes to implement two separate tools; namely TORmodell and TORdesign. TORmodell
and TORdesign have new and more demands to database storage. For this reason, there is
proposed to separate new and old applications to prevent influence of the old systems’ mode
of operation by having a separate database for the TORmodell and TORdesign. This database
is called TORdb. Figure 4-4 illustrates the proposed TOR system. The arrows indicate the
communication between the different parts. The figure is taken from a deliverable of TOR
project.

Figure 4-4 TOR system

TORmodell shall support processes of information modeling and TORdesign shall be used for
assembly of forms. The connection between the two tools is through a binding in TORdesign
from field elements to metadata elements in the information model. The TORmodell and
TORdesign replaces ORetat’s role as a modeling tool.

TORmodell
The semantic of the data definitions in the ORsys is moved to TORmodell. This tools main
function is to give users access to the information model of the TOR system. Further, the
TORmodell is supposed to be a representative of the different domain models contained in the
information model. The UML like notation for TORmodell is suggested to be used both while
viewing and editing the model.

The users of TORmodell will be able to see sections or views relevant to them. Views can
also be transformed into a document model, and exported to an XML Schema. TORdesign is

TORdb

TORnett

ORdb

ORsys

TOR
modell

TOR
design

60

supposed to use this as a basis to form design. The XML Schema documents can be of two
kinds. The user can either export the whole model to an XML Schema document, or choose to
export only a part of the model.

Another proposed functionality of TORmodell is version control of models, since models will
most certainly change over time. Further, all classes have a version. The case where a class is
being changed, the previous version remains unchanged. All past versions of the classes will
remain in the system, but they will not be visible in the modeling tool. The advantage is that
this allows for classes to be dynamic.

TORdesign
TORdesign is a tool to design blank forms, messages specifications and templates. The syntax
of the data definitions (representation format) is moved to TORdesign. The tool is accessible
from TORnett, and has a generated document specification from TORmodell as an input. The
output from TORdesign is specifications for blank forms, and messages that are available for
administration in TORnett. TORdesign is designed to work with information or document
models that are generated by TORmodell. In addition, TORdesign creates message models.

TORdesign is supposed to take over the part where ORetat adds text. Those restrictions that
are blank form dependent, and not a part of TORmodell is a part of TORdesign. Output from
TORdesign, are XForm documents.

Another focus of the TOR system is to use open standards like UML, XML, XML Schema
and XForm. Use of open standards will make it easy for departments and other users to
implement their functionality or only some parts of the system. It will also be easier to change
the tools used in some part of the system.

4.1.3 TOR and data integration
The project, at the time we analyze it, does not have support for integration between
departments’ systems and TOR. However, it is support for integration of information between
departments. The message model created in TORdesign are supposed to be used as support
integration. The information will be available at the departments through web services where
the messages is represented on TOR message model format. The TOR approach have
proposed some solutions on how to avoid multiple creation of same data definitions. The
synonym problem is solved by using alias between attributes (data) and through re-
definement in different contexts, typically inheritance. The problem concerning homonyms is
suggested to be solved by using the same name and context. The representation is defined
independent of semantics. It can be defined several representations for data with one semantic
type. By defining standard values in each form model the default value conflict is supposed
to be solved. To avoid data lacking it is suggested to exchange partial models (some parts of a
model) between the departments. When a department requests information, the information
shall be collected from several departments holding the information. This is supposed to be
invisible for the department requesting the information. The information model is platform

61

independent, and it is suggested to use JMI to connect to internal systems and arbitrary
platforms. These suggested solutions are supposed to simplify data integration between
departments. At the time of writing, the TOR approach has not created a tool to support data
integration.

4.1.4 Evaluation of the TOR approach
To achieve the goal about providing for the possibility to do overlap for, the TOR approach
suggests to divide semantic and format. It proposes how to separate syntactic- and semantic
data by adding new tools; TORmodell and TORdesign. At the same time, this has given the
possibility to complete the domain models that are supposed to make it possible for
departments to integrate data without adding proprietary solutions. According to [60]
interoperability is maintained at two levels. How they handle semantic interoperability is
described above, but at the technical level they suggest to use XML as a file format.

The TOR project uses models to describe the information reported from the departments.
Further, in their solution approach, models are the core basis for describing data and metadata.
The TOR project specifies how models can be used to solve interoperability problems. From
their deliverables we understand how TOR intends to structure data and detect overlapping
information. By realizing the TOR approach, OR would possibly be able to find overlapping
information and which departments that need to collaborate. It is proposed to use a message
model as a exchange format between departments to solve data integration problems. An
evaluation of the TOR approach is presented in Table 4-2.

62

Table 4-2 Evaluation of the TOR approach

Requirements Evaluation
Metadata enrichment TOR project uses models to enhance semantic and syntax information of

the data.
Synonyms This problem is suggested to be solved by using alias between attributes.
Homonyms By using same name and context, this problem should be solved.
Data representation
conflicts

The representation is defined independent of semantics.

Differences in
properties

Under development

Data precision
conflicts

Under development

Default value
conflicts

Default values can be defined in each form model

Attribute integrity
constraint conflicts

Not handled in TOR

Data lacking The data which is not relevant to the other department should not be sent
as regards to personal information protection.

Platform independent
data model

UML is used to describe the data, and the information model is platform
independent. The document model is a segment of the information model
and the message model is enriched document model.

Tool support TOR project does not propose at the time of writing any tool to support
data integration between the departments.

4.2 The ATHENA approach
In chapter 2 we introduced the ATHENA project, and additionally we presented our student
scenario case: Automotive scenario (recall section 2.4). In this section we present the
ATHENA architecture and analyse it as a proposed solution to the problem described in
Automotive scenario.

4.2.1 ATHENA architecture
The ATHENA project is divided into three categories called action lines. These action lines
have different research areas. Table 4-3 gives an overview of the ATHENA project. It is made
up of six research and development projects, that are coordinated under the name Action Line
A, and six community building activities called Action Line B. With infrastructure business
and technical support functions, the entire ATHENA project is managed and provided
through Action Line C.

63

Table 4-3 ATHENA project

PARTS

Action Line A Action Line B Action Line C

FOCUS Technology Socio-Economic Project Governance
FIELD Research and Development Community Building Management

PROJECTS ACTIVITIES

A1: Enterprise Modeling in the
context of Collaborative
Enterprises.
A2: Collaborative Business
Process Execution
A3: Knowledge Support and
Semantic Mediation Solutions
A4: Interoperability framework
and Services for Networked
Enterprises
A5: Planned and
Customizable Service-
Oriented Architectures
A6: Model-driven and
adaptive interoperability
architectures

B1: Community Creation
B2: Knowledge Sharing
B3: Business Interoperability
Research
B4: Dynamic Requirement
Definition
B5: Piloting including
Technology Testing Coord.
and Pilot Infrastruct.
B6: Training

C1: Program
administration
C2: Scientific Co-
ordination
C3: Exploitation
C4: IT Infrastructure

The interest area in our thesis is the research and development project in Action line A that
supports scientific and technological objectives of ATHENA. Figure 4-5 illustrates the
architecture of ATHENA concentrating on the projects in Action line A. Project A4
represents the way to compromise and complement the approaches, methodologies and results
of the projects A1-A6. We will focus on project A6 which is represented in bold in the table
above. For more elaborate description of Athena and the other projects in Action line A see
[31] or Appendix D.

Figure 4-5 shows two enterprises proprietary systems, A and B that are meant to collaborate
by exchanging information. The red circle represented the A6 projects focus area. MDA is
used as a strategy to achieve the collaboration between the two enterprises.

64

Figure 4-5 ATHENA’s Action line A overview

Project A6: Model-Driven and Adaptive interoperability Architectures focuses on among
other factors applying the principles of model-driven and platform-independent architecture
specifications. Therefore we consider that currently results of this project can contribute to
solve the problems described in the Automotive scenario.

4.2.2 Project A6: Model-Driven and Adaptive interoperability Architectures
Project A6: “Model-Driven and Adaptive interoperability Architectures” is being lead by
SINTEF [62]. The main objective is how model-driven and adaptive architectures can be
combined in developing dynamic and adaptive interoperability software solutions or
architecture approaches. The objective of A6 is to provide new and innovative solutions for
the problem of sustaining interoperability through change and evolution.

According to the deliverables, project A6 has the following goals:

 To support requirements and validate solutions for the involved sectors from projects
B4, B5 and A4.

65

 To provide metamodels & methodologies for interoperability architecture solutions.
 To evaluate and extend multiple adaptive autonomous and federated architecture

approaches, including those based on Agent and Peer-to-Peer (P2P) Technologies and
the Model-Driven Architecture approach.

 To provide support for non-functional interoperability aspects, through a model-driven
approach.

 To apply the use of ontologies and semantics to model and service
Registry/Repositories for better semantic interoperability.

 To provide semantic mapping and mediation technologies.
 To provide executable frameworks and support for active models.

These objectives and goals are supposed to be achieved by integrating principles of model-
driven interoperability architectures and adaptive interoperability architectures.

 Model-driven interoperability architectures deal with design-time aspects of system
engineering. Model-driven development methodologies describe how to develop and
utilise (visual) models as an active aid in the analysis, specification, design and
implementation phases of an information and communication technology (ICT)
system.

 Adaptive interoperability architectures centre on run-time aspects of system
engineering. P2P technologies enrich an ICT systems with dynamic and adaptive
qualities.

The A6 project emphasize on technical interoperability, looking into model interoperability
and execution interoperability between two systems. It is an interoperability framework
structured according to the ATHENA Interoperability Framework proposed in A4. A6
contains three reference models to describe and support the application of MDD of software
systems. Figure 4-6 shows how this framework is refined in A6 with focus on ICT
interoperability, and is taken from [2].

Conceptual Integration

Metamodels (UML profiles) for
platform independent models:

data, services, processes & QoS
Agents and P2P

Technical Integration

Modeling & transformation environment
Transformations to execution platforms

Execution environments

Applicative Integration

MDD Methodology

Pilot cases

Conceptual Integration

Metamodels (UML profiles) for
platform independent models:

data, services, processes & QoS
Agents and P2P

Technical Integration

Modeling & transformation environment
Transformations to execution platforms

Execution environments

Applicative Integration

MDD Methodology

Pilot cases

Figure 4-6 Athena Interoperability Framework focusing on ICT

66

Conceptual integration is concerned about concepts, metamodels, languages and model
relationships. The reference model for conceptual integration has been developed from an
MDD point of view focusing on the enterprise application and software system. Figure 4-7
shows the reference model for conceptual integration. A computational independent model
(CIM) describes the business context and business requirements for the software system under
consideration. The figure is taken from [2]. PIM describes software specification independent
of execution platforms. Further, PSM describes the realisation of software system in a specific
execution platform. The figure also shows how MDA and AMD approach can be used as a
“top-down” or “bottom-up” approach to software development and integration. Models are
used to describe different concerns of a software system. The models at the various levels
may be semantically annotated using ontologies which help to achieve mutual understanding
on all levels. Reference ontology will also help ATHENA to do model transformations and
mappings between and across the three model levels. The ATHENA project proposes to use
ontologies as a solution to solve the data integration problems [8]. An ontology is aimed at
identifying and describing semantics of what exists in the real world. It is intended to use a
shared ontology which captures consensual knowledge and is accepted by a group [31].
Semantic annotation of data to be exchanged is the foundation of the ontologies.

Computational System A

Enterprise System A
(MDD Abstraction)

Execution Platform A

Ontologies

Model-Driven
Architecture (MDA)
&
Architecture-Driven
Modernisation (ADM)

Platform Independent
Model (PIM)

Computational Independent
Model (CIM)

Architecture-Driven
Modernisation (ADM)

Semantic
Annotation

Semantic
Annotation

Model-Driven
Architecture (MDA)

Platform Specific
Model (PSM)

Semantic
Annotation

Computational System B

Enterprise System B
(MDD Abstraction)

Execution Platform B

Ontologies

Model-Driven
Architecture (MDA)
&
Architecture-Driven
Modernisation (ADM)

Platform Independent
Model (PIM)

Computational Independent
Model (CIM)

Architecture-Driven
Modernisation (ADM)

Semantic
Annotation

Semantic
Annotation

Model-Driven
Architecture (MDA)

Platform Specific
Model (PSM)

Semantic
Annotation

Servi
ce

Aspects
Information
Aspects

Process
Aspects

Non-

Functio
nal

Aspects

Horizontal Integration

Ve
rt

ic
al

 I

nt
eg

ra
tio

n

Reference
Ontology

MT

MT

MT

MT Model Transformation

MT

MT Model Transformation

MI

MI

Interoperability
Patterns

Model Interoperability

Figure 4-7 Reference model for conceptual integration

67

Technical integration focuses on the software development and execution environments. It
provides development tools for developing software models and execution platforms for
executing software models. Figure 4-8 shows the reference model for technical integration.
The figure is taken from [2]. The software system is connected to a service bus which
provides the necessary communication infrastructure that is required to deploy a distributed
system. Further, a registry and repository will play an important role in integrating software
systems. Service bus is used as an architectural pattern for handling technical integration of
software systems.

Software System Software System

Service Bus

Enterprise A
(Technical World)

Enterprise B
(Technical World)

Business

Business
Transactions

Business
Processes

Business
Collaborations

Users

Business
Tasks

Vertical
Integration

Business

Business
Transactions

Business
Processes

Business
Collaborations

Users

Business
Tasks

Vertical
Integration

Infrastructure ServicesInfrastructure Services

Registry/Repository

Model
Mgmt.

Service
Mgmt.

Exec.
Mgmt.

Data
Mgmt.

Se
rv

ic
e

B
us

Se
rv

ic
e

B
us

U
se

r I
nt

er
fa

ce
 S

er
vi

ce
s

U
se

r S
er

vi
ce

s

B
us

in
es

s
Se

rv
ic

es

R
es

ou
rc

e
Se

rv
ic

es

U
se

r I
nt

er
fa

ce
 S

er
vi

ce
s

U
se

r S
er

vi
ce

s

B
us

in
es

s
Se

rv
ic

es

R
es

ou
rc

e
Se

rv
ic

es

ICT Infrastructure

Figure 4-8 Reference model for technical integration

Applicative integration focuses on methodologies, standards and domain models. It provides
us with guidelines, principles and patterns that can be used to solve software interoperability
issues. The achievement with this reference model is how enterprise models and software
models prescribed by enterprise modeling and software modeling approaches can be
integrated into the overall framework. Figure 4-9 shows the reference model for applicative
integration. The figure is taken from [2]. An enterprise model describes a set of enterprise
aspects which includes descriptions of business operations which are referred to business
models. These business models provide a context for the software solutions that needs to be
developed and integrated, and thus needs to be reflected in the software model. Software
models describe how software systems are used to support the businesses of an enterprise.
The software model refines the business models in terms of software specification and

68

software realisation models. The software models can be classified as CIM, PIM or PSM
models according to a MDD abstraction.

Software System

Enterprise Architecture A
(Model World)

Software
Model

Specification
Models

Business
Context

Business

Enterprise A
(Technical World)

Business
Transactions

Business
Processes

Business
Collaborations

Models of Service, Information
Process and Non-Functional Aspects

Enterprise
Model

Business
Models

Realisation
Models

Users

Business
Tasks

Vertical
Integration

Computational System A

Enterprise System A
(MDD Abstraction)

Execution Platform A

Ontologies
Model-Driven
Architecture (MDA)
&
Architecture-Driven
Modernisation (ADM)

Platform Independent
Model (PIM)

Computational Independent
Model (CIM)

Architecture-Driven
Modernisation (ADM)

Semantic
Annotation

Semantic
Annotation

Model-Driven
Architecture (MDA)

Platform Specific
Model (PSM)

Semantic
Annotation

MT

MT

MT Model Transformation

U
se

r I
nt

er
fa

ce
 S

er
vi

ce
s

U
se

r S
er

vi
ce

s

B
us

in
es

s
Se

rv
ic

es

R
es

ou
rc

e
Se

rv
ic

es

Se
rv

ic
e

B
us

MT

MT

MTMT

MT

Models of other Enterprise Aspects
Figure 4-9 Reference model for applicative integration

Further, A6 proposes the use model transformation and model integration to achieve model-
driven interoperability. The integration can either be done vertical or horizontal. Vertical
integration follows the MDA and ADM approaches, and horizontal integration deals with
mapping and transformation between models in the same abstraction level to ensure model
interoperability. According to the deliverables model mappings can be defined using the
metamodels and supported ontology.

4.2.3 Evaluation of the ATHENA approach
ATHENA project uses MDA where models are very central. ATHENA focuses on enterprise
interoperability where organisational-, business- and technical interoperability is considered.
They want to solve all of these interoperability areas. ATHENA deliverables proposes
solution where models are being used to achieve interoperability. The A6 project specifies
how model-driven and adaptive architecture can be combined in developing new
interoperability software solutions.

The deliverables from ATHENA at the time of writing propose a solution to data integration
by using ontology and interoperability patterns. They specify the data integration problems
and proposes a solution to the problems, but are still developing techniques and tools to

69

support their solution approach. Models and ontology will together be a central part of the
solution. The problems specified in the Automotive scenario case are intended to be solved by
ATHENA’s solution approach. Evaluation of ATHENA is specified in
Table 4-4.

Table 4-4 Evaluation of ATHENA

Requirements Evaluation
Metadata enrichment ATHENA proposes use of OMG’s metadata architecture to achieve

metadata enrichment. In addition to achieve correct semantic they use
ontology.

Synonyms
Homonyms

Data representation
conflicts

Differences in
properties

Data precision
conflicts

Default value
conflicts

Attribute integrity
constraint conflicts

Data lacking

ATHENA proposes use of models and ontologies to solve these data
integration problems. The solution approach is under development.

Platform independent
data model

The models can be integrated at a platform independent level. ATHENA
has decided to use UML 2.0 as the common language for describing the
implementation neutral models.

Tool support ATHENA , is at the time of writing, developing a tool support for mapping
models between enterprise systems,

4.3 Summary
In this chapter we examined and evaluated two existing solution approaches. These are
solution approaches to the two problems introduced in chapter 2. At the time of writing, the
TOR project focuses on how to solve the metadata problem and does not concern on how to
solve the data integration problems between departments. On the other hand, ATHENA is a
solution to solve all integration problems between two or more enterprises. Both solution
approaches direct in defined directions, and characterizes that a model shall be a central part
of the solutions. To solve the interoperability challenges, models should be used to the extent
they are being applied to represent metadata for semantic enrichment. In the next chapter we
specify our proposed solution.

70

71

5 MODI Framework

Based on the underlying issues identified in the previous chapters, we propose a model-based
approach to data integration based on MDA. The approach is intended to be independent of
any particular implementation environment, but still intended to support implementation of a
platform independent data model. The aim is to support information interoperability
concerning data integration between heterogeneous enterprise systems.

The approach is an interoperability framework, called the MODI Framework. MODI stands
for a MOdel-based approach to Data Integration, which means enabling heterogeneous
systems to integrate data by using models. According to the European Communities [3] the
term interoperability framework is defined as: “A set of standards and guidelines which
describe the way in which organisations have agreed, or should agree, to interact with each
other. An interoperability framework is, therefore, not a static document and may have to be
adapted over time as technologies, standards and administrative requirements change.”

The MODI framework, or MODI for short, provides a set of guidelines which specify how to
develop tools that support data integration between heterogeneous enterprise systems. Also,
the guidelines describe how the enterprises can use the tools, and the way in which the
enterprises should agree to interact with each other.

The target group for the framework consists of two roles; namely a developer and user. The
developer is a person who shall implement the tools to support data integration. This person
should have a detailed understanding of the application domain, UML, MDA, XML
technologies, platforms needed in order to produce quality software, transformation rules
between source and target models. The developer also needs to know the transformation
language, QVT. Also, the developer’s responsibility is to define relationship between PSMs
and PIMs, between PSMs and between PIMs. A user is a person (in an enterprise) using the
tools for reverse engineering and model mapping. It is not intended that both cooperating
enterprises use the tools for the same integration process. In addition, the user must have basic
knowledge about UML.

Since it is a base for different modeling standards, we choose to use the UML as a modeling
language for describing the platform independent data models. UML diagrams such as class
diagrams, use case diagrams, activity diagrams, sequence diagram, collaboration diagram and
state diagrams can be used to express or make PSMs and PIMs. The scope is business
documents, expressed in UML class models and exchanged between enterprise systems. The
main reason for selecting class diagrams is that these can be used to create a conceptual
description of a software system. That is why we find it appropriate to use class diagrams to
define PSMs and PIMs.

72

5.1 Principles of MODI
The way in which the enterprises should agree to interact with each other is through a PIM.
These PIMs will have different structure, but at the same time independent of any technology.
The aim is to integrate enterprises’ (e.g. EnterpriseA and EnterpriseB) PIMs, then transmit
EnterpriseA’s instances to EnterpriseB’s, and represent the instances in EnterpriseB’s
platform specific format. For this reason, EnterpriseA should be the tool user, since they are
transmitting the instances. However, we have not considered the case where enterprises are
transmitting instances both ways; from EnterpriseA to EnterpriseB and from EnterpriseB to
EnterpriseA.

MODI guides the developer through implementation of a reverse engineering and model
mapping tool. The reverse engineering tool (MODI Reverse) shall enable the user to parse the
enterprises’ platform-specific code into PSMs, and then transform the PSMs into PIMs. The
model mapping tool (MODI Mapper) is supposed to allow the user to load PIMs, and then
map the PIMs by using mapping rules (same as transformation rules). Further, the tool shall
enable the user to generate code, and transform the instances. An engine (Mapping engine)
shall generate the code and transform the instances. Figure 5-1 shows the process which is
executed by using MODI Reverse and MODI Mapper.

Figure 5-1 MODI process

In which order the tools are implemented is up to the developer. However, it is important to
note that the model mapping tool is dependent on the reverse engineering tool. In particular,
we assume that a user does not have their code represented in PIM, and need to use MODI
Reverse to create a PIM before mapping with MODI Mapper. .

73

5.1.1 Eclipse – platform for tool integration
The MODI Reverse and MODI Mapper tools should be plugged into a platform for tool
integration, such as Eclipse [63]. Our reason for choosing Eclipse as a platform is its plug-in
based framework, and that it is a universal platform for tool integration. This way, Eclipse
makes it easier to create, integrate and utilize software tools. Besides, Eclipse-based tools give
freedom of choice in a multi-language, multi-platform and multi-vendor environment. Eclipse
is language-neutral, which means that it permits unrestricted content types.

Eclipse architecture
Figure 5-2 shows the Eclipse architecture [64]. This plug-in based architecture makes it easy
to extend the Eclipse platform or integrate tools, including own-developed tools, into the
Eclipse platform by writing plug-ins. The core piece of Eclipse is a small kernel, and except
for this part everything is written as a plug-in. The Eclipse Platform’s functionality is a result
of interactions between plug-ins and the kernel. A plug-in which is included with the standard
Eclipse Software Developer Kit (SDK) for Java Development is a Java Development Toolkit
(JDT). The Eclipse SDK is the combination of Eclipse Platform, JDT and Plug-in
Development Environment (PDE) into a single download. The tools shown at the right in the
figure are examples of tools that can be plugged into Eclipse. It is also possible for tools to be
dependent of each other, like shown in the figure (Your Tool and Their Tool).

Figure 5-2 Eclipse plug-in architecture

A more compelling effect of the architecture is its meaning for open source in general. This
implies that developers are no longer tied to a specific tool, product or closed license. In
addition, it provides an industry platform for the development of highly integrated tools.

74

5.2 MODI Architecture
Figure 5-3 shows the MODI architecture in a component structure model which illustrates
components. MODI Reverse and MODI Mapper are the tools we specify to support data
integration between heterogeneous enterprise systems. The Component Infrastructure consists
of components that constitute the basis for the tools. MODI Reverse tool component has a
connection to two BusinessServices; namely ParseService and TransformModelService.
These services are further connected to the ResourceService CodeInfo. The BusinessServices
related to the MODI Mapper tool are MappingService and EngineService. The
ResourceService ModelInfo has a connection to these services.

Figure 5-3 MODI architecture

5.2.1 Component Interface specification
The interfaces between the components defined in Figure 5-3 are illustrated in a component
interface model shown in Figure 5-4. The component interface model shows through which
interfaces the components interact with each other.

75

Figure 5-4 Component interface model

5.3 Reverse engineering – implement MODI Reverse
At the time of writing, OMG has not standardized any tool supporting the ADM approach.
However, there are available reverse engineering tools, such as UML Model Transformation
Tool (UMT) [51]. This tool has the ability to specify reverse engineering transformations
from text/code to UML models and the other way around. An important component of a
reverse engineering tool is a parser. A parser is a component which analyses, and reads the
structure of a language, and then parses it into a particular format. Text-to-UML, UML-to-
UML and UML-to-text are three main kinds of transformations supported by UMT. The
transformers which have been specified and implemented within UMT are e.g. UML to J2EE,
UML to and from Web Service Definition Language (WSDL). UMT uses transformations
implemented in XSLT or Java. However, most of their transformations have been written in
XSLT.

MODI Reverse is supposed to support text-to-model transformation, and allow enterprises
using any proprietary format to achieve platform independency. The target users of this tool
are those not having system code represented in PIMs. It is recommended to follow the
reverse engineering approach ADM which extracts concepts from code, renders it into a PSM
and then abstracts the PSM into a PIM. The PIMs should be on M1 level in OMG’s metadata
architecture. The components used in the MODI Reverse tool are described next.

76

5.3.1 MODI Reverse components
MODI Reverse tool component is a graphical user interface. Through this interface a user
should be able to parse code, and transform models. This tool component is dependent on the
components ParseService, TransformModelService and CodeInfo to make this possible.

The ParseService is a component that analyses, and reads the grammatical structure of a
platform specific language. Typically a parser will contain a grammar component which
searches through the language’s grammar. The grammar can be expressed in Extended BNF
(EBNF) [65]. Further, the parser shall produce an XMI file for this language, and a PSM
(UML diagram) shall be created from this file. XMI facilitates the transmission of UML
diagram data, and many UML tools support this interchange capability. However, only the
data "behind" the diagram is currently transmitted, not the visual representation itself, so users
of these tools still need to import transmitted XMI and then recreate the UML diagram.

The PSM will be an input to the TransformModelService component. This component shall
abstract the PSM into a PIM. The platform specific data types shall be transformed into
platform independent datatypes (expressed in UML). The output which is produced shall be a
PIM. The code for platform specific format will be contained in the ResourceService
component CodeInfo. It is from this service the ParseService shall get the input. CodeInfo is a
repository for the specific platform.

5.3.2 MODI Reverse component interaction
Figure 5-5 shows these components’ inter-dependencies, and how they collaborate in an
interaction diagram. The user has an interface to the tool component MODI Reverse. Through
this component the user should be able to choose platform-specific code used by the
enterprise (EnterpriseA). The code should be retrieved by ParseService from CodeInfo. After
CodeInfo returns the code, the ParseService reads the code structure. Then the user shall have
the ability to define structure. By this we mean structure of the code that is being transformed.
The reason is because transformation from code to PSM to PIM can be complicated in some
cases and also the later transformation on instance level. It is important to consider cases that
are not straight on like translation from a relational model to UML. Both a relational model
and UML uses association/relation as a concept. For instance, both a 1-N and N-M relation in
UML will be transformed into a table in SQL. The definitions of the structure that has been
chosen and defined by the user, has to be saved in a data structure to transform correctly the
from PIM to PSM to code. In addition, this has a meaning for how to transform at instance
level, since one has to consider this to transform correctly.

77

Figure 5-5 MODI Reverse process

Further, the ParseService parses it into an XMI file. The ParseService’s next task will be to
create a PSM from the XMI file. This PSM should be saved in the ModelInfo
ResourceService component, and will be an input to the TransformModelService which is
supposed to transform the PSM into a PIM. For PSM-to-PIM transformation the
transformation language ATL (QVT) can be used. The transformation should include rules for
transforming PSM datatypes into PIM datatypes. An example of a generic transformation rule
would be: PSM.datatype =: PIM.datatype. Before the PIM is returned to the MODI Reverse,
it is saved in ModelInfo. Now the user should be able to view the PIM. This process is
repeated for Enterprise B.

In the case an enterprise already has a PSM, it should be possible for them to skip the parsing
part, and directly transform the PSM into a PIM.

5.3.3 Transformation example (PSM-to-PIM)
The following transformation example illustrates how a transformation from PSM-to-PIM
will look like. The transformation is expressed in the transformation language ATL [49]. We
only show one transformation, as the other transformations would almost be the same. The
example is a rule for transformation from VARCHAR (SQL datatype) to String (PIM
datatype). The example is shown in the frame below:

78

rule VARCHARtoString {
 from
 d: SQLDatatype!VARCHAR
 to
 out: PIMDatatype!String {
 String.length = d.length
 }
}

5.3.4 Interfaces for MODI Reverse
The interfaces that are defined for the MODI Reverse tool are: IParseService,
ITransformModelService, ICodeInfo and IModelInfo. The IModelInfo interface is shared with
the MODI Mapper tool. Figure 5-6 shows these interfaces with their belonging methods. It is
possible to add more methods to the interfaces as needed.

Figure 5-6 Interfaces for MODI Reverse

5.4 Mapping rules
Before describing the components needed for implementation of MODI Mapper, we describe
the generic mapping model. This model is supposed to facilitate mapping between PIMs
representing data with different syntaxes, structure and semantics by defining mapping rules.

A mapping rule is a description of how one or more constructs in a source model (PIMA) can
be transformed into one or more constructs in a target model (PIMB). One mapping rule
applies to one data integration problem case. In addition, there can be many solutions related
to one mapping rule dependent on different problem cases. We have taken into account some
occurrences. The developer can add functionality to the mapping rules as needed. The

79

mapping rules should be defined in an XML file, where the developer has the ability to add,
remove etc. the functionality. The rules shall be dynamic since they will not be the same for
every case. The mapping rules take into account syntax, structure and semantic.

The semantic part in the mapping rules refers to semantic equivalence, semantic
incompatibility, semantic relationship, semantic relevance and semantic resemblance. This
part is concerned about identifying data by comparing their meaning, and solving these issues.
By comparing the metadata of the terms in PIMA and PIMB, semantics concerning synonyms
and homonyms can be identified. At first glance, semantic mapping may seem very simple,
yet it requires solving deep ontological problems, such as deciding on the correspondence
between words and concepts in the world. However, we define mapping rules between
models without involving the use of an ontology.

The syntactic and structural part in the mapping rules refer to comparing the actual structure
and representation of the data. The structure of a model is manifested through its concept
names, data types, concept relationships and constraints.

The model mapping activity includes comparing, and mapping the enterprises’ PIMs. In
particular, comparison should be performed as part of the model mapping. A mapping model
is used to describe how the mapping shall be performed. The mapping model shown in Figure
5-7 is a generic metamodel at M2 level of OMG. This metamodel is presented in the
modeling language UML, and contains the metaclasses UML Attribute, UML Class, and
Mapping. The Mapping metaclass is not a part of the UML metamodel [66], but it is part of
the generic mapping model described in this framework. The attributes for the metaclasses is
not shown in the figure below.

80

Figure 5-7 Generic mapping metamodel

UML Attribute: This metaclass is used to describe which elements at M1 level are attribute
instances. This metaclass contains several attributes such as name, visibility, multiplicity etc.
These attributes are metadata of the UML Attribute instance.

UML Class: This metaclass is used to categorize which elements at M1 level are class
instances. This metaclass contain several attributes (same as UML Attribute) such as name,
visibility, multiplicity etc. These attributes are metadata of the UML Class instance.

Mapping: This metaclass is used to describe mapping between UML Classes and UML
Attributes in metamodels. This metaclass is a super-class which consist of sub-classes. These
sub-classes contain different types of mapping rules dependent of a problem case. The sub-
classes that are considered are: SynonymMapping, PrecisionMapping, TypeMapping,
DefaultValueMapping, RepresentationMapping, PropertyMapping and DataLackingMapping.
These sub-classes reflect the data integration problems defined in section 2.4. It is not
suggested a sub-class for the Homonym problem, since this is a problem that cannot be solved
by mapping between the attributes that are affected. There is a possibility for adding other
sub-classes as new data integration problems are identified.

5.4.1 Strategies for executing mapping rules
One attribute might be affected by several data integration problems. However, we specify
rules for one specific case at the time. In the case where one attribute is subject to more than
one integration problem, then two or more mapping rules apply.

81

1. SynonymMapping: This sub-class contains a mapping rule applicable in the case

where different attributes in PIMA and PIMB refer to the same semantic meaning, such
as brougham and cartype. The SynonymMapping class will have a source attribute as
input, and a target attribute as output. The value in the source attribute in PIMA shall
be transmitted uncritically to the target attribute in PIMB. The aim is representing this
value in the target attribute. The strategy for executing this rule is illustrated in Figure
5-8 and can be defined by the following formula:
PIMA.UML Attribute =: PIMB.UML Attribute

Figure 5-8 SynonymMapping metamodel

2. Homonym: In the case where the same attribute name is used to denote two different

concepts in PIMA and PIMB, they cannot be mapped to each other because their
semantic meanings are different. One strategy to solve this problem is to examine and
compare the metadata for the affected attributes in PIMA and PIMB. However, it is not
always sufficient to examine metadata since the semantic information is not always
well described, or is lacking.

3. RepresentationMapping: This sub-class contains a mapping rule applicable in the

case where enterprises represent attributes in PIMA and PIMB differently, such as when
a time attribute is represented as minutes in PIMA, and hours in PIMB. The
RepresentationMapping class will have a source attribute as input and a target attribute
as output. A solution might be to use a function converting from one representation
format to another. The source attribute representation will be converted into the target
attribute representation. Then the source attribute’s value can be transmitted, and
represented in the target attribute format. The strategy for executing this rule is
illustrated in Figure 5-9 and can be defined by the following formula:
convertRepresentation(PIMA.UML Attribute) =: PIMB.UML Attribute

82

Figure 5-9 RepresentationMapping metamodel

4. PropertyMapping: This sub-class contains a mapping rule applicable in the case

where enterprises model properties in PIMA and PIMB differently, such as when a
persons name is represented by firstName and lastName in PIMA, and by name in
PIMB. The PropertyMapping class will have one or more source attribute(s) as input
and one or more target attribute(s) as output. This mapping rule provides several
methods for solving this problem:

One solution may be to use a concatenation function in the case where there is a need to
combine attributes. In addition, have a constant function supplying a character to separate the
items, e.g. a space. The strategy for executing this can be defined by the following formula:
concatenate(PIMA.UML Attribute + constant) + =: PIMB.UML Attribute

The + sign at right indicates that there can be more than two attributes to concatenate, and the
constant function is added between the attributes. The aim is to concatenate the source
attributes in PIMA e.g. firstName and lastName into one attribute. After they are concatenated,
the constant, e.g. a space separates the firstName and lastName. The value in the source
attributes can now be transmitted to the target attribute in PIMB. The result would be:
firstName lastName = name

Another solution is to use a split function in the case where there is a need to split attributes.
This function chooses which character to split on, e.g. a space. The strategy for executing this
can be defined by the following formula:
split(PIMA.UML Attribute)+ =: PIMB.UML Attribute+

In this solution the + sign with the split function indicates that an attribute can be separated
and represented in several attributes. The other + sign indicates the number of attributes the
divided attributed shall be represented in. The purpose is to split the source attribute, e.g.
name by searching for a character like space in the source attribute, and place each divided
part in the target attributes, e.g. firstName and lastName. The result would be: name =
firstName lastName.

The strategy for executing these rules is illustrated in Figure 5-10. Both solutions are methods
provided in the PropertyMapping rule.

83

Figure 5-10 PropertyMapping metamodel

5. PrecisionMapping: This sub-class contains a mapping rule applicable in the case

where elements in PIMA and PIMB have been modelled at different aggregation levels,
such as modeling address as an attribute in PIMA and a class in PIMB. In case the
source attributes match the target attributes in the target class, a mapping can be
performed. However, several cases can be difficult to manage. There can be several
attributes included in the target class in PIMB that are not available in PIMA. Another
case is if an attribute includes collected information, such as address containing
streetname, streetnumber and postnumber separated by, e.g. a space. Since attributes
are not equal to a class, these elements can not be mapped directly.

In case attributes in PIMA are matching class attributes in PIMB the PrecisionMapping class
will have one or more source attribute as input(s) and output(s). The strategy for executing
this rule is illustrated in Figure 5-11, and can be defined with the following formulas:
(PIMA.UML Attribute =: PIMB.UML Class.UML Attribute)+

The + indicates that several source attributes can be mapped to the target classe’s attributes.
The next formula is an opposite case:
(PIMA.UML Class.UML Attribute =: PIMB.UML Attribute)+

Figure 5-11 PrecisionMapping metamodel

6. DefaultvalueMapping: This sub-class contains a mapping rule applicable in the case

where default values are used in PIMA and PIMB differently, such as having 15 %

84

discount in PIMA and 10 % in PIMB. The DefaultvalueMapping class will have a
source attribute as input and a target attribute as output. In this case it is vital to have
metadata about the target attributes default value to transform it. The calculation that
should be used to manage this kind of conflict is to apply the default value on the
source attribute which is to be transformed. The strategy for executing this rule is
illustrated in Figure 5-12 and can be defined with the following formula:
applyTargetDefaultValueOn(PIMA.UML Attribute) =: PIMB.UML Attribute

Figure 5-12 DefaultvalueMapping metamodel

7. TypeMapping: This sub-class contains a mapping rule applicable in the case where

enterprises use different data types for the same attributes in PIMA and PIMB, such as
telephone as datatype string in PIMA and as datatype integer in PIMB. The
TypeMapping class will have a source attribute as input and a target attribute as output.
A solution might be to use a function which converts from one datatype to another..
The strategy for executing this rule is illustrated in Figure 5-13 and can be defined
with the following formula:
toDatatype(PIMA.UML Attribute) =: PIMB.UML Attribute

The aim would be to transform the source attribute’s datatype, e.g. string into the target
attribute’s datatype, e.g. int. The result would be: toInt(PIMA.telephone) =: PIMB.telephone

Figure 5-13 TypeMapping metamodel

8. DatalackingMapping: This sub-class contains a mapping rule applicable in the case

where enterprises are missing attributes or classes, such as PIMA contain the attribute
enginefuel and PIMB does not contain this attribute. In this case the enterprise with
PIMB cannot receive this attribute, unless they agree in between to add an attribute in
the PIMB. In this case the DatalackingMapping class will have a source attribute as
input, and create a target attribute. Another case may be when PIMA have more
attributes in a class which is being mapped to a matching class in PIMB. A solution is
to use a filter function to only pass data that are used by both PIMA and PIMB and

85

ignore the remaining attributes. The strategy for executing this rule is illustrated in
Figure 5-14 and can be defined by the following formula:
filter(PIMA.UML Class.UML Attribute)+ =: (PIMB.UML Class.UML Attribute)+

The + sign at left indicates that several source attributes can be filtered out, and the + sign at
right indicates that several target attributes can be matched. In case a target attributed is
expecting to get input from a source attribute that does not exist, a solution may be to add a
default value to the target attribute.

Figure 5-14 DatalackingMapping metamodel

A mapping rule for models including data lacking is difficult. The reason is because the
collaborating models do not have matching data. This leads to leaving out mappings or adding
missing attributes. However, it is not always permissible or easy to create attributes in the
target models. One reason may be that it is not support for creation of a new attribute in the
original format.

These mapping rules defined above shall be functionality of the MODI mapper tool. The
metamodels (M2) representing the mapping rules shall be metamodels to the PIMs (M1) that
are supposed to be mapped in MODI Mapper.

5.5 Model mapping – implement MODI Mapper
In chapter 3, section 3.5 and section 3.6 we examined the data integration tools BizTalk
Mapper and Altova MapForce 2005. These tools allow users to integrate data represented in
different formats. The BizTalk Mapper maps between XML and Altova Mapforce 2005 also
maps between XML specifications and other formats as well. In this section we specify how
to implement the model mapping tool MODI Mapper. This is supposed to be similar to the
data integration tools examined, but the difference shall be to enable mapping between PIMs.
Another difference is that metadata is not available in the examined tools, but MODI Mapper
shall have support for this to enhance mapping between data with different semantic. MODI
Mapper is supposed to allow a user to map between PIMs. This tool is supposed to support
model-to-model and model-to-text transformation. The target users of this tool are enterprises
having system code represented in PIMs. The components used in the MODI Mapper tool are
described next. MODI Mapper will have some similar qualities to the UMT tool, such as
providing for model-to-model transformation, model-to-text transformation. The difference
will be that UMT’s model-to-model transformation is from PSM-to-PIM and PIM-to-PSM,
while MODI Mapper will contain PIM-to-PIM mapping.

86

5.5.1 MODI Mapper components
MODI Mapper tool component is a graphical user interface. Through this interface a user
should be able to load the PIMs to be mapped, and perform mapping on the PIMs by using
mapping rules. In addition to loading and mapping models, the user shall be able to view and
store models. The user chooses the platforms that are to be transformed from this component.
This tool component is dependent on the components MappingService, EngineService and
ModelInfo to make this possible.

The MappingService is a component which shall create mappings from the mapping
performed by the user, and then create a resulting PIM from these mappings. The resulting
PIM will contain the mappings performed on the data integration problems. It documents the
data transformation and integration workflow. The importance with documenting data
transformation and integration workflow is to better understand the data-interrelationship and
data semantics. M1 models of the generic mapping model (recall Figure 5-7) are a part of this
component.

The EngineService component shall translate the mapping model into an executable mapper.
It includes a generator which generates code so the mapping can be executed. The generator
deals with automatically execution of code generated from the mapping model. The
responsibility of this service will be to handle transformation between platform-specific
formats. Examples of transformations include Java-to-SQL, XML-to-SQL, Java-to-XML,
XSLT etc. The ResourceService ModelInfo shall be a component containing PIMs and PSMs.

5.5.2 MODI Mapper component interaction
Figure 5-15 shows the inter-dependencies between these components, and how they
collaborate. The user has an interface to the tool component MODI Mapper. Through this
component the user should be able to load both PIMs at the same time. Further, the user is
supposed to start performing the mapping. To facilitate the mapping activity for the user,
there should be a service reading metadata automatically from the PIMs. The metadata should
be loaded and available by double-clicking on the classes. From the figure we see a Loop
label around the methods mapPIMs(mappingRule), getMappingRule() and createMapping().
This indicates that the user should be able to perform a number of mappings as needed. For
each mapping the MappingService shall create a mapping. After mappings are performed, the
MappingService shall create a resulting PIM, and store the model in ModelInfo. The user
shall have the ability to view this PIM. Next, the MODI Mapper component enables the user
to choose the source and target platform for transformation. The resulting PIM will next be an
input to the EngineService, and the platforms are set. The EngineService shall create a code
skeleton for the mapping from the resulting PIM and generate the code. To generate code
from platform A to platform B, the developer can use QVT to specify transformation between
the PSMs metamodels. Finally, the instances must be transformed. Also, it is important to use
the information saved during the reverse engineering process to transform back from PIM to
code. The aim is to represent an enterprise’s instances into another enterprise’s specific
format. By using the generated code, the instances shall be transformed to the target platform.

87

Figure 5-15 MODI Mapper process

5.5.3 Interfaces for MODI Mapper
The interfaces that are defined for the MODI Mapper tool are: IParseService,
ITransformModelService, and IModelInfo. The IModelInfo interface is shared with the MODI
Reverse tool (recall Figure 5-6). Figure 5-16 shows these interfaces with their belonging
methods.

88

Figure 5-16 Interfaces for MODI Mapper

5.5.4 Functionality of MODI Mapper
Functionality required for the MODI Mapper tool is specified in this section. General buttons
are required to manage some part of the functionality:

 The Load model button shall allow loading models that are supposed to be mapped
to each other. The user will load a model from the model repository ModelInfo,
which can be local for the source enterprise, or shared.

 The Store model button shall allow storing models in a repository.
 The enterprise shall have the ability to view the result of the mapping by using the

View model button. When the result mapping is shown, the user should have an
option to accept the performed mapping. If the mapping is accepted, the user shall
choose the platform from where instances are taken, and the platform to which the
instances are transformed.

Figure 5-17 illustrates what the MODI Mapper tool may look like, and how it can be plugged
into an Eclipse editor. The figure shows four panels; namely Package explorer, Mapping grid,
Property for mapping rule and Property for selected class. These panels are specified in detail
further.

89

Figure 5-17 MODI Mapper tool

Package explorer
This pane shall contain a mapping library containing mapping rules which users shall be able
to choose from. From the package explorer we can see a library containing some mapping
rules with different options. An example is PropertyMapping rule with concatenate and split
function. The user shall be able to drag and drop these functions, e.g. by dragging the
concatenate function into the Mapping grid the user can start performing the mapping. Also,
the developer should have the option to add mapping rules and more functions.

Mapping grid
The Mapping grid comprise of three panes. The source model shall be displayed at the left
pane, and the target model shall be displayed at the right pane. When the models are loaded in
these panes, the classes in the models shall contain connectors for each attribute in the class.
The user shall use these connectors to create links between attributes and mapping functions.
The middle pane is a mapping grid that shall display lines that links source attributes to target
attributes where mapping shall be performed. Simple relationships between attributes should
be mapped by dragging an attribute from the source model to the appropriate attribute in the
target model. More complex mappings may be performed by using the mapping functions.

90

Property for mapping rule
Further, the user shall have the possibility to manipulate properties for mapping rules. For
every mapping function, the user should get different properties related to the mapping. For
SynonyMapping no properties should be displayed in this pane, since it is a direct mapping.

The RepresentationMapping rule has a convert function called convertRepresentation. The
Property for mapping rule pane shall display the connecting attributes representation format.
The user shall be able to choose the target attributes format.

The PropertyMapping rule has two functions: namely concatenate and split. When the user
connects attributes from the source model to the concatenate function, the user shall be able to
click on the mapping function in the Mapping Grid, and then see the chosen attributes and
choose in which order these attributes shall be concatenated in the Property for mapping rule
pane. In addition, the user should be able to choose a constant used to separate the attributes.
In the case where the user connects an attribute from the source model as input to the split
function and target attributes as output, the user shall be able to choose in which order and the
number of parts the source attribute should be divided in this pane.

The PrecisionMapping rule has the function mapPresision. The Property for mapping rule
pane displays which group of source attributes are equal to a target class or invert. Some
mappings in this case can be performed by using the PropertyMapping rule, but the difference
is that the PrecisionMapping rule will display which source attributes that constitute a target
class or which source class that constitutes which target attributes.

The DefaultvalueMapping rule has the function applyTargetDefaultValueOn. The user shall
be able to see the target attributes default value. In the case there the default value is not
available, the user can choose null.

The TypeMapping rule has the function toDatatype. The Property for mapping rule pane shall
display which datatype is being used by the target attribute.

The DatalackingMapping rule has a function called filter. The user shall be able to choose
which attributes to filter out.

The suggestions above are example of which properties can be displayed in the Property for
mapping rule pane. The developer can choose which properties are necessary to be displayed
and how much the user can contribute with.

Property for selected class
By double-clicking on the classes, the users should have the ability to see metadata relevant to
the chosen class. Metadata for the chosen class is supposed to be presented in the Property for
selected class pane (see Figure 5-17). From this information the user can see which

91

vocabulary is used, with a detailed description. This is among other factors convenient as
mentioned when managing synonyms and homonyms.

The MODI Mapper tool should also contain a status bar. This is shown lowest at left in Figure
5-17 at the previous page. This bar shall contain state information to the user, such as “models
loaded”, “mapping completed” etc.

5.6 Summary
In this chapter we have presented our solution, MODI Framework. We have specified how to
develop two tools to facilitate data integration between enterprises. Mapping rules are defined
to solve the different data integration problems defined in chapter 2. The next two chapters
present the applications of MODI to the problem cases described in chapter 2. Further, it is
assumed that the tools are developed, and the problem examples are test cases to illustrate the
use of the tools.

92

93

6 MODI Framework applied to NDR

In this chapter it is suggested how data integration problems between various departments can
be solved by using the tools specified in the MODI Framework. As the proposed solution
TOR is dealing with the metadata problem, we assume that the metadata problem is solved. It
is important to precise that the data definitions in OR separates syntax and semantics as
proposed in TOR project. We present an example where two departments (department A and
department B) are integrating data. In this case, department A is the user of the tools since
they are sending their instances to department B. It is assumed that department B sends their
system code file to department A. This chapter is divided in two parts, the first part deals with
use of MODI Reverse, and the second part deals with use of MODI Mapper.

6.1 Use of MODI Reverse
Department A is using SQL, and department B is using XML. To do mapping between the
two systems they need to transform their system code to PIM. In Table 6-1 a description of
department A’s system code is expressed in DDL.

Table 6-1 SQL code for the customer

SQL code for customer expressed in DDL

CREATE TABLE Person(
 personID INTEGER(10),
 name VARCHAR(40),
 address VARCHAR(30),
 telephonenr INTEGER(8),
 martialStatus VARCHAR(2),
)
CREATE TABLE Enterprise(
 organisationNr INTEGER(10),
 enterpriseName VARCHAR(25),
 yearOfestablishment INTEGER(4),
 visitAddress VARCHAR(20),
 postalAddress VARCHAR(20),
 postalCode INTEGER(4),
 enterpriseType VARCHAR(10),
)

CREATE TABLE EntAnimal(
 organisationNr INTEGER(10),
 animalname VARCHAR(10),
)
CREATE TABLE Animal(
 animalname VARCHAR(10),
 animaltype VARCHAR(10),
)
CREATE TABLE Renting(
 houseNr INTEGER(10),
 nameOfRenter VARCHAR(30),
 startDate DATE,
 endDate DATE,
 rented_completely_partially_costFree
VARCHAR(3),
)

Figure 6-1 shows an Entity-Relationship (ER) model for department A. The user can choose
between the system code and ER model for parsing to a UML PSM.

94

Figure 6-1 ER model for enterprise A

Table 6-2 shows the department B’s data expressed in XML Schema.

Table 6-2 XML Schema for supplier

XML Schema for supplier
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.ndr-case.com"
xmlns="http://www.ndr-case.com"
elementFormDefault="qualified">

<xs:element name="Owner" minOccurs=”1” maxOccurs="1”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="personNr" type="xs:integer"/>
 <xs:element name="firstName" type="xs:string"/>
 <xs:element name="lastName" type="xs:string"/>
 <xs:element name="addressRoad" type="xs:string"/>
 <xs:element name="addressNr" type="xs:integer"/>
 <xs:element name="phone" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Enterprise">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="NR" type="xs:integer"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="postalAddress" type="xs:string"/>
 <xs:element name="phoneNr" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

95

<xs:element name="PostalCode">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="postalCode" type="xs:integer"/>
 <xs:element name="city" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="Animal">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="animal" type="xs:string"/>
 <xs:element name="category" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="AnimalLine">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Comment" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

From the XML Schema we can se that attributes are also coded at department A, but
represented differently. The code for department A contains in addition a table Renting which
is not considered in department B. The user needs to parse the code for department A and
department B into PSMs, and then the PSMs into PIMs. Figure 6-2 shows the process for
department A using MODI Reverse.

96

Figure 6-2 MODI Reverse process for department A

In the process for department A, it is performed a transformation from the relational model to
UML. In this case, all of the tables will not be transformed into classes. The EntAnimal table
for department A will be transformed into a relation in UML PSM. This is because it is an
many-to-many relationship between the tables Enterprise and Animal. As this is not allowed
in SQL but permissible in UML, the table EntAnimal will become an relation. The user has a
dialog with the MODI Reverse where he defines entity-tables and relation-tables. This
information needs to be saved. This information is further used in MODI Mapper when
transforming back, from PIM to code.

Figure 6-3 shows the MODI Reverse process for department B.

97

Figure 6-3 MODI Reverse process for department B

In Figure 6-4 the PIM for department A is presented as a result from the MODI Reverse tool.

Figure 6-4 PIM for enterprise A

Figure 6-5 shows the PIM for department B.

98

Figure 6-5 PIM for enterprise B

In Table 6-3 the mapping from code to PIM is described for department A. And in Table 6-4
the mappings for department B is given. We will only consider a selection of the code/PSM
since it would be mostly the same for the remaining part.

99

Table 6-3 Mappings from code/ PSM to PIM for department A

Attribute Code / PSM PIM Description
Person
personID INTEGER(10) Integer When transforming integer with length of 10,

the integer in PIM will be transformed to
maxInt. This is done to ensure that nothing
is excluded when instances are transformed

name VARCHAR(40) String
address VARCHAR(30) String

VARCHAR is transformed into a String. The
string will have the same length as in code/
PSM.

telephonenr INTEGER(8) Integer When transforming Integer with length 8, the
Integer in PIM will be transformed into
maxInt.

martialStatus VARCHAR(2) String VARCHAR is transformed into a String. The
String will have the same length as in code/
PSM.

Renting
houseNr INTEGER(10) Integer When transforming Integer with length 10,

the Integer in PIM will be transformed to
maxInt.

nameOfRenter VARCHAR(30) String VARCHAR is transformed into a String. The
String will have the same length as in code/
PSM.

startDate DATE Date
endDate DATE Date

The datatype DATE in SQL for department
A is represented as yy.mm.dd, and as
dd.mm.yy in XML.

rented_completely_par
tially_costFree

VARCHAR(3) String VARCHAR is transformed into a String. The
String will have the same length as in code/
PSM.

Table 6-4 Mapping from XML to PIM for department B

Attribute PSM PIM Description
Owner
personNr Integer Integer XML Integer datatype will be transformed into PIM

datatype Integer. The Integer in PIM will have max
length.

firstName String String The datatype String will remain unchanged.
lastName String String The datatype String will remain unchanged.
addressRoad String String The datatype String will remain unchanged.
addressNr Integer Integer XML Integer datatype will be transformed into PIM

datatype Integer. The Integer in PIM will have max
length.

phone String String The datatype String will remain unchanged.
PostalCode
postalCode Integer Integer The Integer in PSM has a length 4, but in PIM the

Integer will get max length.
city String String The datatype String will remain unchanged.

100

6.2 Use of MODI Mapper
The PIMs are ready to be uploaded by the MODI mapper tool. The user uses the load model
button to load the two models. In Figure 6-6 both of the PIMs are shown after they have been
loaded.

Figure 6-6 MODI mapper with PIMA and PIMB

Before doing the mapping, problems that occur when integrating the data need to be identified.
In Table 6-5 the problems are described. We only describe two classes from the models in the
table to illustrate how the mapping is done. In the case where there is data lacking the user
does not need to do anything since the information is not relevant to the department who is
receiving the information. From the two models we see that there are many similarities
between the classes, but they describe their attributes in different level of abstraction.

101

Table 6-5 Mapping table

PIMA PIMB Data integration problem Mapping rule

Person Owner
personID personNr - synonyms 1.SynonymMapping
name firstName
Not handled lastName

- differences in properties

4.PropertyMapping

address addressRoad
 addressNr
 postalCode
 city

- synonyms
- differences in properties
- data precision conflict

1.SynonymMapping
4.PropertyMapping
5.PrecisionMapping

telephonenr phone - synonyms
- Attribute integrity
constraint

1.SynonymMapping
6.TypeMapping

martialStatus Not handled - data lacking 7.DatalackMapping
Enterprise Enterprise
organisationNr NR - synonyms 1.SynonymMapping
enterpriseName name - synonyms 1.SynonymMapping
yearOfestablishment Not handled - data lacking 7.DatalackMapping
visitAddress Not handled - data lacking 7.DatalackMapping
postalAddress postalAddress No problem
postalCode postalCode
 city

- data precision conflict 5.PrecisionMapping

enterpriseType Not handled - data lacking 7.DatalackMapping
Not handled phoneNr - data lacking 7.DatalackMapping

After identifying the different data integration problems the user can map those attributes and
apply the related mapping rule to solve the problem. Figure 6-7 illustrates different mappings
created between the two PIMs. The yellow boxes in the middle pane shows the mapping
function which is applied to. All of the mappings identified above are not shown in Figure 6-7,
only a selection of the mappings are shown.

102

Figure 6-7 MODI mapper with mapping rules

The mapping rules that are used in this example are: PropertyMapping with split function
(P_S), Precision mapping with mapPrecision function (DP) and TypeMapping with
toDatatype function. Further, we explain the P_S function in detail. Input to the P_S function
is the name attribute from the source model’s class Person. The function has two output links
connected to the target attributes firstName and lastName from the target model’s class
Owner. The P_S function splits the source attribute in two. From the figure we can se that the
classes that are being mapped and the P_S function have a bold frame. The classes’ bold
frame indicates that these classes have metadata presented in the Property for selected class
pane. The functions’ bold frame indicates that this function’s properties are displayed in the
Property for Mapping Rule pane. From this pane the user can see the target attributes and
chooses in which order the source attribute should be split. The other mappings are performed
in the same way. When the user has performed the mapping it should be a possibility to see
the mapping result and approve the mapping. The next step is to generate code.

After generation of the result mapping model, code can be generated to execute the mappings.
If the user accepts the result mapping model, he can choose the platforms the transformation
is performed on. In this case the user will choose SQL2XML transformation.

103

Department A is now able to send instances through the mapping engine to solve the data
integration problems identified between them. The mapping engine will also transform the
instances from SQL platform to XML.

104

105

7 MODI Framework applied to Automotive scenario

In this chapter it is suggested how the data integration problems defined in the Automotive
scenario can be solved by using the tools specified in the MODI Framework. This chapter is
divided in two parts. The first part deals with the user using the MODI Reverse tool. The
second part deals with the user using the MODI Mapper tool. To simplify the case, we assume
that the customer is performing the mapping from their model to the supplier’s model.

7.1 Reverse Engineering
The customer’s (Fiat) proprietary format is SQL and the supplier’s (Bosch) proprietary format
is XML. To transform the code for Fiat and Bosch to PIMs the MODI reverse tool is used. To
do mapping between the two systems they need to transform their system code to PIM. Figure
7-1 shows the process for Fiat using MODI reverse.

Figure 7-1 MODI reverse process for Fiat

Figure 7-2 shows the process for Bosch using MODI reverse.

106

Figure 7-2 MODI reverse process for Bosch

Figure 7-3 shows the PIM (PIMA) produced using MODI reverse on the code for Fiat.

Figure 7-3 PIMA for customer Fiat

107

Figure 7-4 shows the PIM (PIMB) produced using MODI reverse on the code for Bosch.

Figure 7-4 PIMB for supplier Bosch

Both of the models are now represented as PIMs, and stored in a model repository. Next step
is to map PIMA and PIMB.

In Table 7-1 the differences from PSM to PIM is described for department A. We will only
consider a selection of the classes in PSM.

108

Table 7-1 Differences from PSM to PIM for Fiat

Attribute Data type
Code / PSM

Data type
PIM

Description

Order
orderID INTEGER(10) Integer When transforming Integer with length of 10,

the Integer in PIM will be transformed to
maxInt. This is done to ensure that instances
are transformed as whole.

issueDate DATE DATE The datatype DATE in SQL for Fiat has the
same representation as in PIM; namely
dd.mm.yy

comment VARCHAR(50) String VARCHAR is transformed to String in PIM. The
String will have the same length as in PSM.

expiryDate DATE DATE The datatype DATE in SQL for Fiat has the
same representation as in PIM; namely
dd.mm.yy

ID INTEGER(5) Integer VARCHAR is transformed to String in PIM. The
String will have the same length as in code/
PSM.

7.2 Use the MODI Mapper
The user from Fiat can start mapping with the aid of the data integration tool, MODI
Mapper. Both of the PIMs are loaded into MODI Mapper, see Figure 7-5. In addition
the user can double-click on the classes and the metadata information about the
models is shown. This information is shown in the properties pane below the models.

109

Figure 7-5 PIMs loaded in MODI Mapper tool

It is suggested how the data integration problems defined between class Order in
PIMA and class PurchaseOrder in PIMB, and class Buyer in PIMA and class Customer
in PIMB can be solved. Table 7-2 lists a mapping table that shows the differences
between PIMA and PIMB attributes, and which one of them need to be mapped with
the aid of which mapping rule.

110

Table 7-2 Mapping table

PIMA PIMB Data integration problem Mapping rule
OrderProductsService
Order PurchaseOrder
Ordered ID - synonyms

- data precision conflict
1.SynonymMapping
5.PrecisionMapping

issueDate orderDate - synonyms
- representation conflict
- data precision conflict

1.SynonymMapping
3.RepresentationMapping
5.PrecisionMapping

Comment note - synonyms
- data precision conflict

1.SynonymMapping
5.PrecisionMapping

Not handled lineItemCount - data lacking
Not handled prisingCurrencyCode - data lacking
Not handled earliestDate - data lacking
expiryDate expiryDate - representation conflict

- data precision conflict
3.Representation
Mapping
5.PrecisionMapping

Not handled totalPackageQuantity - data lacking
ID (foreign key,
primary key in
table Buyer)

Not handled - data lacking

Buyer Customer
ID ID -homonyms
firstName firstName 4.PropertyMapping
 middleName

- differences in properties

lastName lastName No problem No rule applied, direct
linking

Address Not handled - data lacking
City city No problem No rule applied, direct

linking
Country country No problem No rule applied, direct

linking
telephonenr phone - synonyms

- attribute integrity constraint
1.SynonymMapping
7.TypeMapping

Further, the mapping rules are applied to the identified problems listed in the table
above. The attributes in the PIMs that are not affected by any data integration problem
is linked directly. The user uses the drag and drop technique to create links. Further
the mapping rules are applied on the data integration problems defined in the
Automotive scenario case. This is done by choosing the mapping rule for the specific
data integration problem and using it on the problem. Figure 7-6 shows an selection of
the mappings.

111

Figure 7-6 Mapping between PIMs

The mapping rules that are used in this example are: RepresentationMapping with
convertRepresentation function (R) and SynonymMapping with mapSynonym
function (S). Further, we explain the R an S function in detail. Input to the R function
is the issuedate attribute from the source model’s class Order. The function has an
output link connected to the target attributes orderDate from the target model’s class
PricedDocument. These attributes have different representation formats and are
synonyms. The R function converts the source attributes’ representation format and
the S function establishes a link between the source and target attribute. These
functions are linked to each other. From the figure we can se that the classes that are
being mapped and the R function have a bold frame. The classes’ bold frame indicates
that these classes have metadata presented in the Property for selected class pane. The
functions’ bold frame indicates that this function’s properties are displayed in the
Property for Mapping Rule pane. From this pane the user can see the target attribute
and chooses how to represent the source attribute. When the user has performed the
mapping it should be a possibility to see the mapping result and approve the mapping.

Next, a resulting PIM is produced, and the user chooses to generate code for
execution of the mappings. Since the customer uses SQL and the supplier uses XML,

112

implementation of transformation-code from SQL2XML shall be available before
generating code. The user chooses the generate option in the MODI Mapper and
executable code is automatically performed.

To represent the customer’s instances in the supplier’s format, the instances are
transmitted through the mapping engine.

113

8 Evaluation of MODI Framework

In this chapter a description of why we have based our framework on MDA is given.
Next, we discuss why we choose our solution in preference to another. Finally, we
evaluate MODI Framework according to the requirements.

8.1 Benefits with a model-based approach to data integration
A model-based approach fits as a solution to prevent data integration problems, since
models clarify not only syntax and structure of data but also the semantics. Also, the
availability of technologies for manipulating models enhances their range of use.

To solve data integration problems, models can be used to represent metadata for
semantic matching. A good thing about models is that they can be used for various
purposes. An example is “to capture and precisely state requirements and domain
knowledge so that all stakeholders may understand and agree on them” [67]. Several
models can be used to capture requirements of a software system from various aspects.
This enhances understanding of what is being built among involved stakeholders.
Models have the quality to capture design in a mutable form separate from the
requirements.

A model can contribute with helping to explore several architectures and design
solutions easily before writing code or capture business need. This enhances and
simplifies the ability of exchanging information, and allows enterprises to
collaborating on same level.

Another advantage is that models can deal with complexity. For example, a model
may abstract to a level that is logical to humans, without getting lost in details.
Further, a model can appear at various levels of abstraction where models are defined
by models. In chapter 3 it was specified that MOF represents the highest level in
OMG’s metadata architecture, and it is a meta-metamodel for describing abstract
languages. This enables models to focus on metadata in models. Metadata enrichment
can contribute with semantic matching among different data items. Semantic
information is a major aspect of models, in addition to visual presentation. The
meaning of an application in e.g. a network is captured by the semantic aspect. The
elements in a model hold the meaning of the model. Formal documentation of system
semantics through modeling will increase software quality and extend the useful
lifetime of designs.

With aid of specified technology such as MOF and XMI, it is possible to generate an
interchange format for models and further integrate data represented in the models.

114

Model can be modelled with the modeling language, UML which is supported by
several modeling tools, an examples is Rational Rose.

8.1.1 Arguments for basing our approach on MDA
As MDA is platform-independent at its core, and enhance use of models we base our
framework on MDA. A central aspect of MDA is the concept of model transformation,
in which one model is transformed into another model of the same system. We have
based our solution on this aspect, but consider model transformation between models
of different enterprise systems. The main reason for choosing MDA is its promotion
of machine-readable models, and use of the modeling standards UML and MOF.
These modeling standards are independent of any middleware platform, and will
represent common features. Another aspect is that MDA is independent of language.
Interoperability will be most transparent within an application category. Further, it
supports integration of legacy systems to MDA. They may be brought into MDA by
wrapping them with a layer of code that is consistent with an MDA core model
(ADM). Enterprises can define their business needs in models that are specific and
independent to any platforms.

MODI Framework proposes how to map between two enterprises PIMs. Even though
mapping between PIMs benefits in many ways, it comes back at the point-to-point
problem. To avoid this, enterprise PIMs can be mapped to a standard PIM. MODI
Mapper will be able to manage this, since it in principal is supposed to map between
two PIMs. It does not matter if the other one is a standard. The condition is that
enterprises have to agree upon mapping towards a standard PIM.

The OR is a metadata repository for departments. Departments is using the data
definitions defined in OR. From this we can state that OR is a standard agreement for
the departments about metadata. Hence, departments do not need to do mapping with
each other. If OR uses PIM to describe data definitions, the departments can map their
PIMs to the OR’s PIM.

8.2 Evaluation of MODI Framework – a model-based
approach

8.2.1 Metadata enrichment
We conclude that the MODI Framework specifies how to integrate data with different
syntax, structure and semantics. This activity is done with aid of models at a platform
independent level. It supports for enrichment of models metadata by integrating
metadata, and making it available with the aid of the data integration tools, MODI
Reverse and MODI Mapper. However, a drawback is that there could always be better
annotation on data. One solution would be to have an annotation attribute in the

115

metaclasses. This will enable more precise meaning of the data. Another solution
would be to use ontologies [8], like proposed by ATHENA (recall chapter 4) .

8.2.2 Mapping rules
The generic mapping metamodel specifies how to map between models with aid of
mapping rules. The benefit with the mapping rules is that they contribute with
specifying how data integration problems can be solved. MODI Framework specifies
mapping rules only for the data integration problems defined in this thesis, see section
2.5. This does not mean that other data integration problems can not be supported by
our solution. The mentioned problems are general examples, and specifications for
other similar problems may be supported by MODI Framework as further work.
Another issue is that a mapping rule can contain several options. As more problem
cases are identified within one data integration problem, methods applying the
different cases can be added.

8.2.3 Platform independent data model
The ADM approach is not suggested to be used for re-engineer legacy systems.
However, in MODI Framework this approach is used for transforming system code or
PSMs to PIMs for the purpose of having enterprises to collaborate through PIMs. By
having enterprise systems data represented in PIMs, turns the attention away from use
of a specific platform. In addition, this increases the ability for collaboration with
enterprises’ using any type of platform. The condition is that enterprises need to
present their data in PIMs.

8.2.4 Tool support – MODI Reverse and MODI Mapper
The reverse engineering tool MODI Reverse is specified to transform platform
specific code into a PIM. The advantage with this tool is that the developer can use
written transformation rules by using ATL.

The intension of the data integration tool MODI Mapper is specified to manage data
mapping. By mapping models it is easier for the user to see the structure of what is
being mapped. An alternative approach is to use a tree structure, but the drawback that
a tree structure does not easily display structure and relationships between elements.
However, a model is better off on showing relationships between elements. Also, the
elements datatype are visible in the models (at M1 level). Models give the user more
information about what is being mapped against what.

With aid of a data integration tool like the specified MODI Mapper, enterprises can
integrate data with syntactic, structured and semantic differences. Allowing
enterprises to retrieve metadata with aid of the data integration tool enhances this
opportunity.

116

The advantage with the code generation activity specified as an engine in the MODI
Mapper is that it automatically generates code for mapping between the models. A
challenge with our approach is to implement transformations between specific
platforms. There is a drawback with this challenge because it demands a lot of work
to implement specific transformations. The enterprises do not have to use an
intermediate format to transform their instances.

8.3 Alternative solution to MODI Mapper
The MODI Mapper shall handle one transformation for the instances. In particular,
the instances are not transformed into some intermediate format, but directly into the
specific format. The advantage is that a lot of time is not used on transformation.
However, this solution is suitable for a few amounts (between five and ten) of specific
platforms. When more and more platforms are included, this solution leads to N2

transformation between platforms. The code for instance transformation from one
platform into another can exist from before and be re-used. QVT shall be used in our
solution to map between M2 models.

An alternative solution to mapping models, and generate code is to use QVT on M1
models. As described earlier, QVT performs mapping on metamodels (M2 level) and
transformation on models (M1 level). In case the models have same abstract language
such as UML, a mapping between metamodels is not necessary. However, by
performing mapping on models, in the same manner as QVT performs mapping
between metamodels, it is possible to perform transformation on instances instead of
executing transformation on models. Figure 8-1 illustrates this alternative solution.

Figure 8-1 Alternative solution with use of QVT

117

In this solution the QVT transformation specification will create mapping between
two models, and generate an engine (transformation execution) to perform the
transformation of instances from platform A’s XMI representation to platform B’s
XMI representation. The benefit is that the developer does not need to create the
engine to perform transformation. The enterprises instances are suppose to be
represented in a common format, XMI. This is because the QVT transformation
execution is automatic generated from the mapping performed. The drawback is to
transform instances from platform A to MOF and MOF to platform B since QVT
transformation execution operates on XMI format. Dissimilar from our solution, this
approach uses more time on transformation of instances. However, the advantage is
that the instances can be represented in XMI as a platform independent format. This
solution does not result in N2 transformations of the specific platforms.

Table 8-1 shows a summary of the MODI Framework evaluations.

Table 8-1 Evaluation of MODI Framework

Requirements Description
Metadata enrichment MODI Framework specifies how to integrate data with different syntax,

structure and semantics, by integrating PIMs and metadata.
Synonyms MODI Framework specifies how to integrate data that are synonyms, by

the metaclass SynonymMapping.
Homonyms MODI Framework specifies how to manage data that are homonyms, by

semantic enrichment and availability of semantic.
Data representation MODI Framework specifies how to deal with data representation conflict by

the metaclass RepresentationMapping
Differences in
properties

MODI Framework specifies how to deal with differences in properties by
the metaclass PropertyMapping

Data precision MODI Framework specifies how to deal with data precision conflict by the
metaclass PrecisionMapping

Default value MODI Framework specifies how to deal with default value conflict by the
metaclass DefaultvalueMapping.

Attribute integrity
constraint

MODI Framework specifies how to deal with conflict concerning attribute
integrity constraint by the metaclass TypeMapping.

Data lacking MODI Framework specifies how to deal with data lacking by metaclass
DatalackingMapping

Platform independent
data model

MODI Framework supports for data integration through PIMs as a data
model. The PIMs for data integration are versatile and self-explanatory.

Tool support MODI Framework has specified how to develop the tools MODI Reverse
and MODI Mapper, which can manage data mapping and integration.

From the evaluation we can conclude that MODI Framework fulfills the requirements
listed above. The tools specified in the MODI Frameworks’ solution approach shall
be implemented at Sintef. Since MDA supports business interoperability, driven by
business needs, our solution is open for extensions, e.g. address interoperability
problems concerning services, processes and non-functional aspects.

118

8.4 Summary
In this chapter we have specified why we have based our solution on MDA, discussed
why we chose our solution in preference to another and evaluated MODI Framework
according to the requirements defined in chapter 2, section 2.5.

119

9 Conclusion and future work

9.1 Conclusion
This thesis outlines a model-based approach to data integration between
heterogeneous enterprise systems. A review on interoperability is given, and an
introduction of MDA to facilitate interoperability. Two problem examples specifying
data integration problems are analysed, and requirements to solutions for data
integration are defined. Technologies related to interoperability, integration and
mapping are examined. Existing solution approaches are analysed as solutions to the
problem examples. Both related technologies and the existing solution approaches are
evaluated according to the requirements defined. Further, our proposed solution,
MODI Framework, is based on the analysis and examinations. The main emphasis of
the solution is on how to develop tools to support integration of heterogeneous data
from one enterprise’s format into another enterprise’s format with aid of models
represented on a platform independent level. The proposed approach is based on
MDA and presented as an interoperability framework. In particular, we specify how
to develop tools to support data integration, and how enterprises can use the tools to
simplify data integration tasks by mapping between PIMs. Mapping rules are applied
on some general data integration problems with aid of the mapping tool. Furthermore,
MODI Framework is applied to the problem examples, and evaluated according the
requirements defined in this thesis.

9.2 Future work
During the work of the framework and through evaluation, some aspects that need
further investigation have been discovered. A test implementation should be
constructed in order to verify that the framework is functioning as anticipated. This
would include complete implementation of MODI Reverse and MODI Mapper to
provide full tool support to data integration. These specified tools will be realized by
developers at Sintef. Another extension would be to propose solutions for achieving
process and service interoperability, and also considering non-functional aspects with
reference to interoperability.

Identifying processes that are similar in spite of differences is still an area that is not
much investigated. However, there exist few attempts in the area like the shared
repository ebXML. Enterprises may discover each others business offerings as well
as establish agreements to invoke cooperation between their respective business
processes via the shared repositories.

120

An initiative that intends to provide a Web Service discovery framework for more
efficient ontology-based and metadata driven service discovery is Semantic Web
Enabled Web Services (SWWS) [68]. It intends to move the semantic information out
of the Web Service description, semantic annotate the Web Service description and
keep it separate in shared ontologies so other services can access it. A combination of
model based- and ontology based approach to data integration is a discussion much
emphasised on.

121

APPENDIX.A

A.1 Definitions

ADM, Architecture-Driven Modernization. A reverse engineering approach defined
by OMG which specifies how to integrate and modernise existing legacy systems
according to new business needs.

ATHENA, Advanced Technologies for interoperability of Heterogeneous Enterprise
Networks and their Applications. An integrated Project funded by the European
Commission where the main objective is to remove interoperability barriers.

ATL, Atlas Transformation Language. A QVT-based transformation language.

CWM, Common Warehouse Model. A specification that describes metadata
interchange among data warehousing, business intelligence, knowledge management
and portal technologies

Data is information, in any form, on which computer programs operate.

Data definition is metadata.

ebXML, Electronic Business XML. An initiative started by OASIS and UN/CEFACT
which is a set of specifications enabling enterprises to conduct business over the
Internet, independent of their size and geographical location.

EDI, Electronic Data Interchange

EDIFACT, . A message platform for message-oriented computing.

GMT, Generative Model Transformer

Information is a collection of data which gives meaning, knowledge, instruction, etc.

Integration is transfer of data between different companies using networks, such as
the Internet

Interoperability is the ability of two or more systems or components to exchange
information and to use the information that has been exchanged.

122

JMI, Java Metadata Interface. It provides a platform-independent infrastructure for
modelling, representing and querying the meaning of a data source’s metadata,
application, tool, and data integration can be improved.

Mapping is an operation that associates each element of a given set with one or more
elements of a second set.

Mapping rules are transformation rules and techniques used to modify one model in
order to get another model.

MDA, Model-Driven architecture. An approach defined by OMG to use models in
software development, and aims to provide a platform-independent approach to
domain-specific application development.

MDD, Model-Driven Development. An architectural business-driven approach for
developing software systems based on requirements derived from enterprise and
business models.

Metadata is a set of data that describes and gives information about other data.

Metamodel is a description or definition of a well-defined language in the form of a
model.

Model is a description of (part of) a system written in a well-defined language.

MOF, Meta Object Facility. A model-driven framework for specifying, constructing,
managing interchange, and integrating metadata in software systems. It represents
metamodels and how to manipulate them.

NDR, National Data Registry. The name we use in this thesis to refer to the project
concerning OR.

Middleware is software that occupies a position in a hierarchy between operating
systems, whose task is to ensure that software from a variety of sources will work
together correctly.

OASIS, Organization for the Advancement of Structured Information. OASIS is an
international nonprofit consortium that promotes open collaborative development of
interoperability specifications.

OMG, Object Management Group. A non-profit organisation with mission to help
computer users solve integration problems by supplying open, vendor-neutral
interoperability specifications.

123

OR, The Register of Reporting Obligations of Enterprises. A national infrastructure
for handling reporting obligations established by the Brønnøysund Register Centre.

PIM, Platform Independent Model. A model with a high level of abstraction defined
in UML. It specifies services and interfaces independent of software technology
platforms.

PSM, Platform Specific Model. A model which adheres to constraints and
conventions imposed by a specific software technology platforms.

QVT, Query, View, Transformation. A standard specification of a language suitable
for querying and transforming models which are represented according to a MOF
metamodel is at the time of writing.

SQL, Structured Query Language. A query language based on the relational model of
database systems which includes statements for modifying the database, and for
declaring a database schema.

Transformation is the automatic generation of a target model from a source model.

TOR, Named after a Norse God. A project initiated by the Brønnøysund Register
Centre which is a continuation of OR.

UBL, Universal Business Language. Defines a standard of electronic XML business
syntax documents such as purchase orders and invoices initiated by OASIS.

UML, Unified Modeling Language. A standard notation for constructing models of
object-oriented software which allows an application model to be constructed, viewed,
developed, and manipulated in a standard way at analysis and design time.

UN/CEFACT, Unified Nations Centre for Trade Facilitation and Electronic Business.
A body of the United Nations whose mandate is to support the worldwide
development in the area of trade facilitation and electronic business

W3C, World Wide Web Consortium.

XMI, XML Meta Interchange. An interchange format for models in the language
defined using a metamodel described in the MOF. This interchange format is an OMG
standard.

XML, Extensible Markup Language. A standard format for data representation and
exchange in the Internet. It is an open and freely available document from W3C.

124

XSLT, EXtensible Stylesheet Language (XSL) Transformations. A language for
transforming an XML document into another XML document.

APPENDIX.B

B. 1 XML and XSLT example

This example is taken from [69].
XML file
<?xml version="1.0" encoding="ISO-8859-1"?>
<tool>
 <field id="prodName">
 <value>HAMMER HG2606</value>
 </field>
 <field id="prodNo">
 <value>32456240</value>
 </field>
 <field id="price">
 <value>$30.00</value>
 </field>
</tool>

XSL file
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<form method="post" action="edittool.asp">
<h2>Tool Information (edit):</h2>
<table border="0">
<xsl:for-each select="tool/field">
<tr>
<td>
<xsl:value-of select="@id"/>
</td>
<td>
<input type="text">
<xsl:attribute name="id">
 <xsl:value-of select="@id" />
</xsl:attribute>
<xsl:attribute name="name">
 <xsl:value-of select="@id" />
</xsl:attribute>
<xsl:attribute name="value">
 <xsl:value-of select="value" />
</xsl:attribute>

125

</input>
</td>
</tr>
</xsl:for-each>
</table>

<input type="submit" id="btn_sub" name="btn_sub" value="Submit" />
<input type="reset" id="btn_res" name="btn_res" value="Reset" />
</form>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

B.2 MOF metamodel
The figure shows the complete MOF metamodel [17].

126

APPENDIX.C

C.1 Description of the subset of UML

The Class is the central element and inheritance is allowed. However, multiple
inheritances are not allowed. Further, a class can contain a number of attributes that
are either simple attribute of a given datatype or it can be an association to another
class. Also methods are not allowed, because this is an information model and not a
program.

Furthermore, a datatype has a name and minimum one validation rule. In the case
where a datatype already is inherited from another inheritance, the validation rule of
the super-datatype adds one or several validation rules. E.g. it might be that a
decimal-integer-data-type has the name Integer and the following validation rules:

 Characters '0' to '9' and '+' and '-' allowed
 Maximum one occurrence of '+' or '-'
 A '+' or '-' must precede all other characters

Based on this, other data types can be derived. E.g. the decimal-number-data-type
with name Number may inherit the Integer type and then add three new rules:

 Maximum one occurrence of '.' or ','
 Maximum one occurrence of 'E' or 'e'
 A '.' or ',' must precede the 'E' or 'e'

APPENDIX.D

D.1 A description of ATHENA A projects:

In MDA, interoperability solutions are driven by business needs first and software
solutions second. Based on this, models exist on different levels of abstraction. First
of all, Project A1 focuses on Enterprise Modelling (EM). A set of enterprise aspects,
such as business operations, are described in an enterprise model. Second, Project A2
is concerned about how to get business processes to interoperate. Third, semantic
annotation and ontology-based reconciliation is considered in Project A3. Forth,
Project A5 focuses on mapping between PSM and Project A6 focuses on mapping
between PIM. And finally, Project A4 integrates all of the above mentioned A-
projects.

To specify further, Project A4: Interoperability Framework and Services for a
Networked Enterprises represents the way to compromise and complement the

127

approaches, methodologies and results of projects in Action Line A, A1-A6. More
precisely, the results and methodologies reached in the projects are exploited by
Project A4 into a conceptual, actuation and technical ATHENA Interoperability
Framework (AIF).

128

References

1. IEEE (1990): IEEE Standard Computer Dictionary: A Compilation of IEEE

Standard Computer Glossaries.
2. ATHENA (2005): Specification of a Basic Architecture Reference Model,

(Confidencial deliverable).
3. European Communities (2004): European Interoperability Framework for

Pan-European eGovernment Services,
http://europa.eu.int/idabc/en/document/3761 (Last visited 03.03.05).

4. Sheth, A.P. and J.A. Larson (1990): Federated Database Systems for
Managing Distributed, Heterogenenous, and Autonomous Databases. Vol.
22(3):183-236: ACM Computing Surveys.

5. INTEROP (2004): INTEROP Portal, http://www.interop-noe.org/ (Last visited
10.10.04).

6. Continuum Systems (2005): Application Integration, http://www.continuum-
systems.com/enterprise-application-integration.htm (Last visited 15.05.05).

7. Microsoft (2005): Applying Microsoft Patterns to Solve EAI Problems,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbiz2k2/html/bts_eai_pattern.asp (Last visited 20.05.05).

8. Missikoff, M. and F. Taglino (2004): An Ontology-based Platform for
Semantic Interoperability, http://www.athena-ip.org/ (Last visited 15.06.05).

9. Siegel, J. (2004): OMG's model driven architectures,
http://www.eurescom.de/message/messageJun2002/omg.asp (Last visited:
12.01.05).

10. Object Management Group (2005): Object Management Group Homepage,
http://www.omg.org/ (Last visited 14.02.05).

11. Kleppe, A., J. Warmer and W. Bast (2003): MDA Explained The model Driven
Architecture: Practice and Promise: Addison-Wesley. 152.

12. Berre, A.-J., B. Elvesæter, A. Hahn and T. Neple (2005): Towards an
Interoperability Framework for ModelDriven Development of Software
Systems, (Unpublished document).

13. Hauch, R.M. (2002): Enterprise Information Integration and the OMG's MDA
and MOF, http://www.omg.org/news/meetings/workshops/UML2002-
Manual/03-
3_Enterprise_Information_Integration_and_the_OMGs_MDA_and_MOF.pdf
(Last visited 06.06.05).

14. Object Management Group (2003): MDA Guide Ver. 1.0.1.,
http://www.omg.org/docs/omg/03-06-01.pdf (Last visited 14.04.05).

15. Object Management Group (2005): OMG Model Driven Architecture™: How
Systems Will Be Built,
http://www.omg.org/mda/model_driven_architecture.htm (Last visited:
03.01.05).

16. Unified Modeling Language (2005): Unfied Modeling Language Homepage,
http://www.uml.org/ (Last visited: 04.01.05).

17. Object Management Group (2005): Meta-Object Facility (MOF™), version
1.4, http://www.omg.org/technology/documents/formal/mof.htm (Last visited:
05.01.05).

129

18. Object Management Group (2005): Data Warehousing, CWM™ and MOF™
Resource Page, http://www.omg.org/technology/cwm/ (Last visited:
04.01.2005).

19. Object Management Group (2001): Model Driven Architecture(MDA),
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01 (Last visited 15.05.05).

20. Object Management Group (2005): Architecture-Driven Modernization
(ADM), http://www.omg.org/adm/ (Last visited: 28.04.05).

21. Modelbased (2005): Modelbased Homepage,
http://www.modelbased.net/mda_tools.html (Last visited 14.06.05).

22. Brønnøysund (2005): Brønnøysund Home Page, http://www.brreg.no (Last
visited 11.11.04).

23. Altinn (2004): Altinn Home page, https://www.altinn.no/cms/1044/altinn/
(Last visited: 12.12.04).

24. World Wide Web Consortium (2005): XForms - The Next Generation of Web
Forms, http://www.w3.org/MarkUp/Forms/ (Last visited: 04.02.05).

25. Marco, D. (2000): Building and Managing the Meta Data Repository: A Full
Lifecycle Guide: Wiley Computer Publishing.

26. Brønnøysund (2005): datadef_komplett,
http://ftp2.brreg.no/sched/ornett/datadef_komplett.data (Last visited: 23.07.05).

27. Brønnøysund (2005): Oppgaveregisterets kodestruktur,
http://w2.brreg.no/oppgaveregisteret/hjelp_kodestruktur.jsp (Last visited:
23.07.05).

28. International Organization for Standardization (2000): International
Organization for Standardization HomePage,
http://www.iso.org/iso/en/CombinedQueryResult.CombinedQueryResult?quer
yString=ISO+11179 (Last visited: 12.01.05).

29. Cover Pages (2002): UN/CEFACT ebXML Core Components Technical
Specification Approved for Implementation Verification.,
http://xml.coverpages.org/ni2002-12-19-a.html (Last visited: 10.11.05).

30. Brønnøysund (2005): Oppgaveregisterets datadefinisjoner,
http://w2.brreg.no/oppgaveregisteret/datadefinisjon_treffliste.jsp?feltnavn=org
anisasjon (Last visited: 23.07.05).

31. ATHENA (2005): ATHENA Home Page, http://www.athena-ip.org/ (Last
visited 15.01.05).

32. ATHENA (2005): ATHENA Newsletter, http://www.athena-
ip.org/newsletter/Athena_Newsletter_2.pdf (Last visited 15.02.05).

33. Garcia-Molina, Ullman and Widom (2002): Database Systems - The Complete
Book: Prentice Hall.

34. World Wide Web Consortium (2005): Extensible Markup Language (XML),
http://www.w3.org/XML/ (Last visited: 03.02.05).

35. World Wide Web Consortium (2005): World Wide Web Consortium
Homepage, http://www.w3.org/ (Last visited 13.04.05).

36. World Wide Web Consortium (2005): The Extensible Stylesheet Language
Family (XSL), http://www.w3.org/Style/XSL/ (Last visited 13.04.05).

37. World Wide Web Consortium (2005): XSLT Homepage,
http://www.w3.org/TR/xslt (Last visited 14.05.05).

38. World Wide Web Consortium (2005): XPath Homepage,
http://www.w3.org/TR/xpath (Last visited 16.05.05).

39. OASIS (2004): ebXML Home Page, http://www.ebxml.org/ (Last visited:
03.10.2004).

130

40. OASIS (2005): OASIS Homepage, http://www.oasis-open.org/home/index.php
(Last visited 12.02.05).

41. United Nations Economic Commision for Europe (2005): UN/CEFACT
Homepage, http://www.unece.org/cefact/ (Last visited 15.02.05).

42. Claben, M. (2004): ebXML: Global Standard for Electronic Business,
http://www.webreference.com/xml/column46/ (Last visited 18.01.04).

43. OASIS (2005): Universal Business Language, http://www.oasis-
open.org/committees/ubl (Last visited 13.03.05).

44. OASIS (2004): OASIS ebXML Registry TC, http://www.oasis-
open.org/committees/regrep/faq.php.

45. Mertz, D. (2001): Understanding ebXML - Untangeling the business Web for
the future, http://www-106.ibm.com/developerworks/xml/library/x-ebxml/.

46. SUN (2002): Java Metadata Interface (JMI) Specification,
http://java.sun.com/products/jmi/.

47. Grose, T.J., G.C. Doney and S.A. Brodsky (2002): Mastering XMI: OMG.
48. Object Management Group (2002): MOF 2.0 Query / Views / Transformations

RFP, http://www.omg.org/docs/ad/02-04-10.pdf (Last visited 03.06.05).
49. ATL (2005): ATL Homepage, http://www.sciences.univ-

nantes.fr/lina/atl/atlProject/presentation/ (Last visited 16.06.05).
50. Eclipse (2005): Generative Model Transformer, http://www.eclipse.org/gmt/

(Last visited 14.06.05).
51. Modelbased (2005): UMT-QVT Homepage, http://umt-qvt.sourceforge.net/

(Last visited 07.06.05).
52. Microsoft (2005): Microsoft Biztalk Server Home, www.biztalk.org (Last

visited 20.03.05).
53. Altova (2005): Altova Homepage, www.altova.com (Last visited 02.04.05).
54. Microsoft (2005): Microsoft Homepage, http://www.microsoft.com/.
55. Microsoft (2005): Exchanging Data Over the Internet Using XML,

http://msdn.microsoft.com/msdnmag/issues/0400/cutting/default.aspx (Last
visited 20.03.05).

56. Microsoft (2005): Biztalk Mapper,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/bts_2002/htm/lat_xmltools_map_concept_mvem.asp (Last visited
20.03.05).

57. Mohr, S. and S. Woodgate (2001): Professional Biztalk: Wrox.
58. Altova (2005): Altova Mapforce,

http://www.altova.com/products_mapforce.html (Last visited 02.04.05).
59. Thorbergsen, E. (2004): Kravspesifikasjon for TOR prosjektet, (Unpublished

document).
60. Lilleng, J. and E. Thorgersen (2004): A New Methodology for Designing

Electronic Forms Promoting Reuse of Information Carriers,
http://www.idealliance.org/papers/dx_xmle04/papers/04-03-04/04-03-04.pdf
(Last visited: 12.04.05).

61. Lilleng, J. (2005): Towards Semantic Interoperability, http://interop-
esa05.unige.ch/INTEROP/Proceedings/eGovScientific/papers/5a3.pdf (Last
visited: 12.04.05).

62. Sintef (2005): Sintef Home Page, http://www.sintef.no/ (Last visited:
15.04.05).

63. Eclipse (2005): Eclipse Homepage, http://www.eclipse.org/ (Last visited
20.06.06).

131

64. Kehn, D. (2003): Extend Eclipse's Java Development Tools, http://www-
106.ibm.com/developerworks/opensource/library/os-ecjdt/ (Last visited
24.06.05).

65. Ghezzi, C. and M. Jazayeri (1997): Programming language concepts. 3rd ed:
John Wiley & Sons.

66. Object Management Group (2005): Catalog of OMG Modeling And Metadata
Specifications,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UM
L (Last visited 20.05.05).

67. Rumbaugh, J., I. Jacobson and G. Booch (2004): The Unified Modeling
Language Reference Manual. Second edition ed: Addision-Wesley.

68. Information Society Technologies (2005): Semantic Web Enabled Web
Services (SWWS) Homepage,
http://swws.semanticweb.org/swws?cmd=show_entity&entity=Home+English
(Last visited 15.06.05).

69. W3Schools (2005): XSLT tutorial, http://www.w3schools.com/xsl/default.asp
(Last visited 15.05.05).

