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1 Introduction

Automated theorem proving is considered to be any type of software or ma-
chine that helps us answer questions related to reasoning. These systems
must have a way to represent knowledge and a set of deductive rules used
to control the reasoning process. Propositional and first order logic is often
used for knowledge representation, with different types of calculuses to con-
trol the deductive process. Logic is all about formalizing forms of reasoning,
and automated theorem provers are systems that perform reasoning tasks
based on different types of logics.

The field of automated deduction is often associated with artificial intelli-
gence. Intelligent systems (a bit simplified) deal with learning and reason-
ing, and the core of the reasoning part is often based on automated theorem
proving. It does however have a number of other applications as well: pro-
gram verification, hardware verification, mathematics, deductive database
solutions and so on. A major potential application which the automated
deduction community is now beginning to address is the semantic web.

1.1 Imperative Languages

If we are to use an imperative language when constructing an automated the-
orem prover we must overcome some obstacles. Knowledge representation is
a key feature of any automated deductive system, but the basic types of im-
perative languages (integers, floats, arrays, strings and so on) are usually not
very well suited for this task. This implies that we have to build structures
which are able to represent knowledge, this requires a lot of programming
experience since these structures must be made in a certain way for us to be
able to apply deductive rules on them later on. Some of the problems that
occur when this approach is used in automated deduction are:

• Logicians often lack programming experience with imperative languages

• Large complex implementations are often error-prone

• Rapid prototyping is not possible

• Verification of complex programs is a difficult task

• Deductive rules and strategies/tactics will most likely be intermixed

iv



One of the largest problems when imperative languages is used in automated
deduction is the fact that most trained logicians have little experience with
these languages. This makes it very hard for experts on deduction to ac-
tually create systems for automated deduction. The main advantage when
imperative languages are used is their speed. Many imperative languages
have been around for a long time and optimized compilers exist for all the
“old” languages. All systems for automated deduction will use some sort of
calculus to control the reasoning process. If strategies are embedded into
the implementation of the calculus it can become very hard to try out dif-
ferent strategies without large scale modification of an existing system. The
fact that complex implementations can become hard to verify themselves
is a problem, since we would like to know that our system does what it is
supposed to do and nothing else.

1.2 Prolog

The programming language Prolog (short for programming in logic) is very
well suited for knowledge representation, and is also familiar to many experts
on deduction. Many efficient theorem provers have been developed using this
language (leanTAP [2], ileanTAP [17], leanCop [8] and linTAP [18]). Later
on we will take a closer look at one of them which implements the connection
method; this will be used as a basis for deduction in our own implementations
as well. Prolog has many advantages over imperative languages when we want
to create systems for automated deduction.

• Very well suited for knowledge representation

• Features often required in automated deduction is embedded into the
language (unification and backtracking)

This language can represent knowledge in a very natural way, using its own
basic types. And Prolog has other important features embedded into its
run-time system which makes it very well suited for constructing systems for
automated deduction. When large parts of the deductive process are handled
by Prolog’s own run-time system implementations can become very compact,
(and sometimes a bit cryptic). The theorem prover we will investigate later
on, leanCop, is a full first order theorem prover and the whole implementation
was included in the abstract of the article it was published in [8]. There really
is no simple way to investigate strategic choices relative to a calculus using
Prolog, so it can be difficult to experiment with strategies. The problems
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mentioned with imperative programming languages and Prolog motivates a
new approach to build automated deductive systems.

1.3 Problem Statement

The topic this thesis seeks to investigate is this:

Can rewriting logic be a useful tool in automated deduction?

1.4 Rewriting Logic

Rewriting logic is specifically designed to support user defined term structures
that combined with rewrite rules give us the ability to represent state change
on these structures. This seems very useful in the field of automated theorem
proving, where a logical calculus is often thought of as a set of legal deductive
steps, or legal state changes on some structure. This is also very intuitive for
anyone with a background in logic, since there will be a very close relationship
between logical calculus and the rewrite rules.

I will list the strongest arguments for this approach to automated deduction.

• The ability to represent user defined structures makes it very well suited
for knowledge representation

• The ability to represent state change and equality of terms makes it
excellent for representing a logical calculus

• Rewriting logic is a formal system which can easily be learned by
trained logicians

• There will be a close relationship between logical calculus and rewrite
theory

• Rewriting logic is good for verification of the deductive process

• The reflective property which allows us to implement meta programs
(control programs) makes it easy to experiment with new strategies on
a given calculus, since we can separate the logical calculus from the
control structure

• Rewriting logic is well suited for rapid prototyping of different logics
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A very strong argument for using rewriting logic in in automated deduction
is that this approach will be very natural for trained logicians, after all re-
writing logic is a type of logic in itself. Rewriting logic also makes knowledge
representation simple, since we can specify user defined term structures. If
we are able to specify a calculus as a set of rewrite rules working on some
structure, and this calculus is sound and complete, we have in fact already
created a theorem prover using this approach, since rewriting terms accord-
ing to this set of rewrite rules will produce proofs or countermodels. The fact
that we can use meta programs to control the application of the deductive
rules (rewrite rules) of a calculus is also a strong argument for rewriting lo-
gic, since it gives us the ability to separate calculus from strategy, making it
easy to experiment with different strategies. This is all due to the reflective
property that rewriting logic holds. We also get very reliable implementations
using rewriting logic, since our rewrite theories only allow sound rewrite steps
(deductive steps), this minimizes the risk of errors during implementation.

1.5 The Connection Method

The logical calculus that will be the basis for proving propositional and first
order formulas will be the connection method. This calculus is so closely re-
lated to Gentzen’s sequent calculus [14] (Logischer Kalkül abbreviated LK),
that no prior knowledge about this method of inference should be necessary if
LK is familiar to the reader. In the field of automated deduction the connec-
tion method is not the most common calculus. The majority of automated
theorem provers use resolution as a basis for deduction, although it has been
shown that connection-based theorem provers can be very efficient. The con-
nection method is seldom presented as a set of deductive rules working on
some structure like most other calculuses are, but is usually presented as an
algorithm working on clause form representations of formulas. One of the
challenges we must overcome is to break this algorithm into its legal deduct-
ive steps on some structure to form a calculus. This will be done in a manner
which is suitable for specification in rewriting logic, to form the foundation
for a connection-based theorem prover.

A motivation for adopting the connection calculus as the core logical system
is that unlike resolution, there exist natural connection-based systems for
a wide variety of non-classical systems. Part of the motivation for using
rewriting logic to specify a theorem prover is to try to design a programming
paradigm which can be used to rapidly and uniformly construct readable and
reliable code for different underlying logical systems and search strategies.
The connection method is currently the formalism which is best suited for
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this purpose and which also has reasonably good performance for classical
logic.

1.6 Reflection

Reflection is a mathematical property held by rewriting logic that gives us
the ability to control the application of the deductive rules in rewrite theories.

Investigating the ability to use reflection to create strategies on top of a
calculus or set of deductive rules, will be one of the most important aspects of
the study. The reason for investigating this topic is that it will provide a new
way to separate the logical calculus and optimization techniques to different
levels of reflection. This means that we can specify deductive rules in one
rewrite theory, and then use another rewrite theory (meta program) to control
execution of the first. When calculus and strategy are separated we can easily
try out new strategies, which is often hard when imperative languages are
used since strategy is often embedded into the deductive process, making
it hard to separate the two. This makes it very hard to experiment with
different strategies in imperative implementations.

The first two chapters will be used to investigate what a reflective property
actually is. This is done because it is of great importance to understand how
we can use rewriting logic to implement strategies. It is assumed that the
reader is familiar with rewriting logic, a good introduction can be found in
[12, 16].

1.7 Maude

The programming language Maude will be used throughout this thesis. It is
specially designed to exploit the reflective property of rewriting logic. Using
Maude we can construct meta programs that act as control programs for
other rewrite theories in the same language that we used to create the rewrite
theories, this is a large advantage. These programs can often become a bit
complicated and hard to read, but I hope that all code segments presented in
this thesis will be comprehensible after some comments about them have been
presented. Since the ability to create control programs or meta programs in
Maude will be used throughout the thesis, a description of how we construct
such programs will be provided in Chapter 2. If the programming language
Maude is not familiar to the reader, a good introduction can be found on the
Maude web page [23], this site contains at least two downloadable tutorials
[12, 16]. There will be some explanations of the more complex features of
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Maude in this thesis, since this is not very well covered in the literature in
general.

Maude is a high level language, which has both benefits and disadvantages.
Like all other high level languages Maude gives us the ability to accomplish
complicated tasks with little effort. On the other hand this has a cost,
since the machinery that allows us to create rewrite theories which are far
from machine friendly structures, has its own operating cost. This often
leads to poor performance when algorithms are implemented using high level
languages such as Maude. Since theorem proving is a computationally hard
problem (Co-NP in the propositional instance, and undecidable for first order
logic) this will also be an important aspect of this study. That is to see
whether or not it is possible to actually tackle computationally hard problems
using the high level language Maude.

Some of the strongest arguments for choosing this programming language:

• Easy language to learn for logicians

• Excellent run-time system

• Specially designed to exploit the reflective property

Here follows a short summary of what the different chapters contain, and
some explanations for why the different topics are chosen.

1.8 Thesis Overview

Chapter 2: Turing Machines and Reflection

Reflection is a mathematical property, and to really grasp what this property
means, the reflective property will initially be introduced related to Turing
machines, since Turing machines are significantly simpler than rewriting lo-
gic. The concept is easily translatable to the world of rewriting logic, so
hopefully this approach is helpful to the reader.

Chapter 3: Rewriting Logic and Reflection

In this chapter the mathematical property of reflection will be tied to rewrit-
ing logic. This topic is absolutely essential for the introduction of strategies
in rewriting logic, since this mathematical property gives us the ability to do
so. This chapter, combined with the previous one, will give an an in depth
study of this topic, which will be useful throughout the thesis.
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Chapter 4: The Connection Method

In this chapter, the method of deduction that will be the basis for our theorem
prover will be introduced. If the reader is familiar with logic in general and
with LK, this chapter should not present any difficulties. The goal of this
chapter is to give the reader a solid understanding of how the method of
inference works, since this will be necessary once we shall investigate how
a real connection-based theorem prover works, and implement one as well,
which is what we will do in the following chapter.

Chapter 5: Implementing the Connection Method

This chapter will introduce a connection-based theorem prover implemented
in Prolog. One of the creators of this theorem prover, W. Bibel, is actually
one of the creators of the connection method. This theorem prover is very
compact and a bit cryptic at first glance, but it has proven to be very efficient,
proving formulas that not even the best theorem provers in the world could
prove. The compact code demands a close look at what happens behind the
scenes when this program executes.

After we have seen how the connection method can be implemented in prac-
tice with the Prolog implementation, we are now able to break it down into
deductive steps, forming a calculus. The calculus will be specified using re-
writing logic, and this rewrite theory will be the basis for a connection-based
theorem prover.

Chapter 6: Controlling the Rules of Deduction

This chapter will use the reflective property of rewriting logic to make a
sound and complete theorem prover from the deductive rules created in the
previous chapter. The reflective property gives us the ability to control our
term rewriting or rule applications relative to a term. This will be used not
only to make the theorem prover sound and complete, but also to optimize
the term rewriting, or execution. This chapter will explain how different
strategies are implemented, and how the different strategic choices actually
optimizes the term rewriting.

Chapter 7: First Order Logic

In this chapter we will extend our theorem prover to first order logic. So
far we have been dealing with propositional instances of formulas. The ex-
tension to first order logic requires a more complicated term structure than
the propositional instance, and also a few algorithms built on top of the
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already existing framework from the propositional version. The similarities
between this implementation and the propositional one will be transparent,
and hopefully helpful to the reader.

1.9 Thank You

Finally I would like to thank my advisors Arild Waaler and Einar Broch
Johnsen for all their help during this project. I would also like to give my
thanks to Jens Otten who has helped me out numerous times although he
really didn’t have to, which was cool. Thank God I was able to finish this pro-
ject (!). Several people have helped me proofread this document: my mom,
my dad, Christian Mahesh and Christopher Dyken (they all got minimum
wage for their efforts, which unfortunately is zero in this firm so far).

I will conclude this introduction with the encouraging words of Lawrence C.
Paulson from his article Designing a Theorem Prover [19].

“My final advice is this. Don’t write a theorem prover.
Try to use someone else’s.”
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2 Turing Machines and Reflection

The purpose of this chapter is to illustrate what a reflective property means,
tied to a simple subject. Turing machines have a reflective property, and are
very simple devices compared to rewriting logic. Reflection is a mathematical
property which plays an important role in rewriting logic, it is the foundation
for the ability to implements strategic term rewriting.

2.1 Turing Machines

The Turing machine, named after its inventor Alan Turing (1912 - 1954), is
a general model for computation. Informally we can say that all computa-
tions that are possible on a computer are possible on a Turing machine, and
vice versa. Even though Turing machines are very simple devices they can
simulate the computations of sophisticated super computers in polynomial
time. And because of the Turing machine’s simple nature, it can be expressed
mathematically a lot simpler than a regular computer. Turing machines are
therefore far more suited than regular computers, for analysis of what com-
puters can and cannot do, and how much time it will take to do the things
that can be done.

A Turing machine consists of a finite-state control unit and a tape. The
hardest thing to get a hold of when trying to build a Turing machine at
home, will most likely be the infinite length tape. The tape is infinite in
length to ensure that we never run out of memory, since the tape is the
Turing machine’s memory. The tape is divided into slots/squares that can
hold symbols, one symbol per slot, it is infinite in length to the right, the
other end contains a symbol ., which cannot be overwritten or passed. In
other words this symbol marks the end of the tape to the left, and the Turing
machine cannot move further to the left once this symbol is encountered.

A Turing machine can read symbols off the tape, and write symbols on the
tape. The finite-state control unit is made up of a read/write head, and a
state control center. The state control center tells us what state we are in,
and what possible states we can enter. We can only be in one state at a
moment in time, and there are only a finite number of states we can enter.
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The read/write head can read or write symbols on the tape, and the finite-
state control unit can move the read/write head one square to the left or
right of its current position per cycle. The machine has at least one halting
state, and once the machine enters a halting state, it naturally halts.

The Turing machine will change state and write a new symbol on the tape,
or move to the right or left of its current position all depending on what
symbol the read/write head encounters and what state it is in. That is all a
Turing machine does, and all it can do. A Turing machine may be defined
as follows [15]:

Definition Turing machine

A Turing machine is a quintuple (K,Σ, δ, s,H) where:
K is a finite set of states
Σ is an alphabet, containing the blank symbol t, and the left end symbol .,
but not containing the symbols ← and →
s ∈ K is the initial state
H ⊂ K is the set of halting states
δ is the transition function, which is a function from
(K −H)× Σ to K × (Σ ∪ {←,→}) such that:
1) for all q ∈ K −H, if δ(q, .) = (p, b) then b =→
2) for all q ∈ K −H, and a ∈ Σ if δ(q, a) = (p, b) then b 6= .

Illustration of a Turing machine at work:

Figure 1: Turing machine
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The transition function (δ), specifies the machine’s operations, it is more or
less the Turing machine’s program. It tells the machine what to do when
different symbols are read, whether to move left or right of the current po-
sition, or maybe replace the current symbol, and change state. To see how
this is used to solve different problems or computational tasks, it is probably
best to illustrate with an example:

Reversing a binary string using a Turing machine

This Turing machine will reverse binary strings, which means it will replace
all 1’s with 0’s and vice versa in strings over the alphabet consisting of 0
and 1. To accomplish this we construct a Turing machine with three states,
the initial state s, q and the halting state h. The description of the Turing
machine’s transition function is presented below:

state symbol δ
s . (s,→)
s 0 (q, 1)
s 1 (q, 0)
s t (h,t)
q 1 (s,→)
q 0 (s,→)

Once this machine reads a 1 it replaces it with a 0 (and vice versa), and
enters the state q. In this state (q) we move to the right on both possible
input-symbols and enter the state s. This process is repeated until we reach
a blanc square on the tape, then the input-string has ended and we naturally
enter the halting state. This is all that is needed to complete the task of
reversing binary strings using a Turing machine. The problem to be solved
is not complex but this was only meant to illustrate how a Turing machine
executes on a given input-tape. If we are to construct Turing machines that
solve complex problems, the transition function often become quite difficult
to construct. The simple nature of the Turing machine has the same weakness
as problem solving using assembler code. All computations on a regular
computer are performed using assembler code, but it is very hard to construct
the assembler code solutions to complex problems manually.
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2.2 Decision Problems

Many of the computational tasks that we want to solve using a computer
can be formulated as decision problems. Can a set of clauses be satisfied?
Does a given graph have a Hamiltonian cycle? Is there a vertex cover of
size 7 for the graph G? We know that these questions can be solved by a
computer, and therefore by a Turing machine, but what does it mean to solve
a computational decision problem using a Turing machine? This is equivalent
to recognizing words in a language. A language is here a mathematical
construct, where an alphabet is a set of symbols, and a word is any sequence
generated from this set. So our problems can be formulated as recognizing
the words over an alphabet that have some property from those that does
not have this property. This is a bit simplified, since in general we cannot
recognize every language using a Turing machine, meaning that there are
decision problems that Turing machines cannot solve. But we will leave the
unsolvable questions for a little while and focus on the languages/problems
that can be decided/solved.

All Turing decidable problems can be encoded into strings over an alphabet.
And we can look for instances that have some property, and instances that
do not using a Turing machine. Let us take a look at an example from graph
theory.

To decide whether or not a graph contains a Hamiltonian cycle using a Turing
machine, we must first find a way to encode this problem as strings over an
alphabet. Which means we have to find a way to encode all graphs into
strings over an (finite) alphabet. This is done by creating a transformation
between graphs and string representations, that preserves the structure of
the graph. For instance by representing a vertex as “v(n)” where n ∈ N, and
an edge as the string “<v(1), v(7)>”, if this edge connects vertex v(1) and
v(7). It’s easy to see that we can encode all graphs over the alphabet:

{ <, > , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, v, (, ), ’,’ }.

Our words (graphs) will be a subset of the language that can be constructed
from this alphabet. And in this subset/sublanguage we look for instances
that have certain properties. Some graphs as we know have Hamiltonian
cycles, and some do not. Now our decision problem is reduced to locating
words over an alphabet, some “words” (string representations of graphs) have
Hamiltonian cycles, and some do not. How do these words differ? Well the
“Yes” I have a Hamiltonian cycle graphs now represented by a word/string,
will contain a certain pattern that the “No” I have no Hamiltonian cycle
graphs do not have. Namely the pattern:
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<v(1),v(2)> <v(2),v(3)> <v(3),v(4)> · · · <v(n-1),v(n)> <v(n),v(1)>

Most likely with some renaming of the nodes, but this pattern will only
be contained within the graphs that have a Hamiltonian cycle. The fact
that there is only a finite number of cycles through the vertices tells us
immediately that this problem is solvable/decidable. A cycle does not really
have a start and a finish, so we consider two cycles to be the same if they
only differ in start/end-vertex. We can construct all possible Hamiltonian
cycles through the set of vertices that this graph contains; then see if any of
these cycles is contained within the graph, using a Turing machine. Not an
efficient way of solving the problem perhaps, but a strategy that will never
fail to classify words/graphs as “Yes” or “No” instances, which is all we need
to prove that a problem is solvable (language is decidable).

In the field of complexity we often deal with decision problems or how long
it will take to figure out where “words” belong relative to their input length.
As you can tell a large graph will be represented by a long string with many
vertices and many edges, while a small graph will be represented by a short
string. Thus it will take longer to look for such a pattern in a large graph
(or large string representation of a graph) than it will for a small graph.

One important aspect of complexity theory deals with grouping different
decision problems into classes, where locating the “Yes” or “No” instances
are given as a function relative to the input length. This function tells us
something about how many cycles (how much time) a Turing machine uses to
classify words as either “Yes” or “No” instances, relative to the input-word’s
length.

As mentioned earlier it will be harder to locate a Hamiltonian cycle pattern
in large graphs, so the complexity function will in this case grow with the
input size or graph size. It might be easy to determine that a graph does not
contain a Hamiltonian cycle even if the graph is large, but these complexity
functions are worst-case time functions. Other decision problems do not grow
with the input size, for instance: Is the first two symbols encountered in our
input string “ab”? The complexity of solving a problem like this is not relative
to the input size, and its complexity function will therefore be a constant.

Complexity classes are not only time functions relative to input length, but
sometimes also memory functions relative to the input length. In such classes
we consider time to be irrelevant, or how many steps/cycles the Turing ma-
chine will have to make, but only how much tape that is required to decide
where the word belongs (PSPACE for instance).

It is important to see that the problems that are in the different complex-
ity classes are decidable problems. That means that a Turing machine can
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decide whether or not some word is a “Yes” instance or a “No” instance of
the particular language. As we will see shortly using reflection, there are
languages that are not decidable using a Turing machine. Which means we
can construct languages (in the mathematical sense) such that a Turing ma-
chine will not be able to recognize words in this language as “Yes” or “No”
instances, even though all the words are either “Yes” or “No” instances.

Example

Here is an example of how a graph gets string represented over the alphabet
{ <, > , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, v, (, ), ’,’ }, in such a way that the structure
of the graph is preserved. The correspondence between vertices in the graph
and their string representation are as follows:

a 7→ v(1)
b 7→ v(2)
c 7→ v(3)
d 7→ v(4).

Figure 2: 4 vertex graph

The string representation of the graph:

“v(1)v(2)v(3)v(4)<v(1),v(2)><v(2),v(3)><v(1),v(3)><v(3),v(4)>”

We can represent all graphs using this translation scheme, and then use
Turing machines to decide whether the words/graphs are positive or negative
instances of different properties. For a Turing machine to be able to decide a
language/solve a decision problem, we need two things. We must be able to
encode all instances of the problem as strings over a finite alphabet. And we
must be able to create a Turing machine that locates the positive and negative
instances of a language, meaning words with or without some property.

6



2.3 Undecidable Problems

Solving decision problems using a Turing machine, is equivalent to recog-
nizing words as positive or negative instances in a language. The problems
that can be solved using a Turing machine therefore constitute the languages
that can be decided. These problems are referred to as the Turing decidable
languages.

In this section we claim that there are languages that cannot be decided by
a Turing machine, meaning that there are decision problems that cannot be
solved using a Turing machine.

Theorem 1
There are more problems than solutions.

To prove that there are more problems than solutions, we have to create a
problem that is not Turing decidable, meaning that a Turing machine will
not be able to decide whether a word in this language belongs to the “Yes”
instances or the “No” instances. Theorem 1 will be proved by showing that
the halting problem is not Turing decidable. The reason for including the
proof of Theorem 1 and the halting problem is because this proof gives us
a very elegant example of the reflective property of Turing machines in use.
Let us first formulate the problem to be solved.

The halting problem
Given a Turing machine M, and an input string X,
will the Turing machine M halt on input X?

For this problem to be solved we must first ask ourselves; Is it possible to
encode Turing machines and their input as strings over a finite alphabet?
Since all decision problems solvable on Turing machines are some kind of
“string” recognition problem. Problems must therefore be in the form of a
string, that can be recognized as a “Yes” or “No” instance for it to be solvable
on a Turing machine.

What do we need to solve this problem? Our goal is to have a string that
represents a Turing machine and its input. Then to be able to create another
Turing machine that will halt answering “Yes” if the string represented Tur-
ing machine would halt on its input, and halts answering “No” if the string
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represented Turing machine would not halt on its input. The first step we
must take to solve this problem is to create an encoding of a Turing machine
and its input into a string. This must be done using a finite alphabet, since
the Turing machine that is going to solve this problem (recognize the “Yes”
instances and “No” instances) will have a finite alphabet.

To solve the problem of translating Turing machines and their input into
strings/words over a finite alphabet is almost the same as the problem of
making the blueprint after the construction work has finished. We are in-
terested in a blueprint of the Turing machine, a word that can be read, and
from this word we are able to construct the Turing machine once again. So
the structure of the Turing machine must be evident from our word or blue-
print. Usually when buildings or computers are constructed the blueprint is
consulted and then the construction is done. But now we are in the oppos-
ite situation, we have the “hardware” (the Turing machine) and we want to
make the blueprint so that we have a clear model of how this machine will
work. To make these blueprints or string representations of Turing machines
and their input, we must first ask ourselves what the key features of a Tur-
ing machine is. What makes two different Turing machines different? What
type of information about a Turing machine is essential? There is one piece
of information that clearly decides how a Turing machine will execute on its
input, and that is the transition function δ. So that piece of information is
essential, it is more or less the core of the Turing machine. But to encode
this piece of information we need information about what states the machine
has in its finite-state control unit, and what symbols it has in its alphabet.
In the next section we will see how Turing machines and their input can be
translated into words over an alphabet.
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2.4 Meta Representation

The string representation of a Turing machine and its input is often referred
to as the meta representation. The word meta is a prefix meaning “higher
than” or “beyond”. A Turing machine that reads the strings which represent
other Turing machines and their input is in some sense higher than or bey-
ond the regular Turing machines. And the string represented machines are
therefore often called meta represented machines.

The words ’meta representation’ and ’string representation’ will be used in-
terchangeably in this text.

The best way to understand how this translation process works, and how we
are able to represent “hardware” like Turing machines as strings, is probably
by showing an example.

We are now going to make a string representation of this Turing machine:

M = (K,Σ, δ, s, {h})
K = {s, q, h}
Σ = {t, ., a}
δ is given in the table below:

state symbol δ
s a (q,t)
s t (h,t)
s . (s,→)
q a (s, a)
q t (s,→)
q . (q,→)

state/symbol representation
s q00
q q01
h q11
t a000
. a001
← a010
→ a011
a a100
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The problem of finite alphabet representation, meaning that we have to be
able to represent all Turing machines and their input, using only a finite
alphabet, is solved by enumeration. We enumerate states and symbols very
much like we did for the graphs earlier, and thereby we are able to encode
arbitrarily large alphabets and state-sets using only a finite alphabet.
To encode a Turing machine and its input as a string we need more then just
a translation of each symbol and state into a “replacement” token. We need
to know how this machine actually executes on any given input to know what
this machine will do. Which means that we need some kind of encoding of
this machine’s transition function (δ). This is after all the function that tells
us what to do depending on input symbol and current state, and is really
the heart of the Turing machine. So being able to string represent Turing
machines and their input, means that we are able to represent Turing ma-
chines transition functions and their input as a string over a finite alphabet.
Let us have a look at how a Turing machine’s input string is translated by
replacing each symbol with its corresponding token according to the table on
the previous page.

“.aa t a” = “a001a100a100a000a100”

The final piece of information we then need to complete our blueprint or
string representation of a Turing machine and its input is the transition
function. This function will be translated using the strategy given below:

(s, a) 7→ (q,t) ∈ δ

will be represented by the string:

“(q00, a100 : q01, a000)”

The Turing machine M with input X = “.aa t a”, will with this translation
be represented by the string:

〈M,X〉 = “a001a100a100a000a100+(q00, a100 : q01, a000) (q00, a000 :
q11, a000)(q00, a001 : q00, a011)(q01, a100 : q00, a011) (q01, a000 : q00,
a011)(q01, a001 : q01, a011)”
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Using this alphabet: {a, q, :, +, 0, 1, (, ), ’,’}
we are able to represent any Turing machine and its input as a string. And
the string representation works well as a blueprint for the original Turing
machine. We can easily construct the original Turing machine and its input
using this string representation, or at least an equivalent Turing machine.
The one created using our blueprint/string representation might have differ-
ent symbols and state-names than the original, but besides that they perform
the same computations.

Just like we were able to represent all graphs earlier as strings over an alpha-
bet, we have now shown that this is possible for Turing machines and their
input as well.

This is the basis for any decision problem, being able to encode all instances
of the problem as strings over an (finite) alphabet. Now the problem is
this, can a Turing machine be used to decide what words that are “No” or
“Yes” instances for any property/language? As an example; we know that
all instances of the halting problem can now be translated into strings over
the alphabet given above. The big question is: can we use a Turing machine
to sort out the “Yes” and “No” instances of this problem/language? One
important thing to remember for decision problems is that all the words
in this language belong to either the “Yes” or “No” instances. All Turing
machines will either halt on some input or not, there are no other options. So
if we cannot locate the “strings” (string represented machines) that actually
halt, or does not halt on their input, we have proved that not all problems
are solvable using a Turing machine (not all languages are Turing decidable).

The first step we are going to take in proving Theorem 1, is showing that
Turing machines are reflective, this is after all the topic of the chapter, and
this is a very essential part of the proof. Up to this point reflection has
been mentioned a few times, but no definition has been presented, this is
because we needed the meta representation/string representation of Turing
machines first to really understand what reflection means. The next section
will introduce the concept of reflection related to Turing machines.
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2.5 The Universal Turing Machine

In this section we will show that Turing machines have a reflective property.
We can informally say that the reflective property is the ability to create
a Turing machine, often called the Universal Turing Machine (abbreviated
UTM) that is able to simulate execution of a meta represented machine
(string represented machine) and its input. We saw in the previous section
that we are able to encode all Turing machines and their input using a finite
alphabet. The Universal Turing Machine can take such meta represented
Turing machines as input, and using this meta representation of a Turing
machine UTM can simulate execution, meaning that it will perform the same
computational task as its string represented input machine. Stated formally:

Reflection
(M,X) = output ⇔ output = (UTM, 〈M,X〉)

There is a line over output, and over 〈M,X〉, to illustrate that they are meta
represented (represented as strings over UMT’s alphabet). So if the output
from machineM on input X would be: “.ataa”, then the output from UTM
with input 〈M,X〉 would be: “a001a100a000a100a100”, at least if we chose
to meta represent symbols according to the table from our previous example.

To prove that this property is held by Turing machines we need to create a
Turing machine that is able to use the information in the blueprint or string
represented Turing machine to simulate execution. We have to show that
the Universal Turing Machine is able to perform the same transitions as the
string represented machine would have done, using the information it has
available (the string). This will be shown using a 3-tape Turing machine as
our UTM. That way we avoid lots of tape-space administration that a regular
1-tape Turing machine would have to make to perform the same task. The
computational power of a 3-tape Turing machine is the same as for the 1-
tape Turing machine. The conversion from a 3-tape Turing machine to a
1-tape standard Turing machine, and thereby proving that they have the
same computational power, will not be covered in this chapter. A detailed
presentation of such a conversion may be found in [15].

The main idea behind this Universal Turing machine with 3 tapes is that we
can use one tape as our input tape to the string-represented machine. The
second tape is used for storing the transition function δ, and the third tape
is used for the UTM’s administration. By a UTM’s administration we mean
that the third tape keeps track of what state our string represented machine
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is in, and what symbol (token) we just read, keeps track of counters that is
needed since we enumerate states and symbols in our meta representation,
and what to do next and so on.

Figure 3: 3-tape Turing machine

In our previous example we meta represented a Turing machine and its input
by the following string:

〈M,X〉 = “a001a100a100a000a100+(q00, a100 : q01, a000) (q00, a000 :
q11, a000)(q00, a001 : q00, a011)(q01, a100 : q00, a011) (q01, a000 : q00,
a011)(q01, a001 : q01, a011)”

To simulate execution of this machine on this input the Universal Tur-
ing machine starts by placing the translated input string on its first tape
“a001a100a100a000a100”. The transition function on its second tape “(q00,
a100 : q01, a000)(q00, a000 : q11, a000)(q00, a001 : q00, a011)(q01, a100 :
q00, a011)(q01, a000 : q00, a011)(q01, a001 : q01, a011)”. Then the process
of reading symbols on the first tape starts by reading one symbol at a time
and copying them down to tape 3. Once it hits another “a”, it knows that
the meta representation of symbol 1 has been read. Now we have read the
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first symbol, and we know what state we are in (all Turing machines start in
an initial state, the ’s’-state is here encoded by ’q00’). This is all the inform-
ation we need to proceed. We have a state and an input symbol, now it is
time to inspect the transition function on tape 2, to see what action we are
supposed to take. When this action is taken, the process starts over again,
until we reach a state to which the transition function cannot be applied,
which means that we have entered a halting state.

Remember that only one transition rule can match a symbol and a state, and
once no transition rule matches our state and symbol, we know that we have
entered a halting state. Then the UTM can halt as well, and tape 1 will hold
the same output string as the string represented machine would hold after its
execution, the output will be represented according to our translation (meta
represented), but besides that there is no difference.

We are now able to simulate the execution of one Turing machine using
another Turing machine (UTM), by representing a Turing machine and its
input as strings. This property gives us many advantages, since Turing ma-
chines are in fact “hardware”, we can immediately see that only one piece
of hardware is needed, the UTM. All other Turing machines can be repres-
ented as strings and fed as input to UTM, and UTM executes using this
string, giving us the same output as our string represented machine would
have done. We can also manipulate the “hardware” in a very simple way. By
manipulating the string that represents our input machine, we have altered
the way a Turing machine works with simple string manipulation.

So the UTM can reason about other Turing machines, tell us how they would
execute on different input and so on. This gives rise to the concept of levels,
we say that UTM and the string represented machine that UTM takes as
input are at different levels of reflection.

One important thing to remember is that UTM is nothing but a regular
Turing machine as well, in this case it is a 3-tape Turing machine, but we can
create a UTM using only 1 tape. This gives rise to the concept of a reflective
tower, since our UTM can simulate any other Turing machine executing on
some input, given the string representation of another Turing machine. And
the fact that UTM is nothing but a Turing machine itself implies that we
can string represent UTM as well, and get as many levels of reflection as we
wish.
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Reflective Tower

(M,X) = output

m
(UTM, 〈M,X〉 = output

m
(UTM, 〈UTM, 〈M,X〉〉) = output

...

There can in other words be machines simulating machines, simulating ma-
chines, and so on with this property. We have in some sense created a more
versatile Turing machine, that has more flexibility than our standard Turing
machines designed to perform one task. And now we shall prove that Turing
machines (and therefore regular computers) have some limitations as to what
problems they are able to solve, using this property.

The problem that will be shown not to be Turing decidable is the halting
problem as mentioned earlier. We have shown that we are able to represent
all instances of the problem as strings over a finite alphabet. And we have
shown that Turing machines are reflective, meaning that they are able to
simulate other Turing machines executing on some input.

We are going to try to use the concept of reflection to solve the problem.
The idea behind this suggested solution is that if a Turing machine TM1
is able to simulate a Turing machine TM2 executing on input X2, given a
string representation of TM2 and X2, then maybe TM1 will be able to tell
whether TM2 will halt on input X2 or not. TM1 should at least be able
to tell whether TM2 halts on input X2 since the simulated execution would
then also halt. So this does look like part of the solution at least. But we are
interested in deciding this language/solving this problem, which means that
the Turing machines that does not halt must also be recognized by our TMh

which is supposed to decide our halting problem for us. In the next section
we shall see that this machine TMh cannot exist.
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2.6 The Halting Problem

Let us first look at some lemmas that will be used to prove that the halting
problem is undecidable. Using reflection we shall now prove that the halting
problem is Turing acceptable. By Turing acceptable we mean that a Turing
machine can locate the positive instances of some property, in other words
the “Yes” instances of some language can be found. So proving that the
halting problem is Turing acceptable means that we are able to locate the
positive instances of this problem. Given a Turing machine TM and an input
string X, we can recognize the “Yes” this Turing machine TM will halt on
input X instances, if in fact TM halts on input X.

Lemma 1
The halting problem is Turing acceptable.

Proof Lemma 1

Using the UTM we can simulate another Turing machine TM executing on
its input X. If TM halts on its input X, then the UTM can halt as well,
and answer “Yes”. Thereby we have created a Turing machine (UTM) that
accepts the positive instances of this language. �
Remember that Turing machines are reflective, so UTM only answers “Yes” if
the actual Turing machine TM would halt on its input X. With this strategy
UTM will also run forever if the Turing machine TM did not halt on its input
X, so this will only work for locating positive instances.

Locating the positive instances over a language, and thereby showing that
a language is Turing acceptable is not enough to show that our problem is
Turing decidable. We need to be able to locate both positive and negat-
ive instances over a language to prove that some problem is Turing decid-
able/solvable. This is what the next lemma states.

Let Lc denote the complement of L, so if L = {G | G contains a Hamiltonian
cycle} then Lc = {G | G does not contain a Hamiltonian cycle}.

Lemma 2
If both L and Lc are Turing acceptable, then L is Turing decidable.

Proof Lemma 2:

We have to make a Turing machine that decides L. This is now simple, since
we have a Turing machine that accepts L, and another Turing machine that
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accepts Lc, we run these two Turing machines in parallel on our input. Since
one of our machines can locate the positive instances, and the other can
locate the negative instances, we can build a Turing machine that decides
our language L from these two. �

In the case of our halting problem, we know that the language L = {(TM,
X) | TM will halt on input X} is Turing acceptable, so if we are able to show
that Lc = {(TM, X) | TM will not halt on input X} is also Turing acceptable,
we have shown that the halting problem is Turing decidable.

Lemma 2 implies that locating the negative instances of a language is the
same as locating the positive instances of a language’s complement.

To show that the halting problem is not Turing decidable, we are now, by
the assumption that this is possible, going to show that Lc is not Turing
acceptable, where Lc = {(TM, X) | TM will not halt on input X}. Which
means that a Turing machine cannot recognize the positive instances. To
prove that a problem is decidable, it must be decidable for all instances of
the problem. Which means that for the halting problem to be decidable, we
must be able to solve this question: Does the Turing machine TM halt on
input X, for all TM and X?

When we constructed the UTM, we saw that we could construct string rep-
resentations of Turing machines and their input over an (finite) alphabet.
We want to locate these words in this language:

Lc = {(TM, X) | TM will not halt on input X}

Since we know that this language has a complement that is acceptable
(Lemma 1) we would then have proved that the halting problem is decid-
able (Lemma 2). We are going to show that this language is not acceptable
using a specialized version of this language, where X is substituted by the
string representation of itself (meta representation):

Lc
′ = {TM | TM will not halt, given a string representation of itself as input}
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Proof Halting Problem:

We start off by assuming that we are able to create a Turing machine TM c′

which accepts this language/recognizes the positive instances of the language
Lc
′ . So given a string representation of a Turing machine TM , our Turing

machine TM c′ will be able to accept this string representation TM if in fact
TM, with input TM does not halt. To prove that this machine TM c′ cannot
exist, we will try to feed TM c′ as input to TM c′ . Two things can happen:

1. TM c′ halts answering “Yes”.

2. TM c′ runs forever (“No”).

1. implies that TM c′ will not halt given its own string representation as
input. But we just tried that, and it halted answering “Yes”. So
it accepts a string which it should not have accepted, because only
machines that run forever on their own string representation should be
accepted. And this machine halted answering “Yes”, so it should not
have been accepted.

2. implies that TM c′ does not accept its own string representation as
input, since TM c′ runs forever. But then it should have been accepted,
since these are exactly the strings that TM c′ should accept. Namely
the machines that does not halt on their own string representation.

So assuming that Lc′ is Turing acceptable, meaning that the halting problem
is Turing decidable, leads to a contradiction. Hence the halting problem is
undecidable/unsolvable on a Turing machine (regular computer). �
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3 Rewriting Logic and Reflection

This chapter will tie the mathematical property of reflection to rewriting
logic. Hopefully the previous chapter gave some intuition on what a reflective
property means, although proving that Turing machines are reflective is a
small task compared to proving that the same property holds for rewriting
logic. The principle is the same, we are in both cases able to make some sort
of meta representation, that will be sufficient for a real rewrite theory or a
real Turing machine to simulate execution.

3.1 Maude

The programming language Maude is based on rewriting logic, and it forms
the basis for all implementation in this thesis. Maude is specially designed to
exploit the reflective property of rewriting logic, and has modules that help
us simulate execution at the meta-level.

3.2 Reflection

Related to Turing machines we were able to create a meta representation that
worked like a blueprint for a Turing machine, it could be used by another
Turing machine to simulate execution. The concept is similar for rewriting
logic. Rewriting logic deals with how terms that belong to different rewrite
theories evolve, this is the “execution” part. When we construct rewrite
theories we specify what a term is relative to our theory, and how they
behave. By behavior we mean when terms are equal (equations) or when a
term can evolve into other terms (rewrite rules). The execution of a rewrite
theory, consists of rewriting terms according to our theory/specification.

This chapter will be divided into two parts, the first part will be theoretic
in the sense that it will give a sketch of how rewriting logic is proved to
be reflective. The second part of this chapter will show how the reflective
property is actually used to implement strategic tools for rewriting logic,
using Maude’s pre-implemented module called META-LEVEL. Since the last
part of this chapter is essential for understanding how meta programs in
Maude help us control execution of rewrite theories, this section will be quite
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detailed. While the first part of this chapter will be more in the form of a
sketch, because of space issues. A complete proof of the reflective property
in rewriting logic would add another thirty or forty pages to this section.
A proof of the reflective property of rewriting logic can be found in full in
[11, 10]. M. Clavel and J. Meseguer prove that Maude/rewriting logic has
the reflective property by constructing a Universal Rewrite Theory in Maude.
This corresponds to our Universal Turing Machine in the previous section.
It is a rewrite theory that can simulate execution (or term rewriting) given
the meta representation of a rewrite theory and a term.

As we saw in the previous chapter Turing machines has a reflective property
because we are able to create a Universal Turing Machine that can simulate
execution of other Turing machines given a string represented input of the
other machine and its input string. In rewriting logic our “execution” will
consist of term rewriting, this is after all what our rewrite theories specify,
what a term is in this language and how it can be rewritten. So the analogue
to the Turing machine example is that we have to be able to create a Universal
Rewrite Theory that simulates term rewriting given a term, where this term
has the same property as our meta represented (or string represented) Turing
machine and its input string. Now the reflective property will be stated
relative to rewriting logic.

Formally we say that; in rewriting logic there exists a finitely presented
rewrite theory U (universal theory), meaning that any finitely presented re-
write theory R can be specified as a term R, and terms t and t′ in R can be
specified as terms t and t′, such that this equivalence holds:

Reflection:

R ` t −→ t′ ⇔ U ` 〈R, t〉 −→ 〈R, t′〉

R ` t −→ t′ has the usual meaning, that the term t′ can be reached from
the term t wrt. R and the deductive rules of rewriting logic (reflexivity,
congruence, replacement, transitivity, equality).

The largest difference between Turing machines and rewriting logic is what
we mean by “execution”. Related to rewriting logic we are interested in how
terms can be rewritten according to a specific rewrite theory. One important
aspect is the ability to simulate concurrency. This implies that different
parts of the term can be rewritten “simultaneously”, which again implies that
matches can be made to parts of a larger term. So instead of locating state
and symbol on the tape, we now have to locate possible matches between the

20



meta represented rewrite theory and the meta represented term, and rewrite
this term accordingly to prove that rewriting logic has a reflective property.

In order to do this we first of all need some way to meta represent rewrite
theories and terms. This can be done in more ways than one, but just like
in the Turing machine case we need some kind of control since the input has
to be represented in some kind of “expected form”. The Universal Rewrite
Theory cannot be prepared for any type of input, it must be in such a form
that it matches its own set of terms.

In [11] M. Clavel constructs a simplified version of the Universal Rewrite
Theory. It only works for the unconditional unsorted rewrite theories. This
is only done to simplify the proof, M. Clavel and Meseguer show in [10] that
the simplified Universal Rewrite Theory can be extended to the conditional
many-sorted case.

The word “unsorted” is maybe a bit confusing since all rewrite theories must
have terms of some sort, unsorted just means “one-sorted”, the rewrite the-
ories only contain one sort.

But let us get back to how we meta represent rewrite theories and terms.
The Universal Rewrite Theory needs to understand how their terms are con-
structed and how they are rewritten. The alphabet will also in this case be
finite for our Universal Rewrite Theory, but we leave that for now since we
can assume that no other symbols than our ascii characters are in our meta
represented input modules and terms.

We must remember what this meta representation or blueprint is supposed to
tell us. Just like the Universal Turing Machine needs the transition function
and some kind of translation into a finite alphabet of its input machines, we
will need some sort of translation into understandable blueprints here as well.
The core of the rewrite theories is the matching; when does a term match the
left hand side of a rule and can therefore be rewritten using this rule? This
is the core of the rewrite theories just like the transition function was the
core of the Turing machines. (How does a Turing machine execute, and how
does a rewrite theory rewrite). As you will soon see the readability is often
compromised when rewrite theories and terms are meta represented, but as
long as we are able to translate between the different levels of reflection this is
not very important. They are after all only meant for the Universal Rewrite
Theory, not for humans.
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3.3 Meta Representation
and the Universal Rewrite Theory

There are some important things to keep in mind when we meta represent
rewrite theories. One is that we need to keep the structure intact. There has
to be good correspondence between rewrite theory and its meta representa-
tion. We have to be able to translate between the different levels of reflection,
and this can only be done in a sufficient way if there is an understandable
correspondence between rewrite theories and their meta representation. We
can choose how to meta represent rewrite theories as long as these demands
are met. There is no one way of doing it, but clearly some ways will function
better than others. The most important things to keep in mind when we
construct meta representations of rewrite theories are:

• The structure of the rewrite theory and terms must be intact

• It must be possible to translate between the different levels of reflection

To be able to create the Universal Rewrite Theory that actually takes such
meta represented rewrite theories and terms as input, and figures out how
these terms can be rewritten, the structure of the original rewrite theory
has to be clear from its meta representation. This will be illustrated by an
example:

mod LIFE is
sort State .

ops young adult old dead : -> State [ctor] .

rl [gettingOlder1] :
young => adult .

rl [gettingOlder2] :
adult => old .

rl [dying] :
old => dead .

endm

22



The goal is to create a meta representation of this module, and another
module which we can call Simple Universal Rewrite Theory, that is able to
rewrite a meta represented term belonging to the LIFE theory, given this
term and the meta representation of the LIFE module. We now have:

LIFE ` t→ t′

What we are hoping to construct is:

SIMPLE − U ` 〈LIFE, t〉 −→ 〈LIFE, t′〉

Such that this equivalence holds:

LIFE ` t→ t′ ⇔ SIMPLE − U ` 〈LIFE, t〉 −→ 〈LIFE, t′〉

The concept is far easier to illustrate when we make some restrictions on
our rewrite theories. In this case the rewrite theories that will be considered
will be unsorted, unconditional rewrite theories with only constants (quite
degenerate), but enough to illustrate how this works.
Now it is time to start defining our meta representation. Remember that for
a meta program, the meta represented rewrite theories will be terms just like
lists, sets, stacks and so on. We define sorts to represent operators, rules and
modules, and sets of operators and rules.

sort Module .
sorts Op OpSet Rule RuleSet .
subsort Op < OpSet .
subsort Rule < RuleSet .

op none : -> OpSet [ctor] .
op none : -> RuleSet [ctor] .
op __ : OpSet OpSet -> OpSet [ctor assoc comm id: none] .
op __ : RuleSet RuleSet -> RuleSet [ctor assoc comm id: none] .

op opr_:-->_. : Qid Qid -> Op [ctor] .

op rule [_]: _-->_. : Qid Qid Qid -> Rule [ctor] .

op mod_sort_.__endm : Qid Qid OpSet RuleSet -> Module [ctor] .
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In the previous specification there is also used a pre-implemented Maude
sort called Qid, any string with a ’ in front of it is considered a Qid (Quoted
Identifier). Strings could have been used instead.

Now we have a way to meta represent these simple modules. Our LIFE mod-
ule will look like this after it has been translated into its meta representation:

mod ’LIFE
sort ’State .

opr ’young :--> ’State .
opr ’adult :--> ’State .
opr ’old :--> ’State .
opr ’dead :--> ’State .

rule[’gettingOlder1]:
’young --> ’adult .

rule [’gettingOlder2]:
’adult --> ’old .

rule [’dying]:
’old --> ’dead .

endm

Not much imagination is needed to see how we can construct our Simple
Universal Rewrite Theory for these simple modules. All we need to do in
order to perform legal rewrites, is to check if our meta represented term is
equal to one of the left hand sides of the rules in the module. If there is
a match, we can replace it with the rules right hand side. This gets more
complex for real rewrite theories where terms are not just constants, but the
principle is the same.

Let us take a look at how we can construct our Simple Universal Rewrite
Theory based on the meta representation just given, for the restricted set of
rewrite theories. Remember from the definition of reflection that this rewrite
theory must be able to “simulate” rewriting of these modules.

The LIFE module only allows a person to get older and once someone is old
they can die. The main concern when constructing our Simple Universal
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Rewrite Theory is that we must only perform legal rewrites according to our
meta represented theory, and all the possible rewrites must be possible at
the meta-level.

Simple Universal Rewrite Theory
mod SIMPLE−UNIVERSAL i s

p r o t e c t i n g INT .
p r o t e c t i n g QID .

s o r t Module .

s o r t s Rule RuleSet .
subsor t Rule < RuleSet .

s o r t s Op OpSet .
subsor t Op < OpSet .

op none : −> RuleSet [ c t o r ] .
op __ : RuleSet RuleSet −> RuleSet [ c t o r a s soc comm id : none ] .

op ru l e [_ ] :_−−>_. : Qid Qid Qid −> Rule [ c t o r ] .

op opr_:−−>_. : Qid Qid −> Op [ c t o r ] .
op none : −> OpSet [ c t o r ] .
op __ : OpSet OpSet −> OpSet [ c t o r as soc comm id : none ] .

op mod_sort_ .__endm : Qid Qid OpSet RuleSet −> Module [ c t o r ] .

op metaRew : Module Qid Nat −> Qid [ c t o r ] .
op match : RuleSet Qid −> Bool [ c t o r ] .
op applyRule : RuleSet Qid −> Qid [ c t o r ] .

vars Q1 Q2 Q3 Q4 Q5 : Qid .
var OPSET : OpSet .
var RLS : RuleSet .
var N : Nat .

eq metaRew ( (mod Q1 so r t Q2 . OPSET RLS endm) , Q3 , 0) = Q3 .

eq metaRew ( (mod Q1 so r t Q2 . OPSET RLS endm) , Q3 , N) =
i f match (RLS, Q3) then metaRew ( (mod Q1 so r t Q2 . OPSET RLS endm) ,
applyRule (RLS, Q3) , N − 1)
e l s e Q3 f i .

eq match ( none , Q1) = f a l s e .

eq match ( ( ru l e [Q1 ] : Q2 −−> Q3 . RLS) , Q4) =
i f (Q4 == Q2) then t rue e l s e match (RLS, Q4) f i .

eq applyRule ( ( r u l e [Q1 ] : Q2 −−> Q3 . RLS) , Q4) =
i f (Q4 == Q2) then Q3 e l s e applyRule (RLS, Q4) f i .

endm
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This Maude module shows how the Simple Universal Rewrite Theory can be
implemented for a very restricted class of Maude modules, (unconditional,
unsorted modules where all terms are constants). The metaRew function con-
tained in the SIMPLE-UNIVERSAL rewrite theory will simulate execution/re-
writing of the meta represented modules. Below is an example where the
LIFE module is once again used as a basis for the example. Recall that
the function metaRew takes three arguments: a meta represented module, a
meta represented term, and a natural number which represents the number
of rewrite steps we would like to perform.

reduce in SIMPLE−UNIVERSAL :

metaRew(

∗∗∗ meta repre sented LIFE−module

mod ’LIFE
so r t ’ State .
( opr ’ young :−−> ’ State .
opr ’ adult :−−> ’ State .
opr ’ o ld :−−> ’ State .
opr ’ dead :−−> ’ State . )

( r u l e [ ’ g e t t ingOlder1 ] :
’ young −−> ’ adult .

r u l e [ ’ g e t t ingOlder2 ] :
’ adult −−> ’ old .

r u l e [ ’ dying ] :
’ o ld −−> ’ dead . )

endm ,

’ adult , ∗∗∗ meta repre sented term

1 ∗∗∗ number o f r ew r i t e s

) .

r ew r i t e s : 22 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )

r e s u l t Qid : ’ o ld

The result of this test-run can be stated formally like this:

SIMPLE − UNIV ERSAL ` 〈LIFE, adult〉 −→ 〈LIFE, old〉
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Which should imply that this holds for the LIFE theory:

LIFE ` adult→ old

Which is true:

rewrite [1] in LIFE : adult .
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)
result State: old

So for the restricted class of Maude modules that can be meta represented
according to the definitions in the SIMPLE-UNIVERSAL module, we have been
able to create a meta program that simulates execution/rewriting of terms.
For a very restricted R the reflective property holds:

R ` t→ t′

m
SIMPLE − UNIV ERSAL ` 〈R, t〉 −→ 〈R, t′〉

To prove that rewriting logic is reflective it is not enough to show that this
equivalence holds for a restricted class of rewrite theories. This was only
done to illustrate how the reflective property relates to rewriting logic. Once
we start restricting our rewrite theory R we will get difficulties with meta
representing any rewrite theory, thus failing to prove that rewriting logic is
reflective. A translation scheme that does not give us the ability to construct
the meta representation of any rewrite theory will not be able to simulate ex-
ecution/term rewriting of all rewrite theories. This was the case in the simple
example just shown with SIMPLE-UNIVERSAL, since the SIMPLE-UNIVERSAL
module is far too complex to be meta represented using its own Module
definition. Just like we were able to represent the Universal Turing machine
like a string which gave ground for the reflective tower, a meta represent-
ation that gives us the ability to meta represent any other rewrite theory
will give ground for a reflective tower here as well. As mentioned earlier the
creation of a real Universal Rewrite Theory is far more complex than the cre-
ation of a Universal Turing machine. The concept however is hopefully clear,
there can be constructed a rewrite theory (The Universal Rewrite Theory)
that can take as input the meta representation of any rewrite theory and a

27



term belonging to this meta represented theory. From this term the Univer-
sal Rewrite Theory is able to simulate execution/term rewriting. Since the
Universal Rewrite Theory can handle any other rewrite theory it can also
handle a meta representation of itself, which gives ground once again for the
Reflective tower.
Reflective Tower:

R ` t −→ t′

m
U ` 〈R, t〉 −→ 〈R, t′〉
m

U ` 〈U , 〈R, t〉〉 −→ 〈U , 〈R, t′〉〉
...

In practice however creating our own Universal Rewrite Theory is complic-
ated and would add a lot of overhead to the execution part of our rewrite the-
ories. We are interested in getting some control over our rewriting strategies
without having to implement a real Universal Rewrite Theory. The program-
ming language Maude has solved this with a pre-implemented module that
has the important facilities of the Universal Rewrite Theory, namely the abil-
ity to simulate execution given a meta represented term and rewrite theory.
This gives us the control we need to perform strategic choices along the way
as terms are rewritten according to different rewrite theories. This gives us
the ability to alter behavior easily using meta programs since execution/re-
writing now is simulated, we can for instance alter the term and thereby the
rewrite theories on the fly. The rest of this chapter will be used to show how
this is done in Maude, in other words how the reflective property of rewriting
logic can be exploited to create strategic choices.

For a closer look at how a real Universal Rewrite Theory can be implemented
see M. Clavel’s Reflection in Rewriting Logic [11].
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3.4 Using Reflection to Implement Strategies

The goal for this section is to show how the reflective property of rewriting
logic is used in practice with examples of how strategic choices can be made
using reflection.

The programming language Maude is especially designed to exploit the re-
flective property of rewriting logic. Maude has been developed over the years
and the latest version makes meta programming a lot easier than it used to
be. In earlier versions we needed Full-Maude to help us translate between
the different levels of reflection, but this is now part of Core-Maude, which
is easier to work with.

A simple module
mod TUPLE i s

i n c l ud ing INT .

s o r t Tuple .

op T : Nat Nat Nat −> Tuple [ c t o r ] .

vars N N’ N’ ’ : Nat .

r l [ 1 ] :
T(N, N’ , N’ ’ ) => T( (N + 1) , N’ , N’ ’ ) .

r l [ 2 ] :
T(N, N’ , N’ ’ ) => T(N, (N’ + 1) , N’ ’ ) .

r l [ 3 ] :
T(N, N’ , N’ ’ ) => T(N, N’ , (N’ ’ + 1) ) .

endm

This module is made as basic as possible so the focus can be held on the
meta programming part. The module only has one sort, the sort Tuple,
which is just a tuple of three natural numbers of sort Nat.

sort Tuple .
op T : Nat Nat Nat -> Tuple [ctor] .

The module has three different rewrite-rules that can be applied to instances
of the sort Tuple. The rewrite-rules increase one of the three Nats inside
the Tuple. The rules are made this way to be able to store the number
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of times each rule has been applied to the term. This will give us some
idea of how the built-in Maude commands choose their strategy, and will
illustrate how strategies can be made using reflection in Maude. The module
META-LEVEL mentioned in the previous section contains the most important
facilities of the Universal Rewrite Theory, namely the ability to simulate
execution of other meta represented rewrite theories. To use this module
we need to meta represent rewrite theories and terms according to two other
pre-implemented modules: META-MODULE and META-TERM. These two modules
give us the ability to meta represent any rewrite theory and its belonging
terms, unlike the simple example shown earlier where we restricted the class
of rewrite theories that could be used as input-terms to our Universal Rewrite
Theory. This gives us once again the ability to have several levels of reflection.

But first let’s make a meta representation of this module, which will be used
as input terms to the meta program. This can be done in four ways:

1. Construct our own syntax for meta representing rewrite theories.

2. Inspecting the syntax for representing modules, terms, variables, and
so on that have been specified in the META-TERM and META-MODULE in
the Maude libraries.

3. Using the new Maude function upModule, which returns a meta rep-
resentation of a module according to the syntax in META-TERM and
META-MODULE.

4. Loading Full Maude and calling the up-function which returns a meta
representation of a module according to the syntax specified in META-TERM
and META-MODULE.

The third option is strongly recommended. On the other hand it can be
quite useful to construct the meta representation of some simple modules
“by hand”, to get a better understanding of how the meta representation
of rewrite theories is constructed according to the specifications given in
META-TERM and META-MODULE.

We can define our own specification for meta representing modules, but that
implies implementing the Universal Rewrite Theory according to our own
specification, which is a huge task. Not only is it a huge task but there is
also the problem with efficiency, to simulate one rewrite-step of a term in
the meta represented rewrite theory R can result in numerous rewrite steps
for the Universal Rewrite Theory U . The META-LEVEL module is not a “real”
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Universal Rewrite Theory, it just translates modules back from meta repres-
entation to object representation. So simulating execution using META-LEVEL
adds very little overhead compared to simulating execution using a real Uni-
versal Rewrite Theory.

The META-LEVEL module has several different functions to help us with the
task of executing meta represented programs:
metaReduce, metaRewrite, metaFrewrite, metaApply and metaXapply.
They are often referred to as descent-functions since they help us descend
one level in the reflective tower.

I won’t go through the full syntax for meta representing modules and terms
according to META-TERM and META-MODULE, but give a glimpse of how it is
done. It is pretty straightforward and a few examples will give a good un-
derstanding of how modules and terms are meta represented. To get the
complete syntax for meta representing modules, see the specifications in the
Maude library.

We loose the ability to construct mix-fix operators once we meta represent
terms. This is because the prefix notation that meta represented terms have
is unambiguous (we need no parenthesis to group different parts of a term
together). To illustrate:

object-level:

op _+_ : Nat Nat -> Nat [ctor] .

Meta representation:

op ’_+_ : ’Nat ’Nat -> ’Nat [ctor] .

This term from the NAT module:

s(s(0)) + s(0)

Will be meta represented like this:

’_+_ [’s_[’s_[’0.Zero]], ’s_[’0.Zero]]
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Each underscore before and after the function symbols makes it possible to
translate back to object-level without loosing the original mix-fix represent-
ation of functions. This also makes it possible to tell how many arguments
each function takes. The function ’_+_ takes two arguments and this is an
infix function for instance. All the function symbols are quoted as well, a
quoted string is just a string with a ’-symbol in front of it.
Equations and rewrite rules are represented (almost) just like regular rewrite
rules and equations, the terms are meta represented and rule-names are given
behind the rewrite rules instead of in front like at the object-level.
The best way to see the relationship between object-level (regular) represent-
ation and the meta-level representation is probably with an example. This is
the object-level representation of the TUPLE module, that was shown a couple
of pages ago.

The tuple module
mod TUPLE i s

i n c l ud ing INT .

s o r t Tuple .

op T : Nat Nat Nat −> Tuple [ c t o r ] .

vars N N’ N’ ’ : Nat .

r l [ 1 ] :
T(N, N’ , N’ ’ ) => T( (N + 1) , N’ , N’ ’ ) .

r l [ 2 ] :
T(N, N’ , N’ ’ ) => T(N, (N’ + 1) , N’ ’ ) .

r l [ 3 ] :
T(N, N’ , N’ ’ ) => T(N, N’ , (N’ ’ + 1) ) .

endm

Here is a small piece of code taken from the META-MODULE that illustrates
how a Module is defined:

op mod_is_sorts_._____endm :
Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet RuleSet -> Module .

All the sorts that the Module term is built from has to be specified naturally,
but when this has been done we get the ability to represent any rewrite
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theory as a term using this specification. The meta representation of the
TUPLE module according to the specification found in the pre-implemented
modules META-LEVEL and META-TERM is presented below.

The meta representation of tuple
mod ’TUPLE i s

i n c l ud ing ’INT .

s o r t s ’ Tuple .

none

op ’T : ’Nat ’Nat ’Nat −> ’Tuple [ c t o r ] .

none
none

r l ’T[ ’N: Nat , ’N’ : Nat , ’N’ ’ : Nat]=>
’T[ ’_+_[ ’N: Nat , ’ s_ [ ’ 0 . Zero ] ] , ’N’ : Nat , ’N’ ’ : Nat ] [ l a b e l ( ’ 1 ) ] .

r l ’T[ ’N: Nat , ’N’ : Nat , ’N’ ’ : Nat]=>
’T[ ’N: Nat , ’_+_[ ’N’ : Nat , ’ s_ [ ’ 0 . Zero ] ] , ’N’ ’ : Nat ] [ l a b e l ( ’ 2 ) ] .

r l ’T[ ’N: Nat , ’N’ : Nat , ’N’ ’ : Nat]=>
’T[ ’N: Nat , ’N’ : Nat , ’_+_[ ’N’ ’ : Nat , ’ s_ [ ’ 0 . Zero ] ] ] [ l a b e l ( ’ 3 ) ] .

endm

The readability is compromised once we meta represent terms and modules
as we can see from the example. Luckily the latest version of Maude makes
the conversion from object-level representation to meta representation very
simple with the upTerm and upModule functions, now included in Core-
Maude.

See the Maude manual, and primer [12, 16] or the Maude library for a more
detailed description of the syntax used for meta representing terms and mod-
ules.

The need for strategic choices

This section will try to motivate the need for a strategic tool in rewriting
logic. The TUPLE module will be used to illustrate why we need such a tool,
and how it can be made using the reflective property of rewriting logic.

Let us look at a problem where we need to implement rewriting strategies to
prove whether or not some system can enter a dangerous state. This time we
look at the TUPLE module as a model for some critical system, where different
states must be avoided to prevent something bad from happening (I believe
nuclear-core melt-down is the going example in this context). Now we want
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to test our system to be sure that the dangerous state which we must avoid
is unreachable from the initial-state which the system starts in, the initial
state could be T(0, 0, 0) for instance in our TUPLE module. Let’s say that the
state T(10000, 0, 0) represents our nuclear-core melt-down which will give
us another Chernobyl. This is a state that needs to be avoided, but to be
sure that this state can’t be reached we need to search all the possible states
that this system can reach. We can assume that the system will only “live”
for 105 state-changes or rule-applications so there’s only a finite number of
states that the system can reach, (still a very large number to search though).
As you probably have guessed, searching for this state would be quite hard,
since the strategy of the pre-implemented ’search’ command uses a “breadth-
first” strategy, which means that all the states that can be reached in n steps
will be evaluated before any state that can be reached in n+1 steps will
be evaluated. So our state will not be reached until the ’search’ function
has looked through at least

∑9999
i=0 3i states leading up to our state. This is

because all three rules can be applied to the term at each step of the way,
so the exponential explosion kicks in. This makes the ’search’ command
impossible to use for this purpose. We have to try to use our two other
tools to solve this problem, namely ’frew’ and ’rew’. Our RuleSet in TUPLE
doesn’t contain any Rule that subtracts numbers from the three Nats inside
our Tuple, so once the second or third Nat get a value greater than 0, we
will never enter the dangerous state. In other words we can say that if either
’frew’ or ’rew’ chooses a path where one of the two last Nats is increased,
these two strategies have failed. This is because the strategies implemented
in ’frew’ and ’rew’ take the same path down the tree, no matter how far down
we let them go, to illustrate:

f rew [ 1 ] T(0 , 0 , 0) .
rew [ 1 ] T(0 , 0 , 0) .

f r e w r i t e [ 1 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 2 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(1 , 0 , 0)
==========================================
rewr i t e [ 1 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 2 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(1 , 0 , 0)

∗∗∗ So f a r so good

frew [ 2 ] T(0 , 0 , 0) .
rew [ 2 ] T(0 , 0 , 0) .

f r e w r i t e [ 2 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 4 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(1 , 1 , 0)
==========================================
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r ewr i t e [ 2 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 4 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(1 , 1 , 0)

Here we see that once ’rew’ and ’frew’ have the possibility of applying two
rewrite-rules to the term, they both go down a path that will never lead to
success. Once these two commands first take a “bad” turn at some point down
the tree of behaviors, they stick with their choice no matter how many times
we execute the commands or how far down the tree we let them go. ’rew’ will
in other words always apply the same rule at the n’th step and at the n+1’th
step if we run the command several times (it’s deterministic). Specifying
different bounds for the command doesn’t change its choices either, it just
makes it go further or shorter down its path. This can be used to investigate
their strategy:

strategy-test
rew [ 1 ] T(0 , 0 , 0) .
rew [ 2 ] T(0 , 0 , 0) .
rew [ 3 ] T(0 , 0 , 0) .
rew [ 4 ] T(0 , 0 , 0) .
rew [ 5 ] T(0 , 0 , 0) .
rew [ 6 ] T(0 , 0 , 0) .
rew [ 7 ] T(0 , 0 , 0) .

r ew r i t e [ 1 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 2 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(1 , 0 , 0)
==========================================
rewr i t e [ 2 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 4 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(1 , 1 , 0)
==========================================
rewr i t e [ 3 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 6 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(1 , 1 , 1)
==========================================
rewr i t e [ 4 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 8 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(2 , 1 , 1)
==========================================
rewr i t e [ 5 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 10 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(2 , 2 , 1)
==========================================
rewr i t e [ 6 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 12 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(2 , 2 , 2)
==========================================
rewr i t e [ 7 ] in TUPLE : T(0 , 0 , 0) .
r ew r i t e s : 14 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Tuple : T(3 , 2 , 2)

After studying what happens to the term T(0, 0, 0) when the ’rew’ command
controls the execution, it would be fair to say that ’rew’ uses a Round-Robin
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strategy on the possible rules that can be applied to the term. In this context
the ’frew’ command will compute the same path as ’rew’, but in more complex
situations with larger terms, they will compute different paths down the tree.
Here all matches will fit the one Tuple, so the position fairness of ’frew’
doesn’t really kick in, but when matches can be made to different parts of a
larger term, it will. What’s important is that they both only examine one of
the (exponentially) many behaviors of a system, and we have little control of
what behavior they examine. So the ability to implement our own strategies
is crucial.

Let’s go back to our nuclear-core melt-down problem, where we want to test
the system specified in our TUPLE module, to see whether or not the state
T(10000, 0, 0) can be reached in 105 state-changes from our initial state
T(0, 0, 0). We know that any strategy that applies rule 2 or 3 to the term
is lost, because there are no rules subtracting from our three Nats inside our
Tuple, so the Nats inside the Tuple can only increase in size. In other words
this is what we know of the situation so far:

• The system will only live for 105 state-changes

• If either rule 2 or 3 is applied to the term, we will never reach the
“dangerous” state T(10000, 0, 0)

• Our three pre-implemented strategies ’search’, ’frew’ and ’rew’ will not
help us to prove that this system is either safe or dangerous

All this leads to the need for meta programming, and the ability to imple-
ment our own strategies. What we really want is to show that it is possible,
or impossible, to reach this state. It is quite obvious in this case that the
state is within reach, but in real situations, where we make a model of a real
system it can be quite hard to see what states can be reached from an initial
state. To be able to show that some state is unreachable from an initial state
will often require some clever thinking, when the number of states to search
in total is too big to execute a ’search’. This often requires some kind of
pruning argument, just like the one made earlier with the hopelessness of
applying rule 2 and 3 in our TUPLE module to reach the state T(10000, 0, 0).
Pruning the tree of behaviors is almost like pruning a regular tree, we cut off
branches. When searching for different states we try to cut off the branches
where these states can’t be found anyway. After this has been done one can
use meta programming to search the rest of the now smaller pruned tree for
instance. Before showing a strategy example it’s time to give a brief explan-
ation of the functions metaReduce, metaRewrite, metaFrewrite, metaApply
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and metaXapply, found in the module META-LEVEL. These functions help us
simulate execution/term rewriting at the meta-level.
The best way to explain how these functions work is probably by showing
some examples. Although the names of the functions should be quite inform-
ative, a brief explanation of how they are used will now be given. These are
all functions of the module META-LEVEL found in Maude’s standard library.

3.5 Descent-functions

These functions help us simulate execution at the meta-level. When we
rewrite terms according to a specification in rewriting logic, we evaluate this
relationship:

R ` t→ t′ (1)

The functions found in the META-LEVEL module help us to evaluate this
relationship:

U ` 〈R, t〉 → 〈R, t′〉 (2)

Since rewriting logic is reflective the equivalence 1) ⇔ 2) holds. The reason
for simulating execution at the meta-level is to get some control over the
strategic choices. For a meta program the input modules and terms, are
just terms like lists, sets or stacks, so they can be manipulated. Rewrite
rules can be removed from a rewrite theory just by manipulating a term
for instance, this combined with the functions described in this section will
give us exactly the tool we need to implement strategic choices when we
investigate our rewrite theories.

metaReduce:

This function takes a meta represented Module and a meta represented Term
as arguments. metaReduce reduces the Term according to the EquationSet
in the meta represented module.
In this example the well known Maude module nat-add is used, or rather its
meta representation: nat-add. M1 is the meta representation of nat-add,
an old technique is used to replace this constant with the meta representation.
The left hand side of the next modules only equation will match the term
M1 and it is replaced by the equations right hand side which is the meta
representation of nat-add.
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mod META−PROGRAM i s

p r o t e c t i n g META−LEVEL .

op M1 : −> Module [ c t o r ] .

eq M1= (mod ’NAT−ADD i s
n i l
s o r t s ’Nat .
none
op ’0 : n i l −> ’Nat [ c t o r ] .
op ’s_ : ’Nat −> ’Nat [ c t o r ] .
op ’_+_ : ’Nat ’Nat −> ’Nat [ c t o r ] .
none
eq ’_+_[ ’ 0 . Nat , ’M: Nat ] = ’M:Nat [ none ] .
eq ’_+_[ ’ s_ [ ’M: Nat ] , ’N: Nat ] = ’s_ [ ’_+_[ ’M: Nat , ’N: Nat ] ] [ none ] .
none

endm) .

endm

reduce in META−PROGRAM : metaReduce (M1, ’_+_[ ’ s_ [ ’ 0 . Nat ] , ’ s_ [ ’ 0 . Nat ] ] ) .

r ew r i t e s : 4 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )

r e s u l t Resu l tPa i r : { ’ s_ [ ’ s_ [ ’ 0 . Nat ] ] , ’ Nat}

This function works like the Universal Rewrite Theory for functional rewrite
theories, (modules with no rewrite rules). It returns a ResultPair consisting
of the meta represented result Term and its sort.

metaRewrite:

This function takes as arguments a meta represented Module, a meta rep-
resented Term, and a Bound to control how many rewrite-steps we wish to
perform on this Term. Bound is either a Nat or unbounded which means that
there is no bound, and we should try to rewrite as long as we get matches.
The function returns a ResultPair consisting of the resulting Term and its
sort. I will illustrate with a short example on the familiar TUPLE module.
(M2 is the meta representation of the TUPLE module).

red in META−PROGRAM : metaRewrite (M2, ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , 3) .

reduce in META−PROGRAM : metaRewrite (M2, ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , 3) .
r ew r i t e s : 8 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Resu l tPa i r : { ’T[ ’ s_ [ ’ 0 . Zero ] , ’ s_ [ ’ 0 . Zero ] , ’ s_ [ ’ 0 . Zero ] ] , ’ Tuple }

It uses the same strategy as the pre-implemented ’rew’ command.

38



metaFrewrite:

This function will help us execute a ’frew’ from the meta-level. It takes a
meta represented Module, a meta represented Term, a Bound, and a Nat as
arguments. The Bound tells metaFrewrite how many rewrite-steps we want
to take. And the last Nat is the same as the optional parameter we can give
the ’frew’ command to tell it to use ’Nat’ rewrites at some position. The
function returns a ResultPair just like metaRewrite, and metaReduce. I
will illustrate how this last parameter works after a short example. (M2 is
the meta representation of the TUPLE module).

red in META−PROGRAM : metaFrewrite (M2, ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , 3 , 1) .

r ew r i t e s : 8 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t Resu l tPa i r : { ’T[ ’ s_ [ ’ 0 . Zero ] , ’ s_ [ ’ 0 . Zero ] , ’ s_ [ ’ 0 . Zero ] ] , ’ Tuple }

It is easier to see how the last parameter of the metaFrewrite function
should be used, without the hassle of looking at the meta represented modules
and terms which can be a bit difficult to read. Since the last parameter of
metaFrewrite has the same function as the optional parameter to the ’frew’
command, I will illustrate what this parameter does by showing an example
with the ’frew’ command. We need more complex terms than the ones we
have in the TUPLE module to illustrate how this works, so I have made a
similar module called tuple-set.

tuple-set module
mod TUPLE−SET i s

i n c l ud ing INT .

s o r t Tuple TupleSet .
subsor t Tuple < TupleSet .

op T : Nat Nat Nat −> Tuple [ c t o r ] .
op none : −> TupleSet [ c t o r ] .
op __ : TupleSet TupleSet −> TupleSet [ c t o r a s soc comm] .

vars N N’ N’ ’ : Nat .

r l [ 1 ] :
T(N, N’ , N’ ’ ) => T( (N + 1) , N’ , N’ ’ ) .

r l [ 2 ] :
T(N, N’ , N’ ’ ) => T(N, (N’ + 1) , N’ ’ ) .

r l [ 3 ] :
T(N, N’ , N’ ’ ) => T(N, N’ , (N’ ’ + 1) ) .
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endm

rew [ 1 0 ] T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) .
f rew [ 1 0 ] T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) .

f rew [ 10 , 4 ] T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) .
f rew [ 10 , 5 ] T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) T(0 , 0 , 0) .

r ew r i t e [ 1 0 ] in TUPLE−SET : ( (T(0 , 0 , 0 ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) .
r ew r i t e s : 20 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t TupleSet : T(1 , 0 , 0) T(1 , 0 , 0) T(1 , 1 , 1) T(1 , 2 , 2)
==========================================
f r ew r i t e [ 1 0 ] in TUPLE−SET : ( (T(0 , 0 , 0 ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) .
r ew r i t e s : 20 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t ( s o r t not c a l cu l a t ed ) : T(0 , 1 , 2) T(1 , 1 , 1) T(1 , 1 , 0) T(2 , 0 , 0)
==========================================
f r ew r i t e [ 1 0 , 4 ] in TUPLE−SET : ( (T(0 , 0 , 0 ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) .
r ew r i t e s : 20 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t ( s o r t not c a l cu l a t ed ) : T(2 , 1 , 1) T(1 , 2 , 1) T(1 , 0 , 1) T(0 , 0 , 0)
==========================================
f r ew r i t e [ 1 0 , 5 ] in TUPLE−SET : ( (T(0 , 0 , 0 ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) ) T(0 , 0 , 0 ) .
r ew r i t e s : 20 in 0ms cpu (0ms r e a l ) (~ r ew r i t e s / second )
r e s u l t ( s o r t not c a l cu l a t ed ) : T(2 , 2 , 1) T(2 , 1 , 2) T(0 , 0 , 0 ) T(0 , 0 , 0)

As you can see the ’frew’ command tries to apply the rules of the RuleSet
to parts of the term as many times as we specify in the optional parameter,
which is the last parameter of the metaFrewrite function. The difference
between ’rew’ and ’frew’ command is also present, as it usually is as soon as
we get larger terms. Here’s the last ’frew’ executed at the meta-level.

reduce in META−PROGRAM : metaFrewrite ( [ ’TUPLE−SET] ,
’__[ ’__[ ’__[ ’T [ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ,
’T [ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] , ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] ,
’T [ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] , 10 , 5) .

r ew r i t e s : 22 in 10ms cpu (10ms r e a l ) (2200 r ew r i t e s / second )
r e s u l t Resu l tPa i r : {
’__[ ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ,
’T[ ’ s_^2 [ ’ 0 . Zero ] , ’ s_ [ ’ 0 . Zero ] , ’ s_^2 [ ’ 0 . Zero ] ] ,
’T[ ’ s_^2 [ ’ 0 . Zero ] , ’ s_^2 [ ’ 0 . Zero ] , ’ s_ [ ’ 0 . Zero ] ] ] , ’ TupleSet }

The result is the same as at the object-level, the resulting term is meta
represented so it is harder to read, and the elements are in a different order
(that doesn’t matter since TupleSet is a set).

The first argument ([’TUPLE-SET]) that metaFrewrite takes is the meta
representation of the module TUPLE-SET. All modules that have been loaded
at the object-level can be quoted (the module’s name with a ’ in front of it)
and placed inside brackets to state that we would like the meta representation
of a this module. This is how we usually convert modules from its object-level
representation to its meta representation.
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metaApply:

This function and the next one (metaXapply) are the soul of strategy imple-
mentation in Maude. The other functions help us do the standard Maude
analysis from our meta programs (’red’, ’rew’ and ’frew’), which can be very
helpful, but it does not give us full freedom as to what paths down the tree
of behaviors we would like to investigate. To really get the possibility to
implement any strategy we like, we need to be able to apply the rules as we
see fit, and that’s what metaApply and metaXapply help us do. metaApply
is defined like this:

op metaApply : Module Term Qid Substitution Nat -> ResultTriple

The first argument is a meta represented Module, and the second argument is
a meta represented Term. The third is the name of the rule(s) we would like
to apply to the term. Then the last two arguments are a Substitution, and
a Nat. The Substitution argument can force the matching to use a substitu-
tion that we specify, there might be several possibilities, and we would like a
particular one. The last number will force the first Natmatches to be skipped,
and apply the specified rule(s) to the Nat + 1 match. The ResultTriple
contains the resulting Term and its sort, and the Substitution that was
made to get a match. I will illustrate with an example once again:

reduce in META−PROGRAM : metaApply ( [ ’TUPLE−SET] , ’T[ ’ 0 . Nat , ’ 0 . Nat , ’ 0 . Nat ] ,
’ 1 , none , 0) .

r ew r i t e s : 4 in 0ms cpu (10ms r e a l ) (~ r ew r i t e s / second )

r e s u l t Resu l tTr ip l e : { ’T[ ’ s_ [ ’ 0 . Zero ] , ’ 0 . Zero , ’ 0 . Zero ] , ’ Tuple ,
’N’ ’ : Nat <− ’ 0 . Zero ;
’N’ : Nat <− ’ 0 . Zero ;
’N: Nat <− ’ 0 . Zero }

In this example I tried to apply rule no. 1 in the TUPLE-SET module to the
term ’T[’0.Nat,’0.Nat,’0.Nat]. And this worked out well as we can see,
but the metaApply function will only match exactly, that means it will not
apply rewrite-rules to parts of a term. This is where metaXapply comes into
the picture. To illustrate the most important difference between metaApply
and metaXapply, take a look at this example, where we have a meta repres-
entation of the tuppel-set module and we want to apply rule no. 1 to an
instance of the sort TupleSet.
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reduce in META−LEVEL : metaApply ( [ ’TUPLE−SET] ,
’__[ ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] ,
’ 1 , none , 0) .

r ew r i t e s : 2 in 10ms cpu (10ms r e a l ) (200 r ew r i t e s / second )

r e s u l t Resu l tTr ip l e ? : ( f a i l u r e ) . Resu l tTr ip l e ?

It is possible to apply rule no. 1 to this term, but only if we apply the rule
to part of the term. As long as there is no exact match, metaApply will not
rewrite the term, and a failure term is returned.

metaXapply:

This function is very similar to the function above, the largest difference is
the ability to match parts of a term, which can be quite useful. All the pre-
implemented commands use this strategy, called rewriting with extension.
So if any part of a term matches a left-hand side of a rule, this rule can be
applied. In the example above for instance where metaApply failed to apply
rule no. 1 to the term, we could have used metaXapply and succeeded.

reduce in META−APPLY−TEST : metaXapply ( [ ’TUPLE−SET] ,
’__[ ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , ’T [ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] ,
’ 1 , none , 0 , unbounded , 0) .

r ew r i t e s : 4 in 10ms cpu (10ms r e a l ) (400 r ew r i t e s / second )

r e s u l t Result4Tuple : { ’__[ ’T[ ’ s_ [ ’ 0 . Zero ] , ’ 0 . Zero , ’ 0 . Zero ] ,
’T [ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] , ’ TupleSet ,

’N’ ’ : Nat <− ’ 0 . Zero ;
’N’ : Nat <− ’ 0 . Zero ;
’N: Nat <− ’ 0 . Zero , ’__[ [ ] , ’T [ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] }

The metaXapply function takes 7 arguments and returns 4, (a Result4Tuple).
I’ll give a brief explanation of what the different arguments do.

op metaXapply : Module Term Qid Substitution Nat Bound Nat
-> Result4Tuple .

The first two arguments are a meta represented Module and a meta repres-
ented Term, and the third argument is a Qid stating what rule(s) we would
like to apply to our Term. Several rules can have the same name, they will
be matched in a top-down manner. The next is a Substitution just as
in metaApply, stating that we would like to substitute some variables in a
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rewrite-rule after our own preference. The fifth argument determines how
“far” into the term we are going to start looking for matches from, we “peel”
off the Nat first layers before we start looking for matches.

The sixth argument is almost the opposite, it is a Bound that specifies how
“deep” we are going to search within a term for a match. It can be either a Nat
or unbounded meaning that metaXapply will look as “deep” into the term as
it is possible. Then the last Nat has the same function as the last parameter
of metaApply, it specifies that we should skip the ’Nat’ first matches. The
Result4Tuple contains the same information as our ResultTriple plus one
more piece of information, namely the context in which the match was made.
(This will result in the surrounding context not matched by the applied
rewrite-rule). It seems a bit confusing with all these parameters, but it will
seem much clearer once I show an example.

reduce in META−LEVEL : metaXapply ( [ ’TUPLE−SET] ,
’__[ ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ] ,
’ 1 , none , 0 , unbounded , 2) .

r ew r i t e s : 4 in 10ms cpu (10ms r e a l ) (400 r ew r i t e s / second )

r e s u l t Result4Tuple : { ’__[ ’T[ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] ,
’T [ ’ 0 . Zero , ’ 0 . Zero , ’ s_ [ ’ 0 . Zero ] ] ] , ’ TupleSet ,

’N’ ’ : Nat <− ’ 0 . Zero ;
’N’ : Nat <− ’ 0 . Zero ;
’N: Nat <− ’ 0 . Zero , ’__[ ’T [ ’ 0 . Zero , ’ 0 . Zero , ’ 0 . Zero ] , [ ] ] }

In this example all the rules in the tuple-set module are named “1”, this
means that metaXapply will try to match against them in a top-down man-
ner. The last argument is 2 so it will skip the first two matches and go for
the third, this is why the last Nat inside the Tuple has increased. This func-
tion has matched the last element in the TupleSet, as we can see from the
Context in the Result4Tuple.

Hopefully this gave you some idea of how the functions of META-LEVEL can
be used to simulate execution at the meta level. To get the full overview of
the META-LEVEL module see the Maude manual [12].
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3.6 Implementing Strategies

The search for the state T(10000, 0 ,0) in our TUPLE module is still an “un-
solved mystery”, we have yet to prove or disprove its existence at least. The
pruning suggested earlier that cuts off any branch applying rule 2 or 3, will
make our search very fast. It will take us from an exponential search to a
linear search, and this can now be done using meta programming. This is
what we are looking for:

op canThisStateBeReached : Module Term Term Qid Nat -> Bool .

Here, the arguments are a meta represented Module, a meta represented Term
(initial-state), another meta represented Term (the state we are looking for),
a Qid (the rule(s) we want to apply to the Term), and a Nat to limit the search
to ’Nat’ rewrites. To create such a function I’ll use the function metaApply
from the META-LEVEL module. This together with an extrTerm function to
extract the resulting Term from the ResultTriple that metaApply returns,
will give me the ingredients that I’ll need to create this function. Here comes
the answer to whether or not the dangerous state T(10000, 0, 0) actually can
be reached in 105 steps from the initial state: T(0, 0, 0).

mod META−PROGRAM i s
p r o t e c t i n g META−LEVEL .
p r o t e c t i n g INT .

op canThisStateBeReached : Module Term Term Qid Nat −> Bool .

op extrTerm : Resu l tTr ip l e −> Term .

var T : Term .
var SUBS : Sub s t i t u t i on .
var Q : Qid .

eq extrTerm ({T, Q, SUBS}) = T .

var MO : Module .
var Q1 : Qid .
vars T1 T2 : Term .
var N : Nat .

eq canThisStateBeReached(MO, T1 , T2 , Q1 , N) =
i f extrTerm (metaApply (MO, T1 , Q1, none , 0) ) == T2 then t rue

e l s e i f (N > 0) then
canThisStateBeReached(
MO, extrTerm (metaApply (MO, T1 , Q1, none , 0) ) , T2 , Q1, (N − 1) )
e l s e f a l s e f i f i .

endm

in tup l e . maude .
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red in META−PROGRAM : canThisStateBeReached ( [ ’TUPLE] ,
’T [ ’ 0 . Nat , ’ 0 .Nat , ’ 0 . Nat ] ,
’T[ ’ s_^10000 [ ’ 0 . Zero ] , ’ 0 . Zero , ’ 0 . Zero ] ,
’ 1 , 100000) .

r ew r i t e s : 99998 in 1850ms cpu (1860ms r e a l ) (54052 r ew r i t e s / second )

r e s u l t Bool : t rue

The results of the analysis shouldn’t shock anyone but, still we needed to
prove this property and the meta programming facility of Maude helped us
accomplish this. It can be a bit tricky to see exactly what this program does
so I’ll give a short explanation of the function canThisStateBeReached.
Since Rule 2 and 3 will lead us into hopeless states where our dangerous
state cannot be found, we search all possible states that can be reached
in 105 rewrite-steps without applying Rule 2 and 3 (we stop if we find it
though). That only leaves us with Rule no. 1, so we try to apply this Rule
to our initial Term, and see whether or not our dangerous state occurs. If
it does not occur we repeat the same procedure over again, but our Term is
now the resulting Term from our last metaApply. We extract this resulting
Term with the use of the function extrTerm. In other words the function
canThisStateBeReached will look through the path of behaviors that can
be reached from applying only Rule no. 1.

eq canThisStateBeReached(MO, T1 , T2 , Q1 , N) =
i f extrTerm (metaApply (MO, T1 , Q1, none , 0) ) == T2 then t rue

∗∗∗ i f we get a match we stop and re turn t rue

e l s e i f (N > 0) then

∗∗∗ we w i l l s top at 100000 rewr i t e−s t ep s no matter what

canThisStateBeReached(MO, extrTerm (metaApply (MO, T1 , Q1 , none , 0) ) ,
T2 , Q1, (N − 1) )

∗∗∗ i f we didn ’ t succeed we keep on going down the t r e e

e l s e f a l s e f i f i .

∗∗∗ i f both t e s t s f a i l we re turn f a l s e

Here’s the function canThisStateBeReached again with comments as to
what’s happening during its execution. As you can see, these meta pro-
grams can often be a bit tricky to read, both the ones used to implement
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strategies, and the ones used for different kinds of analysis.

The ability to create meta programs in the same language as the programs
themselves is an advantage, we already have the tools we need for strategy
implementation as soon as we have learned the language of Maude. The
problem with strategies is of course that no matter how many strategies
you have, there will always be use for new ones. Meta programs can be
a bit hard to implement, and as you have seen difficult to read if they do
something remotely complex.

The newest version of Maude offers all the functions we need to make meta
programming as simple as possible, the functions upModule, upTerm and
downTerm help us change between different levels of reflection with little
effort. Throughout the thesis we will implement different strategies at the
meta-level, they all use the functions just described as a basis for their stra-
tegic choices.
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4 The Connection Method

This section will give an overview of the deductive method often referred to
as the connection method. It was developed independently by W. Bibel [3],
and P. B. Andrews [1] in the 70’s.

This method of deduction is also sometimes referred to as the systematic
method, this is what W. Bibel called it once he introduced it. P. B. Andrews
calls the system the general matings method.

The connection method has proved to be quite effective for automated the-
orem proving. In [4, 5] W. Bibel claims that the connection method is su-
perior to all other known methods of deduction by showing that it uses
fewer computational steps and less memory than any other known deduc-
tion method. Strangely this has not convinced the automated deduction
community, most automated theorem provers developed over the years use
resolution as a basis for deduction, and still do.

It is worth mentioning that solving propositional theorem proving problems
is closely related to solving satisfiability problems (SAT problems). A for-
mula A is valid, iff ¬A is unsatisfiable. Stephen Cook and Leonid Levin
showed (independently) in the 70’s that all NP-complete problems could be
translated into some propositional SAT problem. Translated in this con-
text means polynomially converted into, so solving the propositional SAT
problems for all instances of the problem in polynomial time, is equivalent
to proving that NP = P. Proving this is not very likely, which means that
creating an algorithm that can decide whether or not formulas are valid, or
if they are satisfiable, in polynomial time in general is not very likely. Even
though this sounds a bit pessimistic we have seen that strategies can be de-
veloped that can solve large subclasses of hard problems. In practice worst
case scenarios can occur rather seldom, and if we can solve the average case
in a reasonable amount of time, we might be as close to the solution as we
will ever come.

The connection method does not require formulas to be represented in clausal
form, unlike resolution. This is an advantage, but we usually convert formulas
into disjunctive normal form, which is a clausal form, since this makes it easier
to locate the connections. The connections are the building blocks of a proof
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using this method, this will be clear once the method is presented.

One of the strongest arguments for the connection method is the fact that
it does not require much memory during the search for a proof or a counter-
model, compared to LK for instance, although the two methods of inference
are closely related.

Resolution as a basis for deduction can lead to the creation of complex new
sub-goals during a proof search, at least in a straightforward implementation,
but many ways of avoiding this have been developed over the years. This is
because most theorem provers developed use this method of deduction, even
though the deductive rule of resolution is simple, these theorem provers are
not simple programs.

4.1 Clause Form Representations

As mentioned earlier the connection method at work is best illustrated using
an input formula in disjunctive normal form. Since both the disjunctive nor-
mal form (DNF) and the conjunctive normal form (CNF) are important for
understanding how the connection method works, they will now be defined.

DNF

A formula represented in disjunctive normal form is a formula consisting of
a disjunction of conjunctions. All the elements in the conjuncts must be
literals. A literal is an atom or negated atom.

A DNF represented formula:

(A1 ∧ A2 ∧ · · · ∧ An) ∨ (B1 ∧ B2 ∧ · · · ∧ Bm) ∨ · · · ∨ (U1 ∧ U2 ∧ · · · ∧ Uk)
Where all Ai, Bi, · · ·Ui are literals.

CNF

A formula represented in conjunctive normal form is a formula consisting
of a conjunction of disjunctions. All the elements in the disjuncts must be
literals. A literal is an atom or negated atom.

A CNF represented formula:

(A1 ∨ A2 ∨ · · · ∨ An) ∧ (B1 ∨ B2 ∨ · · · ∨ Bm) ∧ · · · ∧ (U1 ∨ U2 ∨ · · · ∨ Uk)
Where all Ai, Bi, · · ·Ui are literals.
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Lemma 3

All propositional formulas have equivalent formulas in CNF and DNF

M � F ⇔ M � FDNF M 2 F ⇔ M 2 FDNF
M � F ⇔ M � FCNF M 2 F ⇔ M 2 FCNF

Proof:

To prove that all propositional formulas have equivalent DNF and CNF for-
mulas, we shall first prove that formulas have equivalent DNF representa-
tions, and then use this representation to create a CNF representation. For
any propositional formula we can generate a truth table where we line up
all possible models, this can be used to generate the DNF representation of
our original formula. An equivalent formula is a formula which holds for the
same models.

Let F be a propositional formula containing n propositions p1, p2, . . . , pn.
The truth table of the formula F is presented below:

p1 p2 p3 · · · pn−1 pn F
0 0 0 · · · 0 0 0
0 0 0 · · · 0 1 1
...

...
...

...
...

...
...

1 1 1 · · · 1 0 0
1 1 1 · · · 1 1 1

For any row in the truth table where F is true, we represent this model/truth
assignment as a clause. So all the clauses in our DNF representation will be
some model/truth assignment that makes F true. The disjunction of these
clauses constitute our DNF representation of F .

From F’s truth table we can see that the DNF representation of F would
contain at least these two clauses:

(¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn−1 ∧ pn) and (p1 ∧ p2 ∧ · · · ∧ pn−1 ∧ pn)
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Since our DNF representation of F is constructed from a disjunction of all
the models which make F true, we see immediately that these equivalences
hold. �

M � F ⇔ M � FDNF
M 2 F ⇔ M 2 FDNF

The way we constructed the DNF representation of F is only meant to prove
that all propositional formulas have equivalent DNF representations, this is
by no means a good way of converting a formula into its DNF representation.
The number or rows in the truth table grows with the speed of 2n, where n
is the number of propositions contained in the formula.

We can now use the fact that all propositional formulas have equivalent
DNF formulas to create CNF representations. The transition from DNF
to CNF representation can be done in more ways than one, two ways of
constructing equivalent CNF formulas will be presented here. The first one
is more intuitive, but the last procedure is important for understanding the
connection method at work.

The first method that will be presented will use the fact that we can con-
struct equivalent DNF representations of any propositional formula. Given a
formula F we start off by constructing the DNF representation of ¬F . Once
we have the DNF representation of ¬F ≡ ¬FDNF this formula can be used
to construct the CNF representation of F in a very simple manner.

Since ¬¬F ≡ F , we negate ¬FDNF , which will result in a CNF representation
of F , since all the conjuncts will become disjuncts, and vice versa. With
repeated use of these equivalencies:

¬(P ∨Q) ≡ (¬P ∧ ¬Q)

¬(P ∧Q) ≡ (¬P ∨ ¬Q)

This way of doing it might seem a bit more elegant than the following, but
this next method is closely related to the connection method. In the next
procedure we start off with a DNF representation of our original formula F ,
and then we use this formula to construct a CNF representation of F .
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Given a formula F , let FDNF be the DNF representation of F .

FDNF = (A1∧A2∧· · ·∧An)∨ (B1∧B2∧· · ·∧Bm) · · · (U1∧U2∧· · ·∧Uk)

We can construct a CNF representation of our original formula with repetitive
use of the distributive law on our DNF representation:

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

The clauses in the CNF representation will consist of all possible ways to
choose one element from each clause in the DNF representation of our original
formula.

So if the DNF representation of our formula is large, the CNF representa-
tion will become extremely large. Luckily, the DNF representations of our
formulas are not as bad as the one made earlier in the proof of Lemma 3.

4.2 Soundness

Now we have seen that for every propositional formula, there exists formulas
in CNF and DNF which hold in exactly the same models. And we can convert
our original formula into one of its clause forms without loosing any of the
properties of the original formula (this is true for classical propositional logic
at least). This property will be used extensively by the connection method.
It is time to take a look at how this method of inference works, from Lemma
3 we have this property:

|= F ⇔ |= FDNF

We start off by converting our formula into an equivalent DNF represented
formula, by replacing each occurrence of A→ B with ¬A∨B and so on. The
reason for doing so will soon be clear, after we have converted our original
formula into DNF, it will look something like this:

(A1 ∧ A2 ∧ . . . ∧ An) ∨ (B1 ∧ B2 ∧ . . . ∧Bm) ∨ · · · (U1 ∧ U2 ∧ . . . ∧ Uk)
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Clause form representations of formulas are often displayed in set notation:

{{A1, A2, . . . , An}, {B1, B2, . . . , Bm}, · · · {U1, U2, . . . , Uk}}

These clauses are then placed into a matrix, where each clause becomes one
column in the matrix:







A1

A2
...
An







B1

B2
...
Bm


 · · ·




U1

U2
...
Uk







To see how the connection method uses this matrix representation of our
original formula to investigate validity, we need to define what we mean by
Path, Connection and Mating relative to a matrix.

Definition:

Path:

A path through a matrix is a set containing one literal from each column in
the matrix.

Connection:

A connection is a subset of a path, such that the subset contains two elements:
a literal and its negation.

Mating:

A mating is a set of connections. We say that a mating spans the matrix,
or that there exits a spanning mating of a matrix, if each path through the
matrix contains a connection.
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Theorem 2

A formula A is valid iff there exists
a spanning mating for a matrix representation of A.

This is how we investigate validity using the connection method. If each path
through a matrix representation of a formula contains a connection, then the
formula is valid.

Proof:

We need to take a look at what these paths through the matrix represent to
see why the property of connected paths leads to a valid formula. This is why
we constructed the CNF representation of our DNF representation using the
distributive law in Lemma 3. We know from the construction of the CNF
representation of a formula that a path through the matrix represents a clause
in our CNF representation of a formula.

Path = CNF − clause

Which implies that:

path1 ∧ path2 ∧ path3 ∧ · · · ∧ pathm = FCNF

Where pathi is a path through the matrix.

From Lemma 3 we have:

|= F ⇔ |= FDNF ⇔ |= FCNF

Since every pathi contains a connection, every clause in the CNF represent-
ation of F is a tautology. And FCNF ≡ > ∧ > ∧ · · · ∧ > is clearly a valid
formula, and the relationship |= F ⇔ |= FCNF imply that F is valid. �
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4.3 The Algorithm

Up to this point no example of the connection method at work has been
presented, so let us look at an example where we use the connection method
to prove a formula’s validity. We start off with this formula:

|= (A→ B ∧ B → C)→ (A→ C)

As mentioned earlier we start off by converting our original formula into an
equivalent DNF formula.

(A→ B ∧ B → C)→ (A→ C)

¬(A→ B ∧B → C) ∨ (A→ C)

¬((¬A ∨ B) ∧ (¬B ∨ C)) ∨ (¬A ∨ C)

¬(¬A ∨ B) ∨ ¬(¬B ∨ C) ∨ (¬A ∨ C)

(¬¬A ∧ ¬B) ∨ (¬¬B ∧ ¬C) ∨ (¬A ∨ C)

(A ∧ ¬B) ∨ (B ∧ ¬C) ∨ ¬A ∨ C

Now we have an equivalent DNF representation of our original formula, after
generating the matrix representation according to the definition, this is the
result:

[[
A
¬B

][
B
¬C

][
¬A

][
C
]]
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The negated literals inside the matrix is often represented by over-lined letters
instead of the usual negation sign (¬) in other literature concerning this topic.
The matrix from our last example would then be presented like this:

[[
A
B

][
B
C

][
A
][
C
]]

The matrix representation contains these four paths:

A,B,¬A,C
A,¬C,¬A,C
¬B,B,¬A,C
¬B,¬C,¬A,C

As we can see there exits a mating that spans the matrix since each path in
the matrix representation of our formula contains a connection, which implies
that our formula is valid, (Theorem 2).

As mentioned earlier the reason that the spanning mating only holds for
valid formulas is because the paths through our matrix constitute clauses in
an equivalent CNF representation of our original formula. In other words
this equivalence holds:

(A→ B ∧B → C)→ (A→ C)

m
(A ∨B ∨ ¬A ∨ C) ∧ (A ∨ ¬C ∨ ¬A ∨ C)∧
(¬B ∨B ∨ ¬A ∨ C) ∧ (¬B ∨ ¬C ∨ ¬A ∨ C)

Now we see that all the clauses in our equivalent CNF formula are tautologies,
they contain b ∨ ¬b for some atomic formula b, the conjunction of these
constitutes a tautology, and therefore the formula is valid. Had this not been
the case, the formula could be falsified by falsifying the unconnected clause.
The conjunction of a set of clauses where we are able to falsify one clause,
thereby the whole formula, is naturally not valid.
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There is only one problem with the clause representation, and that is the fact
that a straightforward translation to CNF or DNF can cause an exponential
blow up because of the distributive laws. The way we constructed our DNF
formula in Lemma 3 was extremely time consuming and no method of validity
is necessary after constructing the truth table for a formula. In practice
though we would not construct the DNF representation in such a manner,
and the connections or a spanning mating of the matrix can also be found
without generating all the different paths through the matrix. If this had
not been the case, the connection method would have been hopeless for
large formulas. The number of paths through the matrix is a product of
the number of elements inside each DNF clause (or column in the matrix).
When matrices become large this set grows rapidly, for an n × n-matrix
the number of paths will be nn. To avoid generating all paths through the
matrix, we need some strategy to prune our search space. Once we locate
a path not containing a connection our work is clearly over, but it is also
possible to avoid generating all paths through the matrix. Connections will
usually be part of many paths through the matrix, so by locating connections
at an early stage, we can eliminate all paths containing this connection, and
thereby prune the total number of paths to investigate. All theorem provers
based on the connection method will prune the exponential search space in
this manner. More on how this is done in Chapter 5 when we implement a
connection-based theorem prover.

4.4 The Relationship Between LK
and the Connection Method

Since all theorem provers do the same job no matter what calculus the specific
theorem prover is based on, all methods of deduction are related in some way.
This section will try to illustrate how the connection method is related to
the sequent calculus of Gentzen (LK) [14].

To prove the validity of a formula using Gentzen’s sequent calculus, we start
off by applying the LK-rules in reverse order to the sequent and the new goals
generated by the rule applications. If we are able to generate an LK-proof
for the sequent ` F , then the formula F is valid, from soundness of LK.

Both methods of deduction are sound and complete, so we are able to prove
the same formulas using these two methods, and the two proofs will be related
in some way. So as a start of the comparison, let us take a look at how the LK-
rules work compared to the connection method. The occurrences of formulas
in the succedent will be referred to as the positive instances of formulas, and
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the antecedent occurrences as the negative instances of formulas.

Let us first of all take a look at the LK-rules used in automated reasoning.
We know from [14] that the cut rule and the structural rules are not necessary
to construct proofs, these rules would also be hopeless to use in an automated
fashion since we construct our proofs bottom-up. The cut rule for instance
can only be used the other way around, or else we would have to guess on
what formula to insert into the premises of the cut rule, and the premises
are more complex than the conclusion. So the deductive LK rules we are left
with in automated reasoning are these:

R→ Γ, p ` q,∆
Γ ` ∆, p→ q

R ∨ Γ ` ∆, p, q

Γ ` ∆, p ∨ q

R ∧ Γ ` ∆, p Γ ` ∆, q

Γ ` ∆, p ∧ q R¬ Γ, p ` ∆

Γ ` ∆,¬p

L→ Γ, q ` ∆ Γ ` p,∆
Γ, p→ q ` ∆

L ∨ Γ, p ` ∆ Γ, q ` ∆

Γ, p ∨ q ` ∆

L ∧ Γ, p, q ` ∆

Γ, p ∧ q ` ∆
L¬ Γ ` p,∆

Γ,¬p ` ∆

To see the relationship between the two types of inference, let us see how
formulas are treated using the connection method compared to how they are
treated by LK during deduction. Keep in mind that we look for axioms on
this form when we perform a proof-search using the LK-rules:

Γ, A ` A,∆

The concept of positive and negative instances of a formula refers to where
formulas are located. As mentioned earlier, an antecedent occurrence is a
negative instance, while a positive instance corresponds to a succedent oc-
currence of a formula. Dealing with the connection method, we have no
succedent or antecedent occurrences, we only have positive and negative in-
stances, that is; we have formulas and negated formulas. To illustrate this,
suppose we want to show that this holds:
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Γ |= ∆

This is equivalent to showing that this is a valid formula:

|= Γ→ ∆

Which implies that this (quasi) matrix representation has connected paths:

[[¬Γ] [∆]]

So the negative instances of formulas using the connection method, has the
same property as antecedent instances of formulas in sequent calculus. To
illustrate this further let us take a look at an axiom in LK.

LK:

Γ, A ` A,∆

Connection method:

(Γ ∧ A)→ (A ∨∆)

¬(Γ ∧ A) ∨ (A ∨∆)

¬Γ ∨ ¬A ∨ A ∨∆

[[¬Γ] [¬A] [A] [∆]]

An axiom in LK has the same effect as a connection that collapses the whole
matrix, since all paths through this matrix will contain the connection ¬A∨A.
It is worth noticing that this is independent of formula complexity, in both
cases (LK or CM).
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We can now compare the structure of a proof constructed using the deduct-
ive rules of LK with the connection method. We will investigate what the
LK-rules do compared to how the same situation would be handled by the
connection method.

Using the connection method we have positive and negative instances of
formulas instead of succedent and antecedent as in sequent calculus (LK).
The relationship between the two methods of deduction is close, as we saw
on the previous page. Let us take a look at how both methods of inference
handle a specific situation.

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆
L∨

To compare the way the same type of formula is treated by the connection
method and by LK, we have to replace some of the meta-symbols by their
intended meaning first.

|= (Γ ∧ (A ∨ B))→ ∆

A quasi DNF representation for this formula:

¬Γ ∨ (¬A ∧ ¬B) ∨∆

Will give ground for a matrix representation like this:

[
[¬Γ]

[
¬A
¬B

]
[∆]

]

Maybe it is easier to see the resemblance between the two methods of infer-
ence if we represent the connection method’s path checking strategy similar
to how the LK-rule are presented.

[
[¬Γ]

[
¬A

]
[∆]
] [

[¬Γ]
[
¬B

]
[∆]
]

[
[¬Γ]

[
¬A
¬B

]
[∆]

] CM − L∨
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The two leaf nodes, or premises, imply that once these two matrices have
connected paths, so will the larger matrix or conclusion have as well. In
other words, there has to be connected paths through both ¬A and ¬B if
the rest of the matrix is not already connected. In chapter 5 another set of
deductive rules will be given for the connection method, where the pruning
of the search space is embedded into the logical calculus.

We can construct equivalent CM-rules just like the one for L∨ in the same
manner. Here is an example of how the two methods of deduction handle
another situation:

Γ ` ∆, A Γ ` ∆, B

Γ ` ∆, A ∧B R∧

The connection method starts off with this formula:

|= Γ→ (∆ ∨ (A ∧ B))

The quasi DNF representation:

|= Γ→ (∆ ∨ (A ∧ B))

|= ¬Γ ∨ (∆ ∨ (A ∧ B))

[
[¬Γ] [∆]

[
A
B

]]

Here the similarity is quite obvious as well, there has to be connections
through both A and B, if the rest of the matrix is not already connected.
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4.5 The Relationship Between Leaf-nodes in LK
and Paths Through the Matrix

In the previous section we showed that a path through the matrix represents
a clause in a CNF representation of the original formula. Now it is time to
take a look at what these paths represent through a new lens.

We start off with a formula:

` ¬C,¬(¬A ∨ B), A→ B

An LK-proof for this sequent:

C,A ` A,B
¬A,C,A ` B L ¬

B,C,A ` B
(¬A ∨ B), C, A ` B L ∨

(¬A ∨B), C ` A→ B
R →

(¬A ∨ B) ` ¬C,A→ B
R ¬

` ¬C,¬(¬A ∨B), A→ B
R ¬

A connection method proof:

¬C ∨ ¬(¬A ∨ B) ∨ (A→ B)

¬C ∨ (¬¬A ∧ ¬B) ∨ (¬A ∨B)

¬C ∨ (A ∧ ¬B) ∨ (¬A ∨B)

¬C ∨ (A ∧ ¬B) ∨ ¬A ∨B

[
[¬C]

[
A
¬B

]
[¬A] [B]

]

Recall that a negative instance of a formula relative to the connection method
is equivalent to a antecedent occurrence of a formula in LK. With this in mind
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it is easy to see that each path through the matrix corresponds to a leaf-node
in the LK proof tree.

The paths through the matrix:

¬C A ¬A B

¬C ¬B ¬A B

The leaf-nodes in the LK proof:

C,A ` A,B B,C,A ` B

We are looking for the same “building blocks” using both methods of deduc-
tion, the connection method just formulates the problem of finding them a
bit different.

The connection method is often presented with nested matrices, where there
can occur matrices inside matrices and so on. Bibel presents matrices in
this form in his book Automatet Theorem Proving [6], although he usually
converts the many dimensional matrices into the regular two dimensional
presentation used here before he starts to investigate validity. The relation-
ship between the connection method and LK is close as we have seen, and one
of the big questions that comes to mind is what the origin of these matrices
are? Waaler illustrates this in a clear way in his article Connections in Non-
Classical Logics [21], not only for non-classical logics but for propositional
and first order logic as well. The connection method becomes more complex
for many of the non-classical logics where equivalent normal forms cannot
be found in general for any given formula. Hopefully this chapter has also
given some information about how the connection method relates to LK and
vice versa. The most important thing to notice is that our two dimensional
matrices are in fact a compact representation of the leaf nodes in a com-
plete LK proof for a given formula. This implies that generating the whole
proof tree (complete LK proof) for a formula is equivalent to evaluating all
the paths through the matrix. By generating the whole proof tree we mean
that we apply LK rules to our sequents until we only have atomic formulas
in the succedent and antecedent of our leaf nodes. This is where we have
the ability to prune the search-space. Since connections usually are part of
many paths through the matrix (the same axioms occur in many leaf nodes),
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we do not need to investigate all of them. Instead we turn the table and
ask ourselves what paths belong to a connection, and then reduce the set of
remaining paths to investigate by eliminating the paths already known to be
connected.

4.6 Pruning the Search Space

In both LK and the connection method the optimization will consist of prun-
ing the exponentially growing search space. To do this we need some sort
of strategy. In this section we will see that these two methods of inference
are closely related in this context as well. First of all let us look at how we
can avoid generating the complete proof tree during a proof search using LK.
Afterwards we will see the same procedure performed using the connection
method. A straightforward LK proof search will terminate leaving atomic
formulas in the leaf-nodes. As we have seen, the succedent and antecedent
occurrences of formulas in the leaf-nodes correspond to paths through the
matrix using the connection method. Very often we can avoid generating
the whole proof tree by locating axioms at an early stage. This is equival-
ent to locating several paths belonging to the same connection. This is best
illustrated by an example:

D,Q,R, S ` Q,C
D,Q, S ` Q,C, P D,Q, S ` Q,C, Z

D,Q, S ` Q,C, (P ∧ Z)
R ∧

D,Q, (P ∧ Z)→ R, S ` Q,C L →

D,Q, (P ∧ Z)→ R ` Q,¬S,C R ¬

(†) Q, (P ∧ Z)→ R ` Q,¬S,D → C
R →

(P ∧ Z)→ R ` Q,¬S,D → C,¬Q R ¬

It is quite obvious that this proof tree is larger than it has to be to prove
validity. Once we reach an axiom (†) we are done, even though more rules
can be applied to our sequent. The succedent and antecedent occurrence of
Q will not change when other rules of inference are used on this sequent,
so we know that all the leaf nodes in this proof tree will be closed. This is
equivalent to locating a connection that belongs to several paths using the
connection method. This can be illustrated using the same formula.
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((P ∧ Z)→ R)→ Q ∨ ¬S ∨ (D → C) ∨ ¬Q

¬((P ∧ Z)→ R) ∨Q ∨ ¬S ∨ (D → C) ∨ ¬Q

¬(¬(P ∧ Z) ∨R) ∨Q ∨ ¬S ∨ (¬D ∨ C) ∨ ¬Q

(¬¬(P ∧ Z) ∧ ¬R) ∨Q ∨ ¬S ∨ ¬D ∨ C ∨ ¬Q

(P ∧ Z ∧ ¬R) ∨Q ∨ ¬S ∨ ¬D ∨ C ∨ ¬Q






P
Z
¬R


 [Q] [¬S] [¬D] [C] [¬Q]




The paths through this matrix are connected because of Q and ¬Q, so there
is no need to investigate all paths through the matrix once this connection is
located, just like we concluded at (†) that our sequent was provable without
generating the whole proof tree.

So generating the whole proof tree for a formula in LK is equivalent to con-
structing the matrix representation and then store each path separately (leaf-
nodes in LK). This is not only bad for memory use during a proof search,
but it is also a process that can lead to doing the same job over and over,
since comlex formulas can be located in many brances of the proof tree. To
break the complex formula down into its atomic building blocks will have to
be done for each branch individually, which is very inefficient.

In the following chapter we will see how the connection method can be used to
prune the search space through the matrices, which will be done by examining
a theorem prover built by J. Otten and W. Bibel.
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5 Implementing the Connection Method

In this section we will present a theorem prover created by W. Bibel and
J. Otten [8]. It is a theorem prover for first order logic and is implemented
in Prolog. This program illustrates in a very compact manner how we can
prune the search space during a proof search using the connection method.
In the following chapter we will use this theorem prover as a basis for specify-
ing a connection-based theorem prover using rewriting logic (Maude). The
theorem prover that W. Bibel and J. Otten presents in their article is so
compact that the whole implementation is presented in the abstract of the
article. Some of the elements used to build this theorem prover are part of the
language Prolog, and must be implemented explicitly in another language.

The goal of this chapter is to show how the connection method proves a
formula’s validity, and does so in an efficient manner. We need to prune the
search space through the matrix to get an effective algorithm, which is what
this theorem prover does.

The theorem prover presented in [8] is given below:

prove(Mat,PathLim) :-
append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),
append(MatA, MatB, Mat1),
prove([!],[[-!|Cla]|Mat1],[],PathLim).

prove([],_,_,_).

prove([Lit|Cla],Mat,Path,PathLim) :-
(-NegLit=Lit; -Lit=NegLit) -> (member(NegLit,Path);
append(MatA,[Cla1|MatB],Mat), copy_term(Cla1,Cla2),

append(ClaA,[NegLit|ClaB],Cla2),
append(ClaA,ClaB,Cla3),

(Cla1==Cla2 -> append(MatB,MatA,Mat1);
length(Path,K), K<PathLim,
append(MatB,[Cla1|MatA],Mat1)),

prove(Cla3,Mat1,[Lit|Path],PathLim)),
prove(Cla,Mat,Path,PathLim).
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Although this is a very compact theorem prover, it might not be so informat-
ive at first sight (depending on the experience with Prolog). But the compact
nature of this theorem prover does make it a bit cryptic. No attempts at in-
troducing the language Prolog in full will be given here, but the reader is
advised to read Learn Prolog Now [9] for a very well written introduction to
this language.

When we implement programs in Prolog we construct knowledge-bases, there
are two types of knowledge:

• facts

• rules (conditional facts)

Queries can be constructed, and from our knowledge-base Prolog tells us
whether or not something holds. This can be illustrated by a simple example:

billionaire(scrooge).
duck(scrooge).
cheap(scrooge).

donalds_uncle(X) :- billionaire(X), duck(X), cheap(X).

If this is our knowledge-base, we have three facts and one rule. Both rules and
facts are made from predicates which hold zero or more arguments (zero being
constants). The facts state that Scrooge is a billionaire, he is a duck, and he
is cheap. The predicate billionaire(scrooge) states that the billionaire-
predicate is true for the term scrooge. The last rule is a conditional fact,
meaning that if all the three predicates on the right hand side of the rule
hold for a term, then the predicate on the left hand side will also hold for this
term. We can now ask questions related to our knowledge-base, and Prolog
will produce answers.

?- donalds_uncle(scrooge).

yes

Since Scrooge satisfies all the criteria in our conditional fact, the predicate
donalds_uncle(X) holds for scrooge. We can also turn the table around
and ask Prolog whether a predicate will hold for some term, by replacing this
term with a variable, any word starting with a capital letter is considered a
variable in Prolog.
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?- donalds_uncle(Var).

Var = scrooge ?

In this example Prolog only finds one term that fulfills the criteria that is
needed to apply our only rule in our knowledge-base. More facts and rules
can be added to our base and more complex queries can be asked. We already
have enough information about Prolog to understand one of the facts that is
part of the theorem prover. This theorem prover is based on the connection
method and its input is matrix representations of formulas as described earlier
in this chapter. The matrices will be represented as lists of lists, this matrix:






P
Q
¬R



[
S
T

]
[¬Q] [V ]




Will be given as input to Otten and Bibel’s theorem prover looking like this:

[[p, q, - r], [s, t], [- q], [v]]

Negated literals have a minus sign in front of them, besides that the matrix
consist of a list of other lists of lower-case letters. A path through the matrix
consist of one element from each list. Using the connection method we are
interested in locating connected paths and pruning the search space, we do
not wish to investigate all possible paths through the input matrix. This is
in fact what this theorem prover does, but to see how this is done we need
to take a closer look at what some of the predicates involved do. A theorem
prover based on the connection method will investigate paths through the
matrix in some systematic way. We will talk about the active path, the active
clause, and the remaining matrix during our proof search. Once we start to
investigate a matrix, the remaining matrix is equal to the input matrix, the
active path is empty, and the active clause has not been selected. All paths
must contain an element from each clause, so we might as well choose a
clause to begin with. Once we have chosen a clause this will be our active
clause, we will remove this clause from the matrix, and the remaining matrix
will naturally be the remaining matrix after this clause has been removed.
We look for connections along paths through the matrix, and such a path
will be an active path from the time we start looking at literals through
a path, until we have a complete path (one literal from each clause in the
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matrix). This will become very clear once we start specifying the algorithm
in Maude, where each step of the algorithm is represented by rewrite rules
with no ambiguity. Informally we can say that we start out with our matrix
representation of a formula, pick a clause from this matrix, we know that
all paths through this clause must be connected so we might as well pick a
clause. Then we pick an element from our now active clause, we know that
all paths go through one of the literals so we might as well pick one. If we
do not locate a connection containing this literal, we add this literal to our
active path and do the same procedure over again. Now we have “dug” one
step into the matrix, since our remaining matrix now has one clause less. For
the rest of the literals in our first clause we perform the same procedure. If we
locate a connection, we eliminate all paths that contain this connection, this
is how we prune the search space. Let us take a look at how this algorithm
is implemented in Prolog.

The predicate prove/4 is defined by one fact and one rule. (prove/4 means
the prove predicate that takes 4 arguments). We start off with the simplest
fact that this theorem prover consists of, namely:

prove([], _, _, _).

This predicate states that if we end up with an empty active clause (first
argument) we have connected paths through this clause, and we can stop
our search for connections, (equivalent to an axiom or a set of axioms in
LK). The underscore in the last three arguments will match any term. This
predicate is equivalent:

prove([], Var1, Var2, Var3).

The predicate append which is used several times in the rule prove/4 is a
simple predicate that becomes very versatile because of Prolog’s ability to
backtrack.

append(A, B, C).

holds if we append the list B to the list A and get C. The last list is the
concatenation of the first two lists. ? append([1],[2,3], [1,2,3]). is
true, (Prolog will answer yes). This predicate becomes quite flexible once
we start inserting variables into the arguments. Since Prolog backtracks it
will match all possible ways to append to lists to get a third list and so
on. This is used in the theorem prover as requirements to the prove/4
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predicate. This hides part of the connection-based algorithm since some
work is done by Prologs inbuilt backtracking. Below is an example where the
use of append/3 is illustrated. The append(A, [X|B], [1,2,3]) predicate
will pick one element at a time from the list [1,2,3] as legal values for the
variable X:

?- append(A, [X|B], [1,2,3]).

A = [],
B = [2,3],
X = 1 ? ;

A = [1],
B = [3],
X = 2 ? ;

A = [1,2],
B = [],
X = 3 ? ;

This strategy is used in J. Otten and W. Bibel’s theorem prover [8] to pick
clauses from the matrix, and to pick literals from the clauses. Remember that
conditional rules in our Prolog knowledge-base will hold if all the conditions
on the right hand side of the rule holds for some term(s) from our term
universe inserted into the variables.

prove(Something) :- prove(SomethingSimpler1),
prove(SomethingSimpler2).

To prove(Something) Prolog will now try to fulfill the right hand side of this
rule, and this process may be repeated where subgoals get simpler and simpler
until we either reach a fact, or we fail, in which case the prove(Something)
predicate will not hold. This is the idea behind this implementation in
Prolog. We start off with a matrix that represents a valid or invalid for-
mula. For it to be valid certain other simpler conditions will have to be met,
then this might lead to other conditions and so on until we reach our fact
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(prove([], _, _, _)), or we fail to prove our formula. If a conditional rule
in Prolog has many conditions this can lead to an exponential explosion of
terms.

Before we start analyzing what happens during execution when W. Bibel and
J. Otten’s theorem prover is used to prove or disprove validity of formulas,
an even simpler version of this theorem prover will be presented.

prove(Mat) :-
append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),
append(MatA, MatB, Mat1), prove([!],[[-!|Cla]|Mat1],[]).

prove([],_,_).

prove([Lit|Cla],Mat,Path) :-
(-NegLit=Lit; -Lit=NegLit) -> (member(NegLit,Path);
append(MatA,[Cla1|MatB],Mat),

append(ClaA,[NegLit|ClaB],Cla1),
append(ClaA,ClaB,Cla3), append(MatB,MatA,Mat1),

prove(Cla3,Mat1,[Lit|Path])),
prove(Cla,Mat,Path).

This version is restricted to propositional logic, and will hopefully be a bit
simpler to understand, even with little Prolog experience. The prove/1
predicate will only be fulfilled if we are able to locate a clause inside the
matrix (the append strategy is used), that only has positive literals. Re-
member that the predicate append(MatA,[Cla|MatB], Mat) will examine
all the clauses in Mat (the matrix) like in the example shown earlier. So if
there exists a clause in Mat such that \+member(-_,Cla) holds the first two
condition of this conditional rule will be satisfied. The \+ token in front
of the member(-_, Cla) predicate means not provable, if member(-_, Cla)
is provable then it will fail, in other words it succeeds if Cla contains only
positive literals. If a matrix does not contain any clause with only positive
literals, then this matrix does not represent a valid formula. We know that
all paths must be connected for this matrix to represent a valid formula, if all
the clauses have at least one negative literal, we have located an unconnected
path (all the negative literals), and our search can be called off. The next
predicate removes the clause (Cla) from the matrix (Mat) and the result is
Mat1. The last predicate in prove/1 adds an active clause to the prove/3
predicate with an unlikely literal (!), and puts the negation of this literal (-!)
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inside the clause picked out earlier. This gets the wheels in motion as we
will see once we start looking at the prove/3 predicate. This will result in
choosing Cla as our first active clause.

Let us start with the simplest condition first, the last condition in the
prove/3 predicate.

prove([Lit|Cla], Mat, Path) :-
(A Large Condition), prove(Cla, Mat, Path) .

This tells us that we have to find connections along the rest of our literals
in our active clause, (the active clause in this implementation is the first
argument in the prove predicate). If Lit was the last argument inside the
active clause this last condition will match our fact: prove([], _, _).

Since all paths will go through any clause we start off by picking a clause,
and then by making sure that all paths through this clause are connected. If
we ask Prolog whether or not this predicate is true:

?- prove([p, q, -r], [[r, s, t], [-q, -p], [p]], []).

Then Prolog will deduct this line of simpler goals to be proved along the way.

prove([p, q, -r], [[r, s, t], [-q, -p], [p]], []) :-
(A Large Condition),
prove([q, -r], [[r, s, t], [-q, -p], [p]], []).

prove([q, -r], [[r, s, t], [-q, -p], [p]], []) :-
(A Large Condition),
prove([-r], [[r, s, t], [-q, -p], [p]], []).

prove([-r], [[r, s, t], [-q, -p], [p]], []) :-
(A Large Condition),
prove([], [[r, s, t], [-q, -p], [p]], []).

prove([], [[r, s, t], [-q, -p], [p]], []).
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The last predicate is a fact in our knowledge-base, so this is where the recur-
sion stops, meaning that the last predicate will match prove([], _, _). All
the paths through the active clause [p, q, -r] must contain connections if
we are to get to this point, but that is part of the large condition not yet
described. The other condition locates the connections, and cuts off paths
already known to be connected, as mentioned earlier this is in large done
with the help of the append/3 predicate. Now let us take a look at what the
large condition of this rule does.

prove([Lit|Cla],Mat,Path) :-

(-NegLit=Lit; -Lit=NegLit) -> (member(NegLit,Path);
append(MatA,[Cla1|MatB],Mat),

append(ClaA,[NegLit|ClaB],Cla1),
append(ClaA,ClaB,Cla3), append(MatB,MatA,Mat1),

prove(Cla3,Mat1,[Lit|Path])),

prove(Cla,Mat,Path).

First of all it binds the variable NegLit to the negation of Lit;

(-NegLit=Lit; -Lit=NegLit)

Remember that we are looking for connections (a literal and its negation),
now the NegLit variable contains the negation of Lit that we are looking
for. If NegLit is contained in the active path;

member(NegLit,Path)

All paths containing this sub-path traversing the NegLit element will be
connected. This is how we prune the search space as mentioned earlier, we
eliminate paths already known to be connected. If this fails we try to find
NegLit in some of the clauses in the remaining matrix.

append(MatA,[Cla1|MatB],Mat),
append(ClaA,[NegLit|ClaB],Cla1),
append(ClaA,ClaB,Cla3), append(MatB,MatA,Mat1),
prove(Cla3,Mat1,[Lit|Path]))
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The append strategy is used to pick a clause from the matrix:

append(MatA,[Cla1|MatB],Mat)

This next predicate will hold if NegLit is located inside this clause:

append(ClaA,[NegLit|ClaB],Cla1)

The next predicate will remove NegLit from this clause (Cla1), and the
resulting clause will be Cla3:

append(ClaA,ClaB,Cla3)

This predicate removes the clause (Cla1) containing NegLit from our (re-
maining) matrix:

append(MatB, MatA, Mat1)

And the last predicate will add Lit to the active path and call prove/3 with
the clause containing NegLit as our new active clause, except now NegLit
has been removed:

prove(Cla3,Mat1,[Lit|Path])

The reason for removing NegLit from our new active clause is the fact that
all paths containing this sub-path (the active path), traversing NegLit will
be connected since Lit is contained in the active path. This is once again
how we are able to prune the search space which grows exponentially with
the size of the matrix.

The important thing to notice about this algorithm is that every path is
investigated using these three structures.

• Active Path

• Active Clause

• Remaining Matrix

This is important for the implementation that follows in the next section
where we specify this algorithm in rewriting logic, where each step of the
algorithm becomes a rewrite-rule. To control the legal use of the rewrite-
rules reflection (meta programming) will be used, and different strategies
will be presented.
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5.1 Conversion Into a Logical Calculus

Before we start converting the connection method into a logical calculus,
or different legal deduction steps, it can be useful to see exactly what the
algorithm does in a clear unambiguous way. The implementation in Prolog
can be a bit hard to read if the reader has little experience with this language.
This section will hopefully clear up any questions that have risen along the
way. The algorithm will work on the three important structures (active path,
active clause, remaining matrix), and the pseudo-code presented below is an
implementation of the algorithm.

The algorithm:

prove(Path, [nil], R_Matrix) = true .
prove(Path, [LitList], [nil]) = false .

prove(Path, [Lit1, Lit2, ... LitN], R_Matrix) =

if (contains(Path, neg(Lit1)){

prove(Path, [Lit2, ...., LitN], R_Matrix)

}else if (contains(R_Matrix, neg(Lit1))){

prove((Path + Lit),
findClauseWithNegLitAndRemoveNegLit(neg(Lit1), R_Matrix),
removeClauseContainingNegLit(neg(Lit1), R_Matrix))

and

prove(Path, [Lit2, ..., LitN], R_Matrix)

}else{

prove((Path + Lit), getNewActiveClause(R_Matrix),
removeNewActiveClause(R_Matrix))

and

prove(Path, [Lit2, ..., LitN], R_Matrix)
}
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The algorithm works by locating a connection between an element in the
active clause and the active path, or between an element inside the active
clause and the remaining matrix. If we locate connections in either the active
path or the remaining matrix, we cut off all paths which are known to be
connected, thereby pruning the search space. If no connections where located
we extend the active path. Once we have found a path not containing any
connections, we know that this matrix does not represent a valid formula.
If all the investigation leads to connected paths, our matrix represents a
valid formula. Before we start to specify deductive rules in rewriting logic
it is worth noticing that the different rules of deduction must be controlled
by some mechanism since their order of application will have effect on the
result. This is where the reflective property of rewriting logic will help us.
The three structures mentioned earlier will be central as we start to specify
the rules of deduction, the active path, the active clause, and the remaining
matrix. The rules of deduction will perform operations on a triple consisting
of these three structures.

< Active Path ; Active Clause ; Remaining Matrix >

First of all we need to define what a Literal is, and what a Matrix is and
so on. In the following implementation multi sets will be used, a multi set
is a set that has the possibility of containing more than one occurrence of
an element. To construct multi sets in Maude we implements associative
commutative lists. First of all we construct the Literals and multi sets
containing Literals called LitSets.

sort Lit .
sort LitSet .
subsort Lit < LitSet .

ops a b c d e f g h i j k l m n o
p q r s t u v w x y z : -> Lit [ctor] .

op -_ : Lit -> Lit [ctor] .

op none : -> LitSet [ctor] .
op _,_ : LitSet LitSet -> LitSet [ctor id: none comm assoc] .

The literals consist of lowercase letters, negated literals have a minus sign in
front of them, just like they had in the previous Prolog implementation. This
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representation restricts the possible propositional formulas we can represent,
the literals are made this way for readability. All propositional formulas con-
taining more than 26 literals can not be represented using this rewrite theory,
but conversion into a theory able to represent any propositional formula is a
small matter, just replace:

ops a b c d e f g h i j k l m n o
p q r s t u v w x y z : -> Lit [ctor] .

with

op p : Nat -> Lit [ctor] .

To be able to represent any propositional formula. This has to be done to
test the theorem prover later on, since some of the formulas in the test set
contain more than 26 literals.

Matrices and clauses will also be represented just like they were in the Pro-
log implementation, although they will both contain multi sets of elements
instead of being regular lists.

sort Matrix .
sort Clause .
sort ClauseSet .
subsort Clause < ClauseSet .

op nix : -> Clause [ctor] .
op none : -> ClauseSet [ctor] .
op [_] : LitSet -> Clause [ctor] .
op _,_ : ClauseSet ClauseSet -> ClauseSet

[ctor assoc comm id: none] .

op [_] : ClauseSet -> Matrix [ctor] .

The matrices will be represented as multi sets of clauses, and clauses will
be represented as multi sets of literals. The reason for having multi sets, in
stead of lists, is to let Maude’s matching handle the operation of locating
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connections as simple as possible. This could have been done with lists here
as well, but multi sets make the deductive rules easier to read.

The rules of deduction will as mentioned earlier operate on triples contain-
ing the three structures needed (the active path, the active clause and the
remaining matrix). The triple containing these structures will be an element
of the sort SearchState.

sort SearchState .

op <_;_;_> : LitSet Clause Matrix -> SearchState [ctor] .

Some of the logical rules will split such a SearchState element into two
other such elements, so we need to be able to represent more than one of
these elements at a time. This is done by forming lists of these elements,
these will be called SearchStateLists.

sort SearchStateList .
subsort SearchState < SearchStateList .
op nil : -> SearchStateList [ctor] .
op __ : SearchStateList SearchStateList -> SearchStateList

[ctor id: nil assoc] .

There is also one other structure that is used in the logical calculus, it plays
the role of an axiom or a countermodel. Once the SearchState elements
lead to connected paths, or to paths that are not connected, they have no
function anymore. In the case of unconnected paths the whole search can
be called off, but a connected path just means we are on the right track. In
either case there is no need for them filling up space in our SearchStateList.
So a subsort of these SearchStateLists will be the ValidNotValid sort,
containing two constants, naturally called valid and notvalid.

subsort ValidNotValid < SearchState .
ops valid notvalid : -> ValidNotValid [ctor] .

The idea is to remove such elements as the search for a proof or countermodel
proceeds, if we eliminate these elements from our SearchStateList we will
have smaller terms to work with. Now we are ready to start introducing the
logical calculus, we start off with the simplest rule first:
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rl [init]:

< none ; nix ; [CL1, CLSET1] >
=> ------------------------------

< none ; CL1 ; [CLSET1] > .

This rule picks an element from our clause set, and makes it our new act-
ive clause, in theory this can be any element from this set, since this is a
multi set of clauses, in practice however things work a bit different. This is
an unconditional rule, as will all the other rewrite rules be, that does not
necessarily imply that these rules have no conditions that have to be met
before they can be applied to a term. The reason for this being so is that
we use another program (the meta-program) to control the execution of this
program. The next rule of inference in the logical calculus tries to locate
connections between elements in the active path, and the active clause.

rl [negLitInPath]:

< LIT1, LITSET1 ; [- LIT1, LITSET2] ; M >
=> -----------------------------------------

< LIT1, LITSET1 ; [LITSET2] ; M > .

This rule will have a dual rule where the negated literal is contained in the
active path, instead of in the active clause. The next rule will also have
its own dual for the same reason. This rule cuts off all paths known to
be connected, since all paths containing this sub-path (active path), that
traverse the element - LIT1 in our active clause will be connected.

The next rule of deduction will try to locate a connection between an element
in our active clause, and an element inside one of the clauses contained inside
the remaining matrix. If a connection is found, we perform the same pruning
as in the previous rule, we eliminate the paths known to be connected.
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rl [negLitInMatrix]:

< PATH ; [LIT1, LITSET1] ; [[- LIT1, LITSET2], CLSET1] >
=> --------------------------------------------------------

< PATH, LIT1 ; [LITSET2] ; [CLSET1] >
< PATH ; [LITSET1] ; [[- LIT1, LITSET2], CLSET1] > .

This rule splits our SearchState element into two SearchState elements.
The new active clause in the first of these two elements is the clause located
in the remaining matrix that gave ground for the connection. Since all paths
going through the matrix containing the active path: PATH + LIT1, that
enter through the element - LIT1 in the new active clause will be connected,
these paths are eliminated. The last SearchState element will handle all
other paths containing this active path which do not traverse the element
LIT1. This rule also has a dual rule where the negated literal is inside the
active clause instead of inside the remaining matrix, just like the previous
rule had.

rl [extendPath]:

< PATH ; [LIT1, LITSET1] ; [CL1, CLSET1] >
=> ------------------------------------------

< PATH, LIT1 ; CL1 ; [CLSET1] >
< PATH ; [LITSET1] ; [CL1, CLSET1] > .

The next rule will extend the active path, and generates a new SearchState
element that will look at all other paths that do not traverse the element
LIT1. One thing that is worth noticing about this rule is that it can always
be applied to the SearchState elements in our SearchStateList, as long
as they have more elements inside their active clause. So the deductive rules
need some control mechanism, applied in random order they do not make up
a sound calculus.

The last two rules just state that we have connected paths, or that we have
located a countermodel.

79



rl [removeConnectedPaths]:

< PATH ; [none] ; M >
=> ---------------------

valid .

rl [counterModel]:

< PATH ; [LIT1, LITSET1] ; [none] >
=> -----------------------------------

notvalid .

Remember that in rewriting logic the rewrite rules will be applied after no
equation can be applied to the term we are rewriting. We want to call the
whole search off as soon as we have located a countermodel, and we want to
eliminate all the valid terms from our SearchStateList, this is handled by
the two equations below:

var PSEARCH : SearchStateList .

eq (PSEARCH valid) = PSEARCH .
eq (PSEARCH notvalid) = notvalid .
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6 Controlling the Rules of Deduction

The deductive rules cannot function on their own, we need to control their
application to get a sound and complete calculus. In this section we will
implement a control strategy that combined with the deductive rules from
the last section will become a logical calculus that is sound and complete.
This will be done using the reflective property of rewriting logic, and the
pre-implemented modules described earlier will be used to accomplish this
task. Meta programs can often be a bit hard to read, but all functions used
to control the execution/term-rewriting will be described in detail.

The meta program that will be presented in this section will use the func-
tions included in the pre-implemented Maude module META-LEVEL. A quick
introduction of these functions has been presented in Chapter 3, for a fuller
description of how these functions work see the Maude manual [12].

The first strategy that will be presented is a straightforward application of
the rules in the rewrite theory CONNECTION. I will give a brief explanation of
how this strategy controls the rule applications to investigate validity before
we look at the code that actually controls the deductive rules. We start off
with a SearchState element where the remaining matrix equals the matrix
we want to investigate:

< none ; nix ; [[a, - b], [b, - c], [- a, d], [c]] >

First of all we need to pick a clause from our matrix as our active clause, this
can be done in some preferred order, but since we know nothing about the
formula we just pick a clause from our multi set of clauses that make up our
matrix. It can be a good idea to look at the deductive rules of the calculus
now, recall that the init rule picks a clause from our remaining matrix and
makes it our first active clause. All the strategies starts out this way, by
selecting an active clause. How the application of the init rule is handled
at the meta-level will now be described, it might be helpful to recapture the
descent functions from Chapter 3 before looking at the code.

op init : Module Term -> Term [ctor] .

eq init(M, T) =
extrTerm(metaXapply(M, T, ’init, none, 0, unbounded, 0)) .
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We use metaXapply to perform the simulated execution (rule application).
The function inti(M, T) applies the rule init from the CONNECTION mod-
ule on the term T. M is the meta representation of the CONNECTION mod-
ule (rewrite theory). The extrTerm-function extracts the term from the
Result4Tuple that metaXapply returns.

After the init rule is applied to the meta represented term one of the clauses
inside the remaining matrix will now be our new active clause. Say for
instance that the init rule selects the clause [- a, d] as our first active
clause, this will be the result after that rule has been applied to our term:

< none ; [- a, d] ; [[a, - b], [b, - c], [c]] >

Now the clause [- a, d] has been removed from our remaining matrix,
and we are ready to start our search for connections through the matrix.
The function that will be presented next is the core of strategy 1, it tries
to locate connections through the matrix by applying rewrite rules from our
CONNECTION module a SearchState element, or a list of such elements. I will
try to explain how it works in brief before we look at the code. Recall that
our CONNECTION module contains one rewrite rule that locates connections
between elements inside the active path and the active matrix, this rule is
called negLitInPath. There is one other rule that locates connections which
is called negLitInMatrix, it locates connections between elements inside the
active clause and the remaining matrix. Both rewrite rules prunes the search
space by cutting off all paths known to be connected. If none of these rewrite
rules are able to locate a connection, our attempts of pruning the search space
have failed and we must dig deeper into the matrix which is what the next
rewrite rule does (extendPath). A straightforward application of these three
rewrite rules in the order just described will produce a sound proof system.
The first strategy does exactly that using a recursive function that always
tries to apply the rules in this order:

1. negLitInPath

2. negLitInMatrix

3. extendPath

If the rewrite rule negLitInPath can be applied to our SearchState element
we apply it and call the recursive function with the resulting term after this
rule has been applied to the term. This process is repeated until none of the
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rewrite rules above can be applied to our term, this is the base case. Which
means that all our SearchState elements (which make up our term) will
represent connected or unconnected paths. Let us go back to our example,
where the SearchState element looks like this after the rule init has been
applied to our term:

< none ; [- a, d] ; [[a, - b], [b, - c], [c]] >

Now we will try to apply the rewrite rules in the order just mentioned to this
term. As we can see the first rewrite rule cannot be applied since the active
path is empty. But the second rewrite rule can be applied (negLitInMatrix),
this is the result:

< - a ; [- b] ; [[[b, - c], [c]] >
< none ; [d] ; [[a, - b], [b, - c], [c]] >

The paths that traverse the element - a inside our active clause that also
traverse the element a inside the clause [a, - b] (the first clause inside
the remaining matrix) will be connected and are cut off from our search.
All other paths not traversing the element - a inside the active clause will
traverse the element d. The first SearchState element represent the paths
that traverse the element - a, the second SearchState element represent
the paths that traverse the element d. Notice that the element a is removed
from the active clause in the first SearchState element, since the active
path contains - a these paths are all connected and can be removed from
our search. Now we make a recursive call with the resulting term, and the
rule negLitInMatrix can once again be applied to one of our SearchState
elements. This process is repeated until all our SearchState elements rep-
resent connected or un-connected paths, which means that either the active
clause is empty (connected paths), or the remaining matrix is empty which
meant that we located un-connected paths.

Now we will look at the code which controls the rule applications in the order
just mentioned to produce a sound proof system. The large recursive function
might seem a bit daunting at first sight, but each step of the algorithm will
be described in detail.

op strategy1 : Module Term -> Term [ctor] .
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eq strategy1(M, T) =

if (metaXapply(M, T, ’negLitInPath, none, 0, unbounded, 0)
=/= failure)

then
strategy1(M, extrTerm(metaXapply(M, T,
’negLitInPath, none, 0, unbounded, 0)))

else if
(metaXapply(M, T, ’negLitInMatrix, none, 0, unbounded, 0)
=/= failure)

then strategy1(M, extrTerm(metaXapply(M, T,
’negLitInMatrix, none, 0, unbounded, 0)))

else if
(metaXapply(M, T, ’extendPath, none, 0, unbounded, 0)
=/= failure)

then
strategy1(M, extrTerm(metaXapply(M, T,
’extendPath, none, 0, unbounded, 0)))

else
T

fi fi fi .

After this function has been applied to the term from our examples

< none ; [d,- a] ; [[a,- b],[c],[b,- c]] >

it will look something like this:

< - a,- b,- c ; [none] ; [none] >
< - a,- b ; [none] ; [[c]] >
< - a ; [none] ; [[c],[b,- c]] >
< b,c,d ; [a] ; [none] >
< c,d ; [none] ; [[a,- b]] >
< d ; [none] ; [[a,- b],[b,- c]] >
< none ; [none] ; [[c],[a,- b],[b,- c]] >

All the elements in the SearchStateList produced by the function strategy1
represent connected paths except this one:

< b,c,d ; [a] ; [none] >
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This is clearly an unconnected path through the matrix and the formula is
therefore invalid. We will take a detailed look at this function now. The
function applies the rewrite rules in the CONNECTION module to belonging
terms. The order of rule application is as mentioned, let us look at the
building blocks of the function.

The first if-test:

if (metaXapply(M, T, ’negLitInPath, none, 0, unbounded, 0)
=/= failure)

then
strategy1(M, extrTerm(metaXapply(M, T,
’negLitInPath, none, 0, unbounded, 0)))

If we are able to locate a connection containing an element in the active
path, and an element in the active clause, then the element in the active
clause that gave ground for the connection should be removed. This is a
way of pruning our exponential search space, and the deductive rule that
performs this operation is called negLitInPath. If this if-test does not fail, a
connection has been established between an element in our active path and
our active clause, and this rule can be applied. This is a recursive function
and will call itself unless all the if-tests fail, (the base case). In the recursive
call the last parameter of the function is the resulting term after application
of the deductive rule which is the “theme” of the if-test. The if-test above for
instance calls the strategy1 function with the resulting term after the rule
negLitInPath has been applied to the term T.

The second if-test:

if (metaXapply(M, T, ’negLitInMatrix, none, 0, unbounded, 0)
=/= failure)

then strategy1(M, extrTerm(metaXapply(M, T,
’negLitInMatrix, none, 0, unbounded, 0)))

Once this if-test is reached the first if-test has failed, and there were no
connections between the elements in the active path and the active clause.
The second if-test is our last hope of pruning the search space, it tries to
locate a connection between an element inside the active clause and the
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remaining matrix. Once again this if-test will not fail if such a connection is
established and the deductive rule can be applied to the term. The recursive
call will once again have the resulting term after this rule application has
been applied to the term as its last argument.

The third if-test:

if (metaXapply(M, T, ’extendPath, none, 0, unbounded, 0)
=/= failure)

then
strategy1(M, extrTerm(metaXapply(M, T,
’extendPath, none, 0, unbounded, 0)))

Once this if-test is reached, the two if-tests above have failed, and we can start
extending our path since all attempts to prune the search space has failed.
If this test fails as well no deductive rule can be applied to our SearchState
element, which means that the remaining matrix is empty, or that the active
clause is empty, this is where the recursion stops. Now we will have a list of
elements which represent connected, and maybe some un-connected paths in
our SearchStateList.

Recall that the recursive function strategy1 will only fail if all the SearchState
elements that combined make up our term (paths through the matrix) is
unable to apply the three rules mentioned, negLitInPath, negLitInMatrix
and extendPath. This implies that all the elements in our SearchStateList
look like this:

< PATH ; [none] ; M > or < PATH ; [LITSET] ; [none] >

The elements with an empty active clause represent axiom(s), and the ele-
ments with an empty remaining matrix represent countermodels. From our
previous example we saw that the SearchStateList produced contained one
un-connected path

< b,c,d ; [a] ; [none] >

which implied that the formula was invalid. The next function we will
look at applies the rules removeConnectedPaths and counterModel to the
SearchStateList produced by the function strategy1. The result of these
rule applications will be the term valid or notvalid depending on whether
the list contains any elements representing a countermodel (an element with
an empty remaining matrix).
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op simplify : Module Term -> Term [ctor] .

eq simplify(M, T) =
if (metaXapply(M , T, ’removeConnectedPaths, none, 0,

unbounded, 0) =/= failure)
then

simplify(M, extrTerm(metaXapply(M , T,
’removeConnectedPaths, none, 0, unbounded, 0)))

else if
(metaXapply(M , T, ’counterModel, none, 0, unbounded, 0)
=/= failure)

then
simplify(M, extrTerm(metaXapply(M , T,
’counterModel, none, 0, unbounded, 0)))

else T
fi fi .

This first strategy that will be presented will apply the initialize rule to
a SearchState element, this rule selects an active clause from our matrix.
Then the recursive function strategy1 takes control and performs rewrites
on the SearchState element, which produces a SearchStateList. This list
is handed over to the simplify function which determines whether or not
all the paths through the matrix were connected.

op prove1 : Module Term -> Term [ctor] .

eq prove1(M, T) =
simplify(M, strategy1(M, init(M, T))) .

6.1 Strategy 2

The strategy just presented is a functioning algorithm based on the connec-
tion method, but it has some weaknesses that have to be overcome. Some
of the rules in our calculus split the SearchState elements into two other
SearchState elements, and this can lead to an exponential explosion of
terms. Having large terms is a bad idea, since this calculus is controlled
by matching. A large term where most of the elements will not match any
of the deductive rules anyway will use much time at each step to try to find
a match, which hurts the efficiency of the algorithm. It also has another side
effect which is memory related. If terms become so large that they clog up
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our memory, this will also slow down performance significantly. The next
strategy will try to handle some of the problems just mentioned.

eq s t r a t e gy2 (M, T) =

i f (metaXapply (M, T, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then

s t r a t e gy2 (M, extrTerm (metaXapply (M, T,
’ negLitInPath , none , 0 , unbounded , 0) ) )

e l s e i f ( metaXapply (M, T, ’ negLitInMatr ix , none , 0 , unbounded , 0)
=/= f a i l u r e )

then
metaJoin ( s t r a t e gy2 (M, metaFirst (M, extrTerm (
metaXapply (M, T, ’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) ,
s t r a t e gy2 (M, metaRest (M, extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) )

e l s e i f ( metaXapply (M, T, ’ extendPath , none , 0 , unbounded , 0)
=/= f a i l u r e )

then
metaJoin ( s t r a t e gy2 (M, metaFirst (M,
extrTerm (metaXapply (M, T, ’ extendPath , none , 0 , unbounded , 0) ) ) ) ,
s t r a t e gy2 (M, metaRest (M, extrTerm (metaXapply (M, T,
’ extendPath , none , 0 , unbounded , 0) ) ) ) )

e l s e T
f i f i f i .

The strategy2 function is almost the same function as the strategy1 func-
tion, there is only one difference, this version handles large terms better. The
first of the three if-tests is exactly the same as for the other function, that
is because the deductive rule negLitInPath does not split our SearchState
element into two new elements, it just simplifies the existing one. This func-
tion tries to handle the problems that occur when we generate large terms,
and the first deductive rule does not lead to any such problems. The next
two rewrite rules however do.

strategy2 introduces three new functions:

• metaFirst

• metaRest

• metaJoin

The function metaFirst takes a meta represented SearchStateList contain-
ing two elements and returns the first SearchState element. The metaRest
function does the opposite, it returns the last element of the SearchStateList.
The third function (metaJoin) takes two meta represented SearchState ele-
ments and joins them into a list. The reason for splitting up the SearchStateLists
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and calling the recursive function for one element at a time, is that this will
reduce the amount of time used to match SearchState elements with the
rewrite rules. It can become very time-consuming to try to match large terms
with extension at each step of the algorithm. Matching with extension means
that all the different SearchState elements in our SearchStateList will try
to match the different rewrite-rules. When many of the SearchState ele-
ments do not match any of the rewrite rules anyway, and already have been
tested at the last iteration of the algorithm, there really is no point in do-
ing this job over and over. Optimizing this process is really what separates
strategy1 from strategy2.

Let us take a look at how this is done in the function strategy2, the first
if-test is as mentioned the same as it was in strategy1. The second if-test
looks like this:

if (metaXapply(M, T, ’negLitInMatrix, none, 0, unbounded, 0)
=/= failure)

then
metaJoin(strategy2(M, metaFirst(M, extrTerm(
metaXapply(M, T, ’negLitInMatrix, none, 0, unbounded, 0)))),
strategy2(M, metaRest(M, extrTerm(metaXapply(M, T,
’negLitInMatrix, none, 0, unbounded, 0)))))

It is the same if-test as in strategy1 besides the fact that this time we
call the recursive function for each of the two new SearchState elements
separately, to get the benefits mentioned earlier. Then the two resulting
terms are joined into a SearchStateList using the function metaJoin.

The difference between the first two strategies can be illustrated with the
same SearchState element that was used earlier. Recall that all the strategies
start off by selecting an active clause. Then the rewrite rules (deductive rules)
are applied in the mentioned order. After the active clause has been selected
this is the resulting term:

< none ; [d,- a] ; [[a,- b],[c],[b,- c]] >

The rule negLitInMatrix can be applied to this term since the literal - a has
a connection inside the remaining matrix. The result of the rule application
is this term:

< - a ; [- b] ; [[c],[b,- c]] >
< none ; [d] ; [[a,- b],[c],[b,- c]] >
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When strategy2 is used to control the rule applications the recursive call is
made separately for the two SearchState elements. The result is joined into
a list. This implies that we never try to locate matches with large terms,
which can be very time consuming. Only one SearchState element at a time
will try to match the rewrite rules, instead of a whole list of such elements
as in the first strategy.

The third if-test in strategy2 is almost the same as in strategy1 once
again, the difference here is also that we split the resulting term and call the
recursive function separately for each of the resulting SearchState elements
and join the result.

if (metaXapply(M, T, ’extendPath, none, 0, unbounded, 0)
=/= failure)

then
metaJoin(strategy2(M, metaFirst(M,
extrTerm(metaXapply(M, T,
’extendPath, none, 0, unbounded, 0)))),
strategy2(M, metaRest(M, extrTerm(metaXapply(M, T,
’extendPath, none, 0, unbounded, 0)))))

To form a strategy using this function we initialize the SearchState element
and simplify the result:

op prove2 : Module Term -> Term [ctor] .

eq prove2(M, T) =
simplify(M, strategy2(M, init(M, T))) .

6.2 Strategy 3

The next strategy is an extension of the second strategy. The idea is to try
to avoid all the matchings in the three if-tests if we already have connected
paths, or un-connected paths early on. The if-then-else-test which is the
core of the recursive function will have two more if-tests which investigates
whether SearchState elements represent connected, or un-connected paths
before all the other rule applications are investigated.
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eq s t r a t e gy3 (M, T) =

i f (metaXapply (M, T, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then

s t r a t e gy3 (M, extrTerm (metaXapply (M, T,
’ negLitInPath , none , 0 , unbounded , 0) ) )

e l s e i f ( s imp l i f y (M, T) == ’ no tva l i d . ValidNotValid )
then ’ no tva l i d . ValidNotValid
e l s e i f ( s imp l i f y (M, T) == ’ va l i d . ValidNotValid )
then ’ va l i d . ValidNotValid
e l s e i f ( metaXapply (M, T, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/=

f a i l u r e )
then

metaJoin ( s t r a t e gy3 (M, metaFirst (M, extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) ,

s t r a t e gy3 (M, metaRest (M, extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) )

e l s e i f ( metaXapply (M, T, ’ extendPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then metaJoin ( s t r a t e gy3 (M, metaFirst (M, extrTerm (metaXapply (M, T,

’ extendPath , none , 0 , unbounded , 0) ) ) ) ,
s t r a t e gy3 (M, metaRest (M, extrTerm (metaXapply (M, T,

’ extendPath , none , 0 , unbounded , 0) ) ) ) )
e l s e T f i f i f i f i f i .

In this strategy we look for connected paths and un-connected paths early on,
instead of waiting until all the if-tests have failed, besides that it is exactly
the same function as strategy2. These two if-tests:

if (simplify(M, T) == ’notvalid.ValidNotValid)
then ’notvalid.ValidNotValid

else if (simplify(M, T) == ’valid.ValidNotValid)
then ’valid.ValidNotValid

tests whether or not our SearchState element already consists of connected
or un-connected paths, instead of trying to rewrite the term using the other
rewrite rules first, like in the previous strategy.

To apply this strategy we once again initialize our SearchState element and
simplify the result:

op prove3 : Module Term -> Term [ctor] .

eq prove3(M, T) =
simplify(M, strategy3(M, init(M, T))) .
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6.3 Strategy 4

The next strategy that will be presented tries to handle the memory manage-
ment better than the previous ones. The last two strategies, which are a great
deal better than the first, have a weakness that must be overcome to have an
efficient algorithm. They do not shut down as soon as an un-connected path
has been located, the next strategy does, it will once again be an extension
of the last strategy presented. The worst case scenario that can be presented
to the last strategies is a matrix without any connections at all, which should
be the easiest formulas to investigate. This is because a matrix without any
connections will only be able to use the ’extendPath rule, which generates
all the paths through the matrix. Now we have to store an exponentially
growing number of notvalid elements in our SearchStateList and after all
the paths have been evaluated the expression can be simplified. The next
strategy will terminate as soon as it hits an un-connected path through the
matrix.

eq s t r a t e gy4 (M, ACTIVE, STACK) =
i f (metaXapply (M, ACTIVE, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then
s t r a t e gy4 (M, extrTerm (metaXapply (M, ACTIVE,

’ negLitInPath , none , 0 , unbounded , 0) ) , STACK)

e l s e i f
( s imp l i f y (M, ACTIVE) == ’ no tva l i d . ValidNotValid )
then ’ no tva l i d . ValidNotValid
e l s e i f
( s imp l i f y (M, ACTIVE) == ’ va l i d . ValidNotValid )
then
s t r a t e gy4 (M, metaPop(M, STACK) , metaPopped (M, STACK) )
e l s e i f
(metaXapply (M, ACTIVE, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/= f a i l u r e )
then

s t r a t e gy4 (M, metaFirst (M, extrTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ,
metaPush(M, metaRest (M, extrTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) )
, STACK) )

e l s e i f
(metaXapply (M, ACTIVE, ’ extendPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then
s t r a t e gy4 (M, metaFirst (M, extrTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) ) ,
metaPush(M, metaRest (M, extrTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) )
, STACK) )

e l s e ’ v a l i d . ValidNotValid

f i f i f i f i f i .
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This function takes three arguments, the last argument holds a stack of not
yet investigated SearchState elements in a meta represented SearchStateList,
the first argument is our active SearchState element. The idea is to abandon
the search as soon as possible. Every SearchState element represents one or
more paths through the matrix, depending on whether or not some pruning
has been done. If one of these represent an un-connected path, we can call
the search off. So in this function we gather new elements produced by the
rewrite rules that split our SearchState element on the stack, which is the
third argument for this function. Then we continue to investigate the first
SearchState element until we have decided whether this element represents
connected or un-connected paths. This function also introduces some other
functions:

• metaPush

• metaPop

• metaPopped

These three functions will be used to perform the usual stack operations
on our meta represented stack. The last function is needed since we store
structures differently than in imperative programming languages, when we
construct rewrite theories in Maude. The function metaPopped returns the
rest of the stack after an element has been popped off, in other languages we
usually have a pointer to the stack. When an element is popped off the stack
the remaining stack is the remaining stack, but this becomes a bit different
here since a function returning a popped off element “destroys” the stack,
(we have no pointer to the remains of it). The other two functions has the
expected meaning, metaPop returns the elements that gets popped off the
stack, and metaPush pushes an element onto the stack.

I’ll try to give a brief illustration of what happens when this strategy controls
the execution. This time we start out with a matrix which has no connections
at all:






P
Q
¬R



[
S
T

] [
A
B

] [
¬G
Q

]


All the strategies start off by placing the matrix (formula) that is to be
investigated into the remaining matrix of a SearchState element. This is
the result:
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< none ; nix ; [[p, q, - r], [s, t], [a, b], [- g, q]] >

Then the SearchState element is initialized, which means we select a clause
from the remaining matrix, (now equal to the matrix we want to investig-
ate), and make it our first active clause. Say for instance that the clause
[p, q, - r] is selected by the init rule. This will be the resulting term:

< none ; [p, q, - r] ; [[s, t], [a, b], [- g, q]] >

Recall that the deductive rules negLitInPath and negLitInMatrix locate
connections and prune the search space. This matrix has no connections
which means that these two deductive rules will always fail, and the only
deductive rule that can be applied is the extendPath rule. After the rule
extendPath has been applied to our SearchState element it will look like
this:

< p ; [s, t] ; [[a, b], [- g, q]] >
< none ; [q, - r] ; [[s, t], [a, b], [- g, q]] >

When strategy4 controls the execution the first of the two SearchState
elements will be investigated further, while the second one will be pushed
onto the stack of not yet investigated SearchState elements. Since the only
rule that can be applied still is extendPath, this will be the resulting terms
after the second recursive call has been made to the function strategy4.

1: < p, s ; [a, b] ; [[- g, q]] >

2: < p ; [t] ; [[a, b], [- g, q]] >
3: < none ; [q, - r] ; [[s, t], [a, b], [- g, q]] >

The ACTIVE SearchState element is no. 1 and the stack consists of 2 and 3.
SearchState element no. 2 was generated when the rewrite rule extendPath
was applied to the term:

< p ; [s, t] ; [[a, b], [- g, q]] >

Which was our ACTIVE SearchState element when the recursive call was
made to the function strategy4. Now we have a stack of two SearchState
elements and one ACTIVE SearchState element.
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1: < p, s ; [a, b] ; [[- g, q]] > = ACTIVE

2: < p ; [t] ; [[a, b], [- g, q]] > = STACK
3: < none ; [q, - r] ; [[s, t], [a, b], [- g, q]] > = STACK

The function strategy4 is called once again and the only rule we can apply
is still extendPath which leads to this situation:

1: < p, s, a ; [- g, q] ; [none] >

2: < p, s ; [b] ; [[- g, q]] >
3: < p ; [t] ; [[a, b], [- g, q]] >
4: < none ; [q, - r] ; [[s, t], [a, b], [- g, q]] >

The last three elements make up the stack, and the first element is our ACTIVE
SearchState element. The next recursive call to the function strategy4 will
discover that the ACTIVE SearchState element represents a countermodel
and the whole proof search is shut down. There is no need to investigate
the other elements on the stack further since we already have located an un-
connected path (or two in this example). Now we will take a look at the code
which controls the strategy just presented. Notice that the stack of not yet
investigated elements are only popped off and examined when our ACTIVE
SearchState element is connected.

The first if-test in this function is the same as in all the other functions, it
tests the active SearchState element for connections between its active path
and its active clause, if such a connection is established, this rule is applied.
The next if-test will call the whole search off if the active SearchState
element now being investigated is un-connected. Then the recursion stops
here:

if (simplify(M, ACTIVE) == ’notvalid.ValidNotValid)
then ’notvalid.ValidNotValid

There is no need to investigate the rest of the paths since we already know
that this formula is not valid, so the whole search is called off. The next
if-test:

if(simplify(M, ACTIVE) == ’valid.ValidNotValid)
then
strategy4(M, metaPop(M, STACK), metaPopped(M, STACK))
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calls the function recursively with the next SearchState element on the
stack, since the previous one lead to connected paths we can continue. The
last two if-tests apply rules that split the SearchState element into two new
SearchState elements. This situation is now handled by inserting one of
these elements onto the stack, and letting the other one become the new
active SearchState element.

if
(metaXapply(M, ACTIVE, ’negLitInMatrix, none, 0, unbounded, 0)
=/= failure)

then

strategy4(M, metaFirst(M, extrTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0))),
metaPush(M, metaRest(M, extrTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0)))
, STACK))

Once again the code can look a bit cryptic, but the idea is hopefully clear.
We push one of the newly generated SearchState elements onto a stack, and
finish investigating our active SearchState element until it either leads to
connected paths, when we move on with the next element on the stack, or
in the case of un-connected paths we shut the whole procedure down. The
next if-test is the same except for the ’negLitInMatrix which is replaced by
’extendPath. If all the tests above fail, we have finished without locating
un-connected paths, and our matrix represents a valid formula.

else ’valid.ValidNotValid

The complete program can be found in the appendix. I hope that the code is
not as cryptic anymore now that some comments about it has been presented.
In the next section these strategies will be tested on a set of formulas to see
how the different strategies work.
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6.4 Test-run - Comparing Results

In the previous section four different strategies were constructed using the
reflective property of rewriting logic. They manipulate the execution/term-
rewriting of the CONNECTION rewrite theory, which is a set of deductive rules
based on the connection method. In this section the different strategies
will be tested against one another to see how they perform. They will also
be tested against the theorem prover that was created by W. Bibel and J.
Otten. Before we start testing the different strategies we need something
to test them on, we need a test-set of formulas. The test set contains 17
formulas, the first 11 are my “own” formulas, and the last 6 are formulas
from the TPTP (thousand problems for theorem provers) library, one graph,
one number theory and four pigeonhole formulas.

All computations where performed on a computer with an Intel Pentium 4
processor - 2.8 GHz, with 1 Gb RAM. The theorem prover implemented by
W. Bibel and J. Otten was run on a sicstus (Swedish Institute of Computer
Science) implementation of Prolog.

In the table below the running time of solving the problems given in the
test-set is presented.

Test formula Strategy 1 Strategy 2 Strategy 3 Strategy 4 leanCop
1 60 ms 30 ms 10 ms 10 ms 0 ms
2 5.6 s 1.47 s 0.19 s 0 ms 0 ms
3 10 ms 0 ms 0 ms 10 ms 70 ms
4 9 m 2 m 1.7 s 0 ms -
5 2.6 m 31 s 1 s 0 ms 15.3 s
6 6.2 m 1.15 m 1.2 s 10 ms 14.8 s
7 700 ms 240 ms 70 ms 60 ms 0 ms
8 8 m 1.7 m 1.7 s 10 ms -
9 3.9 s 1.1 s 150 ms 0 ms 0 ms
10 10 ms 0 ms 10 ms 10 ms 0 ms
11 - - 37 s 0 ms 0 ms
12 graph 530 ms 150 ms 40 ms 40 ms 10 ms
13 number th. - - - 36.8 m -
14 pigeon 2 50 ms 10 ms 10 ms 10 ms 0 ms
15 pigeon 3 - 29 m 7.5 s 7 s 10 ms
16 pigeon 4 - - - - 160 ms
17 pigeon 5 - - - - 2.4 s
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A column with an open entry (-) means that this problem was not solved
within 1 hour. The set of test formulas can be found in the appendix.

The test results illustrate two things hopefully, the first one is that the re-
flective property and meta programming is very well suited to optimize term
rewriting. The first strategy which is a straightforward application of the
deductive rules in a manner which ensures soundness, has a lot worse per-
formance results than the last one, which is optimized the most. The im-
portant thing to remember is that we construct legal deductive steps in our
rewrite theory, since any application of these rules are allowed, we perform
legal proof searches no matter how these rules are applied to the term. (This
is not one hundred percent true for the rewrite theory constructed here, it
has to be applied in a certain order to be sound, this demand can be elim-
inated with the use of conditional rewrite rules). When we look at it from
this point of view, the reflective property becomes an extremely useful tool,
since any optimization that can be done will always lead to a desired result,
and as we can see from the tests done, such optimizations often exist.

The results are also meant to illustrate some of the strengths and weaknesses
of both implementations (Prolog and rewriting logic, Maude). One thing that
is worth mentioning is that the theorem prover implemented using rewriting
logic struggles when matrices become large, like in the last pigeon formulas
(there are actually three even larger pigeon formulas in the TPTP library
but both theorem provers fail to prove these formulas so I did not include
them). Naturally any connection-based theorem prover will struggle when
matrices become extremely large, but this limit is reached faster with the
rewriting logic implementation than it is with leanCop. This is due to the
fact that Maude is a very high level language, and really has no basic types
like Prolog has. While Prolog can use its three most basic types or structures
(constants, predicates, and lists) for theorem proving, this is not possible with
a language like Maude. When such an algorithm is constructed in rewriting
logic we must first specify how terms (the structure) is represented, which
means that even the simplest rewrite theory is in fact a complex structure,
far from being simple arrays and machine friendly structures. leanCop uses
basic Prolog structures, and Prolog is an old programming language which
has been optimized over the years, which gives leanCop two advantages. Still
leanCop struggles with some of the smaller matrices in the test set, the fourth
matrix only contains nine clauses containing four literals each, the whole
formula only contains four literals. One thing that is worth noticing about
the formulas that Prolog struggles with is that they are all invalid formulas.
Remember that Prolog tries to find terms such that your queries become true,
if it does not succeed, it will backtrack to the last place where it had more
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choices than one, and start all over again. Which means that Prolog will
use more time on the pigeon formulas as well if we just remove some of the
clauses or some of the predicates inside them which has to be there for them to
represent valid formulas. So if a matrix has many connections which represent
many choices for Prolog to choose a connected pair before pruning the search
space, and this matrix also represent an invalid formula, then Prolog will use
a lot of time. The theorem prover implemented using rewriting logic does
not backtrack, it “knows” it has only performed legal deductive steps (since
only legal deductive steps exist in our rewrite theory). This means that for
such formulas the theorem prover implemented in rewriting logic will usually
be faster, unless matrices become very large in which case they both fail.
Since valid matrices will not lead to backtracking, such matrices are handled
very fast using the Prolog implementation, and it can handle very large valid
matrices, as we can see from the test results.

The largest advantage when rewriting logic is used in automated theorem
proving is that we have the ability to specify the logical rules, and when
that is done, the theorem prover is already finished. Creating an LK based
theorem prover for instance can be done in a matter of minutes by anyone
familiar with rewriting logic and the deductive rules of LK, (an optimized
LK theorem prover is a different matter). Any application of the LK rules
to a belonging term, which will represent the leaf node(s), will produce a
proof or a countermodel. This is because the high level language that is used
to create rewrite theories has a huge machinery which takes care of many
things for us. All we have to do is to specify the language, and when terms
can evolve into other terms (the rewrite rules), the rest is taken care of by
the built-in matching. The reflective property that is held by rewriting logic
gives us the ability to create strategic choices on top of the deductive rules as
well, which means that we can optimize the term rewriting, which can lead
to effective algorithms in many cases. Comparing strategy1 with strategy4
tells us that the reflective property can optimize term rewriting a great deal.

The following chapter will extend the connection-based theorem prover to
first order logic. The code will be a bit more tricky, even at the object-
level, but hopefully the similarities with the existing propositional version
will provide some help.
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7 First Order Logic

In this chapter we will show how the connection method is extended to first
order logic. So far we have studied how this method of inference works
on propositional instances of formulas, in this chapter we will show how
the connection method is extended to first order logic, and implement a
theorem prover using rewriting logic once again. Many of the concepts from
the previous chapters will be used, both when it comes to constructing the
logical rules, and using meta programs to control execution/term-rewriting.

There will not be room for an introduction to first order logic in this chapter,
so if this is not a familiar topic, an introduction to first order logic can be
found in [22, 13].

To extend our theorem prover to first order logic we first of all have to be
able to represent a first order language. Propositional logic only has propos-
itions and logical connectives, but a first order language is more complex.
This theorem prover will once again work on clause form representations of
formulas, so we need a rewrite theory that lets us represent any first order
formula (actually a skolemized DNF representation of the formula) for this
theorem prover to work.

The version we will construct here is a bit static for the sake of readability,
it can easily be transformed into a dynamic version able to represent any
first order formula. We usually think of predicates as uppercase letters and
function symbols as lower case letters, and constants in a domain as lowercase
letters. Since there are only 26 letters in our alphabet this restricts the
possible first order languages we are able to represent. To create a dynamic
version all we need to do is to make some sort of enumerating scheme, where
function symbols, predicate symbols and constants are enumerated. We leave
this for now and focus on a readable version of our first order language.

First of all we need to be able to represent the terms. A term in a first order
language is defined like this:

• A variable is a term

• A constant is a term

• If t1, t2, . . . , tn are terms and f is an n-ary function, then f(t1, t2, . . . , tn)
is a term
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To state this property in a rewrite theory we use the sort Trm (not to conflict
with the meta-level definition Term), with a set of belonging subsorts:

sort Trm .
sort TrmList .
subsort Trm < TrmList .

sort Const .
sort Var .
sort Function .
sort FuncSym .

subsort Var < Trm .
subsort Const < Trm .
subsort Function < Trm .

ops f g h k u v s t : -> FuncSym [ctor] .
op _(_) : FuncSym TrmList -> Function [ctor] .

op V : Nat -> Var [ctor] .
ops a b c d e m n o p q r : -> Const [ctor] .

The only structure that is dynamic in the sense that we can represent as
many as we like are the variables. During a proof search we might need to
introduce new variables, so a limited amount of fresh variables would make
it impossible to copy clauses as we often need to do during a proof search.

The term: f(g(X, Y, a, b), Z, c)

will be represented like this according to the rewrite theory:

f(g(V(1), V(2), a, b), V(3), c)

The different variables are distinguished by different natural numbers (Nat),
besides that the translation is pretty straightforward. To make a more dy-
namic representation of the functions, we can enumerate these as well, by
replacing the FuncSym constructor by this one for instance:

op f{_} : Nat -> FuncSym [ctor] .
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The cost of being dynamic is that it is very hard to read the terms that we
are to represent, so we will stick to the static version to make the terms more
readable.

The next structure we need to represent are the predicates, often thought of
as uppercase letters in front of a list of terms, so we might as well represent
them like that.

sort Predicate .
sort PredicateSym .

ops P Q R S T U K L M N Y B C D : -> PredicateSym [ctor] .

op _(_) : PredicateSym TrmList -> Predicate [ctor] .

The predicate:

P (f(g(X, Y, a, b), Z, c), c, g(X))

will with this specification be represented like this:

P(f(g(V(1), V(2), a, b), Z, c), c, g(V(1)))

First order logic is a superset of propositional logic (a first order theorem
prover is a propositional theorem prover as well), where the propositions
can be viewed as nullary predicates, represented here with empty term lists,
(P(nil), Q(nil) and so on). We are going to construct a theorem prover for
clausal form representations of formulas in this chapter. Literals in a first
order sense are predicates and negated predicates, so all we lack now to be
able to represent the matrices that this theorem prover will work on are sets
of Literals, which make up our Clauses, and sets of Clauses which represent
our Matrices.
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First of all a predicate is a literal, which can be stated like this:

sort Lit .
sort LitSet .
subsort Lit < LitSet .
subsort Predicate < Lit .

A negated Predicate is also a Literal:

op -_ : Predicate -> Lit [ctor] .

The sets of literals will be represented just like they where in the propositional
case, we use ’,’ as a separator between the different elements.

op none : -> LitSet [ctor] .
op _,_ : LitSet LitSet -> LitSet [ctor id: none assoc comm] .

A Clause will be a LitSet inside brackets.

sort Clause .
op [_] : LitSet -> Clause [ctor] .

The matrices will once again be a ClauseSet inside brackets.

sort Matrix .
sort ClauseSet .
subsort Clause < ClauseSet .
op none : -> ClauseSet [ctor] .
op _,_ : ClauseSet ClauseSet -> ClauseSet

[ctor id: none assoc comm] .
op [_] : ClauseSet -> Matrix [ctor] .

Now we have the ability to represent any first order formula, or at least a
clause form representation of any first order formula. The connection method
will work slightly different on first order formulas, compared to the proposi-
tional instances. This will be illustrated with an example shortly, but let us
first of all take a look at how quantifiers are handled, and how formulas are
converted into their clause form.
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7.1 Handling the Quantifiers

This section will explain how the quantifiers are handled when the connection
method is extended to first order logic.

During a proof search in LK we substitute variables bound by quantifiers
with terms, but there are some requirements on what terms the variables
can be substituted by, for this calculi to be sound, the eigenvariable condi-
tion. Using the connection method we must ensure that we do not substitute
variables such that the same condition is violated. The connection method
uses skolemization, and unification with occurrence checks to ensure sound-
ness, which is equivalent to the eigenvariable condition used by LK. First of
all let us take a look at what skolemization means. Skolemization, named
after the Norwegian mathematician Thoralf Albert Skolem (1887-1963) is
the process of eliminating universal quantifiers in a first order formula. This
transformation is not model preserving, but validity is preserved after skol-
emization, since we are investigating validity, this property will be sufficient
for us.

Skolemization

` ∃X1∃X2 · · · ∃Xn∀Y Γ(X1, X2, . . . , Xn, Y )

m
` ∃X1∃X2 · · · ∃Xn Γ(X1, X2, . . . , Xn, f(X1, X2, . . . , Xn))

Where f is a function symbol not occurring in the first order formula Γ.

If the universal quantifier is not in the scope of any existential quantifiers,
then we replace the variable Y with a constant, which can be viewed as a
function taking zero arguments. During a proof search in LK we substitute
the variables bound by the quantifiers with terms, and this is true for the
connection method as well. The difference is that we delay the substitution
of the variables until we know that this substitution leads to a connection,
or equivalently a closed leaf node in LK. Which means that the connection
method is goal oriented in this way as well, we do not introduce terms during
a proof search unless they are actually needed, as we might do using LK. To
convert a formula into its matrix representation we start off with the positive
representation of a formula, then the quantifiers are placed in front of the
formula, every formula has an equivalent formula where all the quantifiers
are placed in front of the formula (prenex form see [13]). Then we skolemize
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the formula, which gives us a formula looking like this:

` ∃X1∃X2 · · · ∃Xn Γ(X1, X2, . . . , Xn)

Then the formula Γ(X1, X2, . . . , Xn) is converted into its DNF representation,
just like in the propositional case. Where the clauses once again constitute
the columns in the matrix, the only difference is that now we have a set of
variables inside the matrix bound by these quantifiers, which will be sub-
stituted by terms during the proof search. They are referred to as the free
variables, and they are not bound to any terms unless we can create a con-
nected path from such a substitution, equivalent to closing a leaf node in
LK. If this is not the case we do not substitute variables for terms during the
proof search, they are just free variables up to the point where they actually
help us get one step closer to proving the formula.

Take a look at the sequent:

∃X∀Y P (X, Y ) ` ∀U∃V P (U, V )

This sequent is not provable in LK naturally since it is not valid and LK is
sound. But there has to be some demands on what terms we are allowed to
substitute for the variables bound by the quantifiers, for LK to be sound. If
any term could be substituted for any variable bound by the quantifiers, we
could easily prove invalid formulas, like this one. But the eigenvariable con-
dition demands a certain order of rule applications, which ensures soundness.
When the connection method is used on DNF representations of formulas,
we first generate the skolemized positive representation of the formula.

∃X∀Y P (X, Y ) → ∀U∃V P (U, V )

¬∃X∀Y P (X, Y ) ∨ ∀U∃V P (U, V )

∀X∃Y ¬P (X, Y ) ∨ ∀U∃V P (U, V )
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∀X∃Y ∀U∃V ¬P (X, Y ) ∨ P (U, V )

∃Y ∀U∃V ¬P (a, Y ) ∨ P (U, V )

∃Y ∃V ¬P (a, Y ) ∨ P (f(Y ), V )

[[¬P (a, Y )] [P (f(Y ), V )]]

This becomes a very simple matrix with only two columns containing only
one literal each, but the variables cannot be substituted by any terms for
this to become a connection, we say that the there exists no unifying sub-
stitution. Unification is the process of substituting variables simultaneously
in both terms such that the resulting terms are identical. So to make a first
order theorem prover based on the connection method we will need a uni-
fication algorithm to test whether our free variable literals give ground for
connections throughout the matrix. In the next chapter we will implement
a unification algorithm. So to ensure soundness the connection method uses
skolemization and unification combined with an occurrence check, while LK
uses the eigenvariable criteria. The occurrence check mentioned will not al-
low unification through infinite terms, we will investigate this further in the
next chapter. When the connection method is extended to first order logic
we must take one more aspect into consideration, that is the substitutions
of the variables in the different branches of the proof tree. The relationship
between the paths through the matrix and the leaf nodes in an LK proof
tree is not as simple as it was in the propositional case. When LK is used
to prove first order formulas we often substitute the variables bound by the
quantifiers with different terms in different branches of the proof tree. Using
the connection method, we perform the same operation by allowing copies
of the free variable clauses. In the following example we will show how the
sequent ∀X P (X) ` P (a) ∧ P (b) is proved using LK, and how this leads to
difficulties using the connection method.

P (a) ` P (a)

∀X P (X) ` P (a)
L ∀

P (b) ` P (b)

∀X P (X) ` P (b)
L ∀

∀X P (X) ` P (a) ∧ P (b)
R ∧
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We see that the variable X is bound to different terms in the two branches
in the LK proof tree. This is what causes problems in our free variable
representation used by the connection method. Let us first of all take a look
at an attempted proof for the same formula using the connection method to
illustrate the problem.

|= ∀X P (X)→ (P (a) ∧ P (b))

|= ¬(∀X P (X)) ∨ (P (a) ∧ P (b))

|= ∃X (¬P (X)) ∨ (P (a) ∧ P (b))

[
[¬P (X)]

[
P (a)
P (b)

]]

The relationship between the paths in the matrix being leaf nodes in the LK
proof tree is equivalent, but in LK we have the ability to bind the variable
X to different terms in different branches. We have the ability to do this
using the connection method as well, but this requires knowledge of what
paths belong to different branches and so on, this is the cost of the compact
representation. Instead of doing this, we copy the free variable clauses, where
the copy of the free variable clause has fresh/new variables, not contained
in the matrix. All variable bindings that occur from unification with the
copy of our free variable clause will not affect the rest of the matrix, since
the variable bindings will bind variables not contained inside the matrix up
to this point. The process used by the connection method, can be viewed
as an LK proof where we use contraction first, and substitute terms for the
variables bound by the quantifiers afterwords, like in the example below.

P (b), P (a) ` P (a) P (b), P (a) ` P (b)

P (b), P (a) ` P (a) ∧ P (b)
R ∧

∀X P (X), P (a) ` P (a) ∧ P (b)
R ∀

∀X P (X), ∀X P (X) ` P (a) ∧ P (b)
R ∀

∀X P (X) ` P (a) ∧ P (b)
LC
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When contraction is used first, we see that the matrix with the fresh variable
copy plays the same role as our leaf nodes in the LK proof tree with the
unifying substitutions [X/a] and [Y/b].

[
[¬P (Y )] [¬P (X)]

[
P (a)
P (b)

]]

When free variable clauses become complex, or at least have more elements
than one as in this example, we can immediately see that this copy procedure
is not something that should be done without concern of what the new copies
represent w.r.t. the search space we are going to investigate.

So the problem that occurs when our free variables belong to different branches
and can be substituted by different terms, (this is not always possible), is
solved using free variable clause copies. The eigenvariable criteria is handled
with skolemization and unification (with occurrence checks), using the con-
nection method.

When the connection method is extended to first order logic, we have two
“types” of connections when we look for a spanning mating through the mat-
rix. The ground connections where there are no free variables inside the
literals, and the connections where there are free variables, where the two
literals must have a unifying substitution for it to become a connection. To
make a first order theorem prover based on the connection method we will
need a unification algorithm to test whether our free variable literals give
grounds for connections throughout the matrix, which is what we will con-
struct in the following chapter.
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7.2 Unification

In this section we will construct a unification algorithm. The code might be
a bit tricky to read, but the main concept is not complex.

Definition Unification

We say that two terms T1(x1, x2, . . . , xn) and T2(y1, y2, . . . , ym) unify if there
exits a substitution, such that:

T1(x1, x2, . . . , xn)[x1/t1, y1/t2 . . . xn/tn, ym/tm]

=

T2(y1, y2, . . . , ym)[x1/t1, y1/t2 . . . xn/tn, ym/tm]

Where xi, yi are the free variables in T1 and T2, and by terms we mean the
recursive definition given in the previous section.

If there exists a unifier/substitution that unifies the two terms there exists a
most general unifier, often referred to as MGU. This means that any substi-
tution that unifies two terms that is not equal to MGU, is just an extension of
MGU, meaning that some terms inside the most general unifier is substituted
further. Now we shall list the different criteria that has to be met for two
terms to unify. Remember that our terms are built from constants, variables,
and functions, the arguments inside the functions are terms themselves.

1. Two variables will always unify, they share values after unification:
[X1/X2]

2. Two constants unify if they are the same constant.

3. A variable and a constant will always unify: [X/c]

4. A variable and a function will unify if the variable does not occur inside
the function, with infinite terms allowed we can still unify in some cases.
[X/f(t1, t2, . . . , tn)]

5. A variable can not be substituted by different terms during unification.

6. A function f1(t1, t2, . . . , tn) and f2(t′1, t
′
2, . . . , tm) unifies if f1 = f2, and

both functions hold the same number of arguments (m = n), and the
terms ti unifies with t′i for all i.

7. A constant and a function will not unify
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If these criteria are not met for two terms then the two terms does not unify.
Below follows a few examples of terms that unify and terms that does not
unify, with explanations.

f(a,X, Y ) == f(X, c, Z) No [X/a] and [X/c] (5)
f(a, a, Y ) == f(X,X,X) Yes [X/a, Y/a]

f(a,X, c) == f(b, Y ) No Number of arguments differ (6)

We are going to construct a unification algorithm based on the previous term
specification, or rather Trm specification, as it was called. The algorithm must
investigate whether or not the two terms fulfill the criteria just mentioned.
The result of the function will be an error term if the two terms do not
unify. If they do unify, the result of this function will be the unified term.
The substitution that has been applied to the two terms to unify them will
be the most general unifier, which means that the resulting term from the
unify-function can still contain variables. We will actually perform unifica-
tion among several elements at a time during a proof search if the predicates
contain more than one argument. This is one of the reasons for the fact that
the unify-function takes TrmLists as arguments, since variable bindings that
occur from unification of some terms inside the term lists can not be ignored
by the other terms, since a unifying substitution can not have different vari-
able bindings. The function we are going to implement is a function that
unifies two terms (lists) if possible with the most general unifier, if it is not
possible, the resulting term will be a fail-term.

sort FailTrm .
subsort FailTrm < Trm .

op fail : -> FailTrm [ctor] .

op unify : TrmList TrmList -> TrmList [ctor] .

The reason for the input being TrmLists instead of just a term is that we will
need to perform unifications among all the elements inside the TrmLists that
belong to the predicates. Since Trm is a subsort of TrmList it will naturally
work on two regular terms as well. I have tried to make the names of the
functions informative since there are quite a few of them, and many of them
are very easy to implement so there is no need to explain the specifics of
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all the functions. The function genSubstList generates the most general
unifier for the two terms if possible. If this is not possible, an error term
will be part of the substitution list returned by this function. The function
containsFailSub is a boolean function figuring out whether the substitution
list generated by the function genSubstList contains an error term, in which
case unification was not possible.

eq unify(TL, TL’) =
if (not containsFailSub(genSubstList(TL, TL’))) then
applySubst(TL, genSubstList(TL, TL’)) else
fail fi .

The function applySubst applies the most general unifying substitution to
the term (list) TL, it could just as easily have applied it to TL’ naturally, as
we can see from the definition of a unifying substitution. Let us take a look at
how the function genSubstList figures out whether it is possible to unify the
terms or not. The substitution lists that the function genSubstList produces
consists of lists of elements where each element is a variable and its appropri-
ate substitution. If the variable V(2) should be substituted by the term f(a),
this element would look like this in the substitution list < V(2) -> f(a) >.

eq genSubstList((C1, TL) , (V1, TL’)) =
(< V1 -> C1 > ::
genSubstList(substitute(V1, C1, TL), substitute(V1, C1, TL’))) .

A variable and a constant will always unify, unless the variable has been
bound to another term earlier on. This is what this equation states, and it
binds the variable V1 to the constant C1 throughout the two remaining term
lists, with the substitute function. This has to be done to avoid binding
the variable V1 to other terms later on in the process which violates one of
the requirements for two terms to unify. The elements inside the substitution
lists are concatenated with the operator :: as you can tell from this equation.

The next equation states that two constants will only unify if they are the
same constant, this might sound a bit strange, but we look at the uni-
fication process as a recursive procedure. We attempt to unify the term
lists of two functions, so function f1(t1, t2, . . . , tn) will unify with function
f2(t′1, t

′
2, . . . , t

′
m) if f1 = f2 and arity f1 = arity f2 (m = n), and all ti unify

with t′i. So if ti ∈ f1 is a constant, and t′i ∈ f2 is a constant they have to
be the same constant for these two terms to unify. That is what this next
equation states.
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eq genSubstList((C1, TL) , (C2, TL’)) =
if(C1 == C2) then genSubstList(TL, TL’) else errorSub fi .

This does not lead to any variable bindings so we can skip to the next set of
elements inside our two term lists. If the constants are different we return
an error substitution term which tells us that it is impossible to generate a
most general unifier for these two terms, since no unifier exists.

The next equation tries to unify a variable and a function, this can only be
done (with finite terms) if the variable does not occur inside the function.
This is the occurrence check mentioned in the previous section that was
necessary to ensure soundness of the calculi. If we allow infinite terms we are
able to unify some terms still regardless of the variable occurrence inside the
function. The term f(X) will unify with the term X if we allow substitution
with infinite terms. Since:

f(X) [X/f(f(f(· · ·f(X) · · · )))] = X [X/f(f(f(· · ·f(X) · · · )))]

The first term should have one function symbol more than the last term one
would think, but since the term we substitute for X is an infinite term, they
will be the same term (∞+ 1 =∞). We can not allow infinite terms in our
substitutions so if a variable occurs inside one of the arguments of a function,
this function and this variable will not unify, which is what the next equation
states.

eq genSubstList((V1, TL’), ((F1(TL)), TL’’)) =

if(not (occursIn(V1, F1(TL)))) then

< V1 -> (F1(TL)) > ::

genSubstList(substitute(V1, F1(TL), TL’),
substitute(V1, F1(TL), TL’’))

else errorSub fi .

The function occursIn is a boolean function that investigates if a vari-
able occurs inside a function. If this variable does not occur inside the
function then this variable and this function unifies, with the substitution
[X/f(t1, t2, . . . , tn)]. We bind this variable throughout the term list TL’ and
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TL’’ with the substitute function, before we make the recursive function
call to generate the rest of the most general unifier.

The next equation will unify two variables, they will share value after such a
unification has been made. This means that they can not be substituted for
different terms afterwords.

eq genSubstList((V1, TL), (V2, TL’)) =
(< V2 -> V1 > ::
genSubstList(substitute(V2, V1, TL), substitute(V2, V1, TL’))) .

We substitute the variable V2 with V1 throughout the two remaining term
lists to avoid the problem of different substitutions for the two variables that
now share value.

The next equation states that a constant and a function will not unify. Con-
stants can be viewed upon as functions taking zero arguments, then we would
have to do this a bit different. Using the Trm specifications introduced earlier
in this chapter however this equation is unambiguous.

eq genSubstList((C1, TL), ((F1(TL’)), TL’’)) = errorSub .

The next equation is a bit more complex than the previous ones, since we now
will try to unify two functions. We know that the two functions will unify
if the function symbols are the same (FuncSym), if they have the same arity
(number of arguments), and if all the arguments inside the two functions
unify.

eq genSubstList(((F1(TL)), TL’), ((F2(TL’’)), TL’’’)) =

if ((F1 == F2) and (getArity(F1(TL)) == getArity(F2(TL’’))))
then
(genSubstList(TL, TL’’)) ::

(genSubstList(funcHelpUnify(TL, TL’’, F1, TL’),
funcHelpUnify(TL, TL’’, F1, TL’’’)))

else errorSub fi .

The function getArity counts the number of arguments of a function. If
the two functions we are to unify have the same function symbol (F1 == F2)
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and the same number of arguments, it might be possible to unify them. If
this if-test fails, the FailSubstitution (errorSub) is returned. For the two
functions to unify the arguments inside each function have to unify, which
is why we call the function genSubstList with the two term lists inside
the two functions as arguments. The only problem now is that unification
of the two term lists inside the functions might lead to variable bindings,
these variable bindings must affect the variables inside the remaining term
lists (TL’ and TL’’’). This is where the function funcHelpUnify comes into
play, it helps us to bind the variables inside the two remaining term lists
(TL’ and TL’’’). The function funcHelpUnify will substitute any variable
bindings that occur from unifying TL with TL’’. Or rather in general the
function funcHelpUnify(TL1, TL2, F1, TL3) will return the term list TL3
with all the variable bindings that occurred from unifying the term lists T1
and T2. The function symbol that this function takes as its third argument
does nothing besides making it easier to read the equations, since all the
other arguments are term lists the whole implementation got a bit mixed
up at some point there so I decided to make a separator sign. I will try
to illustrate how this works with an example. The following example will
illustrate why we need the function called funcHelpUnify and show what
this function does.

We want to investigate whether or not these two terms have a unifying sub-
stitution:

f(g(V(1), V(2)), V(2))

f(g(a, b), c)

Let us take a look at what happens once we use the unify function to test
whether or not these two terms have a unifying substitution. This function
call:

unify(f(g(V(1), V(2)), V(2)), f(g(a, b), c)) .

Will call the genSubstList with the same arguments, this function will try
to construct the most general unifier for these two terms.

genSubstList(f(g(V(1), V(2)), V(2)), f(g(a, b), c)) .
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We skip to the part where variable binding cause trouble, we know that if
these two functions are to unify, we must be able to unify the arguments
inside the two functions. Now we try to unify the arguments inside the
two f-functions (g(V(1), V(2)), V(2)) and (g(a, b), c) . We start off
with g(V(1), V(2)) and g(a, b), the remaining term lists are V(2) and c.
The variable bindings that occur from unifying the arguments inside the g-
functions cannot be ignored, as we can see from this example (it is quite hard
to see perhaps with all the function calls, but still). The idea is that during
unification of the first two arguments inside the f-functions the variable V(2)
is bound to the constant b, this will cause trouble later on.

eq genSubstList( g(V(1), V(2)), V(2), g(a, b), c ) =

if ((g == g) and (getArity(g(V(1), V(2))) == getArity(g(a, b))))

then (genSubstList(V(1), V(2) , a, b)) ::

(genSubstList(funcHelpUnify(g(V(1), V(2)) , g(a, b) , f, V(2)),
funcHelpUnify(g(V(1), V(2)) , g(a, b), f, c))))

else errorSub fi .

Since the unification of g(V(1), V(2)) and g(a, b) will lead to the variable
bindings V(1) -> a and V(2) -> b we cannot simply see if the rest of the
term list inside the f-function unifies without taking this into account. The
function funcHelpUnify will substitute the variable V(2) with b since this
variable is bound to this constant now. Once we attempt to unify the last two
elements inside the f-function term list, we will get an error term since the
constants b and c does not unify. This will lead to a an errorSubstitution
inside the resulting substitution list returned by the genSubstList function,
and the if-test inside the unify function will fail, resulting in a FailTrm:

eq unify(TL, TL’) =
if (not containsFailSub(genSubstList(TL, TL’))) then

*** generate unified term

else fail fi .
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Once a unifying substitution exists, which we know if the substitution list
returned by the function genSubstList does not contain any error term, we
generate the most general unifier and substitute for one of the terms.

applySubst(TL, genSubstList(TL, TL’))

Now we are able to represent the first order formulas, and we are able to
tell whether or not terms unify, the last two things we have to do to extend
our theorem prover to first order logic is a set of deductive rules that locate
connections, and a way of constructing clause copies during our attempts to
prove formulas. The code presented here is not the complete code of the
UNIFY module, but the main aspects of it has been discussed. The complete
module can be found in the appendix. This UNIFY module also contains a
lot of functions needed later on once we present the deductive rules, which
is what we will do next.
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7.3 Constructing the Logical Calculus

The deductive rules that will be constructed in this section will be very
similar to the onces constructed in Chapter 5 for propositional logic. This
set of deductive rules will however be more complex since there are more
things to consider once we extend the calculus to include first order logic.
The basic idea however will be the same, we look for connections through
the matrix, but this time they do not all have to be ground, sometimes
the we need to substitute the free variables to get connections. Sometimes
there is no substitution that will give grounds for connections between two
literals, since the terms inside the two literals do not unify, this is where the
unification algorithm comes into play.

We can start off with the simplest rule first which is also is present in the
propositional theorem prover.

rl [init]:

< none ; nix ; [CL1, CLSET1] ; TL1 - TL2 >
=> ------------------------------------------

< none ; CL1 ; [CLSET1] ; TL1 - TL2 > .

We start off by selecting a clause from our matrix as our active clause, since
all paths must be connected for this to be a valid formula we might as well
pick a clause, since all paths traverse every clause. There has been added two
TrmLists inside our SearchState elements, as you can see. The reason for
including these elements will be clear once we start to look for connections
throughout the matrix.

We will once again use a meta program to control the deductive rules, this is
why the rules have the same names, this makes it easy to recycle the already
somewhat optimized algorithm from the propositional theorem prover. To
optimize a first order theorem prover there are more things to consider than
in the propositional case, where a smart way to prune the search space will
get you far. Here we have efficiency of unification algorithms and clause copy
management on top of the already existing search space problem.

The way variables are constructed in this specification forces us to manually
bind variables to other terms throughout the matrix. In other programming
languages we would use some kind of regular variable to represent the vari-
ables in our first order terms (naturally) and once the variable is bound to
a value, this is transparent throughout the matrix or formula. This becomes
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more complex here, and is also why we need to include the two TrmLists
inside our SearchState elements.

It might be useful to see the propositional rule once more before we jump to
the first order version of the same rule.

rl [negLitInPath]:

< LIT1, LITSET1 ; [- LIT1, LITSET2] ; M >
=> -----------------------------------------

< LIT1, LITSET1 ; [LITSET2] ; M > .

This rule cuts off paths already known to be connected, since any path tra-
versing LIT1 and - LIT1 inside the active clause will be connected, those are
cut off from our search. The first order version of the same rule states ex-
actly the same, the only difference is that the connections here can be either
ground or contain free variables.

crl [negLitInPath]:
< ((P1(TL)) , LITSET1) ; [(- (P1(TL’))) , LITSET2 ] ; M ; TL1 - TL2 >

=> --------------------------------------------------------------------
< ((P1(unify(TL, TL’))) ,
(litSetSubst(LITSET1, genSubstList(TL, TL’)))) ;

clauseSubst(([ LITSET2 ]), genSubstList(TL, TL’)) ;

matrixSubst(M, genSubstList(TL, TL’)) ; TL - TL’ >

if (unify(TL, TL’) =/= fail) .

This rule is conditional, unlike the rewrite rule in the propositional calculus.
The condition that has to be fulfilled for this pair of predicates to be a con-
nection through the matrix, is that the term lists inside the two predicates
must have a unifying substitution. This means that both TL and TL’ can
be ground and contain the same term lists, or if either contains variables
there has to be a unifying substitution for this pair of literals to become a
connected pair. All the other function calls inside the SearchState element
are functions that help us bind the variables that got bound to different
terms during unification. This has to be done to avoid binding variables to
different terms. Unfortunately this makes the SearchState element a bit
tricky to read, but the principle is exactly the same as in the propositional
case, we cut off paths already known to be connected. All paths travers-
ing the element - P1(TL) inside the active clause will be connected since

118



the active path contains the element P1(TL’), if TL and TL’ has a unify-
ing substitution. Notice that our two last TrmLists inside the SearchState
element is the two TrmLists that had a unifying substitution, which gave
ground for the connection. The reason for doing this is that our matrix is
in some sense scattered out between the different SearchState elements.
Each SearchState element represent one or more paths through the matrix.
When this rewrite rule is applied to a SearchState element and variables are
bound, we must be able to tell the rest of the matrix that these variables are
in fact now bound to some terms. Since it is the sum of all the SearchState
elements that represents our matrix, we must ensure that all these elements
get a hold of the latest information related to variable bindings. This will
be handled at the meta-level, where this piece of information will be handed
to the other SearchState elements, such that their variables are bound to
the same terms as they where here. This has to be done with both rewrite
rules that actually bind variables to terms, which are the rewrite rules that
look for connections. This does make the code look even more cryptic at
the meta-level, but hopefully the idea is clear. This is also a “side-effect”
of not having real variables, we have to manually bind variables to terms
throughout the matrix, which is represented in this implementation as a list
of SearchState elements.

If no connection was found using the previous rewrite rule we must look
for connections between elements inside the active clause and the remaining
matrix. Here the similarities between the propositional and the first order
version is also transparent. It is easier to see what happens in the proposi-
tional version of the rewrite rule so it will be presented first once again.

rl [negLitInMatrix]:

< PATH ; [LIT1, LITSET1] ; [[- LIT1, LITSET2], CLSET1] >
=> --------------------------------------------------------

< PATH, LIT1 ; [LITSET2] ; [CLSET1] >
< PATH ; [LITSET1] ; [[- LIT1, LITSET2], CLSET1] > .

Once a connection is established between an element inside the active clause
and the remaining matrix, we can cut off all other paths containing this
connection.
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crl [negLitInMatrix]:

< PATH ; [(P1(TL)) , LITSET1] ; [[(- (P1(TL’))) , LITSET2], CLSET1] ; TL1 - TL2 >

=> -----------------------------------------------------------------------------

< (litSetSubst(PATH, genSubstList(TL, TL’))) ,
(P1(unify(TL, TL’))) ;
clauseSubst([LITSET2], genSubstList(TL, TL’)) ;
matrixSubst([CLSET1], genSubstList(TL, TL’)) ; TL - TL’ >

< litSetSubst(PATH, genSubstList(TL, TL’)) ;
clauseSubst([LITSET1], genSubstList(TL, TL’)) ;
matrixSubst([[(- (P1(TL’))) , LITSET2], CLSET1], genSubstList(TL, TL’))
; TL - TL’ >

if (unify(TL, TL’) =/= fail) .

This rule does exactly the same with the additional condition that the term
lists inside the two predicates must unify (TL and TL’). All the other functions
calls inside the SearchState element substitute variable bindings that occur
as a result of the unification process. The clauseSubst function substitute
variable bindings in a clause, the matixSubst substitute variable bindings in
a matrix and so on. Here the two TrmLists that had a unifying substitution
are placed into the last two slots of the SearchState element again, the
reason for doing so is the same as in the previous rewrite rule. We need this
information to ensure that we do not bind variables to different terms in our
different SearchState elements, which combined represent our matrix.

If connections can not be found between elements inside the active path and
the active clause, or between the active clause and the remaining matrix, we
have no other choice than to extend our path. All attempts to prune the
search space has failed, this next rewrite rule specifies this transition.

rl [extendPath]:

< PATH ; [LIT1, LITSET1] ; [CL1, CLSET1] ; TL1 - TL2 >
=> ------------------------------------------------------

< PATH, LIT1 ; CL1 ; [CLSET1] ; TL1 - TL2 >
< PATH ; [LITSET1] ; [CL1, CLSET1] ; TL1 - TL2 > .

This rule is almost identical to the equivalent rule in the propositional the-
orem prover, as are the last two rewrite rules.
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rl [removeConnectedPaths]:

< PATH ; [none] ; M ; TL1 - TL2 >
=> ---------------------------------

valid .

rl [counterModel]:

< PATH ; [LIT1, LITSET1] ; [none] ; TL1 - TL2 >
=> -----------------------------------------------

notvalid .

These two rewrite rules state that we have paths without connections or
that a set of paths through the matrix are connected, playing the role of an
axiom or a countermodel (closed or open leaf node in an LK proof tree). To
construct a theorem prover based on these rewrite rules, we need to control
the application of the different rules just like we did in the propositional
version. The nice part is that this job has to some extent already been
done, since the rewrite rules play the same role here as they did in the
propositional case. Our meta program and strategies from our propositional
theorem prover can be recycled with very little modification. There is one
more problem that has to be addressed for this theorem prover to work, we
need to be able to copy free variable clauses. This will be the topic for the
next section.
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7.4 Copying Free Variable Clauses

In this section we will construct clause copies of free variable clauses in the
matrix. As we saw earlier we might need to construct copies of the free
variable clauses to prove formulas. The way that the variables have been
constructed in the first order language specified in Maude gives us the pos-
sibility to represent as many variables as we like, since a variable is nothing
but a V followed by a natural number. We will not run out of natural num-
bers so we always have a fresh supply of new variables. The algorithm for
constructing clause copies will use the fact that all matrices containing a set
of variables (represented like this) will have a largest variable somewhere in
the matrix. Since variables are just V signs followed by a natural number
one of them has to be the largest. To guarantee that our copied clause does
not contain any variables that already exists in the matrix, we only have to
choose a set of fresh variables larger than the largest variable in the matrix.
This is the whole idea. There is one more thing that must be taken into con-
sideration and that is the fact that there can be several free variable clauses
inside the matrix, therefore we have to develop a fair copy scheme to avoid
getting stuck with only copies of one clause that will not help us prove the
formula anyway.

Let us recapture the example presented earlier where we had a skolemized
formula in its DNF representation.

[
[¬P (X)]

[
P (a)
P (b)

]]

Represented according to our specification of the first order formulas in their
matrix form, the formula will look like this:

[[P(V(1))], [P(a)], [P(b)]]

The matrix just presented only has one clause that contains free variables so
after a fresh copy of this clause has been constructed it will look something
like this:

[[P(V(M))], [P(V(1))], [P(a)], [P(b)]]

Where M is a natural number different from 1. Using the strategy just men-
tioned where we use larger natural numbers, M would become 2 or larger.
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Clause copying is not something that should be done without concern of
what these copies represent wrt. efficiency of a proof search. We are after
all trying to minimize the paths we have to investigate using the connection
method, and each clause that we copy will multiply the number of paths
through the matrix with the number of elements inside the clause.

Now we will take a look at how these clause copies are constructed in the
connection-based theorem prover that has been described in the previous
section. I will try to construct function names that are informative since
there will not be room for the specifics about every function.

The theorem prover will work in rounds where we attempt to prove a formula
allowing no clause copies, if this fails, we allow one clause copy and so on up
to a limit since countermodels can be infinite in size.

The clause copying is done with a series of functions, the ssGenN function
will return a SearchState element with N free variable clause copies inside
its remaining matrix. This will be done in a fair manner so if there are three
free variable clauses and we give the parameter nine to this function, we will
generate three copies of each of the free variable clauses inside the matrix.

op ssGenN : SearchState Nat -> SearchState [ctor] .

The next function will return all the clauses containing free variables inside
the matrix, we need this list of clauses to generate a fair copy scheme where
no clause gets copied more often than others.

op genCopyList : Matrix -> ClauseList [ctor] .

The implementation is straightforward:

eq genCopyList([none]) = nil .

eq genCopyList([CL1, CLSET1]) = if(containsVar(CL1)) then
(CL1 ** genCopyList([CLSET1])) else genCopyList([CLSET1]) fi .

The function containsVar is a boolean function determining whether or not
a clause contain some predicate with free variables, the ClauseList’s are
concatenated with the token **. Now we have the list of clauses containing
free variables, the ones that might have to be copied for us to be able to
prove the formula. What we want to do now is to make a fair copy procedure,
meaning that all free variable clauses inside the matrix will get copied before
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some of them gets copied twice. This is a strategy that is fair and will always
succeed in proving any formula, it is on the other hand not always optimal
since some of the free variable clauses might not need to be copied to prove the
formula. Every copy of a clause will generate new paths through the matrix,
the exponentially growing search space grows rapidly for every new clause in
the matrix. So although the copies are needed, one of the optimizations that
has to be dealt with when constructing a theorem prover for first order logic
(based on the connection method) is the clause copy procedure. J. Otten
and W. Bibel uses dynamic copies of the clauses, which means that they
construct new copies of clauses during the proof search. The copies created
here are static, which means they are constructed prior to the proof search.
The deductive rules would become a bit more complex if we were to copy
free variable clauses dynamically, but this can optimize the proof search in
many cases. Lets take a look at how these copies are made. The function
ssGenN mentioned on the previous page is used to kick off the process:

eq ssGenN(< none ; nix ; M ; TL1 - TL2 >, N) =

< none ; nix ; genNcopies(M, N) ; TL1 - TL2 > .

This function only calls another function that will generate the matrix with
N copies of the free variable clauses. The function genNcopies returns the
matrix M with N copies of free variable clauses. Let us take a look at how this
function is implemented.

eq genNcopies([CLSET1], N) =
helpGenN([CLSET1], genCopyList([CLSET1]), genCopyList([CLSET1]), N) .

This function calls its help function with the matrix, two lists of the free
variable clauses, and the upper bound on how many copies we are allowed to
make. The reason for the two lists of possible clauses is that we use one of
them as a stack of free variable clauses that are to be created. Once we run
out of such elements on this stack, which will happen every time the upper
bound is larger than the number of free variable clauses in the matrix. Then
the second list is copied over to the stack, and the process can start all over
again, giving us a fair strategy where no clause is copied more often than any
other clause. This is what the function helpGenN does.

eq helpGenN([CLSET1], nil, nil, N) = [CLSET1] .
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eq helpGenN([CLSET1], CLLIST, nil, N) =
if(N > 0) then helpGenN([CLSET1], CLLIST, CLLIST, N) else
[CLSET1] fi .

eq helpGenN([CLSET1], CLLIST, (CL1 ** CLLIST’), N) =
if(N > 0) then
helpGenN([copyClause(CL1, [CLSET1]), CLSET1], CLLIST, CLLIST’, (N - 1))
else ([CLSET1]) fi .

The function copyClause creates a copy of the free variable clause with
fresh variables, using the mentioned strategy where every matrix with free
variables will have a variable which is largest. This function (copyClause)
uses a lot of different functions to accomplish this task, hopefully the names
of the different functions will provide the information that is needed since
there will not be room to look at them all in detail. The main idea is to
investigate the matrix and locate the largest variable, then investigate the
clause to be copied and find out how many variables is contained there. Then
we substitute each of them with larger variables than those already existing
in the matrix.

eq copyClause([LS1], [CLSET]) =
clauseSubst([LS1], genClauseSubst([LS1], [CLSET])) .

The function clauseSubst will substitute the variables inside the clause with
the terms given in a substitution list, which is generated by the function
genClauseSubst. The substitution list generated by this function will be
fresh variables which are larger than the ones already contained inside the
matrix.

eq genClauseSubst([LS1], [CLSET]) =
helpClauseGen(getMax([CLSET]), getRealClauseVarList([LS1])) .

The function getMax returns the largest variable inside the matrix, or the nat-
ural number belonging to this variable. The function getRealClauseVarList
returns the variables contained in the clause. It is called the real one since I
already have another function returning the variables inside the clause, this
function is identical except for one detail, the real variable list returned by
this function does not contain several copies of equal elements. The other
function (the not real function) will do that if some variables occur more
than once inside the clause. The implementation of these two functions are
straightforward and can be found in the appendix, together with the entire
modules. We skip to the part where we create the new variables.
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eq helpClauseGen(N, nil) = nil .

eq helpClauseGen(N, (T1, TL)) =

< T1 -> V(N + 1) > :: helpClauseGen((N + 1), TL) .

Remember that the function getRealVarList returns all variables contained
inside the clause we are to copy. When this function (helpClauseGen) is
called its second argument is the list of free variables occurring inside the
clause. These are to be substituted by larger variables. This function gen-
erates a substitution list where all the variables inside the clause will be
substituted by some larger variable. This function will generate a substitu-
tion list using this information together with the natural number belonging
to the largest variable inside the matrix. Then the result will be passed to
the function clauseSubst which will substitute the variables with the fresh
ones, and our copy-clause has been created. A small example will probably
explain better than all this code.

We want to create a copy of the clause [P(V(2),V(3))] belonging to the
matrix [[P(V(2),V(3))],[Q(V(1))]]. We call the function copyClause
with the matrix and the clause that we are interested in making a fresh
copy of. We know that the variables contained inside the copy can not be
V(1), V(2), V(3).

copyClause([P(V(2),V(3))], [[P(V(2),V(3))],[Q(V(1))]]) .
rewrites: 67 in 0ms cpu (0ms real) (~ rewrites/second)

result Clause: [P(V(4),V(5))]

As we can see the variables inside the clause has been substituted by larger
variables which are not contained inside the matrix. Therefore binding these
variables to terms will not affect the variable bindings that can occur from
unification between elements in the “old” copy of the clause. If we go back
to the function which generates clause copies of all the free variable clauses
up to a point, we see that this process is repeated until the limit we provide
is reached.

eq helpGenN([CLSET1], nil, nil, N) = [CLSET1] .

eq helpGenN([CLSET1], CLLIST, nil, N) =
if(N > 0) then helpGenN([CLSET1], CLLIST, CLLIST, N) else
[CLSET1] fi .
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eq helpGenN([CLSET1], CLLIST, (CL1 ** CLLIST’), N) =
if(N > 0) then
helpGenN([copyClause(CL1, [CLSET1]), CLSET1], CLLIST, CLLIST’, (N - 1))
else ([CLSET1]) fi .

In the last equation we see that we create copies of all the elements in the free
variable clause stack which is the third argument to the function helpGenN.
Below is an example of how this set of functions will produce what we are
looking for. The implementation might be a bit tricky to understand, but
hopefully the idea is understandable.

Before we start a proof search we can create N free variable clause copies with
the function ssGenN (short for SearchStateGenerateNcopies).

Our matrix in this example will be this one:

[
[Q(Y )] [¬P (X)]

[
P (a)
P (b)

]]

Represented according to our own specification of the first order language it
will look like this:

[[Q(V(1))], [- P(V(2))], [P(a), P(b)]]

The deductive rules will once again work on the triples with the three struc-
tures needed, the active path, the active clause and the remaining matrix.
The function ssGenN takes such a triple as input, and generates N fresh vari-
able clauses inside the matrix before we start our investigation of validity.

If we call the function ssGenN with the parameter 3 as its last argument and
the SearchState element with the matrix just presented as its remaining
matrix this is the result:

reduce in CONNECTION :
ssGenN(< none ; nix ; [[Q(V(1))],[- (P(V(2)))],[(P(a)),P(b)]] ; nil - nil >, 3) .
rewrites: 249 in 0ms cpu (0ms real) (~ rewrites/second)
result SearchState: < none ; nix ;
[[- (P(V(2)))],[- (P(V(3)))],[- (P(V(5)))],[Q(V(1))],[Q(V(4))],
[(P(a)),P(b)]] ; nil - nil >
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We see that we have created two copies of the clause [- P(V(2))] and one of
the free variable clause [Q(V(1))] inside the matrix. Now all we have to do in
order to have a first order theorem prover is to control the deductive rules in a
way which makes this system sound. Fortunately the similarities between the
propositional version of the rewrite rules and their first order counterparts
are very strong. The next section will illustrate how the deductive rules are
controlled, plus do some test-runs.
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7.5 Controlling the Execution

In this chapter we will use the ability to create meta programs which con-
trol the execution/rewriting of other rewrite theories in Maude once again
to create a sound calculus. The nice part is that we have created almost
everything we need in Chapter 6, since the deductive rules play the same
role for both calculuses (propositional and first order). The largest difference
is that we have to construct clause copies during our proof search if we fail
to prove a formula. This has already been implemented at the object-level,
so all we have to do is to call this function from the meta-level, where we
allow more and more clause copies, up to a limit. Since the strategies con-
structed in Chapter 6 are quite optimized for the calculus, there is no need
to consider the less efficient ways of controlling the proof search anymore.
We might as well use the fastest strategy implemented for the propositional
case for our first order calculus. Let us recapture the fastest strategy from
the propositional case.

eq strategy4(M, ACTIVE, STACK) =

if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, 0) =/= failure)
then

strategy4(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, 0)), STACK)

else if(simplify(M, ACTIVE) == ’notvalid.ValidNotValid)
then ’notvalid.ValidNotValid

else if(simplify(M, ACTIVE) == ’valid.ValidNotValid)

then strategy4(M, metaPop(STACK), metaPopped(STACK))

else if (metaXapply(M, ACTIVE, ’negLitInMatrix, none, 0, unbounded, 0) =/= failure)

then

strategy4(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0))),
metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0)))
, STACK))

else if(metaXapply(M, ACTIVE, ’extendPath, none, 0, unbounded, 0) =/= failure)

then

strategy4(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’extendPath, none, 0, unbounded, 0))),
metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’extendPath, none, 0, unbounded, 0)))
, STACK))

else ’valid.ValidNotValid
fi fi fi fi fi .
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Unfortunately the code is still hard to read, but the idea behind the strategy
was to optimize the memory usage, and to investigate one path through the
matrix, before we start to look at other paths. This is handled by loading
one of the new SearchState elements that was generated by some of the
rewrite rules, onto a stack, and finishing off the one with the longest active
path first. As we saw this is very important for efficiency when matrices have
few connections. And this strategy generally tries to do the same job once,
while some of the poorer strategies do the same job several times over.

The nice part is that this strategy needs very little modification to work
for the first order deductive rules. As we have seen the SearchState ele-
ments look at little bit different in the first order version of the calculus. We
will need information about what variables who got bound to what terms
during unification and the two TrmLists in the SearchState elements can
provide this information. Lets illustrate the problem with a small example,
lets say that our proof search is half way through and that we have several
SearchState elements “alive”. The rewrite rule ’negLitInPath is now being
applied to one of our SearchState elements looking something like this:

< P(V(1)) , Q(V(2)) ; [- P(a), K(f(b))] ; [...] ; TL1 - TL2 >

After the rule ’negLitInPath has been applied to the SearchState element
it will look like this:

< P(a) , Q(V(2)) ; [K(f(b))] ; [...] ; V(1) - a >

We see that the variable V(1) has been substituted by the term a throughout
the SearchState element, but there can be many other such SearchState
elements where the variable V(1) still occurs free. The two terms (or term
lists containing one element) that has been placed inside the last two slots
of our SearchState element, gives us the information we need to locate the
variable bindings that occurred during unification. Since we can generate
the most general unifier for the two term lists, we now have exactly what
we need. This will also be handled at the object-level and called from the
meta-level. At the object-level we will have a function called genAndSubst
which is defined like this:
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op genAndSubst : SearchState SearchStateList -> SearchStateList [ctor] .

The idea is to bind the variables that got bound during unification in all
the other SearchState elements who combined represent our matrix. So
once a variable binding has occurred in one of the SearchState elements it
will be visible in all the others after this function has been called. Back to
our example where the SearchState element looks like this after the rule
’negLitInPath has been applied to it:

< P(a) , Q(V(2)) ; [K(f(b))] ; [...] ; V(1) - a >

Lets say we that our stack of not yet investigated SearchState elements is
represented by the token sStateList. Now this function is called:

genAndSubst(< P(a) , Q(V(2)) ; [K(f(b))] ; [...] ; V(1) - a >, sStateList) =

ssListSubst(sStateList, genSubstList(V(1), a)) .

The function ssListSubst applies a substitution to the literals inside the all
the elements of a SearchStateList:

var SUBL : SubstitutionList .

eq ssListSubst(nil, SUBL) = nil .

eq ssListSubst(< PATH ; CL1 ; M ; TL1 - TL2 > SSTATELIST, SUBL) =
(< litSetSubst(PATH, SUBL) ; clauseSubst(CL1, SUBL) ;
matrixSubst(M, SUBL) ; TL1 - TL2 >) ssListSubst(SSTATELIST, SUBL) .

Now the variable bindings that occurred during unification inside one of
the SearchState elements will be visible inside all the other SearchState
elements, which combined make up our matrix. This process, and the fresh
variable clause copies that is created and added during a proof search, is
really what separates our first order meta program from the propositional
version.

The functions that make the variable bindings visible throughout all the
elements of our SearchStateList operates at the object-level, but we control
our term rewriting at the meta-level, so these functions will be called from
the meta-level with the help of one of the pre-implemented descent functions;
metaReduce.
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op metaGenAndSubst : Module Term Term -> Term [ctor] .

eq metaGenAndSubst(M, T, T’) =
getTerm(metaReduce(M, ’genAndSubst[T, T’])) .

This function calls genAndSubst from the meta-level, and handles our vari-
able bindings that occur during unification. We are now ready to look at the
slightly modified version of strategy4 from the propositional version:

eq strategy2(M, ACTIVE, STACK) =
if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, 0) =/= failure)

then
strategy2(M, getTerm(metaXapply(M, ACTIVE,

’negLitInPath, none, 0, unbounded, 0)),
metaGenAndSubst(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, 0)),STACK))

else if (simplify(M, ACTIVE) == ’notvalid.ValidNotValid)

then ’notvalid.ValidNotValid

else if (simplify(M, ACTIVE) == ’valid.ValidNotValid)

then

strategy2(M, metaPop(STACK), metaPopped(STACK))

else if (metaXapply(M, ACTIVE, ’negLitInMatrix, none, 0, unbounded, 0) =/= failure)

then

strategy2(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0))),
metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0))),
metaGenAndSubst(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0)))
,STACK)))

else if (metaXapply(M, ACTIVE, ’extendPath, none, 0, unbounded, 0) =/= failure)

then

strategy2(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’extendPath, none, 0, unbounded, 0))),
metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’extendPath, none, 0, unbounded, 0)))
, STACK))

else ’valid.ValidNotValid

fi fi fi fi fi .

The code is once again a bit tricky to read as with most of these meta pro-
grams, but the only difference from the propositional version is that we now
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call the function metaGenAndSubst which take care of the variable bindings
that occurred during unification throughout our matrix, which is represen-
ted by our SearchStateList (STACK). Here is a code segment that illustrates
what is happening:

if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, 0)
=/= failure)

then

strategy2(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, 0)),

metaGenAndSubst(M,

getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, 0)),

STACK))

If the rule ’negLitInPath can be applied to our active SearchState element
(ACTIVE) then this might lead to variable bindings. To make the variable
bindings visible throughout our matrix which consists of all the SearchState
elements lying on the STACK, we call the function metaGenAndSubst which
will substitute all variables that got bound during unification in the all the
elements in our SearchStateList (STACK). The first element that this func-
tion takes as an argument is the resulting SearchState element after the rule
’negLitInPath was applied to the ACTIVE SearchState element. This ele-
ment is represented by a large term which does make the code a bit difficult
to read:

getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, 0))

This element will now contain the two term lists that had a unifying sub-
stitution (which gave ground for our connection) in the last two slots of the
SearchState element. Now we have the ability to tell the other SearchState
elements what has happened during unification, this is handled by the func-
tion metaGenAndSubst which calls the functions described earlier, which are
implemented at the object-level.

133



The process of binding variables throughout the STACK is also done when the
rule ’negLitInMatrix is applied to the ACTIVE SearchState element.

if (metaXapply(M, ACTIVE, ’negLitInMatrix, none, 0, unbounded, 0)
=/= failure)

then

strategy2(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0))),

metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0))),

metaGenAndSubst(M,
metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, 0)))
,STACK)))

Here the function metaGenAndSubst is also called to ensure that all variable
bindings that occurred during unification is visible throughout the matrix.
Besides the variable binding process just described, there really is no differ-
ence between this strategy and the fourth strategy from the propositional
version.

Now its time to take a look at the meta program that actually controls the
execution of the first order calculus presented. It will have very strong sim-
ilarities with its propositional counterpart. We want to investigate whether
a formula is valid or not (naturally) and we will allow at most N free vari-
able clause copies, then we call the function exProve2 with the following
arguments:

• The meta representation of the CONNECTION module

• The meta represented SearchState element

• The natural number N

The matrix to be investigated will be placed inside the remaining matrix
of the SearchState element, given as the second argument to the function
exProve2. Since a first order theorem prover is also a propositional the-
orem prover, I have made a function which tests whether or not the matrix
(formula) is ground, this is to avoid unnecessary work on such formulas.
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eq exProve2(M, T, N) =

if(getTerm(metaReduce(M, ’isGround[T])) == ’true.Bool)

then prove1(M, T) else

helpEx2(M, T, 0, N) fi .

The function isGround tests whether a formula contains any free variables, if
it does not it can be tested as a propositional formula. The function prove1
investigates validity using the fastest strategy from the propositional meta
program. If the formula is not ground, the function helpEx2 is called with
the meta representation of the CONNECTION module, and the meta represented
SearchState term, and two natural numbers. These numbers represent an
upper and a lower bound on the number of clause copies allowed during the
proof search. In other words we start off with 0 clause copies, then we add
more and more free variable clause copies if we fail to prove the formula, if
the proof search fails when N free variable clause copies are added, we halt.
This is done with the function helpEx2.

eq helpEx2(M, T, N, N’) =

if (N > N’) then ’notvalid.ValidNotValid

else if (prove2(M, metaSSgenN(M, T, N)) == ’valid.ValidNotValid)

then ’valid.ValidNotValid else

helpEx2(M, T, (N + 1), N’) fi fi .

Remember that the function metaSSgenN returns the SearchState element
with N free variable clause copies. The function prove2 executes a proof
search using the modified version of the fourth strategy from the propositional
version, where variable bindings are visible throughout the matrix. Lets take
a look at a small example, one of the matrices presented earlier can be used
once again. This matrix is chosen since it is very simple and it demands
copies of the free variable clause to be proven.

[
[¬P (X)]

[
P (a)
P (b)

]]
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The matrix is represented according to our specification, and placed inside
the third argument of our SearchState element.

==========================================
reduce in META-PROG : downTerm(exProve2([’CONNECTION],
upTerm(< none ; nix ; [[- (P(V(1)))],[(P(a)),P(b)]] ; nil - nil >), 0), X:Term) .
rewrites: 189 in 10ms cpu (19ms real) (18900 rewrites/second)

result ValidNotValid: notvalid
==========================================
reduce in META-PROG : downTerm(exProve2([’CONNECTION],
upTerm(< none ; nix ; [[- (P(V(1)))],[(P(a)),P(b)]] ; nil - nil >), 1), X:Term) .
rewrites: 601 in 0ms cpu (4ms real) (~ rewrites/second)

result ValidNotValid: valid
==========================================

As expected allowing zero clause copies fails to prove the formula, while
allowing one clause copy is sufficient.

7.6 Backtracking

The strategy that has been presented is sound (it will only allow us to prove
valid formulas), but we might end up with variable substitutions that are not
desirable, take a look at the formula presented below:

[
[¬Q(b)] [¬P (b)] [¬P (a)]

[
P (X)
Q(X)

]]

Once the substitution [X/a] is chosen to make a connected pair of ¬P (X) and
P (a) we have deadlocked the whole proof search. So although this formula
is valid, we will never be able to prove it once the substitution [X/a] is
chosen. The first strategy presented never backtracks so we can end up
in situations where an “unlucky” substitution paints us into a corner. We
have different choices when the rewrite rules of the calculus is applied to a
SearchState element, three of the rewrite rules will have an impact on the
different substitutions that can be made. The choice of active clause really
determines what connections we can look for, since the literals inside the
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active clause are the only literals eligible for connections when we start out.
So we have to try out every clause inside the matrix as our first active clause.

The two rewrite rules that actually bind variables and look for connected
pairs can naturally lead to different proof searches in this respect also. So
if every possible choice of application of these two rules have been examined
as well, we can be sure that the formula is not provable (with that many
clause copies at least). This can be handled in at least two ways, we can let
Maude handle it “on its own” by implementing a calculus that is sound in it
self, where the rules can be applied in any order. This can be done with the
use of larger conditions on the different rewrite rules. If this is implemented
we can simply perform a search which will investigate the tree of possible
terms that can be reached. If valid is a reachable state, Maude will find
it, the problem is that this can literally take years. The pre-implemented
’search’ command does not use a depth first search, and then backtracks
if it fails to locate the state (sort of like Prolog does), but ’search’ uses a
breadth first strategy as mentioned earlier. This leaves us with no other
option once again but to use meta programming to solve the problem. It
should be mentioned that this extension might make the calculus complete,
but it does on the other hand add an awful amount of overhead, especially
when matrices become a bit large and there are many different substitutions
that can generate connected pairs. This strategy will use two constructs to
perform the backtracking.

• metaXapply can locate all possible matches

• We store the other possible matches (choices)

The combination of these two will give us what we need to investigate all
possible substitutions through the matrix. What we need to do is to try out
every clause as our first active clause, and to store other choices that the two
rewrite rules that look for connected pairs could have made along the way.
If we get to a point where we fail to prove the formula, we go back to the
place where we had more choices than one, and start over. I mentioned that
the function metaXapply can skip matches, this means that we can see if we
had other choices by forcing it to skip the first match. After all we need a
match no. 1 to have a match no. 2 for some rewrite rule. To store a moment
in time where we had more choices than one, we will use this structure:
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sort BTrack .
sort BTrackList .
subsort BTrack < BTrackList .

op bTr : Nat Nat Term Term -> BTrack [ctor] .
op nil : -> BTrackList [ctor] .
op __ : BTrackList BTrackList -> BTrackList [ctor id: nil assoc] .

The backtrack elements or BTrack as they were called contain two natural
numbers, and two terms. The two natural numbers relate to the different re-
write rules that actually bind variables (’negLitInPath, ’negLitInMatrix).
The reason for storing natural numbers is that this will tell the function
metaXapply how many matches to skip before rewriting the term. If a term
can be rewritten in n different ways, then metaXapply will rewrite the term
differently depending on what natural number 0 < i < n we provide as its last
argument. This is what the last argument of this function is used for, it skips
the first i ∈ N matches. Naturally there will have to be more than i matches
for this to make any sense. The last two elements inside our BTracks are
terms, they correspond to our ACTIVE SearchState element, and our STACK
of such elements. This strategy will be an extension of the strategy presented
earlier where we load the not yet investigated SearchState elements onto
a stack. The backtrack elements contain enough information for us to start
the proof search over from a point in time where we had more choices than
one. The whole idea behind this strategy is to locate places where we have
more choices than one, then apply one choice and store the others, if we get
to a point where we fail to prove the formula, we go back to a state where
we could have taken another turn, and start over.

The code in this implementation is awfully messy, since there are many things
to consider when we want to span out the whole tree of possibilities. There
will be used some help functions along the way; push, pop, and popped will
perform the stack operations on our BTrack lists which functions as a stack
of unexplored ways to apply deductive rules. The functions bFirst, bSecond,
bThird and bFourth pick out the first, second (and so on) element from a
BTrack four-tuple.

Although the code might look a bit cryptic, this is the whole idea: We always
try to skip one match when we look for connections with the two rewrite rules
’negLitInPath and ’negLitInMatrix, if we are able to skip one match then
there are at least two matches (two choices). Apply the rule without skipping
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the first match, and store the second choice, by incrementing the natural
number belonging to the rewrite rule inside the bTrack element. Once we
get to a point where we fail to prove the formula, “load” one of the old choices
and start over, if there are no more old choices we conclude that it is not
possible to prove the formula allowing this many clause copies. This process
is repeated with every clause in the matrix as our first active clause, since
this also determines the possible variable bindings that can occur.

eq strategy3(M, ACTIVE, STACK, N1, N2, BTL1) =

if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, (N1 + 1))
=/= failure) then

strategy3(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, N1)),
metaGenAndSubst(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, N1)),STACK), 0, 0,
push(bTr((N1 + 1), N2, ACTIVE, STACK), BTL1))

else if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, N1)
=/= failure) then

strategy3(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, N1)),
metaGenAndSubst(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, N1)),STACK), 0, 0, BTL1)

else if(simplify(M, ACTIVE) == ’notvalid.ValidNotValid)

then if(pop(BTL1) == nil) then ’notvalid.ValidNotValid
else strategy3(M, bThird(pop(BTL1)),

bFourth(pop(BTL1)),
bFirst(pop(BTL1)),
bSecond(pop(BTL1)), popped(BTL1)) fi

else if(simplify(M, ACTIVE) == ’valid.ValidNotValid)

then

strategy3(M, metaPop(STACK), metaPopped(STACK), N1, N2, BTL1)

else if (metaXapply(M, ACTIVE, ’negLitInMatrix, none, 0, unbounded, (N2 + 1))
=/= failure)

then
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strategy3(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, N2))),
metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, N2)))
, metaGenAndSubst(M,
metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, N2)))
,STACK)), 0, 0,
push(bTr(N1, (N2 + 1), ACTIVE, STACK), BTL1))

else if(metaXapply(M, ACTIVE, ’negLitInMatrix, none, 0, unbounded, N2)
=/= failure)

then

strategy3(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, N2))),
metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, N2)))
, metaGenAndSubst(M,
metaFirst(getTerm(metaXapply(M, ACTIVE,
’negLitInMatrix, none, 0, unbounded, N2)))
,STACK)), 0, 0, BTL1)

else if(metaXapply(M, ACTIVE, ’extendPath, none, 0, unbounded, 0) =/= failure)

then

strategy3(M, metaFirst(getTerm(metaXapply(M, ACTIVE,
’extendPath, none, 0, unbounded, 0))),
metaPush(metaLast(getTerm(metaXapply(M, ACTIVE,
’extendPath, none, 0, unbounded, 0)))
, STACK), 0, 0, BTL1)

else ’valid.ValidNotValid

fi fi fi fi fi fi fi .

Let us start off by explaining how we store un-investigated choices along the
way, since this is really the most important feature. In the first strategy
presented for our first order calculus we saw if the rule ’negLitInPath could
be applied to our SearchState element. We do this here as well but here we
ask whether it can be applied in more ways than one first, by increasing the
last parameter to the metaXapply function:

if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, (N1 + 1))

140



If this function does not return a failure term, we know that we have more
than one choice. We apply the first choice (since there is a N1 + 1’th choice
there has to be a N1’th choice), and we store the second choice in a BTrack
element, and push that element onto the stack, which is our last parameter
(BTL1 short for backtrack list). The backtrack element contains the informa-
tion we need to go back and start over, it contains the natural number telling
us how many matches to skip, and the ACTIVE SearchState element, and
the STACK. So all the backtrack elements represent places in time where we
had other choices.

if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, (N1 + 1))
=/= failure) then

strategy3(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, N1)),
metaGenAndSubst(M, getTerm(metaXapply(M, ACTIVE,
’negLitInPath, none, 0, unbounded, N1)),STACK), 0, 0,

*** here we push the other choice onto the stack

push(bTr((N1 + 1), N2, ACTIVE, STACK), BTL1))

If this if-test fails there were only one match (or none) and we do not have to
worry about other choices being neglected by the rewrite rule ’negLitInPath.
This is what separates this strategy from the previous, we investigate whether
it is possible to skip one match (if there are more choices than one), and if
that is possible, we store the next possible rewrite application in a BTrack ele-
ment, and apply the rule with no matches skipped. If at some point we locate
an unconnected path, we go back to our previous choices and start over. We
do the same thing for both rewrite rules that bind variables, ’negLitInPath
and ’negLitInMatrix. If we pop one of the old choices off the stack of
BTrack elements, then this rule will also try to skip one rewrite step on both
rewrite rules. This will generate the whole tree of possible matches (rewrite
rule applications).

When a BTrack element which represents a rule application with the rewrite
rule ’negLitInMatrix is popped off the stack it will first try to match the
other rewrite rules, but this will always fail, since it failed the last time
around, (that is how we got down there in the first place, all the if-tests
above failed), so this can not lead to any new choices. Lets look at the code
which actually backtracks:
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if(simplify(M, ACTIVE) == ’notvalid.ValidNotValid)

then if(pop(BTL1) == nil) then ’notvalid.ValidNotValid

else strategy3(M, bThird(pop(BTL1)),
bFourth(pop(BTL1)),
bFirst(pop(BTL1)),
bSecond(pop(BTL1)), popped(BTL1)) fi

If our SearchState element ACTIVE contains an unconnected path we must
start over again, and we will do so by popping one of the old choices (BTrack
elements) off the stack, and calling the same function with the elements
contained inside the BTrack element. Remember that this set of information
gets us starting at one of our un-investigated choices. The functions bFirst,
bSecond and so on gives us the first, second. . . argument of the four-tuple
that constitutes a backtrack element (BTrack). If the stack of un-investigated
choices is empty (nil) we can conclude with the fact that we are not able to
prove the formula.

The function just presented is the core of the strategy which is complete, but
it will be ran in turns as well with more and more free variable clauses added,
and with all the clauses inside the matrix as its first active clause. The same
strategy where we try to skip matches will be used to select different start-
clauses as our active clause. Since a matrix with n clauses can apply the
rewrite rule ’init in n ways, or with 0 · · · (n − 1) skipped matches before
it fails to locate a match. We will call metaXapply with larger and larger
natural numbers until it fails to locate a match, which means that we have
asked it to skip more matches then there were clauses inside the matrix. This
is handled by the functions prove3 and init2.

eq init2(M, T, N) =
metaXapply(M, T, ’init, none, 0, unbounded, N) .

eq prove3(M, T, N) =
if (init2(M, T, N) =/= failure) then

if (strategy3(M, getTerm(init2(M, T, N)),
’nil.SearchStateList, 0, 0, nil) == ’valid.ValidNotValid)
then ’valid.ValidNotValid

else
prove3(M, T, N + 1) fi

else ’notvalid.ValidNotValid fi .
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eq exProve3(M, T, N) =
if(getTerm(metaReduce(M, ’isGround[T])) == ’true.Bool)
then prove1(M, T) else
helpEx3(M, T, 0, N) fi .

eq helpEx3(M, T, N, N’) =
if (N > N’) then ’notvalid.ValidNotValid
else if (prove3(M, metaSSgenN(M, T, N), 0) == ’valid.ValidNotValid)
then ’valid.ValidNotValid else
helpEx3(M, T, (N + 1), N’) fi fi .

This piece of code in an extension of another strategy which is almost un-
readable, this does make it a bit hard to read, but hopefully the idea is clear.
We store choices that could have been made at some point and start over
from there if we fail to prove the formula. Since the procedure used to store
other possibilities when the rule ’negLitInMatrix is attempted is so similar
to the one used for the rule ’negLitInPath, it has not been described in
detail.

The reason for including the backtracking strategy was to construct a com-
plete calculus, it will never enter any speed contest for first order theorem
proving, or actually it will in the next section of this chapter, but that is a
very unofficial contest.
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7.7 Test Results

In this section we will do some test runs with the first order theorem prover
that has been presented in this chapter, the test set contains 15 formulas.
The first formula is taken from an example found in some literature on how to
prove first order formulas, (Bibel and Eder’s summary of the different logical
calculuses in The Handbook of Logic in Artificial Intelligence and Logic pro-
gramming [7]). They use this formula to illustrate why free variable clause
copies are needed, and it will naturally need free variable clause copies to be
proven. The rest of the formulas are taken from the TPTP library, actually
they are formulas that was published in the Journal of Automated Reasoning
as; Seventy-Five Problems for Testing Automatic Theorem Provers (by F .J.
Pelletier) [20], but are now part of the TPTP library.

Unlike in the propositional test set, we have no invalid formulas here. As we
know some formulas have countermodels which are infinite in size, on such
formulas the best theorem prover will be the one who gives up first, (such a
theorem prover is not hard to construct).

Test formula RWLogic - Complete RWLogic - Sound leanCop
1 10 ms 10 ms 0 ms
2 (pell20) 10 ms 0 ms 0 ms
3 (pell24) 1.7 m 80 ms 0 ms
4 (pell31) 0 ms 0 ms 0 ms
5 (pell32) 10 ms 10 ms 0 ms
6 (pell30) 10 ms 0 ms 0 ms
7 (pell40-1) 10 ms 10 ms 0 ms
8 (pell37) 450 ms 840 ms 0 ms
9 (pell36-1) 10 ms 10 ms 0 ms
10 (pell25) 10 ms 10 ms 0 ms
11 (pell28-1) 10 ms 10 ms 10 ms
12 (pell26-1) - 1710 ms 170 ms
13 (pell27) 570 ms 40 ms 0 ms
14 (pell27-1) 590 ms 50 ms 10 ms
15 (pell19) 20 ms 0 ms 0 ms

The test set can be found in the appendix. An open entry (-) means that we
got no result within one our.

The implementation with backtracking from the previous section is referred
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to as RWLogic - Complete, and the strategy presented prior to that one
is referred to as RWLogic - Sound. As we can see the cost of figuring out
whether we have more choices and storing them can become quite expensive.
But this is required to have a complete system, the other proof system is
faster but can fail to prove the validity of a formula.

The test results illustrate that dynamic clause copying can optimize the
search a great deal. The Prolog implementation (leanCop) uses dynamic
clause copies instead of static clause copies, this means that we create fresh
clause copies during the proof search. Test formula 12 requires a lot of free
variable clause copies to be proven. The free variable clause copy procedure
that was developed is fair, but not optimal in most cases, since we often gen-
erate a lot of free variable clause copies that are not needed, which generate
an even larger search space. If we are lucky when we create free variable
clauses dynamically we create the ones actually needed on the fly. On for-
mula 12 the rewrite logic implementation actually runs 12 proof searches,
since 11 free variable clause copies are required to prove the formula, (at
least with the fair scheme used here, not as many if we only copy the ones
actually needed). The worst case scenario when the fair copy procedure is
used is the need for many free variable copies of the same clause. If a matrix
contains n free variable clauses and we need m copies of the same clause, we
will have to generate n ·m free variable clause copies to prove the formula.
Since the fair copy procedure generates a copy of all the other free variable
clauses before it generates a new copy of the same clause twice.

Another thing that is interesting is that the implementation which backtracks
actually beats the non-backtracking strategy on formula 8. This is once again
due to the fact that we need free variable clause copies when formula 8 is
proved without backtracking. So even though the backtracking strategy is
not in any way clever, it can avoid deadlock substitutions which will force
the non-backtracking strategy to start over with an unnecessary clause copy.

We must keep in mind that leanCop, despite its size, is almost as good
as theorem provers get. Still with dynamic clause copies we would not be
able to beat its run times, since the overhead that comes with a high level
language such as Maude is quite expensive. It should be mentioned that
very little work has gone into optimizing the first order part of this calculus,
the only optimizations that has been implemented actually stem from the
propositional theorem prover. This is due to the fact that we did not really
set out to implement a first order theorem prover, but a propositional one.
Once the propositional theorem prover was up and running, we tried to
extend it to first order logic, but there is obvious room for improvement on
this part.
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8 Conclusion

The aim of this project was to see whether or not rewriting logic could be a
useful tool in automated deduction. The ability to specify user defined term
structures and deductive steps made rewriting logic seem like an interesting
choice for tackling such problems. The reflective property which is held by
rewriting logic was also a strong argument for choosing this approach, since it
gives us the ability to handle efficiency issues and strategy at the meta-level,
which to some extent separates the calculus from tactics.

The arguments for this approach to automated deduction has been strengthened
by the project (in my opinion at least) and I hope that I have been able to
show how this method can be applied when one wants to build an automated
theorem prover.

This way of handling the problem is also very instructive for someone who
wants to learn something about automated deduction. The main advantage
when rewriting logic is used for this purpose is that there really is nothing
going on behind the scenes, every step of the proof procedure can be formally
stated as rewrite rules. And when that job has been done, a theorem prover
has already been implemented, since specification is programming. The built-
in matching of languages based on rewriting logic handle the rest. As we saw
in the Prolog implementation much of the actual algorithm was performed
by Prolog’s own run-time system which backtracks and so on, this often leads
to code that is hard to understand.

The close relationship between logical calculus and rewrite rules that exists
when this approach is used makes rewriting logic very well suited for rapid
prototyping. The reflective property gives us the ability to experiment with
different strategies which can be hard using an imperative language. The nice
part is that we can construct rapid prototypes and experiment with different
strategies, which can be implemented in an imperative language later on to
improve efficiency.

The connection method was also broken down to a set of deductive rules,
where the pruning of the search space was embedded into the rewrite rules/-
calculus. It does make the whole procedure less cryptic when it is represented
by a set of simple rewrite rules compared to how it usually is presented.

The reflective property proved to be very helpful to optimize execution of
our connection based calculus. Comparing the results on our test formu-
las we managed to keep up with a very good theorem prover (leanCop) on
propositional formulas until they reached a certain size.
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8.1 Further Work

Using rewriting logic in automated deduction is a new way of approaching
such problems, and it holds great promise. Many types of logics or deductive
systems can be tackled using the same strategy as we have used on this
project, perhaps some logics for which no automated system exists. It is
possible to experiment with new strategies on existing calculuses as well,
the first order part constructed here clearly has more potential with more
advanced strategies.

To use rewriting logic when one wants to construct a system for automated
deduction is a very good first step for any type of logic, since the machinery
of the rewriting logic does a great deal of the work for us. As long as we
are able to specify the language of the logic and its deductive rules, we are
able to implement a theorem prover using this approach. I hope this will
convince more people to learn about rewriting logic and consider using it
when constructing systems for automated deduction.
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Propositional deductive rules
mod CONNECTION i s

p r o t e c t i n g META−LEVEL .

s o r t L i t .
s o r t L i tSe t .
subsor t L i t < Li tSe t .

∗∗∗ op p : Nat −> Lit [ c t o r ] .

ops a b c d e f g h i j k l m n o p q r s t u v w x y z : −> Lit [ c t o r ] .
op −_ : Li t −> Lit [ c t o r ] .

op none : −> LitSe t [ c t o r ] .
op _,_ : L i tSe t L i tSe t −> LitSe t [ c t o r id : none comm assoc ] .

s o r t Matrix .
s o r t Clause .
s o r t ClauseSet .
subsor t Clause < ClauseSet .

op nix : −> Clause [ c t o r ] .
op none : −> ClauseSet [ c t o r ] .
op [_] : L i tSe t −> Clause [ c t o r ] .
op _,_ : ClauseSet ClauseSet −> ClauseSet [ c t o r a s soc comm id : none ] .

op [_] : ClauseSet −> Matrix [ c t o r ] .

s o r t SearchState .
s o r t SearchStat eL i s t .
s o r t ValidNotValid .
subsor t ValidNotValid < SearchState .
subsor t SearchState < SearchSta t eL i s t .

ops va l i d no tva l i d : −> ValidNotValid [ c t o r ] .
op n i l : −> SearchSta t eL i s t [ c t o r ] .
op __ : SearchSta t eL i s t SearchStat eL i s t −> SearchSta t eL i s t
[ c t o r id : n i l a s soc ] .

op <_;_;_> : L i tSe t Clause Matrix −> SearchState [ c t o r ] .

vars CL1 CL2 : Clause .
vars CLSET1 CLSET2 : ClauseSet .
vars LITSET1 LITSET2 PATH : L i tSe t .
vars LIT1 LIT2 NEGLIT : L i t .
var M : Matrix .

r l [ i n i t ] :

< none ; n ix ; [CL1 , CLSET1 ] >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< none ; CL1 ; [CLSET1 ] > .



r l [ negLitInPath ] :

< LIT1 , LITSET1 ; [− LIT1 , LITSET2 ] ; M >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< LIT1 , LITSET1 ; [ LITSET2 ] ; M > .

r l [ negLitInPath ] :

< − LIT1 , LITSET1 ; [ LIT1 , LITSET2 ] ; M >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< − LIT1 , LITSET1 ; [ LITSET2 ] ; M > .

r l [ negLit InMatr ix ] :

< PATH ; [ LIT1 , LITSET1 ] ; [ [− LIT1 , LITSET2 ] , CLSET1] >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< PATH, LIT1 ; [ LITSET2 ] ; [CLSET1] >
< PATH ; [ LITSET1 ] ; [ [− LIT1 , LITSET2 ] , CLSET1] > .

r l [ negLit InMatr ix ] :

< PATH ; [− LIT1 , LITSET1 ] ; [ [ LIT1 , LITSET2 ] , CLSET1] >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< PATH, − LIT1 ; [ LITSET2 ] ; [CLSET1 ] >
< PATH ; [ LITSET1 ] ; [ [ LIT1 , LITSET2 ] , CLSET1 ] > .

r l [ extendPath ] :

< PATH ; [ LIT1 , LITSET1 ] ; [CL1 , CLSET1 ] >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< PATH, LIT1 ; CL1 ; [CLSET1] >
< PATH ; [ LITSET1 ] ; [CL1 , CLSET1 ] > .

r l [ removeConnectedPaths ] :

< PATH ; [ none ] ; M >
=> −−−−−−−−−−−−−−−−−−−−−

va l i d .

r l [ counterModel ] :

< PATH ; [ LIT1 , LITSET1 ] ; [ none ] >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

no tva l i d .

var SSTATE : SearchState .

eq (SSTATE va l i d ) = SSTATE .
eq (SSTATE no tva l i d ) = no tva l i d .

endm



Implementation of propositional strategies
i n propr lmatchconnect ion .maude .

mod META−PROG i s

p r o t e c t i n g CONNECTION .
p ro t e c t i n g META−LEVEL .
p r o t e c t i n g INT .

op extrTerm : Result4Tuple −> Term [ c t o r ] .

var T’ : Term .
var SUBS : Sub s t i t u t i on .
var Q’ ’ : Qid .
var C : Context .

eq extrTerm ({T’ , Q’ ’ , SUBS, C}) = T’ .

op i n i t : Module Term −> Term [ c t o r ] .

op s t r a t e gy1 : Module Term −> Term [ c t o r ] .
op s t r a t e gy2 : Module Term −> Term [ c t o r ] .
op s t r a t e gy3 : Module Term −> Term [ c t o r ] .
op s t r a t e gy4 : Module Term Term −> Term [ c t o r ] .

op prove1 : Module Term −> Term [ c t o r ] .
op prove2 : Module Term −> Term [ c t o r ] .
op prove3 : Module Term −> Term [ c t o r ] .
op prove4 : Module Term −> Term [ c t o r ] .

op s imp l i f y : Module Term −> Term [ c t o r ] .

op metaFirst : Term −> Term [ c t o r ] .
op metaRest : Term −> Term [ c t o r ] .
op metaJoin : Term Term −> Term [ c t o r ] .

op metaPush : Term Term −> Term [ c t o r ] .
op metaPop : Term −> Term [ c t o r ] .
op metaPopped : Term −> Term [ c t o r ] .

vars M M’ : Module .
vars T T’ ’ : Term .
var N : Nat .

eq i n i t (M, T) = extrTerm (metaXapply (M, T, ’ i n i t , none , 0 , unbounded , 0) ) .

eq s t r a t e gy1 (M, T) =
i f (metaXapply (M, T, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then

s t r a t e gy1 (M, extrTerm (metaXapply (M, T,
’ negLitInPath , none , 0 , unbounded , 0) ) )



e l s e i f
( metaXapply (M, T, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/= f a i l u r e )
then s t r a t e gy1 (M, extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) )

e l s e i f
( metaXapply (M, T, ’ extendPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then
s t r a t e gy1 (M, extrTerm (metaXapply (M, T,
’ extendPath , none , 0 , unbounded , 0) ) )

e l s e
T f i f i f i .

eq s t r a t e gy2 (M, T) =
i f (metaXapply (M, T, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then

s t r a t e gy2 (M, extrTerm (metaXapply (M, T,
’ negLitInPath , none , 0 , unbounded , 0) ) )

e l s e i f ( metaXapply (M, T, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/=
f a i l u r e )

then
metaJoin ( s t r a t e gy2 (M, metaFirst ( extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) ,

s t r a t e gy2 (M, metaRest ( extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) )

e l s e i f ( metaXapply (M, T, ’ extendPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then metaJoin ( s t r a t e gy2 (M, metaFirst ( extrTerm (metaXapply (M, T,

’ extendPath , none , 0 , unbounded , 0) ) ) ) ,
s t r a t e gy2 (M, metaRest ( extrTerm (metaXapply (M, T,

’ extendPath , none , 0 , unbounded , 0) ) ) ) )
e l s e T f i f i f i .

eq s t r a t e gy3 (M, T) =

i f (metaXapply (M, T, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then

s t r a t e gy3 (M, extrTerm (metaXapply (M, T,
’ negLitInPath , none , 0 , unbounded , 0) ) )

e l s e i f ( s imp l i f y (M, T) == ’ no tva l i d . ValidNotValid )
then ’ no tva l i d . ValidNotValid
e l s e i f ( s imp l i f y (M, T) == ’ va l i d . ValidNotValid )
then ’ va l i d . ValidNotValid
e l s e i f ( metaXapply (M, T, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/=

f a i l u r e )
then

metaJoin ( s t r a t e gy3 (M, metaFirst ( extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) ,

s t r a t e gy3 (M, metaRest ( extrTerm (metaXapply (M, T,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ) )

e l s e i f ( metaXapply (M, T, ’ extendPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then metaJoin ( s t r a t e gy3 (M, metaFirst ( extrTerm (metaXapply (M, T,

’ extendPath , none , 0 , unbounded , 0) ) ) ) ,
s t r a t e gy3 (M, metaRest ( extrTerm (metaXapply (M, T,

’ extendPath , none , 0 , unbounded , 0) ) ) ) )
e l s e T f i f i f i f i f i .



var ACTIVE STACK : Term .

eq s t r a t e gy4 (M, ACTIVE, STACK) =

i f (metaXapply (M, ACTIVE, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )

then

s t r a t e gy4 (M, extrTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , 0) ) , STACK)

e l s e i f

( s imp l i f y (M, ACTIVE) == ’ no tva l i d . ValidNotValid )

then ’ no tva l i d . ValidNotValid

e l s e i f

( s imp l i f y (M, ACTIVE) == ’ va l i d . ValidNotValid )

then

s t r a t e gy4 (M, metaPop(STACK) , metaPopped (STACK) )

e l s e i f

(metaXapply (M, ACTIVE, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/= f a i l u r e )

then

s t r a t e gy4 (M, metaFirst ( extrTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ,
metaPush( metaRest ( extrTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) )
, STACK) )

e l s e i f

(metaXapply (M, ACTIVE, ’ extendPath , none , 0 , unbounded , 0) =/= f a i l u r e )

then

s t r a t e gy4 (M, metaFirst ( extrTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) ) ,
metaPush( metaRest ( extrTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) )
, STACK) )

e l s e ’ v a l i d . ValidNotValid

f i f i f i f i f i .



eq prove1 (M, T) =
s imp l i f y (M, s t r a t e gy1 (M, i n i t (M, T) ) ) .

eq prove2 (M, T) =
s imp l i f y (M, s t r a t e gy2 (M, i n i t (M, T) ) ) .

eq prove3 (M, T) =
s imp l i f y (M, s t r a t e gy3 (M, i n i t (M, T) ) ) .

eq prove4 (M, T) =
s t r a t e gy4 (M, i n i t (M, T) , ’ n i l . Sea rchSta t eL i s t ) .

eq s imp l i f y (M, T) =
i f (metaXapply (M , T,
’ removeConnectedPaths , none , 0 , unbounded , 0) =/= f a i l u r e ) then
s imp l i f y (M, extrTerm (metaXapply (M , T,
’ removeConnectedPaths , none , 0 , unbounded , 0) ) )
e l s e i f
(metaXapply (M , T,
’ counterModel , none , 0 , unbounded , 0) =/= f a i l u r e )
then
s imp l i f y (M, extrTerm (metaXapply (M , T,
’ counterModel , none , 0 , unbounded , 0) ) )
e l s e T f i f i .

var TL : TermList .

eq metaPush(T, ’__[TL] ) = ’__[T, TL] .
eq metaPush(T, T’ ) = ’__[T, T’ ] .
eq metaPush(T, ’ n i l . Sea rchStat eL i s t ) = T .

eq metaPop ( ’__[T, TL] ) = T .
eq metaPop ( ’__[T] ) = T .
eq metaPop ( ’ n i l . Sea rchSta t eL i s t ) = ’ n i l . Sea rchSta t eL i s t .

eq metaPopped ( ’__[T, TL] ) = ’__[TL] .
eq metaPopped ( ’__[T] ) = ’ n i l . Sea rchStat eL i s t .
eq metaPopped (T) = ’ n i l . Sea rchSta t eL i s t .
eq metaPopped ( ’ n i l . Sea rchSta t eL i s t ) = ’ n i l . Sea rchSta t eL i s t .

eq metaFirst ( ’__[T, T’ ] ) = T .
eq metaRest ( ’__[T, T’ ] ) = T’ .
eq metaJoin (T, T’ ) = ’__[T, T’ ] .

endm



The unify module
mod UNIFY i s

p r o t e c t i n g QID .
p r o t e c t i n g INT .
p r o t e c t i n g BOOL .
p r o t e c t i n g META−LEVEL .

s o r t Matrix .
s o r t PredicateSym .
s o r t Pred i ca te .
s o r t Clause .
s o r t ClauseSet .
subsor t Clause < ClauseSet .
s o r t L i t .
s o r t L i tSe t .
subsor t L i t < Li tSe t .
subsor t Pred i ca te < Li t .
s o r t FailTrm .
s o r t Trm .
subsor t FailTrm < Trm .
s o r t TrmList .
subsor t Trm < TrmList .
s o r t FuncSym .
s o r t Function .
s o r t Const .
s o r t Var .
subsor t Var < Trm .
subsor t Const < Trm .
subsor t Function < Trm .
s o r t Subst .
s o r t Subs tL i s t .
subsor t Subst < SubstL i s t .
s o r t FailSub .
subsor t FailSub < Subst .

ops f g h k u v s t : −> FuncSym [ c t o r ] .
op _(_) : FuncSym TrmList −> Function [ c t o r ] .
op V : Nat −> Var [ c t o r ] .
ops a b c d e m n o p q r : −> Const [ c t o r ] .
ops P Q R S T U A K I F J G H Y L O : −> PredicateSym [ c t o r ] .

op _(_) : PredicateSym TrmList −> Pred i ca te [ c t o r ] .

op <_−>_> : Var Trm −> Subst [ c t o r ] .
op n i l : −> SubstL i s t [ c t o r ] .
op _: :_ : Subs tL i s t Subs tL i s t −> SubstL i s t [ c t o r id : n i l a s soc ] .

op −_ : Pred i ca te −> Lit [ c t o r ] .
op nix : −> Clause [ c t o r ] .
op none : −> LitSe t [ c t o r ] .
op none : −> ClauseSet [ c t o r ] .
op _,_ : L i tSe t L i tSe t −> LitSe t [ c t o r id : none as soc comm] .
op _,_ : ClauseSet ClauseSet −> ClauseSet [ c t o r id : none as soc comm] .

op [_] : L i tSe t −> Clause [ c t o r ] .
op [_] : ClauseSet −> Matrix [ c t o r ] .



op f a i l : −> FailTrm [ c t o r ] .
op errorSub : −> FailSub [ c t o r ] .
op n i l : −> TrmList [ c t o r ] .
op _,_ : TrmList TrmList −> TrmList [ c t o r id : n i l a s soc ] .

op ge tVarL i s t : TrmList −> TrmList [ c t o r ] .
op ge tPred i ca teVarL i s t : Pred i ca te −> TrmList [ c t o r ] .
op occur s In : Var Trm −> Bool [ c t o r ] .
op conta ins : Var TrmList −> Bool [ c t o r ] .
op ge tAr i ty : Function −> Nat [ c t o r ] .
op he lpAr i ty : TrmList −> Nat [ c t o r ] .
op s ub s t i t u t e : Var Trm TrmList −> TrmList [ c t o r ] .

op un i fy : TrmList TrmList −> TrmList [ c t o r ] .
op conta insFa i lSub : Subs tL i s t −> Bool [ c t o r ] .
op funcHelpUni fy : TrmList TrmList FuncSym TrmList −> TrmList [ c t o r ] .
op funcHelpMGU : TrmList TrmList FuncSym TrmList −> TrmList [ c t o r ] .
op genSubstList : TrmList TrmList −> SubstL i s t [ c t o r comm] .
op applySubst : TrmList Subs tL i s t −> TrmList [ c t o r ] .
op helpApply : TrmList Subst −> TrmList [ c t o r ] .
op matrixSubst : Matrix Subs tL i s t −> Matrix [ c t o r ] .
op c lauseSubs t : Clause Subs tL i s t −> Clause [ c t o r ] .
op c lauseSe tSubs t : ClauseSet Subs tL i s t −> ClauseSet [ c t o r ] .
op l i t S e t S ub s t : L i tSe t Subs tL i s t −> LitSe t [ c t o r ] .
op conta insVar : Clause −> Bool [ c t o r ] .
op l i tConta insVar : L i t −> Bool [ c t o r ] .
op getMax : Matrix −> Nat [ c t o r ] .
op helpGetMax : TrmList Nat −> Nat [ c t o r ] .
op getMaxMatrixVar : Matrix −> TrmList [ c t o r ] .
op getMaxClauseVar : Clause −> TrmList [ c t o r ] .

op countClauseVar : Clause −> Nat [ c t o r ] .
op copyClause : Clause Matrix −> Clause [ c t o r ] .
op getClauseVarLis t : Clause −> TrmList [ c t o r ] .
op getRealClauseVarList : Clause −> TrmList [ c t o r ] .
op remove Ident i ca l : TrmList −> TrmList [ c t o r ] .
op helpRemove : Trm TrmList −> TrmList [ c t o r ] .
op s i z e : TrmList −> Nat [ c t o r ] .
op genClauseSubst : Clause Matrix −> SubstL i s t [ c t o r ] .
op helpClauseGen : Nat TrmList −> SubstL i s t [ c t o r ] .

vars C1 C2 : Const .
vars V1 V2 : Var .
vars T1 T2 : Trm .
vars TL TL’ TL’ ’ TL’ ’ ’ TL’ ’ ’ ’ : TrmList .
vars F1 F2 F3 : FuncSym .
vars SL SL ’ : Subs tL i s t .
vars L1 L2 : L i t .
vars LS1 LS2 : L i tSe t .
vars P1 P2 : PredicateSym .
vars CL1 CL2 : Clause .
vars CLSET : ClauseSet .
vars N N’ : Nat .

eq conta insFa i lSub ( n i l ) = f a l s e .



eq conta insFa i lSub ( errorSub : : SL) = true .
eq conta insFa i lSub(< V1 −> T1 > : : SL) = conta insFa i lSub (SL) .

eq copyClause ( [ LS1 ] , [CLSET ] ) =
c lauseSubs t ( [ LS1 ] , genClauseSubst ( [ LS1 ] , [CLSET] ) ) .

eq genClauseSubst ( [ LS1 ] , [CLSET ] ) =
helpClauseGen ( getMax ( [CLSET ] ) , getRealClauseVarList ( [ LS1 ] ) ) .

eq helpClauseGen (N, n i l ) = n i l .
eq helpClauseGen (N, (T1 , TL) ) =
< T1 −> V(N + 1) > : : helpClauseGen ( (N + 1) , TL) .

eq helpRemove (T1 , n i l ) = n i l .
eq helpRemove (T1 , (T2 , TL) ) = i f (T1 == T2) then
helpRemove (T1 , TL) e l s e (T2 , helpRemove (T1 , TL) ) f i .

eq remove Ident i ca l ( n i l ) = n i l .
eq remove Ident i ca l (T1 , TL) =
(T1 , r emove Ident i ca l ( helpRemove (T1 , TL) ) ) .

eq s i z e ( n i l ) = 0 .
eq s i z e (T1 , TL) = 1 + s i z e (TL) .

eq getRealClauseVarList ( [ LS1 ] ) = remove Ident i ca l ( getClauseVarL ist ( [ LS1 ] ) ) .

eq getClauseVarLis t ( [ none ] ) = n i l .
eq getClauseVarLis t ( [ L1 , LS1 ] ) =
( ge tPred i ca teVarL i s t (L1) , getClauseVarL ist ( [ LS1 ] ) ) .

eq countClauseVar ( [ LS1 ] ) = s i z e ( r emove Ident i ca l ( getClauseVarLis t ( [ LS1 ] ) ) ) .

eq getMax ( [CLSET ] ) = helpGetMax ( getMaxMatrixVar ( [CLSET ] ) , 0) .

eq helpGetMax ( n i l , N) = N .
eq helpGetMax ( (V(N) , TL) , N’ ) = i f (N <= N’ ) then
helpGetMax (TL, N’ ) e l s e helpGetMax (TL, N) f i .

eq getMaxMatrixVar ( [ none ] ) = n i l .
eq getMaxMatrixVar ( [CL1 , CLSET ] ) =
( getMaxClauseVar (CL1) , getMaxMatrixVar ( [CLSET ] ) ) .

eq getMaxClauseVar ( [ none ] ) = n i l .
eq getMaxClauseVar ( [ L1 , LS1 ] ) =
( ge tPred i ca teVarL i s t (L1) , getMaxClauseVar ( [ LS1 ] ) ) .

eq ge tPred i ca teVarL i s t (P1(TL) ) = getVarL i s t (TL) .
eq ge tPred i ca teVarL i s t (− (P1(TL) ) ) = getVarL i s t (TL) .

eq conta insVar ( [ none ] ) = f a l s e .
eq conta insVar ( [ L1 , LS1 ] ) = i f ( l i tConta insVar (L1 ) == true ) then t rue
e l s e conta insVar ( [ LS1 ] ) f i .

eq l i tConta insVar (P1(TL) ) = i f ( ge tVarL i s t (TL) == n i l ) then
f a l s e e l s e t rue f i .

eq l i tConta insVar (− (P1(TL) ) ) = i f ( ge tVarL i s t (TL) == n i l ) then
f a l s e e l s e t rue f i .



eq l i t S e t S ub s t ( none , SL) = none .
eq l i t S e t S ub s t (((− (P1(TL) ) ) , LS1 ) , SL) =
(− ( (P1( applySubst (TL, SL) ) ) ) , l i t S e t S ub s t (LS1 , SL) ) .
eq l i t S e t S ub s t ( ( ( P1(TL) ) , LS1 ) , SL) =
( (P1( applySubst (TL, SL) ) ) , l i t S e t S ub s t (LS1 , SL) ) .

eq c lauseSubs t ( [ LS1 ] , SL) = [ l i t S e t S ub s t (LS1 , SL) ] .

eq c lauseSe tSubs t ( none , SL) = none .
eq c lauseSe tSubs t ( (CL1 , CLSET) , SL) =
( c lauseSubs t (CL1 , SL) , c l auseSe tSubs t (CLSET, SL) ) .

eq matrixSubst ( [CLSET] , SL) = [ c lauseSe tSubs t (CLSET, SL) ] .

eq genSubstList ( n i l , n i l ) = n i l .
eq genSubstList ( (T1 , TL) , n i l ) = errorSub .
eq genSubstList ( (C1 , TL) , (V1 , TL’ ) ) =
(< V1 −> C1 > : : genSubstL ist ( s u b s t i t u t e (V1 , C1 , TL) , s u b s t i t u t e (V1 , C1 , TL

’ ) ) ) .

eq genSubstList ( (C1 , TL) , (C2 , TL’ ) ) =
i f (C1 == C2) then genSubstList (TL, TL’ ) e l s e errorSub f i .

eq genSubstList ( (V1 , TL’ ) , ( ( F1(TL) ) , TL’ ’ ) ) =
i f ( not ( occur s In (V1 , F1(TL) ) ) ) then < V1 −> (F1(TL) ) > : :
genSubstList ( s u b s t i t u t e (V1 , F1(TL) , TL’ ) , s u b s t i t u t e (V1 , F1(TL) , TL’ ’ ) )
e l s e errorSub f i .

eq genSubstList ( (V1 , TL) , (V2 , TL’ ) ) =
(< V2 −> V1 > : : genSubstL ist ( s u b s t i t u t e (V2 , V1 , TL) , s u b s t i t u t e (V2 , V1 , TL

’ ) ) ) .

eq genSubstList ( (C1 , TL) , ( ( F1(TL’ ) ) , TL’ ’ ) ) = errorSub .

eq genSubstList ( ( ( F1(TL) ) , TL’ ) , ( ( F2(TL’ ’ ) ) , TL’ ’ ’ ) ) =
i f ( ( F1 == F2) and ( ge tAr i ty (F1(TL) ) == getAr i ty (F2(TL’ ’ ) ) ) ) then
( genSubstLis t (TL, TL’ ’ ) ) : :
( genSubstLis t ( funcHelpUni fy (TL, TL’ ’ , F1 , TL’ ) ,
funcHelpUni fy (TL, TL’ ’ , F1 , TL’ ’ ’ ) ) ) e l s e errorSub f i .

eq applySubst (TL, n i l ) = TL .
eq applySubst (TL, < V1 −> T1 > : : SL) =
applySubst ( helpApply (TL, < V1 −> T1 >) , SL) .

eq helpApply ( n i l , < V1 −> T1 > ) = n i l .
eq helpApply ( (V2 , TL) , < V1 −> T1 >) = i f (V1 == V2) then
(T1 , helpApply (TL, < V1 −> T1 >)) e l s e
(V2 , helpApply (TL, < V1 −> T1 >)) f i .

eq helpApply ( (C1 , TL) , < V1 −> T1 >) = (C1 , applySubst (TL, < V1 −> T1 >)) .
eq helpApply ( ( ( F1(TL) ) , TL’ ) , < V1 −> T1 >) =
( ( F1( helpApply (TL, < V1 −> T1 >)) ) , helpApply (TL’ , < V1 −> T1 >)) .

eq ge tVarL i s t (F1(TL) ) = getVarL i s t (TL) .
eq ge tVarL i s t (C1 , TL) = getVarL i s t (TL) .
eq ge tVarL i s t (V1 , TL) = V1 , ge tVarL i s t (TL) .
eq ge tVarL i s t ( n i l ) = n i l .



eq conta ins (V1 , n i l ) = f a l s e .
eq conta ins (V1 , (V2 , TL) ) = i f (V1 == V2) then t rue e l s e conta ins (V1 , TL) f i

.

eq occur s In (V1 , T1) =
i f ( conta ins (V1 , ge tVarL i s t (T1) ) ) then t rue e l s e f a l s e f i .

eq ge tAr i ty (F1(TL) ) = he lpAr i ty (TL) .
eq he lpAr i ty (T1 , TL) = 1 + he lpAr i ty (TL) .
eq he lpAr i ty ( n i l ) = 0 .

eq funcHelpUni fy (TL, TL’ , F1 , n i l ) = n i l .

eq funcHelpUni fy ( n i l , n i l , F1 , TL’ ) = TL’ .

eq funcHelpUni fy ( (C1 , TL) , (V1 , TL’ ) , F1 , TL’ ’ ) =
funcHelpUni fy (TL, TL’ , F1 , s u b s t i t u t e (V1 , C1 , TL’ ’ ) ) .

eq funcHelpUni fy ( (V1 , TL) , (C1 , TL’ ) , F1 , TL’ ’ ) =
funcHelpUni fy (TL, TL’ , F1 , s u b s t i t u t e (V1 , C1 , TL’ ’ ) ) .

eq funcHelpUni fy ( (C1 , TL) , (C2 , TL’ ) , F1 , TL’ ’ ) =
i f (C1 == C2) then funcHelpUni fy (TL, TL’ , F1 , TL’ ’ ) e l s e
f a i l f i .

eq funcHelpUni fy ( (C1 , TL) , ( ( F1(TL’ ’ ’ ) ) , TL’ ) , F1 , TL’ ’ ) = f a i l .

eq funcHelpUni fy ( (V1 , TL’ ) , ( ( F1(TL) ) , TL’ ’ ) , F2 , TL’ ’ ’ ) =
i f ( not ( occur s In (V1 , F1(TL) ) ) ) then
funcHelpUni fy (TL’ , TL’ ’ , F2 , s u b s t i t u t e (V1 , F1(TL) , TL’ ’ ’ ) )
e l s e f a i l f i .

eq funcHelpUni fy ( ( ( F1(TL) ) , TL’ ) , (V1 , TL’ ’ ) , F2 , TL’ ’ ’ ) =
i f ( not ( occur s In (V1 , F1(TL) ) ) ) then
funcHelpUni fy (TL’ , TL’ ’ , F2 , s u b s t i t u t e (V1 , F1(TL) , TL’ ’ ’ ) )
e l s e f a i l f i .

eq funcHelpUni fy ( (V1 , TL) , (V2 , TL’ ) , F1 , TL’ ’ ) =
funcHelpUni fy (TL, TL’ , F1 , s u b s t i t u t e (V2 , V1 , TL’ ’ ) ) .

eq funcHelpUni fy ( ( ( F1(TL) ) , TL’ ) , ( ( F2(TL’ ’ ) ) , TL’ ’ ’ ) , F3 , TL’ ’ ’ ’ ) =
i f ( ( F1 == F2) and ( ge tAr i ty (F1(TL) ) == getAr i ty (F2(TL’ ’ ) ) ) ) then
funcHelpUni fy ( funcHelpUni fy (TL, TL’ ’ , F1 , TL’ ) ,
funcHelpUni fy (TL, TL’ ’ , F1 , TL’ ’ ’ ) , F3 , funcHelpUni fy (TL, TL’ ’ , F1 , TL’ ’ ’ ’ ) )
e l s e f a i l f i .

eq funcHelpUni fy ( (C1 , TL) , ( ( F2(TL’ ’ ’ ) ) , TL’ ) , F1 , TL’ ’ ) = f a i l .
eq funcHelpUni fy ( ( ( F2(TL’ ’ ’ ) ) , TL) , (C1 , TL’ ) , F1 , TL’ ’ ) = f a i l .

eq s ub s t i t u t e (V1 , T1 , n i l ) = n i l .
eq s ub s t i t u t e (V1 , T1 , F1(TL) ) = F1( s ub s t i t u t e (V1 , T1 , TL) ) .
eq s ub s t i t u t e (V1 , T1 , ( (F1(TL) ) , TL’ ) ) =
( ( F1( s ub s t i t u t e (V1 , T1 , TL) ) ) , ( s u b s t i t u t e (V1 , T1 , TL’ ) ) ) .
eq s ub s t i t u t e (V1 , T1 , (V2 , TL) ) = i f (V1 == V2) then
(T1 , s u b s t i t u t e (V1 , T1 , TL) ) e l s e (V2 , s u b s t i t u t e (V1 , T1 , TL) ) f i .
eq s ub s t i t u t e (V1 , T1 , (C1 , TL) ) = (C1 , s u b s t i t u t e (V1 , T1 , TL) ) .



eq un i fy (TL, TL’ ) = i f ( not conta insFa i lSub ( genSubstL ist (TL, TL’ ) ) ) then
applySubst (TL, genSubstList (TL, TL’ ) ) e l s e
f a i l f i .

endm



First order deductive rules
i n un i fy . maude .

mod CONNECTION i s

p r o t e c t i n g META−LEVEL .
p r o t e c t i n g UNIFY .

s o r t SearchState .
s o r t SearchStat eL i s t .
s o r t ValidNotValid .
s o r t C lauseL i s t .
subsor t Clause < ClauseL i s t .
subsor t ValidNotValid < SearchState .
subsor t SearchState < SearchSta t eL i s t .

ops va l i d no tva l i d : −> ValidNotValid [ c t o r ] .
op n i l : −> SearchSta t eL i s t [ c t o r ] .
op __ : SearchSta t eL i s t SearchStat eL i s t −> SearchSta t eL i s t
[ c t o r id : n i l a s soc ] .

op <_;_;_;_−_> : Li tSe t Clause Matrix TrmList TrmList −> SearchState [ c t o r ]
.

op n i l : −> ClauseL i s t [ c t o r ] .
op _∗∗_ : ClauseL i s t C lauseL i s t −> ClauseL i s t [ c t o r a s soc id : n i l ] .

op s sL i s t Sub s t : SearchStat eL i s t Subs tL i s t −> SearchSta t eL i s t [ c t o r ] .
op genAndSubst : SearchState SearchStat eL i s t −> SearchSta t eL i s t [ c t o r ] .

op genCopyList : Matrix −> ClauseL i s t [ c t o r ] .
op genNcopies : Matrix Nat −> Matrix [ c t o r ] .
op helpGenN : Matrix ClauseL i s t C lauseL i s t Nat −> Matrix [ c t o r ] .
op ssGenN : SearchState Nat −> SearchState [ c t o r ] .
op isGround : SearchState −> Bool [ c t o r ] .
op helpGround : Matrix −> Bool [ c t o r ] .

vars CL1 CL2 : Clause .
vars CLSET1 CLSET2 : ClauseSet .
vars LITSET1 LITSET2 PATH : L i tSe t .
vars LIT1 LIT2 NEGLIT : L i t .
var M : Matrix .
vars P1 P2 P3 : PredicateSym .
vars TL TL’ TL’ ’ TL1 TL2 : TrmList .
vars T1 T2 T3 : Trm .

r l [ i n i t ] :

< none ; n ix ; [CL1 , CLSET1 ] ; TL1 − TL2 >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< none ; CL1 ; [CLSET1 ] ; TL1 − TL2 > .



c r l [ negLitInPath ] :
< ( (P1(TL) ) , LITSET1 ) ; [(− (P1(TL’ ) ) ) , LITSET2 ] ; M ; TL1 − TL2 >

=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
< ((P1( un i fy (TL, TL’ ) ) ) ,
( l i t S e t S ub s t (LITSET1 , genSubstList (TL, TL’ ) ) ) ) ;
c l auseSubs t ( ( [ LITSET2 ] ) , genSubstL ist (TL, TL’ ) ) ;
matrixSubst (M, genSubstL ist (TL, TL’ ) ) ; TL − TL’ >
i f ( un i fy (TL, TL’ ) =/= f a i l ) .

c r l [ negLitInPath ] :
< (− (P1(TL) ) , LITSET1) ; [ ( ( P1(TL’ ) ) ) , LITSET2 ] ; M ; TL1 − TL2 >

=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
< (− (P1( un i fy (TL, TL’ ) ) ) ,
( l i t S e t S ub s t (LITSET1 , genSubstLis t (TL, TL’ ) ) ) ) ;
c l auseSubs t ( ( [ LITSET2 ] ) , genSubstList (TL, TL’ ) ) ;
matrixSubst (M, genSubstList (TL, TL’ ) ) ; TL − TL’ >
i f ( un i fy (TL, TL’ ) =/= f a i l ) .

c r l [ negLit InMatr ix ] :

< PATH ; [ ( P1(TL) ) , LITSET1 ] ; [ [ (− (P1(TL’ ) ) ) , LITSET2 ] , CLSET1 ]
; TL1 − TL2 >

=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< ( l i t S e t S ub s t (PATH, genSubstList (TL, TL’ ) ) ) ,
(P1( un i fy (TL, TL’ ) ) ) ;
c l auseSubs t ( [ LITSET2 ] , genSubstL ist (TL, TL’ ) ) ;
matrixSubst ( [CLSET1] , genSubstLis t (TL, TL’ ) ) ; TL − TL’ >

< l i t S e t S ub s t (PATH, genSubstL ist (TL, TL’ ) ) ;
c l auseSubs t ( [ LITSET1 ] , genSubstL ist (TL, TL’ ) ) ;
matrixSubst ( [ [ ( − (P1(TL’ ) ) ) , LITSET2 ] , CLSET1] , genSubstLis t (TL, TL’ ) ) ;
TL − TL’ >

i f ( un i fy (TL, TL’ ) =/= f a i l ) .

c r l [ negLit InMatr ix ] :

< PATH ; [ ( − (P1(TL) ) ) , LITSET1 ] ; [ [ ( P1(TL’ ) ) , LITSET2 ] , CLSET1] ;
TL1 − TL2 >

=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< l i t S e t S ub s t (PATH, genSubstL ist (TL, TL’ ) ) , (− (P1( un i fy (TL, TL’ ) ) ) ) ;
c l auseSubs t ( [ LITSET2 ] , genSubstL ist (TL, TL’ ) ) ;
matrixSubst ( [CLSET1] , genSubstLis t (TL, TL’ ) ) ; TL − TL’ >

< l i t S e t S ub s t (PATH, genSubstL ist (TL, TL’ ) ) ;
c l auseSubs t ( [ LITSET1 ] , genSubstL ist (TL, TL’ ) ) ;
matrixSubst ( [ [ ( P1(TL’ ) ) , LITSET2 ] , CLSET1 ] , genSubstLis t (TL, TL’ ) ) ;
TL − TL’ >

i f ( un i fy (TL, TL’ ) =/= f a i l ) .



r l [ extendPath ] :

< PATH ; [ LIT1 , LITSET1 ] ; [CL1 , CLSET1 ] ; TL1 − TL2 >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

< PATH, LIT1 ; CL1 ; [CLSET1] ; TL1 − TL2 >
< PATH ; [ LITSET1 ] ; [CL1 , CLSET1 ] ; TL1 − TL2 > .

r l [ removeConnectedPaths ] :

< PATH ; [ none ] ; M ; TL1 − TL2 >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

va l i d .

r l [ counterModel ] :

< PATH ; [ LIT1 , LITSET1 ] ; [ none ] ; TL1 − TL2 >
=> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

no tva l i d .

var SSTATE : SearchState .
var SSTATELIST : SearchStat eL i s t .
vars CLLIST CLLIST ’ : C lauseL i s t .
var N : Nat .
var SUBL : SubstL i s t .

eq (SSTATE va l i d ) = SSTATE .
eq (SSTATE no tva l i d ) = no tva l i d .

eq genAndSubst(< PATH ; CL1 ; M ; TL1 − TL2 >, SSTATELIST ) =
s sL i s tSub s t (SSTATELIST, genSubstLis t (TL1 , TL2) ) .

eq s sL i s t Sub s t ( n i l , SUBL) = n i l .
eq s sL i s t Sub s t (< PATH ; CL1 ; M ; TL1 − TL2 > SSTATELIST, SUBL) =
(< l i t S e t S ub s t (PATH, SUBL) ; c l auseSubs t (CL1 , SUBL) ;
matrixSubst (M, SUBL) ; TL1 − TL2 >) s sL i s t Sub s t (SSTATELIST, SUBL) .

eq isGround(< PATH ; CL1 ; M ; TL1 − TL2 >) = helpGround (M) .

eq helpGround ( [ CL1 , CLSET1 ] ) = i f ( conta insVar (CL1) ) then f a l s e
e l s e helpGround ( [CLSET1 ] ) f i .

eq helpGround ( [ none ] ) = true .

eq ssGenN(< none ; n ix ; M ; TL1 − TL2 >, N) =
< none ; n ix ; genNcopies (M, N) ; TL1 − TL2 > .

eq genCopyList ( [ none ] ) = n i l .
eq genCopyList ( [CL1 , CLSET1 ] ) = i f ( conta insVar (CL1) ) then
(CL1 ∗∗ genCopyList ( [CLSET1 ] ) ) e l s e genCopyList ( [CLSET1 ] ) f i .



eq genNcopies ( [CLSET1 ] , N) =
helpGenN ( [CLSET1] , genCopyList ( [CLSET1 ] ) , genCopyList ( [CLSET1 ] ) , N) .

eq helpGenN ( [CLSET1] , n i l , n i l , N) = [CLSET1] .

eq helpGenN ( [CLSET1] , CLLIST , n i l , N) =
i f (N > 0) then helpGenN ( [CLSET1] , CLLIST , CLLIST , N) e l s e
[CLSET1] f i .

eq helpGenN ( [CLSET1] , CLLIST , (CL1 ∗∗ CLLIST ’ ) , N) =
i f (N > 0) then
helpGenN ( [ copyClause (CL1 , [CLSET1 ] ) , CLSET1] , CLLIST , CLLIST ’ , (N − 1) )
e l s e ( [CLSET1 ] ) f i .

endm



Implementation of first order strategy
i n un i fy . maude .
in f i r s t o r d e r c o nn e c t i o n . maude .

mod META−PROG i s

p r o t e c t i n g UNIFY .
p r o t e c t i n g CONNECTION .
p ro t e c t i n g META−LEVEL .

s o r t BTrack .
s o r t BTrackList .
subsor t BTrack < BTrackList .

op bTr : Nat Nat Term Term −> BTrack [ c t o r ] .
op n i l : −> BTrackList [ c t o r ] .
op __ : BTrackList BTrackList −> BTrackList [ c t o r id : n i l a s soc ] .

op bFi r s t : BTrack −> Nat .
op bSecond : BTrack −> Nat .
op bThird : BTrack −> Term .
op bFourth : BTrack −> Term .

op pop : BTrackList −> BTrack [ c t o r ] .
op push : BTrack BTrackList −> BTrackList [ c t o r ] .
op popped : BTrackList −> BTrackList [ c t o r ] .

op i n i t : Module Term −> Term [ c t o r ] .
op i n i t 2 : Module Term Nat −> Result4Tuple [ c t o r ] .
op s imp l i f y : Module Term −> Term [ c t o r ] .

op s t r a t e gy1 : Module Term Term −> Term [ c t o r ] .
op s t r a t e gy2 : Module Term Term −> Term [ c t o r ] .
op s t r a t e gy3 : Module Term Term Nat Nat BTrackList −> Term [ c t o r ] .

op exProve2 : Module Term Nat −> Term [ c t o r ] .
op exProve3 : Module Term Nat −> Term [ c t o r ] .
op helpEx2 : Module Term Nat Nat −> Term [ c t o r ] .
op helpEx3 : Module Term Nat Nat −> Term [ c t o r ] .
op prove3 : Module Term Nat −> Term [ c t o r ] .
op prove2 : Module Term −> Term [ c t o r ] .
op prove1 : Module Term −> Term [ c t o r ] .

op metaGenAndSubst : Module Term Term −> Term [ c t o r ] .

op metaPush : Term Term −> Term [ c t o r ] .
op metaPop : Term −> Term [ c t o r ] .
op metaPopped : Term −> Term [ c t o r ] .

op metaFirst : Term −> Term [ c t o r ] .
op metaLast : Term −> Term [ c t o r ] .
op metaJoin : Term Term −> Term [ c t o r ] .

op metaSSgenN : Module Term Nat −> Term [ c t o r ] .



vars BT1 BT2 : BTrack .
vars BTL1 BTL2 : BTrackList .
vars N1 N2 : Nat .
var M : Module .
vars T T’ T’ ’ T’ ’ ’ : Term .
vars N N’ : Nat .
vars ACTIVE STACK : Term .

eq pop ( n i l ) = n i l .
eq pop (BT1 BTL1) = BT1 .

eq push (BT1, BTL1) = BT1 BTL1 .

eq popped ( n i l ) = n i l .
eq popped (BT1 BTL1) = BTL1 .

eq bFi r s t ( bTr (N1 , N2 , T, T’ ) ) = N1 .
eq bSecond (bTr (N1 , N2 , T, T’ ) ) = N2 .
eq bThird (bTr (N1 , N2 , T, T’ ) ) = T .
eq bFourth (bTr (N1 , N2 , T, T’ ) ) = T’ .

eq s t r a t e gy3 (M, ACTIVE, STACK, N1 , N2 , BTL1) =

i f (metaXapply (M, ACTIVE, ’ negLitInPath , none , 0 , unbounded , (N1 + 1) )
=/= f a i l u r e ) then

s t r a t e gy3 (M, getTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , N1) ) ,
metaGenAndSubst (M, getTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , N1) ) ,STACK) , N1 , N2 ,
push ( bTr ( (N1 + 1) , N2 , ACTIVE, STACK) , BTL1) )

e l s e i f ( metaXapply (M, ACTIVE, ’ negLitInPath , none , 0 , unbounded , N1)
=/= f a i l u r e ) then

s t r a t e gy3 (M, getTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , N1) ) ,
metaGenAndSubst (M, getTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , N1) ) ,STACK) , N1 , N2 , BTL1)

e l s e i f ( s imp l i f y (M, ACTIVE) == ’ no tva l i d . ValidNotValid )

then i f ( pop (BTL1) == n i l ) then ’ no tva l i d . ValidNotValid
e l s e s t r a t e gy3 (M, bThird ( pop (BTL1) ) ,

bFourth ( pop (BTL1) ) ,
bF i r s t ( pop (BTL1) ) ,
bSecond ( pop (BTL1) ) , popped (BTL1) ) f i

e l s e i f ( s imp l i f y (M, ACTIVE) == ’ va l i d . ValidNotValid )

then

s t r a t e gy3 (M, metaPop(STACK) , metaPopped (STACK) , N1 , N2 , BTL1)

e l s e i f (metaXapply (M, ACTIVE, ’ negLitInMatr ix , none , 0 , unbounded , (N2 +
1) )

=/= f a i l u r e )



then

s t r a t e gy3 (M, metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , N2) ) ) ,
metaPush( metaLast ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , N2) ) )
, metaGenAndSubst (M,
metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , N2) ) )
,STACK) ) , N1 , N2 ,
push (bTr (N1 , (N2 + 1) , ACTIVE, STACK) , BTL1) )

e l s e i f (metaXapply (M, ACTIVE, ’ negLitInMatr ix , none , 0 , unbounded , N2)
=/= f a i l u r e )

then

s t r a t e gy3 (M, metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , N2) ) ) ,
metaPush( metaLast ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , N2) ) )
, metaGenAndSubst (M,
metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , N2) ) )
,STACK) ) , N1 , N2 , BTL1)

e l s e i f (metaXapply (M, ACTIVE, ’ extendPath , none , 0 , unbounded , 0) =/=
f a i l u r e )

then

s t r a t e gy3 (M, metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) ) ,
metaPush( metaLast ( getTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) )
, STACK) , 0 , 0 , BTL1)

e l s e ’ v a l i d . ValidNotValid

f i f i f i f i f i f i f i .

eq s t r a t e gy2 (M, ACTIVE, STACK) =

i f (metaXapply (M, ACTIVE, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )

then

s t r a t e gy2 (M, getTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , 0) ) ,
metaGenAndSubst (M, getTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , 0) ) ,STACK) )

e l s e i f

( s imp l i f y (M, ACTIVE) == ’ no tva l i d . ValidNotValid )

then ’ no tva l i d . ValidNotValid

e l s e i f



( s imp l i f y (M, ACTIVE) == ’ va l i d . ValidNotValid )

then

s t r a t e gy2 (M, metaPop(STACK) , metaPopped (STACK) )

e l s e i f

(metaXapply (M, ACTIVE, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/= f a i l u r e )

then

s t r a t e gy2 (M, metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ,
metaPush( metaLast ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) )
, metaGenAndSubst (M,
metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) )
,STACK) ) )

e l s e i f

(metaXapply (M, ACTIVE, ’ extendPath , none , 0 , unbounded , 0) =/= f a i l u r e )

then

s t r a t e gy2 (M, metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) ) ,
metaPush( metaLast ( getTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) )
, STACK) )

e l s e ’ v a l i d . ValidNotValid

f i f i f i f i f i .

eq s t r a t e gy1 (M, ACTIVE, STACK) =

i f (metaXapply (M, ACTIVE, ’ negLitInPath , none , 0 , unbounded , 0) =/= f a i l u r e )
then

s t r a t e gy1 (M, getTerm (metaXapply (M, ACTIVE,
’ negLitInPath , none , 0 , unbounded , 0) ) , STACK)

e l s e i f ( s imp l i f y (M, ACTIVE) == ’ no tva l i d . ValidNotValid )
then ’ no tva l i d . ValidNotValid

e l s e i f ( s imp l i f y (M, ACTIVE) == ’ va l i d . ValidNotValid )

then s t r a t e gy1 (M, metaPop(STACK) , metaPopped (STACK) )

e l s e i f (metaXapply (M, ACTIVE, ’ negLitInMatr ix , none , 0 , unbounded , 0) =/=
f a i l u r e )

then

s t r a t e gy1 (M, metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) ) ,



metaPush( metaLast ( getTerm (metaXapply (M, ACTIVE,
’ negLitInMatr ix , none , 0 , unbounded , 0) ) )
, STACK) )

e l s e i f (metaXapply (M, ACTIVE, ’ extendPath , none , 0 , unbounded , 0) =/=
f a i l u r e )

then

s t r a t e gy1 (M, metaFirst ( getTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) ) ,
metaPush( metaLast ( getTerm (metaXapply (M, ACTIVE,
’ extendPath , none , 0 , unbounded , 0) ) )
, STACK) )

e l s e ’ v a l i d . ValidNotValid
f i f i f i f i f i .

eq i n i t (M, T) = getTerm (metaXapply (M, T, ’ i n i t , none , 0 , unbounded , 0) ) .

eq i n i t 2 (M, T, N) =
metaXapply (M, T, ’ i n i t , none , 0 , unbounded , N) .

eq prove1 (M, T) =
s t r a t e gy1 (M, i n i t (M, T) , ’ n i l . Sea rchSta t eL i s t ) .

eq prove2 (M, T) =
s t r a t e gy2 (M, i n i t (M, T) , ’ n i l . Sea rchSta t eL i s t ) .

eq prove3 (M, T, N) =
i f ( i n i t 2 (M, T, N) =/= f a i l u r e ) then

i f ( s t r a t e gy3 (M, getTerm ( i n i t 2 (M, T, N) ) ,
’ n i l . Sea rchStateL i s t , 0 , 0 , n i l ) == ’ va l i d . ValidNotValid )
then ’ va l i d . ValidNotValid

e l s e
prove3 (M, T, N + 1) f i

e l s e ’ n o tva l i d . ValidNotValid f i .

eq exProve2 (M, T, N) =
i f ( getTerm (metaReduce (M, ’ isGround [T] ) ) == ’ t rue . Bool )
then prove1 (M, T) e l s e
helpEx2 (M, T, 0 , N) f i .

eq exProve3 (M, T, N) =
i f ( getTerm (metaReduce (M, ’ isGround [T] ) ) == ’ t rue . Bool )
then prove1 (M, T) e l s e
helpEx3 (M, T, 0 , N) f i .

eq helpEx2 (M, T, N, N’ ) =
i f (N > N’ ) then ’ no tva l i d . ValidNotValid



e l s e i f ( prove2 (M, metaSSgenN (M, T, N) ) == ’ va l i d . ValidNotValid )
then ’ va l i d . ValidNotValid e l s e
helpEx2 (M, T, (N + 1) , N’ ) f i f i .

eq helpEx3 (M, T, N, N’ ) =
i f (N > N’ ) then ’ no tva l i d . ValidNotValid
e l s e i f ( prove3 (M, metaSSgenN (M, T, N) , 0) == ’ va l i d . ValidNotValid )
then ’ va l i d . ValidNotValid e l s e
helpEx3 (M, T, (N + 1) , N’ ) f i f i .

eq s imp l i f y (M, T) =
i f (metaXapply (M , T,
’ removeConnectedPaths , none , 0 , unbounded , 0) =/= f a i l u r e ) then
s imp l i f y (M, getTerm (metaXapply (M , T,
’ removeConnectedPaths , none , 0 , unbounded , 0) ) )
e l s e i f
(metaXapply (M , T,
’ counterModel , none , 0 , unbounded , 0) =/= f a i l u r e )
then
s imp l i f y (M, getTerm (metaXapply (M , T,
’ counterModel , none , 0 , unbounded , 0) ) )
e l s e T f i f i .

eq metaSSgenN (M, T, N) =
getTerm (metaReduce (M, ’ ssGenN [T, upTerm(N) ] ) ) .

eq metaGenAndSubst (M, T, T’ ) =
getTerm (metaReduce (M, ’ genAndSubst [T, T ’ ] ) ) .

var TL : TermList .

eq metaPush(T, TL) = ’__[T, TL] .
eq metaPush(T, ’ n i l . Sea rchStat eL i s t ) = T .

eq metaPop ( ’__[T, TL] ) = T .
eq metaPop ( ’__[T] ) = T .
eq metaPop(T) = T .
eq metaPop ( ’ n i l . Sea rchSta t eL i s t ) = ’ n i l . Sea rchSta t eL i s t .

eq metaPopped ( ’__[T, T ’ ] ) = T’ .
eq metaPopped ( ’__[T, T’ , TL] ) = ’__[T’ , TL] .
eq metaPopped ( ’__[T] ) = ’ n i l . Sea rchStat eL i s t .
eq metaPopped (T) = ’ n i l . Sea rchSta t eL i s t .
eq metaPopped ( ’ n i l . Sea rchSta t eL i s t ) = ’ n i l . Sea rchSta t eL i s t .

eq metaFirst ( ’__[T, T ’ ] ) = T .
eq metaLast ( ’__[T, T’ ] ) = T’ .
eq metaJoin (T, T’ ) = ’__[T, T’ ] .

endm



Propositional test set
Test formula 1 .

[ [ p (1 ) , p (2 ) , − p (3) ] , [ p (3 ) , − p (2) ] ,
[− p (1) , p (2 ) ] , [ p (10) , p (9 ) ] , [ p (2 ) ] ,
[− p (1) , p (2 ) , p (3 ) ] , [ p (7 ) , p (8 ) , p (7 ) ] ]

Test formula 2 .

[ [ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] , [ p (2 ) ,− p (3) ,− p (4) ] ,
[ p (3 ) ,− p (1) ,− p (2) ] , [ p (1 ) ,p (2 ) ,p (9 ) ,p (4 ) ,p (8 ) ] ,
[ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ,p (5 ) , t ] , [ p (8 ) ,p (2 ) ,p (3 ) ,p (4 ) ] ]

Test formula 3 .

[ [ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] , [ p (2 ) ,− p (3) ,− p (4) ] ,
[ p (3 ) ,− p (1) ,− p (2) ] , [ p (1 ) ,p (2 ) ,p (9 ) ,p (4 ) ] , [ p (2 ) ,p (3 ) ,p (4 ) ] ,
[ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ,p (5 ) ] , [ p (1 ) ] , [ p (2 ) ] , [− p (1) ,− p (2) ] ]

Test formula 4 .

[ [− p (1) ,p (2 ) ,p (4 ) ,− p (3) ] , [ p (1 ) ,− p (2) ,p (3 ) ,− p (4) ] ,
[− p (1) ,− p (2) ,− p (3) ,− p (4) ] , [ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] ,
[− p (1) ,p (2 ) ,p (3 ) ,p (4 ) ] , [ p (1 ) ,− p (2) , − p (3) ,− p (4) ] ,
[− p (1) ,p (2 ) ,− p (3) ,− p (4) ] , [ p (1 ) ,− p (2) ,− p (3) ,− p (4) ] ,
[− p (1) ,− p (2) ,p (4 ) ,− p (3) ] ]

Test formula 5 .

[ [− p (1) ,p (2 ) ,p (4 ) ,− p (3) ] , [ p (1 ) ,− p (2) ,p (3 ) ,− p (4) ] ,
[− p (1) ,− p (2) ,− p (3) ,− p (4) ] , [ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] ,
[− p (1) ,p (2 ) ,p (3 ) ,p (4 ) ] , [ p (1 ) ,− p (2) , − p (3) ,− p (4) ] ,
[− p (1) ,p (2 ) ,− p (3) ,− p (4) ] , [ p (1 ) ,− p (2) ,− p (3) ,− p (4) ] ]

Test formula 6 .

[ [− p (1) ,p (2 ) ,p (4 ) ,− p (3) ] , [ p (1 ) ,− p (2) ,p (3 ) ,− p (4) ] ,
[− p (1) ,− p (2) ,− p (3) ,− p (4) ] , [ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] ,
[− p (1) ,p (2 ) ,p (3 ) ,p (4 ) ] , [ p (1 ) ,− p (2) , − p (3) ,− p (4) ] ,
[− p (1) ,p (2 ) ,− p (3) ,− p (4) ] ,
[ p (1 ) ,− p (2) ,− p (3) ,− p (4) ] , [ p (1 ) , − p (2) , p (3 ) ] ]

Test formula 7 .

[ [ p (1 ) ,p (2 ) ,p (3 ) ] , [ p (1 ) ,p (2 ) ,− p (3) ] , [ p (1 ) ,p (3 ) ,− p (2) ] ,
[ p (1 ) ,− p (2) ,− p (3) ] , [− p (1) ,p (2 ) ,p (3 ) ] , [− p (1) ,p (2 ) ,− p (3) ] ,
[− p (1) ,p (3 ) ,− p (2) ] , [− p (1) ,− p (2) ,− p (3) ] ]

Test formula 8 .

[ [− p (1) ,p (2 ) ,p (4 ) ,− p (3) ] , [ p (1 ) ,− p (2) ,p (3 ) ,− p (4) ] ,
[− p (1) ,− p (2) ,− p (3) ,− p (4) ] , [ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] ,
[− p (1) ,p (2 ) ,p (3 ) ,p (4 ) ] , [ p (1 ) ,− p (2) , − p (3) ,− p (4) ] ,
[− p (1) ,p (2 ) ,− p (3) ,− p (4) ] , [ p (1 ) ,− p (2) ,− p (3) ] ,
[ p (4 ) ,− p (2) ] , [ p (5 ) ,p (6 ) ,p (3 ) ,p (4 ) ] ]

Test formula 9 .

[ [ p (1 ) , p (2 ) , p (3 ) , p (4 ) , p (5 ) ] , [− p (1) , p (2 ) , − p (3) , p (4 ) ] ,
[ p (3 ) , p (4 ) , − p (5) , p (6 ) ] , [− p (2) , − p (1) , − p (6) ] ,
[− p (4) , − p (5) ] , [− p (1) , − p (2) ] , [ p (1 ) , p (4 ) , − p (3) , p (6 ) ] ]



Test formula 10 .

[ [ p (1 ) ,− p (2) ] , [ p (2 ) ,− p (3) ] , [ p (5 ) ,− p (4) ] , [− p (1) ] , [ p (3 ) ] , [ p (4 ) ,− p (5) ] ]

Test formula 11 .

[ [ p (1 ) ,p (2 ) ,p (4 ) , p (3 ) ] , [ p (1 ) , p (2 ) ,p (3 ) , p (4 ) ] ,
[ p (1 ) , p (2 ) , p (3 ) , p (4 ) ] , [ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] ,
[ p (1 ) ,p (2 ) ,p (3 ) ,p (4 ) ] , [ p (1 ) , p (2 ) , p (3 ) , p (4 ) ] ,
[ p (1 ) ,p (2 ) , p (3 ) , p (4 ) ] , [ p (1 ) , p (2 ) , p (3 ) , p (4 ) ] ,
[ p (1 ) , p (2 ) , p (3 ) ] ]

Test formula 12

[[− p (1) ,− p (2) ] , [ p (1 ) ,p (2 ) ] , [− p (1) ,− p (3) ,p (4 ) ] ,
[− p (1) ,p (3 ) ,− p (4) ] , [ p (1 ) ,− p (3) ,− p (4) ] ,
[ p (1 ) ,p (3 ) ,p (4 ) ] , [− p (2) ,− p (3) ,p (5 ) ] ,
[− p (2) ,p (3 ) ,− p (5) ] , [ p (2 ) ,− p (3) ,− p (5) ] ,
[ p (2 ) ,p (3 ) ,p (5 ) ] , [− p (4) ,p (5 ) ] , [ p (4 ) ,− p (5) ] ]

Test formula 13 .

[ [ p (1 ) ,− p (2) ,− p (3) ] , [ p (1 ) ,p (2 ) ,p (3 ) ] , [− p (1) ,− p (2) ,p (3 ) ] ,
[− p (1) ,p (2 ) ,− p (3) ] , [ p (4 ) ,− p (1) ,− p (5) ] , [ p (4 ) ,p (1 ) ,p (5 ) ] ,
[− p (4) ,− p (1) ,p (5 ) ] , [− p (4) ,p (1 ) ,− p (5) ] , [ p (22) ,− p (4) ,− p (6) ] ,
[ p (22) ,p (4 ) ,− p (6) ] , [− p (22) ,− p (4) ,p (6 ) ] , [− p (22) ,p (4 ) ,− p (6) ] ,
[ p (11) ,− p (22) ,− p (8) ] , [ p (11) ,p (22) ,− p (8) ] , [− p (11) ,− p (22) ,p (8 ) ] ,
[− p (11) ,p (22) ,− p (8) ] , [ p (12) ,− p (11) ,− p (13) ] , [ p (12) ,p (11) ,− p (13) ] ,
[− p (12) ,− p (11) ,p (13) ] , [− p (12) ,p (11) ,− p (13) ] , [ p (21) ,− p (18) ,− p (16) ] ,
[ p (21) ,p (18) ,p (16) ] , [− p (21) ,− p (18) ,p (16) ] , [− p (21) ,p (18) ,− p (16) ] ,
[ p (20) ,− p (21) ,− p (17) ] , [ p (20) ,p (21) ,p (17) ] , [− p (20) ,− p (21) ,p (17) ] ,
[− p (20) ,p (21) ,− p (17) ] , [ p (19) ,− p (20) ,− p (15) ] , [ p (19) ,p (20) ,− p (15) ] ,
[− p (19) ,− p (20) ,p (15) ] , [− p (19) ,p (20) ,− p (15) ] , [ p (14) ,− p (19) ,− p (7) ] ,
[ p (14) ,p (19) ,− p (7) ] , [− p (14) ,− p (19) ,p (7 ) ] , [− p (14) ,p (19) ,− p (7) ] ,
[ p (10) ,− p (14) ,− p (9) ] , [ p (10) ,p (14) ,− p (9) ] , [− p (10) ,− p (14) ,p (9 ) ] ,
[− p (10) ,p (14) ,− p (9) ] , [− p (2) ,− p (18) ] , [ p (2 ) ,p (18) ] , [− p (3) ,p (16) ] ,
[ p (3 ) ,− p (16) ] , [− p (5) ,p (17) ] , [ p (5 ) ,− p (17) ] , [− p (6) ,p (15) ] ,
[ p (6 ) ,− p (15) ] , [− p (8) ,p (7 ) ] , [ p (8 ) ,− p (7) ] , [− p (13) ,p (9 ) ] ,
[ p (13) ,− p (9) ] , [− p (10) ] , [− p (12) ] ]

Test formula 14

[[− p (1) , − p (6) ] , [− p (2) , − p (7) ] ,
[− p (3) , − p (8) ] , [ p (1 ) , p (2 ) ] , [ p (1 ) , p (3 ) ] ,
[ p (2 ) , p (3 ) ] , [ p (6 ) , p (7 ) ] , [ p (6 ) , p (8 ) ] , [ p (7 ) , p (8 ) ] ]

Test formula 15

[[− p (1) , − p (6) , − p (11) ] , [− p (2) , − p (7) , − p (12) ] ,
[− p (3) , − p (8) , − p (13) ] , [− p (4) , − p (9) , − p (14) ] ,
[ p (1 ) , p (2 ) ] , [ p (1 ) , p (3 ) ] , [ p (1 ) , p (4 ) ] ,
[ p (2 ) , p (3 ) ] , [ p (2 ) , p (4 ) ] , [ p (3 ) , p (4 ) ] ,
[ p (6 ) , p (7 ) ] , [ p (6 ) , p (8 ) ] , [ p (6 ) , p (9 ) ] ,
[ p (7 ) , p (8 ) ] , [ p (7 ) , p (9 ) ] , [ p (8 ) , p (9 ) ] ,
[ p (11) , p (12) ] , [ p (11) , p (13) ] , [ p (11) , p (14) ] ,
[ p (12) , p (13) ] , [ p (12) , p (14) ] , [ p (13) , p (14) ] ]



Test formula 16

[[− p (1) , − p (6) , − p (11) , − p (16) ] , [− p (2) , − p (7) , − p (12) , − p (17) ] ,
[− p (3) , − p (8) , − p (13) , − p (18) ] , [− p (4) , − p (9) , − p (14) , − p (19) ] ,
[− p (5) , − p (10) , − p (15) , − p (20) ] , [ p (1 ) , p (2 ) ] , [ p (1 ) , p (3 ) ] ,
[ p (1 ) , p (4 ) ] , [ p (1 ) , p (5 ) ] , [ p (2 ) , p (3 ) ] , [ p (2 ) , p (4 ) ] ,
[ p (2 ) , p (5 ) ] , [ p (3 ) , p (4 ) ] , [ p (3 ) , p (5 ) ] , [ p (4 ) , p (5 ) ] ,
[ p (6 ) , p (7 ) ] , [ p (6 ) , p (8 ) ] , [ p (6 ) , p (9 ) ] , [ p (6 ) , p (10) ] ,
[ p (7 ) , p (8 ) ] , [ p (7 ) , p (9 ) ] , [ p (7 ) , p (10) ] , [ p (8 ) , p (9 ) ] ,
[ p (8 ) , p (10) ] , [ p (9 ) , p (10) ] , [ p (11) , p (12) ] , [ p (11) , p (13) ] ,
[ p (11) , p (14) ] , [ p (11) , p (15) ] , [ p (12) , p (13) ] , [ p (12) , p (14) ] ,
[ p (12) , p (15) ] , [ p (13) , p (14) ] , [ p (13) , p (15) ] , [ p (14) , p (15) ] ,
[ p (16) , p (17) ] , [ p (16) , p (18) ] , [ p (16) , p (19) ] , [ p (16) , p (20) ] ,
[ p (17) , p (18) ] , [ p (17) , p (19) ] , [ p (17) , p (20) ] , [ p (18) , p (19) ] ,
[ p (18) , p (20) ] , [ p (19) , p (20) ] ]

Test formula 17

[− p (1) , − p (7) , − p (13) , − p (19) , − p (25) ] ,
[− p (2) , − p (8) , − p (14) , − p (20) , − p (26) ] ,
[− p (3) , − p (9) , − p (15) , − p (21) , − p (27) ] ,
[− p (4) , − p (10) , − p (16) , − p (22) , − p (28) ] ,
[− p (5) , − p (11) , − p (17) , − p (23) , − p (29) ] ,
[− p (6) , − p (12) , − p (18) , − p (24) , − p (30) ] ,
[ p (1 ) , p (2 ) ] , [ p (1 ) , p (3 ) ] , [ p (1 ) , p (4 ) ] ,
[ p (1 ) , p (5 ) ] , [ p (1 ) , p (6 ) ] , [ p (2 ) , p (3 ) ] ,
[ p (2 ) , p (4 ) ] , [ p (2 ) , p (5 ) ] , [ p (2 ) , p (6 ) ] ,
[ p (3 ) , p (4 ) ] , [ p (3 ) , p (5 ) ] , [ p (3 ) , p (6 ) ] ,
[ p (4 ) , p (5 ) ] , [ p (4 ) , p (6 ) ] , [ p (5 ) , p (6 ) ] ,
[ p (7 ) , p (8 ) ] , [ p (7 ) , p (9 ) ] , [ p (7 ) , p (10) ] ,
[ p (7 ) , p (11) ] , [ p (7 ) , p (12) ] , [ p (8 ) , p (9 ) ] ,
[ p (8 ) , p (10) ] , [ p (8 ) , p (11) ] , [ p (8 ) , p (12) ] ,
[ p (9 ) , p (10) ] , [ p (9 ) , p (11) ] , [ p (9 ) , p (12) ] ,
[ p (10) , p (11) ] , [ p (10) , p (12) ] , [ p (11) , p (12) ] ,
[ p (13) , p (14) ] , [ p (13) , p (15) ] , [ p (13) , p (16) ] ,
[ p (13) , p (17) ] , [ p (13) , p (18) ] , [ p (14) , p (15) ] ,
[ p (14) , p (16) ] , [ p (14) , p (17) ] , [ p (14) , p (18) ] ,
[ p (15) , p (16) ] , [ p (15) , p (17) ] , [ p (15) , p (18) ] ,
[ p (16) , p (17) ] , [ p (16) , p (18) ] , [ p (17) , p (18) ] ,
[ p (19) , p (20) ] , [ p (19) , p (21) ] , [ p (19) , p (22) ] ,
[ p (19) , p (23) ] , [ p (19) , p (24) ] , [ p (20) , p (21) ] ,
[ p (20) , p (22) ] , [ ( 2 0 ) , p (23) ] , [ p (20) , p (24) ] ,
[ p (21) , p (22) ] , [ p (21) , p (23) ] , [ p (21) , p (24) ] ,
[ p (22) , p (23) ] , [ p (22) , p (24) ] , [ p (23) , p (24) ] ,
[ p (25) , p (26) ] , [ p (25) , p (27) ] , [ p (25) , p (28) ] ,
[ p (25) , p (29) ] , [ p (25) , p (30) ] , [ p (26) , p (27) ] ,
[ p (26) , p (28) ] , [ p (26) , p (29) ] , [ p (26) , p (30) ] ,
[ p (27) , p (28) ] , [ p (27) , p (29) ] , [ p (27) , p (30) ] ,
[ p (28) , p (29) ] , [ p (28) , p (30) ] , [ p (29) , p (30) ] ]



First order test set
Test formula 1

[ [ P( f ( f ( a ) ) ) ] , [(− (P( f (V(1) ) ) ) ) , P(V(1) ) ] , [− (P( a ) ) ] ]

Test formula 2 ( p e l l 2 0 )

[ [−(P( a ) ) ] , [ − (Q(b) ) ] , [R(V(1) ) ] ,
[(− (R( f (V(2) ,V(3) ) ) ) ) , (P(V(3) ) ) , (Q(V(2) ) ) ] ,
[(− ( S (V(4) ) ) ) , (P(V(3) ) ) , (Q(V(2) ) ) ] ]

Test formula 3 ( p e l l 2 4 )

[ [ ( P(V(1) ) ) , R(V(1) ) ] ,
[ ( S (V(2) ) ) , (Q(V(2) ) ) ] ,
[ (P(V(3) ) ) , (− (Q(V(3) ) ) ) , (− (R(V(3) ) ) ) ] ,
[ (− (P( a ) ) ) , (− (Q(b) ) ) ] ,
[ (Q(V(4) ) ) , (− ( S (V(4) ) ) ) ] ,
[ (R(V(4) ) ) , (− (S (V(4) ) ) ) ] ]

Test formula 4 ( p e l l 31)

[ [ ( P(V(1) ) ) , S (V(1) ) ] ,
[ (Q(V(2) ) ) , T(V(2) ) ] ,
[ (Q(V(2) ) ) , H(V(2) ) ] ,
[(− (P( a ) ) ) ] ,
[(− (Q( a ) ) ) ] ,
[(− (H(V(3) ) ) ) , (− ( S (V(3) ) ) ) ] ]

Test formula 5 ( p e l l 32)

[ [− (F( a ) ) ] , [− (K( a ) ) ] , [ J ( a ) ] ,
[(− ( I (V(1) ) ) ) , (F(V(1) ) ) , (G(V(1) ) ) ] ,
[(− ( I (V(1) ) ) ) , (F(V(1) ) ) , (H(V(1) ) ) ] ,
[ (K(V(2) ) ) , (− (H(V(2) ) ) ) ] ,
[(− ( J (V(3) ) ) ) , ( I (V(3) ) ) , (H(V(3) ) ) ] ]

Test formula 6 ( p e l l 30)

[ [ I ( a ) ] ,
[ ( F(V(1) ) ) , (H(V(1) ) ) ] ,
[ (G(V(1) ) ) , (H(V(1) ) ) ] ,
[(− (G(V(2) ) ) ) , (− (F(V(2) ) ) ) ] ,
[(− (G(V(2) ) ) ) , (− (H(V(2) ) ) ) ] ,
[ (− ( I (V(2) ) ) ) , (− (F(V(2) ) ) ) ] ,
[(− ( I (V(2) ) ) ) , (− (H(V(2) ) ) ) ] ]



Test formula 7 ( pe l l 40 −1)

[ [ ( F( (V(1) ) , a ) ) , (− (F(V(1) ,V(1) ) ) ) ] ,
[(− (F( (V(1) ) , a ) ) ) , (F(V(1) ,V(1) ) ) ] ,
[ ( F(V(2) , f (V(3) ) ) ) , (F(V(2) ,V(3) ) ) ] ,
[(− (F(V(2) , f (V(3) ) ) ) ) , (− (F(V(2) ,V(3) ) ) ) ] ]

Test formula 8 ( p e l l 37)

[ [R(a , (V(1) ) ) ] ,
[ (P(V(2) , (V(3) ) ) ) , (− (P( ( g (V(2) ,V(3) ) ) , ( f (V(3) ) ) ) ) ) ] ,
[(− (P( ( g ( (V(2) ) , (V(3) ) ) ) , (V(3) ) ) ) ) ] ,
[ (P( ( g (V(2) ,V(3) ) ) , f (V(3) ) ) ) , (− (Q( ( h(V(2) ,V(3) ) ) , f (V(3) ) ) ) ) ] ,
[(− (P(V(4) ,V(5) ) ) ) , (− (Q( ( k (V(5) ,V(4) ) ) , V(5) ) ) ) ] ,
[ (Q(V(6) ,V(7) ) ) , (− (R(V(8) ,V(8) ) ) ) ] ]

Test formula 9 ( p e l l 36−1)

[ [H(a , V(1) ) ] ,
[ − (F(V(2) , ( f (V(2) ) ) ) ) ] ,
[− (G(V(3) , ( g (V(3) ) ) ) ) ] ,
[ ( F(V(4) ,V(5) ) ) , (F(V(5) ,V(6) ) ) , (− (H(V(4) ,V(6) ) ) ) ] ,
[ ( F(V(4) ,V(5) ) ) , (G(V(5) ,V(6) ) ) , (− (H(V(4) ,V(6) ) ) ) ] ,
[ (G(V(4) ,V(5) ) ) , (F(V(5) ,V(6) ) ) , (− (H(V(4) ,V(6) ) ) ) ] ,
[ (G(V(4) ,V(5) ) ) , (G(V(5) ,V(6) ) ) , (− (H(V(4) ,V(6) ) ) ) ] ]

Test formula 10 ( p e l l 25)

[ [ (Q(V(1) ) ) , (P(V(1) ) ) ] ,
[(− (P( a ) ) ) ] ,
[ ( F(V(2) ) ) , (G(V(2) ) ) ] ,
[ ( F(V(2) ) ) , (− (R(V(2) ) ) ) ] ,
[ (P(V(3) ) ) , (− (G(V(3) ) ) ) ] ,
[ (P(V(3) ) ) , (− (F(V(3) ) ) ) ] ,
[ (− (P(b) ) ) , (P(V(4) ) ) , (− (Q(V(4) ) ) ) ] ,
[ (− (R(b) ) ) , (P(V(4) ) ) , (− (Q(V(4) ) ) ) ] ]



Test formula 11 ( p e l l 28−1)

[ [ (− (P( c ) ) ) ] , [ ( − (F( c ) ) ) ] ,
[G( c ) ] , [ (P(V(1) ) ) , (− (Q(V(2) ) ) ) ] ,
[ (Q( a ) ) , (− (Q(b) ) ) ] , [ (Q( a ) ) , (− (S (b) ) ) ] ,
[ (R( a ) ) , (− (Q(b) ) ) ] , [ (R( a ) ) , (− (S (b) ) ) ] ,
[ ( S (V(3) ) ) , (F(V(4) ) ) , (− (G(V(4) ) ) ) ] ]

Test formula 12 ( p e l l 26−1)

[ [ (− (P( a ) ) ) , (− (Q(b) ) ) ] ,
[(− (P( a ) ) ) , ( S (b) ) ] ,
[ (R( a ) ) , (− (Q(b) ) ) ] ,
[ (R( a ) ) , (S (b) ) ] ,
[(− (R(V(1) ) ) ) , (P(V(1) ) ) , (Q(V(2) ) ) , (− ( S (V(2) ) ) ) ] ,
[ (P(V(3) ) ) , (− (Q( c ) ) ) ] ,
[(− (P(d) ) ) , (Q(V(4) ) ) ] ,
[ (Q(V(5) ) ) , (P(V(6) ) ) , (R(V(6) ) ) , (− ( S (V(5) ) ) ) ] ,
[ (Q(V(5) ) ) , (P(V(6) ) ) , (− (R(V(6) ) ) ) , ( S (V(5) ) ) ] ]

Test formula 13 ( p e l l 27)

[ [ (− ( J (b) ) ) ] , [ ( − ( I ( b ) ) ) ] ,
[(− (F( a ) ) ) ] , [G( a ) ] ,
[ ( F(V(1) ) ) , (− (H(V(1) ) ) ) ] ,
[(− (F(V(2) ) ) ) , ( J (V(2) ) ) , ( I (V(2) ) ) ] ,
[(− (G(V(3) ) ) ) , (H(V(3) ) ) , ( I (V(4) ) ) , (H(V(4) ) ) ] ]

Test formula 14 ( p e l l 27−1)

[ [ (− ( J ( a ) ) ) ] , [ ( − ( I ( a ) ) ) ] ,
[(− (F(b) ) ) ] , [G(b) ] ,
[ ( F(V(1) ) ) , (− (H(V(1) ) ) ) ] ,
[(− (F(V(3) ) ) ) , ( J (V(3) ) ) , ( I (V(3) ) ) ] ,
[(− (G(V(2) ) ) ) , (H(V(2) ) ) , ( I (V(4) ) ) , (H(V(4) ) ) ] ]

Test formula 15 ( p e l l 19)

[ [− (P(V(1) ) ) ] , [Q(V(1) ) ] ,
[ (P( f (V(1) ) ) ) , − (Q( g (V(1) ) ) ) ] ]
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