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Preface 
 

Sheath folds are peculiar looking folds with a complex three-dimensional 

shape resembling a cone. These folds are often associated with shear zones and they 

are considered as a potential source of information for a kinematic and mechanical 

interpretation of shear zones. Even though sheath folds have been used to infer strain 

magnitude, bulk strain, and shear sense in shear zones, little is known about the 

relation between the cause of the fold, the amount of strain, the bulk strain, and the 

resulting shape of the fold. The aim of this thesis is to investigate the formation and 

evolution of sheath folds in simple shear and obtain a better understanding of how 

the initial configurations, leading to the fold, manifest themselves in the resulting 

fold shape, and ultimately, how reliable the information obtained from sheath folds 

is. With a combined analytical and experimental approach, a new formation 

mechanism for sheath fold formation is tested and a wide parameter space 

investigated.  
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1. Introduction 

Folds. Their aesthetics and the fact that something as hard as rock can be 

deformed, bent, and folded has fascinated, interested, and riddled scientists for many 

years (Steno, 1669). Studies of folds started with sketches (Scheuchzer, 1718). Over 

time, several scientifically reasoned explanations for the formation of folds were 

presented. Hutton (1788) suggested that magma flowed from the middle of the earth 

towards the crust leading to its deformation and resulting ultimately in the formation 

of mountains. De Saussure (1796) remarked that a vertical uplift was not enough to 

explain steeply dipping fold limbs. He suggested, therefore, that an additional 

horizontal force had to be involved. The idea of a shrinking earth interior causing the 

crust to deform and mountains to form by folding (de Beaumont, 1852) incorporated 

the idea of a vertical and horizontal movement. By studying the stratigraphy (Hall, 

1843) patterns of reoccurring lithologies could be attributed to folding. With the 

establishment and acceptance of the theory of continental drift, folds started to be 

recognized as the result of moving, colliding, and separating crustal plates (Wegener, 

1929). The fact, however, that something as solid as a rock can be deformed as easily 

as modeling clay might be hard to grasp when one does not consider the time scale of 

geological processes and the extreme temperatures and pressures involved in the 

deformation. Under geological time scales, rocks behave like viscous fluids (Ranalli, 

1995), which means that they deform permanently following specific flow-laws 

when subjected to stress. This realization made it possible to study folds by means of 

models, scaling their physical parameters such as pressure, temperature, time, stress, 

and strain (e.g., Willis, 1894).  

Over 300 years of studying folds first in the field then with analogue (e.g., 

Hall, 1815; Biot et al., 1961; Ramberg, 1963; Ghosh and Ramberg, 1968), analytical 

(e.g., Biot, 1957, 1961; Fletcher, 1974, 1977; Smith, 1977, 1979), and numerical 

(e.g., Chapple, 1968; Dieterich, 1969; Parrish, 1973; Frehner and Schmalholz, 2006; 
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Schmid et al., 2008) models led to an abundant collection of names and 

classifications (e.g., Harding, 1973; Hudleston and Treagus, 2010; Adamuszek et al., 

2011). The study area of folds in structural geology broadened over time and folds in 

different settings caused by different processes were described and studied. 

This thesis is dedicated to the study of one special type of folds in a specific 

deformational regime: Sheath folds in simple shear. 

1.1.  What is a sheath fold? 

The term sheath fold originates from the resemblance of the fold to a sheath. 

In the early literature they have been described using different names such as ‘saddle 

folds’ (Quirke and Lacy, 1941), ‘closed folds’ (Balk, 1953), ‘cone structures’ 

(Ramsay, 1958), ‘paraboidal folding’ (Carey, 1962), ‘eye folds’ (Nicholson, 1963), 

or ‘tubular folds’ (Hansen, 1971). The term sheath fold seems to appear for the first 

time in a geological survey paper of Canada in 1935 and since Carreras et al. (1977) 

the term is firmly established. Note that the term sheath fold is purely descriptive and 

is not associated with any formation mechanism.  

Sheath folds have been described in the literature in many different ways. 

Ramsay and Huber (1987) described them as folds in which the hinge line orientation 

changes more than 90°. Ghosh et al. (1999) added that the folds are planar, i.e. they 

show a planar axial surface. Marques et al. (2008) completed this definition by 

adding that the hinge must be curved within the axial surface. Morales et al. (2011) 

pointed out that the folds show a hinge line sub-parallel to the local stretching 

lineation, while Crispini and Capponi (1997) simply described sheath folds as highly 

non-cylindrical folds. These examples make it already apparent that it is not easy to 

describe sheath folds in an unambiguous way. The main problem is that sheath folds 

are three-dimensional structures with a high complexity. Figure 1 shows a sketch of a 

sheath fold. To capture the three-dimensional aspect of the fold it can be described as 

cone shaped, where the tip or apex of the cone is rounded. The cone can be stretched 

and flattened to exhibit a more elliptical base area (Figure 2). The base area in a 

sheath fold contains the closed contours and builds the characteristic eye-pattern. 

Skjernaa (1989) established the difference between sheath folds and tubular folds 

based on the opening angle of the cone. Sheath folds have an opening angle between 
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90° and 20° and tubular folds have an opening angle of less than 20°. Alsop and 

Holdsworth (2004b) coined the term tongue folds for folds that were clearly non-

cylindrical but did not classify as sheath folds senso stricto, i.e. showing an opening 

angle between 90° and 160°.  

 

Figure 1: Sketch of a sheath fold produced by shearing. The gray arrow indicates the shear 

direction. 

 

Figure 2: Sketch illustrating the different terms used for the description of highly non-

cylindrical folds. : Cone opening angle. 

In some cases, sheath folds can be observed in the field in three-dimensions 

(Figure 3a; Carreras et al., 1977; Quinquis et al., 1978; Alsop and Carreras, 2007; 

Kuiper et al., 2007; Srivastava, 2011). Most of the time, however, only cross-sections 

can be found (e.g., Minnigh, 1979; Henderson, 1981; Skjernaa, 1989; Goscombe, 

1991; Ghosh et al., 1999; Alsop and Holdsworth, 2006; Srivastava, 2011). Figure 3 

shows examples of sheath folds, three-dimensional outcrops (a and h) and cross-

sections (b, c, d, e, f, and g). Cross-sections cut perpendicular to the elongation 

direction of the fold show closed elliptical shapes nested in each other forming eye-

like structures. Using a Cartesian coordinate system the consensus is that the length 

of the tube or tongue is along the x-axis (Alsop and Holdsworth, 2006). Cross-
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sections displaying closed contours are cut perpendicular to the x-axis in the y-z 

plane.  

 

Figure 3: Photographs of outcrop scale sheath folds. a), b), and c) Cap de Creus, Spain, d) 

Sauesundøyane, Norway, e) and f) Oppdal, Norway, g) and h) Ile de Groix, France. 
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1.2.  Occurrence of sheath folds 

Sheath folds have been described in many different rock-types and materials 

such as metamorphic rocks (e.g., Carreras et al., 1977; Minnigh, 1979; Philippon et 

al., 2009; Srivastava, 2011), soft sediments (Hibbard and Karig, 1987; George, 1990; 

McClelland et al., 2011), glaciotectonic sediments (e.g., Thomas and Summers, 

1984; Kluiving et al., 1991; Moller, 2006), pseudotachylites (Berlenbach and 

Roering, 1992), salt (e.g., Kupfer, 1976; Talbot and Jackson, 1987; Alsop et al., 

2007), and ignimbrites (Branney et al., 2004). The size of the sheath fold can vary 

considerably. They range from submillimeters (in pseudotachylites, Berlenbach and 

Roering, 1992) to several kilometers (in metamorphic nappes, e.g., Lacassin and 

Mattauer, 1985; Searle and Alsop, 2007; Bonamici et al., 2011) in size. It is not 

established how common sheath folds are in nature. Alsop and Holdsworth (2006) 

were able to measure 1425 cross-sections of sheath folds in metamorphic rocks for 

their study on sheath folds as discriminators of bulk strain type, showing that sheath 

folds can be found all over the world. The term sheath fold appears in over 170 

papers published over the last 30 years.  

1.3.  How do sheath folds form? 

The following section discusses the formation of sheath folds in pure-, 

general-, and simple-shear. Pure shear can be described as a homogeneous, non-

rotational deformation where material lines parallel to the principal axes of strain do 

not rotate (Twiss and Moores, 2007). In pure shear, a cube with edges parallel to the 

coordinate axes gets distorted into a brick-shaped body. In simple shear, the 

deformation involves besides a non-zero strain component also a non-zero rotational 

component (Means, 1976). An example of simple shear is the shearing of a deck of 

cards, laying flat on a table. In general shear an additional pure shear component is 

added to the simple shear deformation. As the term sheath fold is purely descriptive, 

all the mechanisms that will be discussed in the following paragraphs can potentially 

lead to their formation. Additional structural observations, such as the lineation on 

the fold or additional strain type indicators are needed to determine under which bulk 

strain type the sheath fold developed. 
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1.3.1. Pure shear 

Some studies suggest that sheath folds can form in a pure shear bulk strain 

type (Ghosh and Sengupta, 1984; Ez, 2000; Alsop and Holdsworth, 2004a, 2006; 

Carreras et al., 2005; Mandal et al., 2009). Their formation is proposed to be similar 

to the development of dome structures (e.g., Ramsay and Huber, 1987) where equal 

shortening from two perpendicular directions is needed. The only difference between 

a sheath fold and a dome structure, both generated through the same type of 

deformation, is that the opening angle of a sheath fold has to be smaller than 90°, so 

they classify as sheath folds. A sheath fold has a smaller opening angle and steeper 

flanks than a dome structure, otherwise the formation mechanism is essentially the 

same. In other words, as long as the angle requirement by the classification of 

Ramsay and Huber (1987) is fulfilled, sheath folds in pure shear can also be 

described as the result of fold interference (Ramsay, 1967; Grasemann et al., 2004). 

Nicolas and Boudier (1975) observed sheath folds in peridotites, which they 

interpreted as the result of a constrained flow in an asthenospheric intrusion. Ez 

(2000) argued that constriction or flattening, which are both non-rotational 

deformations but show length changes in two directions, are the dominant formation 

mechanism for the formation of sheath folds. Fletcher (1991) and Schmid et al. 

(2008), however, showed that dome and basin structures and, therefore, sheath folds 

develop only under special conditions where there is exactly the same amount of 

shortening in both perpendicular directions. Mandal et al. (2009) presented a 

numerical study on the development of sheath folds from an initial irregularity in the 

hinge line of a cylindrical fold in pure shear. The study took a homogeneous matrix 

as well as a mechanically layered matrix into account. They concluded that sheath 

folds only develop in a matrix with a viscosity ratio over 10 when the initial 

perturbation is significant. For a lower viscosity ratio, the initial perturbation can be 

smaller and sheath folds still develop. 

1.3.2. General shear 

The shear deformation resulting from adding a simple shear component to 

pure shear is termed general shear. Alsop and Holdsworth (2006) showed several 

examples of sheath folds that developed in general shear. Even though not many 
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sheath folds are described for a general shear environment in the literature, it is rather 

common to have general shear conditions in nature (e.g., Holdsworth and Roberts, 

1984; Stauffer and Lewry, 1993; 2002; Ghosh et al., 1999; Carosi and Oggiano), 

Also shear zones which are described as simple shear dominated (e.g., Minnigh, 

1979; Fossen and Rykkelid, 1990; Harms et al., 2004) do not exclude a pure shear 

component. 

Jiang and Williams (1999) examined the rotation of folds and the 

development of sheath folds in general three-dimensional zonal deformation. They 

show under which flow conditions sheath folds can develop from pre-existing 

perturbations. Kuiper et al. (2007) investigated the impact of a pure shear component 

on the orientation of the x-axis of sheath folds in high strain zones by means of 

numerical modeling. They conclude that well developed sheath folds are unreliable 

indicators for the shear direction. 

1.3.3. Simple shear 

In contrast to Ez’s (2000) statement, simple shear is generally thought to be 

the most important bulk strain type for the formation of sheath folds (e.g., Fossen, 

2010; Van der Pluijm and Marshak, 2004). The general idea of forming sheath folds 

in simple shear is by perturbation of the simple shear flow. In the literature, two 

different triggers were suggested: the amplification of a pre-existing perturbation and 

a rigid inclusion. The papers presented in this thesis show the possibility of yet 

another potential formation mechanism: the flow perturbation around a weak 

inclusion. 

In nature it is, in many cases, impossible to determine the cause of the sheath 

fold formation. This can be either because the precursor might be overprinted by the 

strain or because the resulting fold may be separated from the perturbing structure in 

the shear zone. An additional difficulty is that many sheath folds are only partially 

outcropping. It is thus difficult to unambiguously determine the cause for most 

natural sheath folds. 

1.3.3.1. Passive amplification 

The sheath fold formation due to passive amplification of an initial 

perturbation has dominated the thinking of how sheath folds form for over a quarter 
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of a century. This idea combined with the necessity for a high finite and 

inhomogeneous strain as cause for sheath folds can be found in numerous structural 

geology textbooks (Davis and Reynolds, 1984; Van der Pluijm and Marshak, 2004; 

Pederson and Dehler, 2005; Fossen, 2010).  

Cobbold and Quinquis (1980) conducted experiments using silicone and 

plasticine as rock analogues to test if a pre-existing perturbation in a layer can lead to 

the formation of sheath folds in simple shear (Figure 4a). They performed three 

different experiments with a shear strain of  = 15. In the first model, they deformed 

a homogeneous matrix with a marker layer to visualize the deformation. The marker 

layer was perturbed, i.e. it had a small dent in its center, before the model was 

sheared. This perturbation was initially symmetric but with increasing deformation 

became deformed, stretched, and strongly asymmetric resulting in the formation of a 

sheath fold. The fold developed purely passively and its shape depended on the 

initial shape of the deflection. In this case, the simple shear flow did not get 

perturbed, as the entire matrix was homogeneous. In a second experiment, they tested 

the impact of a rigid and corrugated basement on the overlaying, weaker layer 

(Figure 4b). The model was built of two layers, one representing the stiff basement 

and the other the overlying, less viscous layer. The overlaying layer had passive 

marker layers for the visualization of the deformation. The corrugation of the 

basement perturbed the simple shear flow and led to the formation of sheath folds in 

the overlaying layer. This process can potentially explain how sheath folds might 

form in glaciotectonic sediments (e.g., Moller, 2006). In a third experiment, they 

tested the impact of a stiff layer that was embedded at an angle to the shear plane in 

the weaker matrix. The matrix again had passive marker layers for the visualization. 

During the deformation, the stiff layer got boudinaged, which forced the matrix to 

deform. At the necks, where the boudins separated, non-cylindrical folds developed 

in the matrix. The formation mechanisms discussed by Cobbold and Quinquis (1980) 

gained widespread acceptance “almost to the point where it is used unquestioningly 

as the explanation” for the formation of sheath folds (Skjernaa, 1989, p. 690). 

Several authors modeled the development of sheath folds from pre-existing 

perturbations by means of kinematic models (Cobbold and Quinquis, 1980; Lacassin 

and Mattauer, 1985; Skjernaa, 1989; Mies, 1993). Such models can give information 
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on the amount of strain that is needed or the initial shape of the perturbation. Vollmer 

(1988) developed a numerical model also using a perturbation as trigger for the 

formation of sheath folds to explain nappe scale sheath folds. 

1.3.3.2. Flow perturbation: rigid inclusion 

The behavior of a rigid ellipsoidal particle in a viscous matrix is well studied 

(e.g., Ghosh and Sengupta, 1973; Ghosh and Ramberg, 1976; Ildefonse and 

Mancktelow, 1993; Arbaret et al., 2001; Dabrowski and Schmid, 2011). Marques and 

Cobbold (1995), Rosas et al. (2001, 2002), and Marques et al. (2008) analyzed the 

effect of such a rigid inclusion on the formation of sheath folds. A rigid inclusion 

embedded in a matrix and subjected to simple shear perturbs the laminar flow, which 

can lead to the formation of sheath folds (Figure 4c). In nature such inclusions can 

be, for example, boudins or single large mineral grains. Natural examples of sheath 

folds that developed around rigid inclusions were reported by Marques and Cobbold 

(1995), Rosas et al. (2001, 2002), and Marques et al. (2008). The same authors tested 

with analogue experiments the mechanisms leading to the sheath fold formation. One 

of the experiments conducted by Cobbold and Quinquis (1980) simulated already a 

similar situation. Instead of having an individual rigid inclusion, they had a sequence 

of boudins between which the matrix got strongly deformed and sheath folds 

developed. Marques and Coddold (1995), Rosas et al. (2001, 2002),  and Marques et 

al. (2008) tested the effect of a singular rigid inclusion subjected to simple shear on 

the development of sheath folds. Marques and Cobbold (1995) investigated the 

impact of the shape of the inclusion and its position. They observed the development 

of sheath folds on both ends of the inclusion in the direction of the shear. The 

development of the folds took place in a homogeneous matrix. Rosas et al. (2001) 

observed that well developed sheath folds could be seen around rigid inclusions if 

these inclusions do not rotate in the simple shear flow. Around inclusions that rotated 

significantly, only minor (or no) sheath folds could be observed. Rosas et al. (2002) 

tested the effect of the distance between a marker layer and the inclusion on the 

visibility of the evolving folds. They concluded that sheath folds develop whenever 

the distance between the inclusion and the marker layer is less than the longer 

principle direction of the rigid inclusion. Marques et al. (2008) tested the impact of a 

viscosity ratio between the layers of the matrix. They embedded a rigid inclusion into 
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an actively layered matrix and sheared the experiments to a shear strain of  = 6. 

They concluded that to generate a sheath fold in both the higher and lower viscosity 

layer, the viscosity ratio between the layers needs to be lower than 10. 

 

Figure 4: Schematic sketch of the different formation mechanisms of sheath folds in simple 

shear. a) Passive amplification of a perturbation, after Cobbold and Quinquis (1980). b) 

Formation of a sheath fold above a rigid and corrugated basement, after Cobbold and 

Quinquis (1980). c) Formation of sheath folds around a rotated rigid inclusion, after Rosas et 

al. (2002). 

1.3.3.3. Flow perturbation: weak inclusion 

Another potential formation mechanism in simple shear is the sheath fold 

development around weak inclusions. This idea has already been introduced for the 

formation of flanking structures (e.g., Grasemann et al., 2005; Exner and Dabrowski, 

2010). It is suggested that a weak inclusion could act as a slip surface in simple 

shear, which leads to the deformation of the surrounding matrix. Exner and 

Dabrowski (2010) proposed that flanking structures in three-dimensions might be 

sheath folds. The papers included in this thesis take up this idea and show that sheath 

folds can indeed be formed around a weak inclusion in simple shear. This puts sheath 

folds in line with other structures developing through the process of slip localization 

on a weak inclusion where the larger scale deformation is taken up in the form of 

ductile folding around the slip surface such as fault-related folds (e.g., Schlische, 
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1995) and flanking structures (e.g., Passchier, 2001; Exner and Dabrowski, 2010; 

Grasemann et al., 2011). 

Weak inclusions acting as slip surfaces are commonly found in nature. 

Weaknesses that can potentially act as slip surfaces range from cracks and veins to 

weak sedimentary layers and weak minerals. They are not restricted to any rock type 

or matrix assembly and can be found over a wide range of sizes. However, detecting 

a weak inclusion in the field and link it unambiguously to a sheath fold can be 

difficult as the inclusion might be strongly deformed and overprinted by the bulk 

deformation. 

1.4.  Application of sheath folds 

Sheath folds were used to deduce kinematic and geometric information such 

as the strain magnitude, the bulk strain type, the shear direction, or the shear zone 

width. The following paragraphs deal with the individual applications of sheath 

folds. 

1.4.1. High strain indicator 

As sheath folds can often be observed in shear zones with large shear 

deformation they were used as a criterion for high shear strain for many years (e.g., 

Minnigh, 1979). This idea of sheath folds being high strain indicators is widely 

accepted and popular in structural geology textbooks (Kearney and Allen, 1993; 

Pederson and Dehler, 2005). Rosas et al. (2002) and Marques et al. (2008) have, 

however, shown with their analogue experiments that a strain of 5γ ≈  is sufficient to 

produce sheath folds. A recent study by McClelland (2011) has demonstrated that 

sheath folds produced by turbiditic flows can form at a shear strain of  = 1. The 

essential question, which has to be answered before deciding what strain magnitude 

sheath folds are typical for is to determine, what high strain is. The opinions about 

what high strain is are diverse in the literature. Marques et al. (2008) state that a 

shear strain of  = 10 is little when compared with high strain ductile shear zones. 

Mies (1993) on the other hand states that  = 10 is a large shear strain. It seems that 

the measure of high strain is extremely dependent on the field the researchers work 

in. To say that sheath folds are high strain indicators is imprecise, as there exists no 
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general agreement on what high strain is. In addition, the occurrence of sheath folds 

cannot be linked to a specific strain value. 

1.4.2. Shear sense indicators 

Sheath folds are often used in the field to orient shear zones (e.g., Alsop and 

Carreras 2007, Kuiper et al., 2007). Fossen and Rykkelid (1990) used sheath folds 

not only to determine the orientation of the shear zone but also its shear sense. They 

observed shear-related sheath folds, which show limbs of different thicknesses. This 

results in a location of the center of the resulting eye-pattern in either the upper or the 

lower half of the structure (Figure 5). Based on their field example Fossen and 

Rykkelid (1990) state that by knowing the closing direction of the sheath fold cone 

and observing the layer thicknesses in the cross-section, the shear sense of the shear 

zone can be determined. For folds closing towards the observer, a thinned inverted 

limb (Figure 5a and d) indicates top-towards-observer sense of shear. 

 

Figure 5: Sketch illustrating how the thinning/thickening of the limbs in sheath folds can 

give information about the shear direction after Fossen and Rykkelid (1990). a) and b) The 
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fold closes towards the observer. c) and d) the fold closes away from the observer. The black 

arrows indicate the shear direction. a) and d) show a shear direction of top towards the 

observer, b) and c) show a shear direction of top away from the observer.  

1.4.3. Shear zone thickness indicator 

When sheath folds develop in shear zones the size of the sheath fold can 

provide information on the minimal shear zone width (Ramsay, 1980; Lacassin and 

Mattauer, 1985; Skjernaa, 1989; Mies, 1993; Alsop et al., 2007). Alsop et al. (2007) 

stated that the maximum z-value measured in a sheath fold gives the minimum width 

of the shear zone. Bonamacini et al. (2011) used a large-scale sheath fold to constrain 

the thickness and the strain distribution within the deep crustal flow zone.  

1.4.4. Bulk strain type indicator 

Alsop and Holdsworth (2006) developed a classification of sheath folds based 

on the morphology of the eye-structure in cross-sections. Based on field 

observations, they linked their classification to bulk strain types. In the following 

paragraph, this classification and its application are introduced. 

1.4.4.1. Classification 

The classification by Alsop and Holdswort (2006) is based on cross-sections 

of sheath folds, which are perpendicular to the x-axis in the y-z plane. They 

approximate the closed contours or eyes with ellipses. If in such a cross-section, 

more than one closed contour can be seen they measure the long and the short axes 

of the ellipses approximating the innermost and outermost closed contour. Figure 6 

shows the parameters they measured on a sheath fold cross-section. Measuring the 

aspect ratio of the outermost closed contour gives a value termed Ryz, measuring the 

aspect ratio of the innermost closed contour gives the value Ry’z’ (Figure 6a). Note 

that the interfaces and not the layers are measured, so it is possible that Ryz is 

measured on the outside of a layer and Ry’z’ on the inside of the same layer. By 

taking the ratio of Ryz and Ry’z’ a single value R’ (R’ = Ryz/Ry’z’) is defined, 

describing the shape of the nested closed contours. Folds showing the same aspect 

ratio or flatness for the outermost and innermost closed contour are called 

‘Analogous-eye-folds’ or type A (Figure 6b). These folds have the same aspect ratio 
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for the inner and outermost contour (Ryz = Ry’z’; R’ = 1). Folds that show a more 

rounded innermost contour and are displaying Ry’z’ < Ryz and R’ > 1 are called 

‘Bull’s-eye-folds’ or type B. If the innermost contour is more flattened than the 

outermost and Ry’z’ > Ryz and R’ < 1 the folds are called ‘Cat’s-eye-folds’ or type C. 

Together with the measurements of the aspect ratios, the distance between the 

innermost and outermost contour along the y and z axes was measured. The ratio of 

this measurement (Tyz) gives information about the layer thickening/thinning.  

 

Figure 6: a) Sketch illustrating the opening angle ω  and the inner and outermost closed 

contour used for the classification by Alsop and Holdsworth (2006). b) Classification of the 

eye-pattern according to Alsop and Holdsworth (2006). 

1.4.4.2. Application 

Using their classification of the eye-patterns described above, Alsop and 

Holdsworth (2006) measured R’ and Tyz on natural sheath folds and linked the 

observed cross-sections to different bulk strain types. Folds generated in simple or 

general shear display primarily cat’s-eye-structures, while folds formed in pure shear 

display bull’s-eye-patterns. They observed that folds generated during simple shear 

have a mean Ryz value of 4.61 and a mean Tyz value of 3.31. Folds generated during 

general shear show greater thickness variations (Tyz = 4.35) and Ryz (5.76). The 

authors concluded that the overall variation in layer thickness and aspect ratio of the 

outermost closed contour increases with increasing deformation and a larger 

component of pure shear. R’ is constant for both types of bulk strain and reflects the 
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original fold pattern. For folds generated in pure shear the values observed for Ryz as 

well as Tyz are smaller (Ryz = 2.42, Tyz = 2.94) compared to folds generated in simple 

or general shear.  

1.4.5. Limitations of the classification and applications 

The use of sheath folds as shear strain indicator is limited by two factors. As 

discussed in section 1.4.1 sheath folds occur over a wide range of different strains 

and the term ‘high strain’ is not clearly defined and therefore of limited use. To use 

sheath folds as high strain indicators might be incorrect. So far, no systematic study 

exists, which investigates the development of sheath folds with increasing strain. 

Using the sheath folds as shear sense indicators as proposed by Fossen and 

Rykkelid (1990) is only possible if the sheath fold shows a layer thickening or 

thinning in the eye-pattern and if the closing direction of the fold is known. Until 

now, no studies have been carried out that investigated the thickening/thinning with 

respect to the shear strain, cross-section location, or formation mechanism. Their 

classification has not been applied to other examples.  

The classification developed by Alsop and Holdswort (2006) could 

potentially be dependent on the observer. The outermost closed contour is a fairly 

clearly defined geometrical measure. The innermost closed contour, however, might 

be defined differently depending on the observer. No study exists that investigates 

the sensitivity of the classification by Alsop and Holdsworth (2006) on the location 

of the innermost contour. This classification is, in addition, purely empirical and has 

so far not been backed up by a study based on physical principles. 

Using sheath folds as minimum shear zone indicators is not subject to any 

limitations. 

1.5.  Sheath fold formation around a slip surface 

Section 1.3.3.3. suggests that sheath folds can form due to a weak inclusion 

subjected to simple shear. Section 1.4.4. lists potential problems with the existing 

classifications and applications of sheath folds. In this thesis, three papers are 

presented that investigate the formation of sheath folds around a weak inclusion and 

test the applicability of the existing classifications. 
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The following chapters will address the central questions of this thesis: Can 

sheath folds form around weak inclusions acting as slip surfaces? What is the impact 

of the slip surface orientation? What influence has the cross-section location on the 

structures? Can sheath folds form only in a homogeneous matrix or also in a 

mechanically layered one? How important is the layer thickness or the number of 

involved layers on the formation of the sheath folds? How much strain is required to 

produce sheath folds? The papers presented in this thesis address these questions 

with a combined analytical and experimental approach. The next section gives an 

overview of the used techniques, their limitations, and advantages while the 

subsequent sections address the questions raised above and introduces the papers in 

this thesis. 

1.5.1. Introduction to the techniques 

Both the analytical and the experimental techniques used in this thesis 

investigate the sheath fold formation around a weak inclusion where the deformation 

is simple shear. In the following two sections (1.5.1.1. and 1.5.1.2.) the used 

techniques are introduced. In section 1.5.1.3 the two methods are compared.  

1.5.1.1.  The analytical model 

The analytical studies in the papers presented in chapters 2 and 4 are based on 

an adapted form of the external Eshelby solution, which describes the flow field 

around a homogeneous ellipsoidal inclusion where the elastic properties of the 

inclusion differ from those of the matrix (Eshelby, 1959). Exner and Dabrowski 

(2010) modified the original solution in such a way that it is applicable for viscous 

materials and a two-dimensional, inviscid inclusion. Here, one axis of the ellipsoidal 

inclusion tends to zero and the viscosity of the inclusion tends to zero. The slip 

surface is therefore a frictionless, quasi two-dimensional feature embedded in a 

three-dimensional homogeneous matrix block (Figure 7). The original solution was 

developed for an elastic medium. To modify the original solution for a viscous 

incompressible medium, the Poisson ratio needs to be set to ½ and the shear modulus 

of all the materials need to be replaced by the viscosity and the displacement has to 

be treated as velocity (Freeman, 1987). Into the homogeneous matrix, we place 

passive marker layers and apply simple shear to the model. The analytical solution is 



Introduction 
 

25 

evaluated on a cloud of points distributed in the matrix. To deform the model, the 

new positions of all the points are evaluated and then the points are moved 

accordingly. Then the shape of the inclusion is determined and the solution is re-used 

for the new position of the points. The inclusion keeps an elliptical shape even 

though it gets deformed and stretched. The model is point symmetrical with respect 

to the central point of the inclusion. A detailed description of the model including all 

the equations is presented in Exner and Dabrowski (2010). 

 

Figure 7: Model setup for the analytical model. a and b describe the main axes of the 

elliptical weak inclusion.  is the angle of the initial inclusion orientation. 

The model can be deformed up to an arbitrarily large simple shear strain. The 

deformation leads to slip on the weak inclusion and deformation of the matrix. At the 

tip of the inclusion, the deformation has to be taken up in the surrounding matrix, 

which leads to the formation of folds. To visualize the deformation the matrix 

contains passive marker layers. Tracing the marker layers allows studying the 

resulting structures in three-dimensions.  

This analytical model permits for inclusion shapes that are circular or 

elliptical. Figure 7 shows a sketch of the initial model setup where  represents the 

initial orientation angle of the inclusion and a and b are the main axes of the elliptical 

inclusion. The sketch shows only one marker layer but there is no limitation on the 

number of marker layers in the matrix. In the studies presented in this thesis, we 

limited the shear deformation to a shear strain of maximum  = 15. The model is not 
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subject to a disrupting boundary effect. A big limitation of the model is, however, the 

absence of layers with different viscosities in the matrix. 

1.5.1.2. The experimental model 

To investigate the impact of a mechanically layered matrix, i.e. layers of 

different viscosities on the development of sheath folds, we used analogue 

experiments. For the experimental study, a simple shear apparatus was used, which 

allowed for high shear deformation. The maximum strain that could be reached with 

this apparatus is a simple shear strain of  = 25. In the study presented in this thesis, 

we deform the experiments only to a simple shear strain of  = 6. This strain is large 

enough for the formation of sheath folds, and it maximizes the volume of the 

experiment that is not affected by the boundaries.  

The experiments are made of silicones of different viscosities, which were 

used as rock analogues. To produce a viscosity contrast between the silicone layers, 

the viscosities of the silicones were adjusted by adding iron oxide and sand (higher 

viscosity) or oleic acid (lower viscosity). A major challenge for the success of the 

experiments was the production of fine layers of silicone. A detailed account of the 

production process of the layering is given in chapter 3 together with the dimensional 

analysis of the experiments.  

The weak inclusion was simulated with a cut in the silicone that was 

lubricated with liquid soap. We adjusted the shape of the weak inclusion to the 

dimensions of the experiment box. As the experiment box has a length of 40 cm, a 

width of 10 cm, and a height of 5 cm, we decided on an elliptical inclusion with a 

long axis of 4 cm and a short axis of 1.5 cm (a/b = 2.67). The inclusion is inserted 

vertically (  = 90°) into the model.  

After the deformation, we cut the model into serial cross-sections 

perpendicular to the shear direction. Photographs of the model are taken while 

sections of 5 mm thickness are removed. These photographs are then used to 

reconstruct the shape of the sheath fold in three-dimensions. A detailed account of 

the experimental technique can be found in chapter 3. 
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Figure 8: a) Sections cut from the deformed model. The reconstruction of the models was not 

based on pictures of the extracted cross-sections but on pictures of the sections when they 

were still in the machine. b) Oleic acid and iron oxide used to change the viscosity of the 

silicon. c) Silicones resting to release air bubbles after the mixing with oleic acid, iron oxide, 

and sand. d) Double roll device used for the layer production. This rolling device is from a 

bakery where it was used to produce butter dough. e) Simple shear machine used for the 

experiments. The machine has a total length of approximately 2.5 meters. 

1.5.1.3. Method comparison 

The two methods used for the investigation of sheath fold formation around a 

weak inclusion are complementary. While the analytical model is not suited for 
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investigating the impact of a viscosity contrast between the layers building the 

matrix, the experimental model was designed to investigate this question. In 

comparison to the analytical model, the experimental model is subject to some but 

limited boundary effects such as the relatively close proximity of the walls of the 

experimental box and the coarse cutting spacing of the cross-sections.  

To compare the two methods we performed an analytical model and an 

experiment with the same inclusion dimensions, inclusion orientation, number of 

layers scaled with the inclusion height, and total shear strain. The experiment was 

conducted using two differently colored silicones of equal viscosity to compare to 

the homogeneous analytical model. Both models were sheared to a shear strain of  = 

6. The experiment and the model show closed contours in cross-sections 

perpendicular to the shear direction (Figure 9). We measured the length and the dip 

of the deformed inclusion in both models (Figure 10). For the analytical model the 

evolution of the length and dip with increasing strain is shown, while for the 

experimental model only the final stage is displayed. The length of the crack is, in 

both models, normalized with the initial inclusion height. The values for the length 

are approximately the same in both models for the same amount of strain. The dip of 

the inclusion in the experiment is larger than the dip of the inclusion in the analytical 

model at the same final shear strain. The reason for this discrepancy might be that the 

confining boundary condition in the experiment prevented the inclusion from 

rotating to the same degree as in the analytical experiment. 
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Figure 9: Left side: Result from the experimental model at  = 6,  = 90°, a/b = 2.67. Right 

side: corresponding analytical model.  

 

Figure 10: a) The length of the inclusion plotted against the strain for the analytical and 

experimental model with  = 6,  = 90°, a/b = 2.67. b) Dip of the inclusion plotted against 

strain. 

1.5.2. Applicability of the models to nature 

Both models presented above use a linear viscous rheology to simulate the 

matrix and the inclusion. The flow laws in rocks are dependent on the involved 

mechanism, the mineral composition, and the grain size. Rocks deforming due to 

dislocation creep follow viscous, power flow laws (e.g., Carter, 1976). Rocks that 
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deform by diffusion creep show a Newtonian viscous rheology (Frost and Ashby, 

1983). Using a linear viscous matrix in the models can simulate the deformation by 

diffusion creep. For the experiments, we used PDMS (silicone) which exhibits in its 

pure form (no fillers such as sand, iron oxide, or oleic acid added) a Newtonian flow 

behavior at strain rates commonly used in analogue laboratories (ten Grotenhuis et 

al., 2002). By adding fillers, the elastic component of the silicone increases. 

Weijermars (1986) pointed out that even though the actual deformation mechanism 

in the silicone differs quite strongly form the creep mechanisms in real crystalline 

rocks, silicone is a suitable rock analogue as the flow curve of silicone at strain rates 

of 10-3 to 10-1 s-1 is similar to the flow curves of rocks flowing at strain rates of 10-15 

to 10-13 s-1. 

Both presented methods use a weak inclusion to perturb the simple shear flow 

and cause the formation of sheath folds. This inclusion behaves like a passive marker 

in both models. It can stretch and rotate but it cannot propagate. Natural analogues 

for such weak inclusions might be veins, faults, cracks, dykes, and weak sedimentary 

layers. While a non-propagating inclusion is suitable to simulate veins, dykes, and 

weak layers, it might not be obvious that it is also applicable for the simulation of 

faults and cracks. Means (1989) described an unfamiliar type of faults that he termed 

stretching faults. Such faults occur in flowing rock bodies where the wall rocks can 

lengthen or shorten in the slip direction. Stretching faults behave essentially 

passively, i.e. they do not propagate. Non-propagating weak inclusions have been 

used to describe the formation of flanking structures (Grasemann and Stuwe, 2001; 

Grasemann et al., 2003; Grasemann et al., 2005; Grasemann et al., 2011). Based on 

comparison of natural flanking structures and model results Grasemann et al. (2011) 

stated that the fundamental property of an inhibited fault propagation applies for the 

observed structures and that this is moreover a general feature of flanking structures. 

If we consider sheath folds to be three-dimensional flanking structures (Exner and 

Dabrowski, 2010) the same reasoning applies for the sheath fold formation.  

Both our models deform in a monoclinic flow. Using a triclinic flow would 

have an impact on the resulting structures (e.g., Exner and Dabrowski, 2010; Kuiper 

et al., 2007). In the studies presented in this thesis we do, however, not investigate 

the impact of a triclinic flow. 
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1.6.  Introduction to the papers 

This thesis is a collection of papers all strongly related to each other. The 

individual papers are presented in chapters 2, 3, and 4. In chapter 5 some additional 

work is presented which does not have the format of a scientific paper. Chapter 6 

contains an overall conclusion of the entire thesis and final remarks.  

1.6.1. Paper I 

The first paper in this thesis entitled ‘Sheath fold formation around slip 

surfaces’ (Chapter 2, published in Terra Nova) introduces the idea of sheath folds 

forming around slip surfaces in simple shear. Results from the three-dimensional 

analytical model show that the flow perturbation around a weak planar inclusion, 

acting as a slip surface, leads to the formation of sheath folds. In cross-sections 

parallel to the shear direction structures similar to flanking folds can be observed. 

Closed traces of marker layers are exhibited in cross-sections cut perpendicular to the 

shear direction in the vicinity of the slip surface tip. The impact of the location of the 

cross-section in x-direction on the visibility of the structures is discussed. The paper 

also investigates the impact of the initial orientation of the slip surface on the 

development of sheath folds. Three different initial orientations (  = 0°, 90°, 135°) 

were tested. These orientations approximate, for example, a shear plane parallel 

weakness, a vertical vein, or a model I fracture. We can observe for all three 

orientations the formation of sheath folds at the tip of the slip surface. The results 

from the analytical model are compared to natural sheath folds. Our model is able to 

reproduce the first order observations from nature such as the diversity of shapes and 

multiple eye-structures. In addition, we present an alternative formation mechanism 

for double-eye-folds. 

1.6.2. Paper II 

The second paper entitled ‘Experimental study of sheath fold development 

around a weak inclusion in a mechanically layered matrix’ (Chapter 3, in review in 

Tectonophysics) investigates the impact of a viscosity contrast between the layers 

building the matrix on the sheath fold development. We describe results from 

experiments of sheath fold formation around a weak inclusion in a matrix of silicone 
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layers of alternating viscosities subjected to simple shear. We investigate the impact 

of the viscosity ratio between the layers, which we vary from 1 to 50, and the impact 

of the layer thickness, which we vary from 0.5 to 6 mm. We analyze the resulting 

structures in cross-sections perpendicular to the shear direction. In addition to 

analyzing the cross-sections, we reconstruct the three-dimensional shapes of the 

folds. For a constant layer thickness of 1 mm, sheath folds develop for viscosity 

ratios up to 20. The shapes of the sheath folds, however, are dependent on the 

viscosity ratio. For a higher viscosity ratio, the layers are strongly deformed but no 

sheath fold could be determined unambiguously. The visibility of the sheath fold 

strongly depends on the ratio between the inclusion height and the layer thickness. 

Comparing the experimental sheath folds to natural examples, we can observe that 

our experiments capture the first order observations from nature.  

1.6.3. Paper III 

The third paper of this these with the title ‘Analytical modeling of the 

morphology and internal structure of sheath folds in simple shear’ (Chapter 4, 

prepared for Journal of Structural Geology) investigates systematically the impact of 

the initial slip surface configurations, such as its orientation and shape, strain, and 

cross-section location on the resulting folds. We employ the same analytical solution 

as already presented in chapter 2. We show that the aspect ratios of the closed 

contours are dependent on the slip surface orientation and shape, and strain. The 

distribution of the center of the eye-structure as a function of the cross-section 

location, on the other hand, is strain invariant and independent on the slip surface 

configurations. The center of the eye-structure is subject to change in position with 

respect to the outermost closed contour within one fold resulting in a large variability 

in layer thickness across the sheath fold length. This questions the usefulness of 

sheath folds as shear sense indicators. We show that the aspect ratios of the closed 

contours are dependent on the cross-section location. The number of sampled layers 

has a minimal effect on the ratio (R’) of the aspect ratio of the outermost closed 

contour (Ryz) and the aspect ratio of the innermost closed contour (Ry’z’). R’ is a 

stable measurement but it is dependent on the slip surface size and orientation. R’ 
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values below and above 1 can be observed. Using R’ measurements to deduce the 

bulk strain type may be erroneous. 

1.6.4.  Additional work 

Chapter 5 is entitled ‘Shear plane parallel cross-sections’ and contains results 

from the analytical study where cross-sections parallel to the shear plane are 

investigated. In a short study the structures are shown resulting from cutting a sheath 

fold in an approximately shear plane parallel plane at different depths. Chapter 6 is 

entitled ‘Overall conclusions’ and gives an overview of the findings in this thesis and 

combines them to an overall conclusion. 
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3. Experimental study of sheath fold 

development around a weak inclusion in a 

mechanically layered matrix 
2Sheath folds in a mechanically layered matrix 

3.1.  Abstract 

Sheath folds are highly non-cylindrical structures. They are common in shear 

zones. In cross-sections perpendicular to the shear direction, folded layers appear as 

closed contours (“eye-structures”). The mechanisms of development of sheath folds 

are a subject of debate. Here we describe experiments on sheath fold formation 

around a weak inclusion in a matrix consisting of silicone layers of alternating 

viscosity. The main experimental variables were the viscosity ratio (from 1 to 50) 

and the thickness of the layers (from 0.5 to 6 mm). We deformed the models in a 

simple shear apparatus to a shear strain of  = 6. We cut serial cross-sections, 

perpendicular to the shear direction, and reconstructed the folds in 3D. All 

experiments with a weak inclusion resulted in strong deformation of the layers. For 

an initial layer thickness of 1 mm, sheath folds formed, no matter what was the 

viscosity ratio. However, for larger viscosity ratios, the sheath folds formed at larger 

angles with respect to the shearing plane, were less elongate, and had wider opening 

angles. In general, the visibility of a sheath fold strongly depended on the aspect ratio 

between the inclusion height and the layer thickness: we observed sheath folds for a 

ratio larger than 7.5. The experiments reproduced the first-order features of natural 
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sheath folds. In the experiments, sheath folds readily nucleated around weak 

inclusions, therefore we expect this to be a common process in nature. 

3.2.  Introduction 

Sheath folds are quasi-conical structures with rounded apices (Figure 1a) 

(Hansen, 1971; Quinquis et al., 1978; Ramsay, 1980; Skjernaa, 1989). Ramsay and 

Huber (1987) defined sheath folds as having an opening angle of < 90° (Figure 2). 

Sheath folds are three-dimensional structures and some examples crop out fully as 

such (Quinquis et al., 1978). In general, however, sheath folds are more readily 

visible on cross-sections perpendicular to the shear direction (e.g., Alsop and 

Holdsworth, 2006), where the layers show closed contours (Figure 1b). Although 

these structures are now called sheath folds, earlier terms were ‘domes and basins’ 

(Quirke and Lacy, 1941), ‘closed folds’ (Balk, 1953) or ‘eyed folds’ (Nicholson, 

1963). Sheath folds occur in many rock types, such as metamorphic rocks (e.g., 

Carreras et al., 1977; Quinquis et al., 1978; Philippon et al., 2009), soft sediment 

(e.g., George, 1990; McClelland et al., 2011), or ignimbrite (Branney et al., 2004). In 

length they may be from less than one millimeter (Berlenbach and Roering, 1992) to 

more than one kilometer (Lacassin and Mattauer, 1985). Alsop et al. (2007) 

demonstrated that sheath folds are to a significant degree scale-invariant. Carreras et 

al. (1977) and subsequent workers (e.g., Quinquis et al., 1978; Alsop and 

Holdsworth, 2006; Fossen and Rykkelid, 1990; Minnigh, 1979) associated sheath 

folds with shear zones and used their shapes to infer strain magnitude (e.g. Alsop and 

Holdsworth, 2004), shear sense (Fossen and Rykkelid, 1990) or bulk strain type 

(Alsop and Holdsworth, 2006).  

 

Figure 1: a) Photograph of quartz layer, cropping out as sheath fold, Cap de Creus, Spain. b) 

Photograph of sheath fold as eye-structure in quartzite layers on cross-section perpendicular 
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to shear direction, Oppdal, Norway. c) Three-dimensional diagram of sheath fold according 

to analytical model of Reber et al. (2012). Arrows indicate the shear direction. 

A simple approach to studying sheath folds is through detailed description 

and classification of their shapes (e.g., Skjernaa, 1989; Alsop and Holdsworth, 2006). 

Such an approach, however, provides few insights into the kinematics and mechanics 

of their development. Simple theories of buckling (e.g., Biot, 1957) are two-

dimensional and predict cylindrical folds, so that they are not applicable to sheath 

folds. Several studies have suggested that sheath folds arise during a flow 

perturbation in simple shear. Such a perturbation may be due to (1) a local undulation 

in otherwise planar and passive layering (Cobbold and Quinquis, 1980), (2) a rigid 

inclusion, such as a boudin (Marques and Cobbold, 1995; Marques et al., 2008; 

Rosas et al., 2002), or (3) a weak inclusion, such as a crack or vein (Exner and 

Dabrowski, 2010; Reber et al., 2012). The bulk deformation may also involve 

components of constriction or flattening (Ez, 2000; Mandal et al., 2009). In nature, 

however, the causes of sheath fold development may not be discernible, as the bulk 

deformation may have overprinted the initial perturbation, or the resulting sheath 

fold and the triggering objects may have separated during deformation.  

 

Figure 2: Sketch of a sheath fold (α denotes the opening angle of cone). 

Early studies of the mechanics of sheath folds were mainly experimental, but 

some recent ones have been numerical (Mandal et al., 2009) or analytical (Reber et 

al., 2012). Most former studies assumed a homogeneous matrix for the development 

of sheath folds. In nature, however, many sheath folds in rocks involve layers of 
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contrasting viscosities (e.g., Alsop and Holdsworth, 2006; Morales et al., 2011). 

Marques et al. (2008) tested the effect of a mechanically layered matrix on sheath 

fold development around a rigid inclusion. They concluded that sheath folds do not 

develop when the viscosity ratio between the layers is larger than 10. However, in 

their experiments the ratio between the inclusion size and the layer thickness was 

constant, whereas Dabrowski and Schmid (2011) argued that this parameter controls 

the visibility of the evolving structures. 

In this paper, we present an experimental study of sheath fold development in 

a mechanically layered matrix of silicone around a weak inclusion. Our experimental 

setup consisted of a simple shear apparatus. In a systematic manner, we tested the 

effects of (1) the viscosity ratio between the layers, and (2) the aspect ratio between 

the size of the inclusion and the layer thickness. 

3.2.1. Experimental procedure  

Typically, the preparation and running of each experiment required 3 to 4 

days. 

3.2.1.1. Model material 

To build the matrix we used polydimethyl-siloxane (PDMS-DC SGM36, 

Dow Corning, Great Britain, further referred to as silicone), which is a suitable 

model material for the strain rates such as those in our experiments (ten Grotenhuis 

et al., 2002; Weijermars, 1986).  

For the pure silicone, we measured a viscosity of 3.5×104 Pa s at 21°C. To 

test the effect of mechanical layering on the development of sheath folds, we needed 

silicones of different viscosities. To increase the viscosity, we mixed the pure 

silicone with inert fillers, such as fine-grained sand or iron-oxide (Weijermars, 1986) 

thus obtaining a maximal viscosity of 5.3×105 Pa s. Conversely, to decrease the 

viscosity we mixed the pure silicone with oleic acid (Weijermars, 1986), so obtaining 

a minimal viscosity of 7.2×103 Pa s. Thus, this procedure allowed us to produce a 

viscosity ratio up to 50. For details on the viscosity measurements see Appendix A. 

To simulate the weak inclusion, we used a liquid soap (Arma®, Marseille). 

We measured the viscosity of the soap, using the same rotary viscometer as 
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described by Galland et al. (2006) for low viscosity fluids, and obtained a value of 

approximately 1 Pa s at room temperature. 

3.2.1.2. Apparatus 

We conducted the experiments in the simple shear machine used by Cobbold 

and Quinquis (1980) (Figure 3a). The model lies in an experimental chamber, 40 cm 

long, 10 cm wide, and 5 cm high (Figure 3b). The top and bottom plates of the 

machine move at the same speed, but in opposite directions. The end walls, initially 

perpendicular to the shear direction (y-z plane) consist of stacks of sliding plates 

(Figure 3b). These distribute the shear strain evenly across the thickness of the 

model. Finally, the vertical boundaries, parallel to the shear direction and 

perpendicular to the shearing planes, are stationary. To reduce the friction on these 

boundaries, we lubricated them with liquid soap. In a homogeneous model, such 

boundary conditions should result in a nearly uniform strain. For all the experiments, 

we applied a constant strain rate of 3.5×10-4 s-1 and deformed the models up to a 

shear strain of  = 6. 

 

Figure 3: a) Photograph of simple shear apparatus. Lateral walls are stationary and 

transparent. Stack of sliding plates provides confinement at ends of model. Engine applies 

constant velocity via confining plates at top and bottom. b) Diagram of experimental 

chamber (40 cm x 10 cm x 5 cm). Model consists of layers of silicone. In centre of model is 

weak inclusion of liquid soap. Model deforms to shear strain of  = 6. 
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3.2.1.3. Construction of models 

We made the models out of fine layers of silicone, of alternating viscosities 

(Figure 3b). We aimed to test the effect of the layer thickness, and especially to 

produce very thin layers. To do so, we adopted the following technique of Dixon and 

Summers (1985). 

(1) We individually prepared 8 mm-thick plates of two silicones using a 

double-roller device commonly used in bakeries. To prevent the silicone from 

sticking to the rollers and the underlying surface, we sprayed a very thin film of 

water on a thin plastic sheet, before placing the layer of silicone. We also wetted the 

upper surface of the silicone to prevent it from sticking to the upper roller. (2) When 

the required thickness was reached, we dried the silicone plates and stacked them. 

The two silicone surfaces adhered as soon as they were in contact so that slip 

between the silicone layers became impossible. (3) The two-layer stack was then 

rolled to a final thickness of 8 mm, whereupon each layer acquired a uniform 

thickness of 4 mm. (4) We then cut the two-layer stack into two pieces of equal sizes, 

and placed them on top of each other. (5) The stack was rolled once more to a total 

thickness of 8 mm. It contained now 4 layers of 2 mm thickness. (6) We repeated this 

procedure until we reached the desired layer thickness. The preparation of the thin 

silicone layers is essentially the same as the preparation of butter dough. 

Using this procedure, Dixon and Summers (1985) claimed that they could 

attain a layer thickness of 20 m. The finest layering that we achieved was 0.5 mm. 

We could not produce thinner layers, as the sand grains (Ø25 m) used as inert fillers 

interfered with the thin layers.  

The viscosity ratio had a negligible effect on the preparation procedure 

described above. We assume that if the rolling is faster than the relaxation time of the 

individual silicones, they thin equally. During the experiments, the applied strain 

rates were much lower, and the silicones of different viscosities behaved differently. 

This technique, however, reached its limits when the viscosity ratio between the 

silicones was 50 or higher. In this case, the layer did not thin equally anymore. 

Using the above technique, we prepared six silicone multilayers (each of 8 

mm total thickness), and cut them to the length and width of the experimental 

chamber. We placed all but one multilayer in the experimental chamber. Then, we 
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introduced a weak inclusion, in the following way. (1) We poured liquid soap into an 

elliptical mould, 4 cm long, 1.5 cm high (the inclusion height, a) and 1 mm thick. (2) 

We froze the mould. (3) We made a vertical cut with a knife in the middle of the 

model. (4) We extracted the soap tablet from the mould and inserted it into the cut. 

(5) Before the soap melted, we placed the last silicone multilayer on top, so that it 

sealed in the soap. In this way, the inclusion became an almost planar feature, which 

later acted as a slip surface during deformation of the model. 

3.2.1.4. Observation of the deformed model 

After each experiment, we placed the model in a deep-freezer for 24 hours. 

This made subsequent cutting easier, because the viscosity of the silicone had 

increased by several orders of magnitude. 

We cut the model into serial cross-sections perpendicular to the shear 

direction at regular intervals of 5 mm and then photographed them. The cutting 

process led to some unwanted deformation in the model (Figure 4a). So as to analyze 

the structures meaningfully, we first restored the slices to their original 

configurations. For this purpose, we designed an automatic restoration procedure 

using the Matlab function interp1. The restoration algorithm takes every column of 

pixels in the photograph and stretches it to its original height, (5 cm), so that the 

upper surface of the model becomes once again horizontal (Figure 4 c). Finally, we 

considered only those areas that were free of shadows (Figure 4c, dashed box). 

 

Table 1: Symbols and units of the parameters in this paper. 
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Figure 4: a) Oblique photograph of experiment V4 (viscosity ratio = 20, layer thickness = 1 

mm) after sectioning. Upper confining plate has been removed. b) Clipped photograph. View 

is parallel to shear direction and perpendicular to section c) Same clipped image after 

restoration to original shape using Matlab script. Dashed box indicates area of analysis of 

folds. d) Sketch of restored section. 
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3.2.1.5. Dimensional analysis 

The principle of any scaling procedure is to identify dimensionless numbers 

that describe the properties, kinematics and kinetics of the modeled processes 

(Barenblatt, 2003). These ratios can be defined in both the model and its natural 

prototype on the basis of the governing parameters of the processes. For our 

experiments, geometric input parameters were the inclusion height (a) and the layer 

thickness (b) (Tab. 1). In each experiment, we used two silicones of different 

viscosities  (weak) and  (strong);  denotes the viscosity of the liquid soap of 

the inclusion,  and  denote the applied strain and strain rate, respectively, while 

 (Pa) denotes the stress. 

Thus there were 8 variable parameters, and 3 of them had independent 

dimensions. According to the Buckingham-  theorem (Barenblatt, 2003), five 

dimensionless numbers are necessary.  

A first obvious parameter is strain, which is dimensionless: 

. (1) 

Previous work has shown that sheath folds can develop at a shear strain of   

1 (McClelland et al., 2011). We therefore expect  = 6 to be sufficient to produce 

sheath folds. As we keep Π1 constant, we will not investigate its effect any further. 

A second dimensionless parameter is the geometric ratio between the 

inclusion height a and the layer thickness b: 

. (2) 

In our experiments, the inclusion height (a) was constant (15 mm) and the 

layer thickness (b) was in the range of 0.5 and 6, so that Π2 was between 30 and 2.5. 

An equivalent number is difficult to estimate for geological systems, as a weak 

inclusion may become invisible after large amounts of shear. If we consider our 

weak inclusion to represent a crack, whose size may range from micrometers to 

kilometers, Π2 may have any value, including those of our experiments.  

The viscosities define two dimensionless parameters: 

, and (3) 
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. (4) 

In our experiments, Π3 varied between 1 and 50. In nature, viscosity ratios are 

strongly dependent on the rock-types and temperature. Schmid et al. (2010) 

estimated that Π3 may range from 1 to 10000. Our experiments, therefore, explored 

the lower range of possible viscosity ratios. 

The inclusion was significantly weaker than the weakest silicone that we 

used, such that . If we take again the weak inclusion to represent a crack, its 

viscosity should ideally be infinitely weaker than that of its surrounding matrix. In 

this case, the actual value of Π4 does not matter, as long as it remains <<1.  

The last dimensionless parameter corresponds to the Newton flow law, which 

links stress, strain rate, and viscosity: 

.           (5) 

In the experiments, both the viscosity and the strain rate were constant, but 

we did not control or measure stress. As long as an experimental strain rate remains 

below the upper limit for viscous deformation of PDMS (5×10-1 s-1 according to ten 

Grotenhuis et al., 2002), the silicone behaves like as a Newtonian fluid and  is 1. 

This would also be true for ductile rocks if they were Newtonian fluids. However, 

most ductile rocks obey more complex flow laws, such as non-linear power flow 

laws. Our experiments are therefore a simplification of geological systems.  

We neglect all stresses originating from gravity, as the internal density 

contrasts and dimensions of the models were small. 
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Table 2: Viscosity of silicones in this study, measured at room temperature (19-23°C). 

3.3.  Results 

We conducted a test experiment with no inclusion (T) and two series of 

experiments, each with one inclusion (Figure 5). In the first series with inclusions 

(V-series) the initial layer thickness was 1 mm and the viscosity ratio between the 

two silicones was in the range of 1 to 50 (Tab. 2). In the second series with 

inclusions (L-series), the viscosity ratio was 10 and the layer thickness was in the 

range of 0.5 mm to 6 mm (Table 2). 

We analyzed cross-sections perpendicular to the shear direction. We did not 

examine cross-sections parallel to the shear direction, as these were technically 

difficult to obtain. We use the term sheath fold in the following sections for 

structures that exhibit eye-patterns in cross-sections perpendicular to the shear 

direction. We are aware that some of these structures may not qualify as sheath folds 

according to the strict definition of Ramsay and Huber (1987), for which the opening 

angle should be smaller than 90°. 
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Figure 5: Graph of the experimental strategy. Variables are viscosity ratio and layer 

thickness. 

3.3.1. Experiment T with no inclusion 

In this experiment, the model consisted of horizontal layers, 1mm thick. The 

two silicones were of identical viscosity but different colors (Tab. 2). After 

deformation (Figure 6), the layers had acquired deflection close to the stationary 

walls, but not in the center of the model (as in Cobbold and Quinquis, 1980, Figure 

11). Small local deflections (white arrows, Figure 6) were due to the rise of air 

bubbles trapped in the silicone during the preparation procedure.  

 

Figure 6: Restored cross-section, test experiment T (layer thickness = 1 mm, viscosity ratio = 

1, no inclusion). Section was cut at 2.5 cm from middle of model. Some folds formed within 
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<1 cm of stationary boundaries (e.g. at right side of photograph). White arrows indicate 

piercing structures around rising air-bubbles. 

3.3.2. Experiments with inclusion 

All the models containing inclusions acquired complex deformation patterns. 

We consider four domains relative to the position of the deformed inclusion, as for 

the experiment having a layer thickness of 1 mm and a viscosity ratio of 20 (V4; 

Figure 7). For descriptive purposes, the shear sense is top to the left. The middle of 

the inclusion is the reference point (0) on a horizontal axis parallel to the shear 

direction (x-axis). Henceforth, the position of cross-sections will be in cm from the 

reference point, negative to the left and positive to the right (Figure 7).  

Domain 1 is located to the left of the inclusion. A small elliptical shape is 

visible in the upper right part of the cross-section. This structure indicates the 

presence of a sheath fold. In all experiments, the sheath folds in domain 1 did not 

develop well, as they were strongly influenced by the boundaries. Notably, the 

moving top boundary prevented the sheath fold from developing fully. In addition, 

the layers in the lower part of the section, next to the sliding plates, deformed 

strongly. 

Domain 2 contains the deformed inclusion (Figure 7). Around it the layers 

remained approximately horizontal and parallel to the inclusion and no sheath fold 

was visible.  

Domain 3 is located to the right of the inclusion. Here, concentric closed 

contours reveal fully developed sheath folds (Figure 7). The folds developed close to 

the middle of the model, so that we infer minimal boundary effects.  

Domain 4 is located to the right of domain 3. Here, the layers are almost 

undisturbed, and no closed contours are visible.  

The sheath folds in domains 1 and 3 are not equally well developed, perhaps 

due to a slight difference in the position of the inclusion. Due to the smaller density 

of the soap the inclusion tends to be in the upper half of the model. We consider only 

domain 3 for further analysis.  

The opening angles of all the sheath folds developing in domain 3 are smaller 

than 90° (Figure 12 and 15). According to the definitions of Ramsay and Huber 
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(1987), Skjernaa (1989), and Marques et al. (2008), our folds are true sheath folds. 

Some of them would even classify as tubular folds (V1, V2, V3/L2, Skjernaa, 1989). 

 

Figure 7: Domains displaying different styles of layer deformation. Red line represents 

stretched and deformed inclusion, thin black lines represent deformed layers. Middle of 

inclusion is reference point (0). Restored cross-sections (from experiment V4) represent four 

domains. Domain 1 contains sheath fold, strongly affected by boundaries (cross-section was 

at -10 cm from 0). Domain 2 contains deformed inclusion (white line). Cross-section was 

through 0.  Domain 3 shows fully developed sheath fold (cross-section was at 3 cm from 0). 

In domain 4 no deflection of layers is visible (cross-section was at 10 cm from 0). 

3.3.2.1. V-series 

The V-series aimed to test the effect of the viscosity ratio. The layer thickness 

for all the experiments in this series was b = 1 mm (Tab. 2). Figure 8 shows the 

restored cross-sections of the five experiments. We chose these sections as they 

represent the characteristic deformation patterns observed in each experiment. In all 

experiments, we can recognize the three groups of layers defined by Reber et al. 

(2012, Figure 1): (1) layers, which are remote to the inclusion and show little or no 

deformation, (2) layers exhibiting omega-like ( ) shapes, where a central fold 

separates two straight segments of the layer, and (3) layers forming closed shapes 

(Figure 8).  
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Figure 8: Restored cross-sections, experiments of V-Series (layer thickness = 1 mm). Dashed 

ellipses highlight area of eye-patterns or strongly folded layers. White arrows indicate air 

bubbles. a) V1, viscosity ratio = 1, cut at 4.5 cm from 0, b) V2, viscosity ratio = 5, cut at 3 
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cm from 0, c) V3, viscosity ratio = 10, cut at 4.5 cm from 0, d) V4, viscosity ratio = 20, cut 

at 5 cm from 0, e) V5, viscosity ratio = 50, cut at 2.5 cm from 0. 

In experiment V1 (Figure 8a), the viscosity ratio was 1. In contrast to the test 

experiment T (Figure 6), experiment V1 shows an eye-structure, i.e. a sheath fold. 

Nine layers partake in the eye-structure while the others are only gently deformed. 

The layers forming the eye-structure are thinner than the undeformed layers. 

Deflection of the layers on the right boundary of the picture, due to the stationary 

boundary wall, is within a 5 mm wide strip. On the left side of the picture, this 

deflection cannot be seen, as the photograph has been cropped (compare Figure 4). 

The piercing structure above the sheath fold (white arrow) is due to the rise of a 

small air bubble. At the bottom of the picture (Figure 8a) the layers are slightly 

perturbed due to the influence of the sliding plates.  

In experiment V2 (Figure 8b), the viscosity ratio was 5. The black colored 

silicone is the stiffer. The cross-section shows an eye-structure deforming eight 

layers. It also shows many perturbations and piercing structures due to rising air 

bubbles. Very little deformation is visible at the right and bottom boundaries.  

In experiment V3 (also L2; Figure 8c), the viscosity ratio was 10. The light 

colored (orange) silicone was the weaker. The eye-structure involves five layers. 

Below the main eye-structure, a smaller one is visible. This structure was 

unintentional, as it nucleated from an air bubble. The cross-section shows no other 

perturbation due to rising bubbles. The wave-like distortion in the unfolded layers 

(see 5 top layers in Figure 8c) is an artifact of the cutting process. Again, there is 

some deformation of the layers due to the stationary boundary walls.  

In experiment V4 (Figure 8d), we increased the viscosity ratio to 20. The 

light colored (brown) silicone was the stronger. The eye-structure involved five 

layers. To the left of the eye-structure a stiff layer is remarkably thickened, in 

contrast to experiments with smaller viscosity ratios. The deflection of the layers on 

the right boundary wall is within a very small area. There is also a deflection at the 

bottom boundary. Some air bubbles are visible, but they were not able to rise through 

the stiff silicone and did not perturb the layers.  

In experiment V5 the viscosity ratio was highest (50; Figure 8e). The light 

colored silicone (light brown) was the stiffer. Note that the dark and light layers, 
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where they are horizontal, do not exhibit the same thickness. This is due to the 

limitation of our technique for producing the thin layering with a high viscosity 

contrast. The cross-section shows four layers that are strongly folded in the middle of 

the model where one of the stiff layers shows significant thickening. Very little 

deformation due to the boundaries and few air bubbles can be observed in the 

section. 

Note that the cross-sections of figure 8 are cut at different locations and that 

the numbers of the layers in the eye-structures within one experiment is dependent on 

the distance from the reference point. Therefore, the number of layers in one cross-

section is not characteristic of the entire sheath fold. 

 

Figure 9: 3D perspective diagram, Experiment V4. In reality, sections are between 1.5 cm 

and 5.5 cm from 0. For simplicity, only three layers of weak silicone are visible. Red line on 

section at 1.5 cm is trace of inclusion. Shaded grey area represents approximate shape of 

sheath fold in black layer. Note that the sketch is exaggerated in x-direction. 

The discussed cross-sections give only sparse information concerning the 

three-dimensional shape of the sheath fold. In figure 9 we show a sketch of a 3D 

reconstruction of experiment V4 based on the serial cross-sections. This 

reconstruction was done using the cross-sections of domain 3, in addition to the last 

section at the right side of domain 2 and the first section to the left of domain 4. The 

closed contours are not very prominent close to the inclusion and become more 
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pronounced farther away from the inclusion. In comparison to figure 9 where the 

sheath fold is sketched with an x-axis that is exaggerated, figure 10 shows an 

accurate reconstruction of the sheath fold shape. We used a geomodeling software 

(gOcad, see Appendix B) to interpolate the shape of the sheath fold between the 

individual slices. The sheath fold in figure 10 shows an opening angle of 53°. 

 

Figure 10: 3D reconstruction of Experiment V4 using gOcad 3D modeler. Four layer 

interfaces define sheath fold. Arrows indicate shear direction. 

To quantify the impact of the viscosity ratio on the shape of the sheath fold, 

we measured three parameters in each cross-section: w (width of the outermost 

closed contour), h (height of the outermost closed contour), and d (distance from the 

upper model boundary to the outermost closed contour).  

In all experiments, w decreases linearly with increasing x (Figure 11a). Linear 

interpolation of the data provides a slope, which defines the average tangent of the 

opening angle (α) of the fold. A steeply dipping line corresponds to a bigger opening 

angle. The opening angle correlates positively with the viscosity ratio (Figure 12a). 

The error bars show the confidence interval of 95%. 
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Figure 11: Geometrical parameters versus horizontal distance (x) from reference point (0) for 

experiments of V-Series. Sketch at top illustrates where the geometrical parameters were 

measured on serial cross-sections. a) Width of outermost closed contour (w) versus x. b) 

Height of outermost closed contour (h) versus x. c) Ratio w/h versus x. d) Distance between 

upper model boundary and outermost closed contour (d) versus against x. Lines represent 

linear interpolation between data points for four different sheath folds. 

The data for V1 and V3 show very little change in h, whereas the data for V2 

and V4 show an increase followed by a decrease of h with increasing x (Figure 11 b). 

Note that the sheath fold height seems to depend neither on x nor on the viscosity 

ratio. 

No clear trend in the w/h ratio plotted against x can be seen for any of the 

experiments (Figure 11 c). There is no systematic correlation between the 
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experiments, as the values for V3 are the highest, whereas the values for V4 are 

among the lowest.  

For all experiments, d increases approximately linearly with increasing x 

(Figure 11 d). The depths of the sheath folds do not show a clear dependence on the 

viscosity ratio. The slope of the linear interpolation representing the dip of the folds, 

however, increases with an increasing viscosity ratio (Figure 12c).  

Figure 12b shows the relationship between the viscosity ratio and the sheath 

fold length. The sheath fold length corresponds to the width of domain 3, as defined 

in Figure 7. The error bars represent the uncertainty from the measurements. As we 

cut the model every 5 mm it is possible to underestimate the length of the sheath fold 

by 10 mm. For experiment V1, the measured length of the sheath fold is even more 

underestimated, as we could not observed the fold entirely because the construction 

of the machine prevented a cutting of the model to the point where no closed 

contours were visible anymore. The length of the sheath fold is negatively correlated 

to the viscosity ratio (Figure 12b). 

 

Figure 12: Plots showing dependence of a) opening angle, b) length, and c) dip on horizontal 

distance (x), for sheath folds of V-Series. Error bars for a and c correspond to 95% 

confidence intervals. 

3.3.2.2. L-series 

The L-series aimed to test the impact of the layer thickness on the sheath fold 

development. The viscosity ratio for all experiments was 10 while we varied the 

layer thickness from 0.5 mm to 6 mm. Similarly to the V-series, we chose the cross-

sections as they represent the characteristic deformation patterns in each experiment 

(Figure 13).  
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In experiment L1 (Figure 13a), the layer thickness was 0.5 mm. The light 

colored (red) silicone was the weaker. The very thin individual layers were rather 

hard to track, as they were in some places discontinuous. In the upper third of the 

photograph, strongly deflected layers are visible (dashed ellipse); several of them 

display eye-patterns. Some of the layers show thickening at the vicinity of the eye-

structure. A number of air bubbles locally dislocated the layers. The deflection at the 

boundaries is minor.  

In experiment L2 (also V3, Figure 13b) the layer thickness was 1 mm. Here 

we show a different cross-section than the one described for the V-series (Figure 8c). 

A major eye-structure involves seven layers. A smaller eye-structure was the result 

of an air bubble and unintended. Gentle deflections of the layers can be seen at the 

right boundary. The wave-like deformation of the layers is an artifact of the cutting. 

In experiment L3 (Figure 13c), the layer thickness was 2 mm. In this cross-

section, two layers are strongly deformed but the eye-pattern cannot unambiguously 

be observed. It is possible that a small sheath fold developed but that we did not 

sample it with the cores cross-section spacing of 5 mm. Some deflections of the 

layers due to the cutting can be observed in the lower right corner. Otherwise, the 

layers are only slightly distorted at the boundaries. The section shows many air 

bubbles, but they have small effect, as they did not rise through the stiff silicone.  

In experiment L4 (Figure 13d) the layer thickness was 4 mm. This cross-

section is very similar to the one from experiment L3. Two layers are strongly 

deformed, but they show no eye-pattern. Again, the influences of the boundary walls 

and the air bubbles are minimal.  

In experiment L5 (Figure 13e), the layer thickness was 6 mm. The eye-pattern 

involves one layer. This cross-section is the only one in the entire experiment 

showing such a closed feature. The deformation patterns in the other cross-sections 

of L5 are similar to those of experiment L4. The boundaries and the bubbles have 

nearly no effect.  
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Figure 13: Restored cross-sections from experiments of L-Series. Viscosity ratio has 

constant value of 10. Dashed ellipses highlight area of eye-patterns or strongly folded layers. 
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White arrows indicate air bubbles. a) Experiment L1, layer thickness = 0.5 mm, cut at 5.5 cm 

from 0, b) Experiment L2, layer thickness = 1 mm, cut at 4 cm from 0, c) Experiment L3, 

layer thickness 2 mm, cut at 4 cm from 0, d) Experiment L4, layer thickness = 2 mm, cut at 5 

cm from 0, e) Experiment L5, layer thickness 6 mm, cut at 5 cm from 0. 

Similarly to the V-series, we measured w, h, and d, and plotted them against 

the horizontal distance x (Figure 14). Experiment L4 was not considered in any of 

these measurements, as it showed no closed contour and could therefore not 

unambiguously be identified as a sheath fold. For experiment L5 only one cross-

section shows a closed contour. Thus, only one point represents experiment L5 in the 

plots of figure 14. 

For the experiments L2 and L3, w decreases with increasing x (Figure 14a). 

In contrast, w increases with increasing x for experiment L1. The lines represent the 

linear interpolations of the data points for each experiment and give the tangent of 

the opening angles (α) of the folds (Figure15a). The error bars are calculated for a 

confidence interval of 95%. The fit for experiment L1 is poor due to the big 

uncertainty for detecting the closed contours in the cross-sections. The resulting 

slope for L1 is positive, which means that the width of the fold increases away from 

the inclusion. We consider this result to be meaningless. Not enough experiments 

were conducted to conclude that the width of the sheath fold and the opening angle 

depend on the layer thickness (Figure 15a).  

The h values of all three experiments are close to each other and show little 

dependence on x or the layer thickness (Figure 14b). 

Figure 14c displays the w/h ratio against x. No clear pattern can be observed 

in this plot.  

In all three experiments, d shows a positive linear correlation with x (Figure 

14d). All the data points plot close to each other. The dip of the sheath fold 

corresponds to the slope of the linear interpolation of the data. The error bars are 

calculated for a confidence interval of 95% (Figure 15c). The error bars are too large 

to allow for a correlation between the dip angle and the layer thickness. 

The lengths of the sheath folds show no consistent correlation with the layer 

thickness (Figure 15b). In experiment L1, however, the sheath fold length must be 

substantially underestimated due the difficulty to detect closed contours. The error 
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bar represents again the uncertainty of the length of the sheath fold because of the 

spacing of the cross-sections. 

 

Figure 14: Geometrical parameters versus horizontal distance x from reference point (0) for 

experiments of L-Series. Sketch at top illustrates where geometrical parameters were 

measured in serial cross-sections. a) Width of outermost closed contour (w) versus  x. b) 

Height of outermost closed contour (h) versus x. c) Ratio w/h versus x. d) Distance between 

upper model boundary and outermost closed contour (d) versus x. Lines represent linear 

interpolation between data points for three different sheath folds. Note that there are no data 

points for experiment L4 (layer thickness 4 mm) as in this experiment we detected no sheath 

fold. 
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Figure 15: Plots showing a) opening angle, b) length, c) dip of sheath folds from L-series 

versus x. 

3.4.  Discussion 

3.4.1. Validity of experimental method 

The amount of applied shear strain (γ = 6) requires a relatively small model, 

which can lead to substantial influence of the boundaries on the structures. To 

minimize the boundary effects of the vertical, stationary, shear parallel sidewalls (x-z 

plane), we lubricated them with liquid soap. The soap is 8800 times weaker than the 

weakest silicone we used. For normal stresses that are not large enough to cause 

extrusion, Cobbold (1973) showed that such liquid soap is a good lubricating agent, 

able to reduce boundary effects on the sidewalls. Indeed, in our experiments, 

boundary effects were visible only within a few millimetres of the stationary walls 

(see Figure 7 right edge of the model). Cobbold and Quinquis (1980) discussed such 

boundary effects and illustrated them for a model in which there was no lubrication 

of the stationary walls. Using two-dimensional numerical calculations, Frehner et al. 

(2011) showed that the viscous drag of a lubricating fluid can perturb a model, but 

they did not consider the stabilizing influence of a model that is relatively wide in the 

y-direction. Also, in the calculations of Frehner et al. (2011), the viscosity ratio 

between model and lubricant was 100:1, in other words, almost two orders of 

magnitude smaller than the viscosity ratio in our experiments. We thus infer that the 

boundary effect, due to the lubricating fluid, was much higher in their simulations 

than in our models. In contrast, the sliding plates of the simple shear machine 
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produce substantial boundary effects. In our experiments, these effects concentrated 

close to the sliding plates, leaving an unperturbed area of more than 10 cm length in 

the middle of the model (Figure 7). The sheath folds we observed and analyzed 

developed in this area. The horizontal boundaries (x-y plane), i.e. the horizontal 

moving plates, transmit the shear stress that drives the deformation and confine the 

model in the y-direction. In our experiments, the silicone adhered to these moving 

plates and we observed no corresponding boundary effects. 

Because the centre of the model was in principle a centre of symmetry, we 

might have expected two sheath folds to form, one at the lower tip of the inclusion 

and the other at its upper tip. In our experiments, however, a sheath fold developed 

strongly at the lower tip, but another developed not so strongly at the upper tip. We 

attribute this asymmetry to a slight offset of the inclusion, with respect to the centre 

of the model. Because the density of the inclusion was smaller than that of the 

silicone matrix, the inclusion tended to rise.  

Constraining the viscosity of the silicone layers is essential for experiments 

such as ours. The viscosity of the silicone is dependent, not only on the amount of 

inert fillers or oil, but also on the temperature. We therefore measured the viscosity 

of each batch of silicone, just before using it. Although the viscosities of the silicones 

changed slightly, from one experiment to another, the viscosity ratios were identical 

(Tab. 2). 

By adding sand, iron-oxide or oil to the silicone we induced a change in the 

overall density. The density contrast between the individual layers, however, was too 

small to trigger gravitational instabilities in the time frame of the experiment. We 

infer that the density ratio had a negligible effect in the models.  

Another problem in experiments on silicone is the presence of air bubbles. To 

reduce them, we let each batch of silicone rest for at least a day after preparing it. 

However, the technique that we adopted for preparing multilayers introduced small 

bubbles, which later acted as weak inclusions. When the bubbles were large enough, 

small sheath folds formed around them (Figure 8b and Figure 13b; see also Marques 

et al., 2008, their Figure 7a). Another source of air in the model was the insertion of 

the inclusion. 
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A process that further disturbed the internal shape of the model was cutting. 

We systematically restored the sections, but cannot be entirely sure that they were 

thus faithful to the original ones. Nevertheless, after restoration, the layers away from 

the sheath folds became almost perfectly horizontal, as one would expect. This gave 

us confidence in correlating the structures from one cross section to another. 

To test for reproducibility, we repeated experiment V1 three times, obtaining 

almost identical results. 

3.4.2. Experimental results 

All experiments with an inclusion showed either a sheath fold or a very strong 

deformation of the layers. In contrast, the test experiment T, with no inclusion, 

showed no distortion of the horizontal layering. We thus conclude that the inclusion 

did nucleate the sheath folds.  

The correlation between the geometrical characteristics of the sheath folds 

and the viscosity ratio (Figure 12) shows that this ratio is an important controlling 

parameter. An increase of the viscosity ratio leads to shorter sheath folds with a 

larger opening angle. This suggests that an increasing viscosity ratio limits the 

elongation of sheath folds. An increase of the viscosity ratio also leads to an increase 

in dip of the sheath folds. This result is somewhat surprising, as former studies 

showed that the dip and elongation of a passive marker, such as an inclusion or a 

dyke, depend only on the amount of strain (e.g., Exner and Dabrowski, 2010; Sassier 

et al., 2009). Hugon (1982) showed that the viscosity ratio between layers 

undergoing simple shear has an impact on the evolving structures. Our results are in 

accordance with this and show that the viscosity ratio plays an active role in the 

development of sheath folds. It suggests, however, that sheath folds do not develop 

purely passively and that the amount of strain is not the only controlling parameters 

for their three-dimensional final shape. Our experiments show that the eye-patterns 

in cross-sections look similar independently of the viscosity ratio between the layers. 

The existence of a sheath fold is, therefore, not a good criterion for constraining the 

viscosity ratio in rocks.  

The results from the L-series show that the ratio of the inclusion height to 

layer thickness (Π2), is a critical factor for the visibility of the sheath folds. When the 
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layer thickness is ≥ 2 mm (i.e. Π2 ≤ 7.5; experiments L3, L4, L5), it becomes 

increasingly difficult to observe eye-structures due to low resolution (see Dabrowski 

and Schmid, 2011). The insufficient resolution leads to strong scattering of the 

measurements of the height, width and depth of the folds (Figure 14). Although no 

eye-structure is visible for Π2 ≤ 7.5, the inclusion has a major impact on the 

deformation of the layers (Figure 12c, d, e). When the layer thickness is 0.5 mm (i.e. 

Π2 = 30; experiment L1), it is difficult to detect eye-structures because the individual 

layers are too thin. Nevertheless, we argue that eye-structures formed. 

In the V-series, sheath folds formed at a viscosity ratio of up to 20. This result 

contrasts with those of Marques et al. (2008), who concluded that the viscosity ratio 

in the matrix has to be lower than 10 to produce a sheath fold around a rigid 

inclusion. The major difference between their experiments and ours, in addition to 

the nature of the inclusion, is the layer thickness. We showed in section 3.2.2 that the 

layer thickness, and overall Π2, is a critical parameter for the visibility of a sheath 

fold. In the experiments of Marques et al. (2008) is Π2 ≈ 3.25. This value is 

significantly lower than the critical value of 7.5 required for proper observation of 

sheath folds. The lack of visible sheath folds in the experiments of Marques et al. 

(2008) is probably due to poor resolution, but it does not imply that no sheath fold 

formed.  

The aspect ratio w/h shows no correlation with x, with viscosity ratio or with 

layer thickness. This observation questions the usefulness of aspect ratios of closed 

contours as a tool for sheath fold classification (Alsop and Holdsworth, 2006). 

3.4.3. Implications 

There are striking similarities between our experimental results and natural 

examples of sheath folds (Figure 16). Sheath folds from Oppdal, Norway (Figure 

16a) and Cap de Creus, Spain (Figure 16b) have the three groups of layers defined by 

Reber et al. (2012), including the closed contours and the omega-like layers (for 

example the dominant light colored layer in Figure 16a). Notice that in Figure 16b 

the light-colored layer to the right of the eye structure experienced thickening. Our 

experimental results show very similar features (Figure 16c and d). They reproduce 

the first-order observations of the natural sheath folds. 
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Figure 16: a) Photograph of sheath fold in layered quartzite in section perpendicular to 

stretching direction, Oppdal, Norway. b) Photograph of sheath fold cut perpendicular to 

shear direction, Cap de Creus, Spain. c) Sketch of reconstructed section of experiment V3/L2 

cut at 5 cm from 0. Only a selected number of weak layers are highlighted. d) Sketch of 

reconstructed section of experiment V4 cut at 5 cm from 0. Again, only some of the weak 

layers are shown. 

With our current knowledge, we cannot estimate the viscosity ratio between 

layers in natural examples. But as the color difference of the layers comes along with 

a change in mineral composition, it is unlikely that the folds formed in a 

homogeneous matrix. Even though we varied the viscosity ratios in the experiments 

of the V-series, the eye-structures on the cross-sections show the same features and 

no systematic difference. Therefore, on the basis of 2-dimensional observations only, 

we could not detect a feature that is characteristic of the viscosity contrast, either in 

nature or in our experiments. In contrast, the results from the V-series experiments 

show that the whole 3-dimensional shape of the sheath folds needs to be considered 

to infer the viscosity ratio of the matrix. 

In our experiments, we did not observe a deformed inclusion (domain 2; 

Figure 7) and an associated sheath fold (domain 3) on the same cross-section. Two-

dimensional observations were thus insufficient to determine why sheath folds 

formed. An additional problem was that the inclusion deformed and stretched during 

deformation, becoming difficult to observe. In nature, we expect that identifying the 

reason for the formation of a sheath fold would be even harder, because the structure 

may completely detach from its nucleating inclusion. Nevertheless, weak inclusions, 

such as veins, rheologically weak finite layers, or even cracks, are very common in 
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all rock types and at all scales. From our results and those of Reber et al. (2012), we 

infer that weak inclusions are very proficient nucleation features for sheath folds. 

This mechanism is thus an alternative one to those proposed by e.g., Cobbold and 

Quinquis (1980) and Marques and Cobbold (1995). 

3.5.  Conclusion 

We tested the effect of a mechanically layered matrix on the development of 

sheath folds, by varying the viscosity ratio between layers and the layer thickness. 

Our procedure allows for 3-dimensional reconstruction of the structures. From our 

results we draw the following conclusions: 

• A weak inclusion in a mechanically layered matrix subject to simple shear 

causes sheath folds to nucleate and develop at both tips of the deformed 

inclusion. 

• The experiments produced sheath folds for viscosity ratios up to 20. For a 

viscosity ratio of 50, we could not identify closed contours unambiguously, 

although the layers deformed strongly. 

• The viscosity ratio controls the 3D shape of the sheath folds: the dip 

increases, the fold becomes shorter, and the opening angle widens for a larger 

viscosity ratio. In contrast, 2D observations (cross sections) are not sufficient 

to identify a systematic difference for different viscosity ratios.  

• The ratio between the inclusion height and the layer thickness (Π2) greatly 

influences the visibility of the sheath fold. When Π2 ≤ 7.5, we did not observe 

closed contours, although the layers deformed strongly.  

• The experimental sheath folds capture the first-order observations from 

natural sheath folds. 

• We expect that the mechanism of sheath fold nucleation from a weak 

inclusion is common in nature. 
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3.6.  Appendix A: Viscosimetry 

To measure the viscosity we used a concentric-cylinder viscometer (built in 

the laboratory of Géosciences Rennes, Figure 17a). The setup consists of a fixed 

outer cylinder and a rotating inner cylinder (Figure 17b). We filled the space between 

the two co-axial cylinders with silicone. The pull of a weight (200 g) attached to a 

turning wheel applies a torque to the inner cylinder, which drags the surrounding 

silicone. We measured the time t (s) needed for one rotation of the inner cylinder 

with a manual stopwatch to calculate the viscosity  (Pa s) from the following 

equation: 

 . (A.1) 

Here k (non-dimensional) is the number of rotations (here 1), r0 (meters) is 

the radius of the turning wheel, r1 (meters) is the radius of the inner cylinder, r2 

(meters) is the radius of the outer cylinder (see Figure 17), m (g) is the mass of the 

pulling weight and l (meters) is the height of the outer cylinder. 

To determine whether the silicone was a Newtonian fluid, we scratched a 

straight marker line on the silicone surface between the inner and the outer cylinder. 

The line deformed, as the inner cylinder rotated, entraining the silicone (Figure 17a). 

We compared the shape of the deformed line with a set of reference lines (Battegay, 

1984) to obtain the exponent of the power-law relationship between stress and strain-

rate. For all silicones in this study, power-law exponents were close to 1 (compare 

Figure 17a with Figure 17c), demonstrating that the silicones behaved as Newtonian 

fluids. The viscosity measurements (see Tab. 2), resulted in values between 7.2×103 

Pa s and 5.3×105 Pa s at room temperature. 
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Figure 17: a) Photograph of concentric-cylinder viscometer after one rotation of C2. Line on 

surface of silicone constrains power-law exponent. b) Sketch of viscometer. Height (l) of 

cylinder is 0.1 m, r0 = 0.05 m, r1 = 0.05 m, r2 = 0.008 m. c) Reference curves for determining 

power-law exponent n (Battegay, 1984). 

3.7.  Appendix B: 3D modeling 

We used the gOcad 3D geomodeler (Mallet, 2002) to reconstruct the folds 

from cross-sections. This modeler allows a discrete representation of geological 

objects through regular (grid) or irregular meshes (polygonal curves, triangulated 

surfaces, and tetrahedralised solids; Mallet, 2002). Triangulated surfaces appeared to 

be particularly relevant for modeling multivalued and/or closed interfaces, such as 

those observed in sheath folds. The 3D reconstruction of geological structures from 

the data is based on the Discrete Smooth Interpolation method (DSI, Mallet, 2002). 

Globally, the construction of the model comprised two main stages: 

1. The first step consists of the introduction of cross-sections and the definition 

of the correlations between these cross-sections. The modeler was 

particularly useful for checking the 3D consistency of the correlations.  
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2. In the second stage, triangulated surfaces representing layer interfaces 

constrained by the cross-sections were built using the DSI method (Mallet, 

2002, see also an example of such construction in Le Carlier de Veslud et al., 

2009). At the end of this stage, a quality check was performed, especially in 

order to detect and correct possible interface crossings. 

The construction of the surface model using the DSI method provides 

triangulated surfaces with good-quality meshes (limiting numerical instabilities), 

which honor data and are geometrically consistent (Caumon et al., 2009). 
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5. Shear plane parallel cross-sections 
Shear plane parallel cross-sections 

5.1.  Introduction 

The last three chapters showed that sheath folds develop readily from weak 

inclusions. This leads to the evident question: why do we not observe more sheath 

folds in nature? Assuming that weaknesses, able to act as slip surfaces, are 

widespread in nature, it is surprising that sheath folds are not recorded more often. A 

possible answer to this question is that we do not recognize sheath folds as such if 

they are exposed in outcrops that are not perpendicular to the stretching direction. As 

already shown in chapter 2, sheath folds show great similarity to flanking folds 

(Passchier, 2001) when they are cut parallel to the stretching direction. Exner and 

Dabrowski (2010) suggested that sheath folds are possibly flanking structures 

exposed in three dimensions. Conversely, we could say that some flanking structures 

are sheath folds that are cut parallel to the stretching direction.  

Based on the characteristic eye-pattern, we recognize sheath folds in cross-

sections perpendicular to the stretching direction. However, this cross-section 

orientation is very specific. Considering sheath folds in shear zones (e.g., Alsop and 

Carreras, 2007) where the folds are elongated in the shear direction, we would also 

expect cross-sections that are parallel to the shear direction. In this chapter, we 

investigate the patterns on cross-sections parallel or with a small angle to the shear 

plane. 

5.2.  Method 

The sheath fold used for this analysis is modeled with the same analytical 

solution as presented in chapters 2 and 4. The initial orientation of the slip surface is 

 = 90° and its aspect ratio a/b = 2.67. The sheath fold is sheared to a strain of  = 6. 

For the three dimensional visualization, we use ParaView. We visualize the sheath 
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fold in such a way that the top layer shows the cone shape (Figure 1a, green layer). 

We cut the sheath fold at different angles ( ) with respect to the shear plane (Figure 

1b) and vary the depth of the cutting plane in z-direction. 

 

Figure 1: a) Initial sheath fold. b) The cutting plane is tilted with an angle  with respect to 

the horizontal shear plane. 

5.3.  Results 

We investigated patterns in cross-sections parallel or with a small angle to the 

shear plane. We used  values of -6, -3, 0, 3, and 6 degrees with respect to the shear 

plane (Figure 2). The cutting plane is inclined towards the apex of the fold for  = 3 

and  = 6. For negative  the cutting plane is inclined towards the center of the fold 

structure. Cross-sections with  = 0 are parallel to the shear plane. We varied the 

depth of the crosscutting plane in z–direction. Cross-sections cut only through the 

cone of the fold (first two figures in each column in Figure 2) reveal several closed 

contours nested in each other for all  orientations. These cross-sections look similar 

to cross-sections perpendicular to the shear direction. The center of the eye-structure 

is located towards the apex of the fold. When the cross-section plane is moved 

downwards in z-direction, the patterns get more complex and larger differences are 

visible for the different  orientations. For  = -6 (Figure 2a), closed contours 

together with ’folded’ layers are observable. For the two cross-sections that cut the 

structure below the actual cone, only ‘folded’ layers are visible. 



Shear plane parallel cross-sections 
 

119 

 

Figure 2: Cross-sections cut through a sheath fold (  = 90, a/b = 2.67,  = 6) at an angle  

with respect to the shear plane. a)  = -6, b)  = -3, c)  = 0, d)  = 3, e)  = 6. The depth of 

the cutting plane varies along the z-direction. 
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The contours, which are not directly involved in the closed contours show 

little resemblance to the layers of group 2 defined in cross-sections perpendicular to 

the shear direction (see chapter 2). We, therefore, do not employ the same layer 

classification as defined earlier for cross-section perpendicular to the shear direction. 

For  = -3 (Figure 2b) closed contours are visible for all cross-sections. One cross-

section even exhibits a ‘double-eye’. Also for horizontal cross-sections (  = 0, Figure 

2c) closed contours are visible in all cross sections. The individual shapes of the 

closed contours differ significantly from the approximately elliptical shapes that we 

observed in cross-section perpendicular to the shear direction. For  = 3 (Figure 2d) 

and  = 6 (Figure 2e), the patterns are dominated by ‘folded’ layers. Only the cross-

section cutting directly through the cone show closed contours.  

5.4.  Conclusion 

Cross-sections that are approximately parallel to the shear plane show a 

variety of patterns. If the cross-section cuts through the cone of the fold, several 

closed contours nested in each other can be observed, which are similar in 

appearance to patterns in cross-section perpendicular to the shear direction. In such 

cross-sections, the shear sense could be misinterpreted by 90 degrees. The cross-

section needs to cut the fold through the cone to produce patterns that can be linked 

to sheath folds. Cross-sections cutting through the sheath fold closer to its center 

show patterns dominated by ‘folded’ layers. Such cross-section cannot be easily 

linked to sheath folds.  
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6. Overall conclusions 
The previous four chapters showed results obtained with an analytical and 

experimental method. With both methods, we investigated the formation of sheath 

folds around weak inclusions acting as slip surfaces. The findings of these chapters 

and, therefore, of this thesis can be summarized in the following points: 

• Sheath folds form at the tips of the deformed inclusions both in the analytical and 

experimental models (Figure 1). 

• Inhomogeneous far-field strain is not necessary to form sheath folds. 

• Cross-sections perpendicular to the shear direction in the y-z plane show three 

different layer structure types. 1) Undeformed or only slightly deformed layers 

away from the inclusion, 2) Omega ( ) shaped layers, and 3) closed contours 

forming eye-patterns. 

• The distribution and occurrence of the layer types is dependent on the cross-

section location. 

 

Figure 1: Left: Three-dimensional reconstruction (gOcad) of a sheath fold produced with an 

experiment at  = 6,  = 90°, a/b = 2.67, and a viscosity ratio of 20. The sheath fold dips 
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downwards into the matrix. The white arrows indicate the shear direction. Right: Three-

dimensional visualization of an analytically modeled sheath fold at  = 6,  = 90°, a/b = 2.67, 

and a viscosity ratio of 1. 

• Cross-sections parallel to the shear direction in the x-z plane show structures 

that are similar to flanking folds. 

• Cross-sections parallel or with a small angle to the shear plane reveal a big 

variety of structures of which some exhibit closed contours.  

• Sheath folds develop irrespectively of the slip surface orientation and shape. 

Both parameters have, however, an impact on the actual shape and size of the 

resulting fold. 

• The layer thickness to inclusion height ratio plays a major role on the visibility 

of the sheath folds. 

• Sheath folds develop in a mechanically layered matrix where the viscosity ratio 

between the layers is up to 20. For a viscosity ratio of 50, strongly deformed 

layers can be observed but no eye-structures are clearly visible. 

• The viscosity ratio in the matrix has an influence on the fold length, dip, and 

opening angle. This can only be detected in three dimensions, while two-

dimensional cross-sections strongly resemble each other. 

• The shape of the outermost closed contour forming the eye-structure is 

dependent on the inclusion orientation, initial inclusion shape, strain, and 

cross-section location. 

• The distribution of the location of the center of the eye-pattern as a function of 

the cross-section location is almost strain independent as well as almost 

independent on the initial settings of the inclusion. The center moves within 

one fold from a position in the lower half of the eye-pattern to the upper half, 

which results in an apparent thickening/thinning of the layers in the cross-

sections. 

• The layer thickness variation in eye-structures cannot be used to determine the 

shear sense in shear zones. 

• The ratio of the aspect ratio of the innermost and outermost closed contour is 

dependent on the orientation and shape of the inclusion. Values above and 
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below 1 can be obtained in simple shear, questioning eye-pattern shapes as 

criterion for the bulk strain regime. 

• There is no systematic and identifiable difference in eye-patterns depending on 

the inclusion settings, strain, cross-section location, or viscosity ratio in the 

matrix. 

• Both, the analytical and experimental models capture the first order 

observations from nature such as the layer shapes and distribution in cross-

sections (Figure 2). 

• Double-eye-folds can be produced in a single deformation step in the analytical 

and experimental models (Figure 2). 

 

Figure 2: a) Sheath fold from Cap de Creus, Spain. b) Cross-section from the analytical 

model,  = 10,  = 135°, a/b = 1, section at 12 units. c) Result from an experiment,  = 6,  = 

90°, a/b = 2.67, viscosity ratio = 20, cut at 4.5 cm from the model center. d) Double-eye 

sheath fold from Goantagab, Namibia. e) Cross-section from the analytical model,  = 10,  

= 135°, a/b = 1, cut at 8 units. f) Result from an experiment,  = 6,  = 90°, a/b = 2.67, 

viscosity ratio = 1, cut at 5 cm. 

According to these findings eye-pattern in sheath fold cross-sections show 

very similar features independent of the initial slip surface aspect ratio and 
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orientation, strain magnitude, cross-section location, or viscosity ratio in the matrix. 

Linking two-dimensional sheath fold outcrops to specific initial conditions is, 

therefore, not possible. Eye-patterns alone cannot be used as strain gauge, viscosity 

ratio measure, bulk strain indicator, or shear sense indicator. Also in three-

dimensional outcrops of sheath folds, correlations between fold shapes and sizes to 

initial conditions are difficult. Even though the folds show differences in shape and 

size, the resulting structures are not unique. In addition, three-dimensional outcrops 

of sheath folds are rather rare.  

The combination of an analytical model with experiments allowed for testing 

a large parameter space, as the two models are complementary. Both methods, 

however, produce very similar results for the same initial conditions. The methods, 

therefore, confirm each other’s validity. 

The findings in this thesis do not promote the usage of sheath folds as any 

kind of kinematic or mechanical indicator, however, there is still a long way to go 

until we understand how these peculiar structures form and behave in nature. The 

presented studies only investigated sheath folds in simple shear. So far, we did not 

study the effect of a pure shear component on the formation of the folds. To discard 

sheath folds entirely as bulk strain type indicators a systematic study of the influence 

of a pure shear component on the fold shape would be necessary. For a better 

estimate on the slip surface size, which is needed to produce sheath folds, especially 

in a mechanically layered matrix, thin, passive layers would have to be implemented 

in thick layers. This would allow observing whether a sheath fold can develop within 

one layer that is bounded by two layers of different viscosities. Both methods used in 

this thesis showed that sheath folds develop readily from weak inclusions promoting 

them as triggering objects. Ultimately, natural examples of such weak inclusions 

leading to the formation of sheath folds need to be identified to support the proposed 

formation mechanism.  
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