

UNIVERSITY OF OSLO
Department of informatics

Traceability in Model Driven

Engineering

Master thesis
60 credits

Svein Johan Melby

01. November 2007

 2

 3

Acknowledgements
This thesis is submitted to the Department of Informatics at the University of Oslo as part of a
Master degree. The work reported in this thesis has been carried out at SINTEF Information
and Communication Technology, Department of Cooperative and Trusted Systems.

I would like to thank my supervisors Gøran K. Olsen, and Arne Jørgen Berre for guidance and
support through the work with this master thesis. I would also like to thank:

• Thor Neple whose contribution through the work with this thesis has been much
appreciated.

• My former supervisor Jan Øyvind Aagedal for his contributions at the earlier stages
of the work with this thesis.

• Bjørn Nordmoen at Western Geco for the valuable experience gained during my
summer job this summer.

• My friend Espen Hauge for taking time to read through my thesis at short notice,
providing much needed feedback.

Oslo, November 2007

Svein Johan Melby

 4

 5

Table of Contents

1 INTRODUCTION ..11

1.1 MOTIVATION AND BACKGROUND ..11
1.2 PROBLEM IDENTIFICATION ..12
1.3 HYPOTHESES ...13
1.4 RESEARCH GOALS ...14
1.5 SCOPE ..15
1.6 ORGANIZATION OF MASTER THESIS ...15

2 RESEARCH METHOD...17

2.1 INTRODUCTION ..17
2.2 METHOD ..17

2.2.1 Problem Analysis ...18
2.2.2 Innovation ..18
2.2.3 Validation of Results ..19

2.3 INTRODUCTION TO EXPERIMENT..19
2.4 EVALUATION CRITERIA ...19

3 THEORETICAL FRAMEWORK..21

3.1 INTRODUCTION ..21
3.2 MODEL DRIVEN ENGINEERING (MDE) ..21

3.2.1 Background and Motivation...21
3.2.2 Domain-Specific Modelling Languages and Metamodels ..22
3.2.3 Metalevels ..23
3.2.4 PIM and PSM...24
3.2.5 Transformations ...27
3.2.6 Model Driven Architecture (MDA) ..31

3.3 TRACEABILITY IN MDE ...31
3.3.1 Introduction..31
3.3.2 Storing Traceability Information..34
3.3.3 Traceability in Model to Model Transformations ..38
3.3.4 Traceability in Model to Text Transformations..39
3.3.5 Application of Traceability in MDE...42
3.3.6 Current Traceability Tools and Solutions ..43
3.3.7 Challenges of Traceability in MDE..46

3.4 SUMMARY AND DISCUSSION..49

4 THE TRACEABILITY TOOL ...51

4.1 INTRODUCTION ..51
4.2 TOOL REQUIREMENTS..51
4.3 INTRODUCTION TO TECHNOLOGY ..54

4.3.1 Eclipse Modelling Framework (EMF) ...54
4.3.2 Graphical Editing Framework (GEF)..55
4.3.3 Graphical Modelling Framework (GMF) ..55

4.4 DESIGN ..55
4.4.1 The Metamodels ...57

4.5 THE GMF EDITOR ...62
4.6 THE TRACEREPOSITORY EDITOR ...63
4.7 THE TRACENAVIGATOR VIEW ...64
4.8 JAVA INTERFACES..65
4.9 THE CODE GENERATOR ...65
4.10 VALIDATION ..65
4.11 SUMMARY ...66

5 PROPOSAL FOR TRACEABILITY CLASSIFICATION SCHEME..67

5.1 INTRODUCTION ..67

 6

5.2 TRACE CLASSIFICATION SCHEME REQUIREMENTS ..67
5.3 CHALLENGES ...68

5.3.1 Traceability Strategy ..68
5.3.2 Tracing Any Artefact Involved in the Development Process ..68
5.3.3 Uniquely Identifying Artefacts..69
5.3.4 Classification of Traceability Information ...69

5.4 CLASSIFICATION SCHEME ..69
5.4.1 Classification of Basic Traceable Artefact Types...70
5.4.2 Uniquely Identifying the Traceable Artefacts...73
5.4.3 Extending the Basic Traceable Artefact Types...75
5.4.4 Classification of Basic Trace Links..77
5.4.5 Extending the Basic TraceLinkTypes ...80

5.5 USAGE ...81
5.5.1 Creating artefacts...82
5.5.2 Creating links ...83
5.5.3 Retrieving artefacts from the repository...84
5.5.4 Example of use ...85

5.6 VALIDATION ..85
5.7 SUMMARY AND DISCUSSION..85

6 DESIGN OF EXPERIMENT ..86

6.1 INTRODUCTION ..86
6.2 TEST CASES..86

6.2.1 Test-Cases Related to the Traceability Classification Scheme...86
6.2.2 Test cases related to the traceability tool...89

6.3 SUMMARY ...90

7 TESTING AND RESULTS..91

7.1 INTRODUCTION ..91
7.2 ANALYSIS OF RESULTS ..91

7.2.1 Test cases Related to the Classification Scheme ..91
7.2.2 Test-Cases Related to the Traceability Tool ..97

7.3 SUMMARY ...103

8 DISCUSSION AND EVALUATION ..104

8.1 INTRODUCTION ..104
8.2 EVALUATION ...104

8.2.1 Fulfilment of Tool Requirements ..104
8.2.2 Fulfilment of the classification scheme requirements ..108

8.3 DISCUSSION ...109
8.3.1 Compliance With Existing Technology ..110
8.3.2 Criticism...111

8.4 SUMMARY ...111

9 CONCLUSION...112

9.1 SUMMARY ...112
9.2 CLAIMED CONTRIBUTION ..113

9.2.1 The Traceability Tool ...113
9.2.2 The Classification Scheme ...113

9.3 WEAKNESSES...114
9.3.1 Maintaining Correctness of Traceability Information ...114
9.3.2 Extending Trace Type Libraries...114
9.3.3 Pollution of Mapping Code ..115
9.3.4 Supporting Traceability Information Regarding Evolution ...115

10 RELATED RESEARCH..116

11 FUTURE WORK..117

11.1 EXTENDING THE METAMODELS ...117
11.2 PROVIDING BETTER SUPPORT FOR TRACE TYPE LIBRARIES ..117
11.3 EXTENDING THE CLASSIFICATION SCHEME ...117

 7

11.4 COMPLETE TOOLKIT ..117
11.5 IMPLEMENT SUPPORT FOR REMOTE REPOSITORIES..117
11.6 MAINTAINING TRACEABILITY INFORMATION AUTOMATICALLY ...118

12 REFERENCES ...119

APPENDIX A – THE LIBRARY EXAMPLE..123

APPENDIX B – SOURCE CODE ..127

 8

Figures

Figure 1: Illustration of the research method in context of this thesis18
Figure 2: A simplified metamodel of a UML class-model...23
Figure 3: The four metalevels of OMG...24
Figure 4: PIM for the library system ...25
Figure 5: A PSM of the library system describing an EJB implementation of the system26
Figure 6: The PIM2EJB_PSM mapping illustrated on the Simplified UML metamodel.29
Figure 7: Illustration of the model to model transformation of the class Customer System.....30
Figure 8: Illustration of the model to text transformation of the class CustomerSystem.31
Figure 9: Simple traceability overview [30] ..32
Figure 10: A simple traceability metamodel..36
Figure 11: A simple traceability example..37
Figure 12: Trace Metamodel [24] ...40
Figure 13: Traces from the transformation illustrated in Figure 8..41
Figure 14: Definition of explicit trace block in MOF2Text [27] ..42
Figure 15: Traceability metamodel [9]..44
Figure 16: A generic solution for traceability [3] ...45
Figure 17: An overview of the traceability tool ...56
Figure 18: The TraceTypeLib metamodel...57
Figure 19: The TraceRepository metamodel ...60
Figure 20: The GMF editor for the traceTypeLib metamodel..62
Figure 21: The TraceRepository editor ...63
Figure 22: The TraceNavigator view showing descendants...64
Figure 23: The TraceNavigator view showing predecessors..65
Figure 24: The basic traceable artefact types (inspired by [24])...72
Figure 25: Traceable artefact extension types..76
Figure 26: The Transformation link composition..79
Figure 27: Manual and Automatic trace links..80
Figure 28: LinkExtensionTypess ..81
Figure 29: Create ModelElement ..82
Figure 30: Create TextualArtefact...83
Figure 31: Creation of Manual trace links ...83
Figure 32: Creation of Transformation link compositions ...84
Figure 33: retrieving a ModelElement ...84
Figure 34: Creation of a trace link ..85
Figure 35: Descendants of BookSystem.addBook() in the PSM ..91
Figure 36: The feature transformation shown as it is contained in the repository...................92
Figure 37: Show Descendants with requirements.doc as input ..93
Figure 38: Descendants of BookSystem in the PIM ..94
Figure 39: Predecessors of BookSystem in the PIM..95
Figure 40: Show Predecessors with BookSystem.rentBook() in the PIM as input..................96
Figure 41: The classification scheme used by the ManualTracer plug-in98
Figure 42: TraceManagement menu in the graphical editor of Papyrus99
Figure 43: The add to repository dialog activated from the UML2 tree-editor.99
Figure 44: Trace link creation with ManualTracer. ...100
Figure 45: The TraceViewer with the UseCase ‘AddStuff’ as input.100
Figure 46: The Query specification dialog ..101
Figure 47: The QueryResult View ..102

 9

Figure 48: A simple overview of the ManualTracer implementation102

 10

Tables

Table 1: Hypotheses ...14
Table 2: LinkType extensions to RelationTraceType (described in [10])...............................47
Table 3: RelationTraceType extensions (described in [10])...48
Table 4: TraceableArtefactTypes ..73
Table 5: AttributeTypes of ModelElement ..74
Table 6: AttributeTypes of TextFile ..74
Table 7: AttributeTypes of Block ..74
Table 8: AttributeTypes of TraceableSegment ..74
Table 9: AttributeTypes of TextualArtefact...75
Table 10: ArtefactExtensionTypes..77
Table 11: TraceLinkTypes..78
Table 12: LinkExtensionTypes ...81

 11

1 Introduction

1.1 Motivation and Background
Due to advances in programming languages and technologies over the past decades
developers are now capable of creating increasingly more advanced and complex computer
systems. These systems often involve several different platforms and technologies, each with
its own set of standards and domain concepts. As a result of this, developers often spend a
considerable amount of time on details related to these different platforms and technologies
[1]. This makes it harder to focus on the design intent and the business needs.

As a mean to help dealing with this complexity, a variety of different visual modelling
languages has seen the light over the past couple of decades. These modelling languages are
used as an abstraction mechanism, as they allow details to be hidden or shown in different
ways according to what purpose a specific model or diagram is meant to serve. This allows
focus to be kept on the right things at different stages of the development process. Not only
does this help developers focus on the domain of the business, but also makes it easier to
communicate with people without a technological background.

Modern computer systems do however often need rapid upgrading due to changes in the
underlying technology or business needs. This means that a lot of effort needs to be made to
keep the models documenting the system in synch with the implementation of the system.
Moreover, documentation of the systems is often performed as a separate task, and is not
linked to the artefacts they are supposed to document by any means. The result of this is often
that the documentation eventually gets out of synch with the implementation, and hence does
not document the system sufficiently.

The advent of Model Driven Engineering (MDE) promises a solution too many of these issues
[1] by using models as the primary development artefact – instead of using models to
document the implementation code, implementation code is generated from the models. This
is achieved by using models based on metamodels that formally describes domain concepts
and their relationships to each other, and then use transformations to transform these models
to other models and/or implementation code. A result of this is that the development process
may be automated and is formally (to some degree) described as a set of models implicitly
related to each other through transformations. This allows developers to focus more on a
particular domain rather than details related to a particular technology – the system can be
described in a platform independent way and transformed into models with platform specific
details. Moreover; due to the automatic nature of the process, MDE should make it easier to
keep the different artefacts involved in a system development process in synch.

Although MDE promises to ease complexity at one level, it brings forth added complexity on
another level; Due to the extensive use of intermediate models and automatic transformations
it might become difficult to see how the different artefacts relates to each other [2]. I.e. the
logic of a transformation may not always be quite obvious, and it may not always be
straightforward to deduce which artefacts that were generated from a specific model and what
transformation that was used to create it. Traceability therefore becomes a crucial part of any

 12

MDE framework as a means to record the relationships between different artefacts involved in
the development process [3].

1.2 Problem Identification
There are several problems associated with traceability in general and traceability in MDE in
particular. E.g. how and where should the traceability information be stored? What
information should be stored? How should the information be classified to support different
kinds of use and analysis purposes? It is reasonable to assume that semantically rich
traceability information could prove valuable for many purposes in an MDE process [3-10].
This does however come at a cost – semantically rich traceability information means that
more information needs to be maintained and it might also require more effort to be
maintained. Thus, richer semantics should only be added when it serves a purpose [11].

The aim of this thesis will be to address some of these issues by suggesting a classification
scheme for traceability information in MDE which promote semantically rich traceability
information with as little impact on the development process as possible. The high-level
problem we aim to solve is hence:

What information should be maintained, and how should this information be classified, in

order to support a rich set of analysis purposes with respect to traceability in MDE?

A critical success factor will be how transparently this information can be maintained.

Some issues related to this problem are:

• For what purposes may traceability information play a role in an MDE process?

• What kinds of analysis may be performed on the traceability information?

• What are the requirements for a classification scheme in MDE?

• How can the usefulness of a classification scheme be validated?

• For what purposes are the simple notion of “a relationship exists between artefact A
and B” not sufficient?

• How can these insufficiencies be improved?

• How much of the traceability information can be generated automatically?

• How much of the traceability information must be tool specific?

• Are the improvements supported by current technologies?

A traceability classification scheme does however not have a value by it self; it requires tool
support to come to real use. In fact, how such a classification scheme may be defined, and
what information that may be stored is highly tool dependent. Thus, in order to define and
utilised such a traceability classification scheme, tool support must be provided. This brings
forth a few other issues:

• What are the requirements for a tool supporting traceability in MDE?

• How can a traceability tool be validated?

 13

1.3 Hypotheses
The high-level hypotheses are that;

H1 Semantically rich traceability information will make it possible to conduct more precise

analysis on the traceability information, and improve automation of the process.

H2 An EMF based tool with support for generic definition of traceability types and

functionality for creating traceability information of the defined types will be suitable

for defining and using semantically rich traceability classification schemes.

These hypotheses specify our assumptions regarding the solution to the problem, and will
serve as guidance to validate the results. In Table 1 the hypotheses are divided into several
sub-hypotheses, which will be used as a basis to validate the results of this thesis. The test-
cases associated with the hypotheses are presented in chapter 6.

 14

 Hypotheses

H1

Semantically rich traceability information will make it possible to conduct more
precise analysis on the traceability information, and improve automation of the
process.

 H1.1

A suitable classification scheme will make it possible to conduct precise coverage
analysis.

 H1.1.1

A suitable classification scheme will make it possible to find all relevant parts of a
model that is not utilised by a transformation.

 H1.1.2

A suitable classification scheme will make it possible to validate to what degree an
artefact is covered by other artefacts in the development process.

 H1.2

A suitable classification scheme will make it possible to find all artefacts that may
be impacted by a change, and ease the process of finding out how they are
impacted.

 H1.3

A suitable classification scheme will make it possible to conduct orphan analysis.

 H1.3.1

A suitable classification scheme will make it possible to find artefacts that have
been generated from elements that have been deleted.

 H1.3.2

A suitable classification scheme will make it possible to find artefacts that are
orphaned with respect to other artefacts at previous steps of the development
process.

 H1.4

A suitable classification scheme will make it possible to visualise traceability
information in a meaningful way.

 H1.5

A suitable classification scheme will maintain sufficient information to enable
reverse engineering.

H2

An EMF [12] based tool with support for generic definition of traceability types and
functionality for creating traceability information of the defined types will be suitable
for defining and using semantically rich traceability classification schemes.

 H2.1

A suitable EMF based traceability tool will be easy to integrate with external plug-
ins.

Table 1: Hypotheses

1.4 Research Goals
Summarizing the previous sections we end up with two high-level research goals:

1. Tool support – provide a tool that is capable of defining and handling semantically
rich traceability information in MDE.

 15

2. Classification scheme – find a suitable classification scheme for traceability in MDE,
capable of capturing semantically rich traceability information, and emphasising
automation.

Reaching these goals may not solve all problems related to traceability in MDE, but should
give us a starting point on which further research can be performed. Providing a working
traceability tool will give us a means to gain further experience with traceability by
conducting experiments in practice.

1.5 Scope
Traceability in MDE is a wide research field. Most branches of industry and organisations
probably have their own specific traceability needs, in terms of what they want to trace and
how [5, 9]. Covering all these needs simply is not possible within the work with this master
thesis. In fact, one classification scheme covering every aspect may not even be desirable, as
it probably will become to complex. The scope of this thesis is therefore to suggest a
classification scheme that supports the most general cases of traceability in MDE, together
with a working prototype of a traceability tool that supports traceability information to be
captured using several different classification schemes. With such tool support, a
classification scheme could be extended or combined with additional classification schemes
supporting domain specific needs. This should provide a flexible way of dealing with
traceability, and a good basis to give further experience in the area.

1.6 Organization of Master thesis
This master thesis is organised in the following chapters:

Chapter 1 gives a short introduction to the motivation and background of this master thesis,
and describes the problem, hypotheses and research goals of this master thesis.

Chapter 2 presents the method that will be used in the later stages of the work with this
master thesis. The evaluation criteria for the master thesis are also given here.

Chapter 3 gives an overview of the relevant theory of traceability and Model Driven
Engineering (MDE), and discusses existing traceability solutions and tools.

Chapter 4 presents requirements that must be satisfied by the traceability tool, and presents
the proposed traceability tool.

Chapter 5 presents the requirements for the classification scheme, and presents the proposed
traceability tool.

Chapter 6 gives and introduction to the test-cases that will be used to validate the hypotheses
presented in Table 1. For each hypothesis, a test case with an associated prediction regarding
the result of the test is presented.

Chapter 7 discusses the results of the test-cases presented in chapter 7, and discusses whether
the predictions were strengthened or falsified.

 16

Chapter 8 discusses the fulfilment of the requirements are evaluated and the results of the
work with this thesis are discussed.

Chapter 9 summarises the work with this thesis, and discusses the claimed contribution and
weaknesses with the proposed solutions.

Chapter 10 gives an overview of related research.

Chapter 11 discusses future work.

 17

2 Research Method

2.1 Introduction
The main goal of technology research is innovation – to create new artefacts, or to improve
existing artefacts in order to support some identified needs [13]. In this section we will
present the method that will be used to achieve this in the context of this thesis.

2.2 Method
According to Solheim and Stølen [13] technology research is an iterative process consisting
of the following main steps:

• Problem analysis – find a problem to which a solution is needed.

• Innovation – construct an artefact, with the assumption that it solves the problem.

• Validation of results – validate that the artefact actually solves the problem. The
validation process is based on predictions regarding the new artefact. If the predictions
turn out to be correct, it can be argumented that the artefact solves the identified
problem.

The results are validated by performing test-cases, which will either strengthen or weaken the
hypotheses. This process may be repeated several times, depending on the result of the
validation.

In addition the result must be validated by asking the following three questions, identifying
whether it represents something of scientific value:

1. Does the new artefact represent new knowledge?
2. Is the new knowledge of interest to others?

Is the new knowledge and results documented in a way that enables validation by others?

In Figure 1 the research method is illustrated in the context of this thesis. The three steps are
elaborated further in subsections 2.2.1, 2.2.2, and 2.2.3.

 18

Figure 1: Illustration of the research method in context of this thesis

2.2.1 Problem Analysis

In this case, the identification of the problem was initiated by a proposal for a theme for a
master thesis from SINTEF ICT. The problem analysis was continued by reading papers
regarding traceability as a means to get an overview over the state of the art in the area. In
chapter 3, the theoretical framework is discussed and we discuss some challenges regarding
traceability in MDE.

2.2.2 Innovation

The problems that were identified in the problem analysis is analysed further in this step of
the process, with the aim of identifying solutions to the identified problems. There are two
artefacts that are produced through the process of this work; the traceability tool (chapter 4)
and the classification scheme (chapter 0). Based on the identified problem, and the discussion
in chapter 3, requirements are presented for each of them that must be satisfied by the
resulting artefacts. There may however be situations during this process that requires that we
take a step back, and analyse further as additional problems arise. Furthermore, the processes
of developing the tool and the classification scheme are not independent of each other, as the

Developing
traceability tool

Creating classification
scheme

Testing and
validation

Analysis

Problem analysis

Innovation

Validation of

resutls

 19

tool provides the language in which the classification scheme may be described. Creating the
classification scheme will therefore serve as a first test of the tool. It will therefore be
necessary to switch between the two processes when errors or weaknesses are found in the
tool.

2.2.3 Validation of Results

Validating the results is very important in order to confirm that result actually solves the
identified problem. Thus we must validate that the classification scheme actually improves
traceability in MDE. The bases for the validation will be to create predictions regarding the
hypotheses based on the classification scheme. Furthermore, the classification scheme will be
tested on the simple library example. Thus; the prediction will try to predict how the new
traceability classification scheme will improve traceability related to this example. It is just as
important to try to falsify the predictions as it is to try to prove their correctness. The results
will also be validated in according to the evaluation criteria in section 2.4. If one of the two
artefacts proves to be insufficient, we need to take a step back to make improvements, or it
might be necessary to go back to the problem analysis with the newly gained knowledge to
analyse further.

2.3 Introduction to Experiment
As part of validating the traceability tool and classification scheme, we will perform a set of
test cases with the aim of falsifying or strengthening our assumptions. These assumptions are
expressed as a set of hypotheses with associated predictions. The hypotheses serve as the
basis for the test cases described in chapter 6, and the predictions serves as a means to falsify
or strengthen these assumptions.

The experiment is performed on simulated trace information for a simple MDE [1] example,
starting at set of requirements for a simple library system. From these requirements a use-case
model is created. The use-case model is transformed to a Platform Independent Model (PIM)
[1, 14-16] which is transformed to a Platform Specific Model (PSM) [1, 14-16] of an EJB 3.0
[17] implementation. At the last stage of the example, this PSM is transformed to Java code.
The traceability tool will be used to capture simulated traces throughout the whole process.

2.4 Evaluation Criteria
The results will be evaluated according to the following criteria:

• Does the classification scheme improve traceability in MDE?

• How much of the traceability information can be generated automatically?

• How much of the traceability information must be tool specific?

• Are the improvements supported by current technologies?

• Does the new artefact represent new knowledge?

• Is the new knowledge of interest to others?

• Is the new knowledge and results documented in a way that enables validation by
others?

The tool will be evaluated according to the following criteria:

• Is it simple to use?

• Is it generic?

 20

• Does the new artefact represent new knowledge?

• Is the new knowledge of interest to others?

 21

3 Theoretical Framework

3.1 Introduction
In this chapter the theoretical framework for this thesis is discussed. We start with an
introduction to Model Driven Engineering (MDE) in section 3.2 and proceed with an
introduction to traceability in the context of MDE followed by a discussion on current tools
and solution, and challenges with traceability in MDE in section 3.3. The chapter ends with a
summary of the discussion.

3.2 Model Driven Engineering (MDE)

3.2.1 Background and Motivation

Over the past five decades, programming languages has evolved quite a bit from first and
second generation languages in terms of raising the level of abstraction, allowing developers
to focus on the design intent rather than the underlying computing environment. The more
recent advent of more expressive object-oriented languages like C++, Java and C# has raised
the level abstraction even further. Furthermore, the use of today’s reusable class libraries and
application framework platforms allows developers to reuse program code and domain
specific middleware services. These advances helps developers create more advanced
applications, as they can focus on the domain of the application, and do not have to reinvent
the wheel each time.

A downside of the growing complexity of today’s systems, however, is that it is hard for
anyone to keep a full overview of a system as its complexity and the amount of
implementation code grows. The use of complex middleware platforms, like J2EE, .NET and
CORBA, containing thousands of classes and methods, in many of today’s systems makes
this even harder. Not only do these platforms have to be integrated and tuned with the domain
application, but the complexity makes it hard for anyone to master them completely.
Moreover, as these platforms, domain of the application, or the needs of a business often
change rapidly, developers often spend considerable effort manually changing the application
to reflect these new requirements or porting the code to different platforms. The effect of this
growing complexity is that developers need to spend lots of effort on these implementation
issues, rather than focusing on requirements and the domain of the application. The
complexity of the systems also makes it difficult to know what parts of the system is affected
by a change in the requirements or changes to the platform or language environment.

Another problem resulting from the growing complexity of computer systems and the rapid
changes is that maintaining documentation requires a lot of effort, and is very time
consuming. Also, since there is no direct linkage between the models and the
implementations, there is a big chance that the documentation and the implementation will be
out of sync – both due to changes during the initial development process and changes at later
stages. This might also lead to that developers do not put in the effort needed to assure the
accuracy of the documentation.

 22

Model Driven Engineering (MDE) addresses these issues, and aims at offering means to
handle the growing complexity of these systems, and allowing developers to focus on and
express domain concepts. This is achieved by combining the concepts of Domain-specific

modelling languages and Transformations [1].

3.2.2 Domain-Specific Modelling Languages and Metamodels

Domain-specific modelling languages use a type system that formalizes the application
structure, behaviour and requirements within a particular domain [1]. These languages are
described using metamodels, i.e. metamodels describe the abstract syntax of the domain-
specific languages [18]. This is achieved by describing precise relationships between the
concepts of a domain, thus formalizing a language which can be used to describe specific
domain related concepts. The domain specific languages can then be used to describe
applications using domain-specific concepts instead of concepts of a more general purpose
modelling or programming language. This means that developers can focus on the domain
which they are describing, rather than on a specific platform, thus raising the level of
abstraction.

One example of a Domain-specific language is UML [19]. The UML metamodel describes a
very general domain specific language for software development, and thus provides a
common language that can be used by software developers to describe applications and
business logic. A less general example could be a metamodel describing the relationships
between a set of different concepts in the banking industry, providing a language to describe
bank related concepts on a high level of abstraction.

Figure 2 shows a simplified metamodel for a class-model. This model describes the class-
model domain, i.e. it describes the properties of the concepts comprising such a model, and
the relationships between them. Thus it provides a formal language in which these concepts
can be described. Additional examples on metamodels describing Domain-specific languages
are shown in Figure 10 and Figure 12. These metamodels describes concepts used to describe
traceability.

 23

Figure 2: A simplified metamodel of a UML class-model

3.2.3 Metalevels

The Object Management Group (OMG) [20] defines four metalevels (Figure 3). These levels
represent four levels in which a model may reside:

M0 - Contains the runtime instance of a model, e.g. the representation of a model element
in a running application.

M1 - Contains the model, e.g. a UML model, which may be instantiated at the M0 level.

M2 - Contains the metamodel, e.g. the metamodel in Figure 2, describing the language
used to define models at the M1 level.

M3 - Contains the meta-metamodel, i.e. the model describing the language used to
describe a metamodel (i.e. a model residing at the M2 level). An example of such a
model is the Meta Object Facility (MOF) [21], which is the language describing the
UML metamodel. As models at this level are general enough to describe the
concepts of languages used to describe other languages (i.e. metamodels), they will
also be general enough to describe themselves. There is hence no need for an M4
level.

The four metalevels and their relationships to each other are illustrated in the figure below.

 24

Figure 3: The four metalevels of OMG

3.2.4 PIM and PSM

Two terms that are often used in MDE are Platform Independent Models (PIMs) and
Platform Specific Models (PSMs)[14-16, 22]. A PIM is a model that is independent of the
implementation technology, and thus does not have any information regarding the technology
used to implement the system – it describes the logic of the system. A PSM on the other hand
is, as the name implies, a model describing an implementation of the system (or parts of a
system) using a specific technology. A PSM is hence a refinement of the PIM.

The purpose of creating a PIM is to allow developers to capture the details of a system
without having to dig into the details of a specific platform or technology. Thus it allows
developers to focus on the business logic rather than how a system should be implemented
and what technology to use – it is a means to raise the level of abstraction. Besides of making
it easier to keep the focus on the right things during the development process PIMs also
makes it easier to keep an overview and to get a better understanding of a system as all the
details required to describe implementation issues are hidden away. Not only is this an
advantage for developers during the development process but, it also make it easier for people
without technological background or knowledge of a specific technology to understand the
system.

Figure 4 shows a PIM of the library system described in the use-case models of Appendix A.
In this model Library is shown as a UML-class containing references to the subsystems of the
Library component and, the use-cases are shown as UML-operations. In addition the Library
class contains the same operations as the operations contained in the classes it has references
to. These operations are intended to be used as intermediate steps to access the operations in

 25

CustomerSystem and BookSystem. This model is a little bit more detailed than the use-case
model as it describes what parts the system will consist of, how they are related, and what
operations they shall implement. In addition the classes of the PIM have been annotated with
stereotypes, extending the UML2 metamodel with a set of types to give additional semantics
to the model:

• Tool – means that the class is a component that may be used by a person to perform
certain actions.

• Service – a class that provides a service or a set of related services, i.e. it provides a set
of operations, which may be used by Tools.

• PersistentObject – an object that contains some information that needs to be stored in
a persistent form, e.g. a database.

• Id – an attribute that represents the identifier of a PersistentObject.

Figure 4: PIM for the library system

The PIM in Figure 4 provides all the information needed to get an understanding of the
system, but it does not describe the actual implementation. The system could be implemented
as a set of Java classes with a database containing books and customers, using java enterprise
beans and a web interface, it could simply be implemented as 5 C++ classes storing books and
customers in a file, or it could be implemented using several different technologies to meet
different organizational needs. The logic of the system however would be the same.

To give more detailed information on the actual implementations of the system, developers
could now proceed by creating a PSM describing the actual implementations of the system on

 26

each of the desired target platforms. Figure 5 shows a possible PSM describing an EJB 3.0
[17] implementation of the library system.

Figure 5: A PSM of the library system describing an EJB implementation of the system

This model differs from the PIM in that it is annotated with EJB specific UML-stereotypes;

• EJB_Stateless – represents a stateless session bean. This stereotype also contains an
enumeration attribute ({local, remote, both}) specifying whether to use the local or
remote interface, or if both may be used (in this example only the first is used).

• EJB_Entity – an entity bean.

• EJB_ID – the id-attribute of the entity bean.

By applying an UML-profile to the class-model the UML2 metamodel is extended with EJB
specific types (in this case), hence the model is now platform specific to EJB.

The definitions of PIMs and PSMs are however somewhat vague. E.g. the PIM in Figure 4
could be said to be a PSM describing a java implementation, as the model is quite close to a
simple java implementation. Indeed the PIM and the PSM used in this example does not even
differ that much, however there is a difference in that the PIM may be used as the basis to
create many different PSMs, while the PSM only describe the system with respect to a
specific technology. In fact the java code itself could be said to be a PSM, as the
implemented java code actually is a very detailed textual model of the PIM. Thus how to
define a PIM and how to define a PSM must be decided based on what information is needed
and desired to capture the information required to support the system development process.
The main objective of PIMs and PSMs is to separate between what (PIM) needs to be
implemented, and how it shall be implemented (PSM). The purpose of this distinction is to

 27

make it easier to focus on the right things at the right stages of the system development
process, to provide different views of the system to different people by providing information
at different levels of abstraction, and to make it easier to adapt the system to new
technologies, by separating business logic and technology.

 Although both the PIM and the PSM in this example are UML models, it will often be the
case that they are instances of different metamodels, e.g. the PSM in this example could have
been described by a metamodel describing EJB concepts.

3.2.5 Transformations

Transformations has the potential to help ensure the consistency between different models,
documentation, requirements and implementation code as the evolution of artefacts are
formalized by rules, and can thus be automated [1]. For this to be possible the source artefacts
of the transformation need to be precisely defined by e.g. a metamodel so that the artefacts
might be processed by a computer. There are mainly two kinds of transformations used in
MDE; model to model transformations and model to text transformations.

Transformations are described by mapping rules. A mapping rule is a formal description of
the relationship between the input and the output of the transformation, i.e. it describes how
the output is created based on the input. The input and output artefacts might be a single
artefact or it can be a collection of artefacts. Also the result of the transformation might be
computed based on the properties of the artefacts or/and the relationships between the
artefacts that comprise the input of the transformation. The output might be created based on a
metamodel or just as artefacts without any particular syntax. The first approach is typically
used to describe model to model transformations, while the latter is typically used to produce
text.

Using transformations between all stages in a software engineering process therefore makes it
possible to automatically generate all the artefacts needed, based on one or more source
models. This does however require mapping rules for each of the transformation steps in the
process and the existence of metamodels formally describing each of the models.

3.2.5.1 Model to Model Transformations

A model to model transformation is the process of creating a model based on another [23].
More precisely a model transformation creates instances, based on precise definition of the
relationship between instances of one metamodel, based on instances of another. The set of
rules that are used to describe the transformation is often called a mapping.

Using our running library example, a typical model to model transformation scenario would
be to create the PSM based on the information in the PIM. This could be achieved by creating
a mapping that takes a class model – where the classes are annotated with the stereotypes
shown in Figure 4 – and generates the PSM based on the structure of the classes (attributes
and operations) and the stereotypes they are annotated with:

• Classes annotated with stereotype ‘Service’ are mapped to classes with the same
name, but with the stereotype ‘EJB_Service’.

• Classes annotated with stereotype ‘PersistentObject’ are mapped to classes with the
same name, but with the stereotype ‘EJB_Entity’.

 28

• All other classes are mapped to a new class with the same name, but without any
stereotypes, regardless of any stereotypes contained by the input class.

• All attributes and operations contained by the input are mapped directly to attributes
and operations with the same name, type, and signature as those contained by the input
class. If an attribute in the input model is annotated with the stereotype ‘Id’, the
corresponding attribute in the output model will be annotated with the stereotype
‘EJB_ID’.

This transformation could be performed by applying the mapping illustrated in Figure 6 to the
PIM. The illustrated mapping describes the rules for how the input model (PIM) will be
turned into the output model (PSM). As both the PIM and the PSM are described by the same
metamodel (UML) the mapping will create instances of the same type as the input instances,
but with different stereotypes. The mapping rules in the illustration are declarative rules
written in pseudo code. The rule mapStereoType() is not explained in details as it is a bit more
complex than the others but the logic is explained above. In the illustration ‘in’ means the
input artefact, an ‘out’ means the output artefact.

 29

Figure 6: The PIM2EJB_PSM mapping illustrated on the Simplified UML metamodel.

Figure 7 illustrates the result of running the PIM2EJB_PSM transformation on
classCustomerSystem.

mapClass():
out.name = in.name;
out.attributes = in.attributes;
out.operations = in .operations

out.stereotypes = in.stereotypes

mapPropperty():
out.name = in.name;
out.type = in.type;

mapOperation();

out.name = in.name;
out.type = in.type;

out.parameters = in.parameters;

mapType():

out.name = in.name;

mapStereotype():
/*map stereo types*/

mapParameter():
out.name = in.name;
out.type = in.type;

 30

Figure 7: Illustration of the model to model transformation of the class Customer System.

3.2.5.2 Model to Text Transformations

Model to text transformations refer to the act of generating text based on information from
one or more models [24]. This is performed in much of the same way as model to model
transformations, with the exception that only the input of the transformation (i.e. the source
model) is defined by a metamodel - the output is just informal text. In MDE model to text
transformations are mostly used to automatically generate implementation code from the
models, but it might also be used to automatically generate documentation like java doc from
the models. There are however many cases where not all the text can be generated
automatically, but many parts of it, at least the skeleton of it can often be generated. The
degree to which the process may be automated depends on the level of details of the model(s)
used to generate the text, and how much logic one wants to encode in the transformation.

Generation of code is often performed based on the PSM, as the PSM describes the
application in a platform specific way, e.g. an EJB implementation. In some cases however
one can transform the code directly from the PIM, as it might be quite close to the actual
implementation.

Using the running library example, one could use the PSM to generate java code annotated
with EJB 3.0 annotations. The example is illustrated in Figure 8. The mapping responsible for
the transformation is quite straight forward; for each class in the PSM, a java class with the
same name is created, containing the same set of attributes and operations. Annotations are
added according to the stereotypes in the PSM. Additionally, the attribute em of type
EntityManager is added with the annotation PersistenceContext if the class uses a persistent
object (<Entity> Customer in the case of CustomerSystem).

Pim2EJB_PSM

 31

Figure 8: Illustration of the model to text transformation of the class CustomerSystem.

3.2.6 Model Driven Architecture (MDA)

The OMG is working on an MDE initiative called Model Driven Architecture (MDA) [14-16,
22]. MDA is based on a set of technologies that support existing and future OMG standards,
including:

• Meta Object Facility (MOF) [21] – a standard for defining, manipulating and
exchanging metamodels. The MOF resides at the M3 layer of the OMG’s four meta-
levels, and is hence a meta-metamodel – a modelling language used to define
metamodels.

• Unified Modelling Language (UML) [19] – a general modelling language for
describing software architecture and behaviour. The UML is described by the UML
metamodel, which is described by the MOF.

• XML Meta Interchange (XMI) [25] – an OMG standard that maps the MOF to
eXtensible Markup Language (XML). XMI allows MOF based models to be formally
described using XML tags with meta-information, and allows them to be interchanged
between different applications.

• Queries/Views/Transformation (QVT) [26] – an OMG standard for model to model
transformations. QVT is a hybrid declarative/imperative language that conforms to the
MOF.

• MOF to Text Transformation language (MOF2Text) [27] – an OMG standard for
model to text transformations.

3.3 Traceability in MDE

3.3.1 Introduction

In general the word traceability is often used to reflect the degree to which all stages of
process can be traced. Wiktionary.org [28] defines traceability as:

EJB_PSM2Java

 32

”The ability to trace (identify and measure) all the stages that led to a particular point in a

process that consists of a chain of interrelated events.”

In software development traceability often refers to the ability to trace the different stages in
the software development process, i.e. trace the evolution of a system from start to finish. The
IEEE standard glossary [29]defines traceability as follows:

“The degree to which a relationship can be established between two or more products of the

development process, especially products having a predecessor-successor or master-

subordinate relationship to one another; for example, the degree to which the requirements
and design of a given software component match.”

The use of traceability in software development stem from the requirements community
where the main goal of traceability is to provide a means to assure that a system satisfies the
specified requirements.

In [30] Thomas Behrens defines two key goals of traceability in software development:

1. Ensure quality of the product – making sure that the product supports all the
capabilities asked for by a stakeholder, and that the product does not have capabilities
that were not asked for by any stakeholder (Validation). Furthermore traceability
should be used to make sure that all the capabilities work properly, i.e. that they all
have associated tests (Verification).

2. Support impact analysis – identifying artefacts that are affected by changes.

Figure 9: Simple traceability overview [30]

 33

Figure 9 describes the most basic “dimensions” of traceability. In [9] Ramesh and Jarke
describes a traceability metamodel supporting 6 dimensions of traceability:

1. What is represented? – A classification of the trace information that was captured. E.g.
is it a requirement, design or a rationale.

2. Who are the stakeholders? – Stakeholders play different roles in the creation,
maintenance and use of various trace information, and may view the information
differently. Examples of stakeholders include project managers, system analysts,
designers etc.

3. Where is the actual artefact that is being traced documented? – E.g. a meeting or
design document.

4. How this information is represented – how the documentation documenting the actual
artefact is represented.

5. Why was the trace information created? – The rationale behind the creation,
modification, and evolution of the trace information.

6. When the information was captured.

The use of traceability varies with the development phase. Some typical use scenarios include
[10]:

• Planning – it may be advantageous to link various decisions made during planning
with the artefacts they have an impact on. This information may be used as a rationale
at later stages.

• Design – requirements may be linked to the artefacts that are meant to satisfy them.
Furthermore links may be made between artefacts representing a relationship between
two software components.

• Implementation – links may be created manually or automatically between different
models and between models and implementation code. This includes both manually
created artefacts and artefacts that are the result of a transformation.

• Testing/deployment – Traceability information can be used to check that all
requirements are satisfied by one or more artefacts in the system and that tests exists
for each requirement. This analysis can also be performed during earlier stages to
monitor the progress of the development process.

• Maintenance – traceability information may be used to identify bottlenecks.

• Upgrade/change – If changes are to be made to the system, traceability information
may be used to conduct an impact analysis.

The level of details of the trace information that is captured varies a great deal between
different projects and organizations, depending on time lines, organizational needs or the
development strategy. Ramesh and Jarke separates traceability users into two main groups
with respect to how they use and capture traceability information [9]:

1. Low-End use of traceability is typically used by organizations that use traceability to
link various artefacts together without providing any semantics to the relationships
between the artefacts that are being traced. Traceability in this context is typically
used to link requirements to the actual system components that satisfy them. Low-end
users typically lack in the capturing of rationale, making it difficult to find out how
issues related to the requirements were resolved. This makes analysis of the trace
information more difficult as one may not be able to determine how a system
component actually satisfies a requirement. Furthermore, not knowing the rationale

 34

behind a decision may make it difficult to accurately tell the impact of a given change.

2. High-end users of traceability use traceability in a much richer way. This is supported
mainly by using semantically richer classification schemes, but often also by tracing a
richer set of artefacts throughout the development process. This allows information
regarding e.g. decisions, trade-offs, or the level of criticality of a requirement to be
captured. This information may prove to be valuable later in the development process,
and enables easier retrieval and more precise reasoning about traces.

What kind of analysis that may be performed on the trace information thus depends on
whether low-end or high-end use of traceability is applied, i.e. how semantically rich the trace
information is.

In an MDE process traceability is crucial. Due to the extensive use of transformations (i.e.
automated creation of artefacts) used throughout an MDE process it becomes central to be
able to understand how and why an artefact was created [8, 31]. Consider for instance the
transformation of the PIM of the library system in Figure 4 to the PSM in Figure 5 described
in subsection 3.2.5.1. The person responsible for running the transformation might not be the
same person that created the mapping, and thus does not necessary know exactly how the
transformation works and what will be the result. It could therefore be valuable and
timesaving to be able to e.g. find the source of the class <eJB_Stateless>LibrarySystem (or
the other way around) to get an understanding of why it was created. For more information
about the logic of the transformation, the developer would perhaps want to check if there is a
rationale explaining the mapping rule responsible for the transformation by performing a
simple query on the trace information.

Traceability information should be created and maintained as transparently as possible [2, 24],
meaning that developers should not have to maintain the traceability information themselves,
at least as little as possible. It should rather be maintained automatically by the tools. Having
the tools deal with traceability automatically means that traceability information will be
maintained without making the developments process more complicated, while at the same
time eliminating the risk that developers neglect it or makes errors doing it.

An interesting side effect of the automated or, in most cases, semi automated development
process of MDE is that it actually provides an opportunity to automate the creation and
discovery of trace relationships between artefacts, but also to maintain this information.
Clearly, the transformation engine responsible for transforming the artefacts of one model to
the artefacts of another, or to the text in a text-file is also aware that there is a relationship
between the source and target of the transformation. In fact most transformation engines use
an internal mechanism to keep track of these relationships.

3.3.2 Storing Traceability Information

In [31] Kolovos et al claims that there are two main approaches to deal with traceability in a
model based environment. One is to keep the traceability information embedded in the model
itself, as new model elements e.g. as stereotypes or attributes. The other is to keep the
traceability information in an external model. Both these approaches have their pros and cons
and they have both been implemented in various ways.

 35

Kolovos et al discusses how the first approach “is popular with modellers for its human-

friendliness as it represents traceability links as visual model elements that people can easily

inspect and navigate” [31]. The reason for this is that keeping the traceability information in
the model itself means that just looking at the model makes it possible to see what
information is traced, and how. This approach also makes it easy to physically move the
models that are being traced to different locations, as the trace information is contained in the
same model. A downside of this approach is that the trace information pollutes the models, as
the trace links/information becomes hard to distinguish from the rest of the elements in the
model. This could make it harder for a tool to separate them from each other. Another
downside of this approach is that it makes it difficult to create traceability links between
artefacts contained in different models, as there is no obvious solution to where the trace
information concerning the intermodel relationships should be stored.

The other approach discussed in [31], using external traceability links, e.g. using a separate
model to store the traceability links, has the advantage of keeping the models clean (not
polluting them with traceability information) by facilitating loose couplings between the
models and the links. Thus, the models themselves do not have to know about the traceability
links between them, as this information is kept in separate models. This makes sense, because
the trace information is not really part of the source or target artefacts of a transformation, but
rather a property of the transformation. The downside of this approach is that keeping the
traceability information in a separate model could make it harder for human beings to
understand it, because just looking at the traceability model does not necessarily make it clear
what is being traced. Thus using this approach indicates that there might have to be a
mechanism that makes the traceability information understandable for humans. Keeping the
trace information in separate models also brings the challenge of keeping the traceability
information in synch with the models that are being traced.

Despite the advantages and disadvantages of both approaches, Kolovos et al concludes that
the external approach is to prefer, as it handles both internal and external traceability links,
and is therefore more flexible. At the same time it prevents model pollution. They even
discuss how it is possible to use the best from both of them in what they call on-demand

merging. With this approach they keep the traceability information in an external model, thus
avoiding model pollution, and then use regular transformations to merge the traceability
models with the models they keep information about on demand. The new model produced by
this transformation will then contain e.g. the classes from the models being traced, together
with the information from the traceability model. This provides a model with all the
information needed to describe how different models are linked together with traceability
links, and what traceability information is being stored. At the same time the original models
are kept intact and unpolluted. One could have several different merging strategies, or
different “views”, that could be applied to get different trace information from the models or
show it in different ways.

Figure 10 describes a simple traceability metamodel. The metamodel describe a TraceModel
containing TraceLinks. The TraceLink contains references to a source element and a target
element, but the target element (which may be any kind of model element) is not contained in
the TraceModel – it is part of an external model. In a real-life scenario this model would
probably not provide the proper functionality expected by a traceability-metamodel, but it is
sufficient to help illustrate the examples presented here.

 36

Figure 10: A simple traceability metamodel

Using the traceability metamodel in Figure 10, one would be able to create an external trace
model containing the traceability information of the transformation from the PIM to the PSM
in our running example. Figure 11 shows the result of using this traceability metamodel to
generate trace links between the class ‘CustomerSystem’ in the PIM and PSM using implicit
linkage between the input and output of the transformation. In the illustration, the different
models are illustrated with packages. The traceability information is contained in a separate
model called ‘TraceabilityModel’.

 37

Figure 11: A simple traceability example

Although the trace links presented in this example is very simple, they illustrate how external
trace links can be used to provide traceability between the source and target elements of a
transformation. This example illustrates a model to model transformation, but the same
principle can be used for model to text transformations as long as the traced artefacts in the
text are uniquely identified. Provided a tool that allows developers to query and/or navigate
these trace links, developers could now find all the artefacts that was generated by the
transformation, and see what mapping rule that was used to generate it.

The example in Figure 11 also shows that the trace model quickly becomes quite large and
hard to read. Even when it only contains the trace links from 1 class in the PIM it is starting to
get hard to navigate through it visually. This problem could be solved to some degree by
using a more suitable trace metamodel. One could for example have different types of trace

 38

links, and each transformation rule could result in 1 trace link containing references to all
source and target elements. Changes like these could help readability quite a bit, but with
more complex source and target models, the trace information might still be difficult to read.
As discussed above, this could be solved by applying on-demand merging, as described in
[31].

3.3.3 Traceability in Model to Model Transformations

Trace links between source and target artefacts of a transformation may be created implicit
(i.e. the transformation engine creates links between the source and the target automatically)
or explicit (i.e. the user explicitly defines how to links the source and the target artefacts of a
transformation) [8].

The fist approach is often used internally by transformation engines like Queries Views
Transformation QVT [26] and Atlas Transformation Language (ATL) [32] to keep track of a
transformation [11]. In QVT, the source and the target artefacts of a transformation are linked
by trace classes containing properties that refer to objects and values in models that are
related by a transformation [26]; each relation (defined by a declarative rule, maps a source
artefact to a target artefact) is represented by trace class with properties referencing the
features of the source artefact and the features that are generated in the target artefacts.

While making it possible to automatically create traceability links between the source and the
target, implicit links means that developers has little control of how and when traceability
information is created. This means that it is difficult to add additional semantics to the trace
links, and means that the traceability information is limited to that defined by the tool.

In [11] Jouault suggests that with the help of any transformation language supporting two or
more output models, like the ATL, one could define explicit links between the source and the
target artefacts. What he suggests is that in addition to creating mappings from the target
model to a source model, there should also be a mapping creating instances of the traceability
metamodel, thus creating a traceability model containing information about the
transformation. This does however require the existence of a metamodel that describes the
external trace model to be created, in the same way as one need a metamodel describing the
source and target model of any other transformation. This is a simple solution, and it does not
require any additional functionality extending what is already part of the transformation
language. One would simply have to create additional “output patterns” in the mapping rules,
that describe the elements of the traceability model to be created. It would however require
the developers to create the mapping to a trace model each time they created a mapping. This
would make the development process more cumbersome, thus increasing the possibility that
someone forgets to do it or does not care to do it, and even more likely; makes errors while
doing it.

To avoid this Jouault describes how one can transform regular transformation code into
transformation code with support for traceability by running the transformation code through
a kind of pre-processor to perform a higher order transformation (i.e., transform the
transformation code). This is possible because transformation rules are actually models
themselves [11]. Given a library of traceability mappings, one can therefore transform the
transformation code by adding code that create instances of a trace metamodel in addition to
the regular transformation code, as explained above.

 39

Another possibility is to provide special constructs in a transformation language that allows
developers to explicitly define trace links between the input and the output. This approach is
taken by the MOF to Text transformation language discussed in the next subsection.

Both the approaches presented in this subsection have their pros and cons, but an optimal
solution should support a combination of both [8]. While the first approach provides a more
accurate record of the transformation, the second may be used to link artefacts that are not
possible to link automatically, and is more flexible with respect to how traceability links are
created.

3.3.4 Traceability in Model to Text Transformations

In an MDE environment it is also desirable to use models to generate code. To maintain
consistency between the models and the generated code, one also need to keep traces of which
elements in the model that were used to generate specific parts of the code.

Because every artefact in an MDE environment is considered to be models, the code is also
considered to be a model. To perform the code to text transformation one cannot use a model
to model transformation language though, because they only create new model elements as
the result of the transformations. A model to text transformation would of course need to
create the textual code.

One such transformation language is the MOFScript. This language can be used to generate
text from any MOF based model [21]. In [24] Oldevik and Neple discusses how traceability in
model to text transformations could be achieved using this language. In the approach they
describe, each text-file is represented by a model. In this model (described by the metamodel
in Figure 12) the text is divided into protected blocks with a start offset and an end offset
telling what line and position on the line the block starts and ends. The blocks are furthermore
divided into traceable segments, that have their own start- and end offset, and describes where
inside the block the traceable segment resides. A traceable segment could e.g. be the name of
a class etc. These traceable segments are then linked to a trace element that tells what
transformation rule that was used to generate it. The trace element is in turn linked to an
element with a reference to a model element in the source model, i.e. the element used to
create the code segment. To achieve this, the developer will not have to do anything because
this is handled automatically by the tool. What the developers can do however is to use the
keyword unprotect, which means that the following block is not protected, meaning that the
code resided there can be changed, and there will not be kept traces of it. Such unprotected
blocks would typically be used for areas where the developers are meant to enter their own
code.

 40

Figure 12: Trace Metamodel [24]

Figure 13 illustrates how the trace model with the traces from the code generation from class
CustomerSystem in the PSM in the running example could look like. This transformation is
illustrated in Figure 8. The model consists of a single File with a single Block. This Block
contains several TraceableSegments, which identifies an area within the Block. These
TraceableSegments are traced to a ModelElementRef, containing a reference to the model
element from which the text represented by the TraceableSegment was generated. E.g. the
TraceableSegment ‘trSeg1’ specifies the location of the text ‘Local’ (@Local) in the top of
the java file. This text is located in the java file in line 3, starting at column 2 and ending in
column 7 (the indexing of the file and the Block are the same as there are only 1 Block
contained by this File). This can be traced (‘trace1’) back to the value of a Property contained
by the Stereotype ‘EJB_Stateless’.

 41

Figure 13: Traces from the transformation illustrated in Figure 8

A different approach is proposed in the MOF Model to Text Transformation language
specification [27] from OMG. Instead of creating explicit links between the source and the
target of a transformation, the language allows users to explicitly define trace blocks, and
relating these trace blocks to model elements. This gives the user better control of the trace

 42

generation, and is especially useful for adding traces to parts of the code that are not easily
automated [8].

Figure 14: Definition of explicit trace block in MOF2Text [27]

Figure 14 shows the definition of a trace block containing a generated class. The block is
explicitly linked to the class ‘c’.

If both approaches were applied to the transformation engine responsible for running the
mapping in Figure 14, the resulting explicit links would tell us how the names of features of
Class ‘c’ where related to the text, while the explicit link would link the Class itself with the
entire block of text comprising the Class in the Java file. This information could be utilised
for different kinds of analysis.

3.3.5 Application of Traceability in MDE

As mentioned in the introduction to this section, the main application of traceability is to
support analysis of the development process. Walderhaug et al [10] discuss several different
traceability use cases; Trace Inspection, Coverage Analysis, Orphan Analysis, and Reverse

Engineering. Vanhoof et al [33] discuss how traceability information can be used as input for
model transformation s to improve the transformations. These scenarios will be discussed in
the following subsections.

3.3.5.1 Trace Inspection

The purpose of trace inspection is to allow the traceability information to be visualised,
navigated and queried, so that it may give the user better understanding of the system, both
during development and maintenance [10]. Trace inspection could e.g. be used to retrieve all
artefacts that were generated from a certain artefact, and find the transformations responsible
for creating them.

3.3.5.2 Coverage Analysis

Through coverage analysis, the degree to which some artefacts of the system are followed up
by other artefacts in the system can be determined [10]. This can be achieved by checking that
trace relationships that should exist are present, e.g. that a requirement is covered by design

 43

and implementation [10], or that all relevant parts of a model are utilised by a transformation
[8].

3.3.5.3 Change Impact Analysis

Change impact analysis may be used to identify artefacts that may be affected by a change
[10, 30], and to estimate the cost, resources and time required to perform the change [10].

3.3.5.4 Orphan Analysis

Orphan analysis may be used to find artefacts that are not the target of any trace link of a
specific type [10]. Typical use of orphan analysis is to find elements that are not required by
the system, e.g. a feature that was not described in the requirements. An other example could
be the deletion of an artefact that was used to generate another through a transformation – the
generated artefact would then become an orphan [8].

3.3.5.5 Reverse Engineering

Reverse engineering may be used to rebuild a source artefact from the target artefact[10].
Traceability information is necessary to be able to bring an artefact back to its original
state[34]. E.g. the traceability information generated by MOFScript may be used to rebuild a
class model based on the Java classes, provided that the required information is found. The
degree of how accurately an artefact may be regenerated depends on how much of the
information found in the original model that was used in the transformation.

3.3.5.6 Traceability as Input for Model Transformations

In cases where several transformations are used to generate several intermediate models
through a chain of transformation, the traceability information may be used to retrieve
information regarding the relationships between artefacts that cannot be found in the source
model [33]. E.g. the same model may be used to generate a class model and a relational
database model. If the two target models were to be used to generate java code, the
traceability information could be used to retrieve the relationships between the classes and the
database tables.

3.3.6 Current Traceability Tools and Solutions

Earlier in this chapter we have illustrated the use of two simple traceability metamodels
(Figure 10 and Figure 12). Although the first one is very simple, they illustrate metamodels
that would make it possible to maintain traces from model to model transformations and
model to text transformations. This makes it possible to trace all the steps in an automated
MDE process, thus we have (to some degree) achieved traceability in MDE. However, since
the transformation engines in these examples uses different traceability metamodels, it will
not be straight forward to analyse the trace information. E.g. traces related to the artefacts in
the PSM were captured by two different trace models and this information was captured in
two different formats with possibly different semantics. This means that one would need a
mapping between the two metamodels to be able to follow the traces throughout the entire
process, e.g. from PIM to PSM to code. Such mappings would have to be performed between
trace models used by different transformation engines. Additionally, it might be desirable to
be able to keep traces from requirements and/or rationales kept in a text document as well,

 44

which would not be possible using the traceability metamodels in the examples. To be able
store traces regarding the whole development process it would hence be desirable with a more
general purpose traceability metamodel, covering all the different aspects associated with the
software development process.

In [9] Ramesh and Jarke suggest a general purpose metamodel for requirements traceability
which covers the most basic aspects of traceability (Figure 15). This metamodels allows
traces between any kind of Objects to be captured, but also allows traces to the Source
(documentation) and Stakeholder associated with the traced Object to be captured.

Figure 15: Traceability metamodel [9]

Traceability models based on this metamodels is assumed to be implemented in a trace
repository. It is widely accepted that such a repository will comprise at least three layers [9]:

• The metamodel defining the language in which the traceability models can be defined
(E.g. Figure 15).

• A set of customizable trace models defined in the language defined by the
metamodel.

• A database storing the actual traces.

Walderhaug et al [10] suggests a more elaborated traceability metamodel for MDE aiming to
provide flexible and customizable trace models, support throughout the lifetime of artefacts,
and support traces between different tools. This trace model consists of 3 packages:

1. The Traceability Metamodel is where trace types are defined. In the trace model it is
specified what kind of model artefacts that can be traced, what kind of traces that can
be created, and what relationships they may have to each other.

2. The Traceability System is where models can be created, based on the types defined
in the Traceability Metamodel. This is where the traceability models are stored.

3. The Traceability Use is the bases for the user interface, and is the interface to the
repository stored in the Traceability System. This interface will be used by tools that
want to access the repository.

 45

Figure 16: A generic solution for traceability [3]

This metamodel describes a language for describing both the trace types (Traceability

Metamodel), allowing developers to create customizable traceability models, and the models
that are used to capture the traces (Traceability System).

Developers would define what kind of model artefacts that may be traced by creating a
TraceableArtefactType representing each model artefact type. The TraceableArtefactType
may contain a mapping from the model artefact type to itself, i.e. how to transform the model
artefact to a TraceableArtefact with the TraceableArtefactType as type. ArtefactTraceTypes
may then be defined to represent types of traces which may be created for a
TraceableArtefactType. Similarly, RelationTraceTypes may be created to represent types of
traces that may be created for TraceableArtefactTypes that represent relations between model
artefacts. Developers may also specify sets of actions which may be executed when the
different types are created (these are contained by the types them selves), they may also
specify attributes to be created for the different types. When developers have defined the
TraceableArtefactTypes, ArtefactTraceTypes, and RelationTraceTypes they want to use they
can use the TraceModel containing these types as the types of the actual traces contained by a
TraceRepository. The TraceModel hence define the types used in the TraceRepository, and
may also define when these traces shall be created, how they shall be mapped, and what
actions that may be performed when traces of a certain type is created.

 46

There are however no references to an implementation of this solution, and the authors leave
much of the work related to mapping of artefacts (specified by TraceableArtefactType), and
specification of actions to future work.

3.3.7 Challenges of Traceability in MDE

3.3.7.1 Classification of Traceability Information

One of the major issues of traceability in MDE, and traceability in general, is the lack of
standard classification schemes for trace information. A traceability solution like the one
suggested by Walderhaug et al [3, 10], might provide the means to generically define
customizable trace models with user defined types, and allow this information to be shared
between different users and tools, but without standard classification schemes, the semantics
of the trace information might be hard to determine. The semantics of the trace information is
crucial for traceability management, both manually and automatic. Both tools and humans
must for instance know when to create the right kind of trace information, and in order to
analyse the trace information correctly it is important that the information is interpreted the
way it was intended by the creator of the information. Semantically rich trace information is
also a key factor in order to allow a rich set of analysis to be performed on the information.

A number of different trace link classifications have been presented in the literature, most
regarding requirements traceability. Ramesh and Jarke define two base classes of traceability
links[9];

1. Product-related – describes properties and relationships of design artefacts
independent of how they were created. This class has two basic types of traceability
links; Satisfied (e.g. to express that a requirement or standard is satisfied by an artefact
on a lower level) and Dependency expressing a dependency between to artefacts.

2. Process-related – describes the history of actions taken in the process itself. The two
base classes of product-related links are; Evolves-To expressing that the source has
evolved to the target, and Rationale which is a link to the Rationale behind an action
that led to the evolution.

Espinoza et al [6] performs an analysis on current requirements traceability approaches and
identifies common features of existing traceability approaches. The traceability links are
divided into six different categories, comprised of traceability links with similar semantics;
Satisfies, Dependency, Rationale, Validation, Verification, Evolution. They conclude
however, that there is little guidance on how the links shall be used, and for what artefact
types the links should be applied to. Furthermore, the definitions found are often overlapping.

The literature discussed this far in this subsection primarily discusses classification of
traceability information in the context of requirements traceability however. Walderhaug et al
[10] suggests a set of extensions to the traceability system solution metamodel in Figure 16
that provides classification of traceability links for MDE. This includes the addition of an
attribute of type LinkType on the RelationTraceType Class. LinkType is extended by the
Classes Automatic and Manual, and hence reflect how a specific traceability link was created.
Automatic links may be either Generated, Derived, or Inferred. The semantics of the links are
described in Table 2.

 47

Nr. Classification Sementics

LT_Ext 1 LinkType The LinkType class describes how the
RelationTraceType is created, either automatically
or manually.

 LT_Ext 1.1 Automatic An automatic link may be created in one of three
ways. This is specified by an enumeration attribute
with the following values:

* Generated Creation of a RelationTrace initiated from a
system event, condition or a user interaction.
Typically occurs during transformations.

* Derived An explicit RelationTrace derived from other
artefact and/or RelationTraces. Typically created
as a response to a requirement to store specific
types of relation between certain artefact types or
relationships.

* Implied A RelationTrace that represents a one-way logical
dependency between two artefacts based on one
or more statements that are assumed to be true.

 LT_Ext 1.2 Manual Links created manually by a developer.

Table 2: LinkType extensions to RelationTraceType (described in [10])

The LinkType classification may be applied by any traceability link, as every link is either
automatically or manually created. To add semantics to the traceability links, a
RelationTraceType may be of one of the subclasses described in Table 3. This allows
semantics regarding the creation of a link, and semantics regarding the meaning of a link to be
captured.

 48

Evolution

Nr. Classification Sementics LinkType Use Case
RTT_Ext 1 Realization The trace between two artefacts where

the target implements the source.
Generated,
manual

Impact,
Coverage,
Orphan

RTT_Ext 2 Transformation The trace of a transformation from
source to target artefact.

Generated Impact,
Coverage,
Orphan

Satisfication

Nr. Classification Sementics LinkType Use Case

RTT_Ext 3 Verification A trace between two artefacts where
the source is verification for the target.
E.g. a JUnit that test the behaviour of a
Java Class.

Generated,
manual

Impact,
Coverage,
Orphan (for
the
verification
itself)

RTT_Ext 4 Validate A trace between two artefacts where
the source validates the target.

Generated,
manual

Impact,
Coverage,
Orphan

RTT_Ext 5 Acceptance A trace between two artefacts where
the source defines the acceptance for
the target.

Generated,
manual

Impact,
Coverage,
Orphan

RTT_Ext 6 Conflict A trace that documents two conflicting
artefacts

Generated,
manual

Impact,
Coverage

Dependency

Nr. Classification Sementics LinkType Use Case
RTT_Ext 7 Dependency A trace between a source that is

dependent of the target.
Generated,
manual

Impact,
Orphan

Rationale

Nr. Classification Sementics LinkType Use Case

RTT_Ext 8 Manages Provides information about whom/what
(source) manages who/what
(target).Focused on the operational
aspect of the artefacts.

Generated,
manual

Impact

RTT_Ext 9 Rationale A trace between two artefacts where
the source is the rationale or
justification for the target artefact.

Manual Impact,
Orphan

RTT_Ext 10 Reponsibility Provides information about who/what
(source) is responsible for who/what
(target)

Manual Impact

RTT_Ext 11 Ownership Provides information about who/what
(source) owns who/what (target)

Generated,
manual

Impact

Table 3: RelationTraceType extensions (described in [10])

3.3.7.2 Maintaining the Correctness of Traceability Information

One of the most challenging aspects of traceability is how to maintain the correctness and
relevance of relationships while the artefacts continue to change and evolve [35]. This is

 49

especially the case when the trace information is maintained manually, as this requires a lot of
effort. For traceability information to be useful, the information must reflect the current
dependencies between artefacts [5]. Current requirements management tools, such as IBM
RequisitePro [36] and Telelogic DOORS [37], contain features supporting the management of
traceability information validity by monitoring changes of linked artefacts and indicating
suspect links. However, the number of suspect links in most non-trivial projects quickly
becomes excessive, drastically reducing the usefulness of this feature [5]. The degree of
formality of the artefacts that are being stored also has an impact on how effective this feature
can be utilised [35]. Furthermore, in subsection 3.3.2 we concluded that the trace information
should be kept in a separate model. This might complicate things even more, as there might
not be any direct linkage between the trace model and the artefact being traced.

3.4 Summary and Discussion
In the chapter we have discussed how MDE promises to ease complexity in the system
development process by using transformations to automatically generate models, formalised
by metamodels, at various levels of abstraction, and generating implementation code from the
models. The extensive use of transformations in MDE does however bring added complexity
in a new area, as it may not be obvious how models and code at various levels are related to
each other.

Traceability therefore becomes a critical success factor in MDE, as it offers a way to keep
track of the evolution of a system by recording the process that led to a particular point in a
process. This information may be used for various analysis purposes throughout the lifetime
of a system.

We have however seen that different transformation engines support traceability in different
ways. Some generate implicit traceability information, while others leaves to the user to
explicitly define this information themselves using special language constructs or by
generating traceability models as additional target models. Moreover, even though most of the
transformation engines use an internal trace model to record the relationships between source
and target artefacts of a transformation, this information is created using different languages;
specific to either model to model transformations or model to model to text transformations.

Even though tools like MOFScript offer some analysis functionality on the traceability
information, the fact that each tool operates on different languages make it difficult to
integrate the traceability information from different tools. This makes it difficult to get a
holistic view of the system development process.

Adding the fact that different organisations use traceability information differently; some
organisations use high-end traceability while others use low-end traceability, at various
degrees makes the situation even more complicated, as the various levels of details might
make it difficult to exchange the information between different organisations.

Indeed Walderhaug et al [10] propose a system solution for a more holistic traceability
approach, and a classification scheme for traceability in MDE. There is however no references
to an implementation of such a traceability tool and they do not provide information on how
the classification scheme and tool could be utilised to support the different needs discussed
above.

 50

Summarising the discussion, we believe that there is a need for a traceability tool and a
classification scheme supporting the different traceability strategies applied by different tools
and organisations in a way that allows traceability information to be captured on different
levels of details, but at the same time allow different tools and users to operate on the same
traceability information.

 51

4 The Traceability Tool

4.1 Introduction
In this chapter we present the design and functionality of the traceability tool. We start by
listing a set of requirements which should be satisfied by the tool in section 4.2, before the
design of the tool is presented in section 4.4. Through the rest of the chapter we discuss the
features provided by the tool, before we end the chapter with a summary of the discussion in
section 4.11.

4.2 Tool Requirements
In this section we introduce the requirements for the traceability tool. These are requirements
that should be fulfilled for any generic traceability tool to be used in MDE. These
requirements will hence also serve as success criteria for H2 (hypothesis defined in section
1.3), and will be used to validate the fulfilment of this hypothesis.

Tool Requirement 1

The traceability tool shall use model-driven approaches.

As we operate in an MDE environment, it is logical to treat traceability as just another
model. This is also in accordance with the discussion in section 3.3, and means that the
traceability tool can be integrated more easily with other model-based tools and models in
general.

Tool Requirement 2

The models used by the traceability tool shall conform to the 4 meta-layers of OMG.

In subsection 3.2.2 we saw that OMG defined 4 meta-layers to which a model could
conform. The design of the tool should conform to these as this is a widely accepted
standard, and hence makes the tool more easily integrated with other tools. This should
however not be a problem, as most modelling tools today conforms to this standard.

Tool Requirement 3

The traceability tool shall support trace repositories.

The trace information must be stored in a repository for persistence. As discussed in
subsection 3.3.1, such a repository should comprise at least three layers of details
(metamodel, reference models, database of traces). This leads to the following
requirements:

 52

Tool Requirement 3.1

The traceability tool shall be based on a metamodel.

A metamodel formally defines the language on which the traceability tool will
operate to support traceability.

Tool Requirement 3.2

The traceability tool shall support generic definition and customization of reference
models.

In order to support various kinds of traceability information to be captured, the
traceability tool shall allow users to define their own reference models. This allows
the creation of project specific reference models, and customization of previously
defined reference models.

Tool Requirement 3.3

The traceability tool shall support persistent storage of traceability information.

In order to support traceability in a sufficient way, persistence storage of traceability
information is essential.

Tool Requirement 4

It shall be possible to identify where the traced artefact is located.

In order for the traceability information to be of any use, it must be possible to locate the
artefacts that are being traced.

Tool Requirement 5

It shall be possible to identify when the traceability information was recorded.

When a piece of traceability information was recorded may be of interest for different
analysis purposes.

Tool Requirement 6

The traceability tool shall be implemented as an Eclipse EMF plug-in.

Eclipse is today a commonly used and well tested standard for tool development, and
should therefore serve as a good platform to build on [38]. Eclipse Modelling Framework
(EMF) [12] has also become a widely appreciated open source platform within the Eclipse
community that provide a variety of tools for creating, maintaining, and manipulating
models. EMF supports the four meta-layers of OMG, and is used by a variety of
modelling tools.

 53

Tool Requirement 7

The traceability tool shall be easy to integrate with external plug-ins.

For the traceability tool to be of any real use, it is essential that it is easy to integrate with
external tools. Due to the generality of such a traceability tool, it is essential that third
party plug-ins is able to easily adapt the functionality of the traceability tool to use it to fit
their own demands, and usage.

Tool Requirement 8

It shall be possible to create traceability information both automatically and manually.

Traceability information may be created in several different ways; the information may be
recorded manually by a developer, or automatically by a modelling tool or through
transformations (e.g. through the procedure presented in [11]). A traceability tool should
therefore support all these use cases.

Tool Requirement 9

The traceability tool shall support both high-end and low-end use of traceability.

In subsection 3.3.1 we saw that Ramesh and Jarke [9] separates trace users into two
groups; low-end and high-end. The authors furthermore define one reference model for
each, with different level of details. We believe a traceability tool should be general
enough to be used by both high-end and low-end users. This means that the traceability
user may use a traceability approach suitable for his/her needs, but at the same time that
traceability information may be interchanged between users regardless of the level of
details used to capture traces. This also means that details may be added at later stages by
different kind of analysis.

Tool Requirement 9.1

The traceability tool shall make it possible to capture traces at various levels of

details, depending on what information is available at any given time.

It might not be possible or even desirable, to capture all the semantics that may be
required at creation time. This depends on what information is available, and what
effort is required to capture such information. This may especially be the case when
trace information is generated automatically. It should therefore be possible to add
semantics at later stages, either manually or through automatic analysis.

Tool Requirement 9.2

The traceability tool shall make it possible to trace an artefact through its whole
lifetime.

In order to support high-end traceability, it must be possible to trace the whole
lifetime of an artefact. This brings forth the following sub-requirements.

 54

Tool Requirement 9.2.1

Each artefact must be uniquely identified.

In order to be able to trace the whole lifetime of an artefact it must be possible to
uniquely identify an artefact across space and time.

Tool Requirement 9.2.2

The traceability tool must support different versions of an artefact.

In order to keep trace the evolution of an artefact, it must be possible to keep
information regarding all versions of an artefact that has ever existed. E.g. if a
model artefact is used as the source of a transformation and later changed, then it
is the old version of the artefact that is related to the target of the transformation,
not the one that has been changed. This information may have great impact on to
what degree the development process may be analysed.

4.3 Introduction to Technology
This section briefly presents the technology foundation of the traceability tool. We do not
discuss the technology in detail, but present the information that is of interest to understand
the features of traceability tool.

4.3.1 Eclipse Modelling Framework (EMF)

One of the requirements for the traceability tool (Tool Requirement 6) was that it shall be
implemented as an Eclipse Modelling Framework (EMF) [12] plug-in. This is an open source
project, with growing popularity, which provides a modelling framework and code generation
facility for building tools and other applications based on a structured data models described
in XML Metadata Interchange (XMI) [39].

EMF consists of three fundamental pieces [12]:

• EMF – the core EMF framework includes the ECore meta-metamodel, which allows
definition of metamodels. These metamodels can be used to generate Java Classes,
including APIs for creating and retrieving model artefacts programmatically.

• EMF.Edit – the EMF.Edit framework allows generation of content and label
providers and other convenience classes that allows EMF models to be displayed
using JFace viewers and property sheets, in addition to command implementation
classes for building editors that support fully automatic undo and redo.

• EMF.Codegen – the EMF.Codegen framework allows generation of Java classes that
uses the Classes generated by the core EMF framework and the EMF.Edit framework
to build a complete editor for an EMF model.

 55

4.3.2 Graphical Editing Framework (GEF)

The Graphical Editing Framework (GEF) [40] provides functionality that makes it possible to
create a rich graphical editor from existing application model.

4.3.3 Graphical Modelling Framework (GMF)

The Graphical Modelling Framework (GMF) [41] provide code generation functionalities that
makes it possible to generate a complete graphical modelling editor for EMF models. This is
achieved by combining the generated EMF classes with GEF features.

4.4 Design
The main goal of the traceability tool is to support generic definition of traceability types, and
to allow external plug-ins to use these traceability types to populate the trace repository. This
approach is indeed very similar to the traceability metamodel and system solution [3, 10]
discussed in subsection 3.3.6. As there is no reference to an implementation of this solution,
we will develop a traceability tool that use some of the ideas from this work, but we have
made a few changes to the metamodel to allow more dynamic models of traceability types to
be defined. These changes include:

• Allow multiple trace type models to be used on the same repository, hence allowing
combinations of trace type models to be combined and used together on the same
trace repository.

• We do not use the concept of artefact trace as we believe traceable artefacts and
trace links will be sufficient in our context.

• Allowing definition of extension types which may be used to extend traceable

artefacts and trace links dynamically. I.e. extensions are made on the model level
(M1) rather than on the metamodel level (M2).

• Allowing compositions of trace links and traceable artefacts to provide a more
expressive language.

An overview of the design of the traceability tool is shown in Figure 17. The tool is based on
two metamodels described in the ECore meta-metamodel language;

1. traceTypeLib.ecore – the traceability type definition model.
2. traceRepository.ecore – the trace repository model

 56

Figure 17: An overview of the traceability tool

The traceability tool is based on the idea that artefacts that shall be traced are represented as
TraceableArtefacts. These TraceableArtefacts are abstractions of actual artefacts, and allow
actual model artefacts (e.g. model elements or text-files) to be represented in a trace
repository. TraceLinks can then be created between TraceableArtefacts in the trace repository
without polluting the actual artefacts. This abstraction also allows TraceLinks to be created
between artefacts it would have been difficult to link in another way (e.g. text-files). The
TraceableArtefacts and TraceLinks may also be extended with ArtefactExtensions and
LinkExtensions to provide additional semantics (a bit like UML stereotypes). This concept
allows dynamic extension of TraceableArtefacts and TraceLinks without modification s to the
metamodel.

Simple TraceableArtefacts and TraceLinks do however not offer much semantics on their
own, except that there is a relationship between artefacts. The strength of the traceability tool
is that all the components are typed with types that can be customized in another model. An
illustration of this is shown in Figure 17. This allows different libraries of traceability types to
be created, and used to populate trace repositories. These libraries may be used in
combination and may be linked to each other.

This means that we are able to create fully generic models describing the trace types (i.e. the
information to be traced) that comprises libraries of trace types, and then use these libraries to
generated actual traces.

The purpose of the traceability tool is to allow developers to define their own traceability type
libraries, and use these libraries to create traces programmatically through a java interface.

 57

The traceability tool is not a complete traceability solution, but provides the functionality to
define and create traces. The idea is that external tools and plug-ins may use the traceability
tool to generate traces. How and when traceability information is generated is not governed
by the tool.

4.4.1 The Metamodels

The traceability tool uses the EMF to define the metamodels, and to generate APIs and
editors. The metamodels are described in the following subsections.

4.4.1.1 TraceTypeLib

The trace typeTypeLib metamodel defines the language used to describe a traceTypeLib
model. This model is used to define libraries of traceability types. The complete model
(except the linkage to the traceRepository metamodel) is shown in. It is explained in detail in
the following subsections.

Figure 18: The TraceTypeLib metamodel

NamedElement
This class is a super class for all classes in the model.

Attributes:

• name : string – a name that works as an identifier for the type.

TraceTypeLibrary
This is the top-level element of the model and thus contains all the other elements directly, or
through its contained elements.

 58

Attributes:

• traceLibVersion : string – the version number of the library.

TraceableArtefactType
This element defines a type that may be applied to a TraceableArtefact.

Attributes:

• recursive : boolean – specifying whether a TraceableArtefact of this
TraceableArtefactType can contain a TraceableArtefact of the same type. E.g. a model
artefact that may contain other model artefacts. This allows the capturing of detailed
information, without making the TraceableArtefactType too complex. The default
value of this attribute is false.

Relationships:

• artefactSegments – contains all the TraceableArtefactTypes that are contained by this
TraceableArtefact. This makes it possible to create artefact compositions.

• attributes – contains all the AttributeTypes of this TraceableArtefactType. Attributes
of these types may be contained by a TraceableArtefact of this type.

• extensions – specifies which ArtefactExtensionTypes that may be contained by a
TraceableArtefact of this type.

TraceLinkType
A TraceLinkType defines a type that may be applied by a TraceLink.

Attributes:

• recursive : boolean – a value specifying whether a TraceLink of this type may contain
a TraceLink of the same type or not. This allows the capturing of detailed information,
without making the TraceLinkType too complex. The default value of this attribute is
false.

Relationships:

• extensions – a set of references specifying which LinkExtensionTypes could be
applied by this TraceLinkType.

• traceLinkSegments – contains all the TraceLinkTypes that are contained by this
TraceLinkType, e.g. a TraceLinkType ‘Transformation’ may contain a TraceLinkType
‘MappingRule’. This makes it possible to create link compositions.

• attributes – contains all the AttributeTypes of this TraceLinkType. Attributes of these
types may be contained by TraceLink of this TraceLinkType.

ArtefactExtensionType
This element defines extension types which may be applied by one or more
TraceableArtefactTypes. Artefact extensions are used to add additional information to the
TraceableArtefacts in their basic form. The intended use is that a TraceableArtefactType may
have several extensions that each has several sub extensions, thus working more like an
enumeration.

 59

Attributes:

• abstract : boolean – value that specifies whether the ArtefactExtensionType is abstract
or not. An abstract extension-type cannot be assigned to a TraceableArtefact, but its
subtype can.

Relationships:

• superType – a link to the supertype of this ArtefactExtensionType.

• Subtypes - links to the subtypes of this ArtefactExtensionType.

LinkExtensionType
This element defines extension types which may be applied by one or more TraceLinkTypes.
Link extensions are used to add additional semantics to the trace link in its basic form. The
intended use is that a TraceLinkType may have several extensions that each has several sub
extensions, thus working more like an enumeration. E.g. a TraceLinkType may have a link to
the LinkExtensionType ‘CreationType’ (abstract) that is subtyped by the LinkExtensionTypes
‘Manual’ and ‘Automatic’, and maybe another link to the LinkExtensionType ‘State’(abstract)
that is subtyped by LinkExtensionTypes ‘Valid’ and ‘Violated’. Thus, making it possible to
capture fine-grained information regarding a TraceLink.

Attributes:

• abstract : boolean – value that specifies whether the LinkExtensionType is abstract or
not. An abstract extension-type cannot be assigned to a TraceLink, but its subtype can.

Relationships:

• superType – a link to the supertype of this LinkExtensionType.

• Subtypes - links to the subtypes of this LinkExtensionType.

ValueType
 This simple element is used to define a specific simple type (e.g. String or Integer) that can
be used by the attributes in this library.

AttributeType
This element defines the AttributeTypes used by the other elements.

Relationships:
The type association specifies what type of value that may be contained by Attributes of this
AttributeType.

4.4.1.2 TraceRepository

The TraceRepository metamodel describes the actual traces that will be stored. The elements
of this model all have a type reference to its corresponding element in the traceTypeLib
metamodel.

 60

Figure 19: The TraceRepository metamodel

IdentifiableElement
This element is the supertype of TraceableArtefact and TraceLink, and contains properties
that are common to both.

Attributes:

• id : string – a unique identifier.

• name : string – the name that will be shown in the traceRepository editor. Acts as a
kind of visual identifier.

• recordTime : string – the time on which the element was recorded.

TraceRepository
The top-level element of the traceRepository model. This element contains all the other
elements directly or indirectly.

Attributes:

• name : string – the name of the repository.

Relationships:

• traceableArtefacts – contains all the TraceableArtefacts of the repository model.

• traceLinks – contains all the TraceLinks of the repository.

TraceableArtefact
A TraceableArtefact is a representation of an actual artefact in the repository.

Attributes:

• location : string – the location of the actual artefact that is represented by this
TraceableArtefact. Typically contains the URI (global or local) of the actual artefact.

 61

• version : string – the version number of the artefact. Used to separate between
different versions of the same artefact (e.g. when an artefact is changed a new version
of the artefact may be created).

Relationships:

• traceableArtefactType – a reference to the TraceableArtefactType of the
TraceableArtefact. *not shown in Figure 19.

• artefactSegments – contains all the TraceableArtefacts contained by this
TraceableArtefact. May contain TraceableArtefacts of the types defined for its
TraceableArtefactType.

• extension – contains all the ArtefactExtensions applied to this TraceableArtefact. May
contain ArtefactExtensions of the types defined for its TraceableArtefactType.

• attributes – contains all the Attributes of this TraceableArtefact. May contain
Attributes of the types defined for its TraceableArtefactType.

• targetOf – a set of references to all the TraceLinks having this artefact as target. This
association is an EOposite of TraceLink.target, meaning that the references are
automatically maintained when the TraceableArtefact is made the target of a
TraceLink. These references are used for navigation.

• sourceOf – a set of references to all the TraceLinks having this artefact as source. This
association is an EOposite of TraceLink.soure, meaning that the references are
automatically maintained when the TraceableArtefact is made the target of a
TraceLink. These references are used for navigation.

TraceLink
A TraceLink is used to link TraceableArtefacts.

Relationships:

• traceLinktType – a reference to the TraceLinkType of the TraceLink. *not shown in
Figure 19.

• linkSegments – contains all the TraceLinks contained by this TraceLink. May contain
TraceLinks of the types defined for its TraceLinkType.

• extension – contains all the LinkExtensions applied to this TraceLinkt. May contain
LinkExtensions of the types defined for its TraceLinkType.

• attributes – contains all the Attributes of this TraceLink. May contain Attributes of the
types defined for its TraceLinkType.

• source – a reference to the source of the link.

• target – a reference to the target of the link.

ArtefactExtension
An extension that is applied to a TraceableArtefact.

Relationships:

• artefactExtensionType – the type of the ArtefactExtension. *not shown in Figure 19.

• attributes – contains all the Attributes of this ArtefactExtension. May contain
Attributes of the types defined for its ArtefactExtensionType.

LinkExtension
An extension that is applied to a TraceLink.

 62

Relationships:

• linkExtensionType – the type of the LinkExtension. *not shown in Figure 19.

• attributes – contains all the Attributes of this LinkExtension. May contain Attributes of
the types defined for its LinkExtensionType.

Attribute
An Attribute may contain a value of the type defined for its attributeType.

4.5 The GMF Editor
To make it possible to both model and view trace type libraries in an easy manner, a GMF
editor based on the traceTypeLib.ecore metamodel has been created. This editor is shown in
Figure 20.

Figure 20: The GMF editor for the traceTypeLib metamodel

The GMF framework makes it possible to create a concrete syntax for EMF models. For the
traceTypeLibModel, the syntax is as follows:

• ValueType is shown as a gray rounded rectangle.

• TraceableArtefactType is shown as a blue rectangle.
o The upper compartment of the rectangle contains the AttributeTypes specified

for the TraceableArtefactType.

 63

o The lower compartment of the rectangle may contain TraceableArtefactTypes
specified for the TraceableArtefactType. I.e. to create compositions.

• TraceLinkType is shown as a orange rectangle
o The upper compartment of the rectangle contains the AttributeTypes specified

for the TraceLinktType.
o The lower compartment of the rectangle may contain TraceLinkTypes

specified for the TraceLinkType. I.e. to create compositions.

• ArtefactExtensionType is shown as a blue rounded rectangle.
o The compartment of the rectangle contains the AttributeTypes specified for the

ArtefactExtensionType.
o The supertype association is shown as an association pointing at the supertype.

• LinkExtensionType is shown as an orange rounded rectangle.
o The compartment of the rectangle contains the AttributeTypes specified for the

LinkExtensionType.
o The supertype association is shown as an association pointing at the supertype.

4.6 The TraceRepository Editor

Figure 21: The TraceRepository editor

The traceRepository editor is tree based editor generated using the EMF facilities, supporting
editing and browsing of traceRepository models. In Figure 21 the editor shows a
traceRepository model using the types defined in Figure 20.

• The type of TraceableArtefacts and TraceLinks is shown as “(type)”.

• The type of Attributes is shown as “(type : type.type)”.

• The extensions applied by TraecableArtefacts or TraceLinks are shown as
“<extension>”.

 64

4.7 The TraceNavigator View
The TraceNavigator view is a tree viewer that allows trace information to be navigated and
visualised. While the TraceRepository editor allows the traceability information is a view of
the actual model, the TraceNavigator shows the traceability information in a way that is
easier to view for a human being, by showing the trace links between traceable artefacts
visually. The elements (IdentifiableElement) shown in the TraceNavigator may however not
be unique, as the same traceable artefacts may be the source or target of multiple links, hence
shown in multiple branches of the tree.

Furthermore, the TraceNavigator view has two different modes, both initiated by right-
clicking on a TraceableArtefact in the traceRepository editor and selecting the menu choice
with the respective name:

1. Show Descendants – allows the trace links that can be reached by following the links
of the sourceOf set of the selected artefact to be navigated. This mode also shows
aggregation, meaning that containment relationships between artefacts can be
navigated. Traceable artefacts are shown as objects, while trace links are shown as
arrows pointing to the right.

2. Show Predecessors – allows the trace links that can be reached by following the links
of the targetOf set of the selected artefact to be navigated. This mode does not show
aggregation relationships. Traceable artefacts are shown as objects, while trace links
are shown as arrows pointing to the left.

Figure 22: The TraceNavigator view showing descendants

In the figure above the TraceNavigator view shows the result of selecting Show descendants
when right-clicking the traceable artefact representing the requirements document (using a
traceTypeLib model describing the traceability metamodel of MOFScript) of the library
example. We see that this traceable artefact contains a single traceable artefact of type Block
which in turn contains four traceable artefacts of type TraceableSegment. The traceable
artefact with name ‘Requirements_1’ can be traced down to two elements contained in the
EJB-PSM (the operation findBook in classes Library and BookSystem).

 65

Figure 23: The TraceNavigator view showing predecessors

In the above Figure, ‘Show predecessors’ have been selected for the traceable artefact
representing operation findBook in the class BookSystem of the EJB-PSM. This allows us to
trace navigate the traces all the way back to a requirement in the requirements document. The
same thing is actually shown in Figure 22 (the lower expanded branch), starting at the
requirement. The different modes hence show the information in reverse direction of each
other.

4.8 Java Interfaces
The java interface allows all model elements in the traceTypeLib model and the
traceRepository to be programmatically created, through a factory class. This interface is
however a bit cumbersome to use as it works on the meta-level. The names of classes and
attributes that shall be made must therefore be past as strings.

4.9 The Code Generator
To ease development, the traceability allows code to be generated from the traceTypeLib
models; for each TraceLinkType and TraceableArtefactType, a Java Class is generated. Each
class contains hard coded method calls, using the names from the traceTypeLib model that are
wrapped in methods. E.g. the constructor of the generated class for ‘ArtefactType_A’ in
Figure 20 contains hard coded method calls that create an instance of a TraceableArtefact in
the trace repository with the type ‘ArtefactType_A’. A pointer to the created instance is stored
in the Class. In this way it is possible to program with traceability types just like any Java
class. The classes must however be created through a factory class to ensure that all classes
uses the same repository and library.

At current stage, the code generation facilities are not supported by the traceability tool, and
must therefore be run from the MOFScript source code, using the MOFScript facilities with a
traceTypeLib model as input.

4.10 Validation
Our assumption regarding the traceability tool is that is will be suitable for defining and using
semantically rich traceability classification schemes (H2). We can not prove that H2 is true,

 66

but we may strengthen the assumption by putting the tool to test. This will be performed in to
stages:

1) Using the traceability tool to define the traceability classification scheme. If the tool
allows us to define a suitable classification scheme, our assumption is strengthened.

2) Integrating the tool with external plug-ins, i.e. using the traceability tool to generate
traces for another eclipse plug-in.

If the traceability tool allows these two tasks to be performed, our assumptions are
strengthened.

4.11 Summary
In this chapter, we have presented a traceability tool based on two metamodels:

1. The traceTypeLib metamodel defines a language used to define libraries comprised of
traceability types with a set of attribute types for each type.

2. The traceRepository metamodel defines a language for describing traceability
information of the types defined by a traceTypeLibModel.

Utilising the EMF facilities, these metamodels were used to generate classes and interfaces
allowing instances of these models to be created programmatically. We also presented a GMF
editor for the traceTypeLib metamodel and an EMF editor supporting browsing and editing of
traceRepository models in addition to the TraceNavigator with support for navigating the
trace links.

 67

5 Proposal for Traceability

Classification Scheme

5.1 Introduction
In this chapter we present a proposal for a classification scheme for traceability in MDE. The
proposal will not be a complete classification scheme, but will present a scheme that covers
the basic needs for traceability in MDE in the context of the library example (Appendix A).

We first present the requirements for such classification scheme in section 5.2. In section 5.3
we present some challenges associated with such a classification scheme, and continue by
presenting the classification scheme is presented in detail in section 5.4. In this section we
describe how the proposed classification scheme is meant to support the traceability-
scenarios, and continue with a summary and discussion regarding the problems associated
with capturing and maintaining the proposed information in section 5.7.

5.2 Trace Classification Scheme Requirements

CS Requirement 1

The classification scheme shall support traceability in all stages of the development

process of the library system (Appendix C).

In Section 3.3 traceability in general was identified as “The ability to trace (identify and

measure) all the stages that led to a particular point in a process that consists of a chain

of interrelated events”. This is the essence of traceability and also the most basic
requirement for a traceability classification scheme.

CS Requirement 2

The traceability classification scheme shall allow semantically rich traceability

information to be captured.

This is what we believe an is going to prove.

CS Requirement 3

The traceability classification scheme shall allow any artefact involved in the

development process of the library system (Appendix C) to be traced.

As elements used in a software development process may be of any kind, not just model
artefacts, it must be possible to maintain traceability between any artefact, including
model artefacts, pieces of program code, text in a requirements document etc.

 68

CS Requirement 4

It shall be possible to identify what information is represented.

The semantics of the artefacts that is represented in a trace model is not necessary easy to
deduce. Is it for example a requirement, rationale, test class, or design class? The
traceability information must contain sufficient semantics to separate such artefacts. This
information may be important in order to support certain kinds of analysis.

CS Requirement 5

It shall be possible to identify how the traced artefacts of the library system are

represented.

As the traceability model may contain traces of artefacts of many different types, e.g.
model artefacts, java code, or requirements, it is necessary to be able to separate between
these different types. This information may be necessary to locate the actual artefacts, to
maintain the information, and to analyse the information.

CS Requirement 6

It shall be possible to identify how an artefact was created.

Artefacts may be created in many different ways, e.g. by a person using a tool, or by a
transformation engine. This information is essential for the analysing the traceability
information correctly.

5.3 Challenges
There are several challenges associated with creating a classification scheme for traceability
in MDE. Some of these are discussed below.

5.3.1 Traceability Strategy

What traceability types to use in a specific project may depend to a large degree on the
traceability strategy that is used e.g. is low-end or high-end traceability going to be used. The
discussion in the following subsections may help the process of defining such a strategy.

5.3.2 Tracing Any Artefact Involved in the Development Process

A classification scheme supporting traceability in MDE must support traceability for a variety
of different artefacts that may be involved in the development process. Such artefacts may
include; requirements document, pieces of code, rationale documents and models. How these
artefacts may be represented depends on the language in which the traceability types are
described.

The language that is to be used to describe the traceability types in this thesis is described by
the tracTypeLib metamodel presented in the previous chapter. This language uses the concept
of TraceableArtefactType to describe artefact types. Hence, the challenge is to provide a set of

 69

TraceableArtefactTypes that is capable of describing the artefacts involved in the process at
the right level of abstraction, and in a way that allows trace links to be defined between
relevant artefacts in a meaningful way.

5.3.3 Uniquely Identifying Artefacts

Because the TraceableArtefacts captured in the traceRepository model do not have any direct
linkage to the actual artefacts they are used to represent, it is crucial that the
TraceableArtefactType describing their type contains attributes that allows the artefact to be
uniquely identified (i.e. in terms of locating them) in a way that makes it possible to locate the
actual artefact. The unique identifier does however not mean that the artefact must be
universally uniquely identified; this depends on how the information is meant to be used (i.e.
in some cases it may be sufficient that the information is uniquely identified within a project
or workspace).

5.3.4 Classification of Traceability Information

As identified earlier there are many challenges associated with classifying traceability
information. Semantically rich trace information is essential if the information is to be used
for anything more than identifying that a relationship exists between artefact A and B. A
problem with semantically rich traceability information however is that it requires more effort
to capture and maintain, and may make it more difficult to automate the process. The
challenge will therefore be to find a way to classify the traceability information in a way that
supports typical use-scenarios of traceability in MDE, but at the same time does not make the
process of maintaining this information to high.

5.4 Classification Scheme
Summarising the challenges discussed in section 5.3 we can identify some key aspects that
should be considered when creating a traceability classification scheme, utilising the features
of the traceability tool:

1. Decide what kinds of artefacts that should be traced, and find an appropriate
abstraction level (i.e. create a set of TraceableArtefactTypes) that allows the relevant
parts of an artefact to be traced.

2. Decide how the different artefacts can be uniquely identified, in terms of uniquely
locating them (i.e. add AttributeTypes to store this information to the
TraceableArtefactTypes).

3. Find an appropriate set of fine-grained extensions that may be used to add semantics
to the traced artefacts (i.e. ArtefactExtensionTypes that may be assigned to a specific
TraceableArtefactType).

4. Find an appropriate set of base trace link classes that may be used to describe the basic
semantics of a relationship between two artefacts (i.e. add TraceLinkTypes).

5. Specify a set of fine-grained extensions that may be assigned to certain trace link
classes for added semantics (i.e. add TraceLinkExtensionTypes).

Using this template should make the process of finding an appropriate classification scheme
somewhat easier, as serves as a separation of concerns. We will therefore follow these five
steps through this process.

 70

5.4.1 Classification of Basic Traceable Artefact Types

Identifying which classes of artefacts that needs to be traced may, as previously mentioned,
depend to a large degree on the domain and/or project. We will therefore focus on the most
basic artefacts involved in an MDE development process, i.e. artefacts that may be expected
to find in most projects. This will be done based on the running library example, but
additional information will be added when found appropriate.

The library example (Appendix A) is composed of the following artefacts; a requirements
document, a rationale document, a Use Case model, a PIM, a PSM, and the Java code.
However; we also know that the PIM was generated from the Use Case model, the PSM from
the PIM, and the java code from the PSM. Hence the transformation has obviously played a
role in the process. The transformations (the execution) can however not be said to be an
artefact – it is not a physical artefact – the mappings (the set of rules that describes a
transformation) on the other hand must be said to be a physical artefact. The mappings must
therefore be considered to be an artefact of interest to the MDE process – it is responsible for
the output of the execution of a transformation, and hence explains the logic behind the
transformations.

Summarizing the discussion in this subsection we end up with the following kinds of artefacts
identified by a set of properties:

1. A requirements document.
a. A text-file containing a set of informal words.
b. Sets of words or sentences specify requirements that must be satisfied by the

system.
2. A rationale document.

a. A text-file containing a set of informal words.
b. Sets of words or sentences describe the rationale behind the architecture

model.
3. A Use Case model.

a. A model containing a set of components with Use Cases having a relationship
to an actor.

4. A PIM.
a. A model containing a set of Packages, Classes, Operations and Associations.

5. A PSM.
a. A model containing a set of Packages, Classes Operations and Associations.

6. The implementation code

a. A set of text-files containing java code.
i. Each text-file is comprised of formally described sentences that are

comprised of keywords and names.
7. The UseCase2Architecture mapping

a. A text-file (possibly set of text-files) containing transformation code.
i. Each text-file is comprised of formally described sentences that are

comprised of keywords and names.
8. The PIM2EJB-PSM mapping

a. A text-file (possibly set of text-files) containing transformation code.
i. Each text-file is comprised of formally described sentences that are

comprised of keywords and names.
9. The EJB-PSM2Java mapping

a. A text-file (possibly set of text-files) containing transformation code.

 71

i. Each text-file is comprised of formally described sentences that are
comprised of keywords and names.

This information could be classified in many different ways, however by analysing the
properties of each kind of artefact used in the library example we end up with two basic types
of artefacts that represent physical artefacts:

1. Text-files containing some kind of text, where pieces of the text represent information
that has a value for the MDE process.

2. Formal models.

These two base classes is however stripped of all semantic sugar – the only semantics offered
is regarding how an artefact is physically stored. Separating between the physical artefacts
and the semantics of the artefacts (i.e. whether it is a requirement or implementation code)
does however have some advantages. First of all it is worth to notice that in many cases a
semantic property may not be specific for only one of the two base types, i.e. the requirements
or the mappings may in theory just as well be described by a model. Furthermore the
requirements or a mapping could in theory be generated from a model (e.g. a mapping could
be generated using a higher-order transformation in ATL (as a model) or by generating textual
code using MOFScript). If all the artefacts in theory may be the source or target of a
transformation, it could simplify traceability in transformations a great deal to treat all model
artefacts as the same basic thing, and all text-files as the same basic thing. This means that
transformation engines do not have to deal with multiple different artefacts. At the same time
specific semantic properties could be used both for a textual artefact or a model element.

Through the discussion in section 3.3 we saw that the metamodels of Figure 10 and Figure 12
could be used as a language to describe traceability information in transformations from
model to model and from model to text. In fact, the features of the metamodel used to capture
traces from model to model (Figure 10) could be applied to the metamodel used by
MOFScript to capture model to text (Figure 12). The only required change would be to add
functionality to create Traces between two ModelElementRefs, e.g. by adding a new class
‘TraceableArtefact’ which would serve as a super type for both TraceableSegment and
ModelElementRef. The source and target associations of a Trace could both be set to the new
super type.

As the functionality provided by the metamodel in Figure 12 already has been shown to be
sufficient to capture the required information regarding both model artefacts and textual
artefacts in a way that allow traceability links to be created between them, we will use the
same approach with some modifications, to describe the base classes of our classification
scheme. Describing such classification types is quite easy using the GMF editor of the
traceability tool.

 72

Figure 24: The basic traceable artefact types (inspired by [24])

Figure 24 shows the basic traceable artefact types of the classification scheme. It describes the
type TextFile, which may contain one or more Blocks and/or one or more TextualArtefacts.
The TextualArtefact is introduced to support explicit trace links, i.e. it is an explicitly defined
block which may overlap with Blocks, and TraceableSegments. Furthermore, the Block may
contain one or more TraceableSegments. The semantics of the TraceableArtefactTypes is
explained in Table 4. None of the TraceableArtefactTypes are recursive (i.e. a
TraceableArtefact of one of these types cannot contain another TraceableArtefact of the same
type). The semantics of the AttributeTypes is explained in Table 5 - Table 9.

 73

 Contained by Classification Semantics
 TAT_1 ModelElement [24] Represents a model element

 TAT_2 TextFile [24] Represents text-file

 TAT_2.1 Block [24] Represents a logical block within a text-file. A Block
may be protected or unprotected. An unprotected
block represent an area within a file that may be
changed by a user, typically used to define areas
where developers are meant to enter code

 TAT_2.2 TraceableSegment
[24]

Represents an area within a block that contains a
value that is generated from a model, e.g. The name
of Class or Operation.

 TAT_2.3 TextualArtefact Represents a logical area within a text-file, explicitly
defined by a developer using a tool or a
transformation language supporting explicit trace link
creation. Typically used to define a block of text
comprising a requirement, or a logical block of text
representing an area within a file that will be the
target of a trace link generated by a transformation.

Table 4: TraceableArtefactTypes

With these two basic traceable artefact types we should be able to create trace links between
all textual artefacts and model artefacts. This should theoretically make it possible to
automatically generate all the artefacts, use the artefacts to generate new artefacts, and at the
same time keeping explicit and/or implicit traces between all the stages.

5.4.2 Uniquely Identifying the Traceable Artefacts

Traceability information is of little use if the traceable artefact types do not carry enough
information to allow the actual artefact to be located. Due to the generality of the traceability
tool, some of this information must be specific to the traceable artefact types. This
information is captured by adding attributes to the traceable artefact types. All traceable
artefacts do however contain the property location. The intended use of this property is to
capture the unique location of an artefact, either with a local or a global URI, depending of
how the information is meant to be used. Identification of elements further than the URI, e.g.
a model artefact within a model or a feature within a model artefact, does however require
additional attributes. The location and the identifying attributes provide a unique
identification in terms of uniquely locating the actual artefact locally or globally. In Table 5 -
Table 9 the identifying attributes of each TraceableArtefactType are marked with a ‘*’.

 74

ModelElement

AttributeType ValueType Semantics

qualifiedName* String The location of the element within a model, (e.g.
‘ModelName/PackageName/ClassName/AttributeName’).
This attribute is used to locate an element within the model
it is contained by. (Requires that all traced model elements
has a unique name)

featureRef* String The name of a feature of a model artefact (e.g. type or
name of a Class). If the value is an empty string, the
ModelFeature represent the model artefact itself, else it is a
feature within a model artefact.

type String The type of the model artefact that is being traced (e.g.
‘UML.Class’ or ‘UML.Operation’). Captured for convenience,
and makes it possible to reconstruct the artefact through
reverse engineering.

Table 5: AttributeTypes of ModelElement

The nature of an artefact represented by a traceable artefact of type TextFile means that it
does not require any further identification than that provided by the location property of
TraceableArtefact.

TextFile

AttributeType ValueType Semantics

fileType Integer The type of the file (e.g. Java, doc, or txt) used
for convenience.

Table 6: AttributeTypes of TextFile

Block

AttributeType ValueType Semantics
blockStartCol* Integer the start column of the block within the File

blockStartRow* Integer the start row of the block within the File
blockEndCol* Integer the end column of the block within the File
blok EndCol* Integer the end row of the block within the File
isProtected boolean specifies whether the block is protected or not

Table 7: AttributeTypes of Block

TraceableSegment

AttributeType ValueType Semantics
segmentStartCol* Integer the start column of the traceable segment

within the Block

segmentStartRow* Integer the start row of the traceable segment
within the Block

segmentEndCol* Integer the end column of the traceable segment
within the Block

segmentEndCol* Integer the end row of the traceable segment
within the Block

Table 8: AttributeTypes of TraceableSegment

 75

TextualArtefact

AttributeType ValueType Semantics

taStartCol* Integer the start column of the textual artefact within
the File

taStartRow* Integer the start row of the textual artefact within
the File

taEndCol* Integer the end column of the textual artefact
within the File

taEndCol* Integer the end row of the textual artefact within
the File

Table 9: AttributeTypes of TextualArtefact

5.4.3 Extending the Basic Traceable Artefact Types

Although the basic traceable artefact types of Figure 24 allows textual artefact and model
artefacts involved in the MDE development process to be traced, they do not give much clue
regarding what kind of information the actual artefact represents. E.g. it will be difficult to get
an understanding of the development process by knowing that there are links between a set of
textual artefacts and a set of model artefacts. To allow richer analysis to be performed on the
traceability information, one needs to apply richer semantics. There are mainly two ways of
adding semantics to the traceable artefacts:

1. Adding semantics to trace links between traceable artefacts, providing semantics by
expressing properties regarding the relationship (e.g. there is a Satisfy relationship
from artefact A to artefact B, thus; artefact A is a requirement for artefact B).

2. Adding semantics to the traceable artefact it self, by expressing properties regarding
the traceable artefact.

In many cases, both approaches may provide the same semantics and functionality. However,
the first approach only provides additional semantics in cases were a trace link do exists, and
may therefore not be sufficient for all situations. Thus; in order to provide semantics to
artefacts regardless of whether or not it is the source or target of a trace link, it might be
desirable to add some semantics on the artefact itself.

Adding semantic properties to traceable artefacts is possible using the ArtefactExtensionType
of the traceTypeLib metamodel of the traceability tool. Such extension types specify possible
extensions to traceable artefacts of a specific traceable artefact type. I.e. the
ArtefactExtensionTypes referenced by the extensionTypes association of
TraceableArtefactType specifies possible extensions that may be applied by a
TraceableArtefact of that type. Using this feature it is hence possible to dynamically extend
the artefacts with a specific artefact extension type.

There are many ways of classifying such extension types, and the importance and granularity
may vary a great deal between different domains. We will therefore only provide a set of
“typical” artefact extension types. In section 3.3 we gave a simple traceability overview,
showing traceability across five types of artefacts; Requirements, Analysis, Design,
Implementation and Test. In addition we might add Rationale, Mapping and MappingRule to
cover the different kinds of artefacts in the simple library example. These types should be
sufficient for our basic trace type library.

 76

Below is an overview of applying this classification to the artefacts found in the running
library example:

• Requirements – The requirements document.

• Analysis – The use-case model.

• Design – The PIM and PSM.

• Test – None.

• Implementation - The java code.

• Rationale – The rationale document.

• Mapping – The mappings.

• MappingRule – The mapping rules.

These types serve as the artefact extension types in our proposed traceability classification
scheme, super typed with the artefact extension type ArtefactType (abstract). These artefact
extension types are shown in Figure 25. Applying the artefact extension type ArtefactType to
the extensionTypes set of all the traceable artefacts in Figure 24 means that all the artefacts
with these types may contain an artefact extension (only one) with one of it subtypes as type.
We will however not add the extension types to Block, as this artefact type does not require
additional semantics.

Figure 25: Traceable artefact extension types.

These artefact extension types may be extended to make more fine-grained types. One could
e.g. extend RequirementArtefact with the subtypes BusinessRequirement,
FunctionalRequirement, and QualityRequirement.

 77

 Classification Semantics abstract

AET_1 ArtefactType Semantics regarding to the type of a
TraceableArtefact.

true

AET_1.1 Requirement Specifies that the TraceableArtefact it is applied to
is a Requirement.

false

AET_1.2 Analysis Specifies that the TraceableArtefact it is applied to
is an Analysis artefact.

false

AET_1.3 Design Specifies that the TraceableArtefact it is applied to
is a Design artefact.

false

AET_1.4 Test Specifies that the TraceableArtefact it is applied to
is Test.

false

AET_1.5 Rationale Specifies that the TraceableArtefact it is applied to
is a Rationale.

false

AET_1.6 Implementation Specifies that the TraceableArtefact it is applied to
is an Implementation.

AET_1.7 Mapping Specifies that the TraceableArtefact it is applied to
is a Mapping.

false

AET_1.8 MappingRule Specifies that the TraceableArtefact it is applied to
is a MappingRule.

false

Table 10: ArtefactExtensionTypes

5.4.4 Classification of Basic Trace Links

In subsection 3.3.7.1 we discussed a number of different trace link classes, describing the
relationship between artefacts with different semantics. We did note however that many of
these classes overlapped in terms of semantics. Additionally the semantics of a link may be a
combination of several classes, e.g. one link may be manually-verification while another may
be automatically-verification. It could therefore be desirable to follow the same approach as
was used to classify traceable artefact types when classifying trace links; identify a set of
basic trace link types that could be dynamically extended using LinkExtensionTypes.

In the context of MDE, information that will always be of great significance is how the link
between two traceable artefacts was created. A link may exist between two different artefacts
for several reasons, including:

• It may be created implicitly through a transformation, to link the input and the output
of the transformation.

• It may be created explicitly through a transformation, to explicitly link artefacts from
the input model to artefacts of the output model (e.g. the relationship between a UML
Class and a Java Class).

• It may be created manually by a developer using a tool, to e.g. specify that there is a
relationships between two artefacts, e.g. to specify that there is a link between a
ModelElement and a Rationale.

• It may be created automatically by a tool to specify a relationship between two
artefacts that was created automatically by a tool, i.e. without intervention by a person.

Walderhaug et al [10] suggests a classification scheme that separates between automatic and
manual trace links, and makes it possible to extend automatic links with the type
transformation. It could however be advantages to model links created by transformations in a
different way than manual and automatic links due to the amount of links that may be
generated during a transformation, and to ease analysis of trace links generated by a
transformation.

 78

For these reasons, we have defined transformations as a separate link type along side
automatic and manual links. The different link types are discussed in the following
subsections. Table 11 shows an overview of the different link types.

 Classification Semantics Constraint
TLT_1 Manual [10] A TraceLink created by a human being using

a tool (e.g. to explicitly link a requirement to a
Design artefact).

TLT_2 Automatic [10] A TraceLink created automatically by a tool
(i.e. not by a transformation engine or by a
developer using a tool).

TLT_3 Transformation A record of a transformation, containing a set
of MappingRules. This TraceLinkType shall
not be a link between two artefacts, but
serves as a container for the MappingRules
that was executed by it.

No source
and target
artefacts

TLT_3.1 MappingRule A record of the execution of a mapping rule
containing a set of FeatureTransformations
and/or ExplicitLinks. This TraceLinkType
shall not be a link between two artefacts, but
serves as container for the links that are
created by a specific rule.

No source
and target
artefacts

TLT_3.1 FeatureTransformation A TraceLink implicitly created by a
transformation to link the source and target
artefacts of a transformation.

TLT_3.1 ExplicitLink A TraceLink created by a transformation
when a TraceLink between two artefacts
involved in a transformation is explicitly
defined in the mapping (i.e. defined by the
author of the mapping).

Table 11: TraceLinkTypes

5.4.4.1 Transformations

One of the main issues regarding analysing relationships between artefacts of an MDE
process is to identify links that was created as part of a transformation. If this information is
not present, it becomes very difficult to analyse the information properly in terms of impact
analysis, and general trace inspection. Considering that transformations are one of the main
aspects of MDE, and that one of the major applications of traceability in MDE is to capture
the relationships created by transformations, it becomes quite obvious that the trace type
library must make it possible to capture this information.

How to capture traces of a transformation on the other hand is not that obvious. There are
really two artefacts of interest concerning a transformation;

1. The mapping (transformation code or a mapping model), describing the logic of the
transformation, which might be of interest as documentation or when new
transformations need be performed.

2. The actual transformation, which is the process of creating target artefacts from the
source artefacts based on the mapping rules. I.e. the mapping is the “static” rules that
describe the actual transformations.

 79

The mapping and mapping rule was already discussed in subsections 5.4.1 and 5.4.3 (a
combination of TraceableArtefact and TraceableArtefactExtensions), but we also need to
model the links created by the transformation. An important issue here is to be able find and
locate mapping or mapping rules responsible for a transformation or part of a transformation.
Another important issue is that a mapping may be responsible for the execution of several
mapping rules that are more or less dependent on each other (i.e. the execution of one may
include or trigger the execution of another). Similarly the execution of a mapping rule may be
responsible for creating several links between traceable artefacts. This information may be of
importance when analysing the development process. Hence, it could be reasonable to group
trace links generated by the same transformation (a single execution of a mapping) together.
This can be achieved by using composite links.

We have noted however that there are two different ways to generate traceability links from a
transformation; the links may be implicitly or explicitly generated. It should be separated
between these two kinds of trace link, as implicit links makes it possible to analyse the
transformation, i.e. they link input and the output of the transformation. Explicit links
however only exists because a developer wanted it to be created, and hence do not necessarily
tell exactly what happened during the transformation. Furthermore it is not easy to add
semantics to implicit links, as they in most cases are created without the knowledge or
interference of the creator of a transformation. Explicit links however are created by a person,
and can therefore more easily be extended with semantics. Transformation tools should
support both in order to provide rich traceability information. We have therefore added
support for both in our classification scheme; FeatureTransformation to capture implicit
links, while ExplicitLink is used to capture explicit links.

Figure 26: The Transformation link composition

As we can see, this link composition actually is a bit more than a link; it is more of a record of
the transformation execution, containing links between the input and the output.

5.4.4.2 Manual and Automatic Trace Links

Knowing whether a trace link was manually or automatically created may be important for
several reasons. First of all, the creation of a Manual trace link is not based on any formalised

 80

rules, but exists by the volition of a developer. This means that it might need manual effort to
maintain the linkage as the system evolves and the relationships between artefacts Change.
Moreover, due to the fact that a Manual link is not created based on any formal rules, it might
need to be treated differently when analysis is performed. Lastly, it might be valuable to store
information about the creator of a Manual link on the link, so that it is possible to find the
person responsible.

Figure 27: Manual and Automatic trace links

5.4.5 Extending the Basic TraceLinkTypes

In order to find the right links to use to conduct specific kinds of analysis, it should be
possible to see whether a link is product-related (i.e. specifies a relationship regarding design
objects) or process-related (i.e. specifies a relationship regarding the evolution of the system).
E.g. when performing a coverage analysis regarding the coverage of a requirement, the
implicit links created by a transformation may not be of interest. The explicit links used to
specify relationships between a requirement, a design artefact, and an implementation artefact
however might be what we are looking for.

5.4.5.1 Product-Related Extension Types

Product-related links are meant to be used to analyse relationships regarding design objects.
As the semantics of the artefacts these links provide linkage between are kept on the artefacts
themselves, the link does not have to carry semantics regarding whether the source is a
requirement for the target etc. this information can be deduced by the semantics of the
artefacts provided that the link between them is product-related. From the discussion on
Figure 9 however, we know that such links may be used for Validation and Verification.
Separating between these two kinds of links could make it easier to find the correct
information for a specific analysis, and would probably make it easier to navigate the
traceability information for a human. In the library example, we do however have an artefact
whose relationship to other artefacts on the “product-level” does not fall under the Validation
or Verification category. This artefact is the rationale document. This artefact does not
validate or verify the product, but explains it (i.e. parts of it).

Knowing the difference between these kinds of relation ships should ease analysis of the
traceability information, as it makes it possible to tell what links to follow and what links to
not follow for a certain kind of analysis. An algorithm for conducting a coverage analysis
does for instance not care about the Validation or Explanation dimension, while an algorithm
for finding the rationale for a design artefact is only interested in the Explanation dimension.

 81

Figure 28: LinkExtensionTypess

Constraints

• Only one subtype may be applied by any link.

• May not be used on the same link as Realization extension.

 Classification Semantics abstract
LET_1 ProductRelated The semantic relationship between the source and

target. This extension type is abstract - only its
subclasses may be applied.

true

LET_1.1 Validation The source is a predecessor in the chain of
artefacts comprising the validation dimension in
traceability graph.

false

LET_1.2 Verification The source is a predecessor in the chain of
artefacts comprising the verification dimension in
traceability graph.

false

LET_1.3 Explanation The source is rationale for the target. I.e. a
rationale regarding the product.

false

LET_2 Realization The target is a realization of the source, but there
has not been a transformation involved.

Table 12: LinkExtensionTypes

5.4.5.2 Process-Related Extension Types

Process-related links are used to capture information regarding the evolution of a system. In
MDE many of these links are automatically generated through transformations, and will
therefore be captured using the FeatureTransformation link. It must however be possible to
capture such links manually or automatically as well. We have therefore created the
LinkExtensionType Realization to be able to achieve this. This is however the only process-
related LinkExtensionType, so it has no subtypes or supertype.

Constraints

• May not be used on the same link as ProductRelated extensions.

• May only be used on Automatic or Manual links (not needed on
FeatureTransformation link as this link type may only be used to record this kind of
relationship).

5.5 Usage
A traceTypeLib model defines a set of types that may be used to populate a trace repository.
The language used to describe these types does however not provide any means to define the
logic behind when and how the different types shall be created. In this section we will present

 82

a set of simple java methods that describe the logic behind the trace generation of this library.
This will also serve to illustrate how the traceability tool could be used to create traces with
this library. In these examples we use the factory generated from the traceTypeLib model.

5.5.1 Creating artefacts

The logic behind the creation and retrieving of traceable artefacts of the types in this library is
really quite similar. We will start with the creation of a ModelElement.

Figure 29: Create ModelElement

When a tool wants to create a trace concerning the creation of a new ModelElement, it needs
to provide the values for the location, qualifiedName, featureRef, and type attributes. Some of
these values are also used to construct a meaningful name that will be displayed in the trace
repository. The location, qualifiedName, and featureRef are first used to check whether earlier
versions of the artefact exist in the repository. If no such artefacts exist a new ModelElement
will be created as version ‘1’. If earlier versions exist, a new ModelElement is created with a
new version number.

Creation of TextFile, Block, TraceableSegment and TextualArtefact is performed in the
same way, except that different parameters are used. TraceableArtefacts of type Block,
TraceableSegment and TextualArtefact will however also need to be added to their
respective parent. Figure 30 shows how TextualArtefacts are created.

 83

Figure 30: Create TextualArtefact

5.5.2 Creating links

Creating Automatic and Manual trace links are performed much in the same way as the
traceable artefacts; the attributes, source and target are sent as parameter, and used to create a
link. The trace links should however use a global counter as a means to provide a number that
can be added to the name of the trace link for easier visual identification.

Figure 31: Creation of Manual trace links

Creation of Transformation trace link compositions is created a bit different that Manual and
Automatic trace links in order to deal with the more complex structure of a composition. Due
to the amount of links that may be created during a transformation, it is important that the
composition can be efficiently handled.

 84

Figure 32: Creation of Transformation link compositions

Assuming that a transformation engine knows the name of the mapping rule that is running at
any given time, the composition can be created using a HashMap and an attribute containing
the Transformation composition. The transformation engine initiates the transformation
attribute, and can then use the method in the same way as the methods for creating artefacts
with the addition of a parameter for the name of the rule (the type of the source and target
parameters is the super type for all TraceableArtefacts generated from this library (MDE).
The Hash Map is used to put the FeatureTransformation links under the correct
MappingRule. A new MappingRule is added the first time the name of a rule appears. With
the addition of a similar method for creating ExplicitLinks, using the same Hash Map, the
effort of creating the composition is minimal.

5.5.3 Retrieving artefacts from the repository

Artefacts may also be added to the repository when a tool tries to retrieve an artefact that does
not yet exist, e.g. when a transformation engine creates a link from a source that is not yet
added to the repository. A new ModelElement should therefore be added if it cannot be found
in the repository when it is to be used as the source of a trace link.

Figure 33: retrieving a ModelElement

 85

5.5.4 Example of use

Figure 34 illustrates how a transformation engine could create an ExplicitLink between a
ModelElement and a TextualArtefact, using the suggested methods. The methods responsible
for the creation are kept in a Class referenced as manager. This assumes that the semantics
needed to add semantics to the artefact and link are possible to define by the transformation
language.

Figure 34: Creation of a trace link

5.6 Validation
With respect to the high-level hypothesis, our assumption is that the classification scheme will
make it possible to conduct more precise analysis of the traceability information and improve
automation of the process. Validation of the classification scheme will be performed through
a set of test-cases presented in subsection 6.2.1. For each test-case, a prediction related to
hypothesis and a set of success criteria will be presented. The result of the tests will be
discussed in 7.2.1. If the prediction turns out to be correct, we will strengthen our assumption
regarding the classification scheme. If not it will be falsified. The requirements will be
validated in chapter 8.2.2.

5.7 Summary and Discussion
The basic traceability classification scheme discussed in this chapter should be sufficient to
capture traceability links, explicit and implicit, between artefacts represented as models or
text-files. Provided functionality by tools and transformation engines, it should also be
possible to add semantics to the traceability information in a way that allows analysis
regarding the development process to be performed. The composition links captured by
transformation should also provide the classification needed to analyse the implicit and
explicit links created by a transformation engine.

In section 5.5 we also discussed how the classification scheme can be used to capture traces
by creating simple Java methods that uses the interface of the traceability tool through the
generated classes from this traceTypeLib model. These examples shows that the classification
scheme is possible to use, and that it only requires that the tools and transformation engines
extract information from the actual artefacts and make methods calls.

A thing to notice regarding this classification scheme is that it problems may occur if a model
to text transformation language is used to generated models, in the form of XML tags. If this
is the case, a model may be represented both as a TextFile and a set of ModelElements if it is
later used as source for other trace links. This classification scheme hence assumes that model
to text transformation languages are not used to generate models.

 86

6 Design of Experiment

6.1 Introduction
This chapter introduces the experiment that will be performed to validate whether the
assumption presented in the hypotheses (Table 1) can be strengthened or falsified. The
experiment is divided into several test-cases for the classification scheme, and one test-case
for the traceability tool.

The test-cases are all presented using the same form:

Description

Short description of the test-case.

Purpose
Short description of the purpose of the test-case.

Prediction
Prediction regarding how the classification scheme/traceability tool will perform in the test.

If the hypothesis related to the test-case is true, then the prediction will also be true. The

result of the experiments can therefore be used to strengthen or falsify the hypotheses.

6.2 Test cases

6.2.1 Test-Cases Related to the Traceability Classification Scheme

The test cases for the classification scheme are related to the use scenarios discussed in
subsection 3.3.5. The number of the hypothesis related to each test is provided in parentheses
in the heading of each test-case, e.g. ‘(H1.1)’.

6.2.1.1 Coverage analysis (H1.1)

According to the discussion in subsection 3.3.5, coverage analysis may be used to find out
whether trace relationships that should exist between artefacts are present. This may be
performed on product- related links (e.g. are all requirements covered?) and process-related
links (e.g. are all relevant parts of a model used in a transformation?).

Ensuring that all relevant parts of the model is actually utilised by a
transformation (H1.1.1)

Description
Coverage analysis may be achieved by checking that all relevant parts of a model (e.g. a UML
model) are represented in the trace repository (as ModelElement), and that they are linked to
the output of the transformation. This does however require that it is possible to identify the

 87

links expressing this kind of relationship. In this test-case, we will therefore try to identify and
discuss how they can be analysed.

Purpose

The purpose of this test case is to validate that the classification scheme makes it possible to
find the implicit links that is of interest when conducting a coverage analysis with respect to
transformations, and to see how well this information supports analysis.

Prediction

P1. Utilising the proposed traceTypeLib model as a classification scheme during

development of the LibrarySystem (Appendix A) will enable the user to find all

relevant parts of the model that are not covered by a transformation.

Ensuring that all requirements are covered (H1.1.2)

Description
Checking that all requirements in the system are covered by other artefacts in the system may
be achieved by locating all requirements of interest in the trace repository, and ensuring that
they are covered by the artefacts they are expected to be covered by, e.g. that it is possible to
follow trace links from a requirement and analyse whether all expected artefacts are found
along the path.

Purpose
The purpose of this test case is to validate that the classification scheme makes it possible to
analyse to what degree the requirements are covered by other artefacts of the system.

Prediction

P2. When using the proposed traceTypeLib model to generate traces from the library

system, it will be possible to analyse to what degree a requirement is covered.

Change impact analysis (H1.2)

Description
In subsection 3.3.1 traceability change impact analysis was identified as one of the key goals
of traceability. This ability is essential as it makes it possible to analyse to what degree a
change may impact a system. In this test case analyse the impact of a change on both
predecessors and descendants of an artefact. This requires the use of all kinds of trace links, to
both descendants and predecessors of an artefact. Due to the complicated nature of this kind
of analysis, we cannot expect the process to be fully automated.

Purpose

The purpose of this test case is to validate that the classification scheme makes it possible to
conduct proper impact analysis.

Prediction

 88

P3. Using the proposed traceTypeLib model to generate traces from the library system

will make it possible to find all artefacts that may be impacted by a change, and find

out how they are impacted.

6.2.1.2 Orphan analysis (H1.3)

Finding artefacts that were generated from an artefact that has been
deleted (H1.3.1)

Description
Orphans may occur among generated artefacts – model or text – when the artefacts they were
generated from are deleted [8]. Such traces are no longer valid. In order to be able to conduct
such analysis, it must be possible to separate the traces that record the implicit links created
by a transformation. We will hence use the implicit links and discuss

Purpose

The purpose of this test case is to validate that the classification scheme makes it possible to
identify orphans with respect to transformations.

Prediction

P4. Utilising the classification scheme on the library example will enable the user to

find all artefacts that have been generated from elements that have been deleted.

Finding artefacts that are orphaned with respect to artefacts on a
previous stage in the development process (H1.3.2)

Description
With respect to requirements traceability, Orphans may occur if an artefact at one stage of the
development process has no trace relationship to an artefact at a previous stage. E.g. a java
method may be an orphan with respect to requirements if it cannot be traced back to a
requirement.

Purpose

The purpose of this test case is to validate that the classification scheme makes it possible to
identify orphans with respect to artefacts on a previous stage.

Prediction

P5. When using the proposed classification scheme on the library example, it will be

possible to find all relevant artefacts that are orphaned with respect to the

requirements.

6.2.1.3 Manual trace inspection (H1.4)

Description

 89

Manual trace inspection is one of the features that should be supported by a traceability
solution. It does however put some demands on the traceability classification scheme, as
visualisation requires rich semantics in order to be easy and efficient to use.

Purpose

The purpose of this test case is to validate that the classification scheme enables manual trace
inspection in the sense that it makes it possible to show the traceability information in a way
that is easy to understand for a human.

Prediction

P6. Using the proposed traceTypeLib model to generate traces from the library system

provides the information that is necessary in order to visualise the traceability

information in a meaningful way.

6.2.1.4 Reverse engineering (H1.5)

Description
Reverse engineering was discussed in subsection 3.3.5.5 as the process of reconstructing a
source artefact of a transformation from the target artefact (i.e. the input from the output).
This requires that enough information can be found in the trace repository, and that it is
possible to identify the information of interest for the reconstruction. We will therefore
discuss how the traceability classification scheme supports reverse engineering.

Purpose

The purpose of this test case is to validate that enough information may be found in the trace
repository to reconstruct target source artefacts, and that it is possible to find the information
of interest.

Prediction

P7. Utilising the proposed traceTypeLib model on the library system will make it

possible to reconstruct an artefact from the traceability information.

6.2.2 Test cases related to the traceability tool

The test case for the traceability tool is aimed at validating hypothesis H3.

6.2.2.1 Integrating the traceability tool

Description
According to Tool Requirement 7, the traceability tool shall be easy to integrate with external
plug-ins. We will therefore implement an eclipse plug-in which uses the traceability tool to
generate traces from UML2 [42] models.

Purpose
The purpose of this test is to validate how well the traceability tool may be integrated with
other plug-ins.

 90

Prediction

P8. The traceability tool can be easily integrated with UML2 [42] based editors on

the Eclipse platform [38].

6.3 Summary
In this section we have presented test-cases regarding the classification scheme and the
traceability tool. Each test-case is based on a hypothesis and has an associated prediction. The
prediction will be used to falsify or strengthen the hypothesis.

 91

7 Testing and results

7.1 Introduction
In this chapter we will discuss the results of the experiments described in chapter 6. The
discussion will be illustrated using the TraceNavigator view described in section 4.7.

7.2 Analysis of Results
The purpose of the experiment is to validate our solutions in terms of whether our
assumptions regarding the classification scheme and the traceability tool can be strengthened.

Because the tool is generic in nature, it does not support all kinds of analysis fully. It does
however support browsing of the information contained in the repository, and should
therefore be sufficient to illustrate the discussion.

7.2.1 Test cases Related to the Classification Scheme

7.2.1.1 Coverage analysis

Ensuring that all relevant parts of the model is actually utilised by a
transformation

When conducting a coverage analysis with respect to a transformation, it is not surprisingly
the trace links created by a transformation that are of interest. These links tell us what was
generated during the transformation, and what it was generated from. It is however reasonable
to only use trace links that was implicitly generated (FeatureTransformation) by a
transformation engine to conduct the coverage analysis – these links tell the story of what
happened during a transformation. The explicit links (ExplicitLink) on the other hand are
created by the volition of a developer, and hence does not really provide a solid foundation to
conduct a coverage analysis.

Figure 35: Descendants of BookSystem.addBook() in the PSM

Figure 35 shows two trace links that were generated from the PIM2PSM transformation. By
using the classification of the links we can see that only Link_93 is a FeatureTransformation,
and is hence the only link of interest. Even though they both point to the same artefact in this
case, Link_94 cannot be used to conduct the coverage analysis. If Link_93 had not been
present, the ‘addBook’ Operation in the PSM had not been generated from the PIM, and the

 92

Operation in the PIM would hence not be covered by the transformation. Explicit links could
still be created by a transformation from an input artefact to an artefact in the output model
(e.g. from one artefact in the input model to an artefact in the output model that is generated
from another artefact in the source model).

It may however often be the case that one element is used as input of several transformations.
It is therefore also necessary to be able to find a FeatureTransformation link that was part of
the transformation we want to find traces from. This is done using the mappingID Attribute of
the Transformation that contains a RuleExecution containing the FeatureTransformation
link. In the TraceNavigator, the transformation is identified visually by the name and
recordTime of the mapping.

The fact that all trace links created by a transformation are stored in a composition makes it
easy to find all trace links of interest when analysing one specific transformation. Figure 36
shows Link_93 as it is stored in the trace repository.

Figure 36: The feature transformation shown as it is contained in the repository

Each Transformation contains a complete record of all rules that was executed, and each
RuleExecution contains a complete set of traces that was created by it. Conducting a
coverage analysis for the whole transformation or for a single mapping rule could therefore be
conducted by inspecting all the links of interest, or by checking that all artefacts of interest in
the source model has FeatureTransformation link contained by a specific Transformation or
RuleExecution to an artefact in the target model.

Evaluation
Finding the correct link to use for the coverage would have been difficult without
classification on the links. If there had been Automatic and Manual links from the artefacts
used to conduct the coverage analysis as well, the task would have been even more difficult.
However, using the classification we were able to find the correct links to base the coverage
analysis on.

 93

Ensuring that all requirements are covered

In order to ensure that the requirements are covered, we can follow the links descending from
the requirements in the requirements document. This allows us to see which artefacts have a
relationship to the requirements. There are however not all links that are of interest for this
specific analysis. What we are interested in are the links comprising the Validation dimension
of the traceability graph. Following these links make it possible to find all artefacts that are
supposed to support satisfy the requirements at various stages of the development process. In
order to analyse to what degree the requirements are covered we do however need to know
how the artefacts found along this dimension satisfy a requirement. These can be achieved
using the Extensions (i.e. Extensions typed with subtypes of ArtefactType) applied to the
TraceableArtefacts.

Figure 37 shows the descendants of the first requirement in the requirements document.
Following the Manual and ExplicitLink links with Extension Validation and using the
Extensions applied to the traceable artefacts give enough information to see that this
requirement is satisfied by two separate Implementations. We can also see that the
development process is satisfying in the sense that there are an Analysis artefact (the Use
Case) and two Design artefacts (from the PIM and the EJB-PSM) in each branch leading to a
java implementation. The TextualArtefact representing a java method is an explicitly defined
block used to identify the block of text comprising the implementation of the method.

Figure 37: Show Descendants with requirements.doc as input

Evaluation
Conducting the coverage analysis as accurate as above would have been very difficult without
the classification. We would have been able to find all the artefacts of interest, but we would
also have found artefacts and links without interest for the analysis. Furthermore, without
classification on the traceable artefacts, it would have been very difficult to deduce the degree
of coverage.

 94

With this simple experiment, we have show that it is possible to tell to what degree an artefact
is covered. Based on the Requirement Extension on the traceable artefacts representing the
requirements in the requirement document it is also possible to automatically find all
requirements in the repository and find those that are not covered by a certain kind of artefact
(using the Extensoin), or “compute” whether all artefacts are completely covered (e.g. based
on parameters used as input to a query regarding the Extensions that are expected to be found
along the Validation path).

7.2.1.2 Impact Analysis

Change impact analysis may involve several steps, manually or automatic, which needs to be
conducted in order to estimate the full impact of a change. The “cost” of a change may be
seen as the sum of the dependencies that exists between the artefact in question and the
artefact it is linked to directly or indirectly. Furthermore a change impact analysis on an
artefact also involves conducting change impact analysis for all its sub components for a
complete cost evaluation.

In Figure 38 we can see the descendants of the Class ‘BookSystem’ in the PIM. We can see
that this Class has two links (a FeatureTransformation (Link_65) and an ExplicitLink
(Link_67) with the extension Validation – both from the same transformation) with the same
target Class in the EJB-PSM. The Class in the EJB-PSM is linked through an ExplicitLink
(Link_306) extended with Validation. From this information we can deduce that the Class
‘CustomerSystem’ in the PIM has been used to generate a new model artefact with the same
name, and that the new artefact has been used to generate an Implementation. This means
that there are two artefacts that may be affected by a change to the Class in the PIM. The fact
that these artefacts are generated however means that the impacted artefacts may be
regenerated automatically. The fact that the ExplicitLinks also are created automatically,
suggests that the cost of changing the artefact may not be very high.

Figure 38: Descendants of BookSystem in the PIM

Changing an element that is part of a chain of artefacts used in transformation may however,
also affect the predecessors, as e.g. deleting the Class ‘BookSystem’ in the PIM will lead to a
break in the chain. In this case, its descendants would become orphans, while the requirement
would no longer be satisfied.

Figure 39 shows predecessors of the Class ‘BookSystem’.

 95

Figure 39: Predecessors of BookSystem in the PIM

As we can see, there are three trace links pointing at the Class ‘BookSystem’; one
FeatureTransformation, expressing the fact that the Class is generated from a Component in
the useCases model, an ExplitLink expressing the fact that the Class was generated as part of
the satisfaction of the requirement (the Validation dimension), and a Manual extended with
Explanation link to a Rationale explaining the rationale behind the Class. This information
tells us that the Class is generated from another artefact, suggesting that changes to the
artefact could be performed at the previous stage, or by changing the mapping responsible for
its creation. The fact that there is a Manual link to the rationale suggests that this relationship
must be manually maintained if the artefact is changed, and that the rationale may need to be
changed manually.

For a more fine-grained impact analysis, the artefacts that are contained by the artefact that
are the basis for the impact analysis should also be taken into consideration. This will give a
more accurate cost analysis. The analysis can be conducted in the same way for each
contained artefact of interest.

Evaluation
Conducting an impact analysis without classification would have been possible, but would
have required considerably more effort in order to identify what kind of artefacts that are
represented in the trace repository, and what kind of relationship they have to each other.
With the use of the semantics on the trace links and traceable artefacts we were able to find all
affected artefacts, and to estimate the cost of an impact in terms of which of the traceable
artefacts and trace links that may be automatically generated, and identifying the
transformations that are responsible for the creation of artefacts. Using the Transformation
composition it is possible to identify what mapping rules that are responsible of the creation
of certain artefacts. This information may be used to inspect how a given change will be
reflected on artefacts generated by a transformation.

7.2.1.3 Orphan analysis

Finding artefacts that were generated from a deleted artefact

Finding artefacts that are generated from an artefact that have been deleted requires that we
are capable of identifying the links to use for this purpose. As we have discussed in previous
subsections, such links are classified as FeatureTransformation. Following these links from
target to source makes it possible to identify artefacts that were generated from deleted
artefacts. If the actual source artefact (i.e. the artefact that is represented by the
TraceableArtefact that is the source of the link) cannot be found, the target is an orphan. The
actual artefact may be found by using the identifying attributes of an artefact. E.g. the actual
artefact represented by a ModelElement may be found using the location property and the

 96

qualifiedName and featureRef Attributes of the ModelElement in question. If orphans are
found, the transformation should be rerun.

The same approach may be used to find orphans with respect to Manual or Automatic links
with the Realization Extension. In such cases, manual effort would have to be made to solve
the problem. If the source of links extended with a ProcessRelated Extension is found to be
deleted, we cannot necessarily conclude that the target is an orphan however, as links with
these Extensions do not describe process-related, but product-related links, we could rather
conclude that the link is no longer valid.

Evaluation
Identifying the trace links to use for the orphan analysis would have been more difficult
without classification, as we could not identify links that were created by a transformation.
Through the discussion above we have described how it is possible to use the traceability
classification to find the right links to use, and to retrieve the information required from the
TraceableArtefacts.

Finding artefacts that are not described in the requirements

In Figure 40 we can see the predecessors of the Operation rentBook in the Class BookSystem
in the PIM. By following the ExplicitLink links (also Manual or Automatic if existing) with
Extension Validation we are able to find all product-related relationships expressing
something that should satisfy a requirement. The fact that we cannot find a Validation link to
an artefact with a Requirement extension, tells us that the ‘rentBook’ Operation is in fact is
an orphan.

Figure 40: Show Predecessors with BookSystem.rentBook() in the PIM as input.

This process could be automated by checking whether TraceableArtefacts extended with
Analysis, Design or Implementation exists in the repository or in a model or file that does not
have a Validation link to a TraceableArtefact extended with Requirement.

Evaluation

The discussion above has shown that it is possible to automatically find all artefacts of certain
types that are orphaned with respect to requirements. The analysis could have been conducted
without classification, but it would require much more effort to identify the artefacts of
interest.

7.2.1.4 Manual Trace Inspection

Manual trace inspection functionality depends on the implementation of such functionality,
but using the classification suggested above supports the cases discussed in this thesis. The
TraceNavigator supports most cases, but it is not capable of retrieving information from the
actual artefacts. This is because it only works on the trace repository, but it would be
sufficient with minor improvements. This does however require that it knows what kind of

 97

artefacts to work on, i.e. it needs to know how to find contained elements on e.g. a UML
model. A tool that integrates the traceability tool is expected to implement such functionality.

Evaluation

Through the figures used in the previous subsections, we have shown that the TraceNavigator
makes it possible to visualise the traceability information with the classification scheme in a
way that is relatively easy to understand. Without some kind of classification, i.e. without
information regarding different link types, and artefact types, this is very difficult to achieve.

7.2.1.5 Reverse Engineering

Reverse engineering can be performed using traceability information by following trace links
backwards, and using the information found in a TraceableArtefact among the predecessors
of an artefact. In order to perform reverse engineering, a tool must be able to find the links
that links the input and the output of a transformation. This can be achieved using
FeatureTransformation links as these are the only links that tells us precisely how a source
artefact is related to the target. Reconstruction of a model artefact may be performed by using
the information found on the TraceableArtefact used to represent it.

In Figure 38 we can see that there is a FeatureTransformation link from the Class
‘BookSystem’ in the PIM to a Class with the same name in the PSM. Reconstruction of the
Class in the PIM from the Class in the PSM could be performed following this link to the
source. The source Class can then be reconstructed by creating an artefact of the type
described by the type attribute of the ModelElement, and the name can be extracted by using
the last fragment of the qualifiedName attribute. The rest of the artefacts comprising the PIM
could be reconstructed by finding all TraceableArtefacts having the same value in the
location property, and reconstructing each artefact in the same way. The new artefacts can be
used to create compositions by comparing the values found in the qualifiedName attribute (i.e.
the location of a model artefact within a model). TraceableArtfacts with values in the
featureRef attribute can be used to set properties of the reconstructed model artefacts. How
accurately an artefact may be reconstructed depends on how much traceability information
that exists. This procedure also requires that the tool responsible for the reconstruction can
recognise the type described in the type and featureRef attributes of a ModelElement.

Evaluation

In the discussion above we have described how a source artefact may be reconstructed from
by following links backwards from the target artefact of a transformation. This would have
been more difficult without classification of the trace links, as it would be more difficult to
find the right artefacts to use. However, we saw that the qualifiedName and the featureRef
attributes of ModelElement – if we had not known that it was a model element, it would be
difficult to know how to reconstruct it. We can therefore conclude that the reconstruction
could not have been achieved in the same way without classification of the information.

7.2.2 Test-Cases Related to the Traceability Tool

7.2.2.1 Integrating the traceability tool with an external tool

To validate that the traceability tool can be easily integrated with external plug-ins, the
traceability tool has been used as the basis for an Eclipse plug-in called ManaulTracer that

 98

allows trace links to be manually created between UML2 [42] model elements. This was done
the summer of 2007 as part of the EU project “ModelPlex” [43], for Bjørn Nordmoen at
Western Geco.

The classification scheme
The ManualTracer uses a very simple classification scheme consisting of a ModelElement
which may be extended with one of the sub classes of ArtefactType. This is a very simple
classification scheme, but it is sufficient to classify model elements at different stages of a
development process. As the model shows, the only available TraceLinkType is
ManualTraceLink. In this simple plug-in this was found to be sufficient as the type of a trace
link could be deduced by its source and target, e.g. a Requirement to UseCase link means that
the UseCase satisfy the requirement etc.

Figure 41: The classification scheme used by the ManualTracer plug-in

 Features
The ManualTracer allows users to create traces directly from any UML2 models shown as
graphical diagrams or from any viewer (e.g. tree-editor or table) that displays UML2
elements. The trace information is added to trace repository model, and can be inspected or
queried.

All the actions provided by the ManualTracer are available from the popup menu (the menu
that appears when an item is right-clicked) for any EObject (EMF) or EditPart (GEF), but the
actions are only performed when an UML2 element is represented. In Figure 42 these actions
are shown when a Use Case in a Papyrus [44] diagram is right-clicked. All the actions are
found under ‘Trace Management’. The actions are explained in the following subsections.

 99

Figure 42: TraceManagement menu in the graphical editor of Papyrus

Add to Repository
The Add to Repository action allows users to add a model element to the repository, with an
ArtefactExtension. It is not required to add element to the repository in this manner, but it
makes it possible to performed more advanced queries on the traceability information. E.g.
adding all design classes in a package to the repository with the ExtensionType ‘Design’
makes it possible to find all design classes in the package without a link to an
‘Implementation’ class. The information will not be added to the repository if it is already
present.

Figure 43: The add to repository dialog activated from the UML2 tree-editor.

In Figure 43 all the design classes are selected from the UML2 tree-editor, and added to the
repository as TraceableArtefacts with an Extension of type Design.

Select Repository
The ManualTracer plug-in does not work on a default repository, it is therefore necessary to
select a trace repository to use before any other actions can be performed.

 100

Create TraceLink to/from
When a user selects one of these actions, a dialog appears that allows the user to navigate the
work space to find the appropriate model file, and navigate the model found inside this file.
The selected element will become source or target of the link, depending on whether ‘Create
Link from’ or ‘Create Link to’ was selected. Before the trace link can be created, the user
must also select (in the ‘Set Semantic Properties’ area) what artefact extensions shall be added
to the source and target artefacts in the repository. In Figure 44 a link is created from a
‘Requirement’ to a ‘UseCase’.

Figure 44: Trace link creation with ManualTracer.

Show Trace Information
This feature makes it possible to inspect all the traces to and from any UML2 model element.
The predecessors are displayed in the left viewer, while the descendants are displayed in the
right viewer.

Figure 45: The TraceViewer with the UseCase ‘AddStuff’ as input.

Perform Query
The ‘Perform Query’ action allows a user to perform queries based on the information in the
trace repository.

 101

Figure 46: The Query specification dialog

The query uses the following parameters:

• Search contained features – specifies whether the selected element it self or the
elements contained by it shall be input for the query.

• Source Conditions – filters out elements that are represented in the trace repository
with a certain Extension which will be the input for the next step of the search (‘Any’
may be selected if no filter is desired). Only enabled if ‘Search contained features’ is
checked.

• With/Without link to – specifies whether to find elements satisfying the source
condition with or without trace links to elements satisfying the target condition. Only
enabled if ‘Search contained features’ is checked.

• Target Conditions – condition regarding the Extension of the target
TraceableArtefacts.

• Search Direction – specifies whether to follow the trace links found in the sourceOf
or targetOf set of the input artefacts.

In Figure 45 the input to the query is a Package that contains the requirements (Classes). The
conditions specifies that we want to find all elements in the UML2 model that is represented
in the trace repository as a TraceableArtefact containing an Extension of type ‘Requirement’
that does not have a link to a TraceableArtefact with an Extension with type ‘UseCase’ (either
directly or indirectly). The query will be performed by recursively following the TraceLinks
found in the sourceOf set of the TraceableArtefacts. The result of this query will hence be all
requirements that are not covered by a Use Case.

The result of the query is shown in the QueryResult View. In Figure 47 this view shows the
result of the above query. In this case the result contained two ‘Requirement’ Classes.

 102

Figure 47: The QueryResult View

Implementation
The ManualTracer plug-in works as a layer between the traceability tool and UML2 models,
providing functionality that allows users to manually create, inspect and query trace links
between UML2 elements. This is achieved by providing a set of dialogs and views that allows
users to fetch information from UML2 models and use it to store traces in a trace repository.
The information in the repository can then be viewed and queried.

Figure 48: A simple overview of the ManualTracer implementation

Figure 48 shows a simple logical overview of the ManualTracer and its interaction with other
plug-ins. The packages of ManualTracer are summarised below:

• manualtracer.dialogs – contains the dialogs used to interact with the user.

• manualtracer.manualTraceLib – contains the generated classes from the
traceTypeLib model in Figure 41. These classes provide the linkage to the underlying
traceTypeLibrary and TraceRepository.

• manualtracer.popup.actions – contains the action delegates that are triggered
whenever an action is selected from the popup menu.

• manualtracer.providers – contains the providers that are used to provide the views
with items, labels (text and image).

• manualtracer.traceActions – contains the TraceManager, which is the class
responsible for the communication between the ManualTracer, the TraceabilityTool,

 103

and UML2. This static class (to assure that only one repository is used) offers an
interface that makes it possible to create and retrieve traceability information. It
creates traceability information by using the ManualTraceLibFactory of the
manualTraceLib Package.

• manualtracer.viewes – contains the views that are used to visualise information
(TraceViewer and Query Result View).

The ManulTracer is hooked up with the Eclipse framework by declaring extensions to its
User Interface; to its popup menus (org.eclipse.ui.popupMenues), and to its views
(org.eclipse.ui.views). These extensions define;

1. The addition to the popup menu and for what objects the menu shall be added. The
ManulTracer adds the popup menus to org.eclipse.emf.ecore.EObject (any object in
the EMF framework is an extension of this – including UML2 objects) and
org.eclipse.gef.EditPart (the controller of any graphical element in a GEF diagram –
including GMF and Papyrus).

2. The views that are added.

Whenever an action from any popup menu is selected, an associated action in the
manultracer.actions Package is triggered. These actions are updated on which elements that
are selected (the elements from which the action was triggered), and are responsible for
delegating the actions to other classes. This includes initialisation of views and dialogs, and
setting their input. Whenever a user finishes or cancels a dialog, the action classes retrieves
the parameters set by the user, and executes the appropriate actions through the
TraceManager. The views and dialogs use the TraceManager to refresh information and
some other convenience methods.

The basic structure of the ManualTracer can hence be said to be typical for any eclipse plug-
in – it uses different UI extensions to provide functionality to the users. What makes it a
traceability tool is what information it maintains. This is handled through the TraceManager
class and the manualTraceLib Package. The latter is generated from the traceTypeLib, and
hence makes it easier to handle traceability information specific to this library, while the first
provides an interface for capturing traces. It does this by using the manualTraceLib Package
(also uses the interface of the traceability tool when the generated code is not sufficient).

With this implementation we have shown that the Traceability tool can easily be integrated
with other tools – it is simply a matter of using the interfaces provided by the Traceability
tool, just like any other interface.

7.3 Summary
In this chapter we have evaluated the hypotheses presented in chapter 1. This was performed
by performing a test-case for each of the hypotheses. The tests-cases were described in the
previous chapter with a prediction regarding the result of the tests utilising the classification
scheme and the traceability tool. Based on the discussion in this chapter, we can conclude that
the assumptions presented by the hypotheses are strengthened, as none of the predictions were
falsified.

 104

8 Discussion and evaluation

8.1 Introduction
In this chapter we tart with a discussion on the fulfilment of the requirements for the
traceability tool and the classification scheme presented in chapter 4 and chapter 5. We then
continue with at more general discussion and criticism of the work with the thesis.

8.2 Evaluation

8.2.1 Fulfilment of Tool Requirements

Tool Requirement 1

The traceability tool shall use model-driven approaches.

Fulfilled! The tool is based on two metamodels, which are created with the use of EMF.
This Framework allows creation of metamodels, and generation of code from the
metamodels, that allows instantiation of the models to be made programmatically. The
models are also used to generate tree editors for editing and browsing trace repositories
and trace type libraries, which uses the generated code to create and modify models. In
addition we have created a GMF editor for the trace type libraries, for graphical creation
and modification of trace type libraries. This makes the definition process more user-
friendly. Furthermore, the traceTypeLib models can be used to generate Class libraries in
Java, making the process of populating a trace repository much easier.

In fact, there is nothing about the tool that is not based on models. All the core
functionality is generated from models, and all data is stored as models.

Tool Requirement 2

The models used by the traceability tool shall conform to the 4 meta-layers of OMG.

Fulfilled! The tool is based on EMF, which uses ECore as its meta-metalanguage (meta-
metamodel). This language is a simplified version of the MOF and is actually the basis for
Essential MOF (EMOF) which is OMG’s simplified version of its own MOF. As ECore
conforms to the four metalayers of OMG (i.e. it resides at the M3 level), the models used
by the traceability tool will also have to conform to the four metalayers.

Tool Requirement 3

The traceability tool shall support trace repositories

 105

Fulfilled! Indeed one of the major components of the traceability tool is the
traceRepository metamodel, and the functionality to support creation and modification of
repositories.

Tool Requirement 3.1

The traceability tool shall be based on a metamodel

Fulfilled! The traceability tool is based around two metamodels (traceTypeLib, and
traceRepository) which defines the language for definition of libraries of trace types,
and the language used to capture traces based on the types defined in by a library.
This was also discussed regarding the fulfilment of Requirement 1.

Tool Requirement 3.2

The traceability tool shall support generic definition and customisation of reference

models

Fulfilled! The language for generic definition and customisation of reference
models is described by the traceTypeLib metamodel. To ease the use of this
language, a GMF editor was created to define the concreted syntax for the language
at a higher level of abstraction. This graphical editor makes it relatively easy to
define the types and composition of types comprising a reference model (i.e. a
library of trace type definitions). Several libraries may be used in combination, or
combined (use references between each other) to populate a trace repository with
traces of a specific type. This functionality is supported by the EMF framework.

In addition to the ability to define traceability types in a model, the traceability tool
also provides functionality to generate a Java library of the defined types. The
classes comprising the library can be constructed through the use of a factory class,
which assures that all the classes uses the same underlying traceTypeLib model and
the create traces to the same repository. Creating a class of a specific type adds a
trace of the specified type to the repository. This functionality eases creation of the
types defined in a traceTypeLib model quite a bit, as a developer implementing a
tool with support for traceability can program with traceability types in the same
way as with any other Java library. This adds a new dimension to the generic part of
the tool.

Tool Requirement 3.3

The traceability tool shall support persistent storage of traceability information

Fulfilled! The traceability tool supports persistence storage of traceability
information through the use of traceRepository models. Models may not scale as
well as traditional relational databases, but they are in turn more flexible as they are
easier to integrate with other models, and modelling tools. E.g. using a model makes
it possible to keep references between the repository and the traceTypeLibrary
model, but also allows external tools like a transformation engine to populate trace
repositories as output from a transformation. Functionality for performing queries
against a repository can be provided with the use of e.g. EMFQuery.

 106

Tool Requirement 4

It shall be possible to identify where the traced artefact is located

Fulfilled! The addition of the location property to TraceableArtefact in the
traceRepository metamodel allows the location of an artefact that is being traced to be
captured. This property may be used to store the location of an artefact both locally (e.g.
platform/resource/project/file) or globally (e.g. www.name.domain/location/file)
depending on whether the repository is used to stored traces in a specific workspace or
traces from multiple users simultaneously on a server.

Due to the generic nature of the traceability tool, the TraceableArtefact does not have
properties for identifying artefacts within a file (unless the location property is used for
this purpose). Information regarding the identification of artefacts within a file could be
kept in specific Attributes defined for a specific TraceableArtefactType.

Tool Requirement 5

It shall be possible to identify when the traceability information was recorded

Fulfilled! Identifying when the traceability information was recorded is supported by the
recordTime property of an IdentifiableElement (the super type of TraceableArtefacts and
TraceLinks). This property contains a string value representing the date and time of the
capturing. The string may be on any form.

Tool Requirement 6

The traceability tool shall be implemented as an Eclipse EMF plug-in

Fulfilled! The traceability tool is indeed implemented as an Eclipse plug-in, using the
EMF framework.

Tool Requirement 7

The traceability tool shall be easy to integrate with external plug-ins

Fulfilled! In 7.2.2.1 we saw that the traceability tool has been successfully used to
provide functionality to manually create traceability links on UML2 models, by defining
extensions to EditPart (GEF) and EObject (EMF). This implementation showed that it was
easy to integrate the plug-in with other plug-ins, in the sense that the traceability tool can
be utilised by other plug-ins by simply making method calls to the interface of the
traceability tool or by using the generated Java library whenever information needs to be
added or retrieved from the trace repository. The traceability tool can hence be used like a
database storing traces.

Tool Requirement 8

It shall be possible to create traceability information both automatically and manually

 107

Fulfilled! The traceability tool does offer functionality to create traceability information
both automatically and manually.

Traceability information may be created automatically by a tool or through
transformations with traceability generation code encoded within the transformation. The
first may be performed by using the Java interface of the traceability tool. The latter has
not been tested, but the fact that both the trace repository and the trace type library are
defined by models means that any model to model transformation language with support
for querying (i.e. to retrieve types from a traceTypeLib model to use in the creation of
traces) should be capable of creating instances of the traceRepository model.

Support for manual creation of traceability information is supported by the traceability
tool through the generated EMF editor. This editor allows traceTypeLib models to be used
to create traceability information of a specific type. The editor is however, not very simple
to use, as the repository has to be edited directly, and does not perform any constraint
checking, hence relying on a developer to perform the task correct. The fact that the
traceability tool is a generic tool however makes it difficult to provide a simpler means to
manually generate traceability information. Functionality, for easing the task of manual
trace creation, like the functionality provided by the ManualTracer, should therefore be
provided by tools that uses the traceability tool.

Tool Requirement 9

The traceability tool shall support both high-end and low-end use of traceability

Fulfilled! Even though the traceability tool has not been tested in a real-life development
process, the features fulfilled by the following sub requirement should make it possible to
create traceability information at varying level of details and make it possible to exchange
the information between high-end and low-end users, as long as they use the same
traceTypeLibrary model.

Tool Requirement 9.1

The traceability tool shall make it possible to capture traces at various levels of

details, depending on what information is available at any given time

Fulfilled! Through the concept of extension types (i.e. ArtefactExtension and
LinkExtension) it is possible to dynamically extend TraceableArtefacts or
TraceLinks at any given time during their lifetime. This means that e.g. a
TraceableAttefact may be created as a basic TraceableArtefactType, and that
semantics may be added at any given time by adding an Extension of a specific
ArtefactExtensionType to the TraceableArtefact as long as the
ArtefactExtensionType or its superType is found in the extensions set of the
TraceableARtefactType. Moreover, this concept meant that traceability users may
create traceability information at varying level of detail, and still be able to exchange
the information with other traceability users using a different level of detail.

 108

Tool Requirement 9.2

The traceability tool shall make it possible to trace an artefact through its whole

lifetime

Fulfilled! How artefacts are traced through their lifetime depends to some degree on
the trace type library that is used to capture traces. The fulfilment of the following
sub-requirements does however provide some support on the area.

Tool Requirement 9.2.1

Each Artefact must be uniquely identified

Fulfilled! The ability to uniquely identify TraceableArtefacts and TraceLinks is
supported by the id property of IdentifiableElement. This property contains a
value that is composed of the MAC-address of the computer creating it, creation
time in milliseconds, and a random number. This identification scheme should
assure that no trace repository contains IdentifiableElements with the same id.

Tool Requirement 9.2.2

Must support different versions of an artefact

Fulfilled! Versioning of artefacts is supported with the version property of
TraceableArtefacts. We assume that linkage between the old and the new
version is performed with a TraceLink of a designated type or with a specific
LinkExtension.

8.2.2 Fulfilment of the classification scheme requirements

CS Requirement 1

The classification scheme shall support traceability in all stages of the development

process of the library system (Appendix A).

Fulfilled! Through the experiments conducted in subsection 7.2.1 we can conclude that
the classification scheme supports traceability in all stages of this simple example.

CS Requirement 2

The traceability classification scheme shall allow semantically rich traceability

information to be captured.

Fulfilled! Through the experiments conducted in subsection 7.2.1 we can conclude that
the classification scheme allow semantically rich traceability information to be captured,
in the sense that it provided sufficient semantics to perform the test-cases in a satisfying
way.

 109

CS Requirement 3

The traceability classification scheme shall allow any artefact involved in the

development process of the library system to be traced.

Fulfilled! Through the experiments conducted in subsection 7.2.1 we can conclude that
the classification scheme allow any artefact involved in the development process to be
traced – at least the one required to conduct the analyses in the test-cases-

CS Requirement 4

It shall be possible to identify what information is represented.

Fulfilled! Through the experiments conducted in subsection 7.2.1 we can conclude that
the classification scheme makes it possible to identify what information is represented.
This is achieved by using the ArtefactType ExtensionTypes for TraceableArtefacts. These
extensions may not be sufficient for all projects, but allows some basic semantics to be
added.

CS Requirement 5

It shall be possible to identify how the traced artefacts of the library system are

represented.

Fulfilled! Through the discussion in subsection 5.4.1, we argued that the all the artefacts
involved in the library example were either text-files or model elements. These are
supported by the TraceableArtefacts ModelElement and TextFile in the classification
scheme.

CS Requirement 6

It shall be possible to identify how an artefact was created.

Partly fulfilled! Through the discussion in subsection 7.2.1 we saw that the classification
scheme made it possible to identify elements that were created by transformations. This is
however not the only way an artefact may be created. We also know that some of the
artefacts of the library example were created by developers using tool, e.g. the use-case
model and the requirements document. Information regarding the creation of these cannot
be captured using the classification scheme.

8.3 Discussion
In this section, we will continue the discussion on the traceability tool and the classification
scheme conducted in the previous sections of his chapter and in chapter 7, by summarising the
discussion and discussing the work with this thesis as a whole.

In chapter 3 we saw that different tools and users utilised traceability in different ways by
using different languages to define traces, and utilising the traceability information for
different kinds of analysis (i.e. high-end and low-end users).

 110

The traceability tool and the classification scheme aims at supporting the needs of these
different users in a way that allows them to operate on the same repository. In a perfect world,
one might say that all users of traceability should use traceability in the same way. However
as this is not the case it could make things easier if they could at least operate on the same
repositories or exchange repositories.

By utilising the concepts presented with traceability tool and the classification scheme,
different kinds of tools could use the interfaces provided by the tool to populate the same
repository. E.g. a tool supporting manual trace creation could provide the functionality to
define traces between text-files and models (any combination of the two) and use the
traceability tool to store these traces in a repository as TextFiles containing TextualArtefacts
or as ModelElements with Manual links between them. These artefacts might have been
created by different transformation engines using FeatureTransformation links and/or
ExplicitLinks (as part of a Transformation composition) to record the relationships between
them. The different tools operating on a trace repository would however not know about the
different use of the traceability information; as far as they concern they just perform calls to
an API that creates the traceability information for them.

Even though the different tools and users might not capture traceability information at the
same level of details, they could all use the same trace repository to capture traces, or
exchange traceability information as long as they use the proposed traceTypeLib model – the
basic structure supporting linkage between different artefacts would be the same.

How this information may be utilised for analysis purposes however depends on how much
semantics that is added through extensions. High-end users may however still use low-end
traceability information by adding the required extensions to the information (by manual or
automatic analysis) or just use the basic information as it is to get some understanding of the
process. Utilising the traceability tool and the classification scheme to generate semantically
rich traceability information at all stages of the development process makes it s possible to
conduct many kinds of analyses on the development process as a whole.

8.3.1 Compliance With Existing Technology

The fact that the traceability tool is implemented as an EMF plug-in should make it possible
to integrate the traceability tool with most EMF based tools, including modelling tools and
transformation engines. In fact the generality of the traceability tool should make it possible
to integrate it with most Eclipse plug-ins provided that EMF is installed.

Through the implantation of the ManualTracer (subsection 7.2.2) we have indeed shown that
the traceability can be integrated with UML2 based modelling tools in Eclipse. This was done
using a simpler version of the classification scheme presented in this thesis and should work
just as well with the proposed classification scheme. We have however not tested the tool or
classification scheme on a transformation engine. We have however discussed that most
transformation engines use an internal traceability model, and some of them supports
extended traceability usage. The classification scheme is also an extended version of the
metamodel used by MOFScript. This should imply that it is possible to integrate the
traceability tool and classification scheme also with transformation engines.

 111

8.3.2 Criticism

The tested conducted to validate the traceability tool and classification scheme was performed
on the relatively simple library example (Appendix A) and we it is therefore difficult to tell
how the traceability tool may perform when a considerably larger amount of traceability
information is generated, or if multiple users operate on the traceability tool simultaneously.
The fact that no support for transactions is provided suggests that there might be trouble when
multiple users use the same information.
Another problem that will become present on a real life project is that artefacts represented in
the repository change over time. In such cases it would be desirable to create new versions of
the artefacts in the repository in order to trace the evolution of artefacts. This might include
linking the new version with the old version to specify the relation ship between them; no
such semantics is however supported by the classification scheme. Analysing the traceability
information when multiple versions exist might also be a challenge, and we have not tested
how this could be performed.

The work with this thesis has furthermore been conducted without any contact with users of
traceability, and we do therefore not know how the traceability tool or classification scheme
suites their needs.

8.4 Summary
In this chapter we have discussed the traceability tool and classification scheme. In the
beginning of the chapter we validated and discussed the fulfilment of the requirements for the
traceability tool and the classification scheme. Except CS Requirement 6, all the requirements
were fulfilled.

 112

9 Conclusion

9.1 Summary
The motivation of this master thesis was the lack of a classification scheme for traceability in
MDE. Although there are several different tools supporting traceability in various ways, there
is a lack of a traceability classification scheme supporting the various needs of tools and users
through the development process as a whole.

There are however no current implementation of a tool with support for definition and usage
of such a classification scheme. The main objectives of this thesis were therefore to;

1. Provide a tool that is capable of defining and handling semantically rich traceability

information in MDE.

2. Find a suitable classification scheme for traceability in MDE, capable of capturing

semantically rich traceability information, and emphasising automation.

The traceability tool was developed as an EMF plug-in, based on two metamodels:

1. traceTypeLib – specifies a language in which traceability types can be defined.
2. traceRepository – specifies a language in which traceability information can be

recorded using the types defined in the traceTypeLib model.

Based on the traceTypeLib metamodel we have created a GMF editor as a mean to define a
concrete syntax for the language defined by the traceTypeLib model. This provides a user-
friendly tool to define the traceability types. In order to allow external tools to use the
traceability types defined in a traceTypeLib model to populate a traceRepository model, we
have provided a Java interface which allows traceability information to be created
programmatically. We have also provided support for generation of Java libraries from the
traceTypeLib model comprised of classes representing the traceability types defined in the
model. This allows developers to program with traceability types as regular Java classes
created through a factory class.

In order to allow developers to brows the traceability information in a traceRepository model,
we have utilised the EMF facilities to customise a generated EMF model editor, and created a
view with support for basic navigation of trace links.

Utilising the GMF editor a basic classification scheme supporting traceability in MDE was
created. It defines two basic traceable artefact types used to represent text-files and model
elements in the traceRepository model in a way that allows trace links to be defined between
them. Furthermore a set of basic trace link types was defined to allow trace links created
manually, automatically or by transformations to be defined between the traceable artefacts.
By using the concept of extension types, a set of types which may be used to extend the basic
structure of traceable artefacts and trace links was defined. This makes it possible to
dynamically extend the traceability information in the trace repository for added semantics.

 113

Both the traceability tool and the classification scheme was validated through a set of test-
cases related to the hypotheses defined in chapter 1, and bay validating the requirements
specified in chapter 4 and 5. In addition the definition of the classification scheme serves as
validation of the traceability tool, with respect to its ability to define semantically rich
traceability classification schemes.

9.2 Claimed Contribution

9.2.1 The Traceability Tool

Through the work with this thesis we have presented a traceability tool built around two
metamodels, where one defines the types used by the other, allowing traceability
classification schemes to be generically defined, and used to populate trace repositories with
traceability information. Similar approaches are suggested in [3, 10] and [9], but there are no
references to an implementation of such approaches in a model based MOF compliant tool.

Our solution allows multiple libraries to of classification schemes to be used to populate
repositories, thus allowing domain-specific or project-specific classification schemes to be
used instead of or in addition to more general classification schemes.

By supporting composite structures of traceable artefact types and link types we are capable
of defining a richer set of traceability types.

Additionally we have introduced the concept of extension types, which may be used as a
mean to define extensions to the classes of trace link types or traceable artefact types. This
allows different classes of fine grained semantics to be added and combined depending on the
traceability strategy, and allows semantics be changed or added over time based on events or
by performing analysis of the traceability information.

9.2.2 The Classification Scheme

The classification scheme support different kinds of usage by defining a basic structure of
traceability types which may be dynamically extended by using extension types.

By treating all artefacts as ModelElements or TextFile, we have provided a structure that
allows all parts of artefacts of these types to be traced. This means that all artefacts may be the
source and/or target of a transformation, and support both explicit and implicit linkage
between them to be defined. This strategy hence supports tools with different traceability
approaches.

The linkage between these artefacts may be of one of three basic link types; Transformation,
Manual, or Automatic, specifying how the link was created. The composition of the
Transformation link type makes it easier to analyse traces that was created implicit or explicit
by a transformation, as it groups the information together in a way that gives a good picture of
the transformation.

By using information that is always present at creation time as basis for the link classification
in combination with the basic traceable artefact types, we provide a basic structure that makes
it possible to link the different artefacts in the development process together without

 114

enforcing the addition of semantics that might add complexity to the process of creating
traceability information.

To allow additional semantics to be added to the TraceableArtefacts we have defined a group
of ExtensionTypes with the supertype ArtefactType which may be added to the
TraceableArtefacts. These types specify the semantics of an artefact at design level, e.g.
Requirement or Design, which may be used to perform a richer set of analyses.

The three basic link classes may also be extended with more fine grained information to ease
analysis of the traceability information. There are two main classes of link extensions;
product-related (ProductRelated and its subtypes) and process-related (Realizaiton) which
makes it easier to identify what links to follow when conducting certain kinds of analysis. The
product-related link types are separated into three different subclasses (Validation,
Verification, and Explanation) making it easier to navigate the traceability graph depending
on what kind of analysis that is performed.

By separating between the basic traceability structure and the semantic sugar we have hence
created a classification scheme which may be used differently by different users, depending
on the traceability strategy. The same classification scheme may also be utilised differently by
tools to capture traceability information in different ways. As long as the different users use
the same traceTypeLib model they can still operate on the same trace repositories or exchange
information.

9.3 Weaknesses

9.3.1 Maintaining Correctness of Traceability Information

A major weakness with the traceability tool is that it does not provide any functionality for
keeping the traceability information up to date with the actual artefacts that are represented in
the repository (e.g. if the name of a Class changes after it has been added to the trace
repository, the TraceableArtefact representing this class is no longer valid). This is in fact a
weakness with the concept of TraceableArtefacts, as they are not directly connected to the
artefacts they are used to represent. This means that the responsibility of keeping the
information current is left to the users of the traceability tool.

9.3.2 Extending Trace Type Libraries

One of the strengths with the traceability tool is that it allows several traceTypeLib models to
be combined an extended (i.e. it is possible to extend extension types) by other traceTypeLib
models, hence allowing customisation of libraries. Adding an ArtefactExtensionType in
library B to a TraceableArtefactType in library A will however pollute library A with a
reference to the ArtefactExtenionType in library B. It would have been better if this
information was kept in library B. In some situations, it could also be desirable to be able to
extend TraceableArtefacts and TraceLinks (i.e. generalisation) in other libraries.

 115

9.3.3 Pollution of Mapping Code

The usage of ExplicitLinks and TextualArtefacts defined in the classification scheme
assumes that the languages used to define mappings allow explicit links to be created, and that
explicit blocks within text-files can be created (in model to text transformation languages).
This means that the mapping code is polluted with traceability code, and decrease the
reusability of the mappings [8].

9.3.4 Supporting Traceability Information Regarding Evolution

The traceability classification scheme does not allow much information about the evolution of
artefacts represented in the trace repository to be traced, except that when transformations are
involved. It would also be desirable to be able to capture creation of artefacts performed by
e.g. modelling tools.

 116

10 Related Research
Much of the related research is discussed in section 3.3. An overview of the related research is
presented below.

• Ramesh and Jarke [9] discuss a generic metamodel and classification of traceability
information for requirements traceability.

• Walderhaug et al [3, 10] discuss a traceability metamodel and system solution,
supporting trace repositories where the traceability information is classified with
generically defined traceability types. In [10] they also suggests a classification
scheme for traceability in MDE by extending the metamodel. There is however no
reference to an implementation of the solution or usage of classification scheme.

• Jouault [11] discusses how ATL can be used to generate traceability models with
explicit links based on any traceability metamodels.

• Oldevik and Neple [24] discuss how traceability information can be automatically
generated in model to text transformation using implicit links. The traceability
information is described by a traceability metamodel that makes it possible to
represent trace links between text-files model artefacts in external models.

• Olsen and Oldevik [8] discusses a how traceability information from model to text
transformations generated by MOFScript can be used to perform various analysis on
the traceability information. This is supported by a set of tools for MOFScript
traceability models.

 117

11 Future Work
In this chapter we discuss features that could be the basis for future work with the traceability
tool and classification scheme.

11.1 Extending the Metamodels
In many cases, it would probably be advantageous with a more expressive language in which
traceability information could be defined. Features like associations and generalization could
e.g. be advantageous in many situations. One such situation is obvious when looking at the
TextFile composition in the classification scheme. There are three TraceableArtefactTypes
recording positions using a set of Attributes. This could have been simplified a bit by using
generalization or allow composite types.

11.2 Providing Better Support for Trace Type Libraries
In subsection 9.3.2 we discussed that capability for extending traceTypeLib models does not
work optimally, as the model that is extended has to contain information about this. The fact
that generalization of TraceableArtefacts and TraceLinkTypes is not supported also limits
how libraries may be extended. More work should therefore be put into improving
functionality for extending elements in a traceTypeLib model. Such functionality could allow
developers to create project specific extensions to a standard library without having to add the
information to the standard library itself. This would improve flexibility and reusability.

11.3 Extending the Classification Scheme
In subsection 9.3.4 we discussed that the classification scheme does not support much
semantics regarding the evolution of artefacts except those created by transformations. More
LinkExtensionTypes should therefore be added to support analysis with respect to evolution.

Further extensions or changes may also be found to be needed once the classification scheme
is put into more use.

11.4 Complete Toolkit
One of the purposes of the traceability tool is to make it possible for different tools to use the
same traceTypeLib models and the same traceRepositories to store traces. And hence get a
more holistic traceability solution. A project for the future could therefore be to build a
complete toolkit with support for definition of requirements (as models or text), manual trace
creation, traceability in model to model and model to text transformation, and integration with
a modelling tool to support automatic updating of traces to reflect changes and updates made
in models. Using the traceability tool and the MDE.traceTyopeLib classification scheme to
create traces, this toolkit could support many different kinds of traceability analysis, and
provide functionality to provide consistency of the information over time.

11.5 Implement Support for Remote Repositories
Storing traceability information locally might not be desirable in large system development
projects, as the traceability information will not provide the whole picture. It should therefore

 118

be possible to keep trace repositories in external repositories on a server. Such use requires
that a tool handles multiple users at the same time, and at the same time keeps the traceability
in formation consistent. Such usage of trace repositories is discussed in [3, 10].

11.6 Maintaining Traceability Information Automatically
In subsection 9.3.1 we pointed out that a major weakness with the traceability tool is that it is
not capable of maintaining the correctness of the traceability information, hence leaving this
to the user of the tool (e.g. a developer using the traceability tool to achieve traceability
support for a modelling tool). A subject for future work could therefore be to provide
functionality to maintain such information automatically. E.g. [4].

 119

12 References

1. Schmidt, D.C., Model-Driven Engineering. in Computer. February 2006: IEEE

computer society: http://www.computer.org.

2. Falleri, J.-R., M. Huchard, and C. Nebut, Towards a traceability framework for
model transformations in Kermeta, in Second European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA'06). 2006:
Bilbao - Spain.

3. Walderhaug, S., et al., Towards a Generic Solution for Traceability in MDD, in
Second European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA'06). 2006: Bilbao - Spain.

4. Aizenbud-Reshef, N., et al., Operational Semantics for Traceability, in First
European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA'05). 2005: Nuremberg - Germany.

5. Antoniol, G., et al., Problem Statements and Grand Challenges in Traceability:
http://www.traceabilitycenter.org/files/COET-GCT-06-01-0.9.pdf. Center of
Exelence for Traceability. 2006.

6. Espinoza, A., P.P. Alarcón, and J. Garbajosa, Analyzing and Systematizing
Current Traceability Schemas, in NASA Software Engineering Workshop
SEW-30. 2006: Anaheim.

7. Limón, A.E. and J. Garbajosa, The Need for a Unifying Traceability Scheme,
in First European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA'05). 2005: Nuremberg - Germany.

8. Olsen, G.K. and J. Oldevik, Scenarios of Traceability in Model to Text
Transformations, in Third European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA'07). 2007: Haifa - Israel.

9. Ramesh, B. and M. Jarke, Toward Reference Models for Requirements
Traceability. IEEE Tansactions on software engineering, 2001. 27(1): p. 58 -
93.

10. Walderhaug, S., et al., Traceability Metamodel and System Solution:
http://www.modelware-
ist.org/index.php?option=com_remository&Itemid=74&func=fileinfo&id=134.
2006: Modelware.

11. Jouault, F., Loosley Coupled Traceability for ATL, in First European
Conference on Model-Driven Architecture Foundations and Applications
(ECMDA'05). 2005: Nuremberg - Germany.

12. The Eclipse Modeling Framework (EMF). [cited 2007 10.24]; Web-Page].
Available from: http://www.eclipse.org/modeling/emf/.

 120

13. Solheim, I. and K. Stølen, Teknologiforskning - hva er det? STF90 A06035.
2006: SINTEF Report.

14. Brown, A. An introduction to Model Driven Architecture. 2004 [cited 2007
October 10.]; Available from:
http://www.ibm.com/developerworks/rational/library/3100.html.

15. Kleppe, A., J. Warmer, and W. Bast, MDA explained The Model Driven
Architecture: Practice And Promise. Object Technology, ed. Booch, Jacobson,
and Rumbaugh. 2003: Addison-Wesly.

16. Stephen J. Mellor, et al., MDA Destilled Principles of Modell-Driven
Architecture. 1 st ed. Object Technology series, ed. Boch, Jacobson, and
Rumbaugh. 2004: Addison-Wesley.

17. Enterprise JavaBeans Technology. [web page] [cited 2007 10.29]; Available
from: http://java.sun.com/products/ejb/.

18. Tony Clark, et al., Applied Metamodelling A Foundation for Language Driven
Development. 0.1 ed. 2004: Xactium.

19. OMG. The Unified Modeling Language (UML). [Web-Page] [cited 2006
10.27]; Available from: http://www.uml.org/.

20. OMG. The Object Management Group (OMG). [Web-page] [cited 2006
10.27]; Available from: http://omg.org/.

21. OMG. the Meta Object Facility (MOF). [Web-Page] [cited 2006 10.27];
Available from: http://www.omg.org/mof/.

22. Model Driven Architecture. [Web-Page] [cited 2006 10.27]; Available from:
http://www.omg.org/mda/.

23. Czarnecki, K. and S. Helsen, Classification of Model Transformation
Approaches. OOPSLA 03 Workshop on Generative Techniques in the Context
of Model-Driven Architecture, 2003.

24. Oldevik, J. and T. Neple, Traceability in Model to Text Transformations, in
Second European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA'06). 2006: Bilbao - Spain.

25. OMG, MOF 2.0/XMI Mapping Specification, v2.1:
http://www.omg.org/docs/formal/05-09-01.pdf. 2005.

26. OMG, MOF QVT Final Adopted Specification: http://www.omg.org/docs/ptc/05-
11-01.pdf. 2005.

27. OMG, MOF Models to Text Transformation Language Final Adopted
Specification: http://www.omg.org/docs/ptc/06-11-01.pdf. 2006.

28. Wiktionary.org. [Web-Page] [cited 2007 08.20]; Available from:
http://www.Wiktionary.org.

 121

29. IEEE, IEEE Standard Glossary of Software Engineering Terminolgy, in IEEE
Std 610.12-1990.

30. Behrens, T., Never 'Without a trace': Practical advice on implementing
traceability:
http://www.ibm.com/developerworks/rational/library/feb07/behrens/. 2007.

31. Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. polack, On-Demand
Merging of Traceability Links with Models, in Second European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA'06). 2006:
Bilbao - Spain.

32. The ATL home page. [Web-Page] [cited 2006 10.27]; Available from:
http://www.sciences.univ-nantes.fr/lina/atl/.

33. Vanhoof, B., et al., Traceability as Input for Model Transformation, in Third
European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA'07). 2007: Haifa - Israel.

34. Angyal, L., L. Lengyel, and H. Charaf, An Overview of the State-of-The-Art
Reverese Engineering Techniques. 7th International Symposium of Hungarian
Researchers on Computational Inteligence: p. 507-516.

35. Aizenbud-Reshef, N., et al., Model Traceability. IBM Systems Journal, 2006.
45(3): p. 515-525.

36. Telelogic, Doors: http://www.telelogic.com/corp/products/doors/index.cfm.

37. IBM, RequisitePro: http://www-306.ibm.com/software/awdtools/reqpro/.

38. Eclipse home page. Web-Page [cited 2007 10.30]; Available from:
http://www.eclipse.org/.

39. XML Metadata Interchange (XMI). [Web-Page] [cited 2007 10.27]; Available
from:
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI.

40. Graphical Editing Framework GEF. [Web-Page] [cited 2007 10.27]; Available
from: http://www.eclipse.org/gef/.

41. Graphical Modelling Framework (GMF). [cited 2007 10.25]; Web-Page].
Available from: http://www.eclipse.org/gmf/.

42. UML2 Project. [Web-Page] [cited 2007 10.25]; Available from:
http://www.eclipse.org/modeling/mdt/?project=uml2.

43. ModelPlex. ModelPlex. [Web-Page] [cited 2007 10.30]; Available from:
http://www.modelplex-ist.org.

44. Papyrus. Papyrus UML. [Web-Page] [cited 2007 10.30]; Available from:
http://www.papyrusuml.org.

 122

 123

Appendix A – The Library Example

Introduction to example

The example starts with a simple requirements document, which is the basis for a use-case
model. This model is transformed to a class model (Figure 4), which is refined by developers.
The PIM is then transformed to an EJB-PSM (Figure 5) which finally is transformed to Java
code. These are described in more detail in chapter 3.

Throughout this thesis we will use a running example of a simple library system as a means to
illustrate our discussion and to provide test data for our experiments. The example will
eventually provide test data from artefacts throughout a software development process – from
requirements to implementation.

The aim of the library system is to support the librarian in his/her daily tasks. The system is
divided into two subsystems BookSystem and CustomerSystem.

Requirements document
To find out what they need to create, developers sit down with librarians and discuss what
they want from the system. These specifications are captured by the Requirements document:

”

Requirements for SuperLib2000
These are the requirements for the new Library system – SuperLib2000.

Non-functional requirements:
The system should mostly be up and running and it should at all times be an excellent

library system.

Functional requirements:
• The system shall make it easier for the librarian to find books.

• The system shall make it easier for the librarian to find customers.

• The system shall have functionality to add new books, and customers.

• The system shall have functionality to remove books and customers.

“

Use-case Model
To capture their requirements formally developers creates a use-case diagram of the system,
with the use-cases described in the functional requirements. In the use-case model the system
is divided into two subsystems – BookSystem to handle books, and CustomerSystem to
handle customer related information.

 124

 125

The PIM
When developers are finished with the use-case model, they transform it into an architecture
model describing a more precise architecture of the system. This model consists classes for
each of the subsystems in the use-case model.

Transformation
The logic behind the transformation is quite simple, and works as follows:

• For each of the Components in the use-case mode a Class with the same name is
created in the architecture model.

• If a Component is contained in another Component a Property is created in the Class
that is transformed fro the parent Component. This Property has the same name as the
child Component, and is typed with the Class that is transformed from the child
Component.

• For each of the UseCases in the use-case model an Operation with the same name is
created in the architecture model, contained in the Class that is transformed from the
Component that contained the UseCase.

• If the Component containing a UseCase in the use-case model is contained in another
Component, each of the UseCases in the child Component is transformed to
Operations in the Class that is transformed from the parent Component.

Refinement
After transforming the Use Case model to the PIM, the developers have to manually add the
features that cannot be created by the transformation. The result of the refinement is shown in
Figure 4.

Rationale document
After completing the architecture model, a rationale document is created to explain the
architecture model:

”

 Rationale

The library system is a system aimed at making the job of a librarian easier. It

concists of two subsystems; 1) BookSystem, with support for finding, adding, and

renting books, 2) and CustomerSystem with support for adding and finding customers.

 The main artefacts of the system are books, and customers, both identified by a name.

 In addition information about the age of the customer is needed, as some books have

 an age restriction.

“

The EJB-PSM
The EJB-PSM is transformed from the PIM using an ATL transformation. The basics of the
transformation are as follows.

 126

• Classes annotated with stereotype ‘Service’ are mapped to classes with the same
name, but with the stereotype ‘EJB_Service’.

• Classes annotated with stereotype ‘PersistentObject’ are mapped to classes with the
same name, but with the stereotype ‘EJB_Entity’.

• All other classes are mapped to a new class with the same name, but without any
stereotypes, regardless of any stereotypes contained by the input class.

• All attributes and operations contained by the input are mapped directly to attributes
and operations with the same name, type, and signature as those contained by the input
class. If an attribute in the input model is annotated with the stereotype ‘Id’, the
corresponding attribute in the output model will be annotated with the stereotype
‘EJB_ID’.

The result of the mapping is shown in Figure 5.

Implementation
After completing the refinement of the PSM the developers use a MOFScript transformation
to generate Java code for the PSM. The mapping is straight forward, and creates a Java class
for each Class in the model.

 127

Appendix B – Source Code

The source code for the traceability tool, the test cases or the mappings used for the library
example will be made available upon direct request to the author or supervisor via e-mail.
Please contact the following:

• Svein Johan Melby (author), smelby@gmail.com

• Gøran K. Olsen (supervisor), goran.k.olsen@sintef.no

 128

 129

 130

