
University of Oslo

Department of Informatics

The Pragmatics of
STAIRS

Ragnhild Kobro

Runde, Øystein
Haugen, Ketil Stølen

Research Report 349
ISBN 82-7368-306-0
ISSN 0806-3036

January 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30806842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Pragmatics of STAIRS

Ragnhild Kobro Runde1, Øystein Haugen1, and Ketil Stølen1,2

1 Department of Informatics, University of Oslo, Norway
2 SINTEF ICT, Norway

Abstract. STAIRS is a method for the compositional development of
interactions in the setting of UML 2.0. In addition to defining deno-
tational trace semantics for the main aspects of interactions, STAIRS
focuses on how interactions may be developed through successive re-
finement steps. In this tutorial paper, we concentrate on explaining the
practical relevance of STAIRS. Guidelines are given on how to create
interactions using the different STAIRS operators, and how these may
be refined. The pragmatics is illustrated by a running example.

1 Introduction

STAIRS [HHRS05a] is a method for the compositional development of interac-
tions in the setting of UML 2.0 [OMG05]. In contrast to e.g. UML state machines
and Java programs, interactions are usually incomplete specifications, typically
describing example runs of the system. STAIRS is designed to deal with this
incompleteness. Another important feature of STAIRS is the possibility to dis-
tinguish between alternative behaviours representing underspecification and al-
ternative behaviours that must all be present in an implementation, for instance
due to inherent nondeterminism.

STAIRS is not intended to be a complete methodology for system develop-
ment, but should rather be seen as a supplement to methodologies like e.g. RUP
[Kru04]. In particular, STAIRS focuses on refinement, which is a development
step where the specification is made more complete by information being added
to it in such a way that any valid implementation of the refined specification
will also be a valid implementation of the original specification.

In this paper we focus on refinement relations. We define general refinement,
which in turn has four special cases referred to as narrowing, supplementing,
detailing and limited refinement. Narrowing means to reduce the set of possi-
ble system behaviours, thus reducing underspecification. Supplementing, on the
other hand, means to add new behaviours to the specification, taking into ac-
count the incomplete nature of interactions, while detailing means to add more
details to the specification by decomposing lifelines. By general refinement, the
nondeterminism required of an implementation may be increased freely, while
limited refinement is a special case restricting this possibility.

Previous work on STAIRS has focused on its basic ideas, explaining the var-
ious concepts such as the distinction between underspecification and inherent
nondeterminism [HHRS05a,RHS05b], time [HHRS05b], and negation [RHS05a],

1

as well as how these are formalized. In this paper, we take the theory of STAIRS
one step further, focusing on its practical consequences by giving practical guide-
lines on how to use STAIRS. In particular, we explain how to use the vari-
ous STAIRS operators when creating specifications in the form of interactions,
and how these specifications may be further developed through valid refinement
steps.

The paper is organized as follows: In Sect. 2 we give a brief introduction to
interactions and their semantic model as we have defined it in STAIRS. Section 3
is an exampleguided walkthrough of the main STAIRS operators for creating in-
teractions, particularly focusing on alternatives and negation. For each operator
we give both its formal definition and guidelines for its practical usage. Section 4
gives the pragmatics of refining interactions. In Sect. 5 we explain how STAIRS
relates to other similar approaches, in particular UML 2.0, while we give some
concluding remarks in Sect. 6.

2 The Semantic Model of STAIRS

In this section we give a brief introduction to interactions and their trace seman-
tics as defined in STAIRS. The focus here is on the semantic model. Definitions
of concrete syntactical operators will mainly be presented together with the dis-
cussion of these operators later in this paper. For a thorough account of the
STAIRS semantics, see [HHRS05b] and the extension with data in [RHS05b].

An interaction describes one or more positive (i.e. valid) and/or negative
(i.e. invalid) behaviours. As a very simple example, the sequence diagram in
Fig. 1 specifies a scenario in which a client sends the message cancel(appointment)
to an appointment system, which subsequently sends the message appointment-
Cancelled back to the client, together with a suggestion for a new appointment
to which the client answers with the message yes. The client finally receives the
message appointmentMade.

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

appointmentCancelled()

appointmentSuggestion(time)

yes()

appointmentMade()

Fig. 1. Example interaction: CancelAppointment

2

Formally, we use denotational trace semantics to explain the meaning of a
single interaction. A trace is a sequence of events, representing a system run. The
most typical examples of events are the sending and the reception of a message,
where a message is a triple (s, tr, re) consisting of a signal s, a transmitter lifeline
tr and a receiver lifeline re. For a message m, we let !m and ?m denote the
sending and the reception of m, respectively. As will be explained in Sect. 3.2,
we also have some special events representing the use of data in e.g. constraints
and guards.

The diagram in Fig. 1 includes ten events, two for each message. These
are combined by the implicit weak sequencing operator seq, which will be for-
mally defined at the end of this section. Informally, the set of traces described
by such a diagram is the set of all possible sequences consisting of its events
such that the send event is ordered before the corresponding receive event,
and events on the same lifeline are ordered from top down. Shortening each
message to the first and the capitalized letter of its signal, we thus get that
Fig. 1 specifies two positive traces 〈!c, ?c, !aC, ?aC, !aS, ?aS, !y, ?y, !aM, ?aM〉
and 〈!c, ?c, !aC, !aS, ?aC, ?aS, !y, ?y, !aM, ?aM〉, where the only difference is the
relative ordering of the two events ?aC and !aS. Figure 1 gives no negative
traces.

Formally, we let H denote the set of all well-formed traces. A trace is well-
formed if, for each message, the send event is ordered before the corresponding
receive event. An interaction obligation (p, n) is a pair of trace-sets which gives
a classification of all of the traces in H into three categories: the positive traces
p, the negative traces n and the inconclusive traces H\ (p∪n). The inconclusive
traces result from the incompleteness of interactions, representing traces that
are not described as positive or negative by the current interaction. We say
that the interaction obligation is contradictory if the same trace is both positive
and negative, i.e. if p ∩ n 6= ∅. To give a visual presentation of an interaction
obligation, we use an oval divided into three regions as shown in Fig. 2.

Positive: p

Negative: n

Inconclusive: H \(p n)

Fig. 2. Illustrating an interaction obligation

As explained in the introduction, one of the main advantages of STAIRS
is its ability to distinguish between traces that an implementation may exhibit
(e.g. due to underspecification), and traces that it must exhibit (e.g. due to
inherent nondeterminism). Semantically, this distinction is captured by stating
that the semantics of an interaction d is a set of m interaction obligations,
[[d]] = {(p1, n1), . . . , (pm, nm)}. Intuitively, the traces allowed by an interaction
obligation (i.e. its positive and inconclusive traces) represent potential alterna-

3

tives, where being able to produce only one of these traces is sufficient for an
implementation. On the other hand, the different interaction obligations repre-
sent mandatory alternatives, in the sense that each obligation specifies traces of
which at least one must be possible for a correct implementation of the specifi-
cation.

We are now ready to give the formal definition of seq. First, weak sequencing
of trace sets is defined by:

s1 % s2
def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h↾ l = h1 ↾ l ⌢ h2 ↾ l} (1)

where L is the set of all lifelines, ⌢ is the concatenation operator on sequences,
and h↾ l is the trace h with all events not taking place on the lifeline l removed.
Basically, this definition gives all traces that may be constructed by selecting
one trace from each operand and combining them in such a way that the events
from the first operand must come before the events from the second operand
(i.e. the events are ordered from top down) for all lifelines. Events from different
operands may come in any order, as long as sending comes before reception for
each message (as required by h ∈ H). Notice that weak sequencing with an
empty set as one of the operands yields the empty set.

Weak sequencing of interaction obligations is defined by:

(p1, n1) % (p2, n2)
def
= (p1 % p2, (n1 % p2) ∪ (n1 % n2) ∪ (p1 % n2)) (2)

Finally, seq is defined by

[[seq [d]]]
def
= [[d]]

[[seq [D, d]]]
def
= {o1 % o2 | o1 ∈ [[seq [D]]] ∧ o2 ∈ [[d]]}

(3)

where d is a single interaction and D a list of one or more interactions. For a
further discussion of seq, see Sect. 3.4.

3 The Pragmatics of Creating Interactions

In this section, we focus on the different syntactical constructs of interactions in
order to explain the main theory of STAIRS and how these constructs should
be used in practical development. For each construct, we demonstrate its usage
in a practical example, to motivate its formal semantics and the pragmatic rules
and guidelines that conclude each subsection.

As our example, we will use a system for appointment booking to be used
by e.g. doctors and dentists. The appointment system should have the following
functionality:

– MakeAppointment: The client may ask for an appointment.
– CancelAppointment: The client may cancel an appointment.
– Payment: The system may send an invoice message asking the client to pay

for the previous or an unused appointment.

The interactions specifying this system will be developed in a stepwise manner.
In Sect. 4 we will justify that all of these development steps are valid refinement
steps in STAIRS.

4

3.1 The Use of alt Versus xalt

Consider again the interaction in Fig. 1. As explained in Sect. 2, this interac-
tion specifies two different traces, depending on whether the client receives the
message appointmentCancelled before or after the system sends the message ap-
pointmentSuggestion. Which one of these we actually get when running the final
system, will typically depend on the kind of communication used between the
client and our system. If the communication is performed via SMS or over the
internet, we may have little or no delay, meaning that the first of these messages
may be received before the second is sent. On the other hand, if communication
is performed by sending letters via ordinary mail, both messages (i.e. letters)
will probably be sent before the first one arrives at the client.

Seeing that the means of communication is not specified in the interaction,
all of these are acceptable implementations. Also, it is sufficient for an imple-
mentation to have only one of these available. Hence, the two traces of Fig. 1
exemplify underspecification. In the semantics, this is represented by the two
traces being grouped together in the same interaction obligation.

The underspecification in Fig. 1 is an implicit consequence of weak sequenc-
ing. Alternatives representing underspecification may also be specified explicitly
by using the operator alt, as in the specification of MakeAppointment in Fig. 3.
In this interaction, when requesting a new appointment the client may ask for
either a specific date or a specific hour of the day (for instance if the client
prefers his appointments to be after work or during the lunch break). As we
do not require the system to offer both of these alternatives, they are specified
using alt. After the client has asked for an appointment, the appointment is set
up according to the referenced interaction DecideAppTime.

sd MakeAppointment

:Client :AppSystem

needApp(hour)

alt

ref

DecideAppTime

needApp(date)

Fig. 3. MakeAppointment

The specification of DecideAppTime is given in Fig. 4. Here, the system starts
with suggesting an appointment, and the client then answers either yes or no.
Finally, the client gets a receipt according to his answer. As the system must

5

be able to handle both yes and no as reply messages, these alternatives are not
instances of underspecification. Specifying these by using alt would therefore
be insufficient. Instead, they are specified by the xalt operator (first introduced
in [HS03]) in order to capture alternative traces where an implementation must
be able to perform all alternatives.

sd DecideAppTime

:Client :AppSystem

appointmentSuggestion(time)

xalt yes()

appointmentMade()

no()

noAppointment()

Fig. 4. DecideAppTime

In Fig. 5, which gives a revised version of CancelAppointment from Fig. 1,
another use of xalt is demonstrated. In this case, xalt is used to model alternatives
where the conditions under which each of them may be chosen is not known.
This interaction specifies that if a client tries to cancel an appointment, he may
either get an error message or he may get a confirmation of the cancellation, after
which the system tries to schedule another appointment (in DecideAppTime). In
Sect. 3.2 we demonstrate how guards may be added as a means to constrain the
applicability of the two alternatives in this example.

A third use of xalt is to specify inherent nondeterminism, as in a coin toss
where both heads and tails should be possible outcomes. More examples, and a
discussion of the relationship between alt and xalt, may be found in [RHS05b]
and [RRS06].

The crucial question when specifying alternatives is: Do these alternatives
represent similar traces in the sense that implementing only one is sufficient? If
yes, use alt. Otherwise, use xalt.

Formally, the operands of an xalt result in distinct interaction obligations in
order to model the situation that they must all be possible for an implementa-
tion. On the other hand, alt combines interaction obligations in order to model
underspecification:

[[xalt [d1, . . . dm]]]
def
=

⋃

i∈[1,m]

[[di]] (4)

[[alt [d1, . . . , dm]]]
def
= {

⊎

{o1, . . . , om} | ∀i ∈ [1, m] : oi ∈ [[di]] } (5)

6

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

ref

DecideAppTime

xalt errorMessage()

appointmentCancelled()

Fig. 5. CancelAppointment revisited

where m is the number of interaction operands and the inner union of interaction
obligations,

⊎

, is defined as:
⊎

i∈[1,m]

(pi, ni)
def
= (

⋃

i∈[1,m]

pi ,
⋃

i∈[1,m]

ni) (6)

The difference between alt and xalt is also illustrated in Fig. 6, which is
an informal illustration of the semantics of Fig. 3. The dotted lines should be
interpreted as parentheses grouping the semantics of sub-interactions, and the
second seq-operand is the semantics of the referenced interaction DecideApp-
Time. In each interaction obligation of Fig. 6, every trace that is not positive is
inconclusive, as Fig. 3 gives no negative traces.

Every interaction using the STAIRS-operators except for infinite loop is
equivalent to an interaction having xalt as the top-level operator. This is because
xalt describes mandatory alternatives. If there are only finitely many alternatives
(which is the case if there is no infinite loop) they may be listed one by one. In
particular, we have that all of these operators distribute over xalt. For instance,
we have that the interaction alt [xalt [d1, d2], d3] is equivalent to the interaction
xalt [alt [d1, d3], alt [d2, d3]], and similarly for interactions with more than two
operands and for the other operators.

The pragmatics of alt vs xalt

– Use alt to specify alternatives that represent similar traces, i.e. to model
• underspecification.

– Use xalt to specify alternatives that must all be present in an implemen-
tation, i.e. to model
• inherent nondeterminism, as in the specification of a coin toss.
• alternative traces due to different inputs that the system must be

able to handle (as in Fig. 4);
• alternative traces where the conditions for these being positive are

abstracted away (as in Fig. 5).

7

appSugg(time)-yes-appMade appSugg(time)-no-noApp

needApp(date)

seq

=

needApp(date)-appSugg(time)-yes-appMade

needApp(hour)-appSugg(time)-yes-appMade

needApp(hour)

alt

xalt

appSugg(time)-yes-appMade appSugg(time)-no-noApp

needApp(date)

needApp(hour)

seq

=

needApp(date)-appSugg(time)-no-noApp

needApp(hour)-appSugg(time)-no-noApp

everything else everything else

everything else everything else

everything else

everything else everything else

everything else everything else

Fig. 6. Illustrating MakeAppointment

3.2 The Use of Guards

In Fig. 5, xalt was used in order to specify that the system should be able to
respond with either an error message or with the receipt message appointment-
Cancelled (followed by DecideAppTime), if a client wants to cancel an appoint-
ment. With the current specification, the choice between these alternatives may
be performed nondeterministically, but as suggested in the previous section, it
is more likely that there exist some conditions for when each of the alternatives

8

may be chosen. In Fig. 7 these conditions are made explicit by adding them to
the specification in the form of guards as a step in the development process.

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

ref

DecideAppTime

[else]

xalt [appointment < now + 24h]

errorMessage()

appointmentCancelled()

Fig. 7. CancelAppointment revisited

For the first alternative, the guard is used to specify that if the client wants to
cancel an appointment less than 24 hours in advance, he will get an error message.
In general, the guard else may be used as a short-hand for the conjunction of
the negation of all the other guards. This means that for the second alternative
of Fig. 7, the appointment will be cancelled and the system will try to schedule
a new appointment only if the appointment is at least 24 hours away.

Similarly, in Fig. 8, guards are added to the alt-construct of Fig. 3 in order
to constrain the situations in which each of the alternatives needApp(date) and
needApp(hour) is positive. The guards specify that the client may only ask for
an appointment at today or at a later date, or between the hours of 7 A.M. and
5 P.M. We recommend that one always makes sure that the guards of an alt-
construct are exhaustive. Therefore, Fig. 8 also adds an alternative where the
client asks for an appointment without specifying either date or hour. This al-
ternative has the guard true, and may always be chosen. As this example demon-
strates, the guards of an alt-construct may be overlapping. This is also the case
for xalt.

In order to capture guards and more general constraints in the semantics,
the semantics is extended with the notion of a state. A state σ is a total function
assigning a value (in the set V al) to each variable (in the set V ar). Formally,
σ ∈ V ar → V al. Semantically, a constraint is represented by the special event
check(σ), where σ is the state in which the constraint is evaluated:

[[constr(c)]]
def
= { ({〈check(σ)〉 | c(σ)}, {〈check(σ)〉 | ¬c(σ)}) } (7)

9

sd MakeAppointment

:Client :AppSystem

needApp(date)

[date ≥ today]

[7 ≤ hour ≤ 17]

alt [true]

needApp(hour)

ref

DecideAppTime

needApp()

Fig. 8. MakeAppointment revisited

The semantics of guarded xalt is defined by:

[[xalt [c1 → d1, . . . , cm → dm]]]
def
=

⋃

i∈[1,m]

[[seq [constr(ci), di]]] (8)

Notice that for all states, a constraint is either true and the trace 〈check(σ)〉
is positive, or the constraint is false and the trace 〈check(σ)〉 is negative. For
guarded xalt (and similarly for alt defined below), this has the consequence that a
guard must cover all possible situations in which the specified traces are positive,
since a false guard means that the traces described by this alternative are nega-
tive. When relating specifications with and without guards, an alt/xalt-operand
without a guard is interpreted as having the guard true. This interpretation,
together with the use of constr in the definition of guards, ensures that adding
guards to a specification (as in the examples above) is a valid refinement step as
will be explained in Sect. 4.

The semantics of guarded alt is defined by:

[[alt [c1 → d1, . . . , cm → dm]]]
def
= (9)

{
⊎

{o1, . . . , om} | ∀i ∈ [1, m] : oi ∈ [[seq [constr(ci), di]]] }

The UML 2.0 standard ([OMG05]) states that if all guards in an alt-construct
are false then the empty trace 〈〉 (i.e. doing nothing) should be positive. In
[RHS05b], we gave a definition of guarded alt which was consistent with the
standard. However, implicitly adding the empty trace as positive implies that
alt is no longer associative. For this reason, we have omitted this implicit trace
from definition (9).

Definition (9) is consistent with our general belief that everything which is
not explicitly described in an interaction should be regarded as inconclusive for

10

that diagram. If all guards are false, all of the described traces are negative and
the interaction has an empty set of positive traces. To avoid confusion between
our definition and that of UML, we recommend to always make sure that the
guards of an alt-construct are exhaustive. If desired, one of the alternatives may
be the empty diagram, skip, defining the empty trace as positive:

[[skip]]
def
= {({〈〉}, ∅)} (10)

The pragmatics of guards

– Use guards in an alt/xalt-construct to constrain the situations in which
the different alternatives are positive.

– Always make sure that for each alternative, the guard is sufficiently
general to capture all possible situations in which the described traces
are positive.

– In an alt-construct, make sure that the guards are exhaustive. If doing
nothing is valid, specify this by using the empty diagram, skip.

3.3 The Use of refuse, veto and assert

As explained in the introduction, interactions are incomplete specifications, spec-
ifying only example runs as opposed to the complete behaviour of the system.
In this setting, it is particularly important to specify not only positive, but also
negative traces, stating what the system is not allowed to do. In STAIRS, neg-
ative traces are defined by using one of the operators refuse, veto, or assert. The
operators refuse and veto are both used to specify that the traces of its operand
should be considered negative. They differ only in that veto has the empty trace
as positive, while refuse does not have any positive traces at all. The impor-
tance of this difference will be explained later in this section, after the formal
definitions. The assert operator specifies that only the traces in its operand are
positive and that all other traces are negative.

In the revised version of DecideAppTime given in Fig. 9, these three operators
are used in order to add negative traces to the specification in Fig. 4. Figure 9
also adds some positive traces via the loop-construct, which may be interpreted
as an alt between performing the contents of the loop 0, 1, 2, 3, or 4 times. For
a formal definition of loop, see [RHS05b].

Inside the loop, veto is used to specify that after the client has answered
no to the suggested appointment, the system should not send the message Ap-
pointmentMade before suggesting another appointment. In the first xalt-operand,
alt in combination with refuse is used to specify that the client should get the
receipt message AppointmentMade when he accepts the suggested appointment,
and that it would be negative if he instead got the message noAppointment. In
the second xalt-operand, assert is used to specify that the system should send
the message noAppointment after the client has answered with the final no, and
that no other traces are allowed. This is in contrast to the first xalt-operand,
which defines one positive and one negative trace, but leaves all other traces
inconclusive.

11

sd DecideAppTime

:Client :AppSystem

appointmentSuggestion(time)

loop {0...4}

no()

appointmentSuggestion(time)

xalt yes()

refuse

noAppointment()

appointmentMade()

no()

assert noAppointment()

veto appointmentMade()

alt

Fig. 9. DecideAppTime revisited

Formally, refuse and veto are defined by:

[[refuse [d]]]
def
= {(∅, p ∪ n) | (p, n) ∈ [[d]]} (11)

veto [d]
def
= alt [skip, refuse [d]] (12)

Both operators define that all traces described by its operand should be consid-
ered negative. The difference between refuse and veto is that while refuse has no
positive traces, veto has the empty trace as positive, meaning that doing nothing
is positive for veto. To understand the importance of this difference, it is useful
to imagine that for each lifeline, each interaction fragment is implemented as a
subroutine. Entering a new interaction fragment will then correspond to calling
the subroutine that implements this fragment. For an interaction fragment with
refuse as its main operator, no such subroutine may exist, as there are no positive
traces. Hence, the program fails to continue in such a case. However, an interac-
tion fragment with veto as its main operator, corresponds to an empty routine
that immediately returns and the program may continue with the interaction
fragment that follows.

12

The choice of operator for a concrete situation, will then depend on the
question: Should doing nothing be possible in this otherwise negative situation?
If yes, use veto. If no, use refuse.

Consider again Fig. 9. Here, veto is used inside the loop construct as send-
ing the message no (then doing nothing), and then sending AppointmentSugges-
tion(time) should be positive. On the other hand, refuse is used in the first xalt
operand, as we did not want to specify the message yes followed by doing nothing
as positive.

Using assert ensures that for each interaction obligation of its operand, at
least one of the described positive traces will be implemented by the final system,
as all inconclusive traces are redefined as negative. Formally:

[[assert [d]]]
def
= {(p, n ∪ (H \ p)) | (p, n) ∈ [[d]]} (13)

The pragmatics of negation

– To effectively constrain the implementation, the specification should in-
clude a reasonable set of negative traces.

– Use refuse when specifying that one of the alternatives in an alt-construct
represents negative traces.

– Use veto when the empty trace (i.e. doing nothing) should be positive,
as when specifying a negative message in an otherwise positive scenario.

– Use assert on an interaction fragment when all possible positive traces
for that fragment have been described.

3.4 The Use of seq

As explained in Sect. 2, the weak sequencing operator seq is the implicit com-
position operator for interactions, defined by the following invariants:

– The ordering of events within each of the operands is maintained in the
result.

– Events on different lifelines from different operands may come in any order.
– Events on the same lifeline from different operands are ordered such that an

event of the first operand comes before that of the second operand, and so
on.

Consider again the revised specification of CancelAppointment in Fig. 7. In
the second xalt-operand, the system sends the message appointmentCancelled to
the client, and subsequently the referenced interaction DecideAppTime is per-
formed. Here, the first thing to happen is that the system sends the message
AppointmentSuggestion to the client (as specified in Fig. 9).

As seq is the operator used for sequencing interaction fragments, this means
that in general no synchronization takes place at the beginning of an interaction
fragment, i.e. that different lifelines may enter the fragment at different points in
time. In the context of Fig. 7, this means that there is no ordering between the
reception of the message appointmentCancelled and the sending of the message

13

AppointmentSuggestion, in exactly the same way as there would have been no
ordering between these if the specification had been written in one single diagram
instead of using a referenced interaction.

In Fig. 10, traces are added to the specification of CancelAppointment in the
case where the client wants to cancel an appointment less than 24 hours before
it is supposed to take place.

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

ref

DecideAppTime

[else]

xalt

[appointment < now + 24h]

appointmentCancelled()

alt errorMessage()

appointmentCancelled()

ref Payment

refuse

appointmentCancelled()

Fig. 10. CancelAppointment revisited

The first alt-operand specifies that the system may give an error message (as
before). The second operand specifies that the sending of the message appoint-
mentCancelled alone is negative, while the third operand specifies that sending
the message appointmentCancelled and then performing (the positive traces of)
Payment (specified in Fig. 11) is positive.

This example demonstrates that a trace (e.g. appointmentCancelled followed
by Payment) is not necessarily negative even if a prefix of it (e.g. appointmentCan-
celled) is. This means that the total trace must be considered when categorizing
it as positive, negative or inconclusive. Another consequence is that every trace
which is not explicitly shown in the interaction should be inconclusive. For in-

14

sd Payment

:Client :AppSystem

pleasePay(amount,appointment)

assert

pay(cardData,amount,appointment)

paid(amount,appointment)

Fig. 11. Payment

stance, in Fig. 10 all traces where the message appointmentCancelled is followed
by something other than Payment, are still inconclusive.

The formal definition of seq was given in Sect. 2. As no synchronization takes
place at the beginning of each seq-operand, it follows from the definitions that
i.e. seq [d1, alt [d2, d3]] = alt [seq [d1, d2], seq [d1, d3]] and that loop {2} [d] =
seq [d, d] as could be expected.

The pragmatics of weak sequencing

– Be aware that by weak sequencing,
• a positive sub-trace followed by a positive sub-trace is positive.
• a positive sub-trace followed by a negative sub-trace is negative.
• a negative sub-trace followed by a positive sub-trace is negative.
• a negative sub-trace followed by a negative sub-trace is negative.
• the remaining trace combinations are inconclusive.

4 The Pragmatics of Refining Interactions

In a development process, specifications may be changed for several reasons,
including capturing new user requirements, giving a more detailed design, or
correcting errors. STAIRS focuses on those changes which may be defined as re-
finements. In this section, we explain some main kinds of refinement in STAIRS,
and demonstrate how each of the development steps taken in the example in
Sect. 3 are valid refinement steps.

Figure 12 illustrates how the different refinement notions presented in this
paper are related. Supplementing, narrowing and detailing are all special cases
of the general refinement notion. Limited refinement is a restricted version of
general refinement, which limits the possibility to increase the nondeterminism
required of an implementation. In Fig. 12, we have also illustrated what refine-
ment relation is used for each of the development steps in our running example.
For instance, the placement of 1 → 5 means that Fig. 5 is a supplementing and
general refinement of Fig. 1, but not a limited refinement.

15

General

refinement

Limited

refinement

1 → 5

5 → 7

3 → 8

4 → 9

7 → 10

8 → 15

11 → 17

15 → 19

Supplementing Narrowing

Detailing

Fig. 12. The refinement relations of STAIRS

In the discussion of each of the five refinement notions, we will refer to the
following definition of compositionality:

Definition 1 (Compositionality). A refinement operator is compositional
if it is

– reflexive: d d

– transitive: d d′ ∧ d′ d′′ ⇒ d d′′

– monotonic with respect to refuse, veto, (guarded) alt, (guarded) xalt and seq:

d d′ ⇒ refuse [d] refuse [d′]
d d′ ⇒ veto [d] veto [d′]
d1 d′1, . . . , dm d′m ⇒ alt [d1, . . . , dm] alt [d′1, . . . , d

′

m]
d1 d′1, . . . , dm d′m ⇒ xalt [d1, . . . , dm] xalt [d′1, . . . , d

′

m]
d1 d′1, . . . , dm d′m ⇒ seq [d1, . . . , dm] seq [d′1, . . . , d

′

m]

Transitivity enables the stepwise development of interactions, while monotonicity
is important as it means that the different parts of an interaction may be refined
separately.

4.1 The Use of Supplementing

As interactions are incomplete specifications typically describing only example
runs, we may usually find many possible traces that are inconclusive in a given
interaction obligation. By supplementing, inconclusive traces are re-categorized
as either positive or negative as illustrated for a single interaction obligation
in Fig. 13. Supplementing is an activity where new situations are considered,
and will most typically be used during the early phases of system development.
Examples of supplementing includes capturing new user requirements and adding
fault tolerance to the system.

16

Positive: p

Negative: n

Inconclusive: H \(p n)

Fig. 13. Supplementing of interaction obligations

DecideAppTime in Fig. 9 is an example of supplementing, as it adds both
positive and negative traces to the specification in Fig. 4. All traces that were
positive in the original specification, are still positive in the refinement. Another
example of supplementing is CancelAppointment in Fig. 10, which adds traces
to the specification in Fig. 7. Again, all traces that were positive in the original
specification remain positive in the refinement, and the negative traces remain
negative.

Formally, supplementing of interaction obligations is defined by:

(p, n) s (p′, n′)
def
= p ⊆ p′ ∧ n ⊆ n′ (14)

For an interaction with a set of interaction obligations as its semantics, we
require that each obligation for the original interaction must have a refining
obligation in the semantics of the refined interaction. This ensures that the
alternative traces (e.g. the inherent nondeterminism) required by an interaction
are also required by the refinement. Formally:

d s d′
def
= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o s o′ (15)

Supplementing is compositional as defined by Definition 1.

The pragmatics of supplementing

– Use supplementing to add positive or negative traces to the specification.
– When supplementing, all of the original positive traces must remain

positive and all of the original negative traces must remain negative.
– Do not use supplementing on the operand of an assert.

4.2 The Use of Narrowing

Narrowing means to reduce underspecification by redefining positive traces as
negative, as illustrated in Fig. 14. As for supplementing, negative traces must
remain negative in the refinement.

One example of narrowing, is adding guards to CancelAppointment in Fig. 7.
In the original specification in Fig. 5, we had for instance no constraint on the
alternative with the message appointmentCancelled, while in the refinement this
alternative is negative if it occurs less than 24 hours prior the appointment.

In general, adding guards to an alt/xalt-construct is a valid refinement through
narrowing. Seeing that an operand without a guard is interpreted as having true

17

Positive: p

Negative: n

Inconclusive: H \(p n)

Fig. 14. Narrowing of interaction obligations

as guard, this is a special case of a more general rule, stating that a valid refine-
ment may limit a guard as long as the refined condition implies the original one.
This ensures that all of the positive traces of the refinement were also positive
(and not negative) in the original specification.

Another example of narrowing is given in MakeAppointment in Fig. 15. Here,
the refuse-operator is used to specify that the client may not ask for an appoint-
ment at a specific hour. This means that even though these traces were positive
in the specification in Fig. 8, they are now considered negative in the sense that
asking for a specific hour is not an option in the final implementation.

sd MakeAppointment

:Client :AppSystem

needApp(date)

[date ≥ today]

alt [true]

needApp(hour)

ref

DecideAppTime

needApp()

refuse

Fig. 15. MakeAppointment revisited

Formally, narrowing of interaction obligations is defined by:

(p, n) n (p′, n′)
def
= p′ ⊆ p ∧ n′ = n ∪ p \ p′ (16)

and narrowing of interactions by:

d n d′
def
= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o n o′ (17)

18

Narrowing is compositional as defined by Definition 1. In addition, the narrowing
operator n is monotonic with respect to assert.

The pragmatics of narrowing

– Use narrowing to remove underspecification by redefining positive traces
as negative.

– In cases of narrowing, all of the original negative traces must remain
negative.

– Guards may be added to an alt-construct as a legal narrowing step.
– Guards may be added to an xalt-construct as a legal narrowing step.
– Guards may be narrowed, i.e. the refined condition must imply the orig-

inal one.

4.3 The Use of Detailing

Detailing means reducing the level of abstraction by decomposing one or more
lifelines, i.e. by structural decomposition. As illustrated in Fig. 16, positive traces
remain positive and negative traces remain negative in relation to detailing. The
only change is that the traces of the refinement may include more details, for
instance internal messages that are not visible in the more abstract specification.

Positive: p

Negative: n

Inconclusive: H \(p n)

Positive: p

Negative: n

Inconclusive: H \(p n)

Abstract:

Concrete:

Fig. 16. Detailing of interaction obligations

Figure 17 is a detailing refinement of Payment in Fig. 11. In this case, the
lifeline AppSystem is decomposed into the two lifelines Calendar, taking care of
appointments, and Billing, handling payments. This decomposition has two ef-
fects with respect to the traces of the original specification. First of all, internal
communication between Billing and Calendar is revealed (i.e. the messages need-
Pay and paymentReceived), and secondly, Billing has replaced AppSystem as the
sender/receiver of messages to and from the client. In general, some of the client’s
messages could also have been sent to/from Calendar.

We say that an interaction is a detailing refinement if we get the same positive
and negative traces as in the original specification when both hiding the internal

19

sd Payment

:Client :Billing

pleasePay(amount,appointment)

assert

pay(cardData,amount,appointment)

paid(amount,appointment)

:Calendar

needPay(appointment)

paymentReceived(appointment)

Fig. 17. Payment with decomposition

communication in the decomposition and allowing for a possible change in the
sender/receiver of a message. Formally, the lifeline decomposition will in each
case be described by a mapping L from concrete to abstract lifelines. For the
above example, we get

L = ID [Billing 7→ AppSystem][Calendar 7→ AppSystem]

where ID is the identity mapping, and L[A 7→ B] is the mapping L updated so
that A maps to B.

Formally, we need to define a substitution function subst(t, L), which sub-
stitutes lifelines in the trace t according to the mapping L. First, we define
substitution on single events:

subst(e, L)
def
=

{

k(s, L(tr), L(re)) if e = k(s, tr, re), k ∈ {!, ?}
e otherwise

(18)

In general, a trace t may be seen as a function from indices to events. This trace
function may be represented as a mapping where each element i 7→ e indicates
that e is the i’th element in the trace, and we define the substitution function
on traces by:

subst(t, L)
def
= {i 7→ subst(t[i], L) | i ∈ [1 . . .#t]} (19)

where #t and t[i] denotes the length and the i’th element of the trace t, respec-
tively.

We then define an abstraction function abstr(t, L, E), which transforms a
concrete trace into an abstract trace by removing all internal events (with respect
to L) that are not present in the set of abstract events E:

abstr(t, L, E)
def
= {e ∈ E | tr.e 6= re.e ∨ e ∈ E}s (subst(t, L)) (20)

where E denotes the set of all events, tr.e and re.e denote the transmitter and
the receiver of the event e, and As t is the trace t with all events not in the set

20

A removed. We also overload abstr to trace sets in standard pointwise manner:

abstr(s, L, E)
def
= {abstr(t, L, E) | t ∈ s} (21)

Formally, detailing of interaction obligations is then defined by:

(p, n) L,E
c (p′, n′)

def
= abstr(p, L, E) = abstr(p′, L, E) ∧ (22)

abstr(n, L, E) = abstr(n′, L, E) (23)

where L is a lifeline mapping as described above, and E is a set of abstract
events.

Finally, detailing of interactions is defined by:

d L,E
c d′

def
= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o L,E

c o′ (24)

Detailing is compositional as defined by Definition 1. In addition, the detailing
operator L,E

c is monotonic with respect to assert.

The pragmatics of detailing

– Use detailing to increase the level of granularity of the specification by
decomposing lifelines.

– When detailing, document the decomposition by creating a mapping
L from the concrete to the abstract lifelines.

– When detailing, make sure that the refined traces are equal to the origi-
nal ones when abstracting away internal communication and taking the
lifeline mapping into account.

4.4 The Use of General Refinement

Supplementing, narrowing and detailing are all important refinement steps when
developing interactions. Often, it is useful to combine two or three of these
activites into a single refinement step. We therefore define a general refinement
notion, of which supplementing, narrowing and detailing are all special cases.
This general notion is illustrated for one interaction obligation in Fig. 18.

As an example of general refinement, MakeAppointment in Fig. 8 combines
supplementing and narrowing in order to be a refinement of the interaction in
Fig. 3. Adding an operand to the alt-construct is an example of supplementing,
and is not covered by the definition of narrowing. On the other hand, adding
guards is an example of narrowing, and is not covered by the definition of sup-
plementing. For this to be a valid refinement step, we therefore need the general
refinement notion, formally defined by:

d L,E
r d′

def
= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o L,E

r o′ (25)

where general refinement of interaction obligations is defined by:

(p, n) L,E
r (p′, n′)

def
= abstr(n, L, E) ⊆ abstr(n′, L, E) ∧ (26)

abstr(p, L, E) ⊆ abstr(p′, L, E) ∪ abstr(n′, L, E)

21

Positive: p

Negative: n

Inconclusive: H \(p n)

Positive: p

Negative: n

Inconclusive: H \(p n)

Abstract:

Concrete:

Fig. 18. General refinement of interaction obligations

Note that L may be the identity mapping, in which case the refinement
does not include any lifeline decompositions (as in the case of MakeAppointment
described above). Also, E may be the set of all events, E , meaning that all events
are considered when relating the traces of the refinement to the original traces.
General refinement is compositional as defined by Definition 1.

Combining narrowing and supplementing may in general result in previously
inconclusive traces being supplemented as positive, and the original positive
traces made negative by narrowing. In order to specify that a trace must be
present in the final implementation, and not removed by narrowing, we need to
specify an obligation with this trace as the only positive, and all other traces as
negative. The only legal refinement of this operand will then be redefining the
trace as negative (by narrowing), leaving an empty set of positive traces and a
specification that is not implementable.

The pragmatics of general refinement

– Use general refinement to perform a combination of supplementing, nar-
rowing and detailing in a single step.

– To define that a particular trace must be present in an implementation
use xalt and assert to characterize an obligation with this trace as the
only positive one and all other traces as negative.

4.5 The Use of Limited Refinement

Limited refinement is a special case of general refinement, with less possibilities
for adding new interactions obligations. By definition (25) of general refinement,
new interaction obligations may be added freely, for instance in order to increase
the nondeterminism required of an interaction. One example of this is Cance-
lAppointment in Fig. 5, which is a refinement of the interaction given in Fig. 1.
While the original specification only gave one interaction obligation with two
positive traces, the refinement gives both this interaction obligation and also
two new interaction obligations that are not refinements of the original one.

22

At some point during the development process, it is natural to limit the pos-
sibilities for creating new interaction obligations with fundamentally new traces.
This is achieved by limited refinement, which has the additional requirement that
each obligation of the refined interaction must have a corresponding obligation
in the original interaction.

In STAIRS, stepwise development of interactions will be performed by first
using general refinement to specify the main traces of the system, before switch-
ing to limited refinement which will then be used for the rest of the development
process. Typically, but not necessarily, assert on the complete specification will
be used at the same time as switching to limited refinement. This ensures that
new traces may neither be added to the existing obligations, nor be added to the
specification in the form of new interaction obligations. Note that using assert
on the complete specification is not the same as restricting further refinements
to be limited, as assert considers each interaction obligation separately.

Note also that limited refinement allows a refinement to have more interac-
tion obligations than the original specification, as long as each obligation is a
refinement of one of the original ones. One example is given in Fig. 19, which
is a limited refinement of MakeAppointment in Fig. 15. In Fig. 19, alt has been
replaced by xalt in order to specify that the client must be offered the choice
of specifying a preferred date when asking for an appointment, while assert has
been added to specify that there should be no other alternatives. In this partic-
ular case, we have not included the referenced interaction DecideAppTime in the
scope of the assert-construct, as we want the possibility of supplementing more
traces here. Transforming alt to xalt means in this example that each of the
interaction obligations for Fig. 15 (there are two due to the xalt in DecideApp-
Time) has two refining obligations in the semantics of Fig. 19. As all obligations
in Fig. 19 have a corresponding obligation in Fig. 15, this is a valid instance of
limited refinement.

Formally, limited refinement is defined by:

d
L,E

l d′
def
= d L,E

r d′ ∧ ∀o′ ∈ [[d′]] : ∃o ∈ [[d]] : o L,E
r o′ (27)

Limited refinement is compositional as defined by Definition 1.

The pragmatics of limited refinement

– Use assert and switch to limited refinement in order to avoid fundamen-
tally new traces being added to the specification.

– To specify globally negative traces, define these as negative in all
operands of xalt, and switch to limited refinement.

5 Related Work

The basis of STAIRS is interactions and sequence diagrams as defined in UML
2.0 [OMG05]. Not all of the UML 2.0 operators are defined by STAIRS, but we
believe that those covered are the most useful ones in practical system devel-
opment. The STAIRS operator xalt is added to this set as UML 2.0 does not

23

sd MakeAppointment

:Client :AppSystem

needApp(date)

[date ≥ today]

xalt [true]

ref

DecideAppTime

needApp()

assert

Fig. 19. MakeAppointment revisited

distinguish between alternatives that represent underspecification and alterna-
tives that must all be present in an implementation, but uses the alt operator in
both cases.

For guarded alt, we have in our semantics chosen not to follow UML 2.0
in that the empty trace is positive if no guard is true. Instead, we recommend
to make all specifications with guarded alt so that the guards are exhaustive,
ensuring that this will never be a problem in practice. The UML 2.0 standard
[OMG05] is vague with respect to whether the traces with a false guard should
be negative or not. As we have argued, classifying these as negative is fruitful as
adding guards to a specification will then be a valid refinement step.

For defining negative behaviour, UML 2.0 uses the operators neg and assert.
In [RHS05a], we investigated several possible formal definitions of neg, trying to
capture how it was being used on the basis of experience. However, we concluded
that one operator for negation is not sufficient, which is why STAIRS defines
the two operators refuse and veto to be used instead of neg.

Decomposition in UML 2.0 is the same as detailing in STAIRS, but with
a more involved syntax using the concepts of interaction use and gates. With
the UML 2.0 syntax, the mapping from concrete to abstract lifelines is given
explicitly in the diagram.

In [GS05], Grosu and Smolka give semantics for UML sequence diagrams in
the form of two Büchi automata, one for the positive and one for the negative
behaviours. Refinement then corresponds to language inclusion. Their refine-
ment notion is compositional and covers supplementing and narrowing, but not
detailing. All alternatives are interpreted as underspecification, and there is no
means to capture inherent nondeterminism as with xalt in STAIRS.

24

In [CK04], the semantics of UML interactions are defined by the notions
of positive and negative satisfaction. This approach is in many ways similar
to STAIRS, but does not distinguish between underspecification and inherent
nondeterminism. Their definition of the UML operator neg corresponds to the
STAIRS operator veto, where the empty trace is taken as positive. [CK04] defines
that for alternatives specified by alt, a trace is negative only if it is negative in
both operands. Also, a trace is regarded as negative if a prefix of it is described
as negative, while we in STAIRS define it as inconclusive as long as the complete
trace is not described by the diagram.

Another variant of sequence diagrams is Message Sequence Charts (MSCs)
[ITU99]. The important distinction between different kinds of alternatives is
not made for MSCs either. As in our approach, a trace is negative if its guard
is false in an MSC. Refinement of MSCs is considered by Krüger in [Krü00].
Narrowing in STAIRS corresponds closely to property refinement, while detailing
corresponds to structural refinement. As there is no notion of inconclusive traces
in [Krü00], refinement in the form of supplementing is not considered.

Live Sequence Charts (LSCs) [DH99,HM03] is an extension of MSCs, where
charts, messages, locations and conditions are specified as either universal (manda-
tory) or existential (optional). An existential chart specifies a behaviour (one or
more traces) that must be satisfied by at least one system run, while a universal
chart is a specification that must be satisfied at all times. As a universal chart
specifies all allowed traces, this is not the same as inherent nondeterminism in
STAIRS, which only specifies some of the traces that must be present in an
implementation. In contrast to STAIRS and UML 2.0, LSC synchronizes the
lifelines at the beginning of each interaction fragment. This reduces the set of
possible traces, and makes it easier to implement their operational semantics.

6 Conclusions and Future Work

In this paper we have focused on giving practical guidelines for the use of STAIRS
in the development of interactions. For each concept, these guidelines have been
summarized in paragraphs entitled “The Pragmatics of. . . ”. We have focused
on situations in which STAIRS extends or expands interactions as defined in
UML 2.0 [OMG05]. This includes how to define negative behaviours and how
to distinguish between alternatives that represent the same behaviour and alter-
natives that must all be present in an implementation. STAIRS is particularly
concerned with refinement, and we have given guidelines on how to refine in-
teractions by adding behaviours (supplementing), removing underspecification
(narrowing) or by decomposition (detailing).

In [RHS05b], we gave a brief explanation of what it means for an implemen-
tation to be correct with respect to a STAIRS specification. We are currently
working on extending this work, leading to “the pragmatics of implementations”.

The research on which this paper reports has been partly carried out within
the context of the IKT-2010 project SARDAS (15295/431). We thank the other
members of the SARDAS project for useful discussions related to this work. We

25

thank Iselin Engan for helpful comments on the final draft of this paper. We also
thank the anonymous reviewers for constructive feedback.

References

[CK04] Mara Victoria Cengarle and Alexander Knapp. UML 2.0 interactions: Se-
mantics and refinement. In Proc. 3rd Int. Wsh. Critical Systems Develop-
ment with UML (CSDUML’04), Technical report TUM-I0415, pages 85–99.
Institut für Informatik, Technische Universität München, 2004.

[DH99] Werner Damm and David Harel. LSC’s: Breathing life into message se-
quence charts. In Proc. 3rd IFIP Int. Conf. on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’99), 1999.

[GS05] Radu Grosu and Scott A. Smolka. Safety-liveness semantics for UML se-
quence diagrams. In Proc. 5th Int. Conf. on Applications of Concurrency
to System Design (ACSD’05), pages 6–14, 2005.

[HHRS05a] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil
Stølen. STAIRS towards formal design with sequence diagrams. Journal
of Software and Systems Modeling, 22(4):349–458, 2005.

[HHRS05b] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil
Stølen. Why timed sequence diagrams require three-event semantics. In
Scenarios: Models, Transformations and Tools, volume 3466 of LNCS,
pages 1–25. Springer, 2005.

[HM03] David Harel and Rami Marelly. Come, Let’s Play.: Scenario-Based Pro-
gramming Using LSCs and the Play-Engine. Springer, 2003.

[HS03] Øystein Haugen and Ketil Stølen. STAIRS — Steps to analyze interactions
with refinement semantics. In Proc. International Conference on UML
(UML’2003), volume 2863 of LNCS, pages 388–402. Springer, 2003.

[ITU99] International Telecommunication Union. Recommendation Z.120 — Mes-
sage Sequence Chart (MSC), 1999.

[Krü00] Ingolf Heiko Krüger. Distributed System Design with Message Sequence
Charts. PhD thesis, Technische Universität München, 2000.

[Kru04] Philippe Kruchten. The Rational Unified Process. Addison-Wesley, third
edition, 2004.

[OMG05] Object Management Group. UML Superstructure Specification, v. 2.0, doc-
ument: formal/05-07-04 edition, 2005.

[RHS05a] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. How to trans-
form UML neg into a useful construct. In Norsk Informatikkonferanse
NIK’2005, pages 55–66. Tapir, 2005.

[RHS05b] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. Refining UML
interactions with underspecification and nondeterminism. Nordic Journal
of Computing, 12(2):157–188, 2005.

[RRS06] Atle Refsdal, Ragnhild Kobro Runde, and Ketil Stølen. Underspecifica-
tion, inherent nondeterminism and probability in sequence diagrams. In
Proc. 8th IFIP Int. Conf. on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’06), volume 4037 of LNCS, pages 138–155.
Springer, 2006.

26

