
Universitetet i Oslo

Institutt for informatikk

Time Exceptions in

Sequence Diagrams

Oddleif Halvorsen,
Ragnhild Kobro

Runde, Øystein
Haugen

Research Report 344
ISBN 82-7368-300-1
ISSN 0806-3036

Revised March 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30806815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Time Exceptions in Sequence Diagrams

Oddleif Halvorsen1, Ragnhild Kobro Runde2, Øystein Haugen2

1 Software Innovation
2 Department of Informatics, University of Oslo
{oddleif|ragnhilk|oysteinh}@ifi.uio.no

Abstract. UML sequence diagrams partially describe a system. We
show how the description may be augmented with exceptions triggered by
the violation of timing constraints and compare our approach to those
of the UML 2.1 simple time model, the UML Testing Profile and the
UML profile for Schedulability, Performance and Time. We give a for-
mal definition of time exceptions in sequence diagrams and show that
the concepts are compositional. An ATM example is used to explain and
motivate the concepts.

Keywords: specification, time constraints, exception handling, formal se-
mantics, refinement.

1 Introduction

UML sequence diagrams [9] are a useful vehicle for specifying communication
between different parts of the system. A sequence diagram specifies a set of
positive traces and a set of negative traces. A trace is a sequence of events,
representing a system run. The positive traces represent legal behaviors that the
system may exhibit, while the negative traces represent illegal behaviors that
the system should not exhibit.

Timing information may be included in the diagram as constraints. These
constraints may refer to either absolute time points (e.g. the timing of single
events) or durations (e.g. the time between two events). The described behavior
is negative if one or more time constraints are violated.

In practice, it may often be impossible to ensure that a time constraint is
never violated, for instance when the constrained behavior involves communica-
tion with the environment. Usually, a sequence diagram does not describe what
should happen in these exceptional cases. In this paper we demonstrate how the
specification may be made more complete by augmenting the sequence diagram
with exceptions that handle the violation of time constraints. The ideas behind
our approach originate from [2], which treats exceptions triggered by wrong or
missing data values in the messages.

Time violations are exceptional situations that are not supposed to happen
very often. Modeling violation of time constraints as exceptions rather than using
the alt-operator for specifying alternative behaviors, has the advantage that

– specifying the exceptional behavior separately from ordinary/expected be-
havior makes the diagrams simpler and more readable,

– exceptional behavior can easily be added to normal behavior in separate
exception diagrams.

A single event may violate a time constraint by occurring too early, too late
or never at all. All three situations will result in an exception, but the exact
exception handling to be performed will typically be very different depending on
the nature of the violation. Here we focus on the last case, where an event has
not occurred within the given time limit and we therefore assume that it will
not occur at all. If the event for some reason occurs at some later point it should
be treated as another exception.

2 Background

In this section we motivate our work by presenting state of the art regarding
timing constraints in UML. The main conclusion may be summarized as fol-
lows: Both the UML 2.1 simple time model (Sect. 2.1) and the UML profile for
Schedulability, Performance and Time (Sect. 2.2) introduce concepts and nota-
tions for defining time constraints, but do not consider what should happen in
case of violations. TimedSTAIRS (Sect. 2.3) distinguishes between the reception
and the consumption of a message, but being based on UML 2.1 simple time
model, TimedSTAIRS does not consider violations either. The default concept
of UML Testing Profile (Sect. 2.4) and our previous work on exception han-
dling (Sect. 2.5) consider violation of constraints, but mainly regarding wrong
or missing data values, and not time constraint violations.

2.1 The UML 2.1 Simple Time Model

UML 2.1 [9] includes a simple time model intended to define a number of concepts
relating to timing constraints. In general the semantics of the timing constraints
follow the general interpretation of constraints in UML: “A Constraint repre-
sents additional semantic information attached to the constrained elements. A
constraint is an assertion that indicates a restriction that must be satisfied by a
correct design of the system.” Furthermore the timing constraints always refer
to a range of values, an interval. “All traces where the constraints are violated
are negative traces (i.e., if they occur in practice the system has failed).” Some
notation is introduced to define such interval time constraints and we apply this
notation in this paper. UML 2.1 only states that when the constraints are vio-
lated the system is in error. Exceptions triggered by time constraint violations
are not considered.

2.2 UML Profile for Schedulability, Performance and Time

The UML profile for Schedulability, Performance and Time Specification [7] is a
profile based on UML 1.4 [6] describing in great detail concepts relating to timely

2

matters. The profile, hereafter referred to as SPT, will have to be updated to
UML 2.1. There is now ongoing work to upgrade the real time profile under the
name MARTE.

SPT introduces a large number of concepts. They represent most often prop-
erties of behavioral units needed for their scheduling and for performance anal-
ysis. Exceptions are not mentioned at all. By introducing concepts that allow
to define “timing marks”, it is possible to describe constraints on these timing
marks, and in principle express time and duration constraints similar to what
is the case with UML 2.1 simple time model. SPT allows constraints to be ex-
pressed on a large number of properties having been declared on behavioral units,
but it never considers what happens if the constraint is not met. Implicitly this
means that if the constraint is not met, the system is in complete failure.

2.3 TimedSTAIRS

TimedSTAIRS [4] is an approach to the compositional development of timed
sequence diagrams. With time constraints, we argue that it is important to know
whether a given constraint applies to the reception or the consumption of the
message. Hence, in [4] we introduce a three-event semantics for timed sequence
diagrams. In some cases, the time constraint should apply to the receiving of the
message, while it in other situations should apply to the consumption.

In order to make a graphical distinction between reception and consump-
tion, [4] uses a double arrow for reception and the standard single arrow for
consumption. We will follow this convention in our examples. If only the con-
sumption event is present in the diagram, the reception event is taken implicitly,
while if only the reception event is present, the implicit consumption event may
or may not take place.

In TimedSTAIRS, the semantics of a sequence diagram is a set of positive
(i.e. legal) behaviors and a set of negative (i.e. illegal) behaviors. All traces that
are not described in the diagram are said to be inconclusive. These may later
supplement either the positive or the negative traces to refine the specification.
Please see Sect. 4 for a more precise semantics.

2.4 UML Testing Profile — Default Concept

The U2TP (UML Testing Profile) [8] introduces the notion of Defaults that
aims to define additional behavior when a constraint is broken. The notion of
Defaults come from TTCN (Testing and Test Control Notation) [1] where it is
used in a more imperative sense than sequence diagrams. In the UML Testing
Profile the semantics is given by an elaborate transformation algorithm that in
principle produces the traces of the main description combined with the Defaults
on several levels.

However, U2TP says little about the semantics of defaults triggered by the
violation of time constraints. The idea behind the defaults on different levels is
that even the notoriously partial interactions are made complete and actually
describing all behaviors. But the U2TP definition is not adequately precise in

3

this matter and there are no convincing examples given to explain what happens
when a time constraint is violated.

2.5 Proposed Notation for Exceptions in Sequence Diagrams

In [2] we introduce notation for exceptions in sequence diagrams. The constraints
that are violated are always on data values at the event associated with the
exception. Violation of time constraints is not considered. The semantics of the
behavior including the exceptions are given by a transformation procedure quite
similar to that of U2TP. The idea is that supplementing traces are defined in
the exception starting from the prefix of traces leading up to a triggering event.

The other novelty of our approach in [2] is that it suggests a scheme of
dynamic gate matching that makes it possible to define exceptions independently.
That idea is orthogonal to what we try to convey in this paper.

3 Time Exceptions in the ATM Example

An example with an Automatic Teller Machine (ATM) shows how time excep-
tions supplement the description and make the specification more complete and
comprehensive without losing sight of the normal scenarios. The ATM example
is based on the case from [2].

3.1 The Normal Flow

The normal flow refers to a happy day scenario when everything goes right. We
show the use of an ATM to withdraw money. The user communicates with an
ATM, which in turn communicates with the Bank.

Withdrawal in Fig. 1 specifies that the user is expected to insert a card and
enter a four digit pin, whereas the ATM is to send the pin to the bank for
validation. While the bank is validating the pin, the ATM asks the user for the
amount to withdraw. If a valid pin is given, the bank will return OK. Then the
ATM orders the Bank to withdraw the money from the account and gives the
cash and the card to the user.

EnterPin in Fig. 1 specifies how the user gives the ATM the four digit pin.
The loop(n) construct may be viewed as a syntactical shorthand for duplicating
the contents of the loop n times. An interaction use (here: referring EnterPin)
means the same as an inclusion of a fragment equal to the referred sequence
diagram.

This specification is not very robust, and cannot serve as a sufficient spec-
ification for implementation. What if the user enters a wrong pin, the ATM is
out of money, the user’s account is empty or the ATM loses contact with the
bank? We argue for the need to handle exceptions, even though sequence dia-
grams will always be partial description that are not supposed to cover every
possible trace. Still, we aim at making the diagrams more complete, focusing
on the important functionality of the system. Another goal is to make a clearer
separation of normal and exceptional behavior and thus increase readability.

4

:Bank:User :ATM

Code(cid, pin)

ref

EnterPin

Cardid(cid)

msg(”Select amount”)

Withdraw(amount)

Card

Money(amount)

Amount(amount)

sd Withdrawal sd EnterPin

:User :ATM

msg(”Enter pin”)

Digit

loop(4)

{0..5}

OK(maxAmount)

Fig. 1. Specification of withdrawal and entering a pin

3.2 Applying Time Exceptions to the ATM

Sequence diagrams are often filled with various constraints, but they seldom say
much about what to do if a constraint breaks. Hence the system has completely
failed if a constraint is broken. This is less expressive than desired. In order to
make the specification more robust, we will add time exceptions to the ATM case.
A time exception may be that the user for some reason leaves before completing
the transaction, or that the bank spends too long time to validate the given pin.

As mentioned, time violations are of three kinds, either the event arrives too
early, too late or never. Here we assume that if an event has not occurred within
the specified constraint, it will never happen. If the event for some reason occurs
after the constraint was violated it should be treated as another exception.

The semantics of time constraints builds on timestamps. We assume that the
running system performs some kind of surveillance of the system, to evaluate the
constraints. Intuitively, this means that we consider time constraints conceptu-
ally to behave like alarm clocks. If the associated event is too late the alarm goes
off and the exception handler is triggered.

3.3 Time Exceptions in EnterPin

We present the notation by applying a time exception to the EnterPin diagram.
An exception occurs when the user enters less than four digits or that the digits
for some reason is not received by the ATM. If we do not handle this, the ATM
will not be ready when the next user arrives. We need a way to decide whether
the user has left, and then take the card from the card reader and store it some
place safe before canceling the user’s session.

In EnterPin in Fig. 2 we have added a time constraint stating that if the
ATM has not received all the digits within the specified time, the exception
UserLeftCard will fire. The time constraint itself is initialized on the send event
on msg, and attached to the bottom of the loop fragment. Attaching it to the

5

bottom of the loop fragment indicates that the time constraint must hold for
the last event, and hence all the preceding ones as well.

sd UserLeftCard

:User :ATM

msg(”Service canceled.”)

terminate

sd EnterPin

:User :ATM

msg(”Enter pin”)

Digit

loop(4)

{0..5}

Exception

UserLeftCard

Fig. 2. EnterPin with time exception

UserLeftCard in Fig. 2 shows how the UserLeftCard exception is handled. In
the case that the user leaves the ATM before proper completion of the service,
the ATM sends a message stating that the service was canceled. By stating
terminate we mean that the service, withdrawal of money, is to terminate — not
the whole ATM. This will be explained in more detail below.

3.4 Time Exceptions in Withdrawal

In Fig. 3 we apply time exceptions to a more complex example to highlight some
challenging situations.

Notice that the ATMPinValidation exception uses three-event semantics as
described in TimedSTAIRS (see Sect. 2.3). This states that the message only
needs to be received in the message buffer within the specified time constraint
and not consumed. The reason for this time constraint is mainly to make sure
that we do not lose contact with the bank during the request.

Fig. 4 specifies how an ATMPinValidationTimeout exception is handled by
the ATM and the Bank. The exception is triggered if the ATM does not receive
the result of the pin validation within the specified time. Our first exceptional
reaction is to repeat the request to the Bank. If the response from the bank again
fails to appear within the given time, the ATMCancel exception is triggered.

Fig. 4 illustrates that an exception may end with return or with terminate.
While return means a perfect recovery back to the original flow of events, termi-

nate means that the service should be terminated gracefully. Termination con-
cludes the closest invoker declaring catch as shown in Fig. 3. If neither return

nor terminate is given, return is assumed. If no catch is found, the system will
not continue.

The events of a sequence diagram may in relation to an exception trigger be
divided in three groups. First there are the events that have occurred before the
trigger. Second we have events that must occur after the exception, and third

6

:Bank:User :ATM

Code(cid, pin)

Cardid(cid)

msg(”Select amount”)

Withdraw(amount)

{0..3}

Card

Money(amount)

OK(maxAmount)

Amount(amount)

sd Withdrawal catch

ref
EnterPin

Exception

ATMPinValidationTimeout

Fig. 3. Withdrawal with time exception

sd ATMPinValidationTimeout

card

:ATM :Bank

Code(cid, pin)

{0..3}

Exception

ATMCancel

OK(maxAmount)

sd ATMCancel

:User :ATM

Msg(”Bank timeout”)

terminate

return

Fig. 4. Handling of pin validation timeout on the ATM

the events enabled but not executed at the trigger. Such enabled events may
happen in parallel with the exception handling.

If we apply this to Withdrawal, Fig. 3, we notice that the ATM must at
least send a code for validation to the bank before the timeout event may occur.
Actually the exception may only occur more than three time units after the
sending of the validation request. That is, before the ATMPinValidationTimeout
may occur the user must have given a card, entered the pin, the ATM must
have sent the pin for validation and three time units must have elapsed. After a
possible recovery from the ATMPinValidationTimeout exception we can continue
with sending the withdrawal message and returning the card and money.

The challenging part is how to handle the selection of amount if an exception
occurs. Since these events are enabled they may happen in parallel with the
exception. That is because the user is outside the ATMs sphere of control. We
have three separate lifelines (User, ATM and Bank) that each communicates
with the others through messages. Each lifeline in this distributed environment

7

is considered autonomous meaning that they are independent processes. We may
therefore run the exception handling in parallel with other enabled events.

By enabled events we mean events that may happen regardless of whether
the exception occurs or not. In the ATM example, an enabled event is the con-
sumption of msg(“Select amount”), and events only depending on that (here:
user sending Amount). These events are outside the control of the exception
handling, and must be allowed to continue. An example of a non-enabled event
is the sending of Money from the ATM. This event can never be sent before the
OK message is received.

4 The Formal Semantic Domain of Sequence Diagrams

In this section we briefly recount the main parts of the semantics of timed se-
quence diagrams as defined in [4]. In Sect. 5 we give our proposal for how this
semantics may be extended to handle time exceptions.

Formally, we use denotational trace semantics in order to capture the meaning
of sequence diagrams. A trace is a sequence of events, representing one run of
the system. As explained in Sect. 2.3, we have three kinds of events: the sending,
reception and consumption of a message, denoted by !, ∼ and ?, respectively. A
message is a triple (s, tr, re) consisting of a signal s (the content of the message),
a transmitter tr and a receiver re. The transmitter and receiver are lifelines, or
possibly gates. (For a formal treatment of gates, see [5].)

Each event in the sequence diagram has a unique timestamp tag to which
real timestamps will be assigned. Time constraints are expressed as logical
formulas with these timestamp tags as free variables. Formally, an event is
a triple (k, m, t) of a kind k (sending, reception or consumption), a message
m and a timestamp tag t. As an example, EnterPin in Fig. 2 consists of six
events: (!, m, t1), (∼, m, t2), (?, m, t3), (!, d, t4), (∼, d, t5) and (?, d, t6) where
m = (msg(Enterpin), ATM, User) and d = (Digit, User, ATM). Notice that
in Fig 2 the reception events are implicit, meaning that they may happen at
any time between the corresponding send and receive events. The given time
constraint may be written as t6 ≤ t1 + 5.

H denotes the set of all well-formed traces. For a trace to be well-formed, it
is required that

– for each message, the send event occurs before the receive event if both events
are present in the trace.

– for each message, the receive event occurs before the consumption event if
both events are present in the trace.

– the events in the trace are ordered by time.

E denotes the set of all syntactic events, and [[E]] is the set of all correspond-
ing semantical events with real timestamps assigned to the tags:

[[E]]
def
= {(k, m, t 7→ r) | (k, m, t) ∈ E ∧ r ∈ R} (1)

8

Parallel composition s1 ‖ s2 of two trace-sets is the set of all traces such
that all events from one trace in s1 and one trace in s2 are included (and no
other events), and the ordering of events from each of the traces is preserved.
Formally:

s1 ‖ s2

def
= {h ∈ H | ∃p ∈ {1, 2}∞ : (2)

π2(({1} × [[E]]) T© (p, h)) ∈ s1 ∧ π2(({2} × [[E]]) T© (p, h)) ∈ s2}

The definition makes use of an oracle, the infinite sequence p, to determine the
order in which the events from each trace are sequenced. π2 is a projection
operator returning the second element of a pair, and T© is an operator filtering
pairs of sequences with respect to pairs of elements.

Weak sequencing, s1 % s2, is the set of all traces obtained by selecting one
trace h1 from s1 and one trace h2 from s2 such that on each lifeline, the events
from h1 are ordered before the events from h2:

s1 % s2

def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h↾ l = h1 ↾ l ⌢ h2 ↾ l} (3)

where L is the set of all lifelines, ⌢ is the concatenation operator on sequences,
and h↾ l is the trace h with all events not taking place on the lifeline l removed.

Time constraint keeps only traces that are in accordance with the constraint:

s ≀ C
def
= {h ∈ s | h |= C} (4)

where h |= C holds if the timestamps in h does not violate C.
The semantics [[d]] of a sequence diagram d is given as a pair (p, n), where

p is the set of positive and n the set of negative traces. Parallel composition,
weak sequencing, time constraint and inner union (⊎) of such pairs are defined
as follows:

(p1, n1) ‖ (p2, n2)
def
= (p1 ‖ p2, (n1 ‖ (p2 ∪ n2)) ∪ (n2 ‖ p1)) (5)

(p1, n1) % (p2, n2)
def
= (p1 % p2, (n1 % (n2 ∪ p2)) ∪ (p1 % n2)) (6)

(p, n) ≀ C
def
= (p ≀ C, n ∪ (p ≀ ¬C)) (7)

(p1, n1) ⊎ (p2, n2)
def
= (p1 ∪ p2, n1 ∪ n2) (8)

Finally, the semantics of the sequence diagram operators of interest in this
paper are defined by:

[[d1 alt d2]]
def
= [[d1]] ⊎ [[d2]] (9)

[[d1 par d2]]
def
= [[d1]] ‖ [[d2]] (10)

[[d1 seq d2]]
def
= [[d1]] % [[d2]] (11)

[[d tc C]]
def
= [[d]] ≀ C (12)

[[skip]]
def
= ({〈〉}, ∅) (13)

where tc is the operator used for time constraints and skip is the empty diagram
(i.e. doing nothing). Definitions of other operators may be found in e.g. [5].

9

5 The Formal Semantics of Time Exceptions

In Sect. 3 we informally explained the semantics of time exceptions. In this
section we define the semantics formally, based on the formalism introduced in
Sect. 4. Furthermore we give theorems stating some desirable properties related
to time exceptions and refinement. Due to lack of space, we have omitted the
proofs from this paper. However, proofs may be found in [3].

5.1 Definitions

An exception diagram is mainly specified using the same operators as ordinary
sequence diagrams, and its semantics may be calculated using the definitions
given in Sect. 4. As explained in Sect. 3, the additional constructs used in excep-
tion diagrams is that the exception handling always ends with either return or
terminate. Formally, the semantics of an exception (sub-)diagram marked with
either return or terminate is defined by:

[[d return]]
def
= [[d]] (14)

[[d terminate]]
def
= appendTT ([[d]]) (15)

where appendTT is a function appending a special termination event TT to
every trace in its operand (i.e. all the positive and negative traces in [[d]]).

With this new termination event, weak sequencing of trace sets must be
redefined so that traces that end with termination are not continued:

s1 % s2

def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : (16)

(term(h1) ∧ h = h1) ∨ (¬term(h1) ∧ ∀l ∈ L : h↾ l = h1 ↾ l ⌢ h2 ↾ l)}

where term(h1) is a boolean function that returns true if h1 ends with the
termination event TT , and false otherwise.

For parallel composition of trace sets, the traces may be calculated as before
and then removing all events that occur after TT from the trace:

s1 ‖ s2

def
= {h ∈ H | ∃h′ ∈ s1 ‖′ s2 : h = chopTT (h′)} (17)

where ‖′ is parallel composition as defined by definition 2 and chopTT is a
function removing all events occurring after a potential TT in the trace.

A sequence diagram d marked as catching termination events then has the
semantic effect that the termination mark is removed from the trace, meaning
that the trace continues as specified by the diagram that is enclosing d:

[[d catch]]
def
= removeTT ([[d]]) (18)

where removeTT is a function removing TT from all traces in its operand.
Finally, we need to define the semantics of a sequence diagram which contains

exceptions. The kind of exceptions considered in this paper is always connected

10

to a time constraint on an event. Syntactically, we write d tc (C exception e)
to specify that d is a sequence diagram with time constraint C, and that the
sequence diagram e specifies the exception handling in case C is violated. We
use q(C) to denote the event constrained by C, and ll(C) to denote the lifeline
on which this event occurs.

Obviously, a trace should be negative if the exception handling starts before
the time constraint is actually violated. As an example, consider the specifica-
tion of EnterPin in Fig. 2. Here, we have the constraint t6 ≤ t1 + 5 as explained
in Sect. 4. Letting t7 be the timestamp of the sending of the message in User-
LeftCard, we then intuitively have the corresponding constraint t7 > t1 + 5.
Formally, we let eC be the exception diagram where the time constraint C has
been transformed into the corresponding time constraint for the first event in e
(or several such constraints if there is a choice of first event for e).

The semantics of a sequence diagram with an exception is then defined by:

[[d tc (C exception e)]]
def
= [[d tc C]] ⊎ (19)

{h ∈ H | h↾ ll(C) ∈ [[d[eC/q(C)]]]↾ ll(C)} S© [[d[skip/q(C)] par eC]]

where d[dnew/dold] is the sequence diagram d with the sub-diagram dnew sub-
stituted for dold, S© is a filtering operator such that S S© (p, n) is the pair (p, n)
where all traces that are not in the set S are removed, h ∈ (p, n) is a short-hand
for h ∈ p ∨ h ∈ n, and ↾ is overloaded from traces to pairs of sets of traces in
standard pointwise manner.

In definition 19, the first part corresponds to the semantics without the ex-
ception. The second part is all traces where the event q(C) has not occurred,
and the exception handling is performed instead. [[d[skip/q(C)] par eC]] gives
the diagram d without the triggering event q(C), executed in parallel with the
exception e. However, this set is too comprehensive as we require that the life-
line of the triggering event, the lifeline ll(C), must perform all of the exception
handling before continuing with the original diagram. This is expressed by the
set preceding the filtering operator.

5.2 Refinement

TimedSTAIRS [4] defines supplementing and narrowing as two special cases of
refinement. Supplementing means adding more positive or negative traces to the
sequence diagram, while narrowing means redefining earlier inconclusive traces as
negative. Formally, a diagram d′ with semantics (p′, n′) is said to be a refinement
of another diagram d with semantics (p, n), written d d′, iff

n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (20)

It should be clear from our explanations in Sect. 3 that adding exception
handling to a sequence diagram constitutes a refinement. Adding a time con-
straint is an example of narrowing, as traces with invalid timestamps are moved
from positive to negative when introducing the time constraint. More generally,
we have the following theorem:

11

Theorem 1. Assuming that the exception diagram e is not equivalent to the

triggering event q(C), i.e. [[e]] 6= ({〈q(C)〉}, ∅), we have that

1. d d tc C
2. d tc C d tc (C exception e)
3. d d tc (C exception e)

Finally, the following theorem demonstrates that for a diagram containing
exceptions, the normal and exceptional behavior may be refined separately:

Theorem 2. Refinement is monotonic with respect to exceptions as defined by

definition 19, i.e.:

d d ∧ e e′ ⇒ d tc (C exception e) d′ tc (C exception e′)

6 Conclusions

We have shown that introducing time exceptions improve the completeness of
sequence diagram descriptions while keeping the readability of the main spec-
ification. We have defined concrete notation for exceptions built on existing
symbols of UML 2.1 and the simple time notation. Finally, we have given a
precise formal definition of time exceptions and shown that our concepts are
compositional since refinement is monotonic with respect to exceptions.

References

1. ETSI. The Testing and Test Control Notation version 3 (TTCN-3); Part 1: TTCN-
3 Core Language, document: European Standard (ES) 201 873-1 version 2.2.1
(2003-02). Also published as ITU-T Recommendation Z.140 edition, 2003.

2. Oddleif Halvorsen and Øystein Haugen. Proposed notation for exception handling
in UML 2 sequence diagrams. In Australian Software Engineering Conference
(ASWEC), pages 29–40. IEEE Computer Society, 2006.

3. Oddleif Halvorsen, Ragnhild Kobro Runde, and Øystein Haugen. Time exceptions
in sequence diagrams. Technical Report 344, Department of Informatics, University
of Oslo, 2006.

4. Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. Why
timed sequence diagrams require three-event semantics. In Scenarios: Models,
Transformations and Tools, volume 3466 of LNCS, pages 1–25. Springer, 2005.

5. Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. Why
timed sequence diagrams require three-event semantics. Technical Report 309,
Department of Informatics, University of Oslo, 2006.

6. Object Management Group. OMG Unified Modeling Language 1.4, 2000.
7. Object Management Group. UML profile for Schedulability, Performance and Time

Specification, document: ptc/05-01-02 edition, 2005.
8. Object Management Group. UML Testing Profile, document: ptc/05-07-07 edition,

2005.
9. Object Management Group. UML 2.1 Superstructure Specification, document:

ptc/06-04-02 edition, 2006.

12

10. Ragnhild Kobro Runde, Atle Refsdal, and Ketil Stølen. Relating computer systems
to sequence diagrams with underspecification, inherent nondeterminism and prob-
abilistic choice. part 1: underspecification and inherent nondeterminism. Technical
Report 346, Department of Informatics, University of Oslo, 2007.

13

A Proofs

A.1 Adding time constraints and time exceptions

Theorem 1 in Sect. 5.2 states that assuming that the exception diagram e is not

equivalent to the triggering event q(C), i.e. [[e]] 6= ({〈q(C)〉}, ∅), we have that

1. d d tc C
2. d tc C d tc (C exception e)
3. d d tc (C exception e)

1. Proof sketch: Follows from definition 12 of time constraint, which ensures
that all traces of the original diagram are also traces of the diagram with
the time constraint added.
Proof:

〈1〉1. Let: [[d]] = (p, n)
〈1〉2. [[d tc C]] = (p ≀ C, n ∪ (p ≀ ¬C))
〈2〉1. [[d tc C]] = [[d]] ≀ C

Proof: Definition 12.
〈2〉2. [[d]] ≀ C = (p ≀ C, n ∪ (p ≀ ¬C))

Proof: 〈1〉1 and definition 4.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. (p, n) (p ≀ C, n ∪ (p ≀ ¬C))
〈2〉1. n ⊆ n ∪ (p ≀ ¬C)

Proof: Basic set theory.
〈2〉2. p ⊆ (p ≀ C) ∪ (n ∪ (p ≀ ¬C))
〈3〉1. p ≀ C = {h ∈ p | h |= C}

Proof: Definition 4.
〈3〉2. p ≀ ¬C = {h ∈ p | h |= ¬C}

Proof: Definition 4.
〈3〉3. (p ≀ C) ∪ (p ≀ ¬C) = p

Proof: 〈3〉1, 〈3〉2 and basic set theory, as either h |= C or h |= ¬C
for all traces h and time constraints C.

〈3〉4. Q.E.D.
Proof: 〈3〉3 and basic set theory.

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and definition 20 of .

〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and 〈1〉3.

2

2. Proof sketch: Follows from definition 19 of exception, as the semantics of
the original diagram is included as the first part of the definition.
Proof:

〈1〉1. Let: (p1, n1) = [[d tc C]]

14

〈1〉2. Let: (p2, n2) =
{h ∈ H | h↾ ll(C) ∈ [[d[eC/q(C)]]]↾ ll(C)} S© [[d[skip/q(C)] par eC]]

〈1〉3. [[d tc (C exception e)]] = (p1 ∪ p2, n1 ∪ n2)
〈2〉1. [[d tc (C exception e)]] = (p1, n1) ⊎ (p2, n2)

Proof: 〈1〉1, 〈1〉2 and definition 19 of exception.
〈2〉2. (p1, n1) ⊎ (p2, n2) = (p1 ∪ p2, n1 ∪ n2)

Proof: Definition 8 of ⊎.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉4. (p1, n1) (p1 ∪ p2, n1 ∪ n2)
〈2〉1. n1 ⊆ n1 ∪ n2

Proof: Basic set theory.
〈2〉2. p1 ⊆ (p1 ∪ p2) ∪ (n1 ∪ n2)

Proof: Basic set theory.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition 20 of .
〈1〉5. Q.E.D.

Proof: 〈1〉1, 〈1〉3 and 〈1〉4.

2

3. Proof: Follows directly from the two previous facts using that refinement
is transitive (lemma 26 in [5]).

2

A.2 Monotonicity

First, we formally define appendTT and removeTT :

appendTT ((p, n))
def
= (appendTT (p), appendTT (n)) (21)

removeTT ((p, n))
def
= (removeTT (p), removeTT (n)) (22)

where appendTT and removeTT on trace-sets are defined by:

appendTT (s)
def
= {h ∈ H | ∃h′ ∈ s : h = h′ ⌢〈TT 〉} (23)

removeTT (s)
def
= {h ∈ H | ∃h′ ∈ s : h = h′ \ {TT}} (24)

where \ is a hiding operator such that t \A removes all events in the set A from
the trace t.

Lemma 1. s ⊆ s′ ⇒ appendTT (s) ⊆ appendTT (s′)

Proof:

〈1〉1. Assume: s ⊆ s′

Prove: appendTT (s) ⊆ appendTT (s′)
〈2〉1. Case: appendTT (s) = ∅

15

Proof: Trivial, as ∅ ⊆ A for all sets A.
〈2〉2. Case: appendTT (s) 6= ∅
〈3〉1. Choose arbitrary t ∈ appendTT (s)

Proof: appendTT (s) is non-empty by 〈2〉2.
〈3〉2. Choose t′ ∈ s such that t = t′ ⌢〈TT 〉

Proof: 〈3〉1 and definition 23 of appendTT .
〈3〉3. t′ ∈ s′

Proof: 〈3〉2 and 〈1〉1.
〈3〉4. t ∈ appendTT (s′)

Proof: 〈3〉2, 〈3〉3 and definition 23 of appendTT .
〈3〉5. Q.E.D.

Proof: 〈3〉1, 〈3〉4 and definition of ⊆.
〈2〉3. Q.E.D.

Proof: The cases are exhaustive.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

2

Lemma 2. s ⊆ s′ ⇒ removeTT (s) ⊆ removeTT (s′)

Proof:

〈1〉1. Assume: s ⊆ s′

Prove: removeTT (s) ⊆ removeTT (s′)
〈2〉1. Case: removeTT (s) = ∅

Proof: Trivial, as ∅ ⊆ A for all sets A.
〈2〉2. Case: removeTT (s) 6= ∅
〈3〉1. Choose arbitrary t ∈ removeTT (s)

Proof: removeTT (s) is non-empty by 〈2〉2.
〈3〉2. Choose t′ ∈ s such that t = t′ \ {TT}

Proof: 〈3〉1 and definition 24 of removeTT .
〈3〉3. t′ ∈ s′

Proof: 〈3〉2 and 〈1〉1.
〈3〉4. t ∈ removeTT (s′)

Proof: 〈3〉2, 〈3〉3 and definition 24 of removeTT .
〈3〉5. Q.E.D.

Proof: 〈3〉1, 〈3〉4 and definition of ⊆.
〈2〉3. Q.E.D.

Proof: The cases are exhaustive.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

2

Lemma 3. s1 ⊆ s′
1
∧ s2 ⊆ s′

2
⇒ s1 % s2 ⊆ s′

1
% s′

2

Proof:

〈1〉1. Assume: 1. s1 ⊆ s′
1

16

2. s2 ⊆ s′
2

Prove: s1 % s2 ⊆ s′
1
% s′

2

〈2〉1. Choose arbitrary h ∈ s1 % s2

Proof: The lemma is trivially true if s1 % s2 is empty.
〈2〉2. h ∈ s′1 % s′2
〈3〉1. Case: Choose h1 ∈ s1 such that term(h1) and h = h1

〈4〉1. h1 ∈ s′
1

Proof: 〈3〉1 and 〈1〉1:1.
〈4〉2. h1 ∈ s′

1
% s′

2

Proof: 〈3〉1, 〈4〉1 and definition 16 of %.
〈4〉3. Q.E.D.

Proof: 〈3〉1 and 〈4〉2.
〈3〉2. Case: Choose h1 ∈ s1 and h2 ∈ s2 such that ¬term(h1) and

∀l ∈ L : h↾ l = h1 ↾ l ⌢ h2 ↾ l
〈4〉1. h1 ∈ s′

1

Proof: 〈3〉2 and 〈1〉1:1.
〈4〉2. h2 ∈ s′

2

Proof: 〈3〉2 and 〈1〉1:2.
〈4〉3. h ∈ s′1 % s′2

Proof: 〈3〉2, 〈4〉1, 〈4〉2 and definition 16 of %.
〈4〉4. Q.E.D.

〈3〉3. Q.E.D.
Proof: The cases are exhaustive by definition 16 of %.

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and definition of ⊆.

〈1〉2. Q.E.D.
Proof: ⇒-rule.

2

Lemma 4. s1 ⊆ s′
1
∧ s2 ⊆ s′

2
⇒ s1 ‖ s2 ⊆ s′

1
‖ s′

2

Proof:

〈1〉1. Assume: 1. s1 ⊆ s′
1

2. s2 ⊆ s′2
Prove: s1 ‖ s2 ⊆ s′

1
‖ s′

2

〈2〉1. Choose arbitrary h ∈ s1 ‖ s2

Proof: The lemma is trivially true if s1 ‖ s2 is empty.
〈2〉2. h ∈ s′

1
‖ s′

2

〈3〉1. Choose h′ ∈ s1 ‖′ s2 such that h = chopTT (h′)
Proof: 〈2〉1 and definition 17 of ‖.

〈3〉2. h′ ∈ s′
1
‖′ s′

2

Proof: 〈1〉1:1, 〈1〉1:2, 〈3〉1 and lemma 28 in [5].
〈3〉3. h ∈ s′

1
‖ s′

2

Proof: 〈3〉1, 〈3〉2 and definition 17 of ‖.
〈3〉4. Q.E.D.

〈2〉3. Q.E.D.

17

Proof: 〈2〉1, 〈2〉2 and definition of ⊆.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

2

Theorem 3. The refinement relation is monotonic with respect to seq, i.e.

d1 d′
1
∧ d2 d′

2
⇒ (d1 seq d2) (d′

1
seq d′

2
)

Proof: Lemma 30 in [5], using lemma 3 instead of lemma 27 in [5].
2

Theorem 4. The refinement relation is monotonic with respect to par, i.e.

d1 d′1 ∧ d2 d′2 ⇒ (d1 par d2) (d′1 par d′2)

Proof: Lemma 31 in [5], using lemma 4 instead of lemma 28 in [5].
2

Theorem 5. The refinement relation is monotonic with respect to return,

i.e.

d d′ ⇒ (d return) (d′ return)

Proof:

〈1〉1. Assume: d d′

Prove: (d return) (d′ return)
〈2〉1. [[d return]] = [[d]]

Proof: Definition 14.
〈2〉2. [[d′ return]] = [[d′]]

Proof: Definition 14.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and 〈1〉1.
〈1〉2. Q.E.D.

Proof: ⇒-rule.

2

Theorem 6. The refinement relation is monotonic with respect to terminate,

i.e.

d d′ ⇒ (d terminate) (d′ terminate)

Proof:

〈1〉1. Let: [[d]] = (p, n)
〈1〉2. Let: [[d′]] = (p′, n′)
〈1〉3. Assume: d d′

Prove: (d terminate) (d′ terminate)
〈2〉1. [[d terminate]] = (appendTT (p), appendTT (n))

Proof: 〈1〉1, definition 15 of terminate and definitions 21 and 23 of appendTT .

18

〈2〉2. [[d′ terminate]] = (appendTT (p′), appendTT (n′))
Proof: 〈1〉2, definition 15 of terminate and definitions 21 and 23 of appendTT .

〈2〉3. (appendTT (p), appendTT (n)) (appendTT (p′), appendTT (n′))
〈3〉1. appendTT (n) ⊆ appendTT (n′)
〈4〉1. n ⊆ n′

Proof: 〈1〉3 and definition 20 of .
〈4〉2. Q.E.D.

Proof: 〈4〉1 and lemma 1.
〈3〉2. appendTT (p) ⊆ appendTT (p′) ∪ appendTT (n′)
〈4〉1. p ⊆ p′ ∪ n′

Proof: 〈1〉3 and definition 20 of .
〈4〉2. appendTT (p) ⊆ appendTT (p′ ∪ n′)

Proof: 〈4〉1 and lemma 1.
〈4〉3. appendTT (p) ⊆ appendTT (p′) ∪ appendTT (n′)

Proof: 〈4〉2 and definition 23 of appendTT .
〈4〉4. Q.E.D.

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and definition 20 of .

〈2〉4. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and 〈2〉3.

〈1〉4. Q.E.D.
Proof: 〈1〉3 and ⇒-rule.

2

Theorem 7. The refinement relation is monotonic with respect to catch, i.e.

d d′ ⇒ (d catch) (d′ catch)

Proof:

〈1〉1. [[d]] = (p, n)
〈1〉2. [[d′]] = (p′, n′)
〈1〉3. Assume: d d′

Prove: (d catch) (d′ catch)
〈2〉1. [[d catch]] = (removeTT (p), removeTT (n))

Proof: 〈1〉1, definition 18 of catch and definitions 22 and 24 of removeTT .
〈2〉2. [[d′ catch]] = (removeTT (p′), removeTT (n′))

Proof: 〈1〉2, definition 18 of catch and definitions 22 and 24 of removeTT .
〈2〉3. (removeTT (p), removeTT (n)) (removeTT (p′), removeTT (n′))
〈3〉1. removeTT (n) ⊆ removeTT (n′)
〈4〉1. n ⊆ n′

Proof: 〈1〉3 and definition 20 of .
〈4〉2. Q.E.D.

Proof: 〈4〉1 and lemma 2.
〈3〉2. removeTT (p) ⊆ removeTT (p′) ∪ removeTT (n′)
〈4〉1. p ⊆ p′ ∪ n′

Proof: 〈1〉3 and definition 20 of .

19

〈4〉2. removeTT (p) ⊆ removeTT (p′ ∪ n′)
Proof: 〈4〉1 and lemma 2.

〈4〉3. removeTT (p) ⊆ removeTT (p′) ∪ removeTT (n′)
Proof: 〈4〉2 and definition 24 of removeTT .

〈4〉4. Q.E.D.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and definition 20 of .
〈2〉4. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and 〈2〉3.
〈1〉4. Q.E.D.

Proof: 〈1〉3 and ⇒-rule.

2

Lemma 5.

S ⊆ S′ ∧ d d′ ⇒ S S© [[d]] S′
S© [[d′]]

Proof:

〈1〉1. Let: [[d]] = (p, n)
〈1〉2. Let: [[d′]] = (p′, n′)
〈1〉3. Assume: 1. S ⊆ S′

2. d d′

Prove: S S© [[d]] S′
S© [[d′]]

〈2〉1. (S S© p, S S©n) (S′
S© p′, S′

S©n′)
〈3〉1. S S©n ⊆ S′

S©n′

〈4〉1. Choose arbitrary t ∈ S S©n
Proof: 〈3〉1 is trivially true if S S©n = ∅.

〈4〉2. t ∈ S ∧ t ∈ n
Proof: 〈4〉1 and definition of S© .

〈4〉3. t ∈ S′

Proof: 〈4〉2 and 〈1〉3:1.
〈4〉4. t ∈ n′

Proof: 〈4〉2, 〈1〉3:2 and definition 20 of .
〈4〉5. t ∈ S′

S© n′

Proof: 〈4〉3, 〈4〉4 and definition of S© .
〈4〉6. Q.E.D.

Proof: 〈4〉1, 〈4〉5 and definition of ⊆.
〈3〉2. S S© p ⊆ (S′

S© p′) ∪ (S S©n′)
〈4〉1. Choose arbitrary t ∈ S S© p

Proof: 〈3〉1 is trivially true if S S© p = ∅.
〈4〉2. t ∈ S ∧ t ∈ p

Proof: 〈4〉1 and definition of S© .
〈4〉3. t ∈ S′

Proof: 〈4〉2 and 〈1〉3:1.
〈4〉4. t ∈ p′ ∪ n′

Proof: 〈4〉2, 〈1〉3:2 and definition 20 of .
〈4〉5. t ∈ S′

S© (p′ ∪ n′)

20

Proof: 〈4〉3, 〈4〉4 and definition of S© .
〈4〉6. t ∈ (S′

S© p′) ∪ (S′
S© n′)

Proof: 〈4〉5 and definition of S© .
〈4〉7. Q.E.D.

Proof: 〈4〉1, 〈4〉6 and definition of ⊆.
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and definition 20 of .
〈2〉2. Q.E.D.

Proof: 〈1〉1, 〈1〉2 and defintion of S© .
〈1〉4. Q.E.D.

Proof: 〈1〉3 and ⇒-rule.

2

Theorem 8. Refinement is monotonic with resepct to exceptions as defined by

definition 19, i.e.:

d d′ ∧ e e′ ⇒ d tc (C exception e) d′ tc (C exception e′)

Proof:

〈1〉1. Assume: 1. d d′

2. e e′

Prove: d tc (C exception e) d′ tc (C exception e′)
〈2〉1. d tc C d′ tc C

Proof: 〈1〉1:1 and lemma 32 in [5] (monotonicity of with respect to tc).
〈2〉2. eC e′

C

Proof: 〈1〉1:2, definition of eC (e with additional time constraints) and
lemma 32 in [5] (monotonicity of with respect to tc).

〈2〉3. {h ∈ H | h↾ ll(C) ∈ [[d[eC/q(C)]]]↾ ll(C)} ⊆
{h ∈ H | h↾ ll(C) ∈ [[d′[e′

C
/q(C)]]]↾ ll(C)}

〈3〉1. π1([[d[eC/q(C)]]])∪π2([[d[eC/q(C)]]]) ⊆ π1([[d′[e′
C

/q(C)]]])∪π2([[d′[e′
C

/q(C)]]])
〈4〉1. d[eC/q(C)] d′[e′

C
/q(C)]

Proof: 〈1〉1:1, 〈2〉2 and monotonicity of with respect to all of the
operators used in d (Theorems 3–7 together with the monotonicity
theorems in [5]).

〈4〉2. π2([[d[eC/q(C)]]]) ⊆ π2([[d′[e′
C

/q(C)]]])
Proof: 〈4〉1 and definition 20 of .

〈4〉3. π1([[d[eC/q(C)]]]) ⊆ π1([[d′[e′
C

/q(C)]]]) ∪ π2([[d′[e′
C

/q(C)]]])
Proof: 〈4〉1 and definition 20 of .

〈4〉4. Q.E.D.
Proof: 〈4〉2 and 〈4〉3.

〈3〉2. Q.E.D.
Proof: 〈3〉1, definition of ↾ and basic set theory.

〈2〉4. d[skip/q(C)] par eC d′[skip/q(C)] par e′
C

〈3〉1. d[skip/q(C)] d′[skip/q(C)]
Proof: 〈1〉1:1 and monotonicity of with respect to all of the operators
used in d (Theorems 3–7 together with the monotonicity theorems in [5]).

21

〈3〉2. Q.E.D.
Proof: 〈2〉2, 〈3〉1 and Theorem 4 (monotonicity of with respect to
par).

〈2〉5. {h ∈ H | h ↾ ll(C) ∈ [[d[eC/q(C)]]] ↾ ll(C)} S© [[d[skip/q(C)] par eC]]
{h ∈ H | h↾ ll(C) ∈ [[d′[e′

C
/q(C)]]]↾ ll(C)} S© [[d′[skip/q(C)] par e′

C
]]

Proof: 〈2〉3, 〈2〉4 and lemma 5.
〈2〉6. Q.E.D.

Proof: 〈2〉1, 〈2〉5, definition 19 of exception and Theorem 11 in [10] (mono-
tonicity of with respect to ⊎).

〈1〉2. Q.E.D.
Proof: ⇒-rule.

2

22

