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ABSTRACT
Node selecting tree automata (NSTAs) constitute a general
formalism defining unary queries over trees. Basically, a
node is selected by an NSTA when it is visited in a selecting
state during an accepting run. We consider twig patterns
as an abstraction of XPath. Since the queries definable by
NSTAs form a strict superset of twig-definable queries, we
study the complexity of the problem to decide whether the
query by a given NSTA is twig-definable. In particular, we
obtain that the latter problem is EXPTIME-complete. In
addition, we show that it is also EXPTIME-complete to de-
cide whether the query by a given NSTA is definable by a
node selecting string automaton.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages; H.2.1 [Database Management]: Log-
ical Design
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1. INTRODUCTION
As node selecting queries are fundamental in the context

of tree-structured data like XML and web documents, many
formalisms expressing such unary queries over trees have
been investigated over time. Surprisingly many formalisms
have been proposed which are expressively equivalent to
the unary queries definable in monadic second-order logic
(MSO) turning the latter into a yardstick for expressive-
ness over tree-structured data. We refer to these queries
as the regular unary queries. Expressively equivalent for-
malisms are for instance based on attribute grammars [25,
26], automata [11, 14, 28], and logic [10, 17, 27]. Though ex-
pressive, well-understood, and robust, regular unary queries
lack the simplicity and usability of less expressive languages
like for instance XPath. Furthermore, a major advantage of
XPath is without doubt the large body of research on effi-
cient evaluation, optimization, and static analysis (see, e.g.
[3] for a survey) and the availability of implementations. As
such results for general unary regular queries are scarce, the
goal of the present paper is to investigate the problem to de-
cide whether a given regular unary query can in fact already
be defined in an XPath-like formalism.

The proposed type of research has attracted a lot of at-
tention in the area of logic and automata. There, a logic
is said to have a decidable characterization if the following
decision problem is decidable: “Given as input a finite au-
tomaton, decide if the recognized language can be defined
using a formula of the logic”. Although quite a bit of re-
search is available for logics over trees (cf., e.g., [4, 8, 34]),
the most directly related result is by Place and Segoufin
who showed that it is decidable whether a regular unranked
tree language is definable in FO2 over the descendant and
the following-sibling axes [30]. In terms of expressive power
the latter logic corresponds to a fragment of the naviga-
tional core of XPath that contains modalities for going up
to some ancestor, down to some descendant, left to some
preceding sibling, and right to some following sibling. The
devised decision problem leads to a high complexity with
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several nested exponentials. Although it is open whether
this high complexity is unavoidable, in this paper, we do
not consider FO2 over trees but restrict our attention to
some of its fragments. Another related result is the one by
Bojańczyk and Walukiewicz [9] showing that Boolean defin-
ability in the logic EX+EF is decidable in EXPTIME w.r.t.
a given nondeterministic binary tree automaton. In short,
the logic EX+EF is defined over binary trees, expresses the
child and ancestor relation and is closed under the Boolean
connectives. Specifically, we consider regular path queries
and XPath with child, descendant and filter.1 We refer to
the latter as twig queries. These twig queries are incompa-
rable to EX+EF as they are defined over unranked trees and
can define unary queries but are not closed under Boolean
operations. To represent unary regular queries, we employ
the class of node selecting tree automata (NSTA) as defined
in [14, 23] extended with wildcards. Basically, an NSTA is
a non-deterministic unranked tree automaton with a distin-
guished set of selecting states. A node is then selected by
an NSTA when it is visited in a selecting state during an
accepting run. The output of the automaton consists of all
selected nodes.

A regular path query selects a node based on regular prop-
erties of its ancestor-string, that is, the string formed by the
labels on the path from the root to that node. We formalize
the latter as NFA-definable queries. Specifically, an NFA can
express a unary query by selecting every node which is vis-
ited in an accepting state on the path from the root to that
node. We characterize the NFA-definable regular queries
as those regular queries which are ancestor-based. The lat-
ter is a formalization of the idea that NFA-definable queries
cannot distinguish between nodes with the same ancestor-
string. Using this insight, we construct an NFA NFA(M) for
a given NSTA M , such that M is equivalent to NFA(M) if
and only if the query defined by M is NFA-definable. We
then show that the latter equivalence test can be performed
in exponential time. Altogether, we show that testing NFA-
definability of NSTAs is EXPTIME-complete. We further
discuss the relationship with ancestor-based types for XML
schema languages as defined in [20] and address tractability.

Next, we turn to twig queries which are tree-patterns con-
sisting of child and descendant edges. These correspond to
the fragment of XPath restricted to child-axis, descendant-
axis and filter. We show that NSTAs can be exponentially
more succinct than twig queries. However, the large size
of such twigs is due to a high degree of duplication which
can be significantly reduced by folding them. We refer to
the latter as DAG-twigs where DAG stands for a directed
acyclic graph. In particular, we show that when an NSTA is
twig-definable, there always exists an equivalent DAG-twig
of at most linear size. To test twig-definability of NSTAs,
one can simply guess a DAG-twig of linear size and test
equivalence with the given NSTA. We show that the latter
equivalence test can be done in EXPTIME through a reduc-
tion to emptiness of alternating tree-walking automata. The
main result of this paper is that testing twig-definability of
NSTAs is complete for EXPTIME.

Related Work. Various properties of XPath have been in-
vestigated in the literature as for instance, its complexity,
containment, and expressiveness. The complexity of XPath

1Filter is sometimes also called predicate, e.g., in the XPath
specification by the World Wide Web Consortium.

and efficient evaluation algorithms are investigated in, e.g.,
[18, 19, 7]. The containment and satisfiability problems for
XPath have been deeply studied in the database literature,
for example in [22, 29, 6, 33]. The expressiveness of various
fragments and extensions of XPath have been investigated
in, e.g., [2, 21, 34]. We refer to [3, 31] for surveys on these
problems. To the best of our knowledge the above men-
tioned results of Place and Segoufin [30] and Bojańczyk and
Walukiewicz [9] are the only research which studies decid-
ability of XPath definability.

Outline. In Section 2, we introduce the necessary defini-
tions. In Section 3, we discuss regular path-definability of
NSTAs. In Section 4, we discuss twig-definability of NSTAs.
We conclude in Section 5.

2. DEFINITIONS
Here, we introduce the necessary definitions concerning

trees, queries and automata. For a finite set S, we denote
by |S| its number of elements.

2.1 Trees
Let ∆ always denote an infinite set of labels. Intuitively,

∆ is our abstraction of the set of XML-tags. We assume
that we can test equality between elements from ∆ in con-
stant time. We denote by ∆∗ the set of finite strings over ∆.
By ε we denote the empty string. We only consider rooted,
ordered, finite, labelled, unranked trees which are directed
from the root downwards. That is, we consider trees with
a finite number of nodes and in which nodes can have ar-
bitrarily many children. We view a tree t as a relational
structure over a finite number of unary labelling relations
σ(·), where each σ ∈ ∆, and binary relations child(·, ·) and
next-sibling(·, ·). Here, σ(u) expresses that u is a node with
label σ, and child(u, v) (respectively, next-sibling(u, v)) ex-
presses that v is a child (respectively, the next sibling) of u.
When next-sibling(u, v) holds, we sometimes also say that v
is (immediately) to the right of u. We write Nodest for the
set of nodes of t. The set of edges of a tree t, denoted by
Edgest is the set of pairs (u, v) such that child(u, v) holds in
t. The root node of t is denoted by root(t). We define the
size of t, denoted by |t|, to be the number of nodes of t. We
denote a tree with root labelled σ and subtrees t1, . . . , tn as
σ(t1, . . . , tn). By T∆ we denote the set of all trees.

A path in tree t is a sequence of nodes v0 · · · vn such that,
for each i = 1, . . . , n, we have that (vi−1, vi) ∈ Edgest. Paths
therefore never run upwards, that is, turn towards to the
root of t. We say that v0 · · · vn is a path from v0 to vn
and that the length of the path is n. The depth of a node
v ∈ Nodest is equal to the length of the (unique) path from
root(t) to v. The height of a tree t is then defined as the
maximum of the depths of all its nodes.

The label of each node v in t must be defined and unique,
that is, for each node v ∈ Nodest there exists a unique
σ ∈ ∆ such that σ(v) holds. We denote the label of v
by labt(v). For a node v in a tree t, the ancestor-string
of v, denoted ancstrt(v), is the concatenation of the labels
on all the nodes on the path from the root to v, including
the two latter nodes. More specifically, ancstrt(v) is the se-
quence labt(v0) · · · labt(vn), where v0 · · · vn is the path from
root(t) to v. For a tree t and a node v ∈ Nodest, the sub-
tree of t at v, denoted by subtreet(v), is the tree induced
by all the nodes u such that there is a (possibly empty)



path from v to u. In particular, for any tree t and leaf
node v, subtreet(v) = labt(v) and, for any other node u,
subtreet(u) = labt(u)(subtreet(u1), . . . , subtreet(un)), where
u1, . . . un are the children of u from left to right.

Similarly, the context of t at v, denoted by contextt(v), is
the tree induced by v and all the nodes that are not reach-
able by a path from v and which has a special marker at
the position of v. In particular, contextt(v) is defined induc-
tively as follows. Let contextt(root(t)) = # for some # /∈ ∆.
If v is not the root of t, let u be the parent of v and let the
children of u be v1, . . . , vn, from left to right. Assume that
v = vi. Then, contextt(v) is the tree obtained by replac-
ing the unique #-labelled node in contextt(u) with the tree
labt(u)

(
subtreet(v1), . . . , subtreet(v(i−1)),#, subtree

t(v(i+1)),

. . . , subtreet(vn)
)
.

By t[v ← t′] we denote the tree constructed from t by
replacing the subtree subtreet(v) at node v with t′. In other
words, assuming w.l.o.g. that the sets of nodes in t and t′

are disjoint, t[v ← t′] is the tree obtained by replacing the
#-labelled node in contextt(v) with the tree t′.

2.2 Expressions and Automata
Throughout the paper, Σ ⊆ ∆ always denotes a finite al-

phabet. The set of regular expressions with symbols from
a finite alphabet Σ is denoted by RΣ. We use standard
regular expressions using the operators · (concatenation), +
(disjunction), and ∗ (Kleene star). For a regular expression
r, L(r) is the language of the expression, and Labels(r) is
the set of labels occurring in r. The size of a regular expres-
sion r, denoted by |r|, is defined as the length of its string
representation.

Since a twig pattern query (as defined in Section 4) uses
only a finite set of labels, but matches trees with an infinite
set of labels, we will use a wildcard symbol “�” to give au-
tomata the same power. We assume that the single-symbol
wildcard symbol � is not in ∆ and we denote Σ]{�} by Σ�.

We define non-deterministic finite automata (NFAs) and
their languages in the usual way, with the additional feature
of a wildcard symbol that can match any ∆-symbol not in Σ.
An NFA (with wildcards) is a tuple A = (∆,Σ, Q, qI , δ, F ),
where Q is the finite set of states, qI ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δ : Q × Σ� → 2Q is
the transition function. From the transition function δ, we
define the extended transition function δ∗ : (Q×∆∗)→ 2Q

which can read entire ∆-strings. In particular, δ∗(q, ε) =
{q}, δ∗(q, a) = δ(q, a) if a ∈ Σ, δ∗(q, a) = δ(q, �) if a ∈ ∆−Σ,
and δ∗(q, a ·w) = ∪q′∈δ∗(q,a)δ

∗(q′, w), where a ∈ ∆ and w ∈
∆∗. A word w ∈ ∆∗ is accepted by A if δ∗(qI , w) ∩ F 6= ∅.
The set of words accepted by A is denoted by L(A). The size
of A, denoted by |A|, is defined as |Q|+

∑
q∈Q,a∈Σ�

|δ(q, a)|.
A nondeterministic tree automaton (with wildcards) or

NTA (with wildcards) is a tuple N = (∆,Σ, Q, δ, F ) where Q
is a finite set of states, F ⊆ Q is the set of final states, and
the transition function δ : Q×Σ� →RQ is a mapping from
pairs of a state and a label to regular expressions over Q.
Again, transitions labelled by � can be followed by reading
any symbol not in Σ.

A run of N on a tree t is an assignment of states to nodes
λ : Nodest → Q such that for every v ∈ Nodest with n
children v1, . . . , vn from left to right, the following holds: if
labt(v) ∈ Σ, then

λ(v1) · · ·λ(vn) ∈ L(δ(λ(v), labt(v))).

and if labt(v) ∈ ∆− Σ, then

λ(v1) · · ·λ(vn) ∈ L(δ(λ(v), �)).

When v has no children, the criterion reduces to

ε ∈ L(δ(λ(v), labt(v))) or ε ∈ L(δ(λ(v), �)).

A run is accepting if the root is labelled with a state in
F . A tree is accepted if there is an accepting run. The
set of all accepted trees is denoted by L(N). If L(N) =
T∆, we call N universal. The size of N is defined as |Q| +∑
q∈Q,a∈Σ�

|δ(q, a)|. We say that two NTAs are equivalent
if they define the same language.

Notice that we could have let a wildcard match any ∆-
symbol rather than any symbol in ∆ − Σ. As the former
can be simulated by the latter (by simply adding an extra
transition for every Σ-symbol) but not vice-versa, we decided
to use the more powerful notion.

For any p ∈ Q, let Np = (∆,Σ, Q, δ, {p}). We call p
universal in N if Np is universal. We say that a state p is
reachable from a state q, if p = q, or if there is an a ∈ ∆ and
w1q

′w2 ∈ L(δ(q, a)) such that p is reachable from q′.
Unless explicitly mentioned otherwise, we will assume that

NTAs do not have useless states. That is, for each state,
there is at least one accepting run of the NTA on some tree
where some node is labelled by that state. We justify this
remark by the following lemma.

Lemma 2.1. Each NTA with wildcards can be converted
into an equivalent NTA with wildcards without useless states
in polynomial time.

Since useless states can be removed efficiently, we also do not
need to bother about removing useless states in the NTAs
we construct in our algorithms.

The proof of the following theorem is a straightforward
reduction to and from the finite alphabet case [32].

Theorem 2.2. 1. Deciding equivalence of NTAs with
wildcards is EXPTIME-complete.

2. Deciding universality of NTAs with wildcards is EXP-
TIME-complete.

2.3 Queries
The focus of this paper is on unary queries. Basically, a

unary query maps each tree to a subset of its nodes.

Definition 2.3 (Unary Query). A unary query Q is
a mapping with domain T∆ that is closed under isomor-
phism, and is such that for each t ∈ T∆, Q(t) ⊆ Nodest.

For two unary queries Q,Q′, and � ∈ {⊆,⊇,=}, we write
Q�Q′ if, for all t ∈ T∆, we have Q(t)�Q′(t). In this paper
we only consider unary queries and “query” will therefore
mean “unary query”.

To facilitate proofs, in the following, we will sometimes
reduce unary queries to Boolean ones. To this end, we will
employ a standard technique (cf., e.g., [35]) which extends
the set of labels to ∆×{0, 1} and labels selected nodes by 1
and non-selected nodes by 0. For a tree t ∈ T∆, we denote
the set of nodes labelled by a symbol in Σ, as Nodest(Σ), and
∆0,1 is the alphabet (∆−Σ)]Σ×{0, 1}. Then, let Bool(·, ·)
be the mapping defined as follows. For each tree t ∈ T∆

and v ∈ Nodest(Σ), let Bool(t, v) ∈ T∆0,1 be the tree with
the same nodes as t, but with the labelling function defined



as follows: labBool(t,v)(v) = (labt(v), 1), for v′ ∈ Nodest(Σ)−
{v}, labBool(t,v)(v′) = (labt(v′), 0), and for v′ /∈ Nodest(Σ),

labBool(t,v)(v′) = labt(v′). Then, let

Bool(T∆) =
⋃
t∈T∆

v∈Nodest(Σ)

{Bool(t, v)}.

Finally, for a unary query Q, let

Bool(Q) =
⋃
t∈T∆
v∈Q(t)

{Bool(t, v)}.

2.4 Selecting tree automata
The general formalism we use for expressing unary queries

is that of selecting tree automata, which are defined as fol-
lows [14, 23].

Definition 2.4 (NSTA). A non-deterministic selecting
tree automaton (with wildcards) or NSTA (with wildcards)
M , is a pair (N,S), where N is an NTA (with wildcards)
with state set Q, and S ⊆ Q is a set of selecting states. The
query defined by M is denoted QM . Formally, v ∈ QM (t)
if there is an accepting run λ such that λ(v) ∈ S and
labt(v) ∈ Σ. Note that for all t 6∈ L(N), QM (t) = ∅. The
size of M is defined as the size of its underlying NTA.

We refer to the class of queries defined by NSTAs as the
(unary) regular queries. An NSTA M is called non-empty if
there is a t such that QM (t) 6= ∅.

We say that two NSTAs are equivalent if they define the
same query. The following theorem says that deciding equiv-
alence of NSTAs is in EXPTIME. Specifically, Theorem 2.6
follows directly from the following lemma and Theorem 2.2.

Lemma 2.5. For any NSTA with wildcards, M = (NM ,
S), we can construct in polynomial time an NTA with wild-
cards N such that L(N) = Bool(QM ), and such that |QN | =
2 · |QNM |, where QN is the set of states of N and QNM is
the set of states of NM .

Theorem 2.6. Deciding equivalence of NSTAs with wild-
cards is EXPTIME-complete.

In the remainder, whenever we say NFA, NTA, or NSTA
we always refer to our definition with wildcards.

3. REGULAR PATH DEFINABILITY
In this section, we consider regular path definability. Here,

we use NFAs to define regular paths. More precisely, we
investigate in Section 3.1 whether a query given by an NSTA
can already be defined by an NFA. We further discuss in
Section 3.2 the relationship with definability of single-type
EDTDs. Finally, we address tractability in Section 3.3.

3.1 NFA-definability
We first formally introduce queries defined by NFAs.

Definition 3.1 (NFA-definable Query). The query
defined by an NFA A is denoted by QA and is defined as fol-
lows. For any tree t ∈ T∆, QA(t) = {v ∈ Nodest | labt(v) ∈
Σ, ancstrt(v) ∈ L(A)}. We say that a query Q is NFA-
definable, if there is an NFA A such that Q = QA.

As selection of a node only depends on the ancestor-string,
NFA-definable queries are ancestor-based as defined next:

Definition 3.2 (Ancestor-based Query). A unary
query Q is ancestor-based if for each two trees t1, t2 ∈ T∆,
and for any nodes v1 ∈ Nodest1 and v2 ∈ Nodest2 , if v1 ∈
Q(t1) and ancstrt1(v1) = ancstrt2(v2), then also v2 ∈ Q(t2).

It is easy to see that each NFA-definable unary query must
be ancestor-based.

Lemma 3.3. If a unary query is NFA-definable, then it is
also ancestor-based.

Proof. Let the unary query Q be definable by an NFA
A, that is, Q = QA, and assume t1, t2 ∈ T∆ such that
v1 ∈ Q(t1), v2 ∈ Nodest2 and ancstrt1(v1) = ancstrt2(v2).
Since v1 ∈ QA(t1), by definition, ancstrt1(v1) ∈ L(A), and
since ancstrt1(v1) = ancstrt2(v2), also ancstrt2(v2) ∈ L(A),
hence, v2 ∈ Q(t2).

In general, the converse of Lemma 3.3 does not hold. For
example, the query “select all nodes v such that ancstrt(v)
has an equal number of a’s and b’s” is ancestor-based but
not NFA-definable. We will show in the remainder of this
section, that ancestor-based regular queries do correspond
precisely to the NFA-definable ones. The proof makes use
of a specific construction on NSTAs. In particular, for a
given NSTA M we construct an automaton NFA(M) such
that M is NFA-definable iff QNFA(M) = QM .

Basically, the automaton NFA(M) is constructed from M
by turning it into an NFA. That is, a state at a node is only
dependent on the state assigned to its parent (and no longer
dependent on the states assigned to its siblings). Specfically,
any state in Labels(δM (q, a)) can be assigned to a node whose
parent is labelled a and is assigned state q where δM is the
transition function of M .2 The formal construction is given
next:

Definition 3.4. For an NSTA with wildcards M = (N,
S), where N = (∆,Σ, Q, δ, F ), and for qI 6∈ Q, define the
NFA

NFA(M) = (∆,Σ, (Q× Σ�) ∪ {qI}, qI , δ′, F ′),

where Σ� = Σ ] {�} and

F ′ = {(p, a) | p ∈ S, a ∈ Σ� and

δ(p, a) is defined and not empty},

for each a ∈ Σ�, let δ′(qI , a) = {(p, a) | p ∈ F}, and for
q ∈ Q and b ∈ Σ�, let

δ′((q, a), b) = {(p, b) | p ∈ Labels(δ(q, a))}.

The query defined by NFA(M) is always complete, i.e., it
always selects at least the nodes that are selected by M .
Furthermore, if the query defined by M is ancestor-based,
then we have that NFA(M) is sound as well, i.e., each node
selected by NFA(M) is also selected by M . To facilitate
the proofs below, we introduce the notation labt,Σ(v). If
labt(v) ∈ Σ, then let labt,Σ(v) = labt(v). Otherwise, let
labt,Σ(v) = �.

Lemma 3.5. Let M be an NSTA. Then the following holds:

1. QM ⊆ QNFA(M); and,

2. if QM is ancestor-based then QNFA(M) ⊆ QM .
2Recall that Labels(r) is the set of symbols occurring in reg-
ular expressions r.



Proof. (1) Let M and NFA(M) be as in Definition 3.4.
Assume v ∈ QM (t) for some v and t. We will prove that
also v ∈ QNFA(M)(t). Let v1 · · · vn be the path from the root
to v in t, and let q1, . . . , qn be the states assigned to these
nodes by an accepting run λ of M on t. Hence q1 ∈ F and
qn ∈ S. By induction on i, where 1 ≤ i ≤ n, one can prove
that (qi, lab

t,Σ(vi)) ∈ δ′∗(qI , ancstrt(vi)). Since qn ∈ S and
λ is an accepting run, (qn, lab

t,Σ(vn)) ∈ F ′. This implies
that ancstrt(v) ∈ L(NFA(M)), and hence v ∈ QNFA(M)(t).

(2) Let M = (N,S), where N = (∆,Σ, Q, δ, F ), and
NFA(M) = (∆,Σ, (Q × Σ�) ∪ {qI}, qI , δ′, F ′) as in Defini-
tion 3.4. Assume that for some tree t and node v ∈ Nodest,
v ∈ QNFA(M)(t). We will show that there exists a tree t′

and v′ ∈ Nodest
′
, such that v′ ∈ QM (t′) and ancstrt(v) =

ancstrt
′
(v′). By our assumption that QM is ancestor-based,

it will follow that v ∈ QM (t).
Let v1, . . . , vn be the nodes on the path from the root to

v (including the root and v), and let w = ancstrt(v). Fur-
thermore, let qI , (p1, lab

t,Σ(v1)), . . . , (pn, lab
t,Σ(vn)) be the

states visited by NFA(M) (in order) when matching w. Specif-
ically, this means (pn, lab

t,Σ(vn)) ∈ F ′, pn ∈ S, and p1 ∈ F .
Recall that we have defined Np = (∆,Σ, Q, δ, {p}) for

p ∈ Q as the NTA N with single final state p. We prove
(below) by induction on i, 0 ≤ i < n, that there is a tree
t′n−i ∈ L(Npn−i) and a v′n−i ∈ Q(Npn−i

,S)(t
′
n−i) such that

labt(vn−i) · · · labt(vn) = ancstrt
′
n−i(v′n−i), and that there is

a run of Npn−i on t′n−i where the nodes on the path from
the root to v′n−i are assigned the states pn−i, · · · , pn, respec-
tively.

• The base case i = 0 is easy, since we know pn ∈ S and
(pn, lab

t,Σ(vn)) ∈ F ′, and by construction the latter
implies δ(pn, lab

t,Σ(vn)) is defined. Therefore, there is
a tree t′n with its root labelled with labt(vn), such that
t′n ∈ Npn as required.

• For the induction case, we can by the induction hy-
pothesis assume the statement holds for i ≥ 0, and we
prove it for i+ 1 < n. From the run of NFA(M) on w
we must have that (pn−i, lab

t,Σ(vn−i)) is in

δ′((pn−i−1, lab
t,Σ(vn−i−1)), labt,Σ(vn−i))

By definition of the transition function δ′, this implies

pn−i ∈ Labels(δ(pn−i−1, lab
t,Σ(vn−i−1))).

In particular, there is a string wq = q1 · · · pn−i · · · qr,
such that wq ∈ L(δ(pn−i−1, lab

t,Σ(vn−i−1))). Since
there are no useless states, for each state qj other than
pn−i in wq there is a tree sqj such that sqj ∈ L(Nqj ),
and by the inductive hypothesis, there is a tree t′ni

∈
L(Npn−i) with the required properties. Then let

t′n−i−1 = labt(vn−i−1)(sq1 · · · t
′
n−i · · · sqr ).

This tree satisfies the induction hypothesis statement.

Since {p1} ⊆ F , it holds that L(N) ⊇ L(Np1), and there-
fore v′1 ∈ QM (t′1), as required.

The following lemma relates NFA-definability and ancestor-
based regular queries.

Lemma 3.6. For an NSTA M , the following are equiva-
lent

1. QM is NFA-definable;

2. QM is ancestor-based; and,

3. QM = QNFA(M).

Proof. (1) ⇒ (2) holds by Lemma 3.3.
(2) ⇒ (3) holds by Lemma 3.5.
(3) ⇒ (1) holds by definition of NFA-definable query.

We are now ready for the main result of this section:

Theorem 3.7. Deciding whether for an NSTA M , QM
is NFA-definable, is complete for EXPTIME.

Proof sketch. The lower bound follows from a reduc-
tion from the universality problem for NTAs (cf. Theo-
rem 2.2). The reduction takes as input an NTA N = (∆,Σ,
Q, δ, F ) and constructs an NSTA M = (N ′, S) as follows.
Let qsel 6∈ Q and let a be some symbol in Σ. Then let
N ′ = (∆,Σ, Q ∪ {qsel}, δ ∪ {(qsel, a) 7→ (

∑
p∈F p)

∗}, {qsel})
and S = {qsel}. We show that QM is NFA-definable iff
L(N) = T∆. The query QM selects the root node in all
trees t = a(t1, . . . , tn) where for all 1 ≤ i ≤ n, ti ∈ L(N). If
L(N) = T∆, then QM is obviously NFA-definable, namely
by any NFA selecting exactly the first letter in words in
a∆∗. On the other hand, suppose QM is NFA-definable. By
Lemma 3.6, the query is ancestor-based and hence for every
tree t′ with a root labelled by a, the root of t′ is in QM .
Hence L(N) must be exactly T∆.

It remains to show the upper bound. By Lemma 3.6, it
suffices to test QM = QNFA(M). To this end, we note that
it is possible to construct an NSTA NSTA(M) equivalent to
NFA(M), that is, QNSTA(M) = QNFA(M), in time polynomial
in the size of M and apply Theorem 2.6.

3.2 Single-type EDTDs
In [20], it was shown that deciding whether an NTA is

equivalent to a single-type extended DTD is complete for
EXPTIME. As single-type EDTDs have ancestor-based types,
which are superficially similar to ancestor-based queries as
defined here, one might wonder what the relationship with
the main result of the present section is. Of course, single-
type EDTDs do not define queries or process trees which can
have labels from an infinite set, but can easily be adapted
to do so. Indeed, we can equip them with a wildcard type
as our automata and just designate a set of types as out-
put types. Then, the single-type EDTD selects those nodes
which are assigned a selecting type. We now informally ar-
gue that NFAs are a subset of single-type EDTDs w.r.t. the
classes of unary queries they define. Indeed, a given NFA
can be converted into an equivalent DFA, which can then
be directly used to specify an equivalent single-type EDTD
through its characterization as a DFA-based DTD [15, 20].

On the other hand, consider the query which selects the
root when it has at least two children. The latter is defin-
able by a single-type EDTD but is not NFA-definable as the
query is not ancestor-based. To summarize, queries defined
by single-type EDTDs can take the branching structure of
the tree into account as the formalism is grammar-based, but
at the same time type-assignment, and therefore selection,
has to be deterministic whereas NFA-definable queries allow
for nondeterministic selection but their expressiveness is re-
stricted to single branches. In conclusion, Theorem 3.7 does
not seem to imply or follow directly from the corresponding
result on single-type EDTDs in [20].



3.3 Tractability
The EXPTIME-hardness in Theorem 3.7 is solely due

to the expressiveness of NSTAs. Indeed, when M as con-
structed in the proof is indeed equivalent to an NFA, that
NFA is very simple: it just selects the root of the input tree.
This means that, even for extremely simple subclasses of
XPath (say, linear XPath), deciding definability of NSTAs
within that class remains hard for EXPTIME. To obtain
a tractability result we therefore need to restrict the class
of regular unary queries. In this regard, Lemma 3.6 and
Lemma 3.5 provide already sufficient criteria for tractabil-
ity. Indeed, any subclassM of the regular unary queries (or
any representationM of the regular unary queries) for which
decidingQNFA(M) ⊆ QM is in PTIME for everyM ∈M, ren-
ders the NFA-definability problem tractable. The latter is
for instance the case for the single-type EDTDs as discussed
in the previous section.

4. TWIG-DEFINABILITY OF NSTAs
In this section, we address twig-definability of NSTAs. We

start by introducing the necessary definitions for twigs in-
cluding the concept of characteristic tree in Section 4.1. In
Section 4.2, we consider succinctness. In particular, we show
that twigs and NSTAs can be exponentially more succinct
than one another. This means that we cannot simply guess a
small, i.e. polynomially bounded, twig equivalent to a given
NSTA. Fortunately, the exponentially large twigs contain
redundancy which can be represented succinctly by folding
them into directed acyclic graphs (DAGs). We show in Sec-
tion 4.3, that when an NSTA is equivalent to a twig its DAG-
representation is at most of linear size. We further show in
Section 4.4 that equivalence of NSTAs and folded twigs can
be tested in exponential time through a reduction to empti-
ness of alternating tree-walking automata. In Section 4.5,
we then obtain our main result that testing twig-definability
of NSTAs is EXPTIME-complete.

4.1 Basics
We start by defining twigs:

Definition 4.1 (Twig Pattern). A twig pattern, or
simply twig, over the set of labels ∆ is a tuple T = (t, o,Anc),
where t is a labelled tree over a finite set Σ ⊆ ∆, Anc ⊆
Edgest is the set of ancestor edges, and o ∈ Nodest is a
designated output node.

An embedding of T on a tree s is a total mapping m from
Nodest to Nodess such that

• the root of t is mapped to the root of s,

• labt(v) = labs(m(v)), for all v ∈ Nodest, and

• for every two nodes v1, v2 ∈ Nodest

– if (v1, v2) ∈ Edgest−Anc, (m(v1),m(v2)) ∈ Edgess;

– if (v1, v2) ∈ Anc, then m(v1) is an ancestor of
m(v2).

The language defined by T is denoted L(T ) and consists
of all ∆-trees s for which there is an embedding of T into
s. The query defined by T , denoted by QT , is the function
that maps a tree s on the set of nodes v ∈ Nodess for which
there is an embedding m of T into s for which m(o) = v. In
Figure 1, we give an example of a twig and an embedding.
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Figure 1: A twig T = (t, o,Anc) on the left, its charac-
teristic tree cx(T ) on the right and the canonical em-
bedding fcx . Edges of the twig in Anc are depicted
as double edges and o is depicted with a rectangle.

For a node v ∈ Nodest, let T [v] be the subpattern rooted

at v, that is, T [v] = (subtreet(v), o,Anc ∩ {Edgessubtree
t(v)}).

We will use the following basic property of subpatterns.

Lemma 4.2. For a twig T = (t, o,Anc), a tree s ∈ L(T ),
and an embedding m of T into s, subtrees(m(v)) ∈ L(T [v])
for every v ∈ Nodest.

Proof. The embedding m is easily modified (by restrict-
ing the domain) to an embedding of T [v] into subtrees(m(v)).

Definition 4.3. Two twigs T and T ′ are language-equi-
valent iff L(T ) = L(T ′). They are query-equivalent iff
QT = QT ′ .

Definition 4.4 (Twig-Definable Query). A unary
query Q is called twig-definable if there is a twig T such
that Q = QT . A tree language L is called twig-definable if
there is a twig T such that L = L(T ).

Next, we define a tree cx(T ) which is characteristic for
a twig T . Basically, the tree is obtained by replacing each
ancestor-edge with a sequence of two child edges where the
new node is labeled with x /∈ Σ. This tree is a member of
the language defined by the twig. In addition, for a twig
T ′, when cx(T ) ∈ L(T ′) then L(T ) ⊆ L(T ′). The notion
of characteristic trees is similar to the notion of canonical
model defined by Miklau and Suciu [22] where every ancestor
edge is replaced by a sequence of wildcards.

Definition 4.5 (The Characteristic Tree). For a
twig T = (t, o,Anc) over the alphabet Σ, and x a label not
in Σ, the characteristic tree cx(T ) of T is obtained from t,
by replacing all edges (v1, v2) in Anc with a path v1, v3, v2

of length 2, with labels labt(v1), x and labt(v2), respectively.
Here, for every edge, v3 is a new node.

So, every node v ∈ Nodest, corresponds to a unique node
of the tree cx(T ). We denote by fcx the function from
T to cx(T ) which maps every node v ∈ Nodest to itself.
Lemma 4.6 shows that fcx is an embedding and we will refer
to it as the canonical embedding from T into its character-
istic tree. Furthermore, as fcx is bijective over the original
nodes we can use its inverse f−1

cx . Figure 1 illustrates cx(T )
and fcx .



Lemma 4.6. For any twig T = (t, o,Anc) over the alpha-
bet Σ and x /∈ Σ, there is an embedding m of T into cx(T )
such that

• for all nodes v ∈ Nodest, m(v) = fcx(v), and

• fcx is surjective over the set of all nodes in cx(T ) not
labelled by x.

The proof of the following lemma is similar to the proof
of Proposition 3 of [22].

Lemma 4.7. For any two twigs T,U over an alphabet Σ
with x /∈ Σ, cx(T ) ∈ L(U) implies L(T ) ⊆ L(U).

4.2 Succinctness and minimality
Next, we discuss succinctness and minimality of twigs.

The size of a twig T , denoted by |T |, is defined as the number
of nodes in its underlying tree. We distinguish two kinds of
minimality.

Definition 4.8 (Minimal twig). A twig is language-
minimal (resp., query-minimal) if there is no language-equi-
valent (resp., query-equivalent) twig of strictly smaller size.

The following lemma summarizes basic facts on minimal-
ity used in this paper.

Lemma 4.9. 1. If a twig is language-minimal, then it
is also query-minimal.

2. There are query-minimal twigs which are not language-
minimal.

3. If a twig T = (t, o,Anc) is query-minimal, then for all

v ∈ Nodest where o 6∈ Nodessubtree
t(v), the twig T [v] is

language-minimal.

4. If T = (t, o,Anc) is a language-minimal twig, then for
all nodes v ∈ Nodest, T [v] is also language-minimal.

Twig-minimality plays an important role in the techni-
cal machinery developed in the next section. The following
lemma specifies two sufficient criteria for a twig not to be
language minimal.

Lemma 4.10. For a twig T = (t, o,Anc), x not a label
in t, and two edges (v, v′) and (v, v′′) in t with v′ 6= v′′,
then T is not language-minimal when either of the following
conditions holds:

• (v, v′′) 6∈ Anc and cx(T [v′′]) ∈ L(T [v′]); or,

• (v, v′) ∈ Anc and ∃u ∈ Nodessubtree
t(v′′) : cx(T [u]) ∈

L(T [v′]).

Moreover, subtreet(v′) can be removed from the twig without
affecting the recognized language.

Using Lemma 4.10, we can show the following.

Lemma 4.11. For a language-minimal twig T = (t, o,Anc),
there is exactly one embedding of T into cx(T ).

We conclude our discussion on minimality with the follow-
ing lemma. By construction it always holds that cx(T ) ∈
L(T ) for x 6∈ Σ. Assume T is minimal and let u be one
of its nodes. When we replace the subtree rooted at node
fcx(u) in cx(T ) by a new tree t′ resulting in the tree s =
cx(T )[fcx(u) ← t′], then the lemma says that when s still
happens to be in the language defined by T then T [u], the
twig rooted at u, can always be mapped somewhere in t′.

Lemma 4.12. Let x be a label not in Σ. For a language-
minimal twig T = (t, o,Anc) over Σ, a node u ∈ Nodest,
and a tree t′ ∈ T∆, if cx(T )[fcx(u)← t′] ∈ L(T ), then there

is a node u′ ∈ Nodest
′

such that subtreet
′
(u′) ∈ L(T [u]).

Next, we discuss succinctness of twigs and NSTAs.

Theorem 4.13. 1. There is a family of NSTAs Mn

(for n ∈ N) of size O(n) such that the smallest equiv-
alent twig is of size Ω(2n).

2. For every twig T of size n, there exists an equivalent
NSTA of size O(2n).

3. There is a family of twigs Tn (for n ∈ N) of size
O(n) such that the smallest equivalent NSTA is of size
Ω(2n).

Proof. (1) First, we define a few more notions regarding
subtrees that will be referred to in what follows. If S is a
subset of Nodest, we say that S is connected if, for every
two nodes v1, v2 ∈ S, there is a node v and paths from v to
v1 and to v2 using only nodes in S. Notice that v may be
equal to v1 or v2. For a tree t and a connected subset S of
Nodest, the subgraph t′ of t induced by S, is the tree with

Nodest
′

= S and Edgest
′

= (S × S) ∩ Edgest.
Fix the alphabet Σ = {a, b}. For each n ∈ N, we define

the NSTA Mn = ((∆,Σ, Qn, δn, Fn), Fn), Qn = {qu, q0, q1,a,
q1,b, . . . , qn,a, qn,b}, Fn = {q0}, and δn is defined as follows.
For 1 ≤ i < n, and σ ∈ Σ

δn(qi,σ, σ) = (q∗u · qi+1,a · q∗u · qi+1,b · q∗u)
+(q∗u · qi+1,b · q∗u · qi+1,a · q∗u),

δn(qn,σ, σ) = q∗u,
δn(q0, a) = (q∗u · q1,a · q∗u · q1,b · q∗u)

+(q∗u · q1,b · q∗u · q1,a · q∗u),
δn(qu, σ) = q∗u,
δn(qu, �) = q∗u.

ThenQMn contains exactly the pairs (s, root(s)) that have
an induced subgraph s′, containing the root root(s) of s,
and such that s′ is the complete binary tree of height n,
where the root is labelled with a and each non-leaf node has
exactly two children, one labelled with a and one with b.
Notice that for each n ∈ N, the smallest tree s such that
(s, root(s)) ∈ QMn has 2n − 1 nodes.

We now argue that the minimal twig must have at least
2n − 1 nodes. If the query Tn selects the root of a tree t,
then t has a complete binary tree of height n as a subtree at
its top. Towards a contradiction, assume that there exists a
twig T ′n = (t′, o′,Anc′) query-equivalent to Mn that contains
fewer than 2n − 1 nodes. We know that T ′n selects the root
of t′. However, if t′ has fewer than 2n− 1 nodes, this means
that it does not contain a complete binary tree of height n
and contradicts that T ′n is query-equivalent to Mn.

(2) It can be proved by induction on the size n of the twig
T = (t, o,Anc), that there is an equivalent NSTA M of size
O(2n) and an NTA N of size O(2n) such that L(N) = L(T ).

(3) For n ∈ N, let Σn = {a, a1, . . . , an} and let Tn =
(tn, o,Anc) be the twig where tn = a(a1, . . . , an), o = root(t)
and Anc = Edgest. For each n, Tn contains n+1 nodes, and
the trees in L(Tn) are exactly the trees s such that there are
nodes v, v1, . . . , vn ∈ Nodess with v = root(s), all v1, . . . , vn
are different from root(s), and labs(v) = a, labs(v1) = a1, . . . ,
labs(vn) = an.



For each (non-empty, strict) subset S of {a1, . . . , an}, fix
an arbitrary tree tS such that tS is labelled with exactly the
labels from S. That is, for every ai in S, tS has a node vi
with labtS (vi) = ai and such that tS has no nodes v with
labtS (v) /∈ S. Furthermore, for every such subset S, denote
by S the set {a1, . . . , an} − S. Notice that, for every S, the
tree a(tS , tS) ∈ L(Tn).

Suppose then for contradiction, that there exists an NSTA
M with fewer than 2n − 2 states, accepting the language
L(Tn). Then, by the pigeon hole principle, there must be
two different, non-empty, strict subsets S1 and S2 of Σ−{a},
such that on the trees

a(tS1 , tS1
) and a(tS2 , tS2

),

M has accepting runs λ1 and λ2 that assign the same state
q to the root of tS1 and the root of tS2 . We can assume
w.l.o.g. that S2 6⊆ S1. (If S2 ⊆ S1 then we can switch S1

and S2.) Notice that M also has an accepting run λ on the
tree t = a(tS1 , tS2

). Indeed, this accepting run λ is the same
as λ1 on the subtree tS1 , it is the same as λ2 on subtree tS2

and on the root of t. However, since S2 6⊆ S1, there exists
an ai ∈ S2−S1. As the tree t = a(tS1 , tS2

) does not contain
the label ai, it is not in L(Tn). This means that M does not
accept L(Tn) and is a contradiction.

4.3 DAG-Twigs
Theorem 4.13(1) excludes the possibility to simply guess

an equivalent twig of small size for a given NSTA. Fortu-
nately, as we will show in this section, when an NSTA is
equivalent to a twig the latter has a small representation as
a directed acyclic graph (DAG).

Below, we use DAGs to represent the trees in twigs. As
usual, a DAG G is a directed graph G = (V,E), where V
is the set of vertices and E ⊆ V × V is the set of directed
edges, and is such that there is no directed cycle in the
graph. Note that we do not consider multi-edges. A DAG
G over the alphabet Σ has an associated labelling function
labG : V → Σ. We assume that all DAGs have exactly one
vertex with no incoming edges (called the root and denoted
by root(G)) and that they are connected. In what follows,
we also refer to the vertices of the DAG as nodes.

For any node v ∈ V , let cleanG(v) be the DAG obtained
from G by removing every node that is not reachable from
v. We next recursively define the unfolding of G into a tree
unfold(G). When |V | = 1, unfold(G) is a single node with
the same label as root(G). When |V | > 1, let U = {u ∈
V | (root(G), u) ∈ E} and let u1 <U · · · <U um be an
arbitrary ordering of the nodes in U . Then, for each 1 ≤
k ≤ m, let Gk = cleanG−{root(G)}(uk). The tree unfold(G) is
then defined as

labG(root(G))(unfold(G1), . . . , unfold(Gm)).

We denote by foldG the canonical mapping from
Nodesunfold(G) to V . We say that a tree t is represented by a
DAG G, if G can be unfolded into t.

Definition 4.14 (Dag-Twig). A DAG-twig is a tuple
D = (G, o,Anc), where G = (V,E) is a DAG over Σ, the
node o ∈ V is such that there is exactly one path from
the root to o in G, and Anc ⊆ E. The query defined by
D, denoted by QD, is the query QT where T is the twig
(unfold(G), oG,AncG) for which

• foldG(oG) = o; and,

• AncG = {(v, u) | (foldG(v), foldG(u)) ∈ Anc}.

We say that the DAG D represents the twig T .

Notice that, as there is only one path from the root to o
there can only be a unique node oG for which foldG(oG) =
o. Furthermore, due to the possibly many ways in which
a DAG can be unfolded, there are multiple twigs that are
represented by a DAG. However, since all these twigs define
the same query, we feel that it is justified to refer to QD as
the query defined by D.

The next theorem says that if an NSTA is twig-definable,
there exists an equivalent twig of at most linear size.

Theorem 4.15. For an NSTA M = (N,S), if QM is
twig-definable, then there exists an equivalent DAG-Twig D
with at most 2 · |QN | nodes, where QN is the set of states of
N .

Before we start proving Theorem 4.15, we introduce a
definition and some lemmas.

Definition 4.16. For a twig T = (t, o,Anc), the twig
Bool(T ) is defined as (Bool(t, o), o,Anc).

We can prove the following:

Lemma 4.17. If a twig T is query-minimal, then Bool(T )
is language-minimal.

Lemma 4.18. For a twig T = (t, o,Anc) and a non-root
node v ∈ Nodest, cx(T [v]) 6∈ L(T ).

Proof. Let v1, . . . , vn be the n nodes on the longest path

in t. Since v1 is the root of t, and hence v1 6∈ Nodessubtree
t(v),

all paths in subtreet(v) have less than n nodes. Hence all
paths in cx(T [v]) have less than n nodes with label different
from x. Any embedding of T on cx(T [v]) must map the
nodes v1, . . . , vn to distinct nodes, each an ancestor of the
next, on the same path, none labelled x. As no such path
exists in cx(T [v]), there cannot be any embedding of T on
cx(T [v]).

A helpful corollary is the following:

Corollary 4.19. For a non-root node v of a twig T ,
L(T [v]) 6⊆ L(T ).

The remainder of this section is devoted to the proof of The-
orem 4.15.

Proof. Let D be the smallest DAG-twig representing a
query-minimal twig equivalent to M . Let T = (t, o,Anc) be
the unfolding of D. Towards a contradiction assume that
the size of D, that is, its number of nodes, is larger than
2 · |QN | where N = (∆,Σ, QN , δN , FN ). We will identify
two nodes in D which can be merged leading to a strictly
smaller DAG-twig which unfolds to a twig of the same size as
T and is equivalent to T . In other words, the merged DAG-
twig will be equivalent to a query-minimal twig as required
to contradict our assumption.

Let x 6∈ ∆. Recall that foldD is the canonical mapping
from the nodes of T to the nodes of D witnessing that T
is represented by D. Next, we view M = (N,S) and T
from the perspective of the languages they define over the



alphabet ∆0,1. Specifically, let Nb be the NTA accepting
Bool(QM ) as is given by Lemma 2.5. Note that Nb has at
most 2|QN | states. Furthermore, let Tb = Bool(T ) as defined
in Definition 4.16. Now, by Lemma 4.17, Tb is language-
minimal. The following lemma relates Nb and Tb:

Lemma 4.20. 1. L(Nb) ⊆ L(Tb); and,

2. cx(Tb) ∈ L(Nb).

Let ρ be a run of Nb on cx(Tb). As Nb has at most 2|QN |
states and D has more than 2|QN | nodes, by the pigeonhole
principle, there are two nodes n′1, n

′
2 in cx(Tb), not labelled

by x, with ρ(n′1) = ρ(n′2) and corresponding to two different
nodes in D. This means, foldD(f−1

cx (n′1)) 6= foldD(f−1
cx (n′2))

for fcx the canonical embedding of Tb on cx(Tb).
3 Now,

take two nodes n1 and n2 in T (or, equivalently, Tb) with
fcx(n1) = n′1 and fcx(n2) = n′2. Since ρ(n′1) = ρ(n′2), and
since L(Nb) ⊆ L(Tb) by Lemma 4.20, it follows that

cx(Tb)[n
′
1 ← subtreecx(Tb)(n′2)] ∈ L(Tb), (†)

cx(Tb)[n
′
2 ← subtreecx(Tb)(n′1)] ∈ L(Tb). (‡)

Using (†) and (‡), we can show the following lemma:

Lemma 4.21. 1. L(T [n1]) = L(T [n2]); and,

2. neither n1 nor n2 is an ancestor of or equal to the
output node o.

Before we prove the lemma, let us first explain how it leads
to the desired contradiction. From Lemma 4.21(1), it follows
that in D the nodes foldD(n1) and foldD(n2) can be merged
to give a smaller (by at least one node) DAG-twig defining
the same query as defined by D. Let m1 = foldD(n1) and
m2 = foldD(n2). By assumption, m1 6= m2. Furthermore,
by Corollary 4.19 and Lemma 4.21(1), neither of these nodes
can be an ancestor of the other. By merging m1 and m2, we
mean replacing m1 with m2 in all edges of the form (y,m1)
(for any y), removing all edges of the form (m1, z) (for any
z), removing m1 from the set of nodes, and finally removing
all nodes and edges which are now not reachable from the
root. 4 Call the thus obtained DAG-Twig D′. Note that
by Lemma 4.21(2) there is only one path from the root to
the output node o. As D′ is equivalent to D, it defines
the same query as T , but it still needs to be argued that
D′ represents a query-minimal twig. That is, the unfolding
of D′ leads to a twig with the same number of nodes as
T . From Lemma 4.21(2) and Lemma 4.9(3), it follows that
both T [n1] and T [n2] are language minimal which means
that they have the same number of nodes. So, the unfolding
of D has the same number of nodes as T and is therefore
query-minimal. This leads to the desired contradiction and
ends the proof of Theorem 4.15.

3Note that f−1
cx maps nodes from cx(Tb) to Tb and foldD()

maps nodes from T to D, but since Tb and T contain the
same set of nodes the composition of these two functions is
well-defined.
4Note that this merging is not well-defined when m1 and
m2 are siblings, because it introduces multi-edges. However,
when m1 and m2 are siblings then so are n1 and n2. But as
both T [n1] and T [n2] can be embedded on the same subtree
of any tree in the language defined by the query, this would
mean that T is not query-minimal. Therefore, m1 and m2

can not be siblings.
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v1

v′1
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s2 = cx(Tb[n1])
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f−1
cx
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m2

f−1
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Figure 3: Illustration of the trees and associated
nodes used in the proof of Lemma 4.21.

Remark 4.22. Note that for any v ∈ Nodest,

subtreecx(T )(fcx(v)) = cx(T [v]).

We now prove Lemma 4.21.

Proof. Let

s1 = subtreecx(Tb)(n′2) and s2 = subtreecx(Tb)(n′1).

Then, s1 = cx(Tb[n2]) and s2 = cx(Tb[n1]), by Remark 4.22.
To show that L(T [n1]) = L(T [n2]), we first apply Lemma 4.12
to (†) and (‡), to obtain nodes v′1 ∈ Nodess1 and v′2 ∈
Nodess2 such that

subtrees1(v′1) ∈ L(Tb[n1]),

subtrees2(v′2) ∈ L(Tb[n2]). (?)

Note that, v′1 and v′2 are not labelled with x as the corre-
sponding embeddings map n1 and n2 to them. We provide
a graphical illustration of the employed trees and associated
nodes in Figure 3.

If v′1 and v′2 are the roots in the trees s1 and s2, re-
spectively, or in other words v′1 = n′2 and v′2 = n′1, then
subtrees2(v′2) = subtrees2(n′1) = s2 = cx(Tb[n1]). Similarly,
subtrees1(v′1) = cx(Tb[n2]). Therefore, by (?), cx(Tb[n2]) ∈
L(Tb[n1]) and cx(Tb[n1]) ∈ L(Tb[n2]), and by Lemma 4.7,
L(Tb[n1]) = L(Tb[n2]) which implies L(T [n1]) = L(T [n2]).

Suppose then that at least one of v′1 and v′2 is not the root,
and w.l.o.g. let this be the case for v′2. Then we will argue to-
wards a contradiction. Let v1 = f−1

cx (v′1) and v2 = f−1
cx (v′2),

and let the mapping m1 be the embedding showing that
subtrees1(v′1) ∈ L(Tb[n1]) and m2 the embedding showing
subtrees2(v′2) ∈ L(Tb[n2]). Consider then the composition of
mappings m = m2 ◦f−1

cx ◦m1. The mapping m is an embed-
ding from Tb[n1] to subtrees2(m2(v1)). Since v1 is equal to
or a descendant of n2, so is m2(v1) equal to or a descendant
of m2(n2), and the latter is equal to v′2, because m2 is the
embedding witnessing that subtrees2(v′2) ∈ L(Tb[n2]). As we
remarked above, s2 = cx(Tb[n1]). So, subtrees2(m2(v1)) =
cx(Tb[v]) where v = f−1

cx (m2(v1)), which is a strict descen-
dant of n1, by our assumption that v′2 is a strict descendant
of n′1. This implies that the mapping m is a witness to
cx(Tb[v]) ∈ L(Tb[n1]), for v a strict descendant of n1, and
by Lemma 4.18, this leads to a contradiction.



D T Tb cx(Tb)
n1 n2

n1 n2 n′1 n′2

unfoldD Bool fcx

Figure 2: The DAG D, the unfolding of D into T , Tb = Bool(T ), and the characteristic tree of Tb used in the
proof of Theorem 4.15.

To show that neither n1 nor n2 is an ancestor of or equal
to o, suppose for contradiction that at least one of them is.
If exactly one of them is an ancestor of or equal to o, say n1,
then Tb[n1] contains a node labelled with (a, 1) for some a ∈
Σ, but Tb[n2] does not contain such a node, by definition of
the mapping Bool. Therefore L(Tb[n1]) 6= L(Tb[n2]), which
is a contradiction. If both n1 and n2 are ancestors of or
equal to o, then, either n1 is an ancestor of n2, or n2 is an
ancestor of n1. If n1 is an ancestor of n2, and L(Tb[n1]) =
L(Tb[n2]), we have a contradiction by Corollary 4.19. The
case is similar when n2 is an ancestor of n1.

Hence, L(Tb[n1]) = L(Tb[n2]) and neither n1 nor n2 is an
ancestor of or equal to o. Then L(T [n1]) = L(T [n2]), as
needed.

4.4 Testing equivalence of DAG-Twigs and
NSTAs

Now we have a small model property of DAG-twigs com-
pared to NSTAs (Theorem 4.15), we can simply decide twig-
definability of an NSTA by guessing the DAG-twig and test-
ing equivalence. Here, we argue that equivalence of such an
NSTA M and a DAG-twig D can be decided in exponen-
tial time. In particular, we will reduce the latter problem
to emptiness of alternating tree-walking automata operating
on Bool(QM ) and Bool(QD).

Let D be a DAG-twig representing the twig T . The goal
of this Section is to describe a procedure that, given D,
constructs an alternating tree-walking automaton accepting
L(T ), the tree language associated with T .

Although DAG-twigs operate directly on unranked trees,
we will intermediately work with binary trees encoding these
unranked trees. Following [24], for an (unranked) tree t, let
enc(t) be its binary encoding, obtained as follows: The nodes
of enc(t) are the nodes of t plus a set of leaf nodes marked
#. Further, the root node of enc(t) is the root node of t
and for any node, its left child in enc(t) is its first child in
t (or # if its a leaf), and its right child in enc(t) is its next
sibling in t (or # if it has none). In Figure 4, we depicted
an example of an unranked tree and its binary encoding.

We start by recalling the definition of these alternating
tree walking automata, which operate on binary trees:

Definition 4.23 (Alt. Tree-Walking Automata).
Let PosBool(P ) be the set of positive Boolean formulas over
propositions P (i.e., formulas without negation), but includ-
ing true and false. An alternating tree walking automaton
with wildcards (ATWA with wildcards) over binary trees is
defined as a tuple W = (Q,∆,Σ, δ, q0), where

• Q is a finite set of states,

• Σ is a finite set of alphabet symbols,

• δ is a set of transition rules of the form (q, σ) → θ,
where q ∈ Q, σ ∈ Σ�, and θ is a formula from

PosBool({↙,↘ −} ×Q),

and

• q0 is the initial state.

Recall that Σ� = Σ ] {�}, where � is the wildcard symbol.
The transition relation δ should be such that for each pair

(q, σ) ∈ Q× Σ� there is at most one rule in δ with (q, σ) as
its left hand side. (If there would be two rules with the same
left hand side, we can merge them into one rule by taking
the disjunction of the right hand sides.) If (q, σ)→ θ ∈ δ, we
also write rhsW (q, σ) = θ. Elements in {↙,↘,−} denote
directions in the tree. For a node u of t, u· ↘ (respectively,
u· ↙) denotes the right child of u (respectively, left child of
u) if lab(u) 6= # and is undefined otherwise. Further, u · −
is u itself (i.e., − is used for stay transitions).

Given a binary tree t, a run tree of W on t is an un-
ranked tree R in which each node is labelled by an element
of Nodest×Q such that the following holds. We say that an
element a ∈ ∆ matches σ ∈ Σ� if either a = σ or a /∈ Σ and
σ = �.

• The label of the root of R is (root(t), q0) and

• for every node x of R with label (v, qv), if (qv, σ) →
θ ∈ δ and labt(v) matches σ, then there is a set S ⊆
{↙,↘,−} ×Q such that,

– for every (i, q′) ∈ S, v · i is defined and there is a
child y of x in R labelled (v · i, q′);

– all children of x are labelled with (v · i, q′) such
that (i, q′) ∈ S; and

– the truth assignment that assigns true to all el-
ements of S, and false to all other elements of
{↙,↘,−} ×Q, satisfies θ.

A run tree R is accepting if, for every leaf node of R labelled
(u, q), there is a rule rhsW (q, σ) = true such that labt(u)
matches σ. A binary tree t is accepted by an ATWA W if
there exists an accepting run tree of W on t. By L(W ) we
denote the set of trees accepted by W .

We now show that, given a DAG-twig, we can efficiently
construct an equivalent tree walking automaton. We note
that it is well known that there is a connection between
various XPath fragments and (two-way) alternating walking
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Figure 4: An unranked tree and its binary encoding.

automata. Benedikt, Fan and Geerts [1] have shown that
it is possible to construct, in linear time, a two-way alter-
nating word automaton, accepting string encodings of trees
defined by an XPath query. This construction, however,
only works when the considered trees have a fixed depth.
Further, ten Cate and Lutz [33] have shown that it is pos-
sible to construct, in quadratic time, a two-way alternating
tree automaton equivalent to a given XPath query.

Lemma 4.24. Let D be a DAG-twig representing the twig
T . An alternating tree walking automaton W with L(W ) =
{enc(t) | t ∈ L(T )} can be constructed in time O(|D|).

The construction for proving Lemma 4.24 can be easily
changed such that W accepts encodings of L(Bool(T )) in-
stead of L(T ).

Corollary 4.25. Let D be a DAG-twig that represents
the twig T . An alternating tree walking automaton W with
L(W ) = {enc(t) | t ∈ L(Bool(T ))} can be constructed in
time O(|D|).

We now reduce equivalence between an NSTA and a DAG-
twig to the emptiness problem for ATWAs.

Theorem 4.26. Given a DAG-twig D and an NSTA M ,
we can construct an ATWA W in polynomial time such that
L(W ) = ∅ if and only if Bool(QM ) = Bool(QD).

Proof. Let D0,1 := Bool(D). Let N0,1 be the NTA with
L(N0,1) = Bool(QM ), as obtained in Lemma 2.5. We con-
struct an ATWA W that accepts a tree t if and only if t
is in the symmetric difference of L(N0,1) and L(D0,1). We
assume w.l.o.g. that D0,1 and N0,1 have disjoint state sets.

When reading a tree t, the ATWA W starts with a stay
transition at the root and guesses whether either

• D0,1 would accept t and N0,1 would reject t; or

• D0,1 would reject t and N0,1 would accept t.

The ATWA W can do this in one transition:

(root(t), q0)→(
(−, qD0,1

0 ) ∧ (−, qN0,1

0 )
)
∨
(
(−, qD0,1

0 ) ∧ (−, qN0,1

0 )
)

Here, q
D0,1

0 and q
N0,1

0 are the initial states of D0,1 and N0,1,
respectively. The remainder of the run of W starting with

q
D0,1

0 (resp., q
N0,1

0 ) therefore leads to acceptance if and only

if D0,1 (resp., N0,1) accepts t. Analogously, the states q
D0,1

0

and q
N0,1

0 are the states for the complement languages of
D0,1 and N0,1. The remainder of the run of W starting

with q
D0,1

0 (resp., q
N0,1

0 ) accepts if and only if D0,1 (resp.,
N0,1) does not accept t. Notice that, since ATWAs can
be complemented in polynomial time (analogously to [12],
chapter 7), W can be constructed in polynomial time as
well.

Theorem 4.27. Testing equivalence between a DAG-twig
D and an NSTA M is EXPTIME-complete.

Proof. The lower bound is immediate by a reduction
from the language universality problem for NTAs. The up-
per bound is immediate from Theorem 4.26. The lower
bound follows from the fact that testing language empti-
ness for alternating tree walking automata with wildcards is
the same as language emptiness for alternating tree walking
automata without wildcards. The latter problem is known
to be in EXPTIME. (see, e.g., [5, 12]).

4.5 Main Result
We are now ready to state and prove the main result of

this section.

Theorem 4.28. Deciding whether for an NSTA M , QM
is twig-definable, is complete for EXPTIME.

Proof. For the lower bound, similarly to Theorem 3.7,
we will reduce the problem of universality of NTAs with
wildcards to the problem considered here. Let N = (∆,Σ,
Q, δ, F ) be an NTA. We construct an NSTA M such that
QM is twig-definable if and only if L(N) = T∆. Let qsel /∈ Q
and define the NSTA M = ((∆,Σ, Q]{qsel}, δ]{(qsel, a) 7→
(
∑
p∈F p)

∗}), {qsel}). Then for any tree t′ = a(t1, . . . , tn), we

have that root(t′) ∈ QM (t′) if and only if, for each 1 ≤ i ≤ n,
ti ∈ L(N). In particular, we have thatQM selects the root of
the tree tsmall = σ, consisting of just one node. However, by
definition of twig queries, there is only one twig T that is able
to select the root of tsmall, namely the twig T = (t, o,Anc)
with t = σ, o = root(t), and Anc = ∅. This means that
QM is twig-definable if and only if QM = QT . However,
QM = QT if and only if L(N) = T∆.

The upper bound is given by the following exponential-
time algorithm. From Theorem 4.15, we know that if there
exists a DAG-twig equivalent to M = ((∆,Σ, Q, δ, F ), S),
there is one that has at most 2 · |Q| nodes. Therefore, we
can enumerate every possible DAG-twig D with at most
2 · |Q| nodes and test whether D and M are equivalent.
Theorem 4.27 states that we can test in exponential time



whether a given DAG-twig D and a given NSTA M are
equivalent. Since the maximal size of each DAG-twig D is
linear in our input, this means that our total algorithm has
an exponential-time test for each of the exponentially many
DAG-twigs, which takes exponential time altogether.

5. CONCLUSION
In this paper we have shown that deciding twig-definability

of NSTAs is complete for EXPTIME. There are many possi-
ble directions for future work. First of all, it would be inter-
esting to identify meaningful subclasses of NSTAs for which
deciding twig-definability is tractable. On the other hand,
one could wonder how twig-queries can be extended while
remaining within EXPTIME for testing twig-definability.
When an NSTA is not equivalent to a twig, one could look
at maximal sub- or minimal super-approximations, as, for
instance, done in [15] for single-type EDTDs. Of course,
other languages than XPath can be considered, like for in-
stance, the Region Algebra [13], caterpillar expressions [16],
or even tree-walking automata [5].
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[5] M. Bojańczyk. Tree-walking automata. In Int. Conf.
on Language and Automata Theory and Applications
(LATA), pages 1–2, 2008.
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[8] M. Bojańczyk and L. Segoufin. Tree languages defined
in first-order logic with one quantifier alternation.
Logical Methods in Computer Science, 6(4), 2010.
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