
UNIVERSITY OF OSLO
Department of Informatics

Large-scale integer
programs in image
analysis

G. Dahl, G. Storvik
and A. Fadnes

Report 262,
ISBN 82-7368-193-9

May 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30806255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Large-scale integer programs in image analysis

Geir Dahl∗ Geir Storvik† Alice Fadnes‡

May 1998

Abstract

An important problem in image analysis is to segment an image into

regions with di�erent class-labels. This is releveant in applications in

medicine and cartography. In a proper statistical framework this prob-

lem may be viewed as a discrete optimization problem. We present two

integer linear programming formulations of the problem and study some

properties of these models and associated polytopes. Di�erent algorithms

for solving these problems are suggested and compared on some realis-

tic data. In particular, a Lagrangian algorithm is shown to have a very

promising performance. The algorithm is based on the technique of cost

splitting and uses the fact that certain relaxed problems may be solved as

shortest path problems.

Keywords: Integer programming, image analysis, Lagrangian relaxation.

1 Introduction

Digitized images are nowadays routinely recorded in a huge number of applica-
tions. Examples are in remote sensing, medical image analysis and industrial
inspection. In most cases the observed image consists of a matrix of pixels (pic-
ture elements), where a (possible vector-valued) observation is given at each
pixel. One aim in the analysis of such images is segmentation which is a method
for labeling each pixel by a class-label describing the content in the image (e.g.
tissue types in medical images).

In most situations, the observed image is quite noisy, making segmentation
based on the observed image di�cult. In such cases external information on how
the class-labels typically appear needs to be incorporated. One popular way for
doing so is to assume the class-labels are distributed according to a stochastic
model [2]. A class of stochastic models frequently used in image analysis is the
Markov Random Field (MRF). Such models mainly incorporate smoothness in
the images and are popular because of their �exibility.

∗University of Oslo, Dept. of Informatics, P.O.Box 1080, Blindern, 0316 Oslo, Norway.

(Email:geird@i�.uio.no)
†University of Oslo, Department of Mathematics, P.O.Box 1053, Blindern, 0316 Oslo,

Norway.
‡University of Oslo, Dept. of Informatics, P.O.Box 1080, Blindern, 0316 Oslo, Norway.

1

When using stochastic models for the class-labels, the aim is to �nd the most
probable con�guration of labels based on the observed image. Since the number
of pixels is large (typically 256×256 or larger) and the number of classes can be
from 2 and up to 40-50, this results in a huge combinatorial problem. In most
situations this problem is solved through stochastic simulation and simulated
annealing [5] or by using some sort of heuristic [1].

In this paper we will consider the use of integer linear programming (ILP)
methods for solving the image segmentation problem. Such an approach has
been considered in the special case of two classes [6]. We will however consider
the general case for which little, to our knowledge, has been done. The approach
is to transform the image segmentation problem into an integer linear program-
ming problem for which di�erent algorithms will be constructed. In [9], the
main approach was presented and applied on some real images. In this paper
we will consider the approach in a more theoretical setting, describing di�erent
ILP models, discussing their theoretical properties and constructing di�erent
algorithms for these problems. By applying the di�erent algorithms on a large
number of test cases, evaluation on their properties will be performed.

The paper is organized as follows. The image segmentation problem is de-
scribed in mathematical terms in section 2. This also includes the statistical
model which re�ects how errors are introduced in the observed image. Section 3
presents two integer linear programming models for the problem and discusses
some basic relations between these models. Further properties of the models
and associated polytopes are presented in section 4. For certain special cases
(e.g. two classes) the image segmentation problem may be solved as basic com-
binatorial optimization problem as described in section 5. Section 6 presents
di�erent methods for �nding optimal or near-optimal solutions of the problem
while the last section presents some numerical results and experiences with these
methods on some realistic problems.

2 The image segmentation problem

For our purposes a (two-dimensional) image consists of a set V = {1, . . . , n} of
pixels where each pixel belongs to a set K of classes K = {1, ..., κ}. The pixels
are organized as a matrix where entries correspond to pixels. Pixels are denoted
by u, v, We say that two pixels u and v are neighbors, or adjacent, whenever
the two pixels lie in the same row but in adjacent columns or vise versa. Let
E denote the set of (unordered) neighbor pairs of pixels. We may view V and
E as the node and edge set of a graph G = (V,E) and we call this graph the
image graph. Thus, nodes correspond to pixels and edges to adjacent pixels.
Note that our image graph G is a �grid graph�, but other graphs (e.g. with
additional edges for diagonals) may also be of interest in certain applications.
Let n := |V | denote the number of pixels (nodes) and m := |E| the number of
edges (neighbor pairs). An edge between nodes u and v is denoted by [u, v].

Formally, an image may be viewed as a function c which associates a class
cv ∈ K to each pixel v ∈ V . It will be convenient to view c as an n-dimensional

2

vector c = (c1, . . . , cn) where ci is the class of the ith pixel.
The image c = (c1, . . . , cn) is not directly observed, but is observed through

a degraded image z = (z1, . . . , zn). The connection between z and c is given
through a statistical model which contains the conditional (probability) distri-
bution f(z|c) of z given c. We assume conditional independence between pixels
meaning that

f(z|c) =
∏
i∈V

f(zi|ci). (1)

Often some prior information about the true image c is available. A simple,
and popular, class of models is the Markov random �eld (MRF), which builds
in smoothness properties of the image. In its simplest form it is given by

π(c) =
1

s
exp{

∑
v∈V

αcv + β
∑

[u,v]∈E

I(cu = cv)} (2)

where αk de�nes the prior probabilities for the di�erent classes k, β > 0 is a
parameter giving the degree of smoothness, s is a normalization constant making
π(·) a proper distribution (i.e. total probability is 1) and the indicator function
I(cu = cv) equals 1 if cu = cv and 0 otherwise. A generalization would be to
let β be dependent on the classes cu and cv, or even on u and v. Both these
extensions are directly applicable for the methods to follow. However, to keep
the notation simple, we assume that (2) holds. The posterior distribution for c
given z may be found through Bayes formulae to be

π(c|z) = φ(z)π(c)f(z|c) (3)

where φ is a suitable normalization function. Consider now z as �xed; it is
the observed image. Thus φ(z) is a constant. The Bayesian paradigm is to
base all inference on this posterior distribution. In particular, one estimate of
c is the maximum a posteriori (MAP) solution ĉ which maximizes π(c|z), or
equivalently, is an optimal solution of

max{π(c)f(z|c) : c ∈ Kn}. (4)

In this paper we discuss models and methods for �nding such a MAP solution
based on the optimization problem (4). This is a discrete optimization problem
as each variable cv is restricted to lie in the �nite set K of classes. For the
applicationwe have in mind the number κ of classes is low (e.g., due to unordered
classes). We call (4) the image segmentation problem, or (IMS) for short.

3 Integer linear programming models for (IMS)

We shall formulate the (IMS) problem (4) as an integer linear programming
problem. Actually, two possible formulations will be presented and some basic
relations between these are discussed.

3

First, we observe that it is more convenient to maximize the logarithm of the
posterior distribution (3), or equivalently, after removing a constant (depending
only on z), the following function

U(c) =
∑
v∈V

αcv + β
∑

[u,v]∈E

I(cu = cv) +
∑
v∈V

log f(zv|cv)

=
∑
v∈V

∑
k∈K

(log f(zv|k) + αk)I(cv = k) + β
∑

[u,v]∈E

I(cu = cv).

In the image analysis literature (minus) U is usually referred to as the energy
function. De�ne dv,k = log f(zv|k) + αk for v ∈ V and k ∈ K. Consider the
following integer linear programming model which we denote by (ILP1):

max
∑
v∈V

∑
k∈K dv,kxv,k + β

∑
e∈E

∑
k∈K ye,k

s.t.
(i) ye,k ≤ xv,k for k ∈ K, e ∈ E and v ∈ e;
(ii)

∑
k∈K xv,k = 1 for v ∈ V ;

(iii) 0 ≤ xv,k, ye,k ≤ 1 for v ∈ V , e ∈ E, k ∈ K;
(iv) xv,k, ye,k are integral for v ∈ V , k ∈ K.

(5)

We write v ∈ e to mean that v is an endnode of the edge e. In this model we have
class variables xv,k and neighbor variables ye,k. All these are (0, 1)-variables and
xv,k equals 1 if pixel v is given class k. If two pixels u and v are adjacent, i.e.,
e = [u, v] ∈ E, the neighbor variable ye,k may be set to 1 if both u and v are
given the same class k, and ye,k = 0 otherwise. The objective function to be
maximized is the sum of two terms: the class term and the neighbor term. The
class term involves the class variables and re�ects how well the estimated image
�ts the observed image. The neighbor term is β times the number of neighbors
that are given the same class. Thus one seeks a balance between �tness to the
observed image and shoothness. The parameter β re�ects a weighting of these
two con�icting goals. Consider k ∈ K and e = [u, v] ∈ E. The corresponding
constraint (5)(i) says that in order to have the neighbor variable ye,k equal to
1 both the class variables xu,k and xv,k must be 1, i.e., both pixels u and v are
given class k. The constraints (5)(ii) just says that each pixel must be given
precisely one class. Hereafter we assume that all the class variables xv,k resp.
the neighbor variables are organized into a vector x (of dimension nκ) resp. y
(of dimension mκ).

We remark that we may assume without loss of generality that all the num-
bers dv,k in (5) are nonnegative. This follows from the observation that if we
increase each dv,k by a number p then the optimal value is increased by np due
to (5)(ii).

A simple observation concerning the form of the optimal solutions in the
problem (ILP1) can be made. Assume that (x,y) is an optimal solution of this
problem. Then the variable y may be expressed in terms of x as follows:

ye,k = min{xu,k, xv,k} (6)

4

for each e = [u, v] ∈ E and k ∈ K.
In order to count the number of variables in this model assume that the

image (matrix) has n1 rows and n2 columns. From the adjacency structure
we see that n = |V | = n1n2 and m = |E| = 2n1n2 − n1 − n2. Therefore in
(ILP1) there are N1 := nκ + mκ = (3n1n2 − n1 − n2)κ variables and M1 :=
(4κ + 1)n1n2 − 2(n1 + n2)κ constraints (apart from the simple bounds). We
should point out that for some interesting application we might have e.g. n1 =
n2 = 256 and κ = 10 which gives N1 = 1960960 and M1 = 2676736. Thus
we are clearly confronted with large-scale integer programming problems; even
the corresponding linear programs are large! Based on this observation it is
natural to seek other models with possibly fewer variables and, when it comes
to algorithms, study decomposition-based methods. We shall consider both
issues and start with a second model.

Consider the integer linear programming model (ILP2)

max
∑
k∈K

∑
v∈V dv,kxv,k + β

∑
e∈E y

′
e

s.t.
(i1) xu,k − xv,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ E;
(i2) −xu,k + xv,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ E;
(ii)

∑
k∈K xv,k = 1 for v ∈ V ;

(iii) 0 ≤ xv,k, y′e ≤ 1 for v ∈ V , k ∈ K;
(iv) xv,k, y

′
e are integral for v ∈ V , k ∈ K.

(7)

Comparing this model to (ILP1) we see that, for each e = [u, v] ∈ E, the
neighbor variables ye,k for k ∈ K are replaced by the single neighbor variable
y′e. The new constraints (7)(i) says that |xu,k − xv,k| + y′e ≤ 1: in order to set
the neighbor variable y′e to 1 (which gives contribution β in the objective) we
must have xu,k = xv,k for all k, i.e., the two pixels are given the same class. Let
y′ be the vector of the variables y′e for e ∈ E. Similar to what we saw for model
(ILP1) the variable y′ may be expressed in terms of x for an optimal solution
(x,y′) in (ILP2):

y′e = 1−maxk∈K |xu,k − xv,k| (8)

for each e = [u, v] ∈ E.
The number of variables and constraints in (ILP2) are given by N2 = nκ+

m = (κ + 2)n1n2 − n1 − n2 = N1 − (κ − 1)m and M2 = M1. This means
that we have reduced the number of variables by (κ− 1)m while the number of
constraints is unaltered. In our example with n1 = n2 = 256 and κ = 10 we
get N2 = 785920 which is less than half the number of variables in (ILP1). A
further comparison of the two models is given in the next section.

4 Properties of the models

In this section we discuss some theoretical properties of the two models in-
troduced in section 3. In particular we give some conditions under which the
optimal value of the integer program coincides with the optimal value of the

5

corresponding LP relaxation. In such situations the (IMS) problem reduces to
solving a linear programming problem.

4.1 Comparing the LP relaxations

The following result relates di�erent optimal values and solutions. We let v(R)
denote the optimal value of an optimization problem (R). Moreover, the LP
relaxations of (ILP1) and (ILP2) are denoted by (LP1) and (LP2), respectively.

Theorem 4.1 The following relations hold

v(ILP1) = v(ILP2) ≤ v(LP1) ≤ v(LP2).

Moreover, (x,y) is an optimal solution of (ILP1) if and only if (x,y′) is an

optimal solution of (ILP2) where y and y′ are determined by x according to (6)

and (8).

Proof. We only prove that v(LP1) ≤ v(LP2) as the remaining statements are
easy to verify. Let X denote the set of vectors x that satisfy (5) (ii) and (iii).
Based on the relation (6) we may write

v(LP1) = max{
∑
v,k

dv,kxv,k + β
∑

e=[u,v],k

min{xu,k, xv,k} : x ∈ X}

and similarly from (8) we get

v(LP2) = max{
∑
v,k

dv,kxv,k + β
∑

e=[u,v]

(1−max
k
|xu,k − xv,k|) : x ∈ X}.

Thus, we only need to prove that for every x ∈ X and e = [u, v] the inequal-
ity
∑
k min{xu,k, xv,k} ≤ 1 −maxk |xu,k − xv,k| holds. To this end, let x ∈ X

and e = [u, v] and de�ne K ′ = {k ∈ K : xu,k ≤ xv,k} and K ′′ = K \ K ′.
Then

∑
k∈K min{xu,k, xv,k} =

∑
k∈K′ xu,k +

∑
k∈K′′ xv,k =

∑
k∈K′ xu,k + 1 −∑

k∈K′ xv,k = 1 −
∑
k∈K′(xv,k − xu,k) ≤ 1 − maxk∈K′(xv,k − xu,k) where the

inequality is due to the nonnegativity of the elements in the summation. Sim-
ilarly we derive

∑
k∈K min{xu,k, xv,k} ≤ 1 − maxk∈K′′(xu,k − xv,k). But then

we have two upper bounds for
∑
k min{xu,k, xv,k} and by taking the minimum

of these we arrive at the desired inequality.

4.2 Model 1

Let P1 be the solution set of the constraints (5)(i)�(iii), i.e. P1 is the feasible
set of the LP relaxation of model (ILP1). We may also write P1(G) to indicate
the dependence of P1 of the image graph G. Then P1 is a bounded polyhedron,
or polytope, in IRN1 . Observe that all the constraints x ≥ 0, x ≤ 1 and y ≤ 1
are redundant and may be omitted from the description of P1.

We recall that a matrix is totally unimodular (TU) if each subdeterminant
is -1, 0 or 1. A general result (see [7]) is that a matrix M is TU if and only if

6

the matrix M′ obtained from M by a (simplex) pivot operation is TU. Assume
that M = (mi,j) is a (−1, 0, 1)-matrix and that the element in position (i, j) is
nonzero. A rowwise pivot in position (i, j) is to (a) multiply the ith row by -1
if mi,j = −1, and the (b) add −mk,j times the (new) ith row to the kth row
for k 6= i. As a result one obtains a unit vector in column j with the one in
row i. Columnwise pivots are de�ned similarly. Another useful fact is that the
TU-property of a matrix is insensitive to row and column permutations on the
matrix. Recall also that if M ∈ IRm,n is TU, then for each integral b1,b2 ∈ IRm

with b1 ≤ b2 the polytope {x ∈ IRn : b1 ≤Mx ≤ b2, 0 ≤ x ≤ 1} has vertices
with all components being 0 or 1, see [7].

We next present some important results concerning the LP relaxations of
(ILP1). Here we no longer restrict the attention to the speci�c image graph G
introduced in the beginning of section 2 (the grid graph). The �rst result deals
with arbitrary image graph G but only two classes and the second result treats
the situation where G is a forest (a graph without cycles).

Theorem 4.2 Assume that one of the two conditions (i) and (ii) holds where

(i) G is arbitrary and |K| = 2;

(ii) G is a tree and K is arbitrary.

Then the coe�cient matrix M given by the constraints (5)(i) and (ii) is totally

unimodular. In particular, the polytope P1(G) is integral.

Proof. We show that M is TU, and then P1(G) is integral due to the general
result mentioned above. Assume �rst that condition (i) holds and letK = {1, 2}.
The columns of M may be divided into two classes. In class 1 we have all the
variables xv,1 and ye,1 and in class 2 we have the remaining variables (xv,2 and
ye,2). Then M has the following four properties: (a) M is a (-1,0,1)-matrix,
(b) each row in M has two nonzeros, (c) each row in M corresponding to a
constraint ye,k ≤ xv,k, or rather ye,k − xv,k ≤ 0, has its two nonzeros (1 and -1)
in the same class, and, �nally, (d) each row in M corresponding to a constraint
xv,1+xv,2 = 1 has its two nonzeros (both 1) in di�erent classes. These properties
imply that M is TU (for multiplying each column in class 2 by -1 produces a
network matrix, see e.g. [8]).

Next, we assume that condition (ii) holds. Suppose �rst that G is a tree.
Since G is a tree it is well known that one may order its nodes v1, . . . , vn and
edges e1, . . . , en−1 such that for i = 1, . . . , n−1 the edge ei has endnodes vi and
vk(i) for some k(i) > i. This is due to the fact that each tree has a leaf, i.e., a
node of degree one.

Let M1 be the (2n−2)× (2n−1) block matrix where each element is a κ×κ
matrix. The columns of M1 correspond to v1, e1, v2, e2, . . . , vn−1, en−1, vn in
that order. For i = 1, . . . , n−1 the (2i−1)th row of M1 has I (the identity matrix
of order κ) in column 2i−1 and −I in column 2i. Moreover, for i = 1, . . . , n−1
the (2i)th row of M1 has −I in column 2i and I in column 2k(i)− 1. All other
elements of M1 are equal to 0, the κ × κ matrix with all zeros. Next, let M2

7

be the n× (2n− 1) block matrix which, for i = 1, . . . , n, has the element 1, the
(1× κ)-dimensional matrix with all ones, in row i and column 2i− 1. All other
elements in M2 are zero. Finally, we de�ne the matrix M by

M =

[
M1

M2

]
.

For a small example, see �g. 1. Then M is the coe�cient matrix associated with
the LP problem (5) constraints (i) and (ii) with suitable ordering of variables and
constraints (M1 and M2 corresponds to constraints (i) and (ii), respectively).

We apply the following procedure to M: for j = 1, . . . , n− 1 add column j
to column j + 1 if j is odd and to column 2k(j)− 1 if j is even. Let M′ be the
resulting matrix, see again �g. 1 for our example. On the element level these
block operations on M are columnwise pivots on the diagonal elements (except
that we allow the pivot elements to be -1). Thus, as remarked above, we only

need to prove that the matrix M′ is TU. We have that M′ =

[
M′

1

M′
2

]
where

M′
1 consists of (i) a diagonal matrix with diagonal elements being I and −I

(alternating) and (ii) a �nal column of zeros. In the matrix M′
2 each element

is either 0 or 1 and one can easily show (by induction) that the ith row of M′
2

(which corresponds to the node vi) has an element 1 precisely for those nodes
and edges lying in the unique vivn-path in G.

Consider the ((2n−2)κ+n)× ((2n−1)κ)-dimensional matrix obtained from
M′ by replacing each element (block) by the corresponding matrix; we also
denote this matrix by M′. We apply to M′ a number of rowwise pivots; this is
done in positions (i, i) for each row i in the M1 part (where the pivot elements
are 1 or -1). Again, we know that the resulting matrix M′′ is TU i� M′ is.
Moreover, M′′ has a simple structure: it is the direct product of a diagonal
matrix E1 having 1 and -1 on the diagonal and a matrix E2 with all ones. But
each subdeterminant of E2 is zero (as all rows are equal), so both E1 and E2

are trivially TU. From this it follows that M′′ and therefore also M is TU as
desired.

Thus, when G is a tree the matrix M is TU. This implies that the similar
result holds for any forest as the the matrix M then may be written as a direct
product of TU matrices (associated with each of the trees in the forest).

The following result is a consequence of the theorem.

Corollary 4.3 Assume that one of the conditions (i) and (ii) in Theorem 4.2

holds. Then the optimal values of (ILP1) and its LP relaxation coincide, and

therefore the integer program (ILP1) may be solved in polynomial time using

linear programming. The problem (ILP2) is also solvable in polynomial time via

(ILP1).

Proof. The results follows from Theorem 4.2 and the fact that one can �nd an
optimal vertex solution of a linear programming problem in polynomial time.

8

v1

v2

v3v4v5

e4 e3

e2

e1

M =

v1
I

e1
−I

v2 e2 v3 e3 v4 e4 v5

−I I
I −I
−I I

I −I
−I I

I −I
−I I

1
1

1
1

1

, M′ =

v1
I

e1 v2 e2 v3 e3 v4 e4 v5

−I
I
−I

I
−I

I
−I

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1
1 1 1

1

.

Figure 1: An example to the proof of Theorem 4.2: a tree T and the matrices

M and M′.

The last part of the corollary now follows from Proposition 4.1 which says that
the two problems are computationally equivalent.

Remark. It also follows from Theorem 4.2 that all the conclusions of Corol-
lary 4.3 hold in the more general situation where the objective function coef-
�cient of the variables ye,k may not all be equal, but depend on (e, k) in any
manner. As mentioned before this general problem is also of interest.

The grid graphs de�ned in section 3 are not forests (except when m or
n is 1) and the polytope P1(G) has (many) fractional vertices when |K| ≥
3. For instance, using a cycle of four nodes in G and three classes one may
construct a vertex with components being 0 or 1/2. However, it is an interesting
empirical fact in our computational results that the LP relaxations are tight for
the objective functions of interest. We return to this discussion (which involves
Theorem 4.2) at the end of section 7. Moreover, di�erent algorithms discussed
later are based on solving subproblems corresponding to trees (even paths).

4.3 Model 2

We consider the polytope P2(G) of feasible solutions in the LP relaxation of
(ILP2), i.e. P2(G) is the solution set of (7)(i')�(iii). Here, as in the previous
subsection we consider an arbitrary image graph G.

Theorem 4.4 Let G be an arbitrary graph and assume that |K| = 2. Then

P2(G) is integral.

Proof. We use induction on the number of edges in G. The result is trivial if
G has no edges. Let K = {1, 2}. We may eliminate half of the x-variables by

9

the equations xv,2 = 1 − xv,1 for v ∈ V and then the linear system (7) turns
into

(i') xu,1 − xv,1 ≤ 1− y′e for e = [u, v] ∈ E;
(i�) −xu,1 + xv,1 ≤ 1− y′e for e = [u, v] ∈ E;
(iii) 0 ≤ xv,1, y′e ≤ 1 for v ∈ V , e ∈ E.

(9)

Clearly, it su�ces to show that all the vertices in the polytope P de�ned by
the new system (9) are integral. Let w = (x,y′) be a vertex of P . Then this
point is determined by a certain subset of the inequalities (9) set to equality;
these are the active inequalities in (x,y′). Assume that, for some e = [u, v] ∈ E,
both xu,1 − xv,1 + y′e ≤ 1 and −xu,1 + xv,1 + y′e ≤ 1 are active. This implies
that xu,1 = xv,1. Let G′ be the graph obtained from G by shrinking the edge
e (delete the edge and identify the nodes u and v). It is easy to check that the
point w1 with components given by the remaining variables must be a vertex of
the polytope P2(G′) (more precisely: w1 is the vector where y′e is omitted and
the variables xu,1 and xv,1 are replaced by a single variable). Since G′ has fewer
edges than G we conclude, by induction, that w1 is integral and this implies
that w is integral (as y′e is either equal to 1 or |xu,1 − xv,1|; otherwise w would
not be a vertex).

We may therefore assume that for all e = [u, v] ∈ E at most one of the
inequalities xu,1−xv,1 + y′e ≤ 1 and −xu,1 +xv,1 + y′e ≤ 1 are active. The edges
for which one of these constraints is active will be called active in the following.
Let A be a matrix with one row for each active edge and a column for each
variable xv,1. Let e = [u, v] be an active edge. If xu,1 − xv,1 + y′e = 1 holds,
let A have a corresponding row with a 1 in the column de�ned by xu,1, a -1
in the column de�ned by xv,1 and all other elements are zero. Alternatively, if
−xu,1 +xv,1 + y′e = 1 holds, de�ne a row in a similar way except that the 1 and
-1 are switched. This means that the active constraints from (9)(i')�(i�) may be
written

Ax + Iy′ = 1.

But A is the (edge-node) oriented incidence matrix of G, so it is TU, and this
implies that the matrix [A I] is TU (see [7]). From this it is clear that the
vertex w is integral as desired.

When |K| ≥ 2, the polytope P2(G) typically has many fractional vertices,
even for the simplest graphs. Indeed, let G′ be the graph with nodes u and v
and the single edge [u, v]. We shall discuss some properties of P2(G′); for proofs
and further results, see [4]. In this case there is only one neighbor variable y′e.
De�ne S as the set of vectors (xu,xv, z) where 0 ≤ z ≤ 1 and xu,xv ∈ IRκ

+ satisfy∑
k xu,k =

∑
k xv,k = 1. Using a change of variables z = 1 − y′e we see that

the polytope P2(G′) is isomorphic to the polytope given by M = {(xu,xv, z) ∈
S : ‖xu − xv‖∞ ≤ z}. Thus the constraints (7)(i'), (i�) are expressed in terms
of the l∞-norm. M is referred to as l∞-distance polytope in [4]. The integer
points in M are (ei, ej, 1) for i, j ≤ n, i 6= j and (ei, ei, z) for i ≤ n and
z ∈ {0, 1}. These are vertices of M , but M also has many fractional vertices
as described next. Let S1 and S2 be disjoint subsets of K = {1, . . . , κ} (where

10

κ ≥ 2) such that s := |S1| = |S2| and de�ne vS1,S2 = 1
s
(χS1 , χS2 , 1) ∈ IR2κ+1.

It can be show that the vertices of M are the points (i) vS1,S2 for S1 and S2

disjoint subsets of K of the same cardinality, and (ii) (ei, ei, z) where i ≤ n
and z ∈ {0, 1}. As an example, let K = {1, . . . , 6}, xu = (1

3 ,
1
3 ,

1
3 , 0, 0, 0) and

xv = (0, 0, 0, 1
3 ,

1
3 ,

1
3). Then (xu,xv,

1
3) is a vertex ofM and therefore (xu,xv,

2
3)

is a vertex of P2(G′). It is clear that P2(G), for a general image graph G, has
a huge number of fractional vertices which arise as above for a pair of adjacent
pixels. For instance, let u and v be adjacent pixels and choose sets S1 and S2 as
above. Then each point (x,y′) ∈ P2(G) with xu = (1/s)χK1 , xv = (1/s)χK2 ,
y′[u,v] = (s− 1)/s and all other variables (0,1) must be a vertex of P2(G).

A natural question is how to strengthen the formulation in (ILP2), that is, to
�nd additional linear inequalities such that one obtains a tighter approximation
of the convex hull of feasible points in this model. To this end, we again consider
G′ (the graph with two nodes). Let M I denote the integer hull of the polytope
M de�ned above; this is the convex hull of the integer points in M (see above).
Let T be a strict subset of the class setK and consider the so-called set di�erence
inequality xu(T) − xv(T) ≤ z. It is easy to see that each set size inequality is
valid for M I . Note that for T = {k} the set di�erence inequality reduces to
xu,k − xv,k ≤ z (see (7)i'). It was shown in [4] (by direct methods) that a
complete linear description of M I consists of the (trivial) inequalities de�ning
S and the set di�erence inequalities xu(T)− xv(T) ≤ z for each T ⊂ K. Note
that the set di�erence inequalities are equivalent to the condition ‖xu−xv‖ ≤ z
where ‖ · ‖ is the vector norm given by ‖w‖ = max{|w(T)| : T ⊆ K}. Thus,
one obtains the integer hull ofM by just changing the norm in the condition on
xu−xv! As a consequence we obtain a complete linear description of the integer
hull of P2(G′) for the case of two pixels when we replace z by 1 − y′e. Finally,
we return to the case with general image graph G. For each e = [u, v] ∈ E and
T ⊂ K the set di�erence inequality xu(T) − xv(T) ≤ 1 − y′e is valid for the
integer points in (ILP2). Thus one obtains a stronger formulation of (ILP2) by
adding all such inequalities to (7)(i')�(iii). The separation problem for the set
di�erence inequalities is easy (although the number of such inequalities grows
exponentially in κ). This is seen from the expression maxT⊂K(xu(T)−xv(T)) =
xu(S+) − xv(S+) where the set S+ = {k ∈ K : xu,k ≥ xv,k} is found by |K|
comparisons.

5 Two important special cases

There are two special cases of the (IMS) problem that lead to well-known combi-
natorial optimization problems; these are the case of (i) a single row (or column)
in the image, and (ii) two classes, i.e., |K| = 2. Both these facts are useful in
the case of general images as discussed in the next section. Note that in both
these situations Corollary 4.3 tells us that the problem (ILP1) may be solved
using linear programming. In this section we give combinatorial algorithms for
these two special cases.

11

5.1 A single row

Assume that the image consists of a single row (a single column is similarly
treated). We denote the nodes by i = 1, . . . , n (rather than v1, . . . , vn). The
neighbor edges are [i, i + 1] for i = 1, . . . , n − 1. Consider again the model
(ILP1) in (5). The relation (6) says that we may remove the variable y from
the model as it may be expressed as a function of x. We explain how this leads
to a maximum weight path problem in an acyclic graph.

We let H denote the directed graph with node set {s, t}∪{(i, k) : i ≤ n, k ∈
K}. Here s is a source node and t a sink node and the remaining nodes are
associated with the variables xi,k. H contains the following arcs: (i) an arc from
(i, k) to (i+ 1, k′) for i = 1, . . . , n − 1 and k, k′ ∈ K, and (ii) an arc from s to
(1, k) and an arc from (n, k) to t for k ∈ K. The graph H therefore has n+ 2
layers and arcs go from each node in a layer to each node in the next layer.
We de�ne the weight of the arcs in the following way. If e = ((i, k), (i+ 1, k′)),
where i ≤ n − 1, then we let le = di+1,k′ + βI(k = k′). For k ∈ K we de�ne
the weight of (s, (1, k)) to be d1,k and the weight of each edge incident to t is
zero. Now, there is a one-to-one correspondence between the feasible solutions of
(ILP1) that satisfy (6) and the directed st-paths in H. Moreover, the objective
function value of the solution x and the weight of the corresponding path are
equal. Thus, one �nds an optimal solution of the problem (ILP1) by �nding
a maximum weight st-path in H. Since H is acyclic, this may be viewed as
a shortest path problem. The special structure of H and the weights make it
possible to solve the maximum weight path problem faster than in the general
case. This is due to the fact that a maximum weight path from s to a node
w′ = (i+ 1, k′) must consist of a maximum weight path from s to a some node
w = (i, k) plus the arc from w to w′. Thus, if zw denotes the maximum weight
of a path from s to node w we get from the Bellmann-Ford equations that

z(i+1,k′) = maxw(zw + l(w,(i+1,k′))) =
maxk∈K(z(i,k) + l((i,k),(i+1,k′))) =
maxk∈K(z(i,k) + di+1,k′ + βI(k = k′)) =
di+1,k′ + max{z(i,k′) + β,maxk 6=k′z(i,k)}.

(10)

Thus the algorithm may calculate the maximum weight path lengths layer by
layer as follows: Step 1: Initialize z by z(1,k) = d1,k for k ∈ K and let i = 1; Step
2: Determine the largest number s1 and the second largest number s2 in the set
{z(i,k) : k ∈ K}, and also determine the �maximizers�M := {k ∈ K : zi,k = s1};
Step 3: For each k′ ∈ K do the following : if M = {k′} let z(i+1,k′) = di+1,k′ +
max{z(i,k′)+β, s2}, otherwise let z(i+1,k′) = di+1,k′+max{z(i,k′)+β, s1}. Finally,
let i := i+1 and return to Step 2. The algorithm is terminated, of course, when
the node t is reached (in iteration i = n+1, in which just �nding the smallest of
the numbers zn,k is required). The complexity of this specialized Bellman-Ford
algorithm is 3κn. We shall refer to this algorithm as a shortest path algorithm
later (instead of �maximum weight path in an acyclic graph�).

The so-called Viterbi algorithm is known in the image analysis literature for
solving the (IMS) problem with a single row. It is easy to see that the Viterbi

12

algorithm is equivalent to the algorithm above.

5.2 Two classes

We consider the special case when K = {1, 2}, i.e., there are only two classes.
This is of interest for black-white images arising e.g. when one wants to identify
objects, their number and geometrical shape.

We explain how this problem may be transformed into a minimum st-cut
problem in a directed graph derived from the image graph G. Let G̃ = (Ṽ , Ẽ)
be the directed graph obtained from G by (i) adding the two nodes s and t,
(ii) replacing each edge [u, v] ∈ E by the two directed arcs (u, v) and (v, u),
and (iii) adding the arcs (s, v) and (v, t) for each v ∈ V . De�ne arc weights by
cs,v = (dv,2 − dv,1)+, cv,t = (dv,1 − dv,2)− and for all other arcs the weights are

equal to β. The minimum st-cut problem in G̃ is the problem

min{
∑

u∈U1,v 6∈U1

cu,v : U1 ⊂ Ṽ , s ∈ U1, t 6∈ U1}. (11)

Consider again model (ILP1) and note that K = {1, 2} means that xv,1 +
xv,2 = 1. Thus we may eliminate variable xv,2 by xv,2 = 1 − xv,1. This,
combined with (6), may be used to show that (ILP1) and (11) are equivalent.
This equivalence may also be explained more directly as follows. Let U1 ⊂ Ṽ
and de�ne U2 = V \U1 and view Ui for i = 1, 2 as the set of nodes given class i.
Let s(U1) denote the number of edges in E having one end node in U1 and the
other in U2. The weight of the cut in G̃ induced by the set {s} ∪U1 is equal to

βs(U1) +
∑
v∈U1

cv,t +
∑
v∈U2

cs,v =
βs(U1) +

∑
v∈U1

(dv,1 − dv,2)− +
∑
v∈U2

(dv,2 − dv,1)+.
(12)

The term βs(U1) is the loss of classifying adjacent nodes di�erently. Since
(dv,1 − dv,2)+ = max{dv,1, dv,2} − dv,1 the term

∑
v∈U1

(dv,1 − dv,2)+ is the
�loss� of classifying the nodes in U1 to class 1 compared to the best solution
max{dv,1, dv,2}. The �nal term is interpreted similarly for U2. Note that a
trivial upper bound on the optimal value v(ILP1) in (ILP1) is ẑ = βm +∑
v∈V (max{dv,1, dv,2}). We now observe that the weight of the cut equals the

di�erence between ẑ and the value of the objective function evaluated in (the
feasible point) corresponding to U1. This shows that the minimum cut problem
and the problem (ILP1) are equivalent and, moreover, that the minimum cut
value equals ẑ − v(ILP1).

6 Methods for the general problem

In this section we present two algorithms for solving the (IMS) problem based on
(ILP1) and (ILP2), respectively. Both algorithms use decomposition in terms
of Lagrangian relaxation. We �rst discuss the subproblems obtained in each

13

of the two algorithms (subsections 6.1 and 6.2) while in subsection 6.3 we de-
scribe the subgradient procedure used for solving the Lagrangian dual problems.
Numerical results are found in section 7.

6.1 Lagrangian relaxation in (ILP1)

The (IMS) problems arising in practice are large-scale so one needs special-
purpose algorithms for solving the problem exploiting its structural properties.
This may be done in many ways, but a common theme would be to decompose
the problem somehow. A natural idea is to split the image into several smaller
subimages by relaxing the constraints connecting adjacent subimages. We have
done this for the model (ILP2) (see subsection 6.1) and similar ideas may be
used on (ILP1), but we do not discuss this here. Another decomposition idea
is to split the problem into several similar problems, one for each class k. The
remaining part of this subsection is devoted to such an algorithm where the
decomposition is achieved through Lagrangian relaxation.

If we in (ILP1) relax constraints (5)(ii) using Lagrangian multipliers λv for
each v ∈ V we obtain the following Lagrangian subproblem (LR(λ)):

max
∑
v∈V

∑
k∈K dv,kxv,k + β

∑
e∈E

∑
k ye,k +

∑
v∈V λv(

∑
k∈K xv,k − 1)

s.t.
(i) ye,k ≤ xv,k for k ∈ K, e ∈ E and v ∈ e;
(ii) xv,k and ye,k are (0, 1) for v ∈ V , e ∈ E, k ∈ K.

This problem is separable in k, and for each k ∈ K we need to solve a problem
of the form

max
∑
v∈V dv(λ)xv + β

∑
e∈E ye

subject to
(i) ye ≤ xv for e ∈ E and v ∈ e;
(ii) 0 ≤ xv, ye ≤ 1 for e ∈ E and v ∈ V ;
(iii) xv,k and ye,k are integral for e ∈ E and v ∈ V .

(13)

We have here removed a constant from the objective function and omitted the
index k to simplify the discussion below. Moreover, we have de�ned dv(λ) =
dv,k + λv and this number may be negative as λv is unrestricted in sign. The
LP relaxation of (13) is (essentially) the dual of a transportation problem so
it is possible to use specialized network (simplex) algorithms for solving this
problem. Moreover, the coe�cient matrix is TU so one then actually solves
the integer program (13). Another approach, which performed better in our
computational tests, is to transform (13) to a certain min-cut problem, and this
is discussed next. Note �rst that an optimal solution of (13) satis�es ye = xuxv
for each e = [u, v] and therefore we may rewrite the problem to the following
nonlinear optimization problem

max
∑
v∈V dv(λ)xv + β

∑
[u,v]∈E xuxv

subject to
0 ≤ xv ≤ 1 for v ∈ V ;
xv are integral for v ∈ V .

(14)

14

Now consider a reformulation of the objective function:∑
v∈V

dv(λ)xv + β
∑

[u,v]∈E

xuxv =
∑
v∈V

dv(λ)xv + β
∑

[u,v]∈E

xuxv

−
β

2

∑
[u,v]∈E

(1− xu)(1− xv) +
β

2

∑
[u,v]∈E

(1− xu)(1− xv)

= C +
∑
v∈V

(dv(λ) + βDv)xv +
β

2

∑
[u,v]∈E

xuxv +
β

2

∑
[u,v]∈E

(1− xu)(1− xv)

where C is a constant not depending on the x's and where Dv is the degree of
node v in G (i.e., the number of neighbors). The coe�cients r̃v = dv(λ) + βDv

may be negative. In order to avoid this feature, write r̃v = r̃+
v − r̃

−
v where both

terms on the right hand side are positive. Then

r̃vxv = (r̃+
v − r̃

−
v)xv = r̃+

v xv + r̃−v (1− xv)− r̃−v

where the last term may be put into the constant C. Now identify x̃v,0 =

xv, x̃v,1 = 1−xv, d̃v,0 = r̃+
v , d̃v,1 = r̃−v and ỹe,0 = xuxv, ỹe,1 = (1−xu)(1−xv)

for e = [u, v]. Then we may rewrite (14) as

max
∑
v∈V

∑
k∈{0,1} d̃v,kx̃v,k + β

2

∑
[u,v]∈E

∑
k∈{0,1} ỹe,k

subject to
ỹe,k = x̃u,kx̃v,k for e ∈ E, u, v ∈ e, k ∈ {0, 1};
0 ≤ x̃v,k, ỹe,k ≤ 1 for v ∈ V , e ∈ E, k ∈ {0, 1};
x̃v,k, ỹe,k are integral for v ∈ V , e ∈ E, k ∈ {0, 1}.

(15)

Finally, by noting that we may replace the nonlinear constraint ỹe,k = x̃u,kx̃v,k
by the linear constraints ỹe,k ≤ x̃u,k and ỹe,k ≤ x̃v,k, we see that the problem
in (15) is of the form (ILP1) given in (5) where we have two classes. Thus,
as explained in subsection 5.2, the problem may be transformed into a min-cut
problem in a certain graph.

The Lagrangian subproblem (LR(λ)) has the integrality property, i.e., the
feasible polytope of its LP relaxation has only integral vertices (as remarked
above, the coe�cient matrix in (13) is TU). Based on a well-known result for
Lagrangian duality (see e.g. [7]) we obtain the following result.

Proposition 6.1 The optimal value of the Lagrangian dual based on relaxing

constraints (5)(ii) in (ILP1) coincides with the optimal value v(LP1) of the LP

relaxation of (ILP1).

6.2 Lagrangian relaxation in (ILP2)

Consider now the integer linear programming problem (ILP2) given in (7) where
the underlying image graph is as de�ned in section 3. We discuss how La-
grangian relaxation techniques may be developed for this problem. Here the
relaxations are motivated by the fact that �nding an optimal solution when the

15

image has a single row (or column) may be done using a specialized shortest
path algorithm, see section 5.

The edge set E of the image graph G may be partitioned by E = Er ∪
Ec where Er are all the �horizontal edges� joining two adjacent pixels in the
same row and Ec are all the �vertical edges� joining two adjacent pixels in
the same column. A �rst idea is to relax all those constraints (7)(i') and (i�)
corresponding to edges in Ec. This gives the following subproblem depending
on the Lagrangian multiplier vector λ:

max
∑
k∈K

∑
v∈V dv,k(λ)xv,k + β

∑
e∈E µe(λ)y′e

s.t.
(i') xu,k − xv,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ Er;
(i�) −xu,k + xv,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ Er;
(ii)

∑
k∈K xv,k = 1 for v ∈ V ;

(iii) 0 ≤ xv,k, y′e ≤ 1 for v ∈ V , k ∈ K, e ∈ E;
(iv) xv,k, y

′
e are integral for v ∈ V , k ∈ K, e ∈ E.

(16)

Here the coe�ents in the objective function depend on λ and we have omitted
a term which is independent of x and y. The key point is that (16) decomposes
into independent subproblems, one for each row in the image where only class
and neighbor variables for that row are involved. These problems may be solved
e�ciently using the algorithm in section 5. Finally, each of the variables y′e for
e ∈ Ec are set to 0 or 1 depending on the sign of µe(λ) (note that the only
constraints on these variables are the simple bounds).

Thus, when solving the subproblem (16), one essentially solves n1 (the num-
ber of rows in the image) shortest path problems. The updating of the mul-
tiplier λ may be done according to the subgradient procedure, see the next
subsection. Let the Lagrangian dual problem in this approach be denoted by
(LDr). An alternative and similar approach is to relax the constraints (7)(i')(i�)
corresponding to e ∈ Er instead. One then solves subproblems for each column
in the image. Let (LDc) denote the corresponding Lagrangian dual problem.
Simple heuristics may be used for �nding a feasible solution of (ILP2) based on
the possibly nonfeasible optimal solution of a Lagrangian subproblem. This can
be done by �xing the x from the subproblem and setting y according to (8).

Since the optimal value of each of the Lagrangian subproblems represents
an upper bound on the desired value v(ILP2) we have that

v(LDr), v(LDc) ≥ v(ILP2).

However, our experience is that these bounds may not be very good (see [9])
so we next discuss an improved algorithm where the idea is to combine the
strengths of the two approaches (LDr) and (LDc) using the technique of cost
splitting (see [7]) which is a way of strengthening the Lagrangian dual. Consider
again (ILP2). We now replace the variable x by the �row class variable� xr and
the �column class variable� xc and get the following integer linear programming
model.

16

max 1
2

∑
k∈K

∑
v∈V dv,kx

r
v,k + β

∑
e∈Er

y′e+
1
2

∑
k∈K

∑
v∈V dv,kx

c
v,k + β

∑
e∈Ec

y′e
s.t.
(i) xru,k − x

r
v,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ Er;

(ii) −xru,k + xrv,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ Er;
(iii)

∑
k∈K x

r
v,k = 1 for v ∈ V ;

(i') xcu,k − x
c
v,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ Ec;

(ii') −xcu,k + xcv,k + y′e ≤ 1 for k ∈ K, e = [u, v] ∈ Ec;
(iii')

∑
k∈K x

c
v,k = 1 for v ∈ V ;

(iv) xrv,k = xcv,k for v ∈ V , k ∈ K;

(v) xh,xv,y are (0,1).

(17)

The model is equivalent (in terms of feasible solutions) to (ILP2) since the con-
straints (17)(iv) assures that xr = xc. We now relax these equality constraints
and add a term λv,k(xrv,k − x

c
v,k) to the objective function. The resulting La-

grangian subproblem decomposes into a �row problem� involving only the ·r-
variables and a �column problem� involving only the ·c-variables. Furthermore,
in the row problem there are no constraints between variables from di�erent
rows, making it possible to solve for each row separately using the shortest path
procedure. The column problem may be treated similarly. Let (LDrc) denote
the Lagrangian dual problem with this approach.

We may now summarize the relation between the bounds of the relaxations of
(ILP2) that be have discussed. Let (LP2) denote the LP relaxations of (ILP2).
The result may all be derived from Lagrangian duality theory, in particular from
the fact that cost-splitting represents a strengthening of the bound.

Theorem 6.2

v(ILP2) ≤ v(LDrc) ≤ min{v(LDr), v(LDc)} ≤ v(LP2).

6.3 The subgradient procedure

In the previous two subsections we presented di�erent Lagrangian relaxations
in connection with (ILP1) and (ILP2). These subproblems give, for each La-
grangian multiplier vector λ, an upper bound z(λ) on the optimal value of the
integer program. The Lagrangian dual problem of �nding the best (i.e. small-
est) upper bound by varying λ may be solved using the subgradient algorithm,
see [7] for a general description. We brie�y describe the principle as applied to
the problem (LDrc). Consider the Lagrangian subproblem of (17) when xr = xc

is relaxed using the multiplier vector λs; this is in iteration s. Let x̄rv,k and x̄
c
v,k

denote the xr and xc variables in an optimal solution of the subproblem corre-
sponding to λs. Then g := x̄r− x̄c is a subgradient of (the piecewise linear and)
convex function λ→ z(λ) at the point λs. The new multiplier λs+1 is obtained

17

by taking a step from λs in the direction of the subgradient, that is

λs+1
v,k = λsv,k − θs(x̄

r
v,k − x̄

c
v,k)

where θs > 0 is the steplength. We decrease the steplengths according to
θs = (1/2)s(z(λs) − zL)/‖g‖2 where zL is a lower bound on the optimal value
minλ z(λ). In theory there are better choices, but this usually works in practice.
A problem in connection with (LRrc) (as for other problems when equalities are
relaxed) is that the solutions ��ip around� too much and then the subgradients
may change a lot. A good idea is then to stabilize the process by moving λ
in a direction given by some convex combination of the new and the previous
subgradients (with the larger weight on the new subgradient). This was done
in the algorithms reported in the next section. The �nal point we mention is
that we used simple heuristics for turning the nonfeasible solutions in the sub-
problems into feasible ones. In the case of (LRrc) this may be done by letting
xc := xr, and de�ning the variable y′ accordingly (see (8)). This also means
that our lower bound zL may be updated when a better integer solution has
been found and the new bound is used in the steplength calculation.

7 Computational results

In this section we report computational results and experiences with two of
the algorithms discussed in section 6. Algorithm 1 is based on decomposing
(ILP1), see (5), into κminimum cut subproblems, as described in subsection 6.1.
The subproblems could also be solved as transportation problems, but some
preliminary experiments showed that this approach (using general routines from
the LP solver CPLEX, see [3]) was signi�cantly slower than using the min-cut
approach. Algorithm 2 is based on the cost-splitting technique for (ILP2), see (7)
(and the Lagrangian dual (LDrc)). In [9], this algorithm performed much better
than the others discussed in subsection 6.2. For both algorithms we have used
the subgradient method as described in subsection 6.3 in order to solve the
Lagrangian dual problem.

In order to evaluate the algorithms, we generated a large number of di�erent
instances of the (IMS) problem by varying the di�erent parameters involved. In
order to analyze the running times of the algorithms, a regression analysis was
used. Compared to the more common approach of presenting a large number of
tables, regression analysis gives direct estimates for the in�uence of the di�erent
parameters.

The input images to our algorithms were simulated from the statistical mod-
els described in section 2. The numerical experiments consisted of the following
stages

1. simulating the underlying true image c according to the prior model 2;

2. conditioned on c, simulating the observed image z according to the obser-
vation model 1;

18

3. running the di�erent algorithms on the obtained (IMS) problem.

The performance of the algorithms may be evaluated in terms of the quality of
the integer solutions (measured via an optimality gap) and the computational

time, the CPU time until the subgradient procedure converged. For all the test

problems that were generated our algorithms found an optimal solution; this was
veri�ed by the coincidence of lower and upper bounds for the optimal value.
This was true for both algorithms. This, of course, was amazing, having in
mind that these were all large-scale integer programs. Thus, in this section,
we may concentrate on a comparison of the computational times for the two
algorithms. At the end of this section we comment on the fact that optimal
solutions were found consistently.

The parameters in the models that may in�uence computational time are:
the size of the images, the amount of smoothness (as de�ned through β in (2), the
class probabilities (de�ned through αcin (2), and the shape of the distributions
for z (f(zi|ci) in (1)). In addition, the models are stochastic so di�erent results
may occur even if the parameters are �xed. We generated a wide range of test
instances by varying each of the parameters as described in the following.

Consider �rst the size of the images. In practice the size of images are
typically 256×256 or 512×512. However, in order to be able to process a large
number of images, smaller sizes were considered. In particular, we have used
the sizes 20× 20, 40× 40 and 60× 60.

Next, consider the parameters κ, α1, ..., ακ and β in the prior model (2). κ,
the number of classes, was chosen to be either 2, 4 or 6. Although the methods
may depend on the di�erent class probabilities, the important aspect of the prior
model in this context is the smoothing parameter β. We therefore chose each
class to be equally probable, corresponding to αc = 0 for all c. The smoothing
parameter β was given the values 0.5, 0.7 or 0.9 (covering the range of values
commonly used in practice).

Consider �nally the observation model f(zi|ci). Now there is a whole range
of possibilities, the choice heavily depends on the application. The performance
of a method for reconstructing the true image will mainly depend on the so-
called signal to noise ratio in the observation model and not too much on the
shape of the observation model. We will therefore only consider one (commonly
assumed) model for the observation, the Gaussian one:

f(zv|cv) =
1

√
2πσ

exp{−
1

2σ2
(zv − µcv)2}.

Here µcv is the expected value of zv given that the class in pixel i is cv, while
σ2 is the variance of the observations (here assumed to be equal for all classes).
For simplicity, we chose µc = 100(c− 1). The signal to noise ratio is de�ned by

SR =

√∑κ
c=1(µc − µ̄)2/κ

σ
.

Such a measure gives information about the di�culty in restoring c from z. For
each κ, the values of σ2 were chosen such that the signal to noise ratios were
0.5, 1.0 and 2.0, corresponding to low, medium and high signal to noise ratios.

19

In conclusion, all these parameter choices gave 3×3×3×3 = 81 combinations.
In addition, each combination was repeated 5 times, giving a total of 405 test
instances.

In �g. 2, the CPU time (in seconds) for Algorithm 1 and Algorithm 2 are
plotted against each other. (For points on the linear curve y = x, the times were
equal). The computations were done on a SPARC 20 computer. Note �rst, as
expected, that increase in size or the number of classes typically result in larger
computational time for both algorithms. We see that Algorithm 2 consistently
is faster than the other. This di�erence may either be because the number of
subgradient iterations needed is much larger for Algorithm 1 or because the
amount of computation needed inside each iteration di�er (or both). In order
to (partly) evaluate this, the number of iterations needed for convergence in the
two algorithms are plotted in �g. 3. In this case, the di�erence between the
algorithms is much less clear, indicating that the main di�erence between the
two algorithms is caused by the computation time inside each iteration.

In order to explain how the computational time depends on the di�erent
parameters involved, a deeper analysis is required. We therefore analyzed the
number of subgradient iterations and the time per iteration separately.

For Algorithm 1, a min-cut algorithm is run for each class in each iteration.
We used an implementation of the Goldberg-Tarjan push-relabel method which
(essentially) has worst-time complexity O(nm) in a graph with n nodes and
m arcs. We used regression analysis to analyze how the di�erent parameters
in�uenced the computational time in our experiments. Typically, the factors
(parameters) involved will in�uence multiplicatively (up to some power). A
reasonable regression model for the time per iteration, t say, is therefore

t = C · (n1n2)γ1 · κγ2 · βγ3 · (σ2)γ4 · ε (18)

where γi de�nes the order of complexity while ε is a multiplicative noise factor
(relating to that the actual image observed is stochastic). Our aim is to estimate
the unknown coe�cients γi based on the observed times per iteration. It is
advantageous to transform the regression model to a linear one by taking the
logarithm on both sides of (18):

log(t) = log(C) + γ1 log(n1n2) + γ2 log(κ) + γ3β + γ4 log(σ2) + ε̃ (19)

where now ε̃ = log(ε). The coe�cients can now be estimated by ordinary linear
regression. Table 7 shows the result from the linear regression. 94% of the vari-
ation in computational times were explained by the model, indicating that the
regression model is realistic. Since we are solving one min-cut problem for each
class in one iteration, the time per iteration should be approximately linear with
respect to the number of classes. This means to that the coe�cient correspond-
ing the log(κ) should be equal to 1.0. We see that the estimated value was 1.15
which indicated linearity. The size of the image seems to in�uence by a power
higher than 1, although lower than the theoretical worst case corresponding to a
power of 2. Note that also β and σ2 seems to in�uence on the time per iteration,
an increase in either parameter results in increased time per iteration.

20

γ̂i Std. Error p-value
(Intercept) -12.390 0.158 0.000
log(n1n2) 1.368 0.020 0.000

log(κ) 1.145 0.040 0.000
log(β) 0.379 0.040 0.000

log(σ2) 1.230 0.040 0.000

Table 1: Results of performing a regression of the time per iteration for Algo-

rithm 1. 94% of the variation in time per iteration was explained by this model.

The estimated value (corresponding to the power for which the corresponding

parameter in�uence on the time per iteration) is given in column 2. The uncer-

tainty involved in this estimate, measured through standard deviation, is given

in column 3. The p-value corresponds to testing if the true coe�cient is equal

to zero (no in�uence on time per iteration) is given in the last column. A small

p-value indicate signi�cant in�uence.

γ̂i Std. Error p-value
(Intercept) -10.227 0.063 0.000
log(n1n2) 0.984 0.016 0.000

log(κ) 0.785 0.016 0.000
log(β) 0.012 0.016 0.471

log(σ2) -0.073 0.016 0.000

Table 2: Results of performing a regression of the time per iteration for Algo-

rithm 2. Almost 98% of the variation in time per iteration is explained by the

regression model. The di�erent columns are as explained for Table 7.

A similar analysis was done for Algorithm 2. In this case, almost 98% of
the variation was explained by the regression model. E�cient implementation
of the Viterbi algorithm (or shortest path algorithm) involved in Algorithm 2
results in a theoretical complexity of O(n1n2κ) per iteration. This indicates
that the coe�cients corresponding to size n1n2 and to the number of classes κ
should be equal to 1. The estimated coe�cient corresponding to size is almost
equal to 1, con�rming the theory. The estimated coe�cient corresponding to κ
is somewhat lower than 1. The coe�cients corresponding to β and σ2 are both
small, so these parameters do not in�uence much on the time per iteration,
again con�rming the theory.

It is more di�cult to explain how the number of iterations depend on the
parameters involved. There are many reasons for this: (i) few theoretical results
are available, (ii) the experiments do not give any clear indications on how
this dependence is, (iii) in some cases the algorithm did not converge during
the maximum number of iterations (1000). Regarding the last aspect, some
of the cases for which convergence (i.e., upper bound equal to lower bound)
were not obtained in 1000 iterations (the chosen maximum number of iterations

21

γ̂i Std. Error p-value
(Intercept) -0.475 0.532 0.372
log(n1n2) 0.345 0.050 0.000

log(k̄) 1.679 0.193 0.000
log(β) 0.065 0.101 0.520

log(σ2) 1.133 0.135 0.000
log(error rate) 0.300 0.077 0.000

Table 3: Results of performing a regression on the (logarithm of) number of

iterations for Algorithm 1. 68% of the variation in time per iteration is explained

by the regression model. The di�erent columns are as explained for Table 7.

γ̂i Std. Error Pr(> |t|)
(Intercept) -1.592 0.406 0.000
log(n1n2) 0.458 0.038 0.000

log(k̄) 1.880 0.147 0.000
log(β) 0.307 0.077 0.000

log(σ2) 1.848 0.103 0.000
log(error rate) 0.362 0.059 0.000

Table 4: Results of performing a regression on the (logarithm of) number of

iterations for Algorithm 2. 85% of the variation in time per iteration is explained

by the regression model. The di�erent columns are as explained for Table 7.

during the experiments) were investigated further. In all cases convergence was
obtained either by increasing the maximum number of iterations or by changing
some tuning parameters in the subgradient algorithm.

Regression analysis were again performed for the two algorithms, but now
with (the logarithm of) the number of iterations as response. In this case,
one might expect that the complexity would depend on the �quality� of the
MAP estimate. Here quality refers to the error rate which is the percentage of
the pixels that are classi�ed wrong. The results from the regression analysis are
given in tables 3 and 4 for Algorithms 1 and 2, respectively. Note that both β, σ
and the error rate seem to in�uence the number of iterations. Smoother images,
more observation noise or higher error rates (corresponding to poorer quality of
the MAP estimate) all result in a higher number of iterations. Regarding the
size, the order is less than a half for both algorithms, while a near quadratic
order is obtained for the number of classes.

Fig. 4 (left panel) shows a real image Magnetic Resonance (MR) image of
the brain. Such images are usually recorded in several bands, making the obser-
vation in pixel v, zv, a vector. The image displayed is the so-called T2-weighted
band, but in the analysis below one additional channel was used. The classes
of interest were in this case fat, air/bone, connective tissue, cerebrospinal �uid

and brain parenchyma, giving a total of κ = 5 classes. The size of the image was

22

256 × 256 pixels. For model (ILP1), this gives 980480 variables while model
(ILP2) contains 458240 variables. Both models contain 715776 constraints.
Both algorithms converged also in this case, so an optimal solution was found.
Algorithm 1 needed 25 subgradient iterations while Algorithm 2 needed 63. The
corresponding CPU times were 1668.3 and 201.9 seconds, showing that although
Algorithm 1 converged much faster in terms of number of iterations while Al-
gorithm 2 was superior in actual CPU time. Fig. 5 displays the upper and
lower bounds obtained as function of CPU time. Again the superiority of Algo-
rithm 2 is clearly seen. In the right panel of �g. 4, the actual optimal solution is
displayed, giving a very reasonable estimate of the true distribution of classes.

Finally, we discuss the fact that the algorithms found an optimal solution
in all our test cases. In section 4 we showed a number of situations where the
polytopes P1(G) and P2(G) are integral and this directly explains that we �nd
integral optimal solutions whenever κ = 2. In all other test instances these
polytopes have lots of fractional vertices; for P2(G) this was discussed in section
4 while for P1(G) it is easy to see that there are many fractional solutions
corresponding to every cycle in the image graph G. This means that the success
of our algorithms must be (partially) due to the particular class of objective
functions involved. We have so far not been able to show any theoretical result
in this direction, but we suspect that there may exist such results saying that
for particular choices of the distribution functions f(zi|xi) an integral optimal
solution of the LP relaxation exists. One such situation might be when there
are some �stochastic ordering� between the classes involved, which is the case for
the test instances considered here (obtained by the ordering of the expectations
µ1, ..., µκ). Another, still vague, explanation relates to Theorem 4.2. Assume
that the true image may be divided into �homogeneous regions� such that the
borders between adjacent regions constitute a tree T . Within each region all the
nodes have the same class and di�erent regions have di�erent classes. Provided
that the observed image is not too blurred, all nodes inside a region will be given
the correct class in the solution of the LP relaxation. This seems reasonable
since they have the same class as the �best one� and one gets the maximum
contribution from the neighbor term when all pixels are given the same class.
Then the remaining variables correspond to the tree T and they are essentially
found by optimizing over the polytope P1(T) which makes all these variables
integral according to Theorem 4.2. The values of variables in all the regions just
in�uence the objective function in the optimization problem over P1(T).

8 Concluding remarks

The Lagrangian algorithms presented seem promising for solving interesting
image segmentation problems. All the test problems considered in this study
were solved to optimality. The fastest algorithm (Algorithm 2) was based on
decomposing the image into separate row and column problems and using cost-
splitting techniques. Moreover, we have investigated some theoretical properties
of the integer programming models involved, in particular, proving integrality

23

results for certain subclasses of problems.
Further work could, for instance, be to design a specialized algorithm for

solving the min-cut (or transportation) subproblems in Algorithm 1.
Finally, we would like to point out that the area of image analysis is a source

for interesting large-scale computational optimization problems.

Acknowledgement. The authors thanks Kaj Holmberg for interesting and
useful discussions.

References

[1] J. Besag. On the statistical analysis of dirty pictures. Journal of Royal

Statistical Society, Series B, 48(3):259�302, 1986.

[2] J. Besag. Towards Bayesian image analysis. Journal of Applied Statistics,
16(3):395�407, 1989.

[3] CPLEX. Using the CPLEX callable library. Technical report, CPLEX Op-
timization, Inc., 1994.

[4] G. Dahl. Polytopes related to some polyhedral norms. Technical Report
226, University of Oslo, Institute of Informatics, Oslo, Norway, November
1996. To appear in Oper. Res. Letters.

[5] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and
Bayesian restoration of images. IEEE Tran. on Pattern Analysis and Ma-

chine Intelligence, 6(6):721�741, 1984.

[6] D.M. Greig, B.T. Porteous, and A.H. Seheult. Exact maximum a posterior
estimation for binary images. Journal of Royal Statistical Society, Series B,
51:271�279, 1989.

[7] G. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization.
Wiley, 1988.

[8] A. Schrijver. Theory of linear and integer programming. Wiley, Chichester,
1986.

[9] G. Storvik and G. Dahl. Lagrangian based methods for �nding MAP solu-
tions for MRF models. Technical Report 17, University of Oslo, Institute of
Mathematics, Oslo, Norway, 1996.

24

Algorithm 1

A
lg

or
ith

m
 2

1 10 100 1000 10000

0.
1

1.
0

10
.0

10
0.

0

Figure 2: Plot of time in seconds with Algorithm 1 on the x-axis and Algorithm

2 on the y-axis. Symbols 4, � and 5 are used for κ = 2, 4 and 6, respectively.
The sizes of the symbols are proportional to the sizes of the images. Both the

x- and y-axes are on logarithmic scales. The linear curves in the plots are the

lines y = x.

25

Algorithm 1

A
lg

or
ith

m
 2

5 10 50 100 500 1000

1
5

10
50

10
0

50
0

10
00

Figure 3: Plot of number of iterations with Algorithm 1 on the x-axis and Al-

gorithm 2 on the y-axis. Symbols 4, � and 5 are used for κ = 2, 4 and 6,
respectively. The sizes of the symbols are proportional to the sizes of the im-

ages. Both the x- and y-axes are on logarithmic scales. The linear curves in the

plots are the lines y = x.

26

Figure 4: To the left, T2-weighted Magnetic Resonance image of the brain. The

gray values correspond to values in the range from 0 (black) to 255 (white).

To the right, the MAP solution obtained by Algorithm 2. The classes are fat,
air/bone, connective tissue, cerebrospinal �uid and brain parenchyma, displayed
as grey-levels with the �rst class being white and the last one being black.

27

0 100 200 300 400 500

-7
.4

4*
10

^5
-7

.4
2*

10
^5

-7
.4

0*
10

^5
-7

.3
8*

10
^5

Figure 5: Upper and lower bounds obtained by using Algorithms 1 and 2 on the

brain image given in �g. 4. The bounds are plotted as function of CPU time.

Solid lines are for Algorithm 1 and dashed lines are for Algorithm 2.

28

