
University of Oslo

Department of Informatics

Towards a Framework

of Authentication and

Authorization Patterns

for Ensuring

Availability in Service

Composition

Judith E. Y. Rossebø

Rolv Bræk

Research Report 332
ISBN 82-7368-287-0
ISSN 0806-3036

15th March 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30804819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3

Abstract

During the past decade, the telecommunication environmenthas evolved from
single operator featuring voice services to multi-operator featuring a range of dif-
ferent types of services. Services are being provided todayin a distributed manner
in a connectionless environment requiring cooperation of several components and
actors. This report focuses on the incremental means to ensure access to services
for authorized users only by composing authentication and authorization patterns
and services. We propose a novel framework of authentication and authorization
patterns for securing access to services for authorized users only, and we demon-
strate how the patterns can be dynamically composed with services using a policy-
driven approach.

4 Contents

Contents

1 Introduction 5

2 Requirements to the approach 7

3 Framework for AA-patterns 8
3.1 Authentication patterns . 8
3.2 Authorization patterns . 10

4 Specification of AA-patterns 11
4.1 Specification of two-party authentication patterns 11

4.1.1 Using UML 2.0 collaborations 11
4.1.2 Using semantic interfaces 13

4.2 Specification of n-party authentication and authorization patterns . . . 14

5 AA-patterns and policy 15
5.1 Specifying policies . 17
5.2 Applying policies to service composition 18

6 Composing AA-patterns and services statically 18
6.1 Steps for composing AA-patterns with services 24

7 Dynamic role-binding using semantic interfaces 25
7.1 Example . 25

8 Related work 27

9 Conclusion 28

References 29

A Definitions 35

B Abbreviations 37

C Authentication patterns 39
C.1 Classification of authentication patterns 39

C.1.1 Choosing and applying an authentication pattern 43
C.2 Unilateral authentication patterns 45

C.2.1 Unilateral one pass authentication45
C.2.2 Unilateral two pass authentication50

C.3 Mutual authentication patterns .. 54
C.3.1 Mutual two pass authentication 54
C.3.2 Mutual three pass authentication 59

D Authorization patterns 63
D.1 Userpull . 64
D.2 Serverpull . 67
D.3 Access control models . 69

1 Introduction 5

1 Introduction

The evolution of service development in the telecommunications sector, driven by the
success of the Internet, creates a demand for dynamic service development in order to
continuously develop new services in a competitive market.There is a need for fast
incremental development of services and applications, while maintaining availability
properties.

We define a service as an identified partial functionality, provided by a system,
component, or facility, to achieve desired end results (goals) for end users or other
entities. The general notion of a service involves several service parts collaborating
to provide the service to one or more service users. Authentication and Authorization
functionality needed to ensure availability is no exception and falls within this general
definition of a service.

One of the core challenges of service engineering is to find practical ways to model
services (partial functionalities) separately such that services may be composed into
well functioning application systems satisfying availability requirements. This is espe-
cially challenging for services being provided in a distributed manner in a connection-
less environment requiring cooperation of several components and actors (users).

If services were independent of each other, service composition would be quite
straightforward. But services often depend on each other. Services also often depend
on shared resources and service enablers. They may be provided to many interacting
users, and users have access to many services over the same terminals using shared re-
sources and service enablers. This leads to the so-called crosscutting nature of services
as illustrated in Fig. 1.

The figure suggests an architecture for service-oriented systems, which is charac-
terized by horizontal and vertical composition. On the horizontal axis, system compon-
ents, are identified that are largely service independent and represent domain entities
such as users, terminals, service enablers and shared facilities. They may reside in
different computing environments. These domain entities such as users, user com-
munities, terminals and resources are represented by agents in the system. We use the
term agent in a general sense here to mean an entity representing and acting on be-
half of other entities. On the vertical axis, several services and service components
are identified (i.e. collaborations and collaboration roles) that depend on the system
components of the architecture.

 Horizontal
 composition
(within a service)

Vertical composition
(within an agent)

Service 1

Service 3

Service 2

Terminal
Agent x

User
Agent y

Group
Agent z

User
Agent w

Terminal
Agent k

service
part

Figure 1: Service Oriented Architecture

Service composition, in general, involves static composition at design time as well

6 1 Introduction

as dynamic linking and binding at runtime.
The new UML 2.0 collaboration concept [32] provides a structured way to define

partial functionalities in terms of collaborating roles, and therefore it provides a prom-
ising basis for service modeling. It allows service parts tobe modeled as collabora-
tion roles, and service behavior to be specified using interactions, activity diagrams
and state machines as explained in [43]. Moreover, it provides means to decom-
pose/compose services using collaboration uses and to bindroles to classifiers defining
system components. In this way, UML 2.0 collaborations directly support service mod-
eling and service composition at design time. In addition, they provide a framework to
define so-called semantic interfaces as explained in [46] that can be utilized to ensure
compatibility among interacting components both at designtime and runtime.

As Fig. 1 shows, service components interact with each other(”horizontally”) for
the actual execution of services. Services depend on each other (characterizing vertical
composition) e.g., authentication and authorization behavior first, before a service can
be invoked and services depend on shared resources and enablers (characterizing ho-
rizontal composition). The structure and linking of service components is to a large
extent dynamic. Therefore, dynamic linking is a fundamental and general mechanism
required in service-oriented systems. Important mechanisms for service discovery, fea-
ture selection, compatibility validation, and access control can be associated with the
creation and release of dynamic links. This linking may be seen as a process of dynam-
ically binding roles to actors, taking the agent states and preferences into account.

In [37], we have presented a conceptual model for service availability. Based on the
conceptual model for service availability presented in [37], this report focuses on the
incremental means to ensure access to services for authorized users only by compos-
ing authentication and authorization patterns and services. In order to address service
availability, we see availability as a composite notion consisting of exclusivity, the abil-
ity to ensure access for authorized users only, and accessibility, the property of being
on hand and useable when needed. Our approach involves the development of flexible
and re-usable patterns to ensure availability in service composition.

In this report we motivate and introduce a set of authentication and authorization
(AA-) patterns, which may be composed with services to ensure that services are ac-
cessible to the authorized users only. We provide a discussion of the specification of
AA-patterns and the means to compose AA-patterns with services both statically and
dynamically to restrict access to services to authorized users only. We explain in detail
the policy driven approach to specifying composition of AA-patterns and services1 .

In summary, our contributions include: (1) a framework and classification of au-
thentication and authorization patterns; (2) demonstrating that our framework can be
applied to static and dynamic composition; and (3) showing that our framework can
be used to specify and enforce policies governing composition of AA-patterns and ser-
vices.

The rest of this report is organized as follows: In Sect. 2 we state the requirements
to the approach. In Sect. 3 we present our classification of authentication and author-
ization patterns. In Sect. 4 we discuss our approach to specifying AA-patterns, and in
Sect. 5 we discuss how we apply policies. Use of AA-patterns in static composition of
services is addressed in Sect. 6, and use of AA-patterns in dynamic composition of ser-
vices is addressed in Sect. 7. A discussion of related work isgiven in Sect. 8 followed
by a summary and conclusion in Sect. 9.

1We have published two articles based on this report [40,41].However, since publication of these articles,
some of the definitions regarding semantic interfaces have been refined [45]. This report has been updated
to be consistent with the terminolgy presented in [45].

2 Requirements to the approach 7

2 Requirements to the approach

In order to explain the policy-driven approach, we formulate and motivate a set of
requirements that the approach is designed to fulfill.

1. The approach should facilitate specification of authentication and authorization
patterns in a flexible and reusable manner.It should be possible to be able to
model services independently and AA-patterns separately and then put them to-
gether and adapt them. As there are many different types of services, each with
different authentication and authorization requirements, there is a need for a fine-
grained approach that allows authentication and authorization design to be adap-
ted to service requirements. The approach must allow for tailoring modifications
with respect to e.g., strength of authentication provided and should be able to ad-
dress the pitfalls that designers face in selecting and implementing authentication
patterns to avoid faulty and weak implementations.

2. The approach should be easy for a designer to understand and use. Security
requirements, such as availability requirements, are often not taken into account
by developers in the design process for many reasons such as time to market and
costs constraints, and lack of knowledge about security amongst designers and
developers, as well as the complexity of the environment in which systems are
deployed [3]. The approach should be understandable to the developer/designer
and increase the designer’s awareness of security issues while enabling the de-
signer to address the issues systematically through choiceand specialization of
e.g. an authentication pattern.

3. The approach should provide policy mechanisms that can be used for governing
the binding of roles to agents in dynamic service composition. This involves
providing a means to specify constraints on the binding of roles to agents to
ensure that service availability requirements can be achieved in a deployment.
In order to ensure that service roles that are dynamically linked within a service
execution are correctly linked, and to restrict which agents service roles can be
bound to, there is a need for a means to defining rules to governthe binding of
roles to agents.

4. The approach should provide a means for specifying the static composition of
AA-patterns and services.Static composition involves the assignment and com-
position of roles to form system components at design time. This involves build-
ing composite services using existing services and AA-patterns (choreography),
but also defining roles and system parts so that they can collaborate with each
other (orchestration). The approach should provide a descriptive means to spe-
cify rules regarding ordering of collaborations in composition. In particular,
requirements for which goals or states must have been achieved by collaborative
parts before any other behavior is allowed to execute. The framework should
also provide a means for modelling the dynamical restriction of the behavior in-
volved in service composition, e.g. exceptions handling (such as in the case that
authorizations are no longer valid, then the session shouldbe forced to termin-
ate).

5. The approach should provide a means for supporting the dynamic composition
of AA-patterns and services.By dynamic composition, we mean both dynamic

8 3 Framework for AA-patterns

role-binding (i.e., creation and release of dynamic links)and dynamic composi-
tion of service role behaviors.

3 Framework for AA-patterns

Our framework consists of a classification of authentication and behavioration tech-
niques as patterns specified using UML 2.0 collaborations, with interactions and state
machines. We also specify the AA-patterns using semantic interfaces [45], to facilitate
validation of visible interface behavior for each of the roles involved in a collaboration
and to enable dynamic composition of AA-patterns and services.

We specify behavior using semantic interfaces because semantic interfaces facilit-
ate checking the compatibility (in terms of safety and liveness properties) of different
components involved in service collaboration (Interface behaviors are derived from the
complete component behaviors by projection). We declare role-binding policies in the
semantic interface for each of the roles involved, as we find this useful for validating
that the required conditions and requirements have been fulfilled when composing the
pattern with services. In the following sections we presentour classification of AA-
patterns.

3.1 Authentication patterns

Authentication theory and practice has evolved over time and is well established in the
literature [4,28,30] as well as in the standards [18–20,22,23]. The simplest authentica-
tion patterns involve two parties. Variations involve proxies, or trusted third parties. By
a third party we mean a component, service or organization, which both other parties
are willing to rely on. In some cases, each party relies on a different trusted third
party, who in turn trust each other through a trusted third party. We begin therefore, by
addressing patterns involving two parties, as these can be generalized or extended to
involve trusted third parties.

A generic two party authentication pattern involves communication between the
two parties to establish the identity of one of the parties inthe case of unilateral au-
thentication, or both in the case of mutual authentication.Messages are generated and
exchanged between the parties, at least one message/pass isrequired for unilateral au-
thentication, and at least two messages/passes are required for mutual authentication.

In order to apply authentication protocols and techniques [4, 28, 30] in a model-
based approach, we have classified these well known authentication techniques and
protocols as authentication patterns specified using UML 2.0 collaborations, which
may be combined with service components in service composition. Each pattern is
modelled in UML 2.0 so that it may be re-used, but also may be easily adapted and
adjusted depending on requirements such as security and performance requirements,
for example regarding the the strength of the crypto involved related to the capacity
available in the actual deployment.

For modelling authentication of one actor playing one role in a service collaboration
to an actor playing another role in a service collaboration we need a fine grained classi-
fication of authentication patterns. this is because the behavior required and strength of
authentication required depends on the service to be deployed. In one case, unilateral
one-pass authentication might be sufficient, e.g. for access to an online telephone cata-
logue, however, in another case, mutual two pass authentication may be required, as

3.1 Authentication patterns 9

is the case for authenticating terminals and access points to each other in third genera-
tion mobile networks. Additionally, in the first example, a simple message containing
a username and password satisfies the service requirements,whereas in the second
example, hardware protected keys for use in a symmetric-based crypto protocol are re-
quired. The behavior required, the type of keying to be used,and the strength of crypto
to be used is service dependent.

UniOnePass
Authenticate

Unilateral
Authenticate

TwoParty
Authenticate

Mutual
Authenticate

UniTwoPass
Authenticate

MTwoPass
Authenticate

MThreePass
Authenticate

Figure 2: Authentication patterns

Our classification is therefore motivated by the need to address behavioral consid-
erations in the patterns. This means classification based first on the service provided,
unilateral authentication or mutual authentication, thenbased on the number of mes-
sages involved in the pattern, e.g., one message for a one pass authentication protocol,
two messages for a two pass authentication protocol. Fig. 2 shows this generic classi-
fication of two party authentication patterns. For the full classification see Appendix C.

The aim is to make the developer more conscious in the choice of authentication
technique to apply, while allowing flexibility with respectto the choice of protocol and
algorithm(s) and other crypto techniques to be used. This allows the developer to focus
on e.g. whether there is an issue such as timing regarding thenumber of messages
involved e.g. one-pass, two-pass or three pass, or should symmetric or asymmetric
keying be used, before choosing the protocol and algorithm in the instantiation of the
pattern.

Fig. 2 shows these generic patterns that do not bind a particular protocol or al-
gorithm. Once a generic pattern is selected, the authentication pattern can be further
differentiated in specializing the pattern depending on the type of keying, e.g., sym-
metric or asymmetric, to be used.

For example, the unilateral one pass authentication pattern may be specialized as
illustrated in the UML 2.0 class diagram shown in Fig. 3. There is a class for all
unilateral one pass patterns employing symmetric crypto techniques, that is for which
the authenticating party and the party requesting authentication share a common secret
key which is used in the crypto protocol. Similarly, there isa class for all unilateral one
pass patterns employing asymmetric crypto techniques, anda class for all patterns for
which the unilateral one pass authentication algorithm employs a Hash function.

The patterns are then further specialized with respect to the authentication tech-
nique, or cryptographic protocol and algorithm(s) to be applied, e.g., for the unilateral
two-pass authentication pattern, the HTTP digest authentication protocol with the MD5
hash algorithm may be applied [14]. By doing this, we separate out the choices that

10 3.2 Authorization patterns

UniOnePass
Authenticate

UniOnePass
Authenticate
Symmetric

UniOnePass
Authenticate
Asymmetric

UniOnePass
Authenticate Crypto

Check Function
(keyed hash)

UniOnePass
Authenticate

Hash Function
(unkeyed hash)

Figure 3: Unilateral one pass authentication patterns

must be made by the developer, and pinpoint each of the levelsof specialization for
awareness. This is because it is not enough to choose a general model and apply just
any technique or protocol and assume that required level of security is achieved. By
security level we mean the strength of authentication required to provide the required
protection against misuse. There are altogether too many examples illustrating that
depending on choices at each of these layers, the actual implementation can be flawed.

One example of this is the Microsoft challenge/reply handshake protocol, used in
Microsoft’s Point-to-Point Tunnelling Protocol (PPTP). In this example, a design flaw
in the protocol and a choice of a weak password hashing algorithm both contributed to
the reported weakness of the authentication implementation [47]. Additionally, there
were other flaws in the implementation itself. It is because flaws may be introduced
at different stages in authentication design and implementation that we have chosen
to classify patterns separating stages of specialization.These stages are as follows:
First, a general pattern is chosen from the classification inFig. 2. Then, the pattern is
specialized according to technique, e.g., if crypto is to beemployed, then a choice must
be made between symmetric or asymmetric keying, and then a protocol must be chosen
along with algorithms or functions required by the protocol. If desired, an original
protocol and algorithm may be designed for the application and specified during the
design process. This will allow the developer to analyze authentication at each stage
of specialization of the models, so that flaws and weaknessesmay be discovered and
corrected. For a more detailed discussion regarding choiceof authentication pattern
see Appendix C.1.1.

It is important to distinguish between weak versus strong authentication, and weak-
nesses and errors that arise simply due to implementation errors. The strength of the
authentication pattern can be tuned with respect to the combination of the protocol,
the algorithm and the key-length. However, errors in implementation can significantly
weaken the authentication mechanism delivered. Assurancetechniques such as e.g.
use of the Common Criteria [21] may help in the latter.

3.2 Authorization patterns

In order to describe any authorization pattern, it is important to recognize that any
authorization pattern requires that authentication has been performed before any au-

4 Specification of AA-patterns 11

thorizations may be granted. Authentication and authorization patterns are combined
to describe how access rights are granted and are thus essential to access control. Ad-
ditionally, an access control model is required for access rights administration.

There are two basic authentication and authorization architectures [12]:
User Pull: Authentication is performed by an access server, which also issues au-

thorizations to the user. The user then presents authorizations directly to the service.
Server Pull: The service centralizes information about user entity authorizations

on an access server. The service authenticates the user. When the user attempts to
access the service, the service queries the access server todetermine whether the user
is authorized.

These architectures provide a means for handling authorizations in a centralized
manner. For the full classification of these architectures as patterns, see Appendix D.

4 Specification of AA-patterns

4.1 Specification of two-party authentication patterns

4.1.1 Using UML 2.0 collaborations

A UML 2.0 collaboration diagram for the generic two party authentication pattern is
given in Figure 4. The collaboration diagram shows that theauthenticatee role
cooperates with theauthenticator role.

TwoPartyAuthenticate

authenticatee authenticator

Figure 4: Collaboration diagram for the two party authentication pattern

A specialization of this pattern for unilateral two pass authentication is shown in
Fig. 5. Using this specialization, an agent is able to authenticate another agent using a
challenge response sequence in two passes. This view shows the goal for the collabor-
ation, expressed in OCL.

{def: goal : Boolean = authenticatee.Unilaterally_Authenticated}

UniTwoPassAuthenticate

authenticatee :
responder

authenticator :
challenger

Figure 5: Unilateral two pass authentication

12 4.1 Specification of two-party authentication patterns

A detailed view of a specialization of this pattern for unilateral two pass authen-
tication is shown in Fig. 6. This view expresses more completely the properties that
the system components (such as agents) must have in order to successfully particip-
ate in the pattern. Any instance playing theauthenticatee role must possess the
properties specified byresponder and any instance playing theauthenticator
role must possess the properties specified bychallenger. The instance playing the
authenticatee role must possess a secret, and the instance playing theauthenti-
cator role must possess knowledge that is mathematically relatedto the secret. The
instance playing theauthenticator role must be able to generate achallenge,
which is sent to the instance playing theauthenticatee role, and validate the
response. Similarly, the instance playing theauthenticatee role must be able
to generate aresponse to the challenge. The constraints (on the properties
that the instances playing the roles must possess) are declared as invariants and pre-
conditions using the object constraint language (OCL).

UniTwoPass Authenticate

responder
secret : string

GenerateResponse ()

challenger
challenge : string
knowledge : string

GenerateChallenge ()
ValidateResponse ()

authenticatorauthenticatee

{ Context c:UniTwoPassAuthenticate
Inv:
c.authenticatee.Generate Response.is_generatable AND
c.authenticator.GenerateChallenge.is_generatable AND
c.authenticator.ValidateResponse.is_validatable
Pre:
c.authenticatee.secret.is_assigned AND
c.authenticator.knowledge.is_assigned AND
Relation (c.authenticatee.secret, c.authenticator.knowledge) }

Figure 6: UML 2.0 Collaboration diagram for unilateral two-pass authentication, de-
tailed view

Three invariants are declared: The first and third invariants are used to check that
the instance playing theauthenticator role is deployed on a part of the system
(terminal/node) with the required processing and computing capacity required to gen-
erate the challenge and to validate the response. Similarly, the second invariant is used
to check that the instance playing theauthenticatee role is deployed on a part
of the system (terminal/node) with the required processingand computing capacity re-
quired to generate the response. The reason for declaring these invariants is to ensure
that the protocol and algorithm chosen are not too processorintensive for the parts on
which they are deployed so that the authentication protocolcan run whenever the col-
laboration is instantiated. The motivation for this is to ensure that service requirements
regarding accessibility [37] are fulfilled when this authentication pattern is composed
with service components/parts.

The two pre-conditions check thatsecret andknowledge, respectively, are

4.1 Specification of two-party authentication patterns 13

assigned before the collaboration can instantiate. The third pre-condition checks that
there is a mathematical relationship betweensecret andknowledge. This means
that a check can be performed to ensure that there is a pre-existing mathematical rela-
tionship betweensecret andknowledge as required by the authentication pattern
to be deployed. The OCL pre-conditions can be used to performa boolean check to
confirm that the a priori conditions for the authentication protocol are fulfilled. This
formalization of the mathematical relationship betweensecret andknowledge has
been chosen in order to be general enough to allow for alternative crypto protocols to
be specified at later stages in development. Note that if symmetric keying is used, then
secret = knowledge.

4.1.2 Using semantic interfaces

{def: goal : Boolean = authenticatee.Unilaterally_Authenticated }

U n iT wo PassA u th en ticate

authenticatee :
responder

authenticator :
challenger

UniTwoPassAuthenticate : responder UniTwoPassAuthenticate :challenger

idle
idle

Unilaterally_Authenticated
{ goal = true }

Generate
Response

Generate
Challenge

Validate
Response

waiting

waiting

NotAuthenticated

idle

P1 P2

Challenge

Challenge

Response

Response

Ok NOk

Unilaterally_Authenticated NotAuthenticated

idle

Ok NOk

[Response
 Valid] [Response NOTValid]

Figure 7: UML 2.0 collaboration and semantic interfaces forthe unilateral two pass
authentication pattern

A semantic connector is defined as an elementary collaboration with consistently
defined pair of semantic interfaces and service goals [45]. The semantic interfaces may
be modelled using two state transition diagrams defining theinterface behavior for each
of the roles involved in the collaboration and possible expressions stating the goals
of the collaboration. In [46] it is described how semantic interfaces can be defined
based on role modeling and simple goal expressions. The focus is on checking the
compatibility of different service components involved inthe provisioning of a service.
Definition of semantic interfaces allows us to validate the interface behavior rather than
validating the complete component behavior. Semantic interfaces facilitate validation
of both safety and liveness properties. It is pointed out in [46] that UML 2.0 protocol

14 4.2 Specification of n-party authentication and authorization patterns

statemachines are not sufficient, and the authors propose a specification of a form of
UML 2.0 state machines for two way interface behavior as shown in Fig. 7.

In this figure, the UML 2.0 collaboration for unilateral two-pass authentication
pattern is shown with two role state machines that define the visible behavior of the
two roles participating in the pattern.

In addition to syntactical interfaces, semantic interfaces define the visible interface
behavior and goals of the collaboration. In this case, the semantic interface defines the
interface behavior and goals of theauthenticatee andauthenticator roles.

Semantic interfaces in particular are projections of behavior on an interface and are
characterized by:

• one action per transition

• spontaneous output

• visibility of variables and goals

4.2 Specification of n-party authentication and authorization pat-
terns

We model the User Pull authentication and authorization services as a UML 2.0 col-
laboration that defines three collaborating participants that interact to implement the
user pull authentication and authorization behavior: these are theUser, Access
Server, andService Access Filter roles. Application of certain AA-patterns
to the User Pull services is represented by three collaboration uses as illustrated in
Fig. 8:

User

Access Server

Service Access
Filter

UAs1:TwoParty

Authentic
ate

authenticator

authenticatee

UAs2
:A

uth
s

Act
iva

tio
n

auths
requestor

auths
granter

USaf2:Checking
Access Rights

authorisorauthorisee

UserPull

Figure 8: User Pull patterns

TwoPartyAuthenticate: This pattern, which we have modelled as a UML
2.0 collaboration in Fig. 4 and specialized for unilateral two pass authentication in
Fig. 5 and Fig. 6, is shown in Fig. 8 bound to theUser andAccess Server roles.
Here, theauthenticatee role is bound to theUser role, and theauthorisor

5 AA-patterns and policy 15

role is bound to theAccess Server role. For the instantiation of this pattern, it is
expected that an appropriate two party authentication pattern is chosen and applied as
described in Sect. 3.

Auths Activation: This pattern consists of a request by the instance playing
theauthsrequestor role for authorizations to be activated and sent to the instance
playing theauthsrequestor role. The authorizations govern which services the
user is allowed to access. The way in which the authorizations are activated depends
on the access control model that is used. This pattern is invoked after the collaboration
TwoPartyAuthenticate has reached its goal of e.g., unilaterally authenticating
theauthenticatee. In theUser Pull collaboration,Auths Activation is
shown bound to theUser andAccess Server roles.

CheckingAccessRights: This pattern is invoked whenever the instance play-
ing theUser role requests access to a service. The instance playing theauthoriser
role then checks the authorizations to establish whether the instance playing theUser
role shall be granted access to the service. In theUser Pull collaboration,Check-
ing Access Rights is shown bound to theUser andService Access Fil-
ter roles.

Although not shown in the authentication and authorizationpatterns presented above,
an access control model is needed to administer access rights (permissions) and enforce
access control policies.

Several models for access control have evolved such as discretionary access control
(DAC), mandatory access control (MAC), and others [12]. A detailed overview of
different access control models is given in [56]. Role-Based Access Control (RBAC)
has emerged as a scalable alternative, and has been the focusarea for recent research
on access control resulting in numerous model variants. In this report, we assume that
a RBAC model is used with the AA-patterns.

RBAC-role activation rules, and authorization rules are administered by the RBAC
infrastructure, and distributed to the AA-patterns and services. Therefore, there must
be an interface from theAccess Server towards an RBAC infrastructure. For an
RBAC model and an approach to modelling RBAC policies using UML, see [35]. Ac-
cess control policies are enforced based on RBAC-role activation rules and author-
ization rules. RBAC-activation rules are used to manage andactivate RBAC-roles ac-
quired by the agent. For example, a service role may or may notbe allowed to be played
by an agent depending on the RBAC-roles acquired by the agent. See Appendix D for
for a more detailed discussion.

5 AA-patterns and policy

In [27], a policy is defined as information which can be used tomodify the behavior of a
system. This definition of policy covers as such role-binding constraints as well as user
preferences, but also constraints on the triggering of behavior between components.

During service execution, dynamic role-binding provides ameans for governing
service execution as outlined in [7], using a policy-drivenapproach to control invoca-
tion of service roles. Our classification and approach to specification of policies is also
motivated by [15] and by [29].

In our policy driven approach to composing AA-patterns withservices we are con-
cerned with defining selective mechanisms for enabling the joint behavior of objects
rather than one object individually. As such policies should make it possible to provide
information on sequencing of collaborative behavior as well as the triggering of collab-

16 5 AA-patterns and policy

orative behavior when policy constraints are fulfilled. It should be possible to provide
information on the ordering of service goals as well as the relationship between col-
laboration uses composed to provide services. One way of doing this is expressing a
composition policy as a UML2.0 dependency between two collaboration uses involved
in a composed service as illustrated in Fig. 14.

Our notion of a role-binding policy specifies requirements/objectives specifically
for the instance playing a certain role in the collaboration. This includes e.g. con-
straints the role imposes on any agent it may be bound to as well as conditions an
agent may pose regarding which roles may be bound to that agent depending on agent
states and preferences. Role-binding policies typically consist of context dependent
constraints. In the context of authentication patterns, a collaboration policy is as such
a requirement/objective for the collaborative behavior ofthe authentication pattern as
a whole, whereas the role-binding polices are defined specifically for each of the two
collaboration roles,authenticatee andauthenticator.

Role-binding policies associated with a role may consist of:

• Role requirements, e.g. on which properties the instance (agent) playing the role
must have in order to successfully participate in the collaboration. For example,
for the unilateral two pass authentication pattern shown inFig. 6, any instance
playing theauthenticatee role must possess asecret.

• Agent requirements, which may specify constraints on what the agent playing
the role is allowed to do or which agents are allowed to play the role, e.g., only a
UserAgent is allowed to play theauthenticatee role. The constraint may
specify requirements that the agent must satisfy in order toplay the role, e.g., in
order for the collaboration to be successful with respect toservice availability
requirements.

• Deployment requirements, e.g., requirements for the platform that the role is
deployed on in order for the collaboration to be successful with respect to service
availability requirements. For example, an instance playing theauthentica-
tee role must be able to generate aresponse. This means that agent playing
the role must be deployed on a part of the physical system withthe required
capacity available.

A collaboration role participating in an AA-pattern may have requirements on what
the agent must be able to support in order to play a role. We therefore need to determine
that the agent has the properties/characteristics required in order to play the role, such
as support for a specific algorithm. If it is determined that the algorithm to be used is
not supported, it may also be possible to download this (as a sort of extension to the
role play) to the agent allowing for the role to be played anyway.

A role-binding policy held by an agent defines conditions andconstraints on which
roles can be played by the agent and defines rules in terms of:

• Pre-conditions for invoking a role such as conditions on theother agent involved
in the collaboration or conditions on which roles shall havebeen performed (e.g.
AA-roles).

• Preferences of the agent, such as types or multiplicities ofroles that can be bound
to the agent.

• Deployment conditions. This provides e.g., Information about the resources
available. This may include information about the type of terminal/node/user

5.1 Specifying policies 17

equipment that the agent is deployed on, e.g., the terminal is a 3G telephone with
a smartcard, information about the operating System/ or software supported, and
other contextual parameters. Essentially, providing information about which ser-
vice availability constraints can be met by the platform theagent is deployed on
and which influence whether or not a role can be played by an agent.

For example, the policy held by a user agentA may state that user agentA is only
allowed to participate in avoicecall service, playing thecallee role if the user
agent playing thecaller role has been authenticated, authorized, and identified, and
the invitation is received between 6 PM and 11 PM.

5.1 Specifying policies

Most of the work in the literature on defining policies focuses on organizational policies
e.g. RBAC policies and Role Based Management (RBM) policiesin which a role is an
organizational concept representing the specification of the behavior associated with a
particular position in the organizational context [26]. Although policies for governing
service execution are addressed in [7], specification of rules for defining such policies
is not addressed. An architecture for policy definition and call control policies is given
in [36] and provides some high level ideas for defining policies for use in enhancing
and controlling features in the context of call control in telecommunication services.
In this section, we refine some of these ideas and we provide our approach to defining
policies.

Definition: A policy is a rule of the following form: IfconditionC andtrigger T
thenactionA andgoalB.

• The condition partdefines constraints on its applicability. The constraints are
predicates which restrict role behavior in service composition. We may specify
constraints as invariants, and pre and post conditions in OCL, or more specific-
ally, in Ponder [9].

• The trigger partdescribes when the policy should be applied. The trigger is the
event that e.g. invokes the execution of a collaboration subject to the constraints
stated in the condition part. The trigger part of a policy forgoverning service
invocation is important for achieving dynamic linking in service composition.
The trigger is specified as a message in UML 2.0, e.g., a signalor call.

• The action partdefines what is to be done when the trigger event has been sent
given that the constraints stated in the condition part hold. Examples of actions
are:bind role r to agent A, andexecute collaboration C.

• The goal partdefines what is the desired result when the policy is applied.These
goals may be specified as post-conditions in OCL.

Although a trigger part is not specified in policy rules in general, e.g. in [15], the
trigger part is essential for applying a policy approach to service engineering. For a
role-binding policy, the trigger establishes when the policy applies, e.g., when the role
request message is sent. Specifying composition policies allows us to make relation-
ships between collaboration uses explicit as well as providing a means for sequencing
service goals. e.g., a composition policy may state that thegoalunilaterally-
authenticated must be achieved before the goalauths activated can be

achieved.

18 5.2 Applying policies to service composition

5.2 Applying policies to service composition

The following outlines how policy is applied in our modeling:

1. The role-binding and composition policies are specified using e.g., OCL. Policy
conditions are stated as invariants, and pre- and post conditions. Triggers and
policy actions are stated as UML operations, and goals as post-conditions. For
example, if the invariants and pre-conditions stated in therole-binding policy are
satisfied, then the instance can play the role. Another example is use of compos-
ition policies to demonstrate dynamic linking of collaboration uses. The com-
position policy is declared as a UML 2.0 dependency of type≪policy≫. For
example, the composition policy may declare that a pre-condition for the execu-
tion of one collaboration may be that the instantiation of another collaboration
has reached a certain goal. These policies are specified at design time.

2. At design time static checks are performed on e.g., the projection from an actor’s
state machine to the semantic interface. Checks are performed on role compli-
ance. This includes checking that the actor satisfies the conditions and properties
given in the role-binding policy. This implies that the actor is typed with the in-
terface.

3. At run-time, policy controls are performed on the interfaces, dynamically. At
run-time it is enough to check that both instances are of the types that are required
on the semantic connector. Whether collaboration policy issatisfied is checked,
as well as checking e.g., whether access control policy rules are satisfied.

4. Access Control Policy enforcement is performed dynamically in an instantiation
of theChecking Access Rights collaboration by the instance playing the
authorisor role.

We have found that it is useful to declare the role binding policies in the semantic
interfaces for use in validation that the security properties are preserved in composition
of the pattern with services.

6 Composing AA-patterns and services statically

AA-patterns behavior may be invoked in two different situations:
When creating a new session,by performing a role request and performing dynamic

role binding. This requires general mechanisms to ensure that the role is invoked only
if authentication and authorization policies are satisfied. If role r is requested, and a
policy specifies that authentication and authorization is performed first, then the neces-
sary AA-behavior must be performed first and a desired goal must be reached before
the service is invoked. In this case an AA-goal is a precondition for the service invoc-
ation.

During session behavior,this is required when the session and its roles contains
features or accesses objects that demand fine-grained, dynamic authentication and/or
authorization. This case is trickier because it requires a tighter integration of service
behavior and AA-behavior. In our work, we model this using service access filters, and
policies, e.g. restricting role behavior. This entails adding screening behavior that fil-
ters out unauthorized operations. It also requires that it may be possible to force termin-
ation of a session if authorizations are no longer valid. We have currently modeled this

6 Composing AA-patterns and services statically 19

as anInterrupt collaboration. Another approach is to invoke a restricted role beha-
vior only capable of doing authorized operations. Applyingthe appropriate role-based
access control model for issuing authorizations, and checking authorizations upon ac-
cessing a particular service or object makes such fine-grained, dynamic authorization
possible.

VoIP Service : User

VoIP Service

r1 : User r2 : Service

Goal: VoIP Service provided

P1

P3

Inviting

Connected Busy

Disconnected

Idle

Idle

Invite

Bye

OK Busy

Bye

End

VoIP Service : Service P2

Inviting

Connected Busy

Disconnected

Idle

Idle

Invite

Bye

OK Busy

Bye

End

Figure 9: VoIP service defined as a semantic interface

Let us assume a voice over IP (VoIP) service,VoIP Service, defined as a se-
mantic interface with rolesr1 andr2 as shown in Fig. 9. We model the view showing
the user to VoIP service provider only, to keep the example simple. Further assume that
agentA requests a session ofVoIP Service, and roler2 from agentB.

The collaborationVoIP Servicemay have a collaboration policyP3 specifying
that the agents playingr1 andr2, in our case agentsA andB, shall be different agents.
The agents may specify conditions that govern which roles can be played by the agent.
AgentBmay, for instance, specify that a precondition for invokingr2 is that agentA is
authenticated and authorized e.g. applyingUserpull. Similarly, agentAmay specify
that a precondition for invokingr1 is that agentB is authenticated and authorized. It
is natural to express these conditions as part of the role-binding policies, using OCL.

If the AA-properties have not been established yet then, it is necessary to invoke
AA-services resulting in the desired AA-properties beforeinvokingVoIP Service.
In the most general case agent A and agent B must negotiate andagree on the AA-
patterns to apply. In many cases agent B may select the patterns and return the decision
to agentA. Then the AA-services are performed and only if successful,is the reques-
ted VoIP Service invoked. In Fig. 10 we illustrate the mapping of theVoIP
Service collaboration to agents in the system, however, it should benoted that this
is not syntactically legal in UML 2.0 [32], although this would be useful.

In order to demonstrate composition of VoIP Service with AA-patterns, we decom-

20 6 Composing AA-patterns and services statically

r1 : User r2 : Service

US2 :
ServiceUse

VoIP Service

service
user

service
provider

US1 : Request
for Serviceservice

requestor
service
granter

Goal: VoIP Service provided

A : User Agent B : Service Agent

collaborations

agents

r1 : User r2 : Service

s : VoIP Service

Figure 10: VoIP Service: binding roles to agents in service composition

poseVoIP Service as shown in Fig. 10. The collaboration UseRequest for
Service represents the initial request for use of the VoIP service bythe instance
playing theUser role. There are several alternatives to determine what is a result
of this initial request. One option, is that a service manager is implemented in the
system, which in response to the request from the user determines that authentication
and authorization is required for access to the service. A set of AA-patterns is then
selected for composition with the service. Another alternative is that the instance play-
ing theService role determines which AA-patterns are needed and that instances of
Service Access Filter are required to perform authentication and authorization, and if
successful, then the requestedVoIP Service is invoked.

User

Access
Server

Service
Access
Filter

Service

U
A

s1
 :

U
ni

Tw
oP

as
s

A
ut

he
nt

ic
at

e

U
A

s2
 :

A
ut

hs

A
ct

iv
at

io
n

USaf1: Request for
Service

Service
 granter

Service
 requestor

USaf2 : Checking
Access Rights

USaf3 : Service
Use

service
provider

service
user

Service
granter

service
 requestor

VoIP Service with Access control

{ def: goal: Boolean = User.AAaccessTo(Service) }

US2 : Service
Use

US1 :
Request for

Service

service
user

service
provider

A
sSaf1 :

U
pdateA

ccess

R
ights

USaf4 :
Interrupt

Figure 11: VoIP Service composed with User Pull patterns

6 Composing AA-patterns and services statically 21

As this report focuses primarily on modelling techniques/alternatives for enabling
static composition of AA-patterns and services at design time, we do not discuss the
dynamic linking that occurs from Fig. 10 to Fig. 11. We assume, therefore that the de-
cision to compose the AA-patterns with the VoIP Service as shown in Fig. 11, the col-
laborationVoIP Service with Access control, has been made. We now
discuss the different modelling techniques/alternativesfor achieving static composi-
tion.

In Fig. 11 we demonstrate static composition ofVoIP Service with the User
Pull authentication and authorization patterns. This involves re-use of the two collabor-
ations:Request for Service andServiceUse. The re-use of these two pat-
terns is needed in order to enable the instance playing theServiceAccessFilter
role to act as a proxy between the instance playing theUser role, and the instance
playing theService role. This enables the instance playing theService role to
require authentication and authorization before allowinga user to access the service.
TheVoIP Service session may require additional, fine grained authentication, and
authorization checks, however, and this calls for screening or other mechanisms dur-
ing service execution, unless it is possible to constrain the service that is invoked to
what is permitted. The instance playing theService role, may require that these
additional, fine grained authentication, and authorization checks are performed by the
instance playing theServiceAccessFilter role. We model these as the follow-
ing collaboration uses:UpdateAccessRights, for updating the status of the user
authorizations, andInterrupt, for terminating a service session if user authoriza-
tions are no longer valid.

AA-pattern collaborations describe reusable elements. During instantiation of a
collaboration, various checks are needed to ensure that theparticipating agents can
satisfy requirements, conditions and properties, stated in policies.

 Horizontal
 composition
(within a role)

Vertical composition
(within a role)
UAs1 : UTPA

UAaf3 : Service Use

US2 : Service Use

User Access
Server

Service
Access
Filter

Service

Collaborating
role

UAs2 : Auths
Activation

 USaf1 : Request
for Service

 USaf2 : Checking
access rights

 US1 : Request
for Service

Figure 12: Diagram showing composition of collaboration uses, ordered in top down
sequence

Role-binding policies are used to check the compatibility of the role with the agent
playing the role. When binding roles, the semantic interface between two roles is
also bound, that is, the roles must also be compatible on a semantic interface with each

22 6 Composing AA-patterns and services statically

other. Work on validating the compatibility of roles and consistency checking to ensure
the correctness of roles has been done by [13], [44], and [10].

Fig. 11 gives a graphical overview and provides a decomposition into interfaces
that are quite modular and reusable. However, the overall coordination (referred to as
choreography in the SOA context) is not evident. In additionto providing information
about the static structure, we also need to provide information about the ordering of
the associated behavior. Fig. 12 shows how roles in the different collaborations are
composed in and how these are ordered in a successful serviceexecution.

As explained, above Section 4, for each of the two party collaborations we model
the behavior associated with the collaboration using semantic interfaces and goals. In
addition, a UML 2.0 interactions diagram corresponding to the semantic interface may
be designed for each collaboration. These can then be referred to in a UML 2.0 inter-
actions overview diagram such as in Fig.13.

sd UPinteractionsOverview

ref

UAs1.UniTwoPassAuthenticate

ref

UAs2.AuthsActivation

ref

USaf1.RequestServiceAccess

ref

USaf2.CheckingAccessRights

ref

USaf3.AAServiceUse

[Unilaterally Authenticated]

[NOT Authenticated]

[Not Activated]

[NOT Authorised]

[Authorised]

[Close]

ref

USaf4.CloseSession

Figure 13: Interactions overview diagram for composing sequence diagrams

There are several alternatives for modelling the sequencing of the behavior asso-
ciated with the collaboration uses shown. One alternative is use of an interactions
overview diagram as shown in Fig. 13. Such interaction overview diagrams are not
entirely suitable for expressing interrupting and disabling such as the termination of a
user session if authorizations are no longer valid. To modelsuch dynamic exceptions,
a UML 2.0 activity diagram may be useful, modelling the dynamic exception using an
interruptible activity region [32].

6 Composing AA-patterns and services statically 23

Modelling theInterrupt collaboration behavior in service composition is not
easy, as it constitutes an exception behavior. Indeed, theInterrupt collaboration
is an example of a forced feature interaction. Halvorsen andHaugen have presented a
method for handling exception in sequence diagrams in [16].

{ context d : VoIP Service with AC
pre:
d.User.Authorised

SAF

{ context d : VoIP Service with AC
pre:
d.USaf2.Authorised
post:
d.US1.Service_requested and
d.US1.Service_accessible

action:
when d.SAF.request_service()
}

{ context d : VoIP Service with AC
pre:
d.USaf1.Service_requested
post:
d.USaf2.Authorised

action:
when d.SAF.request_CAR.Auths()
}

VoIP Service with access control

User AcS
authenticatee authenticator

User AcS

authenticatee authenticator

auths requestor auths granter

{ context d : VoIP Service with AC
pre:
d.UAs1.Unilaterally_Authenticated
post:
d.UAs2.Auths_activated

action:
when d.User.authsActivate_requested()
 }

User AcS
auths requestor auths granter

SAF

service
 requestor

service
 granter

{ context d : VoIP Service with AC
pre:
d.UAs2.Auths_activated
post:
d.USaf1.Service_requested

action:
when d.User.request_service()
 }

User SAF

service
 requestor

service
 granter

authorisee authorisor

<<policy>>

User SAF

authorisee authorisor
service
user

service
provider

<<policy>>

Service

service
provider

service
user

service
 granter

service
 requestor

User
authorisee authorisor

service
granter

service
 requestor

<<policy>>

UAs1:UTPA

UAs1:UTPA

UAs2:AA

UAs2:AA

USaf1:RS

US1:RS

USaf2:CAR

USaf1:RS

USaf2:CAR

USaf2:CAR

US1:RS

USaf3:SU

US2:SU
{ context d : VoIP Service with AC
pre:
d.US1.Service_accessible
post:
d.US2.Service_use

action:
when d.Service.provide_service ()
}

<<policy>>

Service

{ context c: UTPA
pre:
Relation (c.authenticatee.secret, c.authenticator.knowledge)
post:
c.authenticatee.Unilaterally_authenticated }

{ context d : VoIP Service with AC
pre:
d.User.Authorised AND
d.US2.Service_use
post:
d.USaf3.Service_use

action:
when d.SAF.provide_service_su()
}

<<policy>>

<<policy>>

<<policy>>

Figure 14: Goal sequences with policies as UML 2.0 dependencies

A goal sequence [43] provides supplementary information toa collaboration dia-
gram. While a collaboration such as given in Fig. 11 providesstatic structural inform-
ation about the roles and collaboration uses involved in a composition of re-usable
units such as AA-patterns and services, a goal sequence provides additional inform-
ation about the ordering of dynamic behavior associated with the collaboration uses.
Fig. 14 models the positive sequence of behavior associatedwith the collaborations in

24 6.1 Steps for composing AA-patterns with services

order to achieve authenticated and authorized access to a service.
We have extended the idea of a goal sequence given in [43] to include modelling

composition policies as UML 2.0 dependencies with keyword<<policy >> as
illustrated in Fig. 14. This allows us to express constraints on the ordering of the
behavior associated with collaboration uses and may also allow us to express policies
governing dynamic interupt exceptions. The composition policies, modelled as UML
2.0 dependencies with keyword<<policy >> allow us to specify conditions that
must be true in order for the behavior associated with a collaboration use to execute.
Each instance of<<policy>> is annotated with the policy specified in OCL.

The policies declared provide additional information on conditions required for
the behavior to run correctly and according to availabilityrequirements. The post-
conditions declare goals that have been defined at design time in the semantic interfaces
for the collaborations involved. For example, the goalunilaterally authenti-
cated is declared in the semanic intefrace forUTPA in Fig. 16.

As shown in Fig. 14, a collaboration policy is declared usingOCL for the first col-
laboration use in the sequence, the instanceUAs1 of UTPA. This collaboration policy is
declared at design time, when theUTPA collaboration is designed, along with UML 2.0
interactions and the semantic connector and its pair of semantic interfaces. The goal for
the collaboration,c.authenticatee.Unilaterally authenticated, is also
declared in the collaboration policy as an OCL post-condition. The reaching of this
goal, becomes a pre-condition in the composition policy declaring when the behavior
associated with the instanceUAs2 of AA can execute.

We prefer to model the composition policies as UML 2.0 dependencies in a goal
sequence as apposed to declaring such policy dependencies in a UML2.0 collaboration
overview such as the overview shown in Fig. 11. This is because, the dependencies
would cross over several collaboration uses, and often cross each other, making the
result very difficult to read and understand. By using a goal sequence instead, the
policies can be expressed clearly, sequentially, and dynamically.

6.1 Steps for composing AA-patterns with services

We sum up our approach to composing AA-patterns at design time in the following
steps:

1. Determine which AA-patterns should be applied. In this step, it is determined
based on service availability requirements, which set of AA-patterns will be ap-
plied. This involves deciding whether AA-behavior should be applied separately
for each service in parallel, or whether some form of centralized authentication
and authorizations can be used, requiring that either theUserPull patterns or
ServerPull patterns should be applied. The decision to applyUserPull or
ServerPull involves deciding whether user authorizations will be stored on
a centralized access server, and presented by the access server to the service, or
whether authorizations will be distributed to the user and presented by the user
to the service. Regarding choice of authentication patternto apply, we discuss
this in more detail in C.1.1

2. Decide whether sequential invocation at the beginning ofa session only is suf-
ficient, or whether more fine grained control during session behavior is also re-
quired.

7 Dynamic role-binding using semantic interfaces 25

3. Once the set of patterns to apply has been chosen, specifications/models for
each of the AA-patterns and the service to be composed are designed. These
are: UML 2.0 collaborations annotated with goals and a collaboration policy,
semantic interfaces annotated with role binding policies for each of the two par-
ticipating roles, and UML 2.0 interations. Declaring role-binding policies in
the semantic interface for each of the two collaborating roles involved in the
semantic connector will enable us to validate that the required conditions and
requirements have been fulfilled when composing the patternwith other AA-
patterns and services. The semantic connector may also be annotated with the
collaboration policy and goals.

4. Specification of the collaboration showing composition of AA-patterns with the
service (annotated with the collaboration policies. To supplement this collabora-
tion overview diagram, a goal sequence diagram is also provided, e.g. as shown
in Fig. 14.

5. Consistency checking of the model in the previous step using semantic inter-
faces. Consistency checks related to goals, and to role binding policies. In this
step we will also evaluate whether or not availability properties are preserved
under composition.

While these steps address static composition at design time, it is also possible that
agents representing users in the system, negotiate on behalf of end-users, service pro-
viders and system resources to achieve dynamic compositionat run time, as we discuss
in the following section.

7 Dynamic role-binding using semantic interfaces

We define the semantic interfaces (SI) separately and validate (model check) each SI
type separately to ensure safety and liveness properties. In this sense, a semantic inter-
face is a type that may be used at design time to ensure the correctness of (static) as-
sociations and at runtime (as meta information) to ensure the correctness of (dynamic)
links.

Role binding policies declare requirements for the classesand instances a role may
be bound to. Actor/role types are then designed for the runtime system and are model
checked against the SI to validate that the interface behavior required by the collabor-
ation (e.g.,UTPA) is satisfied.

In the meta data for the runtime system, this information is stored in files in the
database as part of the management system, and forms part of the data model for the
runtime system. In the meta data, we know that the instance can play the authenticatee
role of type responder in an instantiation of theUTPA collaboration and be able to
satisfy requirements regarding strength of authentication provided, and response times
involved in the exchange.

At runtime, dynamic role-binding is performed using the actor and SI type informa-
tion to ensure compatibility of dynamic links thereby guaranteeing that the links satisfy
the properties of the SI.

7.1 Example

The semantic connector for a specialization of the unilateral two pass authentication
pattern is given in Fig. 16 along with theUserAgent andService Agent which

26 7.1 Example

represent user and service domain entities and resources, respectively. In order for an
instance ofresponder to be bound to theUserAgent, the role-binding policyP1
must be satisfied, similarly, for binding and instance ofchallenger to theService
Agent. The role-binding policies have been specified in OCL for theroles involved
in the two party authentication pattern. For example, the OCL Boolean constraint
is generatable is declared to address performance aspects of the authentication
exchange. The aim is to ensure that the system resource on which the role/agent is
deployed is able to perform the operations involved in the authentication exchange
within QoS requirements.

<<QoS Characteristic>>
QoSTPADemand

<<QoS Characteristic>>
QoSTPAProvide

<<QoS Characteristic>>
UTPAQoSTPADemand

<<bind>>
{ Template parameter (End2EndUnit->ms) }

<<bind>>
{ Template parameter (End2EndUnit->ms) }

<<QoS Characteristic>>
UTPAQoSTPAProvide

Figure 15:UTPA QoS class definition

The OCL Boolean constraintis generatable has been defined using [33], and
is generatable evaluates to true means that therequired QoSdemanded by the
role in order to satisfy accessibility constraints is met bytheoffered QoSof the resource
in the deployment model. In order to represent the quality values we need to define
is generatable for use in dynamic role-binding, we define a simplified quality
model, as shown in Fig. 15 based on the Quality Model given in Annex B of [33]. In
this case, we resolve all temporal units with the unit milliseconds (ms). This simple
model may be expanded and refined with additional characteristics.

The OCL constraintis generatable is a Boolean check that is defined is OCL
as follows:

{ Context UTPA
if UTPAQoSTPAProvide≤ UTPAQoSTPADemand
then self.authenticatee.generateMD5response.isgeneratable= true
elseself.authenticatee.generateMD5response.isgeneratable= false
endif
}

The required QoS defines the maximum allowed time to generatethe MD5 re-
sponse, and is specified on the SI type annotated to the statechart for theresponder
role. In this case, the required QoS is the worst case for generating the MD5 response
is 10 ms. Similarly, the deployment model for the agents provides information about
the offered QoS of the resources. The offered QoS by the resource is 10 ms or better
for the agent that is to be validated against the required QoS. For this case, as shown in
Fig. 16,is generatable evaluates to true.

Support for java-based role-binding, and collaboration policies has been implemen-
ted in ServiceFrame [5]. Services can be specified by both end-users and service pro-
viders to handle availability properties. Extensions of ServiceFrame for validation in-
terface behavior by checking consistency are also being investigate by the students. Ex-
tensions for modelling collaborations and deriving interface behavior associated with
these have also been implemented. Work is ongoing regardingconsistency of service
roles using semantic interfaces.

8 Related work 27

{def: goal : Boolean = authenticatee.Unilaterally_Authenticated }

UTPA

authenticatee :
responder

authenticator :
challenger

UTPA : responder UTPA : challenger

idle

Unilaterally_Authenticated
{ goal = true }

GenerateMD5
Response

GenerateMD5
Challenge

ValidateMD5
Response

waiting

waiting

NotAuthenticated

P1 P2

Challenge

Challenge

Response

Response

Ok NOk

Unilaterally_Authenticated NotAuthenticated

Ok NOk

[MD5Response
Valid]

[MD5Response
 NOTValid]

{ Context c : UTPA
Inv:
c.authenticatee.GenerateMD5Response.is_generatable
c.authenticatee.MD5.is_supported
Pre:
c.authenticatee.username.is_assigned
c.authenticatee.passwd.is_assigned }

{Context c : UTPA
Inv:
c.authenticator.GenerateMD5Challenge.is_generatable
AND
c.authenticator.ValidateMD5Response.is_validatable
Pre:
c.authenticator.knows_username AND
c.authenticator.knows_passwd }

<<QoS required>>
{Context UTPAQoSTPADemand
WorstCaseExecutionTime = 10 ms }

agents
A : User Agent B : Service Agent

<< QoS offered>>
{ Context UTPAQoSTPAprovided
WorstCaseExecutionTime = 10 ms
}

authenticatee
: responder

authenticator
: challenger

S : UTPA

idle idle

idle

Figure 16: Semantic connector for a specialization of the unilateral two pass authen-
tication pattern

8 Related work

Yoder and Barcalow [58] were the first to apply design patterns to the security domain
presenting the Single Access Point Pattern in [58]. In [8], patterns for authoriza-
tion and access control are addressed. Brown, Divietri, Villegas, and Fernandez have
documented a high level design pattern for authentication of clients to a server [6].
Consistent with our approach, the pattern allows for the implementation of different
authentication methods such as password-based, challengeresponse, or multiple chal-
lenge response. However, our approach to designing patterns allows for application
of the authentication pattern to the peer-to-peer environment as well. Additionally, we
provide a means to specify more details at later stages of development depending on
the requirements of the authentication protocol and algorithm. In [11], Fernandez and
Warrier provide an authorization pattern, integrated witha variant of the authentic-

28 9 Conclusion

ator pattern. This authorizer pattern is actually an application of Yoder and Barcalows
single-point-of-check pattern [58], and is also an exampleof a server pull authentica-
tion and authorization architecture. Although these and other different authors have ad-
dressed authentication patterns and authorization patterns separately, we are not aware
that a framework addressing authentication and authorization patterns exists. To our
knowledge, application of such a framework to service composition is also a new ap-
proach.

9 Conclusion

We have presented a framework of authentication and authorization patterns together
with a policy-driven approach to composing services and AA-patterns to restrict access
to services to authorized users only. This involves specification of the AA-patterns us-
ing UML 2.0 collaborations and semantic interfaces annotated with policies specified
using OCL. We have demonstrated that our framework can be applied to static and
dynamic composition of services. Furthermore, we have demonstrated how the spe-
cifications may be annotated with role-binding policies, collaboration policies, and
composition policies to enable us to validate that requiredconditions and availability
properties hold when composing AA-patterns with services.

This policy-driven approach is useful for application to service composition be-
cause there are significant differences between different authentication techniques that
must be modelled for use in service composition, depending on the service collabora-
tion roles and service behavior involved as well as differences in the resources available
in the deployment platform. This validates the need for a finer-grained classification of
authentication patterns as discussed above in Sect. 3 and inAppendix C.

Acknowledgment

Thanks to Manfred Broy, Humberto Nicolas Castejón, Øystein Haugen, Frank Alex-
ander Kraemer, Mass Soldal Lund, Birger Møller-Pedersen, Ragnhild Kobro Runde,
Richard Sanders, Ina Schieferdecker, Ketil Stølen, and Thomas Weigert for comment-
ing on earlier versions of this paper.

References 29

References

[1] G.-J. Ahn and M. E. Shin. Role-based authorization constraints specification us-
ing object constraint language. InProceedings of the 10th IEEE International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WETICE 2001), pages 157–162. IEEE Computer Society, June 2001.

[2] C. Alexander.The Timeless Way of Building. Oxford University Press, 1979.

[3] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vulnerability: A case
study analysis.IEEE Computer, 33(12):52–59, December 2000.

[4] C. Boyd and A. Mathuria.Protocols for Authentication and Key Establishment.
Series: Information Security and Cryptography. Springer-Verlag, 2003.

[5] Rolv Bræk, K E Husa, and G Melby. ServiceFrame: WhitePaper. August 30, 2006
[online] – URL : http://ikt.hia.no/teleservice/ServiceFrameWhitepaperv8.pdf,
April 2002.

[6] F. L. Brown, J. Divietri Jr., G. D. Villegas, and E. D. Fernandez. The authenticator
pattern. Proceedings of Pattern Language Programs (PLoP99), August 1999.

[7] H. N. Castejón and R. Bræk. Dynamic role binding in a service oriented architec-
ture. InProceedings of the 2005 IFIP International Conference on Intelligence
in Communication Systems (INTELLCOMM), volume 190. Springer-Verlag, Oc-
tober 2005.

[8] B.H.C. Cheng, S. Konrad, L. A. Cambell, and R. Wassermann. Using security
patterns to model and analyze security requirements. InProceedings of the 2nd
International Workshop on Requirements for High AssuranceSystems (RHAS 03),
September 2003.

[9] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: A language for spe-
cifying security and management policies for distributed systems. Imperial Col-
lege Research Report DoC 2000/1, Department of Computing, Imperial College
of Science, Technology and Medicine, October 2000.

[10] Fritjof Boger Engelhardtsen and Andreas Prinz. Application of stuck-free con-
formance to service-role composition. Presented at the 5thWorkshop on system
analysis and modelling (SAM 2006), June 2006.

[11] E. D. Fernandez and R. Warrier. Remote authenticator/authorisor. Presented at
the 10th Conference on Pattern Language Programs (PLoP2003), August 2003.

[12] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.Role-Based Access Control.
Artech House, 2003.

[13] J. Floch and Rolv Bræk. A compositional approach to service validation. In
Proceedings of the 12th International SDL Forum (SDL 2005), pages 281–297.
Springer-Verlag, June 2005.

[14] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,P. Leach, A. Luotonen, and
L. Stewart. HTTP authentication: Basic and digest access authentication. RFC
2617, June 1999.

30 References

[15] Z. Fu, F. Wu, H. Huang, K K. Loh, F. Gong, I. Baldine, and C.Xu. IPsec/VPN
security policy: Correctness, conflict detection, and resolution. In Proceedings
of the International Workshop on Policies for Distributed Systems and Networks,
pages 39–56. Springer-Verlag, 2001.

[16] O. Halvorsen and O. Haugen. Proposed notation for exception handling in UML
2.0 sequence diagrams. InProceeding of the Australian Software Engineering
Conference (ASWEC 2006), pages 29–42. IEEE Computer Society, April 2006.

[17] International Standards Organization.ISO 7498-2, Information Processing Sys-
tems – Interconnection Reference Model – Part 2: Security Architecture, 1989.

[18] International Standards Organization.ISO/IEC 9798-4, Information technology –
Security techniques – Entity Authentication Part 4: Mechanisms using a crypto-
graphic check function, 1995.

[19] International Standards Organization.ISO/IEC 9798-1, Information technology –
Security techniques – Entity Authentication Part 1: General, 1997.

[20] International Standards Organization.ISO/IEC 9798-3, Information technology
– Security techniques – Entity Authentication Part 3: Mechanisms using digital
signature techniques, 1998.

[21] International Standards Organization.ISO/IEC 15408, Information technology –
Security techniques – Evaluation criteria for IT security, 1999.

[22] International Standards Organization.ISO/IEC 9798-2, Information technology –
Security techniques – Entity Authentication Part 2: Mechanisms using symmetric
encipherment algorithms, 1999.

[23] International Standards Organization.ISO/IEC 9798-5, Information technology
– Security techniques – Entity Authentication Part 5: Mechanisms using zero
knowledge techniques, 1999.

[24] International Standards Organization.ISO/IEC 13335, Information technology –
Security techniques – Guidelines for the management of IT security, 2001.

[25] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. InProceed-
ings of the 3rd International Workshop on Practice and Theory in Public Key
Cryptography, pages 446–465. Springer-Verlag, January 2000.

[26] E. Lupu and M. Sloman. Reconciling role based management and role based
access control. InProceedings of the 2nd ACM Workshop on Role Based Access
Control, pages 135–141. ACM Press, November 1997.

[27] E. C. Lupu and M. S. Sloman. Conflicts in policy-based distributed systems
management. IEEE Transactions on Software Engineering, 25(6):852–869,
November-December 1999.

[28] A. J. Menezes, P. C. van Oorchot, and S. A. Vanstone.Handbook of Applied
Cryptography. CRC Press, 1997.

[29] J. D. Moffett and M. S. Sloman. Polcy conflict analysis indistributed systems
management.Journal of Organizational Computing, 4(1):1–22, January 1994.

References 31

[30] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large
networks of computers. InCommunications of the ACM, pages 993–999. ACM
Press, December 1978.

[31] A. Niemi, J. Arkko, and V.Torvinen. HTTP digest authentication using authen-
tication and key agreement (aka). RFC 3310, September 2002.

[32] Object Management Group.UML 2.0 Superstructure Specification, formal/05-
07-04, 2006.

[33] Object Management Group.UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms, formal/06-05-02, 2006.

[34] J. Park, R. Sandhu, and G. Ahn. Role-based access control on the web. ACM
Transactions on Information and System Security, 4(1):37–71, February 2001.

[35] I. Ray, Na Li, R France, and Dae-Kyoo Kim. Using UML to visualize role-
based access control constraints. InProceedings of the Ninth ACM symposium on
Access control models and technologies (SACMAT 2004), pages 115–124. ACM
Press, June 2004.

[36] S. Reiff-Margeniec and K. J. Turner. A policy architecture for enhancing and con-
trolling features. InProc. Feature Interactions in Telecommunication Networks
VII, pages 239–246. IOS Press, June 2003.

[37] J. E. Y. Rossebø, M. S. Lund, K. E. Husa, and A. Refsdal. A conceptual model for
service availability. Research report 337, Department of Informatics, University
of Oslo, June 2006.

[38] J. E. Y. Rossebø, M. S. Lund, K. E. Husa, and A. Refsdal. A conceptual model for
service availability.Quality of Protection: Security Measurements and Metrics,
23, August 2006.

[39] J. E. Y. Rossebø, J. Ronan, and K. Walsh. Authenticationissues in multi-service
residential access networks. InProc. Seventh International Conference on Man-
agement of Multimedia Networks and Services (MMNS’2003), pages 381–395.
Springer-Verlag, September 2003.

[40] Judith E Y Rossebø and Rolv Bræk. A policy-driven approach to dynamic com-
position of authentication and authorization patterns andservices. Journal of
Computers (JCP), 1(8):13–26, December 2006.

[41] Judith E Y Rossebø and Rolv Bræk. Towards a framework of authentication and
authorization patterns for ensuring availability in service composition. InThe
First International Conference on Availability, Reliability and Security (ARES
2006), pages 206–215. IEEE Computer Society, 2006.

[42] The European Telecommunication Standardisation Institute (etsi) Secur-
ity Experts Group (sage). September 20, 2005 [online] – URL :
http://portal.org/sage/Summary.asp.

[43] R. Sanders, H. N. Castejón, F. Kraemer, and R. Bræk. Using UML 2.0 collabora-
tions for compositional service specification. InMoDELS 2005, pages 460 – 475.
Springer-Verlag, 2005.

32 References

[44] R. T. Sanders and Rolv Bræk. Modeling peer-to-peer service goals in UML. In
Proceedings of the 12nd IEEE International Conference on Software Engineer-
ing and Formal Methods (SEFM 2004), pages 144–153. IEEE Computer Society,
September 2004.

[45] Richard Sanders. Collaborations, semantic interfaces and service goals: a way
forward for service engineering. Ph.D. thesis NTNU, submitted, December 2006.

[46] R.T. Sanders, R. Bræk, G. von Bochmann, and D. Amyot. Service discovery and
component reuse with semantic interfaces. InProceedings of the 12th Interna-
tional SDL Forum (SDL 2005), pages 85–102. Springer-Verlag, 2005.

[47] B. Schneier and D.W. Mudge. Cryptanalysis of microsoft’s point-to-point tunnel-
ling protocol (pptp). InProceedings of the 5th ACM Conference on Communica-
tions and Computer Security, pages 132–141. ACM Press, November 1998.

[48] R. Shirey.Internet Security Glossary. RFC 2828. Network Working Group, 2000.

[49] Standards Australia.AS/NZS 4360:1999, Risk Management, 1999.

[50] Marc Stevens, Arjen Lenstra, and Benne de Weger. Targetcollisions for md5 and
colliding x.509 certificates for different identities. Technical report, International
Association for Cryptographic Research, October 2006.

[51] Third Generation Partnership Project, Technical Specification Group Services and
Systems Aspects, 3GPP, TR 21.905 V 7.2.0 (2006-06).Vocabulary for 3GPP
Specifications (Release 7), 2006.

[52] Third Generation Partnership Project, Technical Specification Group Services and
Systems Aspects, 3GPP, TS 33.203 V 7.3.0 (2006-09), 3G Security. Access Se-
curity for IP-based Services (Release 7), 2006.

[53] Third Generation Partnership Project, Technical Specification Group Services and
Systems Aspects, 3GPP, TS 35.205 V 6.0.0 (2004-12), 3G Security. Specification
of the MILENAGE Algorithm Set: An example algorithm set for the 3GPP authen-
tication and key generation functions f1, f1*, f2, f3, f4, f5, and f5*; Document 1:
General (Release 6), 2004.

[54] Third Generation Partnership Project, Technical Specification Group Services and
Systems Aspects, 3GPP, TS 35.206 V 6.0.0 (2004-12), 3G Security. Specification
of the MILENAGE Algorithm Set: An example algorithm set for the 3GPP authen-
tication and key generation functions f1, f1*, f2, f3, f4, f5, and f5*; Document 2:
Algorithm Specification, 2004.

[55] Third Generation Partnership Project, Technical Specification Universal Mobile
Telecommunications System (UMTS), 3GPP, TS 33.102 V 7.0.0 (2006-05), 3G
Security.Security architecture (Release 7), 2006.

[56] W. Tolone, G. J. Ahn, T. Pai, and S.P. Hong. Access control in collaborative
systems.ACM Computing Surveys (CSUR), 37(1):29–41, March 2005.

[57] Xiaoyun Wang and Hongbu Yu. How to break md5 and other hash functions. In
Proceedings of the 24th International Conference on the Theory and Applications
of Cryptographic Techniques, pages 19–35. Springer-Verlag, May 2005.

References 33

[58] J. Yoder and J. Barcalow. Architectural patterns for enabling application security.
Presented at the 4th Conference on Pattern Language Programs (PLoP97), August
1997.

34 References

A Definitions 35

A Definitions

This appendix contains a list of definitions of terms used in this report. The definitions
are obtained from international standards to the extent possible, and from established
sources in the literature. For terms that are defined differently in the standards, the
order of prioritization is as follows: [17] first, then [24],[49], and [48].

Access control: The prevention of unauthorized use of a resource, includingthe pre-
vention of use of a resource in an unauthorized manner [17].

Accessibility: The quality of being at hand and usable when needed [38].

an entity may be traced uniquely to the entity [17].

Asset: Anything that has value to the organisation [24].

Authentication: A property by which the correct identity of an entity or partyis es-
tablished with a required assurance. The party being authenticated could be a
user, subscriber, home environment or serving network [51].

Authorization: The granting of permission based on authenticated identification [17].

Authorized: Granted rights or permissions [48].

Availability: The property of being accessible and usable on demand by an authorized
entity [17,24].

Challenge: A data item chosen at random and sent by the verifier to the claimant,
which is used by the claimant, in conjunction with secret information held by
the claimant, to generate a response which is sent to the verifier [19].

Claimant: An entity which is or represents a principal for the purposesof authentica-
tion. A claimant includes the functions necessary for engaging in authentication
exchanges on behalf of a principal [19].

Confidentiality: The property that information is not made available or disclosed to
unauthorized individuals, entities, or processes [24].

Cryptographic algorithm: An algorithm that employs the science of cryptography,
including encryption algorithms, cryptographic hash algorithms, digital signa-
ture algorithms, and key agreement algorithms. [48].

Entity authentication: The corroboration that an entity is the one claimed [19].

Exclusivity: The ability to ensure access for authorized users only [38].

Identification data: Sequence of data items, including the distinguishing identifier for
an entity, assigned to an entity and used to identify it [23].

Mutual authentication: Entity authentication which provides both entities with as-
surance of each other’s identity [19].

Response:Data item sent by the claimant to the verifier, and which the verifier can
process to help check the identity of the claimant [23].

Threat: A potential cause of an unwanted event, which may result in harm to a system
or organisation and its assets [24].

36 A Definitions

Token: A message consisting of data fields relevant to a particular communication
and which contains information that has been transformed using a cryptographic
technique [19].

Trusted third party: A security authority or its agent, trusted by other entitieswith
respect to security-related activities. A trusted third party is trusted by a claimant
and/or a verifier for the purpose of authentication [19].

Unilateral authentication: Entity authentication which provides one entity with as-
surance of the other’s identity but not vice versa [19].

Unwanted incident: Incident such as loss of confidentiality, integrity and/or availab-
ility [49].

Usable: Capable of being used [38].

Verifier: An entity which is or represents the entity requiring an authenticated iden-
tity. A verifier includes the functions necessary for engaging in authentication
exchanges [19].

Vulnerability: A weakness of an asset group or group of assets, which can be ex-
ploited by one or more threats [24].

B Abbreviations 37

B Abbreviations

AKA Authentication and Key Agreement

AUTN Authentication Token

DAC Discretionary Access Control

ETSI European Telecommunications Standardization Institute

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IMPI IMS private identity

IMS IP multimedia subsystem

IP Internet Protocol

MAC Message Authentication Code

MD5 Message-Digest algorithm 5

OCL Object Constraint Language

PPTP Point-to-Point Tunnelling Protocol

QoS Quality of Service

RAND random challenge

RBAC Role-Based Access Control

RBM Role Based Management

RES Authentication response

SOA Service Oriented Architecture

SQN Sequence Number

UML Unified Modelling Language

VoIP Voice over Internet Protocol

38 B Abbreviations

C Authentication patterns 39

C Authentication patterns

This appendix provides our full classification of authentication techniques and proto-
cols as authentication patterns.

C.1 Classification of authentication patterns

Authentication is the process of determining who you are. More specifically, entity
authentication is the corroboration that an entity is the one claimed [19]. (So in terms
of the definition of a pattern given in [2] , the problem being solved is identifying an
entity, and the recurring solution is authentication.) Thebasis of identification may be
one or more of the following:

• Something the entity knows (such as a password, PIN, or secret information);

• Something the entity possesses (such as a smartcard, SIM card, or a hardware
token);

• Something inherent to the entity (e.g., human physical characteristics such as
fingerprints or retinal characteristics).

Authentication theory and practice has evolved over time and is well established
in the literature [4, 28, 30], as well in the standards [18–20, 22, 23]. Authentication
techniques are normally described as protocols. Needham and Schroeder [30] in 1978
presented some protocols for authentication in computer networks, the first major con-
tribution to classifying techniques for authentication. Menezes, van Oorschot, and Van-
stone, in their book on applied cryptography [28], provide extensive material on crypto
protocols for authentication. Recently, Boyd and Mathuria[4] have published a book
on authentication protocols which aims to exhaustively present each existing protocol.
However, as the authors discovered, this is a formidable task, which is complicated by
the fact that new protocols are still emerging to meet the needs of the changing tele-
communications environment, such as the authentication protocol we have presented
in [39]. Indeed, standardisation organisations assign thetask of creating new protocols
and algorithms for telecommunications services as needed.For example, the European
Telecommunications Standardisation Institute (ETSI), has a technical group, that is
responsible for creating cryptographic algorithms and protocols [42].

In order to apply authentication protocols and techniques in a model-based ap-
proach, we have classified these well-known techniques and protocols as authentication
patterns specified using UML 2.0 collaborations which may becombined with services
in service composition. Our classification is motivated by the need to address behavi-
oral considerations in the patterns. This means classification based first on the service
provided, unilateral authentication or mutual authentication, then based on the number
of messages involved in the pattern, e.g., one message for a one pass authentication
protocol, two messages for a two pass authentication protocol. The aim is to make the
developer more conscious in the choice of authentication techniques to apply, while
allowing flexibility with respect to the choice of protocolsand algorithms and other
crypto techniques to be used.

The authentication patterns we investigate are:

1. Unilateral authentication patterns:

(a) One pass authentication

40 C.1 Classification of authentication patterns

(b) Two pass authentication

2. Mutual authentication patterns:

(a) Two pass authentication

(b) Three pass authentication

This list may be expanded to include patterns involving trusted third parties such
as adding patterns for mutual four and five pass authentication involving a trusted third
party [22].

UniOnePass
Authenticate

Unilateral
Authenticate

TwoParty
Authenticate

Mutual
Authenticate

UniTwoPass
Authenticate

MTwoPass
Authenticate

MThreePass
Authenticate

Figure 17: Authentication patterns

Fig. 17 shows our classification of authentication patterns. A generic two party
authentication pattern involves communication between the two parties to establish the
identity of one of the parties in the case of unilateral authentication, or both in the case
of mutual authentication. Messages are generated and exchanged between the parties,
at least one message/pass is required for unilateral authentication, and at least two mes-
sages/passes are required for mutual authentication. These are generic patterns that do
not bind a particular protocol or algorithm. The rational behind our classification is to
describe the generic pattern first based on type of authentication provided (unilateral or
mutual) and number of passes/messages involved. Once a generic pattern is selected,
the authentication pattern can be further differentiated in specializing the pattern de-
pending on the type of keying, e.g., symmetric or asymmetric, to be used. The generic
patterns are then further specialized with respect to the authentication technique, or
cryptographic protocol and algorithm(s) to be applied, e.g., for the unilateral two-pass
authentication pattern, the hypertext transfer protocol (HTTP) digest authentication
protocol with the MD5 hash algorithm may be applied [14].

The unilateral one pass authentication pattern may be specialized as illustrated in
the UML 2.0 class diagram shown in Fig. 18. There is a class forall unilateral one pass
patterns employing symmetric crypto techniques, that is for which the authenticating
party and the party requesting authentication share a common secret key, which is used
in the crypto protocol. Similarly, there is a class for all unilateral one pass patterns
employing asymmetric crypto techniques, and a class for allpatterns for which the
unilateral one pass authentication algorithm employs a hash function.

Each of these may be specialized further depending on the choice of protocol, al-
gorithm and key size. Fig. 18 shows specializations for somestandardized authen-
tication protocols and algorithms. For example, theUniOnePass Authenticate

C.1 Classification of authentication patterns 41

UniOnePass
Authenticate

UniOnePass
Authenticate

Private key-based

UniOnePass
Authenticate

Public key-based

UniOnePass
Authenticate crypto

check function
(keyed hash)

UniOnePass
Authenticate

Hash Function
(unkeyed hash)

ISO/IEC 9798-4
One Pass

Authentication 5.1.1

Essentially, using a
cryptographic check
function f which takes as
input a secret key K and
an arbitrary string Z to
produce fK(Z). See ISO/
IEC 9798-4 for details.

ISO/IEC 9798-3
5.1.1 One pass
authentication

The claim_signal
contains
CertA ll TokenAB (see
ISO/IEC 9798-3 for
details)UniOnePass

HMAC-MD5

The claim_signal
consists of the
authenticatee’s
HMAC digest
computed using
the
authenticatee’s
secret key

ISO/IEC 9798-2
 5.1.1 One pass
authentication

The claim_signal
contains TokenAB
(see ISO/IEC
9798-2 for details)

For example, the
claim_signal contains
a MD5 digest

Figure 18: Classification of some unilateral one pass authentication patterns

pattern may be specialized as theUniOnePass Authenticate pattern using an
unkeyed hash function. For this specialization, MD5, a cryptographic hash function
that produces a 128-bit hash value, which is also often referred to as a message digest,
may be chosen. This MD5 digest may be used in the unilateral one pass authentica-
tion pattern for authenticating a password, e.g. by using the username and password
as input. However, it should be noted that authentication using a simple MD5 hash is
not considered secure due to well-known attacks on the MD5 algorithm, as discussed
in [57] and in [50].

Similarly, theUniOnePass Authenticate pattern may be specialized with
respect to public key-based crypto or private key-based crypto. In the case that public
key-based crypto is chosen, the ISO/IEC 9798-3 5.1.1 one pass authentication protocol
may be applied [20]. In this case, as shown in Fig. 25 of Sect. C.2.1, which gives the
UML2.0 interactions diagram for the unilateral one pass pattern, theclaim signal
contains the instance playing theauthenticatee role’s public key certificate con-
catenated with theTokenAB. For details regarding the form of the token, see [20].
The token may contain a sequence number or a time stamp as a time variant parameter.
An identifier for the instance playing theauthenticator role is included in the
token to ensure that the token is accepted by the intended recipient. This informa-
tion is digitally signed along with some additional text using the private signature key
belonging to the instance playing theauthenticatee role. Candidate signature al-
gorithms are chosen from e.g., the digital signature algorithm (DSA), the secure hash
function (SHA) of the Rivest, Shamir, and Adleman (RSA) system or the elliptic curve
DSA (ECDSA) of the elliptic curve system (ECM). For more information about these
systems, and how to select the appropriate cryptographic key size, see [25].

42 C.1 Classification of authentication patterns

UniTwoPass
Authenticate

UniTwoPass
Authenticate
Symmetric

UniTwoPass
Authenticate
Asymmetric

UniTwoPass
Authenticate crypto
check function

UniTwoPass
Authenticate
using a

Hash Function

rfc 2617
HTTP digest
with MD5

 ISO/IEC 9798-2
5.1.2 Two pass
authentication

ISO/IEC 9798-4
Two Pass

Authentication 5.1.2

 ISO/IEC 9798-2
5.1.2 Two pass
authentication

Figure 19: Classification of some unilateral two pass authentication patterns

Fig. 19 shows examples of specializations of unilateral twopass authentication
patterns. The UML 2.0 interaction diagrams for the specialization of the unilateral
two pass authentication using HTTP digest with MD5 as definedin [14] is shown
in Fig. 31 in Section C.2.2 below. This example has been chosen as HTTP digest
with MD5 is commonly used in voice over IP deployments, although the protocol and
algorithm suffer from many known limitations. There are limitations simply because
it is a password-based system, but also due to the known weaknesses of the MD5
algorithm [50,57].

MTwoPass
Authenticate

MTwoPass
Authenticate
Symmetric

MTwoPass
Authenticate
Asymmetric

 ISO/IEC 9798-2
5.2.1 Two pass
authentication

 ISO/IEC 9798-3
5.2.1 Two pass
authentication

MTwoPass
Authenticate crypto

check function

ISO/IEC 9798-4
Two Pass

Authentication 5.2.1

IMS AKA

IMS AKA reuses the UMTS AKA mutual two
pass authentication protocol for authentication
between the user and the IP multimedia
subsystem (IMS). The only difference is how
the parameters are transported for IMS AKA.
The means for transporting the parameters is
explained in rfc 3310 – Hypertext Transfer
Protocol (HTTP) Digest Authentication using
Authentication and Key Agreement (AKA).

Figure 20: Classification of some mutual two pass authentication patterns

Similarly, Fig. 20 and Fig. 21 show examples of specializations of mutual two pass
authentication patterns and mutual three pass authentication patterns, respectively. One

C.1 Classification of authentication patterns 43

specialization of theMTwoPassAuthenticate pattern for symmetric key-based
protocols as shown in Fig. 20 is the IP multimedia subsystem (IMS) authentication and
key agreement (AKA) protocol [52]. The IMS AKA protocol was standardized by the
third generation partnership project (3GPP) to provide a more secure alternative to the
HTTP digest algorithm for authenticating 3GPP users to the IMS. IMS AKA extends
HTTP digest by providing mutual authentication and using stronger cryptographic al-
gorithms. IMS AKA is also stronger because it is symmetric key-based, using the
symmetric key safely contained on a smart card.The UML 2.0 interaction diagrams for
the specialization of the mutual two pass authentication protocol IMS AKA, is given
in Fig. 37 of Section C.3.1.

MThreePass
Authenticate

MThreePass
Authenticate
Symmetric

MThreePass
Authenticate
Asymmetric

 ISO/IEC 9798-2
5.2.2 Three pass
authentication

 ISO/IEC 9798-3
5.2.2 Three pass
authentication

MThreePass
Authenticate crypto
check function

ISO/IEC 9798-4
Two Pass

Authentication 5.2.2

Figure 21: Classification of some mutual three pass authentication patterns

C.1.1 Choosing and applying an authentication pattern

In order to determine the generic pattern and specialisation to be applied, we need to
consider what the authentication requirements for a specific service or service compon-
ent are: which authentication pattern is sufficient to ensure e.g. that the user identity
is verified? Is mutual authentication required? Do service requirements place restric-
tions on the number of passes allowed? What about the strength of the authentication
required? Is single factor sufficient or is a stronger authentication required e.g. using
two factor as in the case of GSM authentication? The choice ofauthentication pattern
will depend on service requirements. Additionally, when itcomes to instantiating the
pattern and binding roles to agents, service requirements such as timing constraints,
or maximum delay contribution due to application of the authentication pattern should
be addressed. For example, a service requirement may specify that the processing in-
volved due to the computations involved must not exceedx ms. In order to meet this
requirement, the computational burden of the different algorithms must be considered.
Most asymmetric crypto algorithms have very long keys, and thus cause delays which
may be unacceptable. An example of a service with such strictrequirements is a voice
over IP service.

Choosing the appropriate authentication pattern to apply depends on several factors

44 C.1 Classification of authentication patterns

including service requirements and constraints as well as different aspects of service
composition design. A decision must first be made as to whether unilateral authentic-
ation is sufficient, or whether mutual authentication is required. For client server type
services, it is general practice to use unilateral authentication, that is, the server au-
thenticates the clients. However, in a multi-service provider environment, the need for
authentication of the server as well should be evaluated. Or, if there is a risk of mas-
querading servers in the service environment, then mutual authentication should be
implemented. Then, the number of passes required should be evaluated. For example,
unilateral two pass authentication provides a possibilityfor stronger authentication than
unilateral one pass authentication. This is because unilateral two pass authentication
involves a remote challenge response sequence whereas unilateral one pass does not.

Once a generic pattern is selected, the authentication pattern can be further differ-
entiated in specializing the pattern depending on the type of keying, e.g., symmetric
or asymmetric, to be used. The patterns is then further specialized with respect to the
authentication technique, or cryptographic protocol and algorithm(s) to be applied. A
protocol may be chosen from the existing protocols available, or an original protocol
may be specified. The advantage of choosing from known protocols and algorithms
is that these have been subject to scrutiny and cryptanalysis, so that any weaknesses
known have been published. For example, for authenticationof a user to a web-based
service, the unilateral two-pass authentication pattern may be chosen, using the HTTP
digest authentication protocol with the MD5 hash algorithm[14].

We summarize this approach in three steps:

• First choose a generic two party authentication pattern.

• Then Choose the type of keying, e.g., symmetric or asymmetric, to be used.

• Finally, Specialize with respect to authentication technique, or crypto protocol
and algorithm(s) to be applied. This step will also involve adecision on type of
key, and length of key to be used.

By establishing such a stepwise selection process, we separate out the choices that
must be made by the developer, and pinpoint each of the levelsof specialization for
awareness.

Deciding on the appropriate specialization required will involve an evaluation of
the risks of abuse/misuse by unauthorized user(s), e.g. allowing an attacker to gain
access to a specific service or service component. The strength of authentication re-
quired is chosen to mitigate the risks. In further work, we may provide a classification
of known protocols and algorithms using this framework to assist in chosing the appro-
priate pattern and specialization. This classification mayalso classify attacks (threat
scenarios) followed by the appropriate pattern(s) that maybe applied to counter the
attack and reduce the risk of unauthorized access.

We specify the authentication patterns for modelling in service composition using
the UML 2.0 Collaboration concept [32] which provides a structured way to define
services in terms of collaborating roles and a means to decompose/compose services
using collaboration uses. To specify behavior associated with the collaborations we use
UML 2.0 interaction [32]. The authentication patterns are modelled as UML 2.0 two
party collaborations allowing reuse, and may be composed with service components
or parts that are also modelled as UML 2.0 two party collaborations. In the generic
patterns, we specify policies, as explained in Sect. 5, withproperties/requirements on
the instances playing the roles independent of choice of protocol, algorithm, keying

C.2 Unilateral authentication patterns 45

that are chosen in later stages of specialization. This allows for re-use of a pattern,
while also allowing easy adaptation and adjustment depending on the requirements.

TwoPartyAuthenticate

authenticatee authenticator

Figure 22: UM 2.0 collaboration diagram for the two party authentication pattern

A UML 2.0 collaboration diagram for the generic two party authentication pattern
is given in Fig. 22. The collaboration diagram shows that theauthenticatee role
cooperates with theauthenticator role. In the following sections, we present the
specializations of the generic two party authentication pattern for the unilateral and
mutual authentication patterns, modelled using UML2.0.

C.2 Unilateral authentication patterns

In unilateral authentication patterns, only one of the two parties is authenticated.

C.2.1 Unilateral one pass authentication

In this pattern, the instance playing theauthenticatee role initiates the process
and sends one message containing aClaim, and optionally other data (such as a pub-
lic key certificate) to the instance playing theauthenticator role. The form of
the Claim varies depending on the crypto protocol chosen, and usuallyinvolves a
time variant parameter and or a time stamp, and consists of a cleartext part, and an
encrypted part. The data used as a basis for generating theClaim will depend on
the crypto protocol to be implemented. For example, if the crypto protocol used in
the implementation is the ISO/IEC 9798-2 one-pass unilateral authentication protocol,
a one-pass symmetric key unilateral authentication protocol, then a shared secret key,
which is used by both the instance playing theauthenticator role and the instance
playing theauthenticatee role, and a symmetric algorithm are used [22]. The ac-
tual generation ofClaim in an instantiation of the pattern will depend on the protocol
and algorithm employed.

{def: goal : Boolean = authenticatee.Unilaterally_Authenticated}

UniOnePassAuthenticate

authenticatee :
claimant

authenticator :
verifier

Figure 23: Unilateral one pass authentication

46 C.2 Unilateral authentication patterns

The collaboration diagram for the unilateral one-pass authentication pattern is given
in Fig. 23. This view shows the goal for the collaboration, defined as a boolean in OCL.
The goal for the pattern is that the instance playing the authenticatee role is unilaterally
authenticated (by the instance playing the authenticator role). A detailed view of the
pattern is give in Fig. 24. This view allows us to express moreconcisely the properties
that the instances must have in order to participate in the pattern. Any instance play-
ing theauthenticatee role must possess the properties specified byclaimant
and any instance playing theauthenticator role must possess the properties spe-
cified byverifier. The instance playing theauthenticatee role must possess a
secret, and the instance playing theauthenticator role must possessknowledge
that is mathematically related to thesecret.

UniOnePass Authenticate

claimant

secret : string

GenerateClaim ()

verifier

knowledge : string

ValidateClaim ()

authenticatorauthenticatee

{ Context c:UniOnePassAuthenticate
Inv:
c.authenticatee.GenerateClaim.is_generatable AND
c.authenticator.ValidateClaim.is_validatable
Pre:
c.authenticatee.secret.is_assigned AND
c.authenticator.knowledge.is_assigned AND
Relation (c.authenticatee.secret, c.authenticator.knowledge) }

Figure 24: UML 2.0 Collaboration diagram for unilateral one-pass authentication, de-
tailed view

Two invariants are declared:c.authenticatee.GenerateClaim.is gen-
eratable andc.authenticator.ValidateClaim.is validatable. The
first invariant is used to check that the instance playing thetheauthenticatee role
is deployed on a part of the system (terminal/node) with the required processing and
computing capacity required to generate theClaim. Similarly, the second invariant is
used to check that the instance playing theauthenticator role is deployed on a
part of the system (terminal/node) with the required processing and computing capacity
required to validate theClaim. The reason for declaring these invariants is to ensure
that the protocol and algorithm chosen are not too processorintensive for the parts on
which they are deployed so that the authentication protocolcan run whenever the col-
laboration is instantiated. The motivation for this is to ensure that service requirements
regarding accessibility [38] are fulfilled when this authentication pattern is composed
with service components/parts. The two pre-conditionsc.authenticatee.sec-
ret.is assigned andc.authenticator.knowledge.is assigned check
that secret and knowledge are assigned before the collaboration can instantiate. Addi-
tionally,Relation(c.authenticatee.secret,c.authenticator.know-
ledge) must evaluate to true. This means that there is a check performed to ensure
that there is a pre-existing mathematical relationship betweensecret andknowledge
as required by the authentication pattern to be deployed. The OCL pre-conditions are

C.2 Unilateral authentication patterns 47

used to perform a boolean check to confirm that thea priori conditions for the authen-
tication protocol are fulfilled.

The purpose of these three boolean checks is to ensure that thea priori conditions,
for the authentication protocol to be used, have been satisfied in order for the instances
to successfully participate in the pattern. This means thatthe instances playing the
authenticatee andauthenticator roles have been assigned secret and know-
ledge correctly by the runtime system prior to service execution.

To provide information about the interactions between the two instances playing the
authenticatee andauthenticator roles respectively, a UML 2.0 interactions
diagram is used to show the interactions in time sequence. UML 2.0 interactions uses
are used for modelling authentication pattern behavior subject to service constraints
such as timing, processor capacity available, or strength of algorithm required. Fig. 25
provides the interactions diagram for the generic unilateral one-pass pattern, and shows
how we employ UML 2.0 interactions uses.

sd Claim

authenticatee :
claimant

authenticator :
verifier

Claim_signal

sd UniOnePassAuthenticate

authenticatee :
claimant

authenticator :
verifier

Validate
Claim

ref
Claim

alt

Unilaterally_Authenticated

NotAuthenticated

[Claim Valid]

Generate
Claim

Ok_signal

NOk_signal
[Claim Not Valid]

Figure 25: UML 2.0 interaction diagram for UniOnePass Authenticate

This pattern may be specialized for a particular protocol and algorithm(s) by spe-
cifying theClaim interactions diagram giving the detailed signal. We model the be-
havior involved in the so-called ”pass” using UML 2.0 interactions uses. Employing
interaction uses in this manner facilitates re-usability of the patterns as well as to enable
the ability to evaluate whether different crypto protocolsand algorithms meet service
requirements in order to obtain the combination that best suits the service requirements
and other restrictions such as processor capacity in the deployed terminal when com-
posing the pattern with services.

This flexibility allows us to test during the design phase whether a certain protocol
fulfils requirements regarding strength of authenticationprovided. The classification
of authentication into levels depending on the strength of authentication provided is
out of the scope of this work, however, and we are not aware that a full classifica-

48 C.2 Unilateral authentication patterns

{def: goal : Boolean = authenticatee.Unilaterally_Authenticated }

Uni O ne Pa s s Aut he nt i c a t e

authenticatee :
claimant

authenticator :
verifier

UniOnePassAuthenticate : claimant UniOnePassAuthenticate : verifier

idle idle

Unilaterally_Authenticated
{ goal = true }

Generate
Claim

waiting

Validate
Claim

NotAuthenticated

idle

P1 P2

Claim

Claim

Ok NOk Unilaterally_Authenticated NotAuthenticated

idle

Ok NOk

[Claim
Valid]

[Claim Not Valid]

Figure 26: UML 2.0 collaboration and semantic interfaces for the
UniOnePassAuthenticate pattern

tion of authentication protocols according to strength of authentication provided exists.
However, information about strength of specific algorithmsand selection of key-size
for certain well-known public-key cryptography protocolsand algorithms is provided
in [25]. We are also interested in obtaining a suitable reference to a classification of
crypto protocols, algorithms, and key-lengths used regarding processor intensivity in
order to take into account timing issues in service deployments. For example, a cer-
tain protocol and algorithm run on a mobile 3G terminal is known to usex ms. The
policy control check needs to determine whetherx ms is within the constraints given in
the role-binding policy of the service that the authentication pattern is to be composed
with. If it is not within the limits, then another protocol and algorithm which is less
processor intensive will need to be chosen.

Fig. 23 and Fig. 25 are used to define the semantic interfaces for the unilateral
one pass authentication pattern. The semantic interfaces for the unilateral one pass
authentication pattern are given in Fig. 26, defining the visible interface behavior and
goals of the collaboration as explained in Sect. 4.1.2. In this case, it is a goal that
the instance playing theauthenticatee role is unilaterally authenticated by the
instance playing theauthenticator role. The two role state machines show the
role behavior of the two collaboration parts participatingin the pattern. goal =

true is an (assertion [32], not an executable property). The assertion states that
the goal of unilaterally authentication has been achieved.The declarationsP1 and
P2, in the upper corners of the two role state machines, represent the role-binding

C.2 Unilateral authentication patterns 49

policies for each of the two collaborating parts respectively. for the instance play-
ing theauthenticatee role and the instance playing theauthenticator role.
See Fig. 27 for examples of role-binding policies for each ofthe two collaboration parts
involved in theUniOnePassAuthenticate pattern.

Fig. 27 provides examples of the condition parts of role-binding policies for the in-
stances playing theauthenticatee andauthenticator roles respectively, and
the condition part of the collaboration policy for the instantiation of theUniOnePass-
Authenticate pattern. The role-binding policy for theauthenticatee role
states that the instance playing theauthenticatee role must have the capacity to
generate theClaim at any time, and must have a pre-assignedsecret. If these
two conditions are fulfilled then the instance can play theauthenticatee role and
achieve its goal. If not fulfilled, role-binding may still beallowed, but the goal will not
be achieved. Similarly, the role-binding policy for theauthenticator role states
that the instance playing theauthenticator role must have the capacity to validate
theClaim at any time, and must have a pre-assignedknowledge (of thesecret).
If these two conditions are fulfilled then the instance can play theauthenticator
role. In order for the collaboration to run, both of these policies must be fulfilled.

{ Context c:UniOnePassAuthenticate
Inv:
c.authenticatee.GenerateClaim.is_generatable
Pre:
c.authenticatee.secret.is_assigned
 }

{ Context c:UniOnePassAuthenticate
Inv:
c.authenticator.ValidateClaim.is_validatable
Pre:
c.authenticator.knowledge.is_assigned AND
}

{ Context c:UniOnePassAuthenticate

Pre:
Relation (c.authenticatee.secret, c.authenticator.knowledge)
}

Figure 27: Examples of condition parts of role-binding policies and collaboration
policy for theUniOnePassAuthenticate pattern

The conditions part of these policies are declared in OCL. The operation performed
is a policy check: Before the role can be bound, the invariants and pre-conditions must
be satisfied. Given that these conditions are satisfied, the result of the policy check is
that the role can be bound.

Similarly, for the collaboration policy, before the collaboration can be instanti-
ated, the pre-condition that there is a mathematical relationship betweensecret and
knowledge must be evaluated. if this check results to true, and a trigger message
requesting authentication is sent, then the result of the policy check is that the collab-
oration can be instantiated/executed.

50 C.2 Unilateral authentication patterns

C.2.2 Unilateral two pass authentication

In this pattern, the instance playing theauthenticator role initiates the process
and sends a challenge to the instance playing theauthenticatee role. Upon re-
ceiving this challenge, the instance playing theauthenticatee role generates a
response and sends it back to the instance playing theauthenticator role. The
response is validated. If the response is valid, then the authentication is successful.

{def: goal : Boolean = authenticatee.Unilaterally_Authenticated}

UniTwoPassAuthenticate

authenticatee :
responder

authenticator :
challenger

Figure 28: Unilateral two pass authentication

The instance playing theauthenticator role sends a message containing a
Challenge, and optionally other data (such as a public key certificate)to the instance
playing theauthenticatee role. The form of theChallenge varies depending
on the crypto protocol chosen, and usually involves a time variant parameter and or a
time stamp, and consists of a cleartext part, and an encrypted part. The data used as a
basis for generating theChallenge will depend on the crypto protocol to be imple-
mented. For example, if the crypto protocol used in the specialization is the ISO/IEC
9798-2 two-pass unilateral authentication protocol, a two-pass symmetric key unilat-
eral authentication protocol, then a shared secret key, which is used by both the instance
playing theauthenticator role and the instance playing theauthenticatee
role, and a symmetric algorithm are used [22]. The actual generation ofChallenge
in an instantiation of the pattern will depend on the protocol and algorithm employed.

UniTwoPass Authenticate

responder
secret : string

GenerateResponse ()

challenger
challenge : string
knowledge : string

GenerateChallenge ()
ValidateResponse ()

authenticatorauthenticatee

{ Context c:UniTwoPassAuthenticate
Inv:
c.authenticatee.Generate Response.is_generatable AND
c.authenticator.GenerateChallenge.is_generatable AND
c.authenticator.ValidateResponse.is_validatable
Pre:
c.authenticatee.secret.is_assigned AND
c.authenticator.knowledge.is_assigned AND
Relation (c.authenticatee.secret, c.authenticator.knowledge) }

Figure 29: UML 2.0 collaboration diagram for unilateral two-pass authentication, de-
tailed view

The collaboration diagram for the unilateral two-pass authentication pattern is given

C.2 Unilateral authentication patterns 51

in Fig. 28. A detailed view is given in Fig. 29. The propertiesof theauthenticatee
role andauthenticator role are defined byresponder andchallenger. As
for the unilateral one-pass pattern, thea priori conditions for instantiating the pattern
are expressed as constraints in OCL. In this case, three invariants are declared:

c.authenticator.GenerateChallenge.is generatable

c.authenticatee.GenerateResponse.is generatable

c.authenticator.ValidateResponse.is validatable

The first and third invariants are used to check that the instance playing theauthenti-
cator role is deployed on a part of the system (terminal/node) withthe required
processing and computing capacity required to generate thechallenge and to valid-
ate the response. Similarly, the second invariant is used tocheck that the instance
playing theauthenticatee role is deployed on a part of the system (terminal/node)
with the required processing and computing capacity required to generate the response.
The reason for declaring these invariants is to ensure that the protocol and algorithm
chosen are not too processor intensive for the parts on whichthey are deployed so
that the authentication protocol can run whenever the collaboration is instantiated.
The motivation for this is to ensure that service requirements regarding accessibil-
ity [38] are fulfilled when this authentication pattern is composed with service compon-
ents/parts. The two pre-conditionsc.authenticatee.secret.is assigned
andc.authenticator.knowledge.is assigned check thatsecret and
knowledge are assigned before the collaboration can instantiate. Thethird pre-
condition checks that there is a mathematical relationshipbetweensecret andknow-
ledge.

sd
Challenge

authenticatee
: responder

authenticator :
challenger

Challenge_signal

sd
Response

authenticatee
: responder

authenticator:
challenger

Response_signal

sd UniTwoPassAuthenticate

authenticatee :
responder

authenticator :
challenger

Challenge
ref

Generate
Challenge

Validate
Response

ref
Response

alt

Unilaterally_Authenticated

NotAuthenticated

[Response Valid]

Generate
Response

NOk_signal

Ok_signal

[Response NOTValid]

Figure 30: UML 2.0 interaction diagram for UniTwoPass Authenticate

52 C.2 Unilateral authentication patterns

The interaction sequences for the unilateral two pass challenge response pattern are
given in Fig. 30. This diagram illustrates how we employ UML 2.0 interaction uses
to enable flexibility in the specification. The challenge andresponse interaction uses
referenced allow use of the same pattern to specify any unilateral two pass challenge
response protocol. Although the intention of interaction uses is to enable reuse of a
definition in many contexts, this feature also allows us to test which pair of interactions
should be used for the challenge and the response passes in order to determine which
best fit the requirements of the service. In this way, different protocols and algorithms
may be applied subject to constraints such as timing constraints. This is to assist in
selecting the protocol and algorithm that best fits the requirements. TheGenerate
Challenge,Generate Response, andValidate Response state invariants
depend on the protocol and algorithm chosen. In this way, thedeveloper is able to tune
the authentication pattern to fit the service requirements,and then select, freeze, and
use.

sd
Challenge

authenticatee
: responder

authenticator :
challenger

(realm, nonce)

sd
Response

authenticatee
: responder

authenticator:
challenger

(username, realm,
nonce, URI, response)

Sd UTPA HTTP digest with MD5

authenticatee :
responder

authenticator :
challenger

Challenge
ref

Generate
MD5Challenge

Validate
MD5Response

ref
Response

alt

Unilaterally_Authenticated

NotAuthenticated

[MD5Response Valid]

Generate
MD5Response

NOk_signal

Ok_signal

[MD5Response
 NOTValid]

response = MD5(MD5(A1), nonce:MD5(A2))
 = MD5 (MD5(A1) || : || nonce:MD5(A2))
A1 = (username : realm : passwd)
A2 = (method : URI)

Figure 31: UML 2.0 interaction diagram for UniTwoPass Authenticate specialized for
the HTTP digest protocol using the MD5 hash

A specialization ofUniTwoPass Authenticate using the HTTP digest pro-
tocol with the MD5 algorithm is shown in Fig. 31. For this specialization, theChall-
enge signal contains the realm and nonce values, as explained in [14]. The realm
is a string displayed to the user (the instance playing theauthenticatee role) con-
taining at least the name of the host performing the authentication. The nonce is a
data string which is uniquely generated by the instance playing theauthenticator
role. TheResponse signal contains the username, realm, nonce, URI, and the
response which is generated using the MD5 algorithm. Note that although MD5 is
widely used with HTTP digest, the protocol actually specifies use of a checksum/hash
function and provides an example using MD5. In other words, MD5 is not mandatory,

C.2 Unilateral authentication patterns 53

but is commonly used.

{def: goal : Boolean = authenticatee.Unilaterally_Authenticated }

U n iT wo PassA u th en ticate

authenticatee :
responder

authenticator :
challenger

UniTwoPassAuthenticate : responder UniTwoPassAuthenticate :challenger

idle
idle

Unilaterally_Authenticated
{ goal = true }

Generate
Response

Generate
Challenge

Validate
Response

waiting

waiting

NotAuthenticated

idle

P1 P2

Challenge

Challenge

Response

Response

Ok NOk

Unilaterally_Authenticated NotAuthenticated

idle

Ok NOk

[Response
 Valid] [Response NOTValid]

Figure 32: UML 2.0 collaboration and semantic interfaces for the UniTwoPass
Authenticate pattern

In Fig. 32, the UML 2.0 collaboration for unilateral two-pass authentication is
shown with two state machines to show the role behavior of thetwo collaboration parts
in a unilateral two-pass challenge-response authentication pattern. These diagrams, to-
gether with goal expressions specifying properties of desirable states and events, define
the semantic connector of theUniTwoPassAuthenticate collaboration. In addi-
tion to syntactical interfaces, semantic interfaces definethe visible interface behavior
and goals of the collaboration. In this case, the semantic connector defines the inter-
face behavior and goals of theauthenticatee andauthenticator roles. The
declarations in the upper corners of the role state machinesrepresent the role-binding
policies for each of the two collaboration parts , represented byP1 andP2 respectively
for the instances playing the theauthenticatee role and the instance playing the
authenticator role.

Fig. 33 provides examples of the condition parts of role-binding policies for the in-
stances playing theauthenticatee andauthenticator roles respectively, and
the condition part of the collaboration policy for the instantiation of theUniTwoPass-
Authenticate pattern. The role-binding policy for theauthenticatee role
states that the instance playing theauthenticatee role must possess asecret,
and it must have the capacity to be able to generate a responseto the challenge sent by
theauthenticator. If these conditions are fulfilled, then the instance can play the
authenticatee role. Similarly, the instance playing theauthenticator role
must possessknowledge (that is mathematically related to thesecret assigned to
the instance playing theauthenticatee role), and it must be able to to generate a

54 C.3 Mutual authentication patterns

{ Context c:UniTwoPassAuthenticate
Inv:
c.authenticatee.Generate Response.is_generatable
Pre:
c.authenticatee.secret.is_assigned
}

{ Context c:UniTwoPassAuthenticate

Pre:
Relation (c.authenticatee.secret,
c.authenticator.knowledge)
}

{Context c:UniTwoPassAuthenticate
Inv:
c.authenticator.GenerateChallenge.is_generatable AND
c.authenticator.ValidateResponse.is_validatable
Pre:
c.authenticator.knowledge.is_assigned
 }

Figure 33: Examples of the condition parts of role-binding policies and collaboration
policy for theUniTwoPassAuthenticate pattern

challenge, which is sent to theauthenticatee, and to validate the reponse. In
order for the collaboration to run, both of the role-bindingpolicies must be fulfilled.
The condition part of the collaboration policy states that in order for the collabora-
tion to instantiate, there must be a mathematical relationship betweensecret and
knowledge.

C.3 Mutual authentication patterns

In mutual authentication patterns, both of the two parties are authenticated.

C.3.1 Mutual two pass authentication

In this pattern, the instance playing theauthenticateeA role initiates the process
and sends a message containing a claim,ClaimAB, and optionally other data (such
as a public key certificate) to the instance playing theauthenticateeB role. The
the instance playing theauthenticateeB role must first validate thisClaimAB,
and if it is valid, then a claim,ClaimBA, is generated by the instance playing the
authenticateeB role and sent to the instance playing theauthenticateeA
role. The instance playing theauthenticateeA role must then validateClaimBA,
and if it is also valid, then the instances are mutually authenticated.

The form of the claims generated varies depending on the crypto protocol chosen,
and usually involves a time variant parameter and or a time stamp, and consists of
a cleartext part, and an encrypted part. The data used as a basis for generating the
ClaimAB and theClaimBA will depend on the crypto protocol to be implemented.
For example, if the crypto protocol used in the implementation is the ISO/IEC 9798-2
two-pass mutual authentication protocol, a two-pass symmetric key mutual authentic-
ation protocol, then a shared secret key, which is used by both the instance playing the
authenticator role and the instance playing theauthenticatee role, and a

C.3 Mutual authentication patterns 55

symmetric algorithm are used [22]. The actual generation ofClaimAB, ClaimBA in
an instantiation of the pattern will depend on the protocol and algorithm employed.

MTwoPassAuthenticate

authenticateeA :
claimantA

authenticateeB :
claimantB

{def: goal : Boolean =
authenticateeA.Authct(authenticateeB) AND
authenticateeB.Authct(authenticateeA)}

Figure 34: Mutual two pass authentication

The collaboration diagram for the mutual two-pass authentication pattern is given
in Fig. 34. The properties of theauthenticateeA role andauthenticateeB
role are defined byclaimantA andclaimantB. This view shows the goal for the
collaboration, defined as a boolean in OCL. The goal for the pattern is that the in-
stance playing theauthenticateeA role is authenticated (by the instance playing
theauthenticateeB role) and that the instance playing theauthenticateeB
role is authenticated (by the instance playing theauthenticateeA role). A detailed
view is given in Fig. 35. As for the unilateral authentication patterns described above,
thea priori conditions for instantiating the pattern are expressed as constraints in OCL.
This is to establish that all of the requirements for the authentication protocol to run
successfully are fulfilled prior to running the authentication protocol. For example, if
the instance playing theauthenticateeA role has not been assigned asecretA
ahead of time, then the authentication process will error when run. All of these con-
ditions must be established ahead of time for the authentication protocol to be able to
run. Having establisheda priori conditions, authentication can be performed whenever
authentication is required e.g. in a service collaboration.

MTwoPass Authenticate

claimantA
secretA : string

GenerateClaimAB ()
ValidateClaimBA ()

claimantB
secretB : string

GenerateClaimBA ()
ValidateClaimAB ()

authenticateeBauthenticateeA

{ Context c:MTwoPassAuthenticate
Inv:
c.authenticateeA.Generate ClaimAB.is_generatable AND
c.authenticateeB.Generate ClaimBA.is_generatable AND
c.authenticateeA.Validate ClaimBA.is_validatable
c.authenticateeB.Validate ClaimAB.is_validatable
Pre:
c.authenticateeA.secretA.is_assigned AND
c.authenticateeB.secretB.is_assigned }

Figure 35: UML 2.0 collaboration diagram for mutual two-pass authentication, detailed
view

In this case, five invariants are declared as OCL constraints. The first, third and
fifth invariants are used to check that the instance playing the theauthenticateeB

56 C.3 Mutual authentication patterns

role is deployed on a part of the system (terminal/node) withthe required processing
and computing capacity required to generate the challenge,ChallengeAB, to gener-
ate the claim,ClaimBA, and to validate the response,ClaimAB. Similarly, the second
and fourth invariants are used to check that the instance playing theauthenticateeA
role is deployed on a part of the system (terminal/node) withthe required processing
and computing capacity required to generate the responseClaimAB and to validate the
responseClaimBA. The reason for declaring these invariants is to ensure thatthe pro-
tocol and algorithm chosen are not too processor intensive for the parts on which they
are deployed so that the authentication protocol can run whenever the collaboration is
instantiated. The motivation for this is to ensure that service requirements regarding ac-
cessibility [38] are fulfilled when this authentication pattern is composed with service
components/parts. The two pre-conditionsc.authenticateeA.secretA.is-
assigned andc.authenticateeB.secretB.is assigned check thatse-
cretA andsecretB are assigned before the collaboration can execute. It is also pos-
sible to state pre-conditions checking that the instance playingauthenticateeA
has knowledge ofsecretB and that the instance playingauthenticateeB has
knowledge ofsecretA to ensure that all of thea priori conditions are satisfied.

sd ClaimAB

ClaimAB_signal

sd MTwoPassAuthenticate

 ref ClaimAB

ref ClaimBA

alt

Mutually_authenticated
Authct(authenticateA) and

Authct(authenticateB)
{ goal = true }

NotAuthenticated

[ClaimBA Valid]

authenticateeA :
claimantA

authenticateeB :
claimantB

Generate
ClaimAB

Validate
ClaimAB

Generate
ClaimBA

Validate
ClaimBA

authenticateeA :
claimantA

authenticateeB :
claimantB

sd ClaimBA

ClaimBA_signal

authenticateeA :
claimantA

authenticateeB :
claimantB

alt [ClaimAB NOTValid]

NotAuthenticated

[ClaimAB Valid]

[ClaimBA NOT Valid]

Ok_signal

NOk_signal

NOkAB_signal

Figure 36: UML 2.0 interaction diagram for MTwoPass Authenticate

The interaction sequences for theMTwoPass Authenticate pattern are given
in Fig. 36. The challenge and response interaction uses referenced allow re-use of the
same pattern to specify any mutual two pass challenge response protocol.

In the following, we demonstrate specialization of the UML 2.0 interactions dia-

C.3 Mutual authentication patterns 57

gram for the mutual two pass authentication pattern, shown in Fig. 36, for the IMS
AKA protocol. The IMS AKA protocol reuses the UMTS AKA mutualtwo pass au-
thentication protocol [55] for authentication between theuser and the IP multimedia
subsystem (IMS). The only difference is in how the parameters are transported for IMS
AKA. The means for transporting the parameters is explainedin [31]. Essentially, IMS
AKA extends the security of the hypertext transfer protocol(HTTP) Digest. Although
HTTP digest is a unilateral two-pass authentication protocol (username and password-
based) with known weaknesses, the IMS AKA extension improves the protocol by
providing mutual authentication and the use of stronger algorithms. Furthermore, the
symmetric key used in the protocol is safely contained on theUMTS integrated circuit
card (UICC) [52].

sd ClaimAB

4xx Auth_Challenge
(IMPI, RAND, AUTN)

sd MTPA IMS AKA

 ref ClaimAB

ref ClaimBA

alt

Mutually_authenticated
Authct(authenticateA) and
Authct(authenticateB)

{ goal = true }

NotAuthenticated

[RES Valid]

authenticateeA :
claimantA

authenticateeB :
claimantB

Generate
Auth_Challenge

Validate
AUTN

Generate
REGISTER

Validate RES

authenticateeA :
claimantA

authenticateeB :
claimantB

sd ClaimBA

REGISTER(IMPI,
 Authentication response)

authenticateeA :
claimantA

authenticateeB :
claimantB

alt [AUTN NOTValid]

NotAuthenticated

[AUTN Valid]

[RES NOTValid]

Ok_signal

NOk_signal

Nok_AUTN_signal

Authentication response is generated by the
ISIM using the shared secret K and the
random challenge RAND
Authentication response = f2K (RAND)

Figure 37: UML 2.0 interaction diagram for MTwoPass Authenticate specialized for
IMS AKA, detailed view

In this specialization of the pattern, as shown in Fig. 37, the instance playing the
authenticateeA role initiates the process and sends a challenge message contain-
ing the IMS private identity (IMPI), a random challenge (RAND), and the authentica-
tion token (AUTN) to the instance playing theauthenticateeB role. The AUTN,
which contains a message authentication code (MAC) and the sequence number (SQN),
is used to authenticate the instance playing theauthenticateeA role. Then the in-
stance playing theauthenticateeB role must first validate the AUTN, and if it is
valid, then an authentication response (RES) is generated by the instance playing the
authenticateeB role and sent to the instance playing theauthenticateeA role

58 C.3 Mutual authentication patterns

along with the IMPI. The RES is generated using the shared secret key K and RAND
and employs the UMTS security algorithmf2, a message authentication function as
specified in [53] and in [54]. The instance playing theauthenticateeA role must
then validate this RES, if it is also valid, then the instances are mutually authenticated.

MTwoPassAuthenticate : claimantA MTwoPassAuthenticate : claimantB

idle
idle

Authct(authenticateB)

Generate
ClaimAB

Generate
ClaimBA

waiting

Validate
ClaimAB

NotAuthenticated

idle

P1 P2

ClaimAB

ClaimAB

Ok

NOk

Authct(authenticateA) NotAuthenticated

idle

Ok NOk

[ClaimAB valid]

NOk

[ClaimAB NOTValid]

waitingValidate
ClaimBA

ClaimBAClaimBA

NOk

[ClaimBA
 valid] [ClaimBA

NOTValid]

MTwoPassAuthenticate

authenticateeA :
claimantA

authenticateeB :
claimantB

{def: goal : Boolean =
authenticateeA.Authct(authenticateeB) AND
authenticateeB.Authct(authenticateeA)}

Figure 38: UML 2.0 collaboration and semantic interfaces for the MTwoPass
Authenticate pattern

The semantic connector for the mutual two pass authentication pattern is given
in Fig. 38, defining the visible interface behavior and goalsof the collaboration as
explained in Sect. 4.1.2.

{ Context c:MTwoPassAuthenticate
Inv:
c.authenticateeA.Generate ClaimAB.is_generatable AND
c.authenticateeA.Validate ClaimBA.is_validatable
Pre:
c.authenticateeA.secretA.is_assigned
 }

{ Context c:MTwoPassAuthenticate
Inv:
c.authenticateeB.Generate ClaimBA.is_generatable AND
c.authenticateeB.Validate ClaimAB.is_validatable
Pre:
c.authenticateeB.secretB.is_assigned
}

Figure 39: Examples of the condition parts of role-binding policies for the
MTwoPassAuthenticate pattern

Fig. 39 provides examples of the condition parts of role-binding policies for the

C.3 Mutual authentication patterns 59

genericMTwoPassAuthenticate pattern. The condition part of the role-binding
policy shown for the instance playing theauthenticateeA role states that the in-
stance playing theauthenticateeA role must possess asecretA, and it must
have the capacity to be able to generateClaimAB which will be sent to the instance
playing theauthenticateeB role, and it must have the capacity to validate the
ClaimBA received from the instance playing theauthenticateeB role. If these
conditions are fulfilled, then the instance can play theauthenticateeA role. Sim-
ilarly, the condition part of the role-binding policy shownfor the instance playing
the authenticateeB role states that the instance must possess asecretB, and
it must be able to to generate aClaimBA, which is sent to theauthenticateeA,
and it must be able to validate theClaimAB received from the instance playing the
authenticateeA role. If these conditions are fulfilled, then the instance can play
theauthenticateeB role. In order for the collaboration to run, both of the role-
binding policies must be fulfilled.

C.3.2 Mutual three pass authentication

In this pattern, the instance playing theauthenticateeB role initiates the process
and sends a sends a challenge to the instance playing theauthenticateeA role.
Upon receiving this challenge, the instance playing theauthenticateeA role gen-
erates a response and sends it back to the instance playing the authenticateeB
role. The response is validated. If the response is valid, then the instance playing
theauthenticateeB role generates a claim which is sent to the instance playing
theauthenticateeA role. The instance playing theauthenticateeA role must
then validate this claim, if it is also valid, then the instances are mutually authenticated.

MThreePass Authenticate

claimantA
secretA : string

GenerateClaimAB ()
ValidateClaimBA ()

claimantB
secretB : string

GenerateChallengeAB ()
ValidateClaimAB ()
GenerateClaimBA ()

authenticateeBauthenticateeA

{ Context c:MThreePassAuthenticate
Inv:
c.authenticateeB.GenerateChallengeAB.is_generatable AND
c.authenticateeA.Generate ClaimAB.is_generatable AND
c.authenticateeB.Generate ClaimBA.is_generatable AND
c.authenticateeA.Validate ClaimBA.is_validatable
c.authenticateeB.Validate ClaimAB.is_validatable
Pre:
c.authenticateeA.secretA.is_assigned AND
c.authenticateeB.secretB.is_assigned }

Figure 40: UML 2.0 collaboration diagram for mutual three-pass authentication, de-
tailed view

A detailed view of the collaboration diagram for the mutual three-pass authen-
tication pattern is given in Fig. 40. The properties of theauthenticateeA role
andauthenticateeB role are defined byclaimantA andclaimantB. This
view shows the goal for the collaboration, defined as a boolean in OCL. The goal
for the pattern is that the instance playing theauthenticateeA role is authen-

60 C.3 Mutual authentication patterns

ticated (by the instance playing theauthenticateeB role) and that the instance
playing theauthenticateeB role is authenticated (by the instance playing the
authenticateeA role).

sd ClaimAB

ClaimAB_signal

sd MThreePassAuthenticate

 ref ClaimAB

authenticateeA :
claimantA

authenticateeB :
claimantB

Generate
ClaimAB

Validate
ClaimAB

authenticateeA :
claimantA

authenticateeB :
claimantB

sd ClaimBA

ClaimBA_signal

authenticateeA
: claimantA

authenticateeB :
claimantB

ref

ChallengeAB

Generate
ChallengeAB

sd ChallengeAB

ChallengeAB_signal

authenticateeA :
claimantA

authenticateeB :
claimantB

ref ClaimBA

alt

Mutually_authenticated
Authct(authenticateA) and Authct(authenticateB)

{ goal = true }

NotAuthenticated

[ClaimBA Valid]

Generate
ClaimBA

Validate
ClaimBA

alt [ClaimAB NOTValid]

NotAuthenticated

[ClaimAB Valid]

[ClaimBA NOT Valid]
NOk_signal

Ok_signal

NOkAB_signal

Figure 41: UML 2.0 interaction diagram for MThreePass Authenticate

The interaction sequences for the mutual three-pass challenge response pattern are
given in Fig. 41. As for the other authentication patterns wehave discussed above, the
interactions diagram illustrates how we employ UML 2.0 interaction uses to enable re-
use and flexibility. TheChallengeAB, ClaimAB, andClaimBA interactions uses
referenced allow use of the same pattern to specify any mutual three-pass authentica-
tion pattern.

The semantic connector for the mutual three-pass authentication pattern is given
in Fig. 42, defining the visible interface behavior and goalsof the collaboration as ex-
plained in Sect. 4.1.2. The goal for the collaboration is that the instance playing the
authenticateeA role is authenticated by the instance playing theauthenti-
cateeB role, and that the instance playing theauthenticateeB role is authentic-

C.3 Mutual authentication patterns 61

MThreePassAuthenticate : claimantA MThreePassAuthenticate : claimantB

idle
idle

 Authct(authenticateB)

Generate
ClaimAB

Generate
ClaimBA

waiting
Validate
ClaimAB

NotAuthenticated

idle

P1 P2

ClaimAB
ClaimAB

Ok

NOk

Authct(authenticateA) NotAuthenticated

idle

Ok NOk

[ClaimAB valid]

NOk

[ClaimAB NOTValid]

waiting

Validate
ClaimBA

ClaimBA

ClaimBA

NOk

[ClaimBA
valid] [ClaimBA

NOTValid]

Generate
ChallengeAB

ChallengeAB

waiting

ChallengeAB

MThreePassAuthenticate

authenticateeA :
claimantA

authenticateeB :
claimantB

{def: goal : Boolean =
authenticateeA.Authct(authenticateeB) AND
authenticateeB.Authct(authenticateeA)}

Figure 42: UML 2.0 collaboration and semantic interfaces for MThreePass
Authenticate

ated by the instance playing theauthenticateeA role.

{ Context c:MThreePassAuthenticate
Inv:
c.authenticateeA.Generate ClaimAB.is_generatable AND
c.authenticateeA.Validate ClaimBA.is_validatable
Pre:
c.authenticateeA.secretA.is_assigned
 }

{ Context c:MThreePassAuthenticate
Inv:
c.authenticateeB.GenerateChallengeAB.is_generatable AND
c.authenticateeB.Generate ClaimBA.is_generatable AND
c.authenticateeB.Validate ClaimAB.is_validatable
Pre:
c.authenticateeB.secretB.is_assigned
}

Figure 43: Role-binding policies for theMThreePassAuthenticate pattern

Fig. 43 provides examples of the condition parts of role-binding policies for the
genericMThreePassAuthenticatepattern. The condition part of the role-binding
policy for the instance playing theauthenticateeA role states that the instance
must possess asecretA, and it must have the capacity to generateClaimAB, which
will be sent to the instance playing theauthenticateeB role, and it must be able
to validateClaimBA. If these conditions are satisfied, then the instance can play the

62 C.3 Mutual authentication patterns

authenticateeA role. Similarly, the condition part of the role-binding policy for
the instance playing theauthenticateeB role states that the instance must pos-
sess asecretB, and it must have the capacity to generate aChallengeAB, which
will be sent to the instance playing theauthenticateeA role, and be able to val-
idate the ClaimAB received from the instance playing theauthenticateeA role.
The instance must also be able to generate theClaimBA, which is sent to the instance
playing theauthenticateeA role. If these conditions are fulfilled, then the instance
can play theauthenticateeB role.

D Authorization patterns 63

D Authorization patterns

This appendix presents the full classification of authorization patterns.

In order to describe any authorization pattern, it is important to recognize that any
authorization pattern requires that authentication has been performed before any au-
thorizations may be granted. Authentication and authorization patterns are combined
to describe how access rights are granted and are thus essential to access control. Ad-
ditionally, an access control model is required for access rights administration. Well
known examples of access control models are e.g., discretionary access control, man-
datory access control, role-based access control, and others [12].

In general, systems are deployed with a wide range of applications and services
each having different authentication and authorization requirements. Authentication
and authorization can be designed and deployed for each service separately, on an
individual basis. Each authentication and authorization solution can be deployed and
maintained separately and independently for each service,however, this leads to the
development of parallel solutions, which would not be cost efficient if a single service
provider offers a range of different services. In the case that several services are being
offered, it is desirable to manage authorizations and to some extent authentication also,
in a centralized manner.

In service composition, we require the possibility to specify authentication require-
ments and authorization requirements depending on the individual services. Central-
ized management of authorizations is important in the environment of dynamic com-
position of services in order to manage access rights efficiently to enable authorization
for use in a wide range of service collaborations. We therefore consider authorization
patterns that allow for handling of authorizations in a centralized manner.

Although there are many authorization management solutions for managing author-
izations these have essentially been classified as two basicauthentication and authoriz-
ation architectures [12]:

• User Pull: Authentication is performed by an access server, which also issues
authorizations to the user. The user then presents authorizations directly to the
service.

• Server Pull: The service centralizes information about user entity authorizations
on an access server. The service authenticates the user. When the user attempts
to access the service, the service queries the access serverto determine whether
the user is authorized.

The user-pull and server-pull authorization architectures were first identified for
application to web-based solutions in [34], and extended in[12] for application to
any application or service that a user interacts with such asemail-servers, Web sites,
services or any system that requires authentication and authorization.

These architectures provide a means for handling authorizations in a centralized
manner. The role of access server is played for e.g. issuing and storing authorizations
associated with the user role. How the authorizations are activated and administered is
described by the access control model to be deployed such as role-based access control
(RBAC).

64 D.1 Userpull

D.1 Userpull

The UML 2.0 collaboration structure diagram for the User Pull authentication and au-
thorization architecture is given in Fig. 44. The collaboration diagram shows that the
AccessServer role collaborates with theUser role, and theUser role collabor-
ates with theService role. Authentication is performed by the instance playing the
AccessServer role, which also issues authorizations and optionally authentication
information to the instance playing theUser role. The instance playing theUser role
presents authorizations directly to the instance playing theService role. In some
specializations of this pattern the service may additionally require that the user authen-
ticates to the service.

User

Access
Server

Service

UserPull

Figure 44: UserPull patterns

In order to facilitate composition of AA-patterns and services, we model the beha-
vior required by theService role in theUserPull collaboration separately from
the ”pure” service behavior. By doing this, we avoid modifying the ”pure” service
role. We therefore rename theService role in UserPull authentication and au-
thorization patterns, naming it theServiceAccessFilter. This participant, the
ServiceAccessFilter, between theService role and theUser, performs the
checking of authorizations to determine if the instance playing theUser role is al-
lowed to access the service. In this way, incrementality canbe achieved by allowing
services to be defined and developed separately, at different times independently and
then composed with AA-patterns.

We model the User Pull authentication and authorization patterns as a UML 2.0
collaboration that defines three collaborating participants that interact to implement the
user pull authentication and authorization behavior: these are theUser, AccessSe-
rver, andServiceAccessFilter roles. Application of certain AA-patterns to
the User Pull services is represented by three collaboration uses as illustrated in Fig. 45
and explained in the following:

• TwoPartyAuthenticate: This pattern, which we have modelled as a UML
2.0 collaboration in Fig. 22, is shown in Fig. 45 bound to theUser andAccess-
Server roles. Here, theauthenticatee role is bound to theUser role, and
theauthorisor role is bound to theAccessServer role. For the instanti-
ation of this pattern, it is expected that an appropriate twoparty authentication
pattern is chosen and applied from the set of authenticationpatterns described in
Sect. C.

• AuthsActivation: This pattern consists of a request by the instance play-
ing theauthsrequestor role for authorizations to be activated and sent to the

D.1 Userpull 65

User

Access Server

Service Access
Filter

UAs1:TwoParty

Authentic
ate

authenticator

authenticatee

UAs2
:A

uth
s

Act
iva

tio
n

auths
requestor

auths
granter

USaf2:Checking
Access Rights

authorisorauthorisee

UserPull

Figure 45: UserPull patterns modified

instance playing theauthsrequestor role. The authorizations govern which
services the user is allowed to access. The way in which the authorizations are
activated depends on the access control model that is used. This pattern is in-
voked after the collaborationTwoPartyAuthenticate has reached its goal
of e.g., unilaterally authenticating theauthenticatee. In theUserPull
collaboration,AuthsActivation is shown bound to theUser andAccess-
Server roles.

• CheckingAccessRights: This pattern is invoked whenever the instance
playing theUser role requests access to a service. The instance playing the
authoriser role then checks the authorizations to establish whether the in-
stance playing theUser role shall be granted access to the service. In the
User Pull collaboration,Checking Access Rights is shown bound to
theUser andServiceAccessFilter roles.

sd UserPull

User Access Server
Service Access

Filter

ref

USaf2.CheckingAccessRights

ref

UAs2.AuthsActivation

ref

UAs1.UniTwoPassAuthenticate

Figure 46: Composition of AA-patterns in UserPull, interactions overview

A UML2.0 interactions overview showing the composition of the instances of the

66 D.1 Userpull

<<Collaboration>>
UniTwoPassAuthenticate

authenticatee :
responder

authenticator :
challenger

sd
UniTwoPassAuthenticate

{def: goal : Boolean =
authenticatee.Unilaterally_Authenticated}

<<Collaboration>>
AuthsActivation

auths requestor :
Aatype

auths granter
:Agtype

sd
AuthsActivation

{def: goal : Boolean = auths requestor.Auths_Activated}

<<Collaboration>>
CheckingAccessRights

authorisee :
ARtype

authorisor :
CRtype

sd
CheckingAccessRights

{def: goal : Boolean = authorisee.Auths_checked}

<<Collaboration>>
UserPull

User

Access
Server

sd Authentication and Authorization

{def: goal : Boolean = User.AA_ServiceAccess}

sd CheckingAccess

Service
Access Filter

U A s 1
:

U n i T w o P a s
s

A u t h e n
t i c

a t e

 U A s 2
: A

u t h s

A c t i
v a

t i o
n

USaf2:Checking
AccessRights

authenticatee

authenticator

auths
requestor

auths
granter

authorisee authorisor

sd Authentication and Authorization

User Access
Server

ref UAs1.UniTwoPassAuthenticate

ref UAs2.AuthsActivation

sd CheckingAccess

User ServiceAccess
Filter

ref USaf2.CheckingAccessRights

Figure 47: Composition of AA-patterns in UserPull

interactions that describe the UserPull patterns behavioris given in Fig. 46. This inter-
actions overview shows the sequencing of the interactions,however, it doesn’t provide
the structural information that is shown in Fig. 47.

Fig. 47 shows the three collaborations involved in the User Pull pattern along with
references to the UML2.0 interactions for modelling the behavior associated with each
of the collaborations. In this figure, collaboration uses are employed to make the inter-
actions of the collaborations available in theUserPull collaboration. The collabor-
ation use ofUAs1 of UniTwoPassAuthenticate binds theauthenticatee
andauthenticator roles toUser andAccessServer respectively. Similarly,
the collaboration useUAs2 of Auths Activation binds theauthsrequestor
andauthsgranter roles toUser andAccess Server respectively. The col-
laboration useUSaf2 of Checkingaccessrights binds theauthorisee and
authorisor roles to theUser andServiceAccessFilter roles respectively.
Goals expressions are defined for each of the collaborationsseparately, as well as for
the composition of these inUserPull. Dynamic linking of the interactions of the
structural parts can be expressed using composition policies as explained in Section 6.

D.2 Serverpull 67

D.2 Serverpull

User

Access
Server

Service

ServerPull

Figure 48: ServerPull patterns

The UML 2.0 collaboration structure diagram for the Server Pull authentication
and authorization architecture is given in Fig. 48.

User

Access Server

ServiceAccess
Filter

authenticatorauthenticatee

service access
requestor service access

granter

authorisor

authorisee

ServerPull

SSaf2:Checking

Access Rights

SAs2:Service
AccessRequest

SAs1:TwoParty
Authenticate

Figure 49: ServerPull patterns

Fig. 49 shows theServerPull authentication and authorization services mod-
elled as a UML 2.0 collaboration that defines three collaborating participants that inter-
act to implement theServerPull authentication and authorization behavior: these
are theUser, AccessServer, andServiceAccessFilter roles. Application
of certain AA-patterns to theServerPull services is represented by three collabor-
ation uses as illustrated in Fig. 49 and explained in the following:

• TwoPartyAuthenticate: This pattern, which we have modelled as a UML
2.0 collaboration in Fig. 22, is shown in Fig. 49 bound to theUser andService-
AccessFilter roles. Here, theauthenticatee role is bound to theUser
role, and theauthorisor role is bound to theServiceAccessFilter
role. For the instantiation of this pattern, it is expected that an appropriate two
party authentication pattern is chosen and applied as described in Sect. 3.1. and
further explained in Sect. 4.

• ServiceAccessRequest: This pattern consists of a request by the in-
stance playing theservice access requestor role for access to the ser-
vice. This pattern is invoked after the collaborationTwoPartyAuthenti-

68 D.2 Serverpull

cate has reached its goal of e.g., unilaterally authenticating theauthenti-
catee. In theServerPull collaboration,ServiceAccessRequest is
shown bound to theUser andServiceAccessFilter roles.

• CheckingAccessRights: This pattern is invoked whenever the instance
playing theUser role requests access to a service. TheAccessServer,
which is the instance playing theauthoriser role checks the authorizations
to establish whether the instance playing theUser role shall be granted access to
the service. In theServerPull collaboration,CheckingAccessRights
is shown bound to theServiceAccessFilter roles andAccessServer
roles.

In order to facilitate composition of the authentication and authorization patterns
used inServerPullwith services, we require that the behavior defined by theSer-
vice role in theServerPull collaboration is modelled separately from the ”pure”
service behavior. The separation is desirable in order to achieve incremental service de-
velopment. We therefore rename theService role of Fig. 48 toServiceAccess-
Filter role so that we can distinguish this role behavior from the ”pure” service roles
involved in a collaboration of AA-patterns and service roles.

sd ServerPull

User Access Server
Service Access

Filter

ref

SAs2.ServiceAccessRequest

ref

SAs1.UniTwoPassAuthenticate

ref

SSaf1.CheckingAccessRights

Figure 50: Composition of AA-patterns in ServerPull, interactions

A UML2.0 interactions overview showing the composition of the instances of the
interactions that describe the UserPull patterns behavioris given in Fig. 50. The inter-
actions overview shows the sequencing of the interactions,however, it doesn’t provide
the structural information that is shown in Fig. 51.

Fig. 51 shows the three collaborations involved in the Server Pull pattern along with
references to the UML2.0 interactions for modelling the behavior associated with each
of the collaborations. In this figure, collaboration uses are employed to make the inter-
actions of the collaborations available in theUserPull collaboration. The collabor-
ation use ofSAs1 of UniTwoPassAuthenticate binds theauthenticatee
andauthenticator roles toUser andServiceAccessFilter respectively.
Similarly, the collaboration useSAs2 of ServiceAccessRequest binds theser-
viceaccesssrequestor andserviceaccessgranter roles toUser and

D.3 Access control models 69

<<Collaboration>>
UniTwoPassAuthenticate

authenticatee :
responder

authenticator :
challenger

sd
UniTwoPassAuthenticate

{def: goal : Boolean =
authenticatee.Unilaterally_Authenticated}

<<Collaboration>>
ServiceAccessRequest

service access
requestor : SARtype

service access
granter :SAGtype

sd
ServiceAccessRequest

{def: goal : Boolean = service access
requestor.Svce_requested}

<<Collaboration>>
CheckingAccessRights

authorisee :
ARtype

authorisor :
CRtype

sd
CheckingAccessRights

{def: goal : Boolean = authorisee.Auths_checked}

<<Collaboration>>
ServerPull

User

Access
Server

sd Authentication and Authorization

{def: goal : Boolean = User.AA_ServiceAccess}

sd CheckingAccess

Service
Access Filter

SAs1:
UniTwoPass
Authenticate

SAs2:Service
AccessRequest

USaf2:Checking

AccessRights

authenticatee authenticator

service access
requestor

service access
granter

authorisee

authorisor

sd Authentication and Authorization

User ServiceAcces
s Filter

ref SAs1.UniTwoPassAuthenticate

ref SAs2.ServiceAccessRequest

sd CheckingAccess

ServiceAccess
Filter Access Server

ref SSafs.CheckingAccessRights

Figure 51: Composition of AA-patterns in ServerPull

ServiceAccessFilter respectively. The collaboration useUSaf2 of Checking-
AccessRights binds theauthorisee andauthorisor roles to theService-
AccessFilter andAccessServer roles respectively. Goals expressions are
defined for each of the collaborations separately, as well asfor the composition of
these inUserPull. Dynamic linking of the interactions of the structural parts can
be expressed using composition policies as explained in Section 5. above in the main
body of this report.

D.3 Access control models

Although not shown in the authentication and authorizationpatterns presented in Ap-
pendix C and Appendix D, an access control model is needed to administer access
rights (permissions) and enforce access control policies.In this section we briefly de-
scribe the well known access control models, focusing on therole-based access control
model (RBAC) and then we explain the interfaces between a RBAC infrastructure and
theUserPull andServerPull architectures, respectively. A detailed overview of
different access control models is given in [56].

70 D.3 Access control models

Several models for access control have evolved such as discretionary access control
(DAC), mandatory access control (MAC), and others [12]. Role-Based Access Control
(RBAC) has emerged as a scalable alternative, and has been the focus area for recent
research on access control resulting in numerous model variants. As explained above
in Sect. 4.2 of this report, we assume that a RBAC model is usedwith the AA-patterns.

There are five administrative elements in the basic RBAC model: (1) Users, (2)
Roles, and (3) Permissions. Permissions are composed of (4)operations applied to (5)
objects. Fig. 52 shows the basic RBAC conceptual model. In RBAC, users are assigned
to roles based on competencies, authority and responsibilities. Permissions, an abstract
concept that refers to the arbitrary binding of computer operations and resource objects,
are assigned to roles. A permission is a an approval of a particular mode of access to
one or more objects in the system or some privilege to carry out specified actions [1].
An object is any protected resource. In RBAC, users are not directly granted permis-
sions to perform operations on an individual basis. Instead, permissions are assigned to
roles dynamically as an organisation changes and evolves. Auser may establish several
sessions simultaneously, and each session may have a different combination of active
roles [12].

Session

User Role Permission

establishes

activates

Assigned to Assigned to

1..*

1..*

*

1..*

1

*

1
0..*

* *

Object

* *

operation
Applied to* *

Figure 52: Role Based Access Control Model

The notions of subject and objects are used in RBAC relationships. A subject is an
active entity in the system, e.g., a process or task that operates on behalf of the user
within the computer environment. In our work on service composition in a service ori-
ented architecture, we use the notion of a session between collaborating roles (service
session) instead of subject as is common in the RBAC models.

There are two stages to acquiring permissions in a RBAC access control system.
The first stage is authentication of the user (we have modelled this as the two party
authentication pattern). The second stage is activation ofroles. Once roles are acquired,
permissions (access authorizations) may be specified for roles based on credentials,
prerequisite roles, and policy. Authorization constraints are an important part of RBAC.
Authorization constraints implement the access control policy for access to a service
and include preconditions that must be satisfied before access to a service may be
granted. The structure and form of the authorizations depends on on which RBAC
model is to be deployed.

D.3 Access control models 71

For applying theUserPull patterns, shown in Fig. 45, the instance playing the
AccessServer role must have an interface to the RBAC infrastructure in order
to obtain user authorizations which are distributed to the instance playing theUser
role when theAuths activation collaboration executes. The instance playing
theServiceAccessFilter role interfaces with the RBAC infrastructure to ob-
tain the access control policies that are to be enforced by the instance playing the
authorisor role when theCheckingAccessRights collaboration executes.

For applying theServerPull patterns, shown in Fig. 49, the instance playing
the AccessServer role must have an interface to the RBAC infrastructure in or-
der to obtain user authorizations status. The instance playing theAccessServer
role also interfaces with the RBAC infrastructure (not shown in our UML 2.0 col-
laborations) to obtain the access control policies that areto be enforced when the
CheckingAccessRights collaboration executes.

