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Towards Computing Phase Portrait Objetsof Polygonal Hybrid Systems on SurfaesGerardo ShneiderDepartment of Informatis, University of OsloPO Box 1080 Blindern, N-0316 Oslo, NorwayE-mail: {gerardo at i�.uio.no}AbstratPolygonal hybrid systems (SPDIs) are a sublass of hybrid systemswhose dynamis is de�ned by onstant di�erential inlusions. We ande�ne SPDIs on surfaes, obtaining a new lass of hybrid systems(SPDI2m). In this paper we de�ne and ompute various SPDI2m'sphase portrait objets: invariane, ontrollability and viability kernelsand separatrix sets.1 IntrodutionAn interesting and still deidable (w.r.t reahability) lass of hybrid systemsis the so-alled Polygonal Hybrid System (SPDI for short, [ASY01℄) whihis a sublass of hybrid systems on the plane whose dynamis is de�ned byonstant di�erential inlusions. SPDIs are a generalization of PCDs (de-terministi systems with Piee-wise Constant Derivatives) for whih it hasbeen shown that the reahability problem is deidable for the planar ase[MP93℄ but undeidable for three dimensions [AMP95℄. SPDIs may be de-�ned on surfaes (or two dimensional manifolds) giving rise to a new lassof hybrid systems, denoted SPDI2m, for whih the reahability problem isan open question [AS02℄. One way of providing useful information aboutthe qualitative behavior, inluding reahability issues, of a hybrid system ingeneral and of SPDI2m in partiular, is through the study of its phase por-trait. Some works along these lines are [ASY02℄, [Aub01℄, [DV95℄, [KV95℄,[KdB01℄, [MS00℄ and [SJSL00℄. In partiular, and losely related to this pa-per, in [MS00℄ it is shown how to build the phase portrait of PCDs while1



in [ASY02℄ algorithms are given for omputing viability and ontrollabilitykernels for SPDIs. Moreover, a haraterization of viability and invarianekernels was given by [ALQ+01℄ for impulsive di�erential inlusions.An invariant set is a set of initial points of trajetories whih keep neessarilyrotating in a yle forever. A set is a viability domain if for every point in theset, there is at least one trajetory whih keep in the set forever. A set suhthat any two points are reahable one from the other is alled ontrollable.Given a yle, the greatest suh sets are alled invariane, viability and on-trollability kernels, respetively. A separatrix is a urve whih bisets a setinto two subsets A and B suh that no trajetory starting in A an reah apoint in B and vie-versa.In this paper we give deision proedures for omputing the invariane, on-trollability and viability kernels for SPDI2ms. Moreover, we de�ne separatrixsets, whih are losed sets of points disseting the SPDI2m into at least threedisjoint sets suh that two of them are non-onneted w.r.t. reahability.We show how to ompute suh sets. Even though the omputation of allthe above SPDI2m's phase portrait objets are ontributions of this work, wemake a qualitative di�erene between their originality. While the algorithmsfor omputing invariane, ontrollability and viability kernels for SPDI2msare straightforwardly obtained from the given algorithms for the orrespond-ing SPDI's kernels, it is not the ase with the omputation of separatrix sets.Indeed, the latter have not been omputed for SPDIs.The paper is organized as follows. In next setion we give some preliminaries,providing useful notation and de�nition and realling the de�nition of SPDI,
SPDI2m and of some topologial notions needed. In Setion 3 we de�ne andompute invariane, ontrollability and viability kernels for SPDI2ms whilein Setion 4 we show how to obtain their separatrix sets. We onlude in thelast setion.2 Preliminaries2.1 SPDILet a = (a1, a2),x = (x1, x2) ∈ R

2 and α, β ∈ R. The inner produt of twovetors a = (a1, a2) and x = (x1, x2) is de�ned as a · x = a1x1 + a2x2. Wedenote by x̂ the vetor (x2,−x1) obtained from x by rotating lokwise bythe angle π/2. Notie that x · x̂ = 0.An angle ∠
b

a
on the plane, de�ned by two non-zero vetors a,b is the set ofall positive linear ombinations x = α a+β b, with α, β ≥ 0, and α+β > 0.We an always assume that b is situated in the ounter-lokwise diretion2



from a.A polygonal di�erential inlusion system (SPDI) is de�ned by giving a �nitepartition P of the plane into onvex polygonal sets (alled regions), andassoiating with eah P ∈ P a ouple of vetors aP and bP . Let φ(P ) = ∠
bP
aP
,we have that for eah x ∈ P , ẋ ∈ φ(P ).Let E(P ) be the set of edges of P . We say that e ∈ E(P ) is an entry of P iffor all x ∈ e and for all c ∈ φ(P ), x + cǫ ∈ P for some ǫ > 0. We say that

e is an exit of P if the same ondition holds for some ǫ < 0. We denote byIn(P ) ⊆ E(P ) the set of all entries of P and by Out(P ) ⊆ E(P ) the set ofall exits of P .Assumption 1. All the edges in E(P ) are either entries or exits, that is,
E(P ) = In(P ) ∪Out(P ).A trajetory segment of an SPDI is a ontinuous funtion ξ : [0, T ] → R

2whih is smooth everywhere exept in a disrete set of points, and suh thatfor all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). Thesignature, denoted Sig(ξ), is the ordered sequene of edges traversed by thetrajetory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If
T = ∞, a trajetory segment is alled a trajetory.Assumption 2. We will only onsider trajetories with in�nite signatures.2.1.1 Suessors and predeessorsGiven an SPDI, we �x a one-dimensional oordinate system on eah edge torepresent points laying on edges. For notational onveniene, we will use e todenote both the edge and its one-dimensional representation. Aordingly,we write x ∈ e or x ∈ e, to mean �point x in edge e with oordinate x in theone-dimensional oordinate system of e�. The same onvention is applied tosets of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e)and to trajetories (e.g., �ξ starting in x� or �ξ starting in x�).Now, let P ∈ P, e ∈ In(P ) and e′ ∈ Out(P ). For I ⊆ e, Succee′(I) isthe set of all points in e′ reahable from some point in I by a trajetorysegment ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Given
I = [l, u], Succee′(I) = F (I ∩ S)∩ J , where S and J are intervals, F ([l, u]) =
〈fl(l), fu(u)〉 and fl and fu are a�ne funtions (a funtion f : R → R is a�nei� f(x) = ax + b with a > 0).For I ⊆ e′, Preee′(I) is the set of points in e that an reah a point in I by atrajetory segment in P . We have that: Preee′ = Succ−1

ee′ and Preσ = Succ−1

σ .
3



2.1.2 Qualitative analysis of simple edge-ylesLet σ = e1 · · · eke1 be a simple edge-yle, i.e., ei 6= ej for all 1 ≤ i 6= j ≤ k.Let Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉.Assumption 3. None of the two funtions fl, fu is the identity.Let l∗ and u∗ be the �x-points1 of fl and fu, respetively, and S∩J = 〈L,U〉.It an be shown that a simple yle is of one of the following types:STAY. The yle is not abandoned neither by the leftmost nor the rightmosttrajetory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost trajetory exits the yle through the left (onsequentlythe leftmost one also exits) or the leftmost trajetory exits the ylethrough the right (onsequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost trajetory exits the yle through the left andthe rightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost trajetory exits the yle (through the left) butthe rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .EXIT-RIGHT. The rightmost trajetory exits the yle (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.The lassi�ation above gives us some information about the qualitative be-havior of trajetories. Any trajetory that enters a yle of type DIE willeventually quit it after a �nite number of turns. If the yle is of type STAY,all trajetories that happen to enter it will keep turning inside it forever. Inall other ases, some trajetories will turn for a while and then exit, and oth-ers will ontinue turning forever. This information is very useful for solvingthe reahability problem for SPDIs.The above result does not allow us to diretly answer other questions aboutthe behavior of the SPDI suh as determine for a given point (or set of points)whether any trajetory (if it exists) starting in the point remains in the yleforever. In order to do this, we need to further study the properties of thesystem around simple edge-yles and in partiular STAY yles. See [Sh04℄for some important properties of STAY yles.A more detailed presentation of SPDIs and their properties may be found in[ASY01℄ and [Sh02℄.1The �x-point x∗ is omputed by solving a linear equation f(x∗) = x∗, whih an be�nite or in�nite. 4
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Figure 1: Representations of a Torus: (a) a surfae in R
3; (b) a square withidenti�ed edges; () a triangulated surfae.2.2 Surfaes (Two Dimensional Manifolds)All the (topologial) de�nitions, examples and results of this setion followthe ombinatorial method, based on [Hen79℄.A topologial spae is triangulable if it an be obtained from a set of trianglesby the identi�ation of edges and vertexes subjet to the restrition that anytwo triangles are identi�ed either along a single edge or at a single vertex,or are ompletely disjoint. The identi�ation should be done via an a�nebijetion.A surfae (or 2-dim manifold) is a triangulable spae for whih in addition:(1) eah edge is identi�ed with exatly one other edge; and (2) the trianglesidenti�ed at eah vertex an always be arranged in a yle T1, . . . , Tk, T1 sothat adjaent triangles are identi�ed along an edge. Typial examples arethe torus (see Fig. 1), the sphere, the Klein bottle and the projetive plane(see Fig. 2).A surfae with boundary is a topologial spae obtained by identifying edgesand vertexes of a set of triangles as for surfaes exept that ertain edges maynot be identi�ed with another edge. These edges, whih violate the de�nitionof a surfae, are alled boundary edges, and their vertexes, whih also violatethe de�nition of surfae, are alled boundary vertexes. Typial examples ofsurfaes with boundary are the ylinder and the Möbi's strip. Indeed, theylinder is equivalent to a sphere with two disks ut out.We state now an important theorem in the topologial theory of surfaes([Hen79, p.122℄; see also [Xu01℄):Theorem 1 (Classi�ation theorem). • Every ompat, onneted sur-fae is topologially equivalent to a sphere, or a onneted sum of tori2,2The onneted sum onstrution onnets two surfaes with a tube (after utting outholes in the surfaes where the tubes are attahed).5
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• Every ompat, onneted surfae with boundary is equivalent to eithera sphere, or a onneted sum of tori, or a onneted sum of projetiveplanes, in any ase with some �nite number of disks removed.The sphere and a onneted sum of tori are alled orientable, while the (on-neted sum of) projetive planes are unorientable surfaes.Example 1. The Klein bottle (2-(b)) is the onneted sum of two projetiveplanes while the onneted sum of two Möbius Strip is a ylinder.When representing a surfae in a plane (as in Fig. 1-()), some identi�ededges (vertexes) may be put together while others need to be identi�edthrough their name and their orientation (in the ase of edges). In Fig.1-(), vertex U, V,W and X, as well as the edges they de�ne, are unique andtrivially identi�ed (with themselves). However, S, T and Q,R are identi�edaording to the orientation of d1 and d2 respetively. We all suh edgesand vertexes, direted edges and direted vertexes respetively.Even though our result an be extended to surfaes with boundaries, we willrestrit our analysis only to surfaes without boundaries.Assumption 4. We will onsider only surfaes without boundaries.2.3 Jordan urve theorem for surfaesBy the Classi�ation Theorem we know that it su�es to ompute the phaseportrait objets for a sphere, a onneted sum of tori and a onneted sumof projetive planes. 6
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Figure 3: (a) Disjoint losed urves whih are not Jordan urves on a Kleinbottle; (b) Non-Jordan urves on a projetive plane; () Jordan urves on aprojetive plane.Before showing how to ompute the kernels and separatrix sets, we reallhere some needed de�nitions and results. We reall �rst the Jordan CurveTheorem in an informal way: �A simple losed urve in the plane dividesthe plane in exatly two parts, one bounded (the inside) and one unbounded(the outside). Furthermore the urve is the omplete frontier of both parts�.Notie that the Jordan urve theorem for the plane holds for the sphere.However, the theorem is not true for the other losed surfaes: there aresimple losed urves whih do not disonnet the surfae. The appropriategeneralization of the Jordan urve theorem for arbitrary losed surfaes isgiven below. It is stated in terms of genus of a surfae, a onept whih wede�ne as follows: A sphere is de�ned to have genus 0, the onneted sum of gtori is de�ned to have genus g and the onneted sum of g projetive planesis de�ned to have genus g − 1 [Fie℄.Theorem 2 (Jordan Curve Theorem for Surfaes). The maximum numberof disjoint simple losed urves whih an be ut from an orientable surfaeof genus g without disonneting it is g. The maximum number of disjointsimple losed urves whih an be ut from an unorientable surfae of genus
g without disonneting it is g + 1.Thus, for a sphere, every losed urve disonnet it, whereas not every losedurve disonnets a torus or a projetive plane; we may need two losedurves. Closed urves disonneting a surfae are alled Jordan urves.Example 2. Fig. 3-(a) depits a Klein bottle with two typial disjoint losedurves whih are not Jordan urves. In Fig. 3-(b) none of C1 nor C2 areJordan urves on a projetive plane. In Fig. 3-() all of C1, C2 and C3are Jordan urves. In Fig. 4, none of the urves C1 nor C2 are Jordan7
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R3Figure 5: A SPDI2m on the torus: three views.urves. However, the set {C1, C2} (as well as the urve C) disonnets thesurfae.Jordan urves for surfaes may be haraterized using the notion of linkingnumber and homology yles. For our purposes, it su�es to know whihlosed urves are (not) Jordan urves w.r.t. some onept related to thede�nition of hybrid systems (i.e. the urves ontaining points of a diretededge; see next Setion).2.4 SPDI2m: SPDIs on SurfaesTo de�ne an SPDI on a triangulated surfae M, an SPDI should be de�nedon eah of its triangles. We all this lass of systems SPDI on surfaes(SPDI2m).In Fig. 5 we de�ne an SPDI on a torus and show how to represent it as afamily of SPDIs on triangles.The notion of suessor, predeessor as well as the lassi�ation of simpleyles given for SPDIs in Setion 2.1 hold for SPDI2ms. One di�erene be-tween simple yles of both hybrid systems is that in SPDI2ms they may have8



the ourrene of direted edges. This fat does not hange the de�nition ofsimple yle nor the above lassi�ation, however, it has a deisive in�ueneon the deidability of the reahability problem.When de�ning an SPDI on a surfae, direted edges are partitioned intointervals, eah orresponding to a di�erent region. We will all the diretededges of the original surfae M-direted edges while the term �direted edge�will be used for the SPDI2ms' ones. Eah direted edge e is a subinterval ofonly one M-direted edge d and this is denoted by e ⊆ d.3 Kernels ComputationWe state here how to ompute the invariane, ontrollability and viabilitykernels. However, proofs are omitted sine they are similar as for SPDIs, withthe additional feature that simple yles in a SPDI2m may ontain diretededges3. The details of proofs for omputing viability and ontrollability ker-nels of SPDIs an be found in [ASY02℄ and in [Sh04℄ for invariane kernels.In what follows, let K be a subset of a surfae M and given a yli signature
σ, let Kσ be de�ned as follows:

Kσ =
k⋃

i=1

(int(Pi) ∪ ei) (1)where Pi is suh that ei−1 ∈ In(Pi), ei ∈ Out(Pi) and int(Pi) is Pi's interior.3.1 Viability KernelWe reall the de�nition of viability kernel.De�nition 1. A trajetory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. Kis a viability domain if for every x ∈ K, there exists at least one trajetory
ξ, with ξ(0) = x, whih is viable in K. The viability kernel of K, denoted
Viab(K), is the largest viability domain ontained in K.For I ⊆ e1 let us de�ne Preσ(I) as the set of all x ∈ M for whih there existsa trajetory segment ξ starting in x, that reahes some point in I, suh that
Sig(ξ) is a su�x of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonalsubset of the plane whih an be alulated using the following proedure.First de�ne3Indeed, the only di�erene in the proof is that sets, points, et are de�ned on Minstead of on R

2. 9



Pree(I) = {x | ∃ξ : [0, t] → M, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}and apply this operation k times: Preσ(I) =
⋃k

i=1
Preei

(Ii) with I1 = I,
Ik = Preek,e1

(I1) and Ii = Preei,ei+1
(Ii+1), for 2 ≤ i ≤ k − 1.The following result provides a non-iterative algorithmi proedure for om-puting the viability kernel of Kσ of an SPDI2m.Theorem 3. If σ is not DIE, Viab(Kσ) = Preσ(S), otherwise Viab(Kσ) =

∅.3.2 Controllability KernelWe say K is ontrollable if for any two points x and y in K there exists atrajetory segment ξ starting in x that reahes an arbitrarily small neighbor-hood of y without leaving K. More formally,De�nition 2. A set K is ontrollable i� ∀x,y ∈ K,∀δ > 0,∃ξ : [0, t] →
M, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). Theontrollability kernel of K, denoted Cntr(K), is the largest ontrollable subsetof K.For a given yli signature σ, let us de�ne CD(σ) as follows:

CD(σ) =





〈L,U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE (2)For I ⊆ e1 let us de�ne Succσ(I) as the set of all points y ∈ M for whih thereexists a trajetory segment ξ starting in some point x ∈ I, that reahes y,suh that Sig(ξ) is a pre�x of e1 . . . ek. The suessor Succσ(I) is a polygonalsubset of the plane whih an be omputed similarly to Preσ(I). De�ne

C(σ) = (Succσ ∩ Preσ)(CD(σ))We ompute the ontrollability kernel of Kσ as follows.Theorem 4. Cntr(Kσ) = C(σ).
10



3.3 Invariane KernelIn general, an invariant set is a set of points suh that for any point in theset, every trajetory starting in suh point remains in the set forever and theinvariane kernel is the largest of suh sets. In partiular, for SPDI, givena yli signature, an invariant set is a set of points whih keep rotating inthe yle forever and the invariane kernel is the largest of suh sets. Moreformally,De�nition 3. We say that a set K is invariant i� for any x ∈ K thereexists at least one trajetory starting in it and every trajetory starting in
x is viable in K. Given a set K, its largest invariant subset is alled theinvariane kernel of K and is denoted by Inv(Kσ).We need some preliminary de�nitions before stating the main theorem. Theextended ∀-predeessor of an output edge e of a region R is the set of points in
R suh that every trajetory segment starting in suh point reahes e withouttraversing any other edge. More formally, let R be a region and e be an edgein Out(R), then the e-extended ∀-predeessor of I, P̃ree(I) is de�ned as:
P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.It is easy to see that P̃reσ(I) is a polygonal subset of the plane whih anbe alulated using the following proedure. First ompute P̃reei

(I) for all
1 ≤ i ≤ k and then apply this operation k times: P̃reσ(I) =

⋃k

i=1
P̃reei

(Ii)with I1 = I, Ik = P̃reeke1
(I1) and Ii = P̃reeiei+1

(Ii+1), for 2 ≤ i ≤ k − 1. Weompute the invariane kernel of Kσ as follows.Theorem 5. If σ = e1 . . . ene1 is STAY then Inv(Kσ) = P̃reσ(P̃reσ(J)),otherwise Inv(Kσ) = ∅.4 Separatrix Sets ComputationLet M be a surfae with a dynamis φ de�ned on it. In this setion wede�ne the notion of separatrix sets, whih are subsets of M disseting thesurfae into two mutually non-reahable subsets. We relax the notion ofseparatrix obtaining semi-separatrix sets suh that some points in one setmay be reahable from the other set, but not vie-versa.We de�ne �rst the above notions for surfaes, independently of SPDI2ms.11



De�nition 4. Let K ⊆ M, a separatrix in K is a urve γ partitioning
K into three sets KA, KB and γ itself, suh that KA ∩ KB ∩ γ = ∅, K =
KA ∪ KB ∪ γ and the following onditions hold:1. For any point x0 ∈ KA and trajetory ξ, with ξ(0) = x0, there is no tsuh that ξ(t) ∈ KB; and2. For any point x0 ∈ KB and trajetory ξ, with ξ(0) = x0, there is no tsuh that ξ(t) ∈ KA.If only one of the above onditions holds then we say that the urve is asemi-separatrix.We an extend the above notion to sets. A separatrix set S of K is a set oflosed subsets Si (with 1 ≤ i ≤ 2) of K with the above separation property.We will denote by KA and KB the two subsets of K de�ned by a separatrixset S. The set of all the separatrix sets of a surfae M is denoted by Sep(M),or simply Sep if M is understood from the ontext.Notie that in some ases a separatrix set ontains only one set or urve whilein other ases, two are needed, whih follows diretly from the Jordan urvetheorem for surfaes.The above notions are extended to SPDI2ms straightforwardly.Now, let σ = e1 . . . ene1 be a simple yle, ∠

bi
ai
(1 ≤ i ≤ n) be the dynamis ofthe regions for whih ei is an entry edge and I = [l, u] and interval on edge e1.Remember that Succe1e2

(I) = F (I∩S)∩J , where F = [a1l+b1, a2u+b2]. Let
l be the vetor orresponding to the point on e1 with loal oordinates l and
l′ be the vetor orresponding to the point on e2 with loal oordinates F (l)(similarly, we de�ne u and u′ for F (u)). We de�ne �rst Succ

b1

e1
(I) = {x | l′ =

αx+ l, 0 < α < 1} and Succ
a1

e1
(I) = {x | u′ = αx+u, 0 < α < 1}. We extendthese de�nitions in a straight way to any (yli) signature σ = e1 . . . ene1,denoting them by Succ

b

σ(I) and Succ
a

σ(I), respetively; we an ompute themsimilarly as for Pre. Whenever applied to the �x-point I∗ = [l∗, u∗], we denote
Succ

b

σ(I∗) and Succ
a

σ(I∗) by ξl
σ and ξu

σ respetively. Intuitively, ξl
σ (ξu

σ) denotesthe piee-wise a�ne losed urve de�ned by the leftmost (rightmost) �x-point
l∗ (u∗). The inner of a simple yle σ is de�ned as follows: if σ is STAY,then the inner of σ is the set de�ned by the (possible non-onvex) polygondelimited by ξl

σ and ξu
σ ; if σ is EXIT-LEFT, then the inner of σ is the setde�ned by the non-onvex polygon delimited by Succ

b

σ([L,U ]) and ξu
σ ; if σis EXIT-RIGHT, then the inner of σ is the set de�ned by the non-onvexpolygon delimited by ξl

σ and Succ
a

σ([L,U ]); otherwise, the inner of σ is empty.12



Notie that the inner of a simple yle is non-empty only for those yles forwhih at least one of the leftmost and rightmost trajetory limit is in [L,U ].We show now how to identify separatrix sets for simple yles not involvingdireted edges.Theorem 6. Let M be an SPDI2m and σ = e1 . . . ene1 be a simple yle notinvolving direted edges, then the following hold:1. If σ is EXIT-RIGHT then {ξl
σ} is a semi-separatrix set (�ltering tra-jetories from �left� to �right�);2. If σ is EXIT-LEFT then {ξu

σ} is a semi-separatrix set (�ltering traje-tories from �right� to �left�);3. If σ is STAY, then set ontaining the invariane kernel Inv(Kσ) is aseparatrix set, i.e. {Inv(Kσ)} ∈ Sep.Proof. Notie that by hypothesis, there is no direted edge on σ whih meansthat the reasoning may be onduted as for the planar ase.1. By de�nition of EXIT-RIGHT, any trajetory is bounded to the left by
ξl
σ, whih is a piee-wise a�ne losed urve, partitioning M into threedisjoint sets: KB, the �right� part of ξl

σ (i.e. the subset ontainingthe inner of σ); KA, the �left� part of ξl
σ; and ξl

σ itself. By Jordan'stheorem, any trajetory may pass from KB to KA if and only if it ross
ξl
σ. However, by de�nition of EXIT-RIGHT, this is only possible from

KA to KB but not vie-versa. Hene {ξl
σ} is a semi-separatrix set.2. Symmetri to the previous ase.3. Follows diretly from the de�nition of invariane kernel, sine any tra-jetory arriving to it from the left annot leave Inv(Kσ) and heneno point on its right an be reahed. Similarly for trajetories enter-ing Inv(Kσ) from the right, no point on the left of Inv(Kσ) may bereahed.Notie that in the above result, omputing a (semi-) separatrix set dependsonly on one simple yle, and the orresponding algorithm is then reduedto �nd simple yles in the SPDI2m and heking whether it is STAY, EXIT-RIGHT or EXIT-LEFT. In fat, by the Jordan urve theorem for surfaes,the above result holds also for any surfae topologially equivalent to a sphere:13
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KAFigure 6: EXIT-LEFT and EXIT-RIGHT yles with Sg(d.ĉσ) = Sg(d.ĉσ′).Theorem 7. Let M be an SPDI de�ned on a (surfae topologially equivalentto a) sphere and σ be a simple yle, then onditions 1 to 3 of Theorem 6hold.Given a signature σ = e1 . . . ene1, we denote by Dirσ the set of M-diretededges d suh that there exists a direted edge ei ⊆ d (1 ≤ i ≤ n) in σ, andby NDirσ the set of edges ei ∈ σ but suh that ei 6⊆ d for any d ∈ Dirσ. Foreah region P suh that there is a direted edge ei ⊆ d with ei ∈ In(P ) and
φ(P ) = ∠

bP
aP
, cσ will denote the vetor aP +bP ; let d be the diretor vetor of

d and Sg(·) be the usual sign funtion. The following theorem gives su�ientonditions for obtaining separatrix sets for yles involving direted edgesfor SPDIs de�ned on a onneted sum of tori or any topologially equivalentsurfae to a onneted sum of tori.Theorem 8. Let M be an SPDI2m de�ned on a (topologially equivalentsurfae to a) onneted sum of tori and let σ = e1 . . . ene1 and σ′ = e′1 . . . e′me′1be two simple yles ontaining one or more direted edges. Let Dirσ and
Dirσ′ be the sets of M-direted edges of σ and σ′ respetively. If Dirσ = Dirσ′and NDirσ ∩ NDirσ′ = ∅, then the following hold:1. If σ is EXIT-LEFT and σ′ is EXIT-RIGHT and Sg(d.ĉσ) = Sg(d.ĉσ′),then {ξl

σ, ξ
u
σ′} is a semi-separatrix set;2. If σ is EXIT-LEFT and σ′ is EXIT-LEFT and Sg(d.ĉσ) 6= Sg(d.ĉσ′),then {ξl

σ, ξ
u
σ′} is a semi-separatrix set;3. If σ is EXIT-RIGHT and σ′ is EXIT-RIGHT and Sg(d.ĉσ) 6= Sg(d.ĉσ′),then {ξl

σ, ξ
u
σ′} is a semi-separatrix set;4. If σ is EXIT-RIGHT and σ′ is STAY, then {ξl

σ, Inv(Kσ′)} is a semi-separatrix set; 14



5. If σ is EXIT-LEFT and σ′ is STAY, then {ξu
σ , Inv(Kσ′)} is a semi-separatrix set;6. If σ and σ′ are STAY yles, then {Inv(Kσ), Inv(Kσ′)} ∈ Sep.Proof. All the above ases follow diretly from the de�nition of eah di�erentkind of simple yle and the haraterization of Jordan urves for surfaes;all the above pairs of losed urves are Jordan urves. For lak of spae wewill prove here only the ase 1 for a torus, the other ases being similar.1. The hypothesis Sg(d.ĉσ) = Sg(d.ĉσ′) guarantees that the inner partsof σ and σ′ lie in a same subset of M delimited by ξl

σ and ξu
σ′ (seeFig. 6 for examples of suh yles). Let KB be the open set delimitedby the losed urves ξl

σ and ξu
σ′ and ontaining the inner part of σand σ′. Let KA = M \ ({ξl

σ, ξ
u
σ′} ∪ KB) (hene, KA ∩ KB = ∅). Weprove that for any trajetory ξ, with ξ(0) ∈ KB, ∀t > 0 · ξ(t) 6∈ KA.Considering the planar representation, by the Jordan urve theorem,the only way to leave KB is traversing one of the direted edges, ξl

σor ξu
σ′ . By de�nition of KB, EXIT-LEFT and EXIT-RIGHT, for any

t′ ≥ 0, ξ(t) 6∈ ξl
σ and ξ(t) 6∈ ξu

σ′ , whih implies that ∀t > 0 · ξ(t) ∈ KB;thus, ∀t > 0 · ξ(t) 6∈ KA.The proof may be generalized to a onneted sum of tori.Notie that for yles involving direted edges on projetive planes the aseis slightly di�erent, due to their �twisted� nature. It is possible, however, togive a similar result as the previous theorem, taking into aount the losedurves whih are not Jordan urves. Notie that in a projetive plane it is notpossible to draw two (or more) disjoint losed urves ontaining one diretededge.Theorem 9. Let M be an SPDI2m de�ned on a (topologially equivalent sur-fae to a) projetive plane and let σ = e1 . . . ene1 be a simple yle ontainingat least two di�erent direted edges, then the following hold:1. If σ is EXIT-RIGHT then {ξl
σ} is a semi-separatrix set (�ltering tra-jetories from �left� to �right�);2. If σ is EXIT-LEFT then {ξu

σ} is a semi-separatrix set (�ltering traje-tories from �right� to �left�);3. If σ is STAY, then set ontaining the invariane kernel Inv(Kσ) is aseparatrix set, i.e. {Inv(Kσ)} ∈ Sep.15



Proof. The hypothesis of σ ontaining at least two di�erent direted edges,exludes all the losed urves whih are not Jordan urves (as C1 and C2 inFig. 3-(b)). We prove here only the �rst ase, the others being similar.1. Let KB be the open set delimited by the losed urve ξl
σ and ontainingthe inner part of σ. Let KA = M\ ({ξl

σ}∪KB) (hene, KA ∩KB = ∅).We prove that for any trajetory ξ, with ξ(0) ∈ KB, ∀t > 0 · ξ(t) 6∈ KA.Considering the planar representation, by the Jordan urve theorem,the only way to leave KB is traversing one of the direted edges or ξl
σ.By de�nition of KB and EXIT-RIGHT, for any t′ ≥ 0, ξ(t) 6∈ ξl

σ, whihimplies that ∀t > 0 · ξ(t) ∈ KB; thus, ∀t > 0 · ξ(t) 6∈ KA.Remark. Notie that the restrition of ontaining at least two di�erentdireted edges in the statement of Theorem 9 is to avoid Jordan urves like
C1 and C2 in Fig. 3-(b). However, this shows that we are not able todistinguish a urve like C3 in Fig. 3-() (whih ould de�ne a separatrix set)from the losed urve C2 in Fig. 3-(b) (whih annot de�ne a separatrixset). Our result is thus orret but not omplete (we do not identify all theseparatrix sets).An algorithm for omputing (semi-) separatrix sets for SPDIs de�ned onsurfaes follows from the above theorems.5 Final DisussionWe have given an automati proedure to obtain all the viability, ontrollabil-ity and invariane kernels of simple yles of polygonal di�erential inlusionsystems de�ned over surfaes (SPDI2m). We have also provided an algorithmfor omputing separatrix sets for suh systems. While the omputation ofthe above-mentioned kernels is parameterized by a single simple yle, it isnot the ase for separatrix sets. For the latter we ould need two simple y-les sharing exatly the same direted edges and disjoint on the non-diretededges. In all the ases the algorithms given depend only on the omputationof the �x-points of simple yles and all the �tehnology� for obtaining suhobjets is based on the analysis of SPDIs [ASY01, Sh02, Sh04℄.We have here only omputed separatrix sets for surfaes topologially equiv-alent to spheres, projetive planes and onneted sum of tori. We have notharaterized suh sets for onneted sum of projetive planes; we believethis may be done but probably making use of more omplex topologialnotions that the ones used in this work. Moreover, we have given only su�-ient onditions for omputing the separatrix sets of projetive planes, whih16



means we are not able to ompute all the separatrix sets (see last Remarkon previous Setion). For providing also neessary onditions for detetingseparatrix sets we need to give a better haraterization of Jordan urveson suh surfaes. This ould be given, for instane, taking into aount theimproper points (i.e. points on a M-direted edge) and onsidering the formof trajetories on their neighborhood.The deidability of the reahability problem for SPDI2ms is an open question[AS02℄. However the result of this work may be further explored to givepartial (or semi-) deision proedures for solving the reahability problem for
SPDI2ms. The assumption of onsidering surfaes without boundary is not arestrition of our result, but was introdued to simplify the presentation.Aknowledgments. We are indebted to Zbigniew Fiedorowiz for his lar-ifying omments on the Jordan urve theorem for surfaes and on the de�-nition of genus.
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