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Abstract

Polygonal hybrid systems (SPDIs) are a subclass of hybrid systems
whose dynamics is defined by constant differential inclusions. We can
define SPDIs on surfaces, obtaining a new class of hybrid systems
(SPDIsy,). In this paper we define and compute various SPDIgp,’s
phase portrait objects: invariance, controllability and viability kernels
and separatrix sets.

1 Introduction

An interesting and still decidable (w.r.t reachability) class of hybrid systems
is the so-called Polygonal Hybrid System (SPDI for short, |[ASY01]) which
is a subclass of hybrid systems on the plane whose dynamics is defined by
constant differential inclusions. SPDIs are a generalization of PCDs (de-
terministic systems with Piece-wise Constant Derivatives) for which it has
been shown that the reachability problem is decidable for the planar case
[MP93| but undecidable for three dimensions [AMP95]|. SPDIs may be de-
fined on surfaces (or two dimensional manifolds) giving rise to a new class
of hybrid systems, denoted SPDI,,,, for which the reachability problem is
an open question [AS02]. One way of providing useful information about
the qualitative behavior, including reachability issues, of a hybrid system in
general and of SPDIy,, in particular, is through the study of its phase por-
trait. Some works along these lines are [ASY02|, [Aub01]|, [DV95]|, [KV95],
[KdBO01], [MS00] and [SJSLOO|. In particular, and closely related to this pa-
per, in [MS00] it is shown how to build the phase portrait of PCDs while



in [ASY02] algorithms are given for computing viability and controllability
kernels for SPDIs. Moreover, a characterization of viability and invariance
kernels was given by [ALQ'01] for impulsive differential inclusions.

An invariant set is a set of initial points of trajectories which keep necessarily
rotating in a cycle forever. A set is a viability domain if for every point in the
set, there is at least one trajectory which keep in the set forever. A set such
that any two points are reachable one from the other is called controllable.
Given a cycle, the greatest such sets are called invariance, viability and con-
trollability kernels, respectively. A separatriz is a curve which bisects a set
into two subsets A and B such that no trajectory starting in A can reach a
point in B and vice-versa.

In this paper we give decision procedures for computing the invariance, con-
trollability and viability kernels for SPDIy,,s. Moreover, we define separatriz
sets, which are closed sets of points dissecting the SPDI,,, into at least three
disjoint sets such that two of them are non-connected w.r.t. reachability.
We show how to compute such sets. Even though the computation of all
the above SPDI5,,,’s phase portrait objects are contributions of this work, we
make a qualitative difference between their originality. While the algorithms
for computing invariance, controllability and viability kernels for SPDIy,s
are straightforwardly obtained from the given algorithms for the correspond-
ing SPDI’s kernels, it is not the case with the computation of separatrix sets.
Indeed, the latter have not been computed for SPDIs.

The paper is organized as follows. In next section we give some preliminaries,
providing useful notation and definition and recalling the definition of SPDI,
SPDIy,, and of some topological notions needed. In Section 3 we define and
compute invariance, controllability and viability kernels for SPDI,,s while
in Section 4 we show how to obtain their separatrix sets. We conclude in the
last section.

2 Preliminaries

2.1 SPDI

Let a = (a1,as),x = (x1,22) € R* and o, 8 € R. The inner product of two
vectors a = (ay,aq) and x = (x1,z9) is defined as a - x = a1x; + asry. We
denote by x the vector (z9, —21) obtained from x by rotating clockwise by
the angle 7/2. Notice that x - x = 0.

An angle /P on the plane, defined by two non-zero vectors a, b is the set of
all positive linear combinations x = a a+ 3 b, with o, 3 > 0, and a+ 3 > 0.
We can always assume that b is situated in the counter-clockwise direction



from a.

A polygonal differential inclusion system (SPDI) is defined by giving a finite
partition P of the plane into convex polygonal sets (called regions), and
associating with each P € P a couple of vectors ap and bp. Let ¢(P) = 425,
we have that for each x € P, x € ¢(P).

Let E(P) be the set of edges of P. We say that e € E(P) is an entry of P if
for all x € e and for all ¢ € ¢(P), x + ce € P for some € > 0. We say that
e is an ezit of P if the same condition holds for some ¢ < 0. We denote by
In(P) C E(P) the set of all entries of P and by Out(P) C E(P) the set of
all exits of P.

Assumption 1. All the edges in E(P) are either entries or exits, that is,
E(P) = In(P) U Out(P).

A trajectory segment of an SPDI is a continuous function ¢ : [0,7] — R?
which is smooth everywhere except in a discrete set of points, and such that
for all t € [0,7], if £(t) € P and £(t) is defined then £(t) € ¢(P). The
signature, denoted Sig(&), is the ordered sequence of edges traversed by the
trajectory segment, that is, ey, eq,..., where £(¢;) € ¢; and t; < t;4q. If
T = oo, a trajectory segment is called a trajectory.

Assumption 2. We will only consider trajectories with infinite signatures.

2.1.1 Successors and predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges. For notational convenience, we will use e to
denote both the edge and its one-dimensional representation. Accordingly,
we write X € e or x € e, to mean “point X in edge e with coordinate x in the
one-dimensional coordinate system of €”. The same convention is applied to
sets of points of e represented as intervals (e.g., x € [ or x € I, where [ C e)
and to trajectories (e.g., “¢ starting in z” or “{ starting in x”).

Now, let P € P, e € In(P) and ¢ € Out(P). For I C e, Succe(I) is
the set of all points in €' reachable from some point in I by a trajectory
segment ¢ : [0,¢] — R? in P (i.e., £(0) € I AE(t) € € ASig(€) = ee’). Given
I = [l,u], Succee (1) = F(INS)NJ, where S and J are intervals, F([l,u]) =
(fi(]), fu(u)) and f; and f, are affine functions (a function f : R — R is affine
iff f(z) = ax + b with a > 0).

For I C €', Pre.(I) is the set of points in e that can reach a point in I by a
trajectory segment in P. We have that: Pre.. = Succgj and Pre, = Succ;l.



2.1.2 Qualitative analysis of simple edge-cycles

Let o = e ---ege; be a simple edge-cycle, ie., e; #¢; forall 1 <i# j <k.
Let Succ, (1) = F(INS)NJ with F = (f;, fu).

Assumption 3. None of the two functions fi, f., is the identity.

Let [* and u* be the fix-points' of f; and f,, respectively, and SNJ = (L, U).
It can be shown that a simple cycle is of one of the following types:

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L < [* < u* < U.

DIE. The rightmost trajectory exits the cycle through the left (consequently
the leftmost one also exits) or the leftmost trajectory exits the cycle
through the right (consequently the rightmost one also exits), that is,
u < LVIT>U.

EXIT-BOTH. The leftmost trajectory exits the cycle through the left and
the rightmost one through the right, that is, [* < L Au* > U.

EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but
the rightmost one stays inside, that is, I* < L < u* < U.

EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right)
but the leftmost one stays inside, that is, L < [* < U < u*.

The classification above gives us some information about the qualitative be-
havior of trajectories. Any trajectory that enters a cycle of type DIE will
eventually quit it after a finite number of turns. If the cycle is of type STAY,
all trajectories that happen to enter it will keep turning inside it forever. In
all other cases, some trajectories will turn for a while and then exit, and oth-
ers will continue turning forever. This information is very useful for solving
the reachability problem for SPDIs.

The above result does not allow us to directly answer other questions about
the behavior of the SPDI such as determine for a given point (or set of points)
whether any trajectory (if it exists) starting in the point remains in the cycle
forever. In order to do this, we need to further study the properties of the
system around simple edge-cycles and in particular STAY cycles. See |[Sch04]
for some important properties of STAY cycles.

A more detailed presentation of SPDIs and their properties may be found in
[ASYO01] and [Sch02].

IThe fix-point 2* is computed by solving a linear equation f(z*) = x*, which can be
finite or infinite.
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Figure 1: Representations of a Torus: (a) a surface in R?; (b) a square with
identified edges; (c) a triangulated surface.

2.2 Surfaces (Two Dimensional Manifolds)

All the (topological) definitions, examples and results of this section follow
the combinatorial method, based on [Hen79].

A topological space is triangulable if it can be obtained from a set of triangles
by the identification of edges and vertexes subject to the restriction that any
two triangles are identified either along a single edge or at a single vertex,
or are completely disjoint. The identification should be done via an affine
bijection.

A surface (or 2-dim manifold) is a triangulable space for which in addition:
(1) each edge is identified with exactly one other edge; and (2) the triangles
identified at each vertex can always be arranged in a cycle Ti,..., T, T} so
that adjacent triangles are identified along an edge. Typical examples are
the torus (see Fig. 1), the sphere, the Klein bottle and the projective plane
(see Fig. 2).

A surface with boundary is a topological space obtained by identifying edges
and vertexes of a set of triangles as for surfaces except that certain edges may
not be identified with another edge. These edges, which violate the definition
of a surface, are called boundary edges, and their vertexes, which also violate
the definition of surface, are called boundary verteres. Typical examples of
surfaces with boundary are the cylinder and the Mdbi's strip. Indeed, the
cylinder is equivalent to a sphere with two disks cut out.

We state now an important theorem in the topological theory of surfaces

(|Hen79, p.122[; see also [Xu01]):

Theorem 1 (Classification theorem). e FEvery compact, connected sur-
face is topologically equivalent to a sphere, or a connected sum of tori?,

2The connected sum construction connects two surfaces with a tube (after cutting out
holes in the surfaces where the tubes are attached).
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Figure 2: Planar representations: (a) sphere; (b) Klein bottle; (¢) projective
plane.

or a connected sum of projective planes.

o Fvery compact, connected surface with boundary is equivalent to either
a sphere, or a connected sum of tori, or a connected sum of projective
planes, in any case with some finite number of disks removed. [

The sphere and a connected sum of tori are called orientable, while the (con-
nected sum of) projective planes are unorientable surfaces.

Example 1. The Klein bottle (2-(b)) is the connected sum of two projective
planes while the connected sum of two Mébius Strip is a cylinder. 0

When representing a surface in a plane (as in Fig. 1-(c)), some identified
edges (vertexes) may be put together while others need to be identified
through their name and their orientation (in the case of edges). In Fig.
1-(c), vertex U, V, W and X, as well as the edges they define, are unique and
trivially identified (with themselves). However, S,T and @, R are identified
according to the orientation of d; and dy respectively. We call such edges
and vertexes, directed edges and directed verteres respectively.

Even though our result can be extended to surfaces with boundaries, we will
restrict our analysis only to surfaces without boundaries.

Assumption 4. We will consider only surfaces without boundaries.

2.3 Jordan curve theorem for surfaces

By the Classification Theorem we know that it suffices to compute the phase
portrait objects for a sphere, a connected sum of tori and a connected sum
of projective planes.
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Figure 3: (a) Disjoint closed curves which are not Jordan curves on a Klein
bottle; (b) Non-Jordan curves on a projective plane; (c) Jordan curves on a
projective plane.

Before showing how to compute the kernels and separatrix sets, we recall
here some needed definitions and results. We recall first the Jordan Curve
Theorem in an informal way: “A simple closed curve in the plane divides
the plane in exactly two parts, one bounded (the inside) and one unbounded
(the outside). Furthermore the curve is the complete frontier of both parts”.
Notice that the Jordan curve theorem for the plane holds for the sphere.
However, the theorem is not true for the other closed surfaces: there are
simple closed curves which do not disconnect the surface. The appropriate
generalization of the Jordan curve theorem for arbitrary closed surfaces is
given below. It is stated in terms of genus of a surface, a concept which we
define as follows: A sphere is defined to have genus 0, the connected sum of g
tori is defined to have genus g and the connected sum of g projective planes
is defined to have genus g — 1 [Fie].

Theorem 2 (Jordan Curve Theorem for Surfaces). The mazimum number
of disjoint simple closed curves which can be cut from an orientable surface
of genus g without disconnecting it is g. The mazimum number of disjoint
simple closed curves which can be cut from an unorientable surface of genus
g without disconnecting it is g + 1. [

Thus, for a sphere, every closed curve disconnect it, whereas not every closed
curve disconnects a torus or a projective plane; we may need two closed
curves. Closed curves disconnecting a surface are called Jordan curves.

Example 2. Fig. 3-(a) depicts a Klein bottle with two typical disjoint closed
curves which are not Jordan curves. In Fig. 3-(b) none of Cy nor Cy are
Jordan curves on a projective plane. In Fig. 3-(c) all of Cy, Cy and C3
are Jordan curves. In Fig. 4, none of the curves Ci nor Cy are Jordan
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Figure 4: Jordan curves on the torus: (a) 3-dim representation; (b) Planar
representation.
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Figure 5: A SPDIs,, on the torus: three views.

curves. However, the set {Cy,Cq} (as well as the curve C') disconnects the
surface. [

Jordan curves for surfaces may be characterized using the notion of linking
number and homology cycles. For our purposes, it suffices to know which
closed curves are (not) Jordan curves w.r.t. some concept related to the
definition of hybrid systems (i.e. the curves containing points of a directed
edge; see next Section).

2.4 SPDI,,,: SPDIs on Surfaces

To define an SPDI on a triangulated surface M, an SPDI should be defined
on each of its triangles. We call this class of systems SPDI on surfaces
(SPDIyy, ).

In Fig. 5 we define an SPDI on a torus and show how to represent it as a
family of SPDIs on triangles.

The notion of successor, predecessor as well as the classification of simple
cycles given for SPDIs in Section 2.1 hold for SPDIy,s. One difference be-
tween simple cycles of both hybrid systems is that in SPDIy;s they may have

8



the occurrence of directed edges. This fact does not change the definition of
simple cycle nor the above classification, however, it has a decisive influence
on the decidability of the reachability problem.

When defining an SPDI on a surface, directed edges are partitioned into
intervals, each corresponding to a different region. We will call the directed
edges of the original surface M-directed edges while the term “directed edge”
will be used for the SPDI,,;s” ones. Each directed edge e is a subinterval of
only one M-directed edge d and this is denoted by e C d.

3 Kernels Computation

We state here how to compute the invariance, controllability and viability
kernels. However, proofs are omitted since they are similar as for SPDIs, with
the additional feature that simple cycles in a SPDI,,, may contain directed
edges®. The details of proofs for computing viability and controllability ker-
nels of SPDIs can be found in [ASY02] and in [Sch04] for invariance kernels.
In what follows, let K be a subset of a surface M and given a cyclic signature
o, let K, be defined as follows:

k
K, = |Jint(P)Ue) (1)
i=1
where P; is such that e;_; € In(P;), e; € Out(FP;) and int(F;) is P,’s interior.

3.1 Viability Kernel
We recall the definition of viability kernel.

Definition 1. A trajectory £ is viable in K if £(t) € K for allt > 0. K
is a viability domain if for every x € K, there exists at least one trajectory
&, with £(0) = x, which is viable in K. The viability kernel of K, denoted
Viab(K), is the largest viability domain contained in K.

For I C e let us define Pre,(I) as the set of all x € M for which there exists
a trajectory segment £ starting in x, that reaches some point in 7, such that
Sig(€) is a suffix of ey...ege;. It is easy to see that Pre,(I) is a polygonal
subset of the plane which can be calculated using the following procedure.
First define

3Indeed, the only difference in the proof is that sets, points, etc are defined on M
instead of on R2.



Pre.(I) = {x|3¢:[0,t] = M,t>0.£(0)=xA&(t) €1ASig(é) =e}

and apply this operation k times: Pre,(I) = |Ji_, Pre,,(I;) with I, = 1,
I, = Prec, o, (11) and I; = Preg, o, (liy1), for 2 <i <k — 1.

The following result provides a non-iterative algorithmic procedure for com-
puting the viability kernel of K, of an SPDIs,,.

Theorem 3. If o is not DIE, Viab(K,) = Pre,(S), otherwise Viab(K,) =
0. O

3.2 Controllability Kernel

We say K is controllable if for any two points x and y in K there exists a
trajectory segment & starting in x that reaches an arbitrarily small neighbor-
hood of y without leaving K. More formally,

Definition 2. A set K is controllable iff Vx,y € K,¥§ > 0,3¢ : [0,t] —
Mt > 0. (&0) =xA[EEt)—y| < IAV € [0,t] . £&{t') € K). The
controllability kernel of K, denoted Cntr(K), is the largest controllable subset
of K.

For a given cyclic signature o, let us define Cp(o) as follows:

(L, U> if o is EXIT-BOTH
(L, u*> if o is EXIT-LEFT
Cp(o) =< (I*,U) ifois EXIT-RIGHT (2)
(I*,u*)y if o is STAY
0 if o is DIE

For I C e, let us define Succ,(I) as the set of all points y € M for which there
exists a trajectory segment £ starting in some point x € I, that reaches y,
such that Sig(¢) is a prefix of e; ... e,. The successor Succ, (/) is a polygonal
subset of the plane which can be computed similarly to Pre, (7). Define

C(o) = (Succ, N Pre,)(Cp(c))
We compute the controllability kernel of K, as follows.

Theorem 4. Cntr(K,) =C(0). O

10



3.3 Invariance Kernel

In general, an invariant set is a set of points such that for any point in the
set, every trajectory starting in such point remains in the set forever and the
invariance kernel is the largest of such sets. In particular, for SPDI, given
a cyclic signature, an invariant set is a set of points which keep rotating in
the cycle forever and the invariance kernel is the largest of such sets. More
formally,

Definition 3. We say that a set K is invariant iff for any x € K there
exists at least one trajectory starting in it and every trajectory starting in
x is viable in K. Given a set K, its largest invariant subset is called the
invariance kernel of K and is denoted by Inv(K,).

We need some preliminary definitions before stating the main theorem. The
extended V-predecessor of an output edge e of a region R is the set of points in
R such that every trajectory segment starting in such point reaches e without
traversing any other edge. More formally, let R be a region and e be an edge

in Out(R), then the e-extended V-predecessor of I, Pre.(I) is defined as:

Pre(1) = {x | V¢ . (£(0) =x = 3t > 0. (§(t) € I ASig([0,1]) = ¢))}.

It is easy to see that P_reg([) is a polygonal subset of the plane which can
be calculated using the following procedure. First compute Pre,,(I) for all

1 <i < k and then apply this operation k times: Pre,(I) = ., Pre., (I;)
with [} = I, I}, = Preekel(ll) and I; = Pree i (Liy1), for 2 <i <k —1. We
compute the invariance kernel of K, as follows.

—~

Theorem 5. If 0 = ey...eyeq is STAY then Inv(K,) = ma(%a((])),
otherwise Inv(K,) = (. O

4 Separatrix Sets Computation

Let M be a surface with a dynamics ¢ defined on it. In this section we
define the notion of separatriz sets, which are subsets of M dissecting the
surface into two mutually non-reachable subsets. We relax the notion of
separatrix obtaining semi-separatriz sets such that some points in one set
may be reachable from the other set, but not vice-versa.

We define first the above notions for surfaces, independently of SPDI,,,s.
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Definition 4. Let K C M, a separatrix in K is a curve v partitioning
K into three sets K4, Kp and vy itself, such that KaNKgN~y =0, K =
KU Kg U~ and the following conditions hold:

1. For any point o € K4 and trajectory &, with £(0) = xq, there is no t
such that £(t) € Kp; and

2. For any point zo € Kg and trajectory &, with £(0) = xy, there is no t
such that £(t) € Ka.

If only one of the above conditions holds then we say that the curve is a
semi-separatrix.

We can extend the above notion to sets. A separatriz set S of K is a set of
closed subsets S; (with 1 < ¢ < 2) of K with the above separation property.
We will denote by K4 and Kpg the two subsets of K defined by a separatrix
set S. The set of all the separatrix sets of a surface M is denoted by Sep(M),
or simply Sep if M is understood from the context.

Notice that in some cases a separatrix set contains only one set or curve while
in other cases, two are needed, which follows directly from the Jordan curve
theorem for surfaces.

The above notions are extended to SPDIy,s straightforwardly.

Now, let 0 = ¢; ...¢e,e; be a simple cycle, 4;’; (1 <i < n) be the dynamics of
the regions for which e; is an entry edge and I = [I, u] and interval on edge e;.
Remember that Succe,e,(I) = F(INS)NJ, where F' = [a1l+ by, asu+bs]. Let
1 be the vector corresponding to the point on e; with local coordinates [ and
I’ be the vector corresponding to the point on ey with local coordinates F'(I)
(similarly, we define u and u’ for F'(u)). We define first mzl(l) ={x |1 =
ax+1,0 < o<1} and %j;(l) ={x|u =ax+u,0<a <1} Weextend
these definitions in a straight way to any (cyclic) signature o = e;...eueq,
denoting them by mg(f) and Succ,(I), respectively; we can compute them
similarly as for Pre. Whenever applied to the fix-point I* = [I*, u*], we denote
m:(l*) and Succ, (I*) by €. and £* respectively. Intuitively, £& (€%) denotes
the piece-wise affine closed curve defined by the leftmost (rightmost) fix-point
I* (u*). The inner of a simple cycle o is defined as follows: if o is STAY,
then the inner of ¢ is the set defined by the (possible non-convex) polygon
delimited by & and £%; if o is EXIT-LEFT, then the inner of o is the set
defined by the non-convex polygon delimited by m:([L, U]) and &¥; if o
is EXIT-RIGHT, then the inner of o is the set defined by the non-convex
polygon delimited by ¢, and ﬁ?([l), Ul); otherwise, the inner of o is empty.

12



Notice that the inner of a simple cycle is non-empty only for those cycles for
which at least one of the leftmost and rightmost trajectory limit is in [L, U].
We show now how to identify separatrix sets for simple cycles not involving
directed edges.

Theorem 6. Let M be an SPDIs,, and o0 = ey ...e,e1 be a simple cycle not
involving directed edges, then the following hold:

1. If 0 is EXIT-RIGHT then {£L} is a semi-separatriz set (filtering tra-
jectories from “left” to “right”);

2. If o is EXIT-LEFT then {£*} is a semi-separatriz set (filtering trajec-
tories from “right” to “left”);

3. If o is STAY, then set containing the invariance kernel Inv(K,) is a
separatriz set, i.e. {Inv(K,)} € Sep.

Proof. Notice that by hypothesis, there is no directed edge on o which means
that the reasoning may be conducted as for the planar case.

1. By definition of EXIT-RIGHT, any trajectory is bounded to the left by
!, which is a piece-wise affine closed curve, partitioning M into three
disjoint sets: Kp, the “right” part of ¢ (i.e. the subset containing
the inner of o); K4, the “left” part of £L; and ¢! itself. By Jordan’s
theorem, any trajectory may pass from Kpg to K, if and only if it cross
¢! . However, by definition of EXIT-RIGHT, this is only possible from
K4 to Kp but not vice-versa. Hence {¢!} is a semi-separatrix set.

2. Symmetric to the previous case.

3. Follows directly from the definition of invariance kernel, since any tra-
jectory arriving to it from the left cannot leave Inv(K,) and hence
no point on its right can be reached. Similarly for trajectories enter-
ing Inv(K,) from the right, no point on the left of Inv(K,) may be
reached. O

]

Notice that in the above result, computing a (semi-) separatrix set depends
only on one simple cycle, and the corresponding algorithm is then reduced
to find simple cycles in the SPDI,,, and checking whether it is STAY, EXIT-
RIGHT or EXIT-LEFT. In fact, by the Jordan curve theorem for surfaces,
the above result holds also for any surface topologically equivalent to a sphere:

13
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Figure 6: EXIT-LEFT and EXIT-RIGHT cycles with Sg(d.¢€,) = Sg(d.c,).

Theorem 7. Let M be an SPDI defined on a (surface topologically equivalent
to a) sphere and o be a simple cycle, then conditions 1 to 3 of Theorem 6
hold.

Given a signature 0 = e;...e,e;, we denote by Dir, the set of M-directed
edges d such that there exists a directed edge e; C d (1 < i < n) in o, and
by NDir, the set of edges e; € o but such that e;  d for any d € Dir,. For
each region P such that there is a directed edge e; C d with e; € In(P) and
¢(P) = £, ¢, will denote the vector ap+bp; let d be the director vector of
d and Sg(-) be the usual sign function. The following theorem gives sufficient
conditions for obtaining separatrix sets for cycles involving directed edges
for SPDIs defined on a connected sum of tori or any topologically equivalent
surface to a connected sum of tori.

Theorem 8. Let M be an SPDIy, defined on a (topologically equivalent
surface to a) connected sum of tori and let 0 = ey ...e,e; and o’ =€) ... €] e}
be two simple cycles containing one or more directed edges. Let Dir, and
Dir,: be the sets of M-directed edges of o and o’ respectively. If Dir, = Dirg
and NDir, N NDir, = (), then the following hold:

1. If o is EXIT-LEFT and o' is EXIT-RIGHT and Sg(d.¢,) = Sg(d.c,),
then {€\ €%} is a semi-separatriz set;

9. If o is EXIT-LEFT and o' is EXIT-LEFT and Sg(d.€;) # Sg(d.c;7),
then {€\ €%} is a semi-separatriz set;

3. Ifo is EXIT-RIGHT and o' is EXIT-RIGHT and Sg(d.c,) # Sg(d.c,),

then {€L, €%} is a semi-separatriz set;

4. If o is EXIT-RIGHT and o' is STAY, then {€,Inv(K,/)} is a semi-

separatriz set;
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5. If o is EXIT-LEFT and o' is STAY, then {&* Inv(K,)} is a semi-
separatriz set;

6. If o and o' are STAY cycles, then {Inv(K,),Inv(K,)} € Sep.

Proof. All the above cases follow directly from the definition of each different
kind of simple cycle and the characterization of Jordan curves for surfaces;
all the above pairs of closed curves are Jordan curves. For lack of space we
will prove here only the case 1 for a torus, the other cases being similar.

1. The hypothesis Sg(d.c,) = Sg(d.c,/) guarantees that the inner parts
of ¢ and ¢’ lie in a same subset of M delimited by & and £% (see
Fig. 6 for examples of such cycles). Let Kp be the open set delimited
by the closed curves ¢ and &% and containing the inner part of o
and o/, Let Ky = M\ ({¢,£%} U Kg) (hence, K4 N Kp = (). We
prove that for any trajectory &, with £(0) € Kp, Vi > 0-&(t) & Ka.
Considering the planar representation, by the Jordan curve theorem,
the only way to leave Kp is traversing one of the directed edges, &
or £%. By definition of Kp, EXIT-LEFT and EXIT-RIGHT, for any
t'>0,&(t) €& and £(t) € €%, which implies that V¢ > 0 - £(t) € Kp;
thus, Vi > 0-£(t) & Ka.

The proof may be generalized to a connected sum of tori. O O

Notice that for cycles involving directed edges on projective planes the case
is slightly different, due to their “twisted” nature. It is possible, however, to
give a similar result as the previous theorem, taking into account the closed
curves which are not Jordan curves. Notice that in a projective plane it is not
possible to draw two (or more) disjoint closed curves containing one directed
edge.

Theorem 9. Let M be an SPDlyy, defined on a (topologically equivalent sur-
face to a) projective plane and let o = e; ... eye; be a simple cycle containing
at least two different directed edges, then the following hold:

1. If o is EXIT-RIGHT then {&.} is a semi-separatriz set (filtering tra-
jectories from “left” to “right”);

2. If o is EXIT-LEFT then {&*} is a semi-separatriz set (filtering trajec-
tories from “right” to “left”);

3. If o is STAY, then set containing the invariance kernel Inv(K,) is a
separatriz set, i.e. {Inv(K,)} € Sep.
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Proof. The hypothesis of ¢ containing at least two different directed edges,
excludes all the closed curves which are not Jordan curves (as C; and Cy in
Fig. 3-(b)). We prove here only the first case, the others being similar.

1. Let Kp be the open set delimited by the closed curve £ and containing
the inner part of 0. Let Ky = M\ ({¢.} U K3) (hence, KyNKp = 0).
We prove that for any trajectory &, with £(0) € Kp, Vt > 0-£(t) & K a.
Considering the planar representation, by the Jordan curve theorem,
the only way to leave Kp is traversing one of the directed edges or &L.
By definition of K and EXIT-RIGHT, for any #' > 0, £(t) & &L, which
implies that V& > 0-£(t) € Kp; thus, ¥Vt > 0-£(t) € Ka. O

]

Remark. Notice that the restriction of containing at least two different
directed edges in the statement of Theorem 9 is to avoid Jordan curves like
Cy and Cy in Fig. 3-(b). However, this shows that we are not able to
distinguish a curve like Cj in Fig. 3-(c) (which could define a separatrix set)
from the closed curve Cy in Fig. 3-(b) (which cannot define a separatrix
set). Our result is thus correct but not complete (we do not identify all the
separatrix sets).

An algorithm for computing (semi-) separatrix sets for SPDIs defined on
surfaces follows from the above theorems.

5 Final Discussion

We have given an automatic procedure to obtain all the viability, controllabil-
ity and invariance kernels of simple cycles of polygonal differential inclusion
systems defined over surfaces (SPDI,,,). We have also provided an algorithm
for computing separatrix sets for such systems. While the computation of
the above-mentioned kernels is parameterized by a single simple cycle, it is
not the case for separatrix sets. For the latter we could need two simple cy-
cles sharing exactly the same directed edges and disjoint on the non-directed
edges. In all the cases the algorithms given depend only on the computation
of the fix-points of simple cycles and all the “technology” for obtaining such
objects is based on the analysis of SPDIs [ASY01, Sch02, Sch04].

We have here only computed separatrix sets for surfaces topologically equiv-
alent to spheres, projective planes and connected sum of tori. We have not
characterized such sets for connected sum of projective planes; we believe
this may be done but probably making use of more complex topological
notions that the ones used in this work. Moreover, we have given only suffi-
cient conditions for computing the separatrix sets of projective planes, which
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means we are not able to compute all the separatrix sets (see last Remark
on previous Section). For providing also necessary conditions for detecting
separatrix sets we need to give a better characterization of Jordan curves
on such surfaces. This could be given, for instance, taking into account the
improper points (i.e. points on a M-directed edge) and considering the form
of trajectories on their neighborhood.

The decidability of the reachability problem for SPDIy,;s is an open question
[AS02]. However the result of this work may be further explored to give
partial (or semi-) decision procedures for solving the reachability problem for
SPDI,,s. The assumption of considering surfaces without boundary is not a
restriction of our result, but was introduced to simplify the presentation.

Acknowledgments. We are indebted to Zbigniew Fiedorowicz for his clar-
ifying comments on the Jordan curve theorem for surfaces and on the defi-
nition of genus.
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