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Towards Computing Phase Portrait Obje
tsof Polygonal Hybrid Systems on Surfa
esGerardo S
hneiderDepartment of Informati
s, University of OsloPO Box 1080 Blindern, N-0316 Oslo, NorwayE-mail: {gerardo at i�.uio.no}Abstra
tPolygonal hybrid systems (SPDIs) are a sub
lass of hybrid systemswhose dynami
s is de�ned by 
onstant di�erential in
lusions. We 
ande�ne SPDIs on surfa
es, obtaining a new 
lass of hybrid systems(SPDI2m). In this paper we de�ne and 
ompute various SPDI2m'sphase portrait obje
ts: invarian
e, 
ontrollability and viability kernelsand separatrix sets.1 Introdu
tionAn interesting and still de
idable (w.r.t rea
hability) 
lass of hybrid systemsis the so-
alled Polygonal Hybrid System (SPDI for short, [ASY01℄) whi
his a sub
lass of hybrid systems on the plane whose dynami
s is de�ned by
onstant di�erential in
lusions. SPDIs are a generalization of PCDs (de-terministi
 systems with Pie
e-wise Constant Derivatives) for whi
h it hasbeen shown that the rea
hability problem is de
idable for the planar 
ase[MP93℄ but unde
idable for three dimensions [AMP95℄. SPDIs may be de-�ned on surfa
es (or two dimensional manifolds) giving rise to a new 
lassof hybrid systems, denoted SPDI2m, for whi
h the rea
hability problem isan open question [AS02℄. One way of providing useful information aboutthe qualitative behavior, in
luding rea
hability issues, of a hybrid system ingeneral and of SPDI2m in parti
ular, is through the study of its phase por-trait. Some works along these lines are [ASY02℄, [Aub01℄, [DV95℄, [KV95℄,[KdB01℄, [MS00℄ and [SJSL00℄. In parti
ular, and 
losely related to this pa-per, in [MS00℄ it is shown how to build the phase portrait of PCDs while1



in [ASY02℄ algorithms are given for 
omputing viability and 
ontrollabilitykernels for SPDIs. Moreover, a 
hara
terization of viability and invarian
ekernels was given by [ALQ+01℄ for impulsive di�erential in
lusions.An invariant set is a set of initial points of traje
tories whi
h keep ne
essarilyrotating in a 
y
le forever. A set is a viability domain if for every point in theset, there is at least one traje
tory whi
h keep in the set forever. A set su
hthat any two points are rea
hable one from the other is 
alled 
ontrollable.Given a 
y
le, the greatest su
h sets are 
alled invarian
e, viability and 
on-trollability kernels, respe
tively. A separatrix is a 
urve whi
h bise
ts a setinto two subsets A and B su
h that no traje
tory starting in A 
an rea
h apoint in B and vi
e-versa.In this paper we give de
ision pro
edures for 
omputing the invarian
e, 
on-trollability and viability kernels for SPDI2ms. Moreover, we de�ne separatrixsets, whi
h are 
losed sets of points disse
ting the SPDI2m into at least threedisjoint sets su
h that two of them are non-
onne
ted w.r.t. rea
hability.We show how to 
ompute su
h sets. Even though the 
omputation of allthe above SPDI2m's phase portrait obje
ts are 
ontributions of this work, wemake a qualitative di�eren
e between their originality. While the algorithmsfor 
omputing invarian
e, 
ontrollability and viability kernels for SPDI2msare straightforwardly obtained from the given algorithms for the 
orrespond-ing SPDI's kernels, it is not the 
ase with the 
omputation of separatrix sets.Indeed, the latter have not been 
omputed for SPDIs.The paper is organized as follows. In next se
tion we give some preliminaries,providing useful notation and de�nition and re
alling the de�nition of SPDI,
SPDI2m and of some topologi
al notions needed. In Se
tion 3 we de�ne and
ompute invarian
e, 
ontrollability and viability kernels for SPDI2ms whilein Se
tion 4 we show how to obtain their separatrix sets. We 
on
lude in thelast se
tion.2 Preliminaries2.1 SPDILet a = (a1, a2),x = (x1, x2) ∈ R

2 and α, β ∈ R. The inner produ
t of twove
tors a = (a1, a2) and x = (x1, x2) is de�ned as a · x = a1x1 + a2x2. Wedenote by x̂ the ve
tor (x2,−x1) obtained from x by rotating 
lo
kwise bythe angle π/2. Noti
e that x · x̂ = 0.An angle ∠
b

a
on the plane, de�ned by two non-zero ve
tors a,b is the set ofall positive linear 
ombinations x = α a+β b, with α, β ≥ 0, and α+β > 0.We 
an always assume that b is situated in the 
ounter-
lo
kwise dire
tion2



from a.A polygonal di�erential in
lusion system (SPDI) is de�ned by giving a �nitepartition P of the plane into 
onvex polygonal sets (
alled regions), andasso
iating with ea
h P ∈ P a 
ouple of ve
tors aP and bP . Let φ(P ) = ∠
bP
aP
,we have that for ea
h x ∈ P , ẋ ∈ φ(P ).Let E(P ) be the set of edges of P . We say that e ∈ E(P ) is an entry of P iffor all x ∈ e and for all c ∈ φ(P ), x + cǫ ∈ P for some ǫ > 0. We say that

e is an exit of P if the same 
ondition holds for some ǫ < 0. We denote byIn(P ) ⊆ E(P ) the set of all entries of P and by Out(P ) ⊆ E(P ) the set ofall exits of P .Assumption 1. All the edges in E(P ) are either entries or exits, that is,
E(P ) = In(P ) ∪Out(P ).A traje
tory segment of an SPDI is a 
ontinuous fun
tion ξ : [0, T ] → R

2whi
h is smooth everywhere ex
ept in a dis
rete set of points, and su
h thatfor all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). Thesignature, denoted Sig(ξ), is the ordered sequen
e of edges traversed by thetraje
tory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If
T = ∞, a traje
tory segment is 
alled a traje
tory.Assumption 2. We will only 
onsider traje
tories with in�nite signatures.2.1.1 Su

essors and prede
essorsGiven an SPDI, we �x a one-dimensional 
oordinate system on ea
h edge torepresent points laying on edges. For notational 
onvenien
e, we will use e todenote both the edge and its one-dimensional representation. A

ordingly,we write x ∈ e or x ∈ e, to mean �point x in edge e with 
oordinate x in theone-dimensional 
oordinate system of e�. The same 
onvention is applied tosets of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e)and to traje
tories (e.g., �ξ starting in x� or �ξ starting in x�).Now, let P ∈ P, e ∈ In(P ) and e′ ∈ Out(P ). For I ⊆ e, Succee′(I) isthe set of all points in e′ rea
hable from some point in I by a traje
torysegment ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Given
I = [l, u], Succee′(I) = F (I ∩ S)∩ J , where S and J are intervals, F ([l, u]) =
〈fl(l), fu(u)〉 and fl and fu are a�ne fun
tions (a fun
tion f : R → R is a�nei� f(x) = ax + b with a > 0).For I ⊆ e′, Preee′(I) is the set of points in e that 
an rea
h a point in I by atraje
tory segment in P . We have that: Preee′ = Succ−1

ee′ and Preσ = Succ−1

σ .
3



2.1.2 Qualitative analysis of simple edge-
y
lesLet σ = e1 · · · eke1 be a simple edge-
y
le, i.e., ei 6= ej for all 1 ≤ i 6= j ≤ k.Let Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉.Assumption 3. None of the two fun
tions fl, fu is the identity.Let l∗ and u∗ be the �x-points1 of fl and fu, respe
tively, and S∩J = 〈L,U〉.It 
an be shown that a simple 
y
le is of one of the following types:STAY. The 
y
le is not abandoned neither by the leftmost nor the rightmosttraje
tory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost traje
tory exits the 
y
le through the left (
onsequentlythe leftmost one also exits) or the leftmost traje
tory exits the 
y
lethrough the right (
onsequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost traje
tory exits the 
y
le through the left andthe rightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost traje
tory exits the 
y
le (through the left) butthe rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .EXIT-RIGHT. The rightmost traje
tory exits the 
y
le (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.The 
lassi�
ation above gives us some information about the qualitative be-havior of traje
tories. Any traje
tory that enters a 
y
le of type DIE willeventually quit it after a �nite number of turns. If the 
y
le is of type STAY,all traje
tories that happen to enter it will keep turning inside it forever. Inall other 
ases, some traje
tories will turn for a while and then exit, and oth-ers will 
ontinue turning forever. This information is very useful for solvingthe rea
hability problem for SPDIs.The above result does not allow us to dire
tly answer other questions aboutthe behavior of the SPDI su
h as determine for a given point (or set of points)whether any traje
tory (if it exists) starting in the point remains in the 
y
leforever. In order to do this, we need to further study the properties of thesystem around simple edge-
y
les and in parti
ular STAY 
y
les. See [S
h04℄for some important properties of STAY 
y
les.A more detailed presentation of SPDIs and their properties may be found in[ASY01℄ and [S
h02℄.1The �x-point x∗ is 
omputed by solving a linear equation f(x∗) = x∗, whi
h 
an be�nite or in�nite. 4
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Figure 1: Representations of a Torus: (a) a surfa
e in R
3; (b) a square withidenti�ed edges; (
) a triangulated surfa
e.2.2 Surfa
es (Two Dimensional Manifolds)All the (topologi
al) de�nitions, examples and results of this se
tion followthe 
ombinatorial method, based on [Hen79℄.A topologi
al spa
e is triangulable if it 
an be obtained from a set of trianglesby the identi�
ation of edges and vertexes subje
t to the restri
tion that anytwo triangles are identi�ed either along a single edge or at a single vertex,or are 
ompletely disjoint. The identi�
ation should be done via an a�nebije
tion.A surfa
e (or 2-dim manifold) is a triangulable spa
e for whi
h in addition:(1) ea
h edge is identi�ed with exa
tly one other edge; and (2) the trianglesidenti�ed at ea
h vertex 
an always be arranged in a 
y
le T1, . . . , Tk, T1 sothat adja
ent triangles are identi�ed along an edge. Typi
al examples arethe torus (see Fig. 1), the sphere, the Klein bottle and the proje
tive plane(see Fig. 2).A surfa
e with boundary is a topologi
al spa
e obtained by identifying edgesand vertexes of a set of triangles as for surfa
es ex
ept that 
ertain edges maynot be identi�ed with another edge. These edges, whi
h violate the de�nitionof a surfa
e, are 
alled boundary edges, and their vertexes, whi
h also violatethe de�nition of surfa
e, are 
alled boundary vertexes. Typi
al examples ofsurfa
es with boundary are the 
ylinder and the Möbi's strip. Indeed, the
ylinder is equivalent to a sphere with two disks 
ut out.We state now an important theorem in the topologi
al theory of surfa
es([Hen79, p.122℄; see also [Xu01℄):Theorem 1 (Classi�
ation theorem). • Every 
ompa
t, 
onne
ted sur-fa
e is topologi
ally equivalent to a sphere, or a 
onne
ted sum of tori2,2The 
onne
ted sum 
onstru
tion 
onne
ts two surfa
es with a tube (after 
utting outholes in the surfa
es where the tubes are atta
hed).5
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PPFigure 2: Planar representations: (a) sphere; (b) Klein bottle; (
) proje
tiveplane.or a 
onne
ted sum of proje
tive planes.
• Every 
ompa
t, 
onne
ted surfa
e with boundary is equivalent to eithera sphere, or a 
onne
ted sum of tori, or a 
onne
ted sum of proje
tiveplanes, in any 
ase with some �nite number of disks removed.The sphere and a 
onne
ted sum of tori are 
alled orientable, while the (
on-ne
ted sum of) proje
tive planes are unorientable surfa
es.Example 1. The Klein bottle (2-(b)) is the 
onne
ted sum of two proje
tiveplanes while the 
onne
ted sum of two Möbius Strip is a 
ylinder.When representing a surfa
e in a plane (as in Fig. 1-(
)), some identi�ededges (vertexes) may be put together while others need to be identi�edthrough their name and their orientation (in the 
ase of edges). In Fig.1-(
), vertex U, V,W and X, as well as the edges they de�ne, are unique andtrivially identi�ed (with themselves). However, S, T and Q,R are identi�eda

ording to the orientation of d1 and d2 respe
tively. We 
all su
h edgesand vertexes, dire
ted edges and dire
ted vertexes respe
tively.Even though our result 
an be extended to surfa
es with boundaries, we willrestri
t our analysis only to surfa
es without boundaries.Assumption 4. We will 
onsider only surfa
es without boundaries.2.3 Jordan 
urve theorem for surfa
esBy the Classi�
ation Theorem we know that it su�
es to 
ompute the phaseportrait obje
ts for a sphere, a 
onne
ted sum of tori and a 
onne
ted sumof proje
tive planes. 6
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Figure 3: (a) Disjoint 
losed 
urves whi
h are not Jordan 
urves on a Kleinbottle; (b) Non-Jordan 
urves on a proje
tive plane; (
) Jordan 
urves on aproje
tive plane.Before showing how to 
ompute the kernels and separatrix sets, we re
allhere some needed de�nitions and results. We re
all �rst the Jordan CurveTheorem in an informal way: �A simple 
losed 
urve in the plane dividesthe plane in exa
tly two parts, one bounded (the inside) and one unbounded(the outside). Furthermore the 
urve is the 
omplete frontier of both parts�.Noti
e that the Jordan 
urve theorem for the plane holds for the sphere.However, the theorem is not true for the other 
losed surfa
es: there aresimple 
losed 
urves whi
h do not dis
onne
t the surfa
e. The appropriategeneralization of the Jordan 
urve theorem for arbitrary 
losed surfa
es isgiven below. It is stated in terms of genus of a surfa
e, a 
on
ept whi
h wede�ne as follows: A sphere is de�ned to have genus 0, the 
onne
ted sum of gtori is de�ned to have genus g and the 
onne
ted sum of g proje
tive planesis de�ned to have genus g − 1 [Fie℄.Theorem 2 (Jordan Curve Theorem for Surfa
es). The maximum numberof disjoint simple 
losed 
urves whi
h 
an be 
ut from an orientable surfa
eof genus g without dis
onne
ting it is g. The maximum number of disjointsimple 
losed 
urves whi
h 
an be 
ut from an unorientable surfa
e of genus
g without dis
onne
ting it is g + 1.Thus, for a sphere, every 
losed 
urve dis
onne
t it, whereas not every 
losed
urve dis
onne
ts a torus or a proje
tive plane; we may need two 
losed
urves. Closed 
urves dis
onne
ting a surfa
e are 
alled Jordan 
urves.Example 2. Fig. 3-(a) depi
ts a Klein bottle with two typi
al disjoint 
losed
urves whi
h are not Jordan 
urves. In Fig. 3-(b) none of C1 nor C2 areJordan 
urves on a proje
tive plane. In Fig. 3-(
) all of C1, C2 and C3are Jordan 
urves. In Fig. 4, none of the 
urves C1 nor C2 are Jordan7



C

C

(b)(a)

d1

d2

d2

d1

C2

C1

C1

C2Figure 4: Jordan 
urves on the torus: (a) 3-dim representation; (b) Planarrepresentation.
(c)(b)(a)

R2

R1

R4

R3Figure 5: A SPDI2m on the torus: three views.
urves. However, the set {C1, C2} (as well as the 
urve C) dis
onne
ts thesurfa
e.Jordan 
urves for surfa
es may be 
hara
terized using the notion of linkingnumber and homology 
y
les. For our purposes, it su�
es to know whi
h
losed 
urves are (not) Jordan 
urves w.r.t. some 
on
ept related to thede�nition of hybrid systems (i.e. the 
urves 
ontaining points of a dire
tededge; see next Se
tion).2.4 SPDI2m: SPDIs on Surfa
esTo de�ne an SPDI on a triangulated surfa
e M, an SPDI should be de�nedon ea
h of its triangles. We 
all this 
lass of systems SPDI on surfa
es(SPDI2m).In Fig. 5 we de�ne an SPDI on a torus and show how to represent it as afamily of SPDIs on triangles.The notion of su

essor, prede
essor as well as the 
lassi�
ation of simple
y
les given for SPDIs in Se
tion 2.1 hold for SPDI2ms. One di�eren
e be-tween simple 
y
les of both hybrid systems is that in SPDI2ms they may have8



the o

urren
e of dire
ted edges. This fa
t does not 
hange the de�nition ofsimple 
y
le nor the above 
lassi�
ation, however, it has a de
isive in�uen
eon the de
idability of the rea
hability problem.When de�ning an SPDI on a surfa
e, dire
ted edges are partitioned intointervals, ea
h 
orresponding to a di�erent region. We will 
all the dire
tededges of the original surfa
e M-dire
ted edges while the term �dire
ted edge�will be used for the SPDI2ms' ones. Ea
h dire
ted edge e is a subinterval ofonly one M-dire
ted edge d and this is denoted by e ⊆ d.3 Kernels ComputationWe state here how to 
ompute the invarian
e, 
ontrollability and viabilitykernels. However, proofs are omitted sin
e they are similar as for SPDIs, withthe additional feature that simple 
y
les in a SPDI2m may 
ontain dire
tededges3. The details of proofs for 
omputing viability and 
ontrollability ker-nels of SPDIs 
an be found in [ASY02℄ and in [S
h04℄ for invarian
e kernels.In what follows, let K be a subset of a surfa
e M and given a 
y
li
 signature
σ, let Kσ be de�ned as follows:

Kσ =
k⋃

i=1

(int(Pi) ∪ ei) (1)where Pi is su
h that ei−1 ∈ In(Pi), ei ∈ Out(Pi) and int(Pi) is Pi's interior.3.1 Viability KernelWe re
all the de�nition of viability kernel.De�nition 1. A traje
tory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. Kis a viability domain if for every x ∈ K, there exists at least one traje
tory
ξ, with ξ(0) = x, whi
h is viable in K. The viability kernel of K, denoted
Viab(K), is the largest viability domain 
ontained in K.For I ⊆ e1 let us de�ne Preσ(I) as the set of all x ∈ M for whi
h there existsa traje
tory segment ξ starting in x, that rea
hes some point in I, su
h that
Sig(ξ) is a su�x of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonalsubset of the plane whi
h 
an be 
al
ulated using the following pro
edure.First de�ne3Indeed, the only di�eren
e in the proof is that sets, points, et
 are de�ned on Minstead of on R

2. 9



Pree(I) = {x | ∃ξ : [0, t] → M, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}and apply this operation k times: Preσ(I) =
⋃k

i=1
Preei

(Ii) with I1 = I,
Ik = Preek,e1

(I1) and Ii = Preei,ei+1
(Ii+1), for 2 ≤ i ≤ k − 1.The following result provides a non-iterative algorithmi
 pro
edure for 
om-puting the viability kernel of Kσ of an SPDI2m.Theorem 3. If σ is not DIE, Viab(Kσ) = Preσ(S), otherwise Viab(Kσ) =

∅.3.2 Controllability KernelWe say K is 
ontrollable if for any two points x and y in K there exists atraje
tory segment ξ starting in x that rea
hes an arbitrarily small neighbor-hood of y without leaving K. More formally,De�nition 2. A set K is 
ontrollable i� ∀x,y ∈ K,∀δ > 0,∃ξ : [0, t] →
M, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). The
ontrollability kernel of K, denoted Cntr(K), is the largest 
ontrollable subsetof K.For a given 
y
li
 signature σ, let us de�ne CD(σ) as follows:

CD(σ) =





〈L,U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE (2)For I ⊆ e1 let us de�ne Succσ(I) as the set of all points y ∈ M for whi
h thereexists a traje
tory segment ξ starting in some point x ∈ I, that rea
hes y,su
h that Sig(ξ) is a pre�x of e1 . . . ek. The su

essor Succσ(I) is a polygonalsubset of the plane whi
h 
an be 
omputed similarly to Preσ(I). De�ne

C(σ) = (Succσ ∩ Preσ)(CD(σ))We 
ompute the 
ontrollability kernel of Kσ as follows.Theorem 4. Cntr(Kσ) = C(σ).
10



3.3 Invarian
e KernelIn general, an invariant set is a set of points su
h that for any point in theset, every traje
tory starting in su
h point remains in the set forever and theinvarian
e kernel is the largest of su
h sets. In parti
ular, for SPDI, givena 
y
li
 signature, an invariant set is a set of points whi
h keep rotating inthe 
y
le forever and the invarian
e kernel is the largest of su
h sets. Moreformally,De�nition 3. We say that a set K is invariant i� for any x ∈ K thereexists at least one traje
tory starting in it and every traje
tory starting in
x is viable in K. Given a set K, its largest invariant subset is 
alled theinvarian
e kernel of K and is denoted by Inv(Kσ).We need some preliminary de�nitions before stating the main theorem. Theextended ∀-prede
essor of an output edge e of a region R is the set of points in
R su
h that every traje
tory segment starting in su
h point rea
hes e withouttraversing any other edge. More formally, let R be a region and e be an edgein Out(R), then the e-extended ∀-prede
essor of I, P̃ree(I) is de�ned as:
P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.It is easy to see that P̃reσ(I) is a polygonal subset of the plane whi
h 
anbe 
al
ulated using the following pro
edure. First 
ompute P̃reei

(I) for all
1 ≤ i ≤ k and then apply this operation k times: P̃reσ(I) =

⋃k

i=1
P̃reei

(Ii)with I1 = I, Ik = P̃reeke1
(I1) and Ii = P̃reeiei+1

(Ii+1), for 2 ≤ i ≤ k − 1. We
ompute the invarian
e kernel of Kσ as follows.Theorem 5. If σ = e1 . . . ene1 is STAY then Inv(Kσ) = P̃reσ(P̃reσ(J)),otherwise Inv(Kσ) = ∅.4 Separatrix Sets ComputationLet M be a surfa
e with a dynami
s φ de�ned on it. In this se
tion wede�ne the notion of separatrix sets, whi
h are subsets of M disse
ting thesurfa
e into two mutually non-rea
hable subsets. We relax the notion ofseparatrix obtaining semi-separatrix sets su
h that some points in one setmay be rea
hable from the other set, but not vi
e-versa.We de�ne �rst the above notions for surfa
es, independently of SPDI2ms.11



De�nition 4. Let K ⊆ M, a separatrix in K is a 
urve γ partitioning
K into three sets KA, KB and γ itself, su
h that KA ∩ KB ∩ γ = ∅, K =
KA ∪ KB ∪ γ and the following 
onditions hold:1. For any point x0 ∈ KA and traje
tory ξ, with ξ(0) = x0, there is no tsu
h that ξ(t) ∈ KB; and2. For any point x0 ∈ KB and traje
tory ξ, with ξ(0) = x0, there is no tsu
h that ξ(t) ∈ KA.If only one of the above 
onditions holds then we say that the 
urve is asemi-separatrix.We 
an extend the above notion to sets. A separatrix set S of K is a set of
losed subsets Si (with 1 ≤ i ≤ 2) of K with the above separation property.We will denote by KA and KB the two subsets of K de�ned by a separatrixset S. The set of all the separatrix sets of a surfa
e M is denoted by Sep(M),or simply Sep if M is understood from the 
ontext.Noti
e that in some 
ases a separatrix set 
ontains only one set or 
urve whilein other 
ases, two are needed, whi
h follows dire
tly from the Jordan 
urvetheorem for surfa
es.The above notions are extended to SPDI2ms straightforwardly.Now, let σ = e1 . . . ene1 be a simple 
y
le, ∠

bi
ai
(1 ≤ i ≤ n) be the dynami
s ofthe regions for whi
h ei is an entry edge and I = [l, u] and interval on edge e1.Remember that Succe1e2

(I) = F (I∩S)∩J , where F = [a1l+b1, a2u+b2]. Let
l be the ve
tor 
orresponding to the point on e1 with lo
al 
oordinates l and
l′ be the ve
tor 
orresponding to the point on e2 with lo
al 
oordinates F (l)(similarly, we de�ne u and u′ for F (u)). We de�ne �rst Succ

b1

e1
(I) = {x | l′ =

αx+ l, 0 < α < 1} and Succ
a1

e1
(I) = {x | u′ = αx+u, 0 < α < 1}. We extendthese de�nitions in a straight way to any (
y
li
) signature σ = e1 . . . ene1,denoting them by Succ

b

σ(I) and Succ
a

σ(I), respe
tively; we 
an 
ompute themsimilarly as for Pre. Whenever applied to the �x-point I∗ = [l∗, u∗], we denote
Succ

b

σ(I∗) and Succ
a

σ(I∗) by ξl
σ and ξu

σ respe
tively. Intuitively, ξl
σ (ξu

σ) denotesthe pie
e-wise a�ne 
losed 
urve de�ned by the leftmost (rightmost) �x-point
l∗ (u∗). The inner of a simple 
y
le σ is de�ned as follows: if σ is STAY,then the inner of σ is the set de�ned by the (possible non-
onvex) polygondelimited by ξl

σ and ξu
σ ; if σ is EXIT-LEFT, then the inner of σ is the setde�ned by the non-
onvex polygon delimited by Succ

b

σ([L,U ]) and ξu
σ ; if σis EXIT-RIGHT, then the inner of σ is the set de�ned by the non-
onvexpolygon delimited by ξl

σ and Succ
a

σ([L,U ]); otherwise, the inner of σ is empty.12



Noti
e that the inner of a simple 
y
le is non-empty only for those 
y
les forwhi
h at least one of the leftmost and rightmost traje
tory limit is in [L,U ].We show now how to identify separatrix sets for simple 
y
les not involvingdire
ted edges.Theorem 6. Let M be an SPDI2m and σ = e1 . . . ene1 be a simple 
y
le notinvolving dire
ted edges, then the following hold:1. If σ is EXIT-RIGHT then {ξl
σ} is a semi-separatrix set (�ltering tra-je
tories from �left� to �right�);2. If σ is EXIT-LEFT then {ξu

σ} is a semi-separatrix set (�ltering traje
-tories from �right� to �left�);3. If σ is STAY, then set 
ontaining the invarian
e kernel Inv(Kσ) is aseparatrix set, i.e. {Inv(Kσ)} ∈ Sep.Proof. Noti
e that by hypothesis, there is no dire
ted edge on σ whi
h meansthat the reasoning may be 
ondu
ted as for the planar 
ase.1. By de�nition of EXIT-RIGHT, any traje
tory is bounded to the left by
ξl
σ, whi
h is a pie
e-wise a�ne 
losed 
urve, partitioning M into threedisjoint sets: KB, the �right� part of ξl

σ (i.e. the subset 
ontainingthe inner of σ); KA, the �left� part of ξl
σ; and ξl

σ itself. By Jordan'stheorem, any traje
tory may pass from KB to KA if and only if it 
ross
ξl
σ. However, by de�nition of EXIT-RIGHT, this is only possible from

KA to KB but not vi
e-versa. Hen
e {ξl
σ} is a semi-separatrix set.2. Symmetri
 to the previous 
ase.3. Follows dire
tly from the de�nition of invarian
e kernel, sin
e any tra-je
tory arriving to it from the left 
annot leave Inv(Kσ) and hen
eno point on its right 
an be rea
hed. Similarly for traje
tories enter-ing Inv(Kσ) from the right, no point on the left of Inv(Kσ) may berea
hed.Noti
e that in the above result, 
omputing a (semi-) separatrix set dependsonly on one simple 
y
le, and the 
orresponding algorithm is then redu
edto �nd simple 
y
les in the SPDI2m and 
he
king whether it is STAY, EXIT-RIGHT or EXIT-LEFT. In fa
t, by the Jordan 
urve theorem for surfa
es,the above result holds also for any surfa
e topologi
ally equivalent to a sphere:13
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KAFigure 6: EXIT-LEFT and EXIT-RIGHT 
y
les with Sg(d.ĉσ) = Sg(d.ĉσ′).Theorem 7. Let M be an SPDI de�ned on a (surfa
e topologi
ally equivalentto a) sphere and σ be a simple 
y
le, then 
onditions 1 to 3 of Theorem 6hold.Given a signature σ = e1 . . . ene1, we denote by Dirσ the set of M-dire
tededges d su
h that there exists a dire
ted edge ei ⊆ d (1 ≤ i ≤ n) in σ, andby NDirσ the set of edges ei ∈ σ but su
h that ei 6⊆ d for any d ∈ Dirσ. Forea
h region P su
h that there is a dire
ted edge ei ⊆ d with ei ∈ In(P ) and
φ(P ) = ∠

bP
aP
, cσ will denote the ve
tor aP +bP ; let d be the dire
tor ve
tor of

d and Sg(·) be the usual sign fun
tion. The following theorem gives su�
ient
onditions for obtaining separatrix sets for 
y
les involving dire
ted edgesfor SPDIs de�ned on a 
onne
ted sum of tori or any topologi
ally equivalentsurfa
e to a 
onne
ted sum of tori.Theorem 8. Let M be an SPDI2m de�ned on a (topologi
ally equivalentsurfa
e to a) 
onne
ted sum of tori and let σ = e1 . . . ene1 and σ′ = e′1 . . . e′me′1be two simple 
y
les 
ontaining one or more dire
ted edges. Let Dirσ and
Dirσ′ be the sets of M-dire
ted edges of σ and σ′ respe
tively. If Dirσ = Dirσ′and NDirσ ∩ NDirσ′ = ∅, then the following hold:1. If σ is EXIT-LEFT and σ′ is EXIT-RIGHT and Sg(d.ĉσ) = Sg(d.ĉσ′),then {ξl

σ, ξ
u
σ′} is a semi-separatrix set;2. If σ is EXIT-LEFT and σ′ is EXIT-LEFT and Sg(d.ĉσ) 6= Sg(d.ĉσ′),then {ξl

σ, ξ
u
σ′} is a semi-separatrix set;3. If σ is EXIT-RIGHT and σ′ is EXIT-RIGHT and Sg(d.ĉσ) 6= Sg(d.ĉσ′),then {ξl

σ, ξ
u
σ′} is a semi-separatrix set;4. If σ is EXIT-RIGHT and σ′ is STAY, then {ξl

σ, Inv(Kσ′)} is a semi-separatrix set; 14



5. If σ is EXIT-LEFT and σ′ is STAY, then {ξu
σ , Inv(Kσ′)} is a semi-separatrix set;6. If σ and σ′ are STAY 
y
les, then {Inv(Kσ), Inv(Kσ′)} ∈ Sep.Proof. All the above 
ases follow dire
tly from the de�nition of ea
h di�erentkind of simple 
y
le and the 
hara
terization of Jordan 
urves for surfa
es;all the above pairs of 
losed 
urves are Jordan 
urves. For la
k of spa
e wewill prove here only the 
ase 1 for a torus, the other 
ases being similar.1. The hypothesis Sg(d.ĉσ) = Sg(d.ĉσ′) guarantees that the inner partsof σ and σ′ lie in a same subset of M delimited by ξl

σ and ξu
σ′ (seeFig. 6 for examples of su
h 
y
les). Let KB be the open set delimitedby the 
losed 
urves ξl

σ and ξu
σ′ and 
ontaining the inner part of σand σ′. Let KA = M \ ({ξl

σ, ξ
u
σ′} ∪ KB) (hen
e, KA ∩ KB = ∅). Weprove that for any traje
tory ξ, with ξ(0) ∈ KB, ∀t > 0 · ξ(t) 6∈ KA.Considering the planar representation, by the Jordan 
urve theorem,the only way to leave KB is traversing one of the dire
ted edges, ξl

σor ξu
σ′ . By de�nition of KB, EXIT-LEFT and EXIT-RIGHT, for any

t′ ≥ 0, ξ(t) 6∈ ξl
σ and ξ(t) 6∈ ξu

σ′ , whi
h implies that ∀t > 0 · ξ(t) ∈ KB;thus, ∀t > 0 · ξ(t) 6∈ KA.The proof may be generalized to a 
onne
ted sum of tori.Noti
e that for 
y
les involving dire
ted edges on proje
tive planes the 
aseis slightly di�erent, due to their �twisted� nature. It is possible, however, togive a similar result as the previous theorem, taking into a

ount the 
losed
urves whi
h are not Jordan 
urves. Noti
e that in a proje
tive plane it is notpossible to draw two (or more) disjoint 
losed 
urves 
ontaining one dire
tededge.Theorem 9. Let M be an SPDI2m de�ned on a (topologi
ally equivalent sur-fa
e to a) proje
tive plane and let σ = e1 . . . ene1 be a simple 
y
le 
ontainingat least two di�erent dire
ted edges, then the following hold:1. If σ is EXIT-RIGHT then {ξl
σ} is a semi-separatrix set (�ltering tra-je
tories from �left� to �right�);2. If σ is EXIT-LEFT then {ξu

σ} is a semi-separatrix set (�ltering traje
-tories from �right� to �left�);3. If σ is STAY, then set 
ontaining the invarian
e kernel Inv(Kσ) is aseparatrix set, i.e. {Inv(Kσ)} ∈ Sep.15



Proof. The hypothesis of σ 
ontaining at least two di�erent dire
ted edges,ex
ludes all the 
losed 
urves whi
h are not Jordan 
urves (as C1 and C2 inFig. 3-(b)). We prove here only the �rst 
ase, the others being similar.1. Let KB be the open set delimited by the 
losed 
urve ξl
σ and 
ontainingthe inner part of σ. Let KA = M\ ({ξl

σ}∪KB) (hen
e, KA ∩KB = ∅).We prove that for any traje
tory ξ, with ξ(0) ∈ KB, ∀t > 0 · ξ(t) 6∈ KA.Considering the planar representation, by the Jordan 
urve theorem,the only way to leave KB is traversing one of the dire
ted edges or ξl
σ.By de�nition of KB and EXIT-RIGHT, for any t′ ≥ 0, ξ(t) 6∈ ξl

σ, whi
himplies that ∀t > 0 · ξ(t) ∈ KB; thus, ∀t > 0 · ξ(t) 6∈ KA.Remark. Noti
e that the restri
tion of 
ontaining at least two di�erentdire
ted edges in the statement of Theorem 9 is to avoid Jordan 
urves like
C1 and C2 in Fig. 3-(b). However, this shows that we are not able todistinguish a 
urve like C3 in Fig. 3-(
) (whi
h 
ould de�ne a separatrix set)from the 
losed 
urve C2 in Fig. 3-(b) (whi
h 
annot de�ne a separatrixset). Our result is thus 
orre
t but not 
omplete (we do not identify all theseparatrix sets).An algorithm for 
omputing (semi-) separatrix sets for SPDIs de�ned onsurfa
es follows from the above theorems.5 Final Dis
ussionWe have given an automati
 pro
edure to obtain all the viability, 
ontrollabil-ity and invarian
e kernels of simple 
y
les of polygonal di�erential in
lusionsystems de�ned over surfa
es (SPDI2m). We have also provided an algorithmfor 
omputing separatrix sets for su
h systems. While the 
omputation ofthe above-mentioned kernels is parameterized by a single simple 
y
le, it isnot the 
ase for separatrix sets. For the latter we 
ould need two simple 
y-
les sharing exa
tly the same dire
ted edges and disjoint on the non-dire
tededges. In all the 
ases the algorithms given depend only on the 
omputationof the �x-points of simple 
y
les and all the �te
hnology� for obtaining su
hobje
ts is based on the analysis of SPDIs [ASY01, S
h02, S
h04℄.We have here only 
omputed separatrix sets for surfa
es topologi
ally equiv-alent to spheres, proje
tive planes and 
onne
ted sum of tori. We have not
hara
terized su
h sets for 
onne
ted sum of proje
tive planes; we believethis may be done but probably making use of more 
omplex topologi
alnotions that the ones used in this work. Moreover, we have given only su�-
ient 
onditions for 
omputing the separatrix sets of proje
tive planes, whi
h16



means we are not able to 
ompute all the separatrix sets (see last Remarkon previous Se
tion). For providing also ne
essary 
onditions for dete
tingseparatrix sets we need to give a better 
hara
terization of Jordan 
urveson su
h surfa
es. This 
ould be given, for instan
e, taking into a

ount theimproper points (i.e. points on a M-dire
ted edge) and 
onsidering the formof traje
tories on their neighborhood.The de
idability of the rea
hability problem for SPDI2ms is an open question[AS02℄. However the result of this work may be further explored to givepartial (or semi-) de
ision pro
edures for solving the rea
hability problem for
SPDI2ms. The assumption of 
onsidering surfa
es without boundary is not arestri
tion of our result, but was introdu
ed to simplify the presentation.A
knowledgments. We are indebted to Zbigniew Fiedorowi
z for his 
lar-ifying 
omments on the Jordan 
urve theorem for surfa
es and on the de�-nition of genus.
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