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Abstract

In this paper, we propose a probabilistic extension of the Creol modeling lan-

guage, called PCreol, for which we give the operational semantics in Probabilistic

Rewrite Logic. We give details on the implementation of a prototype PCreol inter-

preter, executable in Maude, on top of the existing one for Creol. We also achieved

the integration of PCreol with the VeStA tool, which allows for statistical model

checking and statistical quantitative analysis of PCreol programs. We give two

example PCreol programs and show how VeStA can be used to study their prop-

erties. The paper is concluded with a number of future research directions. 1

1 Introduction

Software systems of today are often distributed, consisting of independent and concur-
rently executing units which communicate over networks of different quality, and which
are supposed to work in open and evolving environments. It is non-trivial to design,
model and program such systems and in particular to analyze system properties and
reliability. The high degree of nondeterminism makes model checking difficult. For such
systems, non-functional properties expressing probabilistic behaviour are valuable.

At the modeling level there is a need for high-level programming constructs making
interaction and process control more manageable. And there is a need for methodology
and tools that can be used to investigate system properties and robustness. Creol, short
for Concurrent, Reflective, Object-Oriented Language, is an executable modeling and
programming language introduced in [17], meeting these challenges. It is tailored for
modeling software systems made up of physically distributed components, each running
on its own processor and communicating with one another through asynchronous method
calls. A Creol system runs in an open environment in which components may appear
or disappear, while some components may even change their functionality, during their
execution. The language features conditional and unconditional processor release points,
allowing each object to suspend its execution until a later time and execute another
(enabled) process.

The main aim of our work is to extend Creol’s syntax and semantics with probabilis-
tic features, in order to be able to model realistic behaviour of open distributed systems,
such as lossy communication network, independent processor speeds, components run-
ning random algorithms, or an open environment exhibiting probabilistic behaviour.

1Partially supported by the Nordunet3 project “COSoDIS – Contract-Oriented Software Develop-
ment for Internet Services” (http://www.ifi.uio.no/cosodis/).
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This extension is given the name PCreol, which is short for Probabilistic Creol. We
introduce the following new syntactic constructs: a command for generating pseudo-
random numbers, a probabilistic choice operator, random assignment, lossy inter-object
communication and probabilistic object creation. We also give their operational seman-
tics in terms of probabilistic rewrite theories [20].

Currently, model checking of Creol programs can only be achieved through Maude’s
LTL model checker and its breadth-first state exploration facilities. The disadvantage
is that even average-sized Creol programs lead to state space explosion, making it in-
feasible to model check them through Maude. A possible alternative is to entirely give
up on using Creol to implement the model and instead write its low-level specification
directly in Maude. But distributed, object-oriented models in Maude also lead to state
explosion problems. Therefore, it would be more beneficial to continue using Creol’s
high-level, object-oriented programming paradigm, in combination with a model check-
ing tool that scales well with the size of the model. Following this direction, we have
made an integration of PCreol with VeStA ([26], [27], [28]), which allows for probabilis-
tic reasoning on PCreol programs, via statistical model checking against Continuous
Stochastic Logic [4] formulae and statistical quantitative analysis against queries ex-
pressed in QuaTEx, short for Quantitative Temporal Expressions [2]. This integration
is essentially achieved by refining the original Creol operational semantics, so that rep-
resentative runs of a Creol program are more easily obtained through discrete-event
simulations and the model checking problem of large models becomes feasible through
statistical model checking. The refinement process includes adding an explicit notion
of time to the global configuration of the program and scheduling objects to execute
at random time instants. This resolves all nondeterminism in the interpreter, allowing
VeStA to run discrete-event simulations and do statistical analysis of PCreol programs.

The research report is structured as follows. Section 2 contains a few preliminaries on
probabilistic rewrite logic and gives a short overview of the syntax and semantics of the
Creol programming language. We then proceed with the main contribution of this work
in Section 3, namely extending the syntax and semantics of Creol with probabilities.
Thus, we give the operational semantics of PCreol in probabilistic rewrite logic. Section
4 gives details on the actual Maude implementation of the PCreol interpreter, as well as
a few examples of PCreol programs, showing how they can be statistically model checked
and how quantitative information can be extracted from them using the VeStA tool.
In Section 5 we discuss related projects and the features that make PCreol different from
them, while Section 6 concludes the report with the identification of a number of topics
for future research.

2 Preliminaries

There are several reasons why the semantic framework of probabilistic rewrite theories
is one of the most suitable when defining the formal semantics of our proposed prob-
abilistic extension to Creol. First of all, [16] introduces Creol’s operational semantics
using rewrite logic, which can be seen as a particular case of probabilistic rewrite logic.
Therefore, the framework that we use allows us to formulate a natural probabilistic
extension to Creol’s operational semantics, in which all of Creol’s operational rules are
kept the same, without the need to redefine them. Also, [20] describes probabilistic
rewrite theories as an unifying semantic framework for several models of probabilistic
systems. They show that certain mappings exist and that it is possible to implement
algorithms that convert probabilistic rewrite logic specifications into specifications ex-
pressed in different formalisms. In theory, this would allow the use of existing tools like
PRISM [22] or PEPA [29] in order to model check PCreol programs. However, it also
requires implementing an algorithm that converts the current Maude source code of the
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Creol interpreter to match the input language of these tools. We consider this beyond
the scope of our paper and suggest it as a topic of future research. The point that
we want to make is that using probabilistic rewrite theories to define the operational
semantics of PCreol saves a lot of time and effort, only requiring the implementation of
newly added operational rules, while the source code for the rest of the interpreter stays
the same. In this respect, the implementation of our probabilistic extension to Creol
can be seen as a patch to the Creol interpreter, making it easy to keep in sync with the
latest version of Creol. The remainder of this section introduces probabilistic rewrite
theories and provides an overview of the Creol programming language, emphasizing on
the features that we extend to the probabilistic setting in Section 3.

2.1 Probabilistic Rewrite Theories

A membership equational theory [23] is a pair (Σ, E), with Σ its signature comprised of a
set K of kinds, Sk a set of sorts for each k ∈ K and a set of function symbols of the form
f : k1 . . . kn → k, where k, k1, . . . , kn ∈ K; the set E contains membership equational
logic sentences [23], i.e. conditional Σ-equations and Σ-memberships of the form

(∀X) t = t′ ⇐

[

n
∧

i=1

(ui = ei)

]

∧

[

m
∧

i=1

(wi : si)

]

, (1)

(∀X) t : s ⇐

[

n
∧

i=1

(ui = ei)

]

∧

[

m
∧

i=1

(wi : si)

]

, (2)

correspondingly, where n, m are positive integers, the symbols t, t′, u1, u2, . . . , un,
w1, w2, . . . , wm represent terms, X denotes the variables in these terms and s1, s2, . . . , sm
are sorts. The algebra of terms associated with the signature Σ is denoted by TΣ.

A membership equational theory (Σ, E) together with a collection of structural ax-
ioms A generate an initial algebra TΣ,E∪A. Provided that E is terminating, confluent
and sort-decreasing modulo A [7], let CanΣ,E/A be the algebra of canonical forms, i.e.
fully simplified terms, which is isomorphic to the initial algebra TΣ,E∪A. If t is a fully
simplified term w.r.t. the set of equations E, let [t]A be its A-equivalence class. Given
a collection of variables X , a mapping [θ]A : X → CanΣ,E/A is called an E/A-canonical
ground substitution for X . We use the notation [θ]A to emphasize that E/A-canonical
ground substitutions are induced by ordinary substitutions θ : X → TΣ, provided that
θ(x) is fully simplified w.r.t. the set of equations E modulo A, for each variable x ∈ X .
Let CanGSubstE/A(X) be the set of all E/A-canonical ground substitutions associated
with the set of variables X .

We now introduce a few notions from probability theory, which are needed later. A
σ-algebra on a set Ω 6= ∅ is a set F ⊆ 2Ω with ∅ ∈ F , which is closed under complement
and under finite or countably infinite unions. The empty set and the power set 2Ω

are trivial examples of σ-algebras on Ω. Given a σ-algebra F on a set Ω, a probability
measure on F is a function P : F → [0, 1] with the properties that P (Ω) = 1 and
P (∪i∈IAi) =

∑

i∈I P (Ai), for all finite or countably infinite collections {Ai}i∈I ⊆ F of
pairwise disjoint sets. Let PFun(Ω,F) be the set of all probability measures defined on
the σ-algebra F over Ω. A probability space is a triple (Ω,F , P ), where F is a σ-algebra
on Ω and P : F → [0, 1] is a probability measure on F ; the set Ω is also known as the
sample space, while the elements of F are called events.

A rewrite theory is a triple (Σ, E,R), with (Σ, E) a membership equational theory
and R a collection of conditional rewrite rules of the form

t(X) −→ t′(X) if C(X), (3)
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where t(X) and t′(X) are terms of the same kind and C(X) is a condition given by a
conjunction of equations, memberships or rewrites referring to the variables in X . A
probabilistic rewrite theory is a tuple (Σ, E ∪ A,R, π), where (Σ, E ∪ A,R) is a rewrite
theory with rules of the form

t(X) −→ t′(X,Y ) if C(X), (4)

the set X contains the variables in t, Y represents the variables in t′ that are not in t,
C(X) is a conjunction of Σ-equations and Σ-memberships with variables taken from X
and

π : R→ PFun(CanGSubstE/A(Y ),Fr)
JCK (5)

is a function which assigns to each rule r ∈ R a mapping

πr : JCK→ PFun(CanGSubstE/A(Y ),Fr), (6)

where
JCK = { [µ]A ∈ CanGSubstE/A(X) ; E ∪A ⊢ µ(C) }, (7)

is the set of all E/A-canonical ground substitutions for X that satisfy the condition C
and Fr is a σ-algebra on CanGSubstE/A(X). A probabilistic rewrite rule r ∈ R can then
be given using the following syntax:

t(X) −→ t′(X,Y ) if C(X) with probability Y := πr(X). (8)

If CanGSubstE/A(X) = ∅ due to Y being empty, we say that πr(X) defines a trivial
distribution. This happens in the case of standard rewrite rules, without any probabilities
assigned to them. By allowing trivial distributions, probabilistic rewrite theories can
express both nondeterministic and probabilistic behaviour of a system.

2.2 Overview of Creol

The aim of this section is to provide a brief introduction to the syntax and operational
semantics of the Creol object-oriented programming language, which we extend with
probabilistic features in Section 3. For a detailed introduction to Creol we refer to
[16]. A summary of the language syntax is given in Figure 1, as it also appears in [18].
The part of the syntax that we aim to extend is the syntactic category Stmt of Creol
statements.

The operational semantics of Creol is given in rewrite logic and its implementation
is executable through Maude [9]. The configuration of a Creol program consists of a
multiset of objects, classes and messages, following the Actor model proposed in [3],
allowing the specification of actors that execute local tasks and communicate through
asynchronous message passing. We use empty syntax, i.e. whitespace, to denote the
associative and commutative multiset concatenation operator. At each execution step,
the Creol program makes a transition from one configuration to another, which results
from all possible local transitions between its subconfigurations. Local transitions of the
program are expressed as conditional rewrite rules of the form:

subconfiguration1 −→ subconfiguration2 if condition. (9)

Creol objects are denoted by constructs of the form

〈 O : Ob | Cl, Pr, PrQ, Lvar, Att, EvQ, Lcnt 〉, (10)

where O is the object’s identifier, Cl is its corresponding class, Pr contains its active
process code and PrQ is a multiset of pending processes. Also, Att contains the object’s
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Syntactic categories

C, I, m ∈ Names

t ∈ Label

g ∈ Guard

p ∈ MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits I] begin {with I Sg} end

CL ::= class C [x : I] [inherits C [(e)]] [implements I][contracts I]

begin {var {x : I [:= e]}} M {with I M} end

M ::= Sg == [var {x : I [:= e]}; ] s

Sg ::= op m ([in x : I][out x : I])

g ::= b | t? | g ∧ g | g ∨ g

s ::= begin s end | s � s | x := e | x := new C [(e)]

| skip | if b then s [else s] end | while b do s end

| [t]![o.]m(e) | t?(x) | release | await g | [await][o.]m(e; x)

Figure 1: The syntax of Creol. The terms denoted by e, x, and s represent lists over
terms of the corresponding syntactic categories, the notation {. . .} represents lists over
larger syntactical elements, and [. . .] denotes optional elements. Elements in a list are
separated by a comma, while statements in a statement list are separated by semicolon.

variables and Lvar gives the values of these variables. Finally, EvQ is a multiset of
unprocessed messages and the value of Lcnt is used to identify method calls. Similarly,
a Creol class is defined using the syntax

〈 C : Cl | Par, Att, init, Mtds, Ocnt 〉, (11)

in which C is the class identifier, Par is the list of class parameters, Att is its list
of attributes, init contains the Creol code for the constructor of class C and Mtds is
the multiset of class methods including run, a special method that is automatically
executed after the class constructor. Finally, Ocnt gives the current number of instances
of class C. Messages sent between objects are the asynchronous invocation and the
asynchronous completion messages, with the syntax invoc(o1, o2, m, in) and comp(o1,
out), correspondingly. The meaning of such a pair of invocation and completion messages
is that object o1 calls method m of object o2, with arguments in and the result is stored
in the out parameter of the completion message. Note that we omit the object o1 sending
or receiving a message, whenever it is understood from the context.

Among the basic Creol statements we mention those which we extend to the prob-
abilistic setting: nondeterministic choice with the syntax s1 � s2, where s1 and s2 are
statement lists, object creation using the new operator, as well as asynchronous com-
munication with the syntax t!o.m(e), where o is the object whose method m is called
with parameter list e, and t is a label that can be used to query for the return value
of this method call, at some point in the future execution of the current object. The
label t is also called a future variable in [1]. We now give the operational semantics for
these Creol statements that we wish to extend. This is to observe what the operational
semantics for these statements was before extending it with probabilistic features. We
refer to [16] for a detailed and complete description of Creol’s operational semantics in
rewrite logic.

The semantics for the nondeterministic choice operator is given through the following
conditional rewrite rule, using the commutativity and associativity properties of this
operator,

〈 O : Ob | Pr : (s1 � s2) ; s3, PrQ : q, Lvar : l, Att : a 〉
−→
〈 O : Ob | Pr : s1 ; s3, PrQ : q, Lvar : l, Att : a 〉
if ready(s1, (a ; l), q)

where O is an arbitrary object and ready is a predicate whose value tells whether the
given process s1 is ready for execution, in the context of the variable bindings (a ; l)
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and the object’s pending processes multiset q. Notice that we omit irrelevant attributes,
in the style of Full Maude [9]. Thus, the previous rewrite rule applies to instances O of
any class, as the class attribute Cl is not included.

The new operator for object creation is given the following semantics

〈 O : Ob | Pr : (v := new C(e); s), Lvar : l, Att : a 〉
〈 C : Cl | Par : v, Att : a′, init : (s′, l′), Ocnt : n 〉
−→
〈 O : Ob | Pr : (v := C#n; s), Lvar : l, Att : a 〉
〈 C#n : Ob | Cl : C, Pr : v := eval(e, (a ; l)); s′; run,
PrQ : ε, Lvar : l′, Att : self 7→ C#n; v; a′, Lcnt : 1 〉
〈 C : Cl | Par : v, Att : a′, init : (s′, l′), Ocnt : next(n) 〉

where the operation new C(e) creates a new object of class C with parameters given by
e and eval(e, (a; l)) is a function which evaluates the expression list e in the context of
the list of variable bindings (a; l). Also, notice that the active process Pr of the newly
created object C#n contains a call to its corresponding class constructor s′, immediately
followed by a call to its run method. The next operation generates a fresh label, from a
given old label n.

The operational semantics for asynchronous invocation messages is given by the
rewrite rule

〈 O : Ob | Pr : t!x.m(e); s, Lvar : l, Att : a, Lcnt : n 〉
−→
〈 O : Ob | Pr : t := n; s, Lvar : l, Att : a, Lcnt : next(n) 〉
invoc(eval(x, (a; l)), m, (O n eval(e, (a; l))))

where n is the label value used to identify the future variable t. A separate rule takes
the invocation message into the process queue PrQ of the called object. Similarly, the
formal semantics for asynchronous completion messages is given through

〈 O : Ob | Pr : return(v); s, Lvar : l, Att : a 〉
−→
〈 O : Ob | Pr : s, Lvar : l, Att : a 〉
comp(eval((caller label v), (a; l)))

where caller is the object that made the call, label is the label value of the call, and v
contains the actual return values. A separate rule takes a completion message comp(O
n out) into the event queue EvQ of the calling object O, thereby enabling guards on a
label with value n.

In the following section, we generalize the previously mentioned rewrite rules to prob-
abilistic rewrite rules, also adding new syntax and semantics for a random assignment
operation.

3 Syntax and Semantics of PCreol

First of all, notice that the entire Creol operational semantics given in [16] can be directly
expressed as a probabilistic rewrite theory, where conditional rules of the form

subconfig1 −→ subconfig2 if condition,

in the original operational semantics, can be translated into probabilistic rewrite rules
of the form

subconfig1 −→ subconfig2 if condition with probability π0, (12)
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where π0 denotes a trivial distribution, as defined in Section 2.1. In other words, we are
able to extend the Creol interpreter to the probabilistic setting just by adding new rewrite
rules, without altering the existing ones, except when we decide to add probabilistic
features.

This section provides an overview of the main probabilistic features that extend the
syntax and semantics of Creol. Thus, in Section 3.1 we introduce the random keyword,
which allows generating pseudo-random numbers in Creol.

3.1 Generating Pseudo-Random Numbers

The Creol compiler recognizes the syntax random(i), where i is an arbitrary integer.
However, the existing version of the Creol interpreter gives this command the following
semantics, which is not very practical. The interpreter rewrites terms like random(i)

to the Maude term with the same syntax, but where the random keyword is taken
from the RANDOM Maude core module. Thus, the previous command returns the i-
th number in the sequence of pseudo-random numbers generated by Maude’s built-in
pseudorandom number generator, with respect to the initial random seed given through
the -random-seed command line parameter. This means that the integer parameter i
must be incremented each time a new pseudo-random number is needed.

We choose to give different semantics to random(i), namely that it generates a
pseudo-random number in the unit interval following an uniform distribution, i.e. all
values in [0, 1) have an equal chance to be sampled. Until a new version of the Creol
compiler adds support for a special command with this semantics, we use the construct
random(i) to generate a new pseudo-random number at each call, regardless of the value
of i.

3.2 Probabilistic Choice Operator

We first consider adding an infix probabilistic choice operator �p to the syntactic cat-
egory of Creol statements. This operator has the syntax s1 �p s2 where p ∈ [0, 1] is
a fixed real value in the unit interval and s1, s2 are two arbitrary lists of statements.
The informal semantics of s1 �p s2 is that, whenever it is encountered throughout the
control flow, the list of statements s1 is selected for execution with probability p, while
s2 is selected with probability 1 − p. However each list of statements is executed pro-
vided that it is ready, i.e. if its corresponding process may be waken up, which is checked
through the ready predicate. The following result emphasizes the differences between
this operator and the nondeterministic choice operator � in Creol.

Proposition 1. The probabilistic choice operator �p is not associative. Also, �p is
commutative if and only if p = 0.5.

Proof. Let p, q ∈ [0, 1] be two real numbers and consider s1, s2 and s3, three fixed
and arbitrary lists of Creol statements. In order to prove that �p is not associative,
it suffices to show that the probability p1 ∈ [0, 1] of selecting s1 in s1 �p (s2 �q s3)
is different from the probability p2 ∈ [0, 1] of selecting the same list of statements s1

in (s1 �p s2) �q s3. Since the two probabilistic choices �p and �q are independent
events, it follows from the axioms o probability theory that p1 = p, while p2 = pq. For
any value q 6= 1, the two values p1 and p2 become different, hence �p is not associative.

To prove the second part of the proposition, notice that the probability of selecting
s1 in s1 �p s2 is p, while the probability of selecting s1 in s2 �p s1 is 1 − p. Therefore
�p is commutative if and only if p = 1− p = 0.5.

8



Denote by BERNOULLI(p) an operation that samples from the Bernoulli discrete
probability distribution with parameter p, to return the value true with probability p
and false with probability 1 − p. If both statements in the probabilistic choice are
ready for execution, the formal semantics for the �p operator is given by the following
probabilistic conditional rewrite rule:

〈 o : Ob | Pr : (s1 �p s2) ; s3, Lvar : l, Att : a, EvQ : q 〉
−→
if B then

〈 o : Ob | Pr : s1 ; s3, Lvar : l, Att : a, EvQ : q 〉
else

〈 o : Ob | Pr : s2 ; s3, Lvar : l, Att : a, EvQ : q 〉
fi

if ready(s1, (a ; l), q) and ready(s2, (a ; l), q)
with probability B := BERNOULLI(p)

When only one of the statements is ready for execution, this statement is automati-
cally selected and the suspended one is dropped. This is achieved by simplification with
respect to the conditional equations

〈 o : Ob | Pr : (s1 �p s2) ; s3, Lvar : l, Att : a, EvQ : q 〉
=
〈 o : Ob | Pr : s1 ; s3, Lvar : l, Att : a, EvQ : q 〉
if ready(s1, (a ; l), q) and not(ready(s2, (a ; l), q))

for the case when only the first statement is ready, and

〈 o : Ob | Pr : (s1 �p s2) ; s3, Lvar : l, Att : a, EvQ : q 〉
=
〈 o : Ob | Pr : s2 ; s3, Lvar : l, Att : a, EvQ : q 〉
if not(ready(s1, (a ; l), q)) and ready(s2, (a ; l), q)

when only the second statement is ready. The case when neither one of the statements
is ready for execution is not handled, neither through conditional rewrite rules nor via
conditional equations. Hence, a probabilistic choice operation is only made as soon as
at least one of the statements becomes ready for execution.

In the following, we consider generalizing the probabilistic choice operator, motivated
by the need to naturally express random selection of a statement list from a set of
statement lists. For example, in order to randomly choose between four assignments
x := 3, x := 5, x := 7 and x := 11, each with an equal chance of being selected, the
binary probabilistic choice operator can be used as follows:

x := 3 �1/4 (x := 5 �1/3 (x := 7 �1/2 x := 11)). (13)

However, this does not naturally express the fact that the four assignments are selected
for execution with the same probability. Instead, the probabilities 1/4, 1/3 and 1/2 in
(13) need to be derived from the uniform distribution:

(

3 5 7 11
1/4 1/4 1/4 1/4

)

. (14)

A more natural solution is to consider a mixfix uniform probabilistic choice operator �u

that takes as input a variable number of statement lists and selects either one of them
for execution, each with equal probability. Thus, the fair selection statement (13) can
more easily be expressed using the �u operator as:

x := 3 �u x := 5 �u x := 7 �u x := 11. (15)
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Restricting to the case when all statements lists are ready for execution, the formal
semantics for the �u operator is given by the following conditional rewrite rule

〈 o : Ob | Pr : (s1 �u s2 �u . . . �u sn) ; s, Lvar : l, Att : a, EvQ : q 〉
−→
〈 o : Ob | Pr : pickUniform(s1 ; s2 ; . . . ; sn) ; s, Lvar : l, Att : a, EvQ : q 〉

if allReady(s1 ; s2 ; . . . ; sn, (a ; l), q)

where n ≥ 1 is a fixed, arbitrary positive integer and pickUniform(S) denotes an opera-
tion that picks one of the statement lists in S, uniformly at random. For brevity, we omit
here the operational semantics of pickUniform, but mention that it can also be given
through a probabilistic rewrite rule. The allReady predicate in the rule’s condition is a
variant of the ready predicate and it is true provided that all given lists of statements
s1, s2, . . . , sn are ready for execution. In the case when not all statements are ready
for execution, we simplify the uniform probabilistic choice statement via the following
conditional equation

〈 o : Ob | Pr : (s1 �u s2 �u . . . �u sn) ; s, Lvar : l, Att : a, EvQ : q 〉
=
〈 o : Ob | Pr : extractReady(s1 ; s2 ; . . . ; sn) ; s, Lvar : l, Att : a, EvQ : q 〉

if not(allReady(s1 ; s2 ; . . . ; sn, (a ; l), q)) and ready(si, (a ; l), q)

where the integer i ∈ {1, 2, . . . , n} is arbitrary and extractReady(sl) is an operation
that extracts the k ≥ 1 statement lists si1 , si2 , . . . , sik that are ready for execution in
the given list sl and returns the uniform probabilistic choice statement:

si1 �u si2 �u . . . �u sik . (16)

Notice that the condition ready(si, (a ; l), q) ensures that at least one of the statement
lists is ready for execution, in the initial uniform probabilistic choice statement. In the
case when there are no statements ready for execution, the process Pr is suspended.

The derivation of (13) becomes even more awkward in the case of non-uniform distri-
butions, i.e. when the statement lists have different chances of being selected. To avoid
this derivation, we introduce a mixfix generalized probabilistic choice operator that takes
as input a list of values in [0, 1] summing up to a value in [0, 1], as well as the statement
lists whose probabilities of being selected are given by these values. Thus, the binary
probabilistic choice operator is generalized to n ≥ 3 statements, with the syntax

s1 �p1 s2 �p2 . . . sn−1 �pn−1
sn (17)

for values p1, p2, . . . , pn−1 ∈ [0, 1] such that
∑n−1

i=1
pi ≤ 1. The informal semantics for

this operator is a natural generalization both to the binary case n = 2 and to the case
of uniform random selection, when p1 = p2 = . . . = pn−1 = 1/n. Thus, whenever
an expression of the form (17) is encountered in the control flow, the statement list
si is selected with probability pi, for each i ∈ { 1, 2, . . . , n − 1}, provided that it is
ready for execution. The last statement list sn is selected for execution with probability
1 −

∑n−1

i=1
pi. Note that using parentheses in (17) to put together two statement lists

may cause the binary probabilistic choice operator to be used instead. Therefore, we
recommend that an expression involving the generalized probabilistic choice operator
should contain no parentheses.

As an example, consider the problem of expressing the random selection from the
four assignments considered before x := 3, x := 5, x := 7 and x := 11, where this time
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the probabilities for assigning each of the given values to the variable x are given by the
following non-uniform distribution:

(

3 5 7 11
1/6 1/3 1/6 1/3

)

. (18)

In this case, the generalized probabilistic choice operator can be used as follows:

x := 3 �1/6 x := 5 �1/3 x := 7 �1/6 x := 11. (19)

Again restricting to the case when all statements lists are ready for execution, the
operational semantics for this operator is given by the following probabilistic conditional
rewrite rule

〈 o : Ob | Pr : (s1 �p1
s2 �p2

. . . sn−1 �pn−1
sn) ; s, Lvar : l, Att : a, EvQ : q 〉

−→
〈 o : Ob | Pr : pickRandom(s1 ; s2 ; . . . ; sn, p1 ; p2 ; . . . ; pn, U) ; s,

Lvar : l, Att : a, EvQ : q 〉

if allReady(s1 ; s2 ; . . . ; sn, (a ; l), q)
with probability U := UNIFORM(0, 1)

where n ≥ 1 is a positive integer, pn := 1 −
∑n−1

i=1
pi and UNIFORM(a, b) denotes an

operation that samples from the uniform probability distribution over the interval [a, b).
The pickRandom operation takes as parameters a list of n statement lists s1 ; s2 ; . . . ; sn,
a list of probabilities, i.e. a distribution p1 ; p2 ; . . . ; pn, as well as a numerical value
U ∈ [0, 1) and returns the statement sj with the property that U ∈ Ij , where Ij ⊆ [0, 1)
is the interval defined through

Ij =

[

j−1
∑

i=1

pi,

j
∑

i=1

pi

)

, (20)

for all j ∈ {1, 2, . . . , n}. The intuition is that the pickRandom operation first divides
the unit interval into subintervals of length pi of the form (20), corresponding to the
probability of selecting si, for each i ∈ {1, 2, . . . , n}. Then it returns the statement list
corresponding to the subinterval containing the given value U.

Similar to the uniform probabilistic choice operator �u , we simplify the generalized
probabilistic choice statement, in the case when at least one statement is not ready for
execution, with respect to the following conditional equation

〈 o : Ob | Pr : (s1 �p1
s2 �p2

. . . sn−1 �pn−1
sn) ; s, Lvar : l, Att : a, EvQ : q 〉

=
〈 o : Ob | Pr : extractReady(s1 ; s2 ; . . . ; sn, p1 ; p2 ; . . . ; pn) ; s,

Lvar : l, Att : a, EvQ : q 〉

if not(allReady(s1 ; s2 ; . . . ; sn, (a ; l), q)) and ready(si, (a ; l), q)

where i ∈ {1, 2, . . . , n} is an arbitrary integer and pn := 1−
∑n−1

i=1
pi. The extractReady

operation in this equation is a generalization of the one used for uniform probabilistic
choice, with the following semantics. It first extracts the k ≥ 1 statement lists si1 , si2 ,
. . . , sik that are ready for execution and returns the generalized probabilistic choice
statement

si1 �p′i1
si2 �p′i2

. . . �p′ik−1

sik (21)

where

p′ir =





k
∑

j=1

pij





−1

pir , (22)
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for each r ∈ {1, 2, . . . , k}, so that
∑k

j=1
p′ij = 1 and the axioms of probability theory

hold. As in the case of uniform probabilistic choice, the generalized probabilistic choice
operation is only made as soon as at least one of the statements becomes ready for
execution.

3.3 Random Assignment

We add an uniform random assignment operator with the syntax

x := random([e1, e2, . . . , en]), (23)

that randomly selects an expression from the list E = [e1, e2, . . . , en] and assigns it
to the specified variable x, where each expression in E has an equal chance of being
selected. Thus, the fair selection statement (15) using the uniform probabilistic choice
operator �u can be more easily expressed as:

x := random([3, 5, 7, 11]). (24)

In order to define the formal semantics of the uniform random assignment operator, we
make use of the pickUniform operator defined in the previous section:

〈 o : Ob | Pr : (x := random([e1, e2, . . . , en], [p1, p2, . . . , pn]) ; s,
Lvar : l, Att : a, EvQ : q 〉

−→
〈 o : Ob | Pr : pickUniform(x := e1 ; x := e2 ; . . . ; x := en)) ; s,

Lvar : l, Att : a, EvQ : q 〉

This operator may also be generalized, by considering arbitrary, possibly non-uniform
distributions over the list E. The syntax for this generalized random assignment is

x := random([e1, e2, . . . , en], [p1, p2, . . . , pn]), (25)

where pi ∈ [0, 1] denotes the probability of assigning ei to x, for each i ∈ {1, 2, . . . , n}.
Also, by the axioms of probability theory, it must also be the case that

∑n
i=1

pi = 1.
Similar to uniform random assignment, we can use the generalized random assignment
in order to express the non-uniform random assignment (19) in a more compact way:

x := random([3, 5, 7, 11], [1/6, 1/3, 1/6, 1/3]). (26)

Also, its formal semantics is similar to that of the uniform random assignment operator:

〈 o : Ob | Pr : (x := random([e1, e2, . . . , en], [p1, p2, . . . , pn]) ; s,
Lvar : l, Att : a, EvQ : q 〉

−→
〈 o : Ob | Pr : pickRandom(x := e1 ; x := e2 ; . . . ; x := en, p1 ; p2 ; . . . ; pn, U) ; s,

Lvar : l, Att : a, EvQ : q 〉

with probability U := UNIFORM(0, 1)

Note. At first glance, it may seem that the random assignment operator is a particular
case of generalized probabilistic choice, in which the statements are assignments of the
form x := e, for each e ∈ E and whose distribution is given by the values p1, p2, . . . , pn.
Indeed, the uniform random assignment (23) can be expressed as

x := e1 �u x := e2 �u . . . �u x := en (27)

while the more general (25) can be written:

x := e1 �p1 x := e2 �p2 . . . x := en−1 �pn−1
x := en. (28)
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However, there is an important difference between the two operators, namely that
the random assignment can take as parameter a list E whose value is determined at
execution-time, while the probabilistic choice can only be given lists of expressions dur-
ing implementation. It also becomes more and more suitable to use the shorter random
assignment syntax as the number of expressions in the list E grows larger.

3.4 Lossy Communication and Component Failures

We now pose the problem of modifying the operational semantics of Creol to specify
lossy network communication. In order to achieve this, the semantics for the invocation
and completion messages need to be extended, so that these messages are sent from
one component to another, with the possibility of being lost in the process. Thus, the
operational semantics for lossy communication is obtained by redefining the rewrite
rules for lossless communication and has two cases, depending on the nature of the
message. Lossy invocation with α ∈ [0, 1] probability of successful message delivery has
the following semantics

〈 o : Ob | Pr : t!x.m(e); s, Lvar : l, Att : a, Lab : n 〉
−→
if B then

〈 o : Ob | Pr : t := n; s, Lvar : l, Att : a, Lab : next(n) 〉
invoc(eval(x, (a; l)), m, (o n eval(e, (a; l))))

else

〈 o : Ob | Pr : s, Lvar : l, Att : a, Lab : n 〉
fi

with probability B := BERNOULLI(α)

where n is a new label used to identify the future variable t. Also, lossy completion with
β ∈ [0, 1] probability of successful message delivery is given by the probabilistic rewrite
rule:

〈 o : Ob | Pr : return(v); s, Lvar : l, Att : a 〉
−→
if B then

〈 o : Ob | Pr : s, Lvar : l, Att : a 〉
comp(eval((caller label v), (a; l)))

else

〈 o : Ob | Pr : s, Lvar : l, Att : a 〉
fi

with probability B := BERNOULLI(β)

Note: As a generalisation, we consider the case when the probabilities α, β ∈ [0, 1]
depend on the class of the object making the invocation or sending the completion mes-
sage. In other words, the syntax for class declarations should be extended to include
these parameters, so that all instances of a class C with parameters αC , βC are able
to successfully deliver invocation messages with probability αC and they have βC prob-
ability of success when replying with a completion message. A possible use of such a
generalisation is in relating the probabilities α and β to the geographical location of
the caller and of the callee in an invocation or completion message, considering that
this position information is stored in the list of attributes of each of the two objects’
classes. For example, in wireless sensor networks, we may argue that the probability of
message loss is directly proportional to the distance between the two sensors attempting
to communicate.

We may also model probabilistic object creation, i.e. the fact that sometimes creating
an instance of a class may fail, by adding probabilities to the semantics of the new oper-
ator. However, this is mostly syntactic sugar since the same probabilistic behaviour can
be obtained through a probabilistic choice between a skip statement and the statement

13



containing the new operator. Denoting by γ ∈ [0, 1] the probability of successfully cre-
ating new instances of any class, the modified operational semantics of the new operator
is given through:

〈 O : Ob | Pr : (v := new C(e); s), Lvar : l, Att : a 〉
〈 C : Cl | Par : v, Att : a′, init : (s′, l′), Ocnt : n 〉
−→
if B then

〈 O : Ob | Pr : (v := C#n; s), Lvar : l, Att : a 〉
〈 C#n : Ob | Cl : C, Pr : (v := eval(e, (a; l)); s′; run,
PrQ : ε, Lvar : l′, Att : self 7→ C#n; v; a′, Lcnt : 1 〉
〈 C : Cl | Par : v, Att : a′, init : (s′, l′), Ocnt : next(n) 〉

else

〈 O : Ob | Pr : s, Lvar : l, Att : a 〉
〈 C : Cl | Par : v, Att : a′, init : (s′, l′), Ocnt : n 〉

fi

with probability B := BERNOULLI(γ)

Note: We only considered the case when γ is a global parameter, no matter the class
given as parameter to the new operator. However, γ can be made to depend on the
given class, by extending the syntax for class declarations to include this parameter, in
a similar way as discussed for the case of lossy communication.

4 Implementation

We implemented a prototype PCreol interpreter on top of the current one for Creol, to
test part of the features in the operational semantics described in Section 3. The features
that we decided to implement and test were the pseudo-random number generation, bi-
nary probabilistic choice, lossy communication (invocation, completion) and probabilis-
tic object creation. However, this section is mainly devoted to describing the Maude
implementation of the stochastic time model that we use, allowing the VeStA tool
to statistically model check and statistically analyze quantitative properties of PCreol
programs.

We start with an overview of PMaude and VeStA, describe the implementation of
the stochastic time model and finish with examples of PCreol programs, showing how
VeStA can be used to analyze them.

4.1 Overview of PMaude and VeStA

The paper [21] introduces PMaude as an interpreter for finitary probabilistic rewrite
theories. However, even if having its own homepage [25], where its full source code
listing can be found, it seems that the PMaude interpreter is not officially maintained
since around 2003 and is not compatible with the latest versions of Maude and Full
Maude. This is the reason why we could not provide an implementation for the opera-
tional semantics of PCreol, based on PMaude, which was our initial plan. PMaude is
reintroduced in [2] as a specification language for general (not just finitary) probabilistic
rewrite theories, which are usually not directly executable in Maude. This language al-
lows to express probabilistic, as well as nondeterministic behaviour and its probabilistic
conditional rewrite rules have the general form given by (8):

t(X) −→ t′(X,Y ) if C(X) with probability Y := π(X).

These rules are nondeterministic, as the variables Y in their right-hand side do not
appear in the left-hand side, rendering them nonexecutable in Maude. However, Maude
can be used to simulate a PMaude specification, provided that all variables Y , in rules
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such as the previous one, are replaced with actual values sampled from the probability
distribution π.

The same paper [2] introduces an Actor PMaude module, that can be used to create
executable PMaude specifications, which are free from any source of nondeterminism.
This is achieved by considering the current state of the system as a multiset of actors and
messages, in which time is made explicit through a global floating point value. When
creating an executable PMaude specification from a nondeterministic one, all rewrite
rules in the original specification must be scheduled to execute at random moments of
time, in the Actor PMaude version, with the interval between two consecutive exe-
cutions following an exponential probability distribution. Recall that the exponential
distribution has cumulative distribution function P (x) = 1−e−λx, where λ ∈ R is called
the rate parameter. We denote by Exp(λ) the exponential probability distribution with
rate parameter λ and use the notation X ∼ Exp(λ) in order to specify that the random
variable X is sampled from Exp(λ).

The VeStA tool ([26], [27], [28]) can be used to generate execution traces from
executable PMaude modules based on Actor PMaude, in which all nondeterminism
has been resolved. It allows to statistically model check these modules against proba-
bilistic temporal formulae expressed in CSL (Continuous Stochastic Logic) [4], giving
an alternative to Maude’s search and model checking commands. VeStA also allows
the quantitative analysis of executable PMaude modules, via quantitative temporal ex-
pressions given in the QuaTEx logic [2]. These expressions relate the current state of
the system to a numerical quantity, through a formula expressed in Maude. The average
value of such an expression is estimated, within a certain confidence interval. Although
taking inspiration from Probabilistic Computation Tree Logic (PCTL) [11], QuaTEx
is more expressive than the latter.

4.2 A Stochastic Time Model for PCreol

The following paragraphs give precise mathematical meaning to the mechanism that
we use to schedule the execution of PCreol objects, also implemented in the Actor
PMaude module. We start with a question that forms the basis of our stochastic time
model, namely what defines an interleaving? To be more precise, consider that we have
an object-based model, in which the global configuration of the system is a multiset of
objects and messages. As in Creol, consider that each object has a sequence of statements
to execute and that it runs on its own microprocessor. In order to simplify notation and
put more emphasis on the concept of interleaving, assume that the set {Oi}i∈I of all
objects in the system’s configuration always stays the same, i.e. no objects are created
or destroyed at execution time. Propositions 2 and 3 that follow can be generalized to
handle the case when the set {Oi}i∈I changes.

The execution traces of the concurrent system are represented by interleavings of
one-statement executions performed by different objects. A natural way of defining
interleavings is by means of a sequence {en}n≥0 in which the term en ∈ I represents
the index of the object executing at step n in the system’s evolution, for each n ∈ N,
and I is a nonempty index set such that {Oi}i∈I is the set of all objects in the global
configuration. The following result provides an alternative to the previous definition:

Proposition 2. Interleavings can be specified through sequences of increasingly ordered
instants of time when each individual object Oi executes its statements, for each i ∈ I.

Proof. Consider a function f : I → R
N that maps each object index i ∈ I into the

sequence of time values

f(i) =
{

ti1 < ti2 < . . . < tij < . . .
}

⊆ R (29)
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containing the time instants when object Oi executes its statements. We require that
f(i) ∩ f(i′) = ∅, for all i, i′ ∈ I with i 6= i′, i.e. no two objects execute at the same
instant of time. Let us now determine the union

f(I) =
⋃

i∈I

f(i) =
{

ti11 < ti22 < . . . < tinn < . . .
}

, (30)

where ik ∈ I and tikk denotes a term in the sequence f(ik), for all k ≥ 1. The sequence
{in}n≥0 then defines an interleaving, in the usual sense.

Standard Model checking goes through all possible interleavings of a concurrent pro-
gram, causing state space explosion. One possible solution to this problem is to obtain a
series of random interleavings by discrete-event simulation, i.e. by generating sequences
f(i) of random time values, for each i ∈ I, and using the proof of Proposition 2 to con-
struct the associated random interleavings. These can then be used in statistical model
checking and statistical quantitative analysis algorithms, as implemented in VeStA.

The next result provides a sufficient condition for the state space corresponding to
a concurrent object-based system to be fairly checked using statistical model checking.
The condition is that the holding times of all objects need to be exponentially distributed
with the same rate parameter. Denote by Exp(λ)N the set of all sequences {Xj}j≥0 of
independent and identically distributed random variables such that Xj ∼ Exp(λ) for all
j ≥ 0, i.e. all terms in the sequence follow an exponential distribution with rate λ ∈ R.

Proposition 3. Let λ > 0 be a fixed positive real number and assume that the holding
times of each object Oi follow an exponential distribution with rate parameter λ. Then
all objects have an equal chance to execute at all times.

Proof. Consider a function g : I → Exp(λ)N mapping each index i ∈ I into the sequence
of random, exponentially distributed holding times g(i) = {X i

j}j≥1 ∈ Exp(λ)N of object
Oi. For each i ∈ I, g(i) uniquely defines the sequence T (g(i)) := f(i) of time values

in (29) by setting tij =
∑j

k=1
X i
j, for each i, j ≥ 0. Therefore, the function g defines a

random interleaving T (g(I)) :=
⋃

i∈I T (g(i)) as given by equation (30). What we need to
prove is that in the sequence of random indices {in}n≥0 corresponding to T (g(I)), each
term follows a discrete uniform distribution over the index set I, i.e. Pr(in = i) = 1/|I|
for all i ∈ I and all n ≥ 0, where |A| denotes the number of elements of the set A.

Let n ∈ N be fixed and arbitrary. Considering that the system is currently at time
tinn , the holding time Ti of object Oi from this moment on is exponentially distributed
with parameter λ, for all i ∈ I. This follows from the memorylessness property of the
exponential distribution, i.e. if X ∼ Exp(λ) then

Pr(X > x+ α | X > x) = Pr(X > α), (31)

for all x, α ∈ R. To prove that all objects have an equal chance to execute after time
tinn , notice that

Pr(in+1 = i∗) = Pr(Ti∗ = min{Ti ; i ∈ I}) =
1

|I|
, (32)

for all i∗ ∈ I, from the properties of the exponential probability distribution and using
the fact that the holding times {Ti}i∈I are independent random variables.

4.3 Implementation of the Stochastic Time Model

We briefly give the implementation details for the stochastic time model described in
Section 4.2. Firstly, we need to make Float a subsort of the configuration, in order to
be able to explicitly specify time. Then we define execution marks and make them a
subsort of the configuration:
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subsort ExecMark < Configuration .

op execute(_) : Oid -> ExecMark .

We also define scheduled execution marks and make them a subsort of the configuration:

subsort ScheduledExecMark < Configuration .

op [_,_] : Float ExecMark -> ScheduledExecMark .

The scheduled and unscheduled execution marks form the main ingredient of our stochas-
tic time model, making it possible to quantify and resolve all nondeterminism in the Creol
interpreter. We then add a tick operation that makes the system evolve by unwrapping
the scheduled execution marks into unscheduled ones and rendering exactly one object
active

op tick : Config -> Config .

where Config is a sort whose terms are obtained from terms of sort Configuration by
adding a pair of curly brackets:

op {_} : Configuration -> Config [ctor] .

This is to ensure compatibility with the VeStA tool. The formal semantics of the tick
operation is the same as in the Actor PMaude model, selecting the next object for
execution in chronological order:

op tickAux : Float ExecMark Configuration -> Config .

var CF : Configuration .

vars T1 : Float .

vars E E1 : ExecMark .

eq tick( { [T, E] CF } ) = tickAux(T, E, CF) .

eq tick( { CF } ) = { CF } [owise] .

ceq tickAux(T, E, [T1 , E1] CF) = tickAux(T1, E1, [T , E ] CF) if T1 < T .

eq tickAux(T, E, CF T1) = { E CF T } [owise] .

Also to ensure compatibility with VeStA, we add an initial state term, giving the state
in which a PCreol program is initially found:

op initState : -> Config .

The initState term needs to be defined for each particular PCreol program. Finally,
in order to resolve all nondeterminism, we adjust the implementation of the original
Creol interpreter by adding execution marks in the right-hand sides of all rewrite rules.
For example, the rewrite rule giving the operational semantics for the skip statement is
changed from

rl

< O : C | Att: S, Pr: { L | skip ; SL }, PrQ: W, Lcnt: F >

=>

< O : C | Att: S, Pr: { L | SL }, PrQ: W, Lcnt: F > .

to
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rl

< O : C | Att: S, Pr: { L | skip ; SL }, PrQ: W, Lcnt: F >

execute(O) T

=>

< O : C | Att: S, Pr: { L | SL }, PrQ: W, Lcnt: F >

[T + sampleExpWithRate(1.0), execute(O)] T .

by adding an execution mark and also the global time to the right-hand side of the rule,
as well as adding a scheduled execution mark to its left-hand side in order to make the
new subconfiguration active at a later time, after a random interval of time has passed,
following an exponential probability distribution with rate parameter 1. This random
value is generated using the sampleExpWithRate operation in Maude. The other rewrite
rules are adjusted in a similar manner. Note that, in the current implementation the
rates corresponding to the holding times of all scheduled execution marks are equal to
1.

In order to fully integrate the new implementation of the Creol interpreter with the
VeStA tool, we add an operation giving the current time of the global configuration:

op getTime : Config -> Float .

eq getTime( { T CF:Configuration } ) = T .

More importantly, we define the predicates and valuations that map the current config-
uration of the PCreol program into a Boolean value and a floating point value, respec-
tively. Thus, consider a set of atomic propositions AP = { sat0, sat1, . . . , satn } and a
labeling function L : S → 2AP mapping each state s ∈ S of the Creol program into the
subset of atomic propositions L(s) ⊆ AP that are true in set s. This labeling function
is used in the statistical model checking process of VeStA and is implemented through
an operation

op sat : Nat Config -> Bool .

which allows us to determine L(s) by constructing the set { sati | sat(i, s) == true}.
Also, consider V1, V2, . . . , Vk : S → R a set of k ≥ 1 valuation functions. These are
implemented through an operation

op val : Nat Config -> Float .

which gives the value of Vi(s) as val(i, s), for all 1 ≤ i ≤ k.
After compiling a Creol program into its corresponding Maude specification, which is

executable using the Creol interpreter, the predicates, as well as the valuation functions
need to be added to the compiled code and explicitly defined by the user in order to de-
termine various properties of the Creol program, through statistical model checking and
statistical quantitative analysis with VeStA. The following section provides examples
of how this can be achieved.

4.4 Examples

In the following, we consider an example PCreol program which starts by creating an
instance of the Server class. In its turn, the Server object creates an instance of
the Client class and then calls its run method, which sends a number of 3 invocation
messages to the Client object, asking for the value of its attribute x. This attribute is
initialized to a random value in the constructor of the Client class. We also count the
number of successful invocation-completion pairs in the variable successes. The full
listing of this example is given below:
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interface Client

begin

with Any

op getPos(out res: Float)

end

class Client implements Client

begin

var x : Float

op init == x := random(0)

with Any

op getPos(out res: Float) == res := x

end

class Server

begin

var c : Client

var x : Float

var i : Int

var successes : Int

op init == c := new Client

op run ==

if c /= null then

i := 0;

successes := 0;

while i < 3 do

x := -1;

c.getPos(;x);

if x /= -1 then

successes := successes + 1

end;

i := i + 1

end

end

end

After compiling this PCreol program into its corresponding Maude specification, we
are ready to add the initial state term, as well as the predicates and the valuation
functions. We define the initial state term to be

eq initState = main(classes, "Server", emp) .

meaning that the execution of the PCreol program starts with creating an object of class
Server. We consider a single predicate that becomes true provided that the PCreol
program terminates. This happens as soon as there are no more scheduled execution
marks in the current global configuration. For the initial state, the termination predicate
is considered to be false. We give the Maude implementation for this predicate:

var conf : Configuration .

eq sat(0, { conf [T:Float, execute(O:Oid)] }) = false .

ceq sat(0, { conf }) = false if { conf } == initState .

eq sat(0, { conf }) = true [owise] .
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The single valuation function that we add to the compiled PCreol program is one which
gives the value of the successes attribute of the Server object, stored in the current
program configuration:

eq val(0, {< O:Oid : "Server" | Att: "successes" |-> int(I:Int),

S:Subst, Pr: P:Process, PrQ: M:MProc, Lcnt: N:Nat > conf}) = float(I:Int) .

eq val(0, {< O:Oid : "Server" | Att: "successes" |-> null,

S:Subst, Pr: P:Process, PrQ: M:MProc, Lcnt: N:Nat > conf}) = 0.0 [owise] .

where conf is an arbitrary term of sort Configuration. We are now ready for statis-
tical model checking and statistical quantitative analysis of the PCreol program, using
VeStA. We consider model checking the program against the CSL formula P≥0.9[♦<80 T ],
where T is the previously defined termination predicate. The meaning of this formula
is that the predicate T eventually becomes true in the first 80 units of time, with prob-
ability greater than or equal to 0.9. Indeed, this property holds as VeStA returns the
result:

Result: true

Running time: 20.999 seconds

States sampled: 1917

The QuaTEx query that we consider asks for the expected value of the previously
defined valuation function, i.e. for the value of the successes attribute as soon as the
program terminates:

value() = if { s.sat(0) } then { s.rval(0) } else # value() fi;

eval E[ value() ];

In the case when the probabilities α, β and γ are all equal to 1.0, for lossy commu-
nication and probabilistic object creation, i.e. when the program executes under ideal
conditions, the value returned by VeStA is 3, meaning that the Server object always
manages to receive a completion message from the Client, for each of its invocations.
Otherwise, this value would be strictly less than 3.

Let us now consider a more interesting example, also modeling the interaction be-
tween a client and a server. This time the first created object is an instance of class
Main. This instance, in turn creates a Server and a Client object. The Client class
is parameterized by an integer parameter value and a Server class parameter s, repre-
senting the server with which the client is going to communicate. The Server class has
an attribute v, storing its current value.

As soon as the Client object starts running, it executes a while loop of 10 iterations.
At each iteration the client makes a call to the server’s add or sub method with its
argument equal to the value parameter of the Client class. The server responds either
by adding or by subtracting its current value with the value parameter sent by the
client. A probabilistic choice is made between the two alternatives. In this example we
assigned a probability of 0.8 for selecting addition and a probability of 1− 0.8 = 0.2 for
selecting subtraction. In the following, we give a complete listing of the PCreol program:

interface Server

begin

with Any

op add_or_sub(in value: Int)

end
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interface Client

begin

end

class Server implements Server

begin

var v : Float

op init == v := 0

with Any

op add_or_sub(in value: Int) ==

v := v + value [0.8] v := v - value

end

class Client(value : Int, s: Server) implements Client

begin

var i : Int

op run ==

i := 0;

while i < 10 do

s.add_or_sub(value;);

i := i + 1

end

end

class Main

begin

var s : Server

var c : Client

op init ==

s := new Server;

c := new Client(1, s)

end

We use a similar QuaTEx query as in the previous example, asking for the expected
value of the Server object, as soon as the program terminates. VeStA gives the
following answer:

Result: 6.14

Running time: 82.344 seconds

States sampled: 15500

There is a mathematical interpretation for this example, namely that the value stored by
the Server object when the program terminates is equal to the value of a simple random
walk on the integer number line Z, starting at 0 (the value that the Server object is
initialized with in its constructor) and taking 10 unit steps, where each step is either
taken to the right with probability 0.8 (the addition) or to the left with probability 0.2
(the subtraction).

Result: true

Running time: 77.931 seconds

States sampled: 16318

We also consider another predicate G : S → {false, true} on the set of states of the
program that returns true provided that the server’s value is above −1 and false

otherwise
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ceq sat(1, { conf }) = true if val(0, { conf }) > -1.0 .

eq sat(1, { conf }) = false [owise] .

where conf is an arbitrary term of sort Configuration. We used VeStA to statistically
model check our program against the CSL formula P≥0.9[♦ G], with the meaning that
the server’s value eventually becomes greater than −1 with probability 0.9. Notice that
the ♦ operator that we use in this case is unbounded, i.e. it does not have any time
constraints, opposite to the previous example where we restricted the search to the first
80 time units. The result of the statistical model checking is

Result: true

Running time: 77.931 seconds

States sampled: 16318

which also agrees with the intuition that giving the positive steps in the random walk
a probability of 0.8, greater than that of the negative steps, makes it more likely that
the value of the random walk after 10 steps is found in the positive part of the interval
[−10, 10] than in its negative part.

5 Related Work

The generalized probabilistic choice operator, as well as the random assignment in
PCreol take inspiration from similar constructions in a probabilistic version of ProMeLa
[14], called ProbMeLa [6]. For instance, our generalized probabilistic choice can be
expressed using the pif . . . ifp construction in ProbMeLa. However, PCreol is an
object-oriented programming language with additional features like inheritance, future
variables and others, which ProbMeLa is lacking. The operational semantics for Prob-
MeLa is also given in terms of a Markov Decision Process, while we give the operational
semantics for PCreol using Probabilistic Rewrite Theories. This represents a more gen-
eral unifying semantical framework, containing Markov Decision Processes as a subclass
[20].

PRISM [22] is another similar programming language that lacks object-orientation
features, but comes with powerful probabilistic model checking tools that PCreol is
missing, as VeStA is still a prototype probabilistic model checker. The only real attempt
to use the advanced probabilistic model checker of PRISM in combination with Maude
specifications was made in [12]. However, this never led to an actual implementation
that we could use with PCreol. On the other hand, the language of PRISM is less
expressive, only allowing the specification of automata-like models, while PCreol allows
for more general probabilistic rewrite logic specifications, even if the model checking
problem may become undecidable.

6 Conclusions and Future Research

The main contribution of this research report is to introduce PCreol, the first object-
oriented programming language, based on Creol, which allows the specification of prob-
abilistic open distributed systems. We used the semantic framework of probabilistic
rewrite logic to define its operational semantics. Also, we integrated PCreol with the
VeStA tool for statistical model checking and statistical quantitative analysis, which
allows to check different properties of PCreol programs, as well as to extract particular
quantitative information from them. The integration of PCreol with VeStA is achieved
by extending the Creol interpreter with the implementation of a stochastic time model
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taking inspiration from the Actor PMaude model introduced in [2]. While this exten-
sion is mainly aimed at PCreol, it can also be used to integrate Creol with VeStA,
allowing to use VeStA for statistical model checking instead of Maude’s LTL model
checking tool. The latter is prone to large running times, due to the state explosion
problem associated with highly nondeterministic Creol programs.

An important direction for further research is the exact (numerical) probabilis-
tic model checking of probabilistic distributed object-oriented systems modeled with
PCreol. This includes using proof systems based on probabilistic extensions of Hoare
logic, as introduced in [11]. Also, the integration of PCreol with a numerical (exact)
probabilistic model checker would be of great benefit, even if the only currently available
probabilistic model checker for systems modeled in probabilistic rewrite logic is VeStA,
which is statistical and not exact. On the other hand, VeStA provides a very general
model checking algorithm and alternatives to this algorithm, tailored for particular kinds
of models, are worth investigating, as in [19]. Using such alternative algorithms, we may
be able to significantly increase the efficiency of VeStA and decrease the running time
of model checking PCreol programs.

The stochastic time model that we use allows to specify that different objects have
different processor speeds, or that explicit time intervals are associated with await

statements, during which an object suspends its execution. We plan to include these
features in the next version of the PCreol interpreter. Other research directions include
further generalizations of the syntax and semantics of PCreol, which we describe in what
follows.

A class may not be a perfect implementation of its interface, i.e. it may only meet the
assume/guarantee specifications of the interface to a certain extent. This happens when
there are probabilistic variables in the interface, modeling random environment factors,
e.g. the intensity of light coming from the Sun when modeling a solar panel. Following
[10], the set of variables of an interface can be separated into deterministic and proba-
bilistic. Interfaces containing at least one probabilistic variable are called probabilistic
interfaces. The classes implementing such probabilistic interfaces, or probabilistic con-
tracts as they are called in [10], are said to satisfy the contracts to a certain extent,
given by a reliability value. The degree of satisfiability is an important concept since no
class could claim to fully meet the requirements of its contract, as long as this contract
includes random environment variables. The paper [10] creates a general theory of prob-
abilistic contracts, but does not apply this to the context of distributed object-oriented
programming. Also, they do not consider randomness in the communication between
components, which is part of real life open distributed systems. These may also prove
to be interesting research topics.

At the same time, components may also behave randomly, e.g. they may become
faulty with time or random factors may affect their internal evolution, like random al-
gorithms in their methods, noise or logical errors in their hardware. In other words,
components may behave randomly even on their own, when executing self-calls. A com-
ponent may therefore not be a perfect instance of its class implementation. To model this
kind of random behaviour in the components, we may consider probabilistic extensions
at different abstraction levels, as follows. At the class level, the assume/guarantee spec-
ifications can be extended to include probabilities and they may have a syntax similar
to asum(p) ϕ and guar(q) ψ, where:

– p is the probability that the class instance believes the assumption ϕ to be true,
referring to the environment, before the instance starts running,

– q is the probability with which the class instance guarantees that the predicate ψ
becomes true, after it finishes running.

There is a close relation between the quality of the message transport channels, i.e.
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the communication network, and the probabilities p and q. These probabilities are also
influenced by the possibly faulty behaviour of the component at a lower specification
level, as described in what follows.

At the methods level, a class may contain methods implementing probabilistic algo-
rithms, e.g. probabilistic primality testing, genetic algorithms, swarm optimization algo-
rithms, etc. in which case the post-conditions of such a method should be extended with
probabilities. The pre-conditions should also be extended to the probabilistic setting,
since a method can take as input the random output of another method implementing
a probabilistic algorithm. To be able to estimate the reliability of such a system, prob-
abilistic extensions to Hoare logic need to be considered, as described in the PhD thesis
[11], Chapter 6.

At the instructions level, the prove assertion command may also be extended with
the syntax prove(r) α, where r is the probability that the assertion α is correctly
checked by the class instance. In this manner, we model the fact that each object’s
logical unit might be prone to hardware errors.
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Appendix

A Probability Theory and Stochastic Processes

Given a set Ω, a σ-algebra on Ω is a set F ⊆ 2Ω containing the empty set and which is
closed under complementation and finite or countably infinite union, where 2Ω denotes
the power set of Ω. The pair (Ω,F) is also called a measurable space and the elements
of F are known as measurable sets. Given two measurable spaces (Ω,F) and (Ψ,X ), a
function f : Ω → Ψ is said to be measurable if f−1(X) ∈ F for any X ∈ X , i.e. if the
preimage of any measurable set under f is measurable.

Let F be a σ-algebra over Ω. A function µ : F → [−∞,+∞] is called a measure
provided that: i) µ(∅) = 0, ii) µ(F ) ≥ 0 for all F ∈ F and iii) µ (∪i∈IAi) =

∑

i∈I µ(Fi),
for all finite or countably infinite collections {Fi}i∈I ⊆ F of pairwise disjoint sets. The
triple (Ω,F , µ) is then called a measure space. If µ : F → [0,∞], (Ψ,X ) is another
measurable space and f : Ω → Ψ is a measurable function, we define the push-forward
of µ to be the measure µ ◦ f−1 : X → [0,∞].

A probability space is a measure space with the measure function satisfying µ(Ω) = 1;
in this case it suffices for the range of µ to be the unit interval [0, 1] instead of the
extended real number line [−∞,∞]. The measure µ : F → [0, 1] of a probability space is
called a probability measure and we denote it by P instead of µ. Also, the set Ω is called
the sample space and the elements of F are known as events. Two events F1, F2 ∈ F
are said to be independent if P (F1 ∩ F2) = P (F1)P (F2).

A random variable is a measurable function f from a probability space (Ω,F , P ) to
a measurable space (Ψ,X ), also known as the observation space of the variable. The
probability distribution of f is the push-forward measure P ◦ f−1 : X → [0, 1] and allows
us to measure the probability that the value of f falls inside a set X ∈ X . For example,
assuming that for some ψ ∈ Ψ, the singleton {ψ} is in X , the probability that f takes
the value ψ is given by P ◦ f−1(ψ) = P ({ω ∈ Ω ; f(ω) = ψ}), which we also denote
by P (f = ψ). The probability distribution of f is said to be discrete provided that
∑

ψ∈Ψ
P (f = ψ) = 1, in which case f is called a discrete random variable. Thus, it

suffices to know the probabilities of f taking each particular value ψ ∈ Ψ in order to
know its distribution. This suggests introducing the probability mass function of f as
the function denoted by pmff : Ψ → [0, 1] and defined through pmff (ψ) := P (f = ψ),
for all ψ ∈ Ψ.

A stochastic process is a collection of random variables {Xt : Ω→ Ψ}t∈T indexed by
a set T of time instants. A discrete time stochastic process is one such that the set T is
discrete, i.e. T is either finite or countably infinite. A discrete time Markov process is a
discrete time stochastic process {Xi : Ω → S}i≥0, with S a finite or countably infinite
set of states, satisfying the Markov property

P ( Xi+1 = si+1 | Xi = si, . . . , X0 = s0 ) = P ( Xi+1 = si+1 | Xi = si ), (33)

for all i ≥ 0 and all s0, s1, . . . , si ∈ S. This property says that the value of the process
at time i+ 1 only depends on its value at time i and not on its other previous values,
i.e. we may say that a Markov process is memoryless. The Markov process {Xi}i≥0 is
said to be time homogeneous provided that

P ( Xi+1 = s′ | Xi = s ) = P ( Xi = s′ | Xi−1 = s ), (34)

for all s, s′ ∈ S and all i ≥ 0; otherwise it is called time non-homogeneous. The dy-
namics of time-homogeneous discrete time Markov processes can be captured through
a stochastic matrix containing the transition probabilities for each pair of states. Thus,
provided that the set of states is S = {si}i∈I , a transition matrix for the Markov process
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{Xi}i≥0 is a stochastic matrix (puv)u,v∈I such that

P ( Xi+1 = sv | Xi = su ) = puv, (35)

for all u, v ∈ I and all i ≥ 0.
Let A be a nonempty set, whose elements a ∈ A are called actions and consider a

function α : S → 2A that maps each state s ∈ S of a process to a subset of admissible
actions α(s) ⊆ A which can be taken when the process is in state s. A discrete time
Markov decision process (MDP) can be seen as a collection of discrete time Markov
processes {MA}A∈A with MA =

{

XA
i : Ω→ S

}

i≥0
and where the index set A contains

all sequences of admissible actions, i.e. sequences of the form A = { ai ∈ α(XA
i ) }i≥0.

The elements of A are also called policies.

B Further Questions

1. Question: The method suggested in [15] approximates the black-box behaviour
of an individual component through its corresponding communication history. Are
there other ways of describing black-box behaviour?

Answer: Possibly, the following are a few possibilities:

Hidden Markov Models: Instead of using the communication history of a compo-
nent, rather determine the Hidden Markov Model describing the component’s
behaviour, i.e. find the transition probabilities of the component going from
one state to another. This alternative may give more, quantitative insight
into the internal behaviour of a component than just the qualitative informa-
tion stored in its communication history. Instead of rewriting logic, it may be
possible to use linear algebra to study properties of open distributed systems,
through their associated Hidden Markov Model.

In this Markovian setting, it may also be possible to use Probabilistic Rewrite
Theories and Probabilistic Model Checking, along with their Maude imple-
mentations, known as PMaude ([25]).

Constraint Satisfaction Problems: The assume-guarantee specifications may be
modeled as Constraint Satisfaction Problems (CSPs). In case the variables
(the input to some component) belong to a finite set, search methods like
backtracking, local search, etc. can be used. When the input is taken from
an infinite set, methods like the simplex algorithm are used to find a solution
to the constraint satisfaction problem, also known as a feasibility problem.

It is worth noting that any CSP can also be seen as a graph homomorphism
problem, as described e.g. in [8]. Thus, the input received from a component
is modeled as a colored digraph G and the assumption conditions for the
component receiving the input are modeled as a graph H . The fact that the
input satisfies the assumptions is then equivalent to G −→ H , meaning that
there exists a homomorphism (an edge preserving map) from G to H .

In [8], necessary conditions are also given for a homomorphism to exist be-
tween two graphs, in terms of graph invariants (like the chromatic number,
the odd girth, etc.). These conditions can be used to quickly check if the
two graphs are not homomorphic, to prevent further in-depth checking. In
[13] it is proved that the graph homomorphism problem is polynomial time
solvable only when H is either bipartite or contains a loop, otherwise it is
NP-complete. This gives further information on the complexity of checking
whether an open distributed system of software components is able to func-
tion properly.
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2. Question: Are there other ways of describing the communication between com-
ponents?

Answer: There might be other ways, for example:

Graph Rewriting: All the invocation and completion messages sent from one
component to another, at a particular moment of time, can be captured in
a directed graph. The execution of the entire open distributed system can
thus be modeled using graph transformations, also known as graph rewriting.
If the environment is considered to be random, further insight into the sys-
tem’s behaviour may be gained using random graph rewriting and the general
theory of random graphs.

Fusion Calculus: The Fusion Calculus introduced in [24] may be used to model
communication between two components as a fusion. This raises the question
whether the communication inside an open distributed system can be made
symmetric. Does the definition of bisimulation in Fusion Calculus give us
more insight into the behaviour of open distributed systems?

It may also be worth investigating how the π-calculus can model the interac-
tion between components in a distributed setting.

3. Question: How can a probabilistic communication network be modeled?

Answer: Perhaps the simplest model is to consider probabilistic remote method
invocations and replies. Thus, a random delay can be associated with each mes-

sage and notations like o
D
−→ o′ would denote the fact that the message invocation

delay is distributed according to the probability distribution D. Similarly, the no-

tation o
D
←− o′ means that the reply from o′ to o has a random delay following the

probability distribution D. By allowing the random delay to take infinite values,
we are able to model the fact that some messages are lost along the communication
channels. Also, the random shuffling of the messages when being sent from o to
o′, through the communication channel, is induced by the decreasing ordering of
their associated random delays. To model the fact that a channel connecting o and
o′ disappears entirely, we may assign infinite values to the delays of any message
exchanged between these components.

The probability distribution of the delay in sending a reply message from o′ to
o may provide some information on what the reasonable time-out values of o
should be. Time-outs and race conditions in open distributed systems have been
investigated in [16], Section 9.
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