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Abstract

A digital FPGA-based data acquisition system for a novel preclinical PET
detector developed at the University of Oslo will be described. The de-
tector, called ComPET, employs an inventive geometry with 600 LYSO
scintillator crystals interleaved with 400 wavelength-shifters, grouped into 4
modules and arranged in a rectangular fashion to attain high photon sensi-
tivity and high spatial resolution with minimal shift-variance. By means of
APDs and a custom analog front-end the detector response is converted to
a digital output, its rising edge and width being a measure of the γ-photon
arrival time and energy, respectively. An FPGA samples up to 84 of these
channels with deserialisers clocked at up to 1 GHz, computes and stores the
event photon arrival time, energy and location, provides a fan-in structure
to collect data from these channels, and sends these over Ethernet to a data
acquisition system. The system allows for coincidence- and energy-windows
to be set for improved contrast resolution, can handle sustained event-rates
of 100Mevents/s with full 3D-readout, and is parametrised for ease of main-
tainability and flexibility.

Page III



Page IV



Acknowledgments

Man, it just hit me, this is probably the only place in this report where I
can go nuts.

With no particular priority in mind, I think I’ll start off with my parents.
Thanks. Not sure about the questionable remarks with regards to the count-
less hours I spent writing this thing, but hey, at least the food was nice. :)

Then of course, every ComPET member has my infinite gratitude (not
quantifiable, ohh the evil). Cheers to Erlend Bolle for his enthusiastic and
steady leadership, and to Ole Rohne for his sharp, yet painfully accurate,
voice. Special thanks to Steinar Stapnes, for making this project, and this
thesis, possible.

And while we are in the special department; another special thanks to
Michael Rissi, for not fleeing the office when I arrived in the morning (yes,
we always arrived in that order). I am sure to miss the physics talks, not to
mention having someone to speak English to. :)

And yeah, Martin Brinkmann, thanks heaps for keeping me accompanied
during the long summer when the final touch on this thesis was made. The
temptations were many, but we prevailed! That is, an exception should
possibly be made for all those coffee breaks.

Further thanks to John Williams at PetaLogix for granting us the donation
request on PetaLinux, a great software with excellent documentation to get
going with an Embedded Linux system. Also, thanks to Xilinx for donating
various embedded Linux course material.

And to all you peeps out there reading this thesis (indeed, a man got to
have dreams), since you probably read this simply because you have to, you
have my sympathy! I have attempted to make it interesting, but hey, this
is science, and as a famous man once put it:

”If you are out to describe the truth, leave elegance to the tailor”
Albert Einstein

Page V



Page VI



Contents

Abstract III

Acknowledgments V

Contents XI

1 Introduction 1
1.1 Medical Imaging Technologies . . . . . . . . . . . . . . . . . . 2
1.2 Positron Emission Tomography . . . . . . . . . . . . . . . . . 3

1.2.1 The Principle . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Advantages & Disadvantages . . . . . . . . . . . . . . 5
1.2.3 Performance Parameters . . . . . . . . . . . . . . . . . 5
1.2.4 Detector Design . . . . . . . . . . . . . . . . . . . . . 6

1.3 ComPET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Contents . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Additional Resources . . . . . . . . . . . . . . . . . . . . . . . 10

2 System Definition 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Analog Front-end . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Time over Threshold . . . . . . . . . . . . . . . . . . . 12

2.2 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Physics Parameters . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Readout System Constraints . . . . . . . . . . . . . . 15

2.3 Technology Selection . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Field Programmable Gate Arrays . . . . . . . . . . . . 16
2.3.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.1 Input and Output Buffers . . . . . . . . . . . 17
2.3.2.2 Configurable Logic Blocks (CLB) and Slices 18
2.3.2.3 Digital Clock Managers . . . . . . . . . . . . 20
2.3.2.4 Multi-Gigabit Transceivers . . . . . . . . . . 21
2.3.2.5 PowerPC Blocks . . . . . . . . . . . . . . . . 21
2.3.2.6 DSP Blocks . . . . . . . . . . . . . . . . . . . 21
2.3.2.7 Block Select RAM . . . . . . . . . . . . . . . 22

2.3.3 Which FPGA to Choose? . . . . . . . . . . . . . . . . 22
2.3.4 Evaluation Boards . . . . . . . . . . . . . . . . . . . . 22

2.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Data Capture . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Triggering and Windowing . . . . . . . . . . . . . . . 27
2.4.3 Parameter Extraction . . . . . . . . . . . . . . . . . . 28

2.4.3.1 Size Specification . . . . . . . . . . . . . . . 29
2.4.4 Event Building . . . . . . . . . . . . . . . . . . . . . . 30

Page VII



Contents

2.4.5 Embedded Networking . . . . . . . . . . . . . . . . . . 31
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Implementation 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Project Versions . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Hardware Description Language . . . . . . . . . . . . 37

3.2 Clocks and Resets . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Data Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Triggers and Parameters . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2.1 Edge Detection and Triggering . . . . . . . . 42
3.4.2.2 TOT Time and Width . . . . . . . . . . . . 43
3.4.2.3 Exception Handling . . . . . . . . . . . . . . 45

3.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Event Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2.1 SubMux . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Embedded Networking . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 C Readout Programs . . . . . . . . . . . . . . . . . . . 53

3.7 System Control & Adaptability . . . . . . . . . . . . . . . . . 53
3.7.1 Compile-time Parameters . . . . . . . . . . . . . . . . 54
3.7.2 Run-time Control Logic . . . . . . . . . . . . . . . . . 54

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Results 57
4.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Parametriser . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Varying Pulse Widths . . . . . . . . . . . . . . . . . . 60
4.2.3 Varying Pulse Rates . . . . . . . . . . . . . . . . . . . 60
4.2.4 Event Builder . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Readout Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 External Test Pulses . . . . . . . . . . . . . . . . . . . 63
4.3.2 LYSO Spectrum - Intrinsic,Ba133,Cs137 . . . . . . . . 65

4.3.2.1 Linearity . . . . . . . . . . . . . . . . . . . . 65

Page VIII



Contents

4.3.3 Coincidence Processing . . . . . . . . . . . . . . . . . 65
4.3.3.1 Energy Resolution . . . . . . . . . . . . . . . 67

5 Discussion 69
5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Parameter Extraction . . . . . . . . . . . . . . . . . . 69
5.1.2 Variable Pulse Widths and Rates . . . . . . . . . . . . 70
5.1.3 Event Building . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Readout Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 External Test Pulses . . . . . . . . . . . . . . . . . . . 72
5.2.2 LYSO Spectrum - Intrinsic,Ba133,Cs137 . . . . . . . . 74
5.2.3 Coincidence Processing . . . . . . . . . . . . . . . . . 74

6 Conclusion 77
6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Getting Started 81
A.1 Development Environment . . . . . . . . . . . . . . . . . . . . 82

A.1.1 Xilinx ISE and EDK . . . . . . . . . . . . . . . . . . . 82
A.1.2 Conflicting or Missing Libraries . . . . . . . . . . . . . 82

A.2 Accessing the FPGA and Configuration Memories . . . . . . 83
A.2.1 USB Cable Drivers . . . . . . . . . . . . . . . . . . . . 83
A.2.2 iMPACT . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.2.3 ChipScope . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3.1 Xilinx Simulation Libraries . . . . . . . . . . . . . . . 85
A.3.2 ModelSim . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.4 Server Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4.2 The Webpage . . . . . . . . . . . . . . . . . . . . . . . 89

A.4.2.1 Webgit . . . . . . . . . . . . . . . . . . . . . 89

B Project Management 91
B.1 Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1.1 Source Files . . . . . . . . . . . . . . . . . . . . . . . . 94
B.1.1.1 Hardware . . . . . . . . . . . . . . . . . . . . 94
B.1.1.2 Software (Various) . . . . . . . . . . . . . . . 96

B.2 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2.1 What is tracked? . . . . . . . . . . . . . . . . . . . . . 97
B.2.2 Initial Procedures . . . . . . . . . . . . . . . . . . . . 97
B.2.3 Synchronising Repositories . . . . . . . . . . . . . . . 98
B.2.4 Making Changes . . . . . . . . . . . . . . . . . . . . . 98
B.2.5 Branches . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.2.6 Error Correction . . . . . . . . . . . . . . . . . . . . . 100

Page IX



Contents

B.3 Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.3.1 Remote compilation . . . . . . . . . . . . . . . . . . . 100

C Embedded Tutorial 103
C.1 Preparing the Host Computer . . . . . . . . . . . . . . . . . . 104

C.1.1 PetaLinux . . . . . . . . . . . . . . . . . . . . . . . . . 104
C.1.1.1 Directory Structure . . . . . . . . . . . . . . 104

C.1.2 Ethernet IP-address . . . . . . . . . . . . . . . . . . . 104
C.1.3 Tftp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.1.4 NFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.1.5 RS232 Interface . . . . . . . . . . . . . . . . . . . . . . 105
C.1.6 Telnet . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.2 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.2.1 Base System Builder . . . . . . . . . . . . . . . . . . . 106
C.2.2 Modifying Project Files . . . . . . . . . . . . . . . . . 106
C.2.3 FS-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.2.4 Software Settings . . . . . . . . . . . . . . . . . . . . . 109

C.3 PetaLinux Setup . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.3.1 Sourcing Settings . . . . . . . . . . . . . . . . . . . . . 109
C.3.2 MenuConfig . . . . . . . . . . . . . . . . . . . . . . . . 109

C.3.2.1 uClinux Kernel Settings . . . . . . . . . . . . 110
C.3.2.2 Vendor/User Settings . . . . . . . . . . . . . 110

C.4 Building the Embedded Project . . . . . . . . . . . . . . . . . 111
C.4.1 Implementing the Hardware . . . . . . . . . . . . . . . 111
C.4.2 Board Specific Package . . . . . . . . . . . . . . . . . 112
C.4.3 Compiling the Linux Kernel . . . . . . . . . . . . . . . 112

C.5 Booting the Embedded System . . . . . . . . . . . . . . . . . 112
C.5.1 U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.5.1.1 Putting U-Boot in Flash . . . . . . . . . . . 113
C.5.2 PetaLinux . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.5.2.1 Putting Linux Kernel in Flash . . . . . . . . 115
C.6 Hints and Tips . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.6.1 NFS Development Share . . . . . . . . . . . . . . . . . 116
C.6.2 Cross-Compilation . . . . . . . . . . . . . . . . . . . . 117

D ISE/EDK Messages 119
D.1 Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

List of Tables 121

List of Figures 124

Bibliography 125

Page X



Contents

Glossary 127

Page XI



Page XII



”It’s no longer a question of staying healthy.
It’s a question of finding a sickness you like.”

Jackie Mason 1
Introduction

Technological advances of recent years has created new unique possibilities
in medical diagnosis. New novel diagnostic instruments enables us to look
inside living bodies (in vivo) at internal structures and processes, with im-
pressive level of detail, and repeatedly with insignificant harm.

In the clinic these images are used to identify abnormal conditions, study
the underlying mechanisms that caused them, and to analyse and aid in the
treatment process. Since visual data is easy to interpret, it helps the doctor
to set an accurate diagnosis, and assigns the problem an identity to which
the patient may relate.

Preclinical imaging applications include studying the effect of diseases and
new methods of treatment on animals, usually rodents1. New detector tech-
nologies are frequently realised as animal prototypes due to their relatively
low cost and complexity, shorter development cycles, the possible aspect of
testing the detectors on animals2, and because there is a lot of available re-
search material in this field. There is also the economical motivation present;
if the effect of drugs and pharmaceuticals on animals can be monitored more
accurately these products can hit the market sooner.

Which technologies exists? The next section will introduce some of the most
well-established ones, before moving on to focus on a detector technology
called Positron Emission Tomography (PET).

1Mice and rats.
2Due to ethical considerations the use of animals should be avoided if possible.
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Chapter 1. Introduction

Figure 1.1 - Imaging technologies compared [23]

Medical Imaging Technologies 1.1
The first medical imaging technology of modern science - radiography - was
introduced in 1895, when Wilhelm Röntgen produced the first x-ray image.
This scan is conducted by transmitting x-rays through a body - where the
level of absorption varies for each substance - and the remaining rays are
measured at the other side. The technique offers images with high resolution
”silhouettes” of hard materials such as bones, but suffers from low soft tissue
resolution and moderate radiation exposure. However, it is still around
today (just ask the local dentist) due its relatively low complexity and cost.

Computed Tomography (CT) usually refers to the computation of tomogra-
phy from x-ray images. In tomography several 2D slices are combined to
form 3D images with better tissue resolution and better signal-to-noise ra-
tios (SNR). It is widely used, but even though new techniques for reducing
the radiation exposure are frequently introduced, the time it takes to con-
duct a scan is long enough for the accumulated radiation to reach moderate
to high levels3.

Similarly to CT, Magnetic Resonance Imaging (MRI) is an imaging tech-
nology based on tomography. It is armed with 3 electromagnetic fields; a

3We generally do not wish the a medical imaging instrument to cause harm, but ex-
ceptions exists (destroying scar tissue, cancer cells, etc.).
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1.2. Positron Emission Tomography

very strong static magnetic field which polarises hydrogen molecules in the
body, a weaker gradient-field used to measure the position of the polarised
molecules, and a radio-frequency (RF) field used to manipulate hydrogen
atoms in order to produce detectable signals. An MRI scan is considered
non-harmful4 (and can thus be conducted repeatedly) and has a very good
soft tissue resolution (better than CT).

In Ultrasound high-frequency sonic waves are sent into the body, reflected,
and the echo recorded. By measuring the delay and direction of the incoming
waves, the exact point at which it was reflected can be computed5 - usually
in real-time. Due to its live and non-harmful nature (at low intensities) it
is widely used to image the foetus in pregnant women, abdominal organs,
heart, breasts, muscles, arteries and veins.

Finally, there is nuclear medicine, with non-invasive imaging techniques such
as Single Photon Emission Computed Tomography (SPECT) and Positron
Emission Tomography (PET) as the main imaging technologies. Both yield
2D/3D-images, rely on similar physics and principles, and exerts moderate
radiation exposure.

Positron Emission Tomography 1.2

Figure 1.2 - PET principle, radial geometry

4Studies indicate no long-term bi-effects from the strong static field, although high
exposure to RF fields are associated with some health risks.

5A single Ultrasound image is 2D, but can be combined to form 3D images.
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Chapter 1. Introduction

The Principle 1.2.1
A PET scan is conducted by injecting the body with low-mass biologically
active molecules (e.g. glucose) tagged with short lived radioactive isotopes
(usually 18F ), a compound commonly referred to as radiotracer or probe6.
Then follows a waiting period to allow the probe to become properly dis-
tributed in the tissue.

The radioisotopes are subject to β+-decay (see fig. 1.2), a process where a
positron7 and a neutrino8 is emitted9. In a body consisting of mainly water
the positron will traverse a few millimetres10 and then annihilate with an
electron, producing two 511 keV gamma-photons with an intervening angle
close to 180◦.

A common means to detect these gamma-rays is with scintillator crystals11,
traditionally arranged radially in trans-axial rings (see fig. 1.2). A scintil-
lator is a dense, transparent material in which the energy of the incoming
gamma-rays is absorbed (completely or partially) by ionisation12 and re-
emitted in subsequent processes as light due to de-excitations. While some
of the light will escape the crystals due to hitting the crystal sides in a too
steep angle, the rest will be reflected off the sides and move towards the
crystal edges13.

Finally, the scintillation photons are converted to electrical energy, usu-
ally with either PhotoMultiplier Tubes (PMTs) or Avalanche PhotoDiodes
(APDs)14. For the following discussion, an electric pulse caused by a gamma-
photon interaction will be referred to as simply an event, and two of these
within a very short temporal interval (ns-range) will be referred to as coin-
ciding events (or simply coincidences).

6Chosen such that it is unlikely to disturb the natural states of cells and tissues.
7A positron is an anti-particle of the electron, and is - as the name suggest - positively

charged.
8It probability of a neutrino reacting in the detector is extremely small, hence these

will be ignored in the further discussion.
9β+-decay: energy + p → n + e+ + ν

10The distance a positron traverses prior to annihilation is continuously distributed,
depending on its kinetic energy (for 18F ≈ 0.5mm).

11Another common alternative to scintillators is semiconductors, used by some detectors.
12A 511 keV gamma-photon can interact with the crystal atoms in either of two ways:

through Compton scattering or photoelectric effect. In either cases part of the gamma-
photon energy is transferred to electrons in the atom, but depending on the size of the
energy transfer the electron may be rejected from the atom completely (photoelectric), or
caused to recoil (Compton scatter).

13The scintillator crystals acts as optical waveguides, in close resemblence to optical
fibers.

14APDs are physically much smaller than PMTs, but has not been able to match the
incredible gain of photomultiplier tubes, until the recent development of Geiger-mode
APDs (GAPDs) [3]. APDs, and similar components, may also be referred to as Multi-
Pixel Photon Counters (MPPCs) or Silicon PhotoMultipliers (SiPMs).
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1.2. Positron Emission Tomography

The challenge remains to detect these coincidences, and preferrably only
those caused by gamma-photons originating from a common radioisotope.
When one is found, a Line of Response LOR may be drawn between the
two interaction points, in close vicinity to which the decaying isotope may
be assumed located15.

The biologic activity in a given volumetric element inside the body may now
be inferred from the number of LORs passing through that element. This
is essentially how a PET-image is computed.

Advantages & Disadvantages 1.2.2
Since the radiotracer can be designed to probe into specific biological pro-
cesses, PET is typically able to provide higher quality sub-process informa-
tion than optical scanners16[5]. Even subtle molecular signals deep in the
tissue can be resolved with high temporal and spatial resolution and con-
trast [5].

This information is important because in the event of of a disease, functional
changes are likely to appear before, or exceed, structural changes in the body.
This makes PET a very important tool to study cardiac and neurologic
diseases, and cancer. Preclinical PET systems allows the careful monitoring
of the disease development, with the animals acting as their own control,
thus drastically reducing the development time of new pharmaceuticals and
therapeutic agents allowing them to be put into commercial use sooner.

However, due to being a relatively new imaging technology, and because the
most commonly used radioisotopes must be created with a cyclotron [20],
PET systems are rather expensive and not found in all hospitals. Also, due
to the radioactive exposure, although not persisting for long17, a patient can
only undergo this procedure a limited number of times.

Performance Parameters 1.2.3
Three important performance parameters of a PET-system is its photon
sensitivity, spatial resolution and contrast sensitivity.

The photon sensitivity is the probability that a photon emitted from the
body is detected. This depends on the solid angle coverage, the inter-crystal

15In clinical PET the gamma-photon time-of-flight (TOF) is sometimes measured with
extreme precision electronics, from which the position of the radioisotope along the LOR
may be inferred. However, due to observing much smaller bodies, this is hardly ever
attempted with animal PET scanners.

16One noteworthy exception to this is MRI, which can provide some information on
biologic activity - for instance by injecting cold water into the bloodstream and measuring
where, and how quickly, it heats up.

1718F half-time: 109min.
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Chapter 1. Introduction

and module ”gaps” (crystal packing fraction), and the conversion efficiency
of the crystals. Or, put slightly differently, it depends on the probability of a
gamma-ray even hitting the crystals, and the probability of an interaction if
it does. Thus photon sensitivity is directly linked to SNR, which ultimately
affects the estimation accuracy of the photon arrival time and energy. Thus
improving the photon sensitivity implies that PET scan-time or radiation
dosage, or both, may be decreased, without loss in image quality.

In PET, the physical lower limit of spatial resolution is given by a convo-
lution of positron range (how far the positron propagates prior to annihi-
lation), annihilation photon non-collinearity (the radial error caused by an
annihilation photon incident angle slightly unequal to 180◦), and intrinsic
detector resolution [4]. The positron range depends on the body and the
kinetic energy of the positron, the effect of collinearity depends on the de-
tector diameter, and the intrinsic detector resolution depends on the crystal
size and detector geometry.

The contrast sensitivity is a measure of how well signals with similar values
can be resolved and distinguished from the background noise. This depends
on photon scattering in tissue and crystals (Compton), random coincidences,
pulse-pileup18, and the two above mentioned parameters; photon sensitivity
and spatial resolution19.

Detector Design 1.2.4
One way to increase the photon sensitivity in a detector is essentially to add
more scintillation material, either to increase the FoV or to add to the crystal
thickness or length (yielding better intrinsic detection efficiency). However,
extending FoV adds to the cost considerably, making crystals thicker de-
creases the intrinsic spatial resolution, and making them longer reduces the
light yield due to intrinsic crystal attenuation. An alternative is to make
the diameter of the detector smaller, but this causes more photons to hit
crystals at oblique angles. In traditional PET-systems with radially oriented
crystals this translates to a larger parallax error and a higher probability of
photons escaping the crystals (refer to 2.2.1 for more information).

To improve the spatial resolution one should make crystals thinner, and find
the best compromise between non-collinearity and parallax error. Indeed,
a smaller detector diameter will reduce the non-collinearity factor, but in-
crease the parallax error, which is basically the same as trading off spatial
resolution shift-invariance for improved resolution in the detector centre.

18If a crystal is hit by a gamma-ray while it is still responding to a previous hit, this is
refered to as pulse-pileup.

19Other dependencies also exist, including non-specific targeting of the probe and the
image reconstruction algorithms [5], but these are outside the scope of this report.
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Making crystals thinner also comes with a trade-off; these are harder to
manufacture and thus costly, and less light can be collected from a thinner
crystal end [5], thus compromising on photon sensitivity.

Achieving a better contrast sensitivity means being able to reduce the level of
background, either passively by detector design or actively by means of high-
speed front-end electronics and clever trigger algorithms (see 2.2.1/2.4.2 for
more details).

ComPET 1.3
ComPET (COMpact PET) is a new novel detector with very high sensitiv-
ity and spatial resolution20, achieved with an inventive geometric design and
readout system21. It is developed at the University of Oslo, in collaboration
with AxPET [10].

Each detector module is made up of 150 long LYSO-crystals22, interleaved
perpendicularly with 100 WaveLength Shifters (WLS). These are distributed
into 4 blocks (each of which being a LYSO/WLS matrix), and arranged in
a rectangular fashion to attain the shape shown in fig. 1.3. Attached to the
end of every LYSO-crystal and WLS is a GAPD.

Figure 1.3 - ComPET geometry

20Monte Carlo simulations indicate an intrinsic detector sensitivity of up to 16%, and a
FWHM spatial resolution of slightly less than 1mm in the centre of the detector field-of-
view.

21The discussion of the former will be delayed till the next chapter, which will deal with
it thoroughly.

22Lu1.8Y0.2SiO5(Ce) (LYSO) crystals are inorganic scintillators with a high atomic num-
ber (Z) and density, and a fast, near linear absorption energy to luminescence output
response [5, page 129].
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Since the response from every crystal and wavelength-shifter is read out,
a 3D-representation of the interaction may be computed, as opposed to
just a 2D-weighed mean. This extra information can be used to estimate
the γ-ray depth-of-interaction (DOI), and to distinguish Compton scattered
events from photoelectric events in the crystals. This largely mitigates the
parallax error, allowing the detector diameter to be reduced as much as
possible (while still being able to fit the body inside) for improved photon
sensitivity and spatial resolution.

Furthermore, ComPET has no inter-crystal and module gaps, is very com-
pact, and MRI-compatible23. The latter is interesting because it allows fused
images to be computed, with metabolic information from PET and anabolic
information from MRI.

Thesis Contents 1.4
When the work on this thesis started ComPET was not much but a goal;
to create a reasonably priced detector with cutting edge performance using
the latest advances in detector technologies. This also involved the digital
readout system, of which this author was the main responsible. Based on
this, an inherent way or partitioning the thesis seems to be as follows:

1. Introduction. Introduces medical imaging and some of its prime
technologies, with main focus on Positron Emission Tomography (PET).
References to additional resources will also be provided.

2. System Definition. Aims to identify important design parameters,
explains why Field Programmable Gate Arrays (FPGA) were used,
and introduces the digital readout system in terms of functional be-
haviour.

3. Implementation. Supplies more technical details on the FPGA read-
out design.

4. Results. Presents various simulations and readouts as a means to
verify correct system behaviour.

5. Discussion. Elaborates on the importance of the results.

6. Conclusion. Wraps up the current status of the design and provides
an outlook.

23To be MRI-compatible the detector must be able to operate in very strong magnetic
fields (5+ [Tesla])
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Naturally, some topics do not blend well with this outline, but might be
valuable for those seeking to continue this work. The appendices cover some
of these:

• Getting Started. Believe it or not, getting started is easier said
than done if you are not well experienced with the software used in
the development of this project. This appendix attempt to ease the
process by providing hints and tips on installation and common usage
of these applications.

• Project Management. As the project tree has become rather large
and complex, some strategies for managing it have been developed.
This appendix provides documentation in this respect.

• Embedded Tutorial. An embedded project were added to the dig-
ital readout system to perform various control activities and manage
network access. It will hardly be treated in the report, but this ap-
pendix may be visited as a how-to on how to get a similar system up
and running.

• ISE/EDK Messages. ISE and EDK represents the Xilinx FPGA
development studio. This appendix elaborates on some of the most
common, but less intuitive, messages these programs output when
implementing the digital readout design. This to build confidence
that the correct FPGA logic is inferred from the HDL description.

This report is best read as a pdf file. This way you get to enjoy bookmark
navigation and hyperlinks functionality. However, the colorcodes should
make it pretty straightforward to read the paper version aswell. Green
coloured words are links to the glossary, red coloured words are references
to the bibliography. In the bibliography you will find an extensive list of
sources and where to get additional information.
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Additional Resources 1.5
Several additional resources exists for the design mentioned in this report,
such as source files, images, online documentation and repositories, etc. This
will be made available for the reader, either visiting the homepage mentioned
a few paragraphs down or by simply clicking the references in this document
(if you are reading the electronic version).

The homepage may be accessed by logging into the the ComPET Wiki-
page24 at

https://wiki.uio.no/mn/fys/compet/

At this page there should be pointers to

• Git-repositories (see B.2.1) tracking all the project source-code (see
B.1.1).

• A .rar-file containing the project tree at the time of printing.
• Doxygen-generated documentation for all the HDL source code.
• A cache of support literature.

For those seeking to continue my work, it may also be beneficial to keep
the ”Project Management” appendix (B) in handy while reading this thesis.
It contains a brief overview over the various parts of the project tree, and
provides quick tips on managing it with Makefiles and the version control
system Git.

24The homepage can also be accessed directly at http://www.joinge.net/compet?ref=
wikipage, but this location may change in the future.
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”We should forget about small efficiencies, say
about 97% of the time: premature optimiza-
tion is the root of all evil. Yet we should not
pass up our opportunities in that critical 3%. A
good programmer will not be lulled into com-
placency by such reasoning, he will be wise to
look carefully at the critical code; but only after
that code has been identified.”

Donald Knuth
2

System Definition

In ComPET I was responsible for defining and implementing a digital read-
out system that collects and filters data coming from the analog front-end,
”builds” events by coincidence matching, and sends these over an Ethernet
network for further processing.

This was a challenging task as the detector system was initially largely un-
derspecified. Several important design characteristics were yet to be decided
upon, including detector geometry (and thus the number of channels), ana-
log front-end, and the entire digital trigger- and readout-system.

Thus, this chapter will be dedicated to defining the system, while implemen-
tation details will be delayed until next chapter (3). First the analog front-
end will be introduced (2.1), then a few general challenges and constraints
will be presented (2.2), followed by a discussion of the technology chosen for
the implementation (2.3). Finally, in the light of the found conclusions, the
readout design will be described in terms of functional behaviour (2.4).

Any mention of the digital readout system should be considered the result
of my own work unless otherwise noted. Detector physics, mechanics, and
aspects of the analog front-end are mentioned where it makes sense to do
so, but these areas were covered by other team members.
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Chapter 2. System Definition

Introduction 2.1
Before discussing the digital part of the readout system, a quick description
of the analog front-end will be necessary.

Analog Front-end 2.1.1
Recall that there are only 3 essential parameters to be found for each inter-
action: the photon arrival time, energy and location. A common way to re-
trieve this information is by sampling the GAPD-response with ADCs, from
which these parameters may be inferred. Recording the raw-data stream
is a flexible solution, because no knowledge of the input signal is required
except that it fulfills the Nyquist-Shannon criterion. However, ADCs are
power-hungry, complicates the PCB design, and - because they produce a
lot of data - puts tough constraints on the digital readout system.

ComPET, on the other hand, employs an alternative digitisation system
that encodes this information in a single digital output pulse; the start of
it corresponding to the photon arrival time and the width corresponding to
the photon energy. The principle is shown in fig. 2.1, and will be discussed
shortly.

Figure 2.1 - ComPET analog front-end

Time over Threshold 2.1.2
After being amplified, the signal energy is integrated and re-shaped into
a saw-tooth with a charge collecting circuit, linearly discharged through a
constant current source. The saw-tooth is then sent to a comparator along
with a threshold voltage, producing a digital pulse with a width equal to the
time-over-threshold. Not surprisingly, this is also the name of the method.

The saw-tooth shape is ideal because of its steep rising edge and linear
falloff, which allows for an accurate estimation of the photon arrival time

Page 12

http://www.joinge.net/compet/doc/gfx/analog_frontend.svg
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and energy, respectively. Unfortunately, since the crystal, APD and shaper
introduce a time-constant, the rising edge lose some steepness. Furthermore,
the analog front-end will not be able to produce a completely linear fall-off.

In short, the TOT-approach facilitates a compact design with low cost, com-
plexity and power consumption, is quick to develop, and provides excellent
scalability. However, because all the information is inferred from the ris-
ing and falling edge alone, a means to accurately measure these must be
introduced.

The technology chosen for this purpose is Field Programmable Gate Ar-
rays FPGAs, which will be introduced in 2.3. However, first a few words
regarding the challenges a readout system must handle.

Design Challenges 2.2
What is required of a PET readout system, and of readout systems in gen-
eral? Let us start with the physics involved, and proceed with matters of
higher level abstraction.

Physics Parameters 2.2.1
How should we design the data acquisition system to improve photon sensi-
tivity, spatial resolution and contrast sensitivity?

Figure 2.2 - Some factors affecting PET image quality
(radial geometry chosen for illustration purpose only)
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Any event the readout system fails to detect, be it due to faulty capture or
processing, negatively affects the photon sensitivity. Capturing an event is
only problematic for very short TOT-pulses (low energy), or for subsequent
TOT-pulses hitting the same channel with very short temporal separation1,
and should not be a major concern. Data loss due to buffer overflows will
be, however, and must be avoided.

Unlike traditional geometries such as the one shown in fig. 2.2, the Com-
PET geometric structure of interleaved LYSOs and WLSs allows the γ-ray
depth-of-interaction (radial coordinates) to be found, allowing for the event
to be reconstructed in full 3D. This largely mitigates parallax error (hence
improves the spatial resolution), and the identification of crystal Compton
scatters (see below), but puts high demands on the digital readout electron-
ics in terms of number of channels2 and throughput.

Compton scatters in tissue and crystals, and random coincidences causes
incorrect LORs to be computed and thus affects the contrast sensitivity (and
indirectly also spatial resolution). To reduce the effect of tissue and crystal
scatter an energy threshold is usually applied to each channel to discard
events that were not photoelectric3. In ComPET, however, the energy
threshold is set low enough (around 50 keV) to include Compton scatters as
well. If the first and second point of interaction is identified and the energies
sum to 511 keV, then another coincidence is found and the SNR will hence
increase. In case the energies sum to less than 511 keV, however, the event
either scattered in the body tissue or escaped the detector, and is discarded.
The energy threshold is set by adjusting the discriminator threshold of the
analog front-end.

In conventional PET scanners single events are typically 1-2 orders of mag-
nitude more frequent than true coincidences, because the sensitivity of these
detectors tend to be less than 10% [5]. This contributes heavily to the gener-
ation of random (or ”false”) coincidences, and thus image background. The
only way to distinguish these from true coincidences is by time-separation.
This dictates the need for high sampling rates, and a means to match events
within very short time-intervals (later referred to as coincidence windows).

1The minimum time that must be allowed to pass between successive events on the
same channel before the system can perform the correct distinction, is referred to as
dead-time.

2Some detectors performs a 2D energy-mean in the analog front-end, thus drastically
reducing the number of channels and system cost. However, doing so discards information
about Compton scatters in the crystals, negatively impacting the spatial resolution and
contrast sensitivity.

3Scattering causes photons to lose energy depending on the scattering angle.
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Readout System Constraints 2.2.2
Based on the factors discussed so far, we may set up a few optimisation
critera for the performance of our data acquisition system:

• Time resolution. The finer the time-resolution of the TOT-data, the
better the accuracy of estimating the photon arrival time and energy.
Thus the sampling speed should be as high as possible, ideally more
than 1GHz.

• Throughput. The system throughput must be sufficient to avoid losing
data due to buffer overflows. The total event-rate in our PET-detector
is expected to be a few Mevents/s4, but for good measure the aim is
to handle at least 20Mevents/s.

• Data compression. PET-data is extremely sparse, thus the compres-
sion potential is huge. Not a single bit should be stored unnecessary,
as this implies increased cost and decreased throughput.

• Dead time. All channels will be handled concurrently, so the system
dead-time will equal the channel dead-time, i.e. the ability of the
channel-logic to separate closely separated events. Unless the energy
threshold is set very low, these events are rare. Even so, the readout
system that will be presented should be capable of handling a dead-
time down to 20ns, or maybe even less.

Other considerations, which may not be directly performance related but
nontheless important, are:

• Cost. While the total cost of our detector is well defined, the question
remains how to best distribute it over the various detector elements.
To do more with less is generally a good idea.

• Flexibility. This is still a development project. It is virtually impossi-
ble to know in advance the optimal hardware structure, or combination
of design parameters. Especially important is scalability, since this de-
sign is subject to be used on a wide variety of FPGAs, with varying
number of inputs.

• Portability. Good design practise dictates writing for reusability to
minimise development time, ease maintenance, and promote design
reliability. Furthermore, it is never wise to become too technology-
dependent, especially not in an early development phase. Solving

4The activity in clinical PET-scans using 18F tracer is 100-400Mbq [2][Wikipedia].
This would translate to 15-60Mevents/s with a 15% photon sensitivity detector, such as
ComPET. However, since rodents are quite small, the activity is much lower. One PET
study of mice stated an activity of 7.4MBq [1].
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newly discovered problems and challenges may simply be a matter
of choosing different hardware, so keeping this option open is a wise
idea.

Now that these design requests are defined, let us move on to discuss the
technology selection.

Technology Selection 2.3
A currently very popular technology for realising these types of designs are
Field Programmable Gate Arrays (FPGAs). This section will introduce this
technology, explain why was chosen, and quickly introduce some off-the-shelf
PCB-boards with these chips embedded.

Field Programmable Gate Arrays 2.3.1
The internal structure of a Field Programmable Gate Array (FPGA) may
be thought of as isles of Configurable Logic Blocks (CLB5, see 2.3.2.2.)
in a sea of programmable interconnect6 (see fig. 2.9). It was originally
invented by Xilinx to bridge the gap between traditional Programmable
Logic Devices (PLDs), which are configurable but do not scale well towards
larger devices7, and Application Specific Integrated Circuits (ASICs). ASICs
are fully customisable down to transistor level (if desired), and can realise
extremely complicated designs, with a minimum of silicon real estate usage,
at a low power consumption, and with superior performance. However,
since ASICs are not reprogrammable, and these designs are complex, the
development time and cost is very high. Thus the use of these chips are
only common in high volume markets, where they are economically feasible,
or in designs requiring this extra level of customisability.

However, the combination of hundreds of general purpose IO-pins, extreme
concurrency, and re-programmability8, makes FPGAs ideal in physics ex-
periments, which often employs numerous sensors sampled at high speeds,
yielding high data rates and hence a common need for heavy compression.
Also, the high demand for these chips, e.g. in the high-volume embedded
device market, makes them relatively cheap and readily available in off-the-
shelf boards.

5This is a Xilinx abbreviation, other vendors use different terms.
6More or less a quote from Clive Maxfield [7].
7Increasing the size of a traditional PLDs caused interconnect to grow more rapidly

than logic [7].
8SRAM based FPGAs (from Altera/Xilinx) are ”infinitely” reprogrammable, with the

trade-off that the configuration is volatile (i.e. lost when powered down).
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Features Virtex-6 Virtex-5 Spartan-6 Extended
Spartan-3A

User I/Os 320-1 200 172-1 200 132-576 144-519
SERDES support Yes Yes Yes No

Slices1 11 640-118 560 3 120- 51 840 600- 23 038 704-23 872
Look-up Tables2 46 560-472 240 12 480-207 360 2 400-184 304 1 408-47 744
Registers 93 120-948 480 12 480-207 360 4 800-368 608 1 408-47 744

Clock Management 3-9 CMTs3 1-6 CMTs3 2-6 CMTs3 2-8 DCMs
BlockRAM [kb] 5 616-38 304 936-18 576 216-4 824 54-2 268
DSP Blocks4 288-2016 24-1 056 8-180 0-126
Multi-Gigabit Serial5 0-48 0-24 0-8 -
Ethernet MAC6 Yes Yes No No
PCI Express7 Yes Yes Yes No
MicroBlaze Support Yes Yes Yes Yes

Table 2.1 - Virtex-5/6 and Spartan-6/3A Comparison [11][12][13][16][18]
1 Virtex-6 and Spartan-6 slices each contain 4 LUTs and 8 registers, Virtex-5 slices each contain

4 LUTs and 4 registers, and Extended Spartan 3A slices contain 2 LUTs and 2 registers.
2 Virtex-5/6 and Spartan-6 use 6-input LUTs, while Extended Spartan-3A use 4-input LUTs.
3 Virtex-6 Clock Manager Tiles (CMTs) each contains 2 Mixed-Mode Clock Managers (MMCM),

which can be used as either PLLs or DCMs; Virtex-5 and Spartan-6 CMTs each contain 2 DCMs
and 1 PLLs.

4 The DSP blocks contain Multiply-ACumulate hard cores (MAC). Virtex-5 and 6 use 25x18
MACs, Spartan-6 and 3A use 18x18 MACs.

5 Virtex-6 has Multi-Gigabit blocks supporting speeds up to 11+Gbps, the Virtex-5 up to
6.5 Gbps, and Spartan-6 up to 3.125 Gbps [14].

6 All but one Virtex-6 model have 2-4 Ethernet MAC cores.
7 Virtex-6 has hard-core PCI-Express support for generation 1 and 2, with x8 speed; Virtex-5

has hard-core support for gen.1 (x8), and soft-core support for gen.2 (x8); and Spartan-6 has
hard-core support for gen. 1 (x1) [14].

The following discussion will stick to recent generations of Xilinx FPGAs,
since these chips were chosen for this design9. Xilinx terminology will be
consistently, unless otherwise noted.

Resources 2.3.2
Tab. 2.1 compares the available logic offered from four currently very pop-
ular series of programmable Xilinx devices; the Virtex-6 and Virtex-5 high-
performance chips, and the low-cost, low-power Spartan-6 and Spartan-3A
chips. A brief description of these resources, along with their importance in
this design, will follow.

Input and Output Buffers 2.3.2.1
The Input and Output Buffers (IOB) is the interface between the “external”
(outside FPGA) and internal logic. For both inputs and outputs a wide
range of signalling standards are supported - for both differential and single
ended schemes. Optional input delay elements may be used to synchronise

9For our project, the alternative to Xilinx would have been Altera. Both produce chips
with similar performance and functionality, and thus the decision was simply made based
on what the team had previous knowledge of (to reduce development time).
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input data streams, and input impedance can be adjusted either digitally
(with Digitally Controlled Impedance, DCI) or by toggling input termina-
tion. Each IOB buffer has several registers, for driving the output pins or for
clocking input data (even Dual Data Rate - DDR - is supported). Naturally,
the option of just routing the data through is also supported.

In recent FPGA models10 the GPIO-tile also contains a silicon Serialisation
and Deserialisation (SERDES) block. This facilitates high-speed signalling,
and is easy to use. It will be used in this design to capture the TOT-data.

The alternative to SERDES is to bring the high speed signals into the FPGA
fabric and perform the deserialisation there, but the internal delays of the
fabric makes this very hard. If the goal is to sample data coming from an
external synchronous source, dedicated clock resources (PLLs and DCMs)
can be used to make it work11. However, unless the deserialiser logic is man-
ually placed12, there is no way to guarantee that the deserialiser performs
the sampling linearly - i.e. that bits are uniformly distributed within the
dataframes.

Configurable Logic Blocks (CLB) and Slices 2.3.2.2
The Configurable Logic Blocks (CLBs) are the main logic resource for im-
plementing sequential as well as combinatorial circuitry13. Due to its im-
portance in nearly all FPGA-designs it deserves a quick description.

First, have a look the right side of fig. 2.3 and notice what is called a slice. A
slice is the smallest group of logic in an FPGA. Depending on the technology
model (limited to the ones listed in tab. 2.1), a slice may contain 2-4 LUTs,
2-8 registers, a few multiplexers, and some gates, carry-chains and tri-state
buffers. A slice is fully configurable, which means that it can be programmed
to realise almost any digital circuitry.

Each lookup table (LUT) has 4-6 inputs and can be used as a function
generator, read-access memory (Distributed SelectRAM) or a shift register14.

10Since Virtex-4 all Virtex-models have SERDES-support, but only some Spartan-
models do.

11That it ”can be made to work”, does not mean it is easy. High speed designs are
consistently hard to debug, and adding the necessary time- and location-constraints to
such a design can easily lead to over-constraining; Unless the implementation tools are
allowed a certain minimum of freedom, the implementation process are likely to become
very slow, and - in some cases - misbehave or fail completely.

12This is referred to as Floorplanning the design, and should only be considered in
the final stage of the development process. This is because it makes the implementation
software less able to perform optimisations, slows the implementation process down (which
is too slow already), and may cause problems to appear where they previously did not
(like squeezing a balloon).

13CLBs represents the ”isles of logic” mentioned in 2.3.1.
14In Virtex-6 chips only some LUTs can function as Distributed RAM.
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Figure 2.3 - Configurable Logic Block (simplified)

A LUT with, say, 6 inputs can realise any combinatorial circuitry with 6
input lines. The configuration of Distributed SelectRAM and shift registers
are flexible, and more so for every new generation of FPGAs. This allows
distinct resources in the FPGA to be used for increasingly complicated tasks,
as well as overlap other resources in terms for functionality. Thus, not
only will new FPGA-models contain more logic, it will also be used more
efficiently15.

The storage elements can be configured either to realise a level triggered
latch or an edge triggered register. The input data can either be supplied
from logic inside or outside of the slice.

It is possible to perform “rough calculations” on resource utilisation by re-
ferring to the numbers above, but this estimate is never accurate. This is
because the implementation software performs a wide range of optimisations
when realising the design, making it hard to predict exactly what resources
will be used in the end. It might decide that some resources ought to be
shared or that the design should be redistributed in order to achieve a better
compromise between logic utilisation and performance.

Each CLB is connected to the global routing network through a switch
matrix and to adjacent CLBs with fast interconnect (see fig. 2.3). To realise
complex logical structures several CLBs can be combined, however, as the
complexity of the logic increases so will the hit on performance16. Good
coding style dictates breaking down any problem into simple functions which
can be implemented with as few slices as possible.

15This is one of the reasons why comparing logic consumption across FPGA-models is
tricky.

16This is because routing delays between cells dominates the delays inside the cells.
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Digital Clock Managers 2.3.2.3
Each Virtex-5 Clock Manager Tile (CMT) contains one Phase-Locked Loop
(PLL) and two Digital Clock Managers (DCMs). The latter is a self-
calibrating and fully digital solution for:

• Clock distribution. An excellent fan-out and internal delay-locked loop
(DLL) helps preserve signal integrity.

• Delay compensation. Using an internal feedback the DCM can deskew
all clocks relative to the input clock, thus making the DCM appear
”transparent”.

• Frequency synthesis. Derived clocks can be created with a wide range
of possible frequencies.

• Coarse-grained clock phase shifting. Supplies output clocks with 0◦,
90◦, 180◦ and 270◦ phaseshifts, respectively.

• Fine-grained clock phase shifting. Provides the ability to on-the-fly
adjust the clock phase in increments of T/25617 [17, page 49].

PLLs, other other hand, can not adjust the phase as the DCMs do. But they
offer something else in return, jitter filtering, which is very handy to ensure
optimal system performance. Note that the use of these two components
may be combined, e.g. first use a PLL to clean up the clock, and then pass
it to a DCM. In its current state, this design does not use DCMs, only PLLs,
but this is expected to change in the future when external cards must be
interfaced18.

A wide variety of interconnect is available for routing data and clock-signals.
For global or high speed clock signals, and reset signals, the global clock rout-
ing network should be used. This is low skew interconnect designed for low
duty cycle distortion, improved jitter tolerance, low power consumption and
high speed clock signalling. The clocks are routed to these global highways
with clock multiplexers, which can switch glitch-lessly from one clock to an-
other (see 3.2). The clock multiplexers no longer shares routing resources,
thus the bank access restrictions seen in previous FPGA-models no longer
applies19.

17Overridden by DCM_TAP_MIN and DCM_TAP_MAX [17].
18To interface external cards, a ”source synchronous” clock domain should be created

around the IOB-tile connected to the external device to promote transfer-speed and data
link reliability. The data may be synchronised with the system clock, i.e. become ”system
synchronous”, by means of a few flip-flops.

19The FPGA is segmented into ”banks”, physical areas sharing routing resources, volt-
age supplies, etc. Previously only a select few clocks could be routed to the same bank,
which easily caused problems if several high speed clock domains were required inside this
bank.
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Multi-Gigabit Transceivers 2.3.2.4
The Multi-Gigabit Transceivers (MGTs) provided by Xilinx are called Rock-
etIO. This is a technology aimed to provide serial communication at speeds
up to several Gb/s. In recent FPGAs from Xilinx the RocketIO functionality
resides in silicon20 and offers excellent performance.

PowerPC Blocks 2.3.2.5
PowerPCs are ”hard” processor cores (implemented in silicon), as opposed
to ”soft” processor cores (like Microblaze) which is implemented in FPGA-
fabric21. Due to their hard nature, PowerPCs offers better performance and
lower energy-consumption than soft-processors22, but soft-processors are far
superior in terms of flexibility. Either can be used to run Embedded Linux,
as this design will.

DSP Blocks 2.3.2.6
The Digital Signal Processing blocks in recent Xilinx FPGAs are variations
of, what they referred to as, a DSP48 block23. This block contains multiply
and accumulate (MAC) circuitry, able to handle up to 25x18 bits multipli-
cations on the Virtex-5.

The combination of these DSP resources and the massive parallelism offered
by the FPGA logic has made FPGAs very popular in applications where
extreme DSP performance is required. The major drawback has historically
been that writing DSP applications in HDL is very cumbersome, but a
continuous drive towards higher level abstraction in these languages and
support for other high level languages has made this less of an issue. For
example, it is now perfectly possible to write DSP algorithms in Matlab24,
and synthesise these for FPGAs.

Another very potent technology here is Graphics Processing Units (GPUs),
which is made up of a large number of small DSP processors, all operating
concurrently. This technology is low-priced, the programming language is
C, and the GPU designs are highly flexible, scalable and portable. The
technology is worth a mention in this context, as ComPET might eventually
perform some DSP tasks with FPGAs, and some with GPUs.

20This was introduced in the Virtex 2 Pro, but then the latencies were too high for it
to become a real success.

21The ”fabric” of an FPGA is the internal configurable logic, as opposed functionality
residing in silicon blocks.

22Analogous to ASICs versus FPGAs.
23This block was introduced with Virtex-4. Before this, a few multipliers was the best

the Virtex series had to offer.
24Writing in the Matlab m-language typically require 50-100x less code than the equiv-

alent HDL-description.
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Generally, FPGAs will excel GPUs in terms of performance, and most no-
tably so in applications where it is hard to achieve concurrency, or where
the concurrent processes must communicate [9]. However, FPGA-designs do
not natively support floating-point precision, is time-consuming to develop,
and are not (yet?) as portable, scalable and flexible as GPU-designs.

Block Select RAM 2.3.2.7
BlockRAM are dual-port silicon RAM blocks of sizes 18-36kb, that may
be alternatively configured as FIFOs. A wide range of configurations are
available for the port width and depth. While the Distributed RAM provides
a small, fast and local buffer, the BlockRAM provides a large global buffer.
Hence, these are designed to complement each other, an important factor to
consider during the development process.

Which FPGA to Choose? 2.3.3
Our detector consists of 600 LYSO-crystals and 400 WLSs, adding to a total
of 1000 channels. Ideally all these channels should be sampled with Multi-
Gigabit Transceiver (MGT) lines at speeds up to 6.5 Gbps (see tab. 2.1),
but this would become too costly. The top-model Virtex-6 only contains 36
such pins. In comparison, the same model boasts 1200 GPIO-pins. These
should only be used if the FPGA-model has SerDes-support (see 2.3.2.1).

The Spartan-3 is ruled out from the beginning, since it is too small, has
no SerDes-support, and no Ethernet MAC. Furthermore, Virtex-6 requires
ISE version 11 or 12, which this project currently lack a licence for. The
options providing the best performance to cost ratio is thus Virtex-5 or
Spartan-6, although of these the Virtex-5 is preferred. The performance is
generally better, and the extra power consumption of the Virtex-series is of
no significance in this detector.

To facilitate low design cost and rapid development boards containing the
FPGA and common peripherals are used. Several off-the-shelf solutions ex-
ists, including prototype and evaluation-boards from Xilinx used to showcase
their FPGAs.

Evaluation Boards 2.3.4
Evaluation boards facilitates rapid development and low prototyping cost,
but as they are designed to showcase certain FPGAs, a large share of the
FPGA-pins are routed to various external IO peripherals. Naturally, this
leaves less pins free for the front-end channels, which would require buying
more cards.
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Thus, as long as some basic peripherals are present, such as Ethernet PHY25,
JTAG, RS-232, and some RAM, the aim should be to find evaluation boards
with as many GPIO-pins as possible. Some options are presented below.

Xilinx Virtex-5 LXT Evaluation Platform
(ML505) Key Features  

• Xilinx Virtex-5 LX50T
- 28 800 FFs and LUTs
- 2 160kb BlockRAM
- 4 10/100/1000 Ethernet MAC
- 48 DSP48 slices
- 12 RocketIO Tranceivers
- 1 PCIs Express endpoint

• 256MB DDR2 SODIMM
• 32MB Flash
• RS-232, JTAG, USB, Audio Jack
In/Out, PS/2, DVI, VGA, SATA
• 1 10/100/1000 Ethernet PHY
• SAM connector: 16 LVDS-pairs

Table 2.2 - Key Features - Xilinx Virtex-5 LXT Evaluation Platform (ML505)

The ML505 board is characterised by its large number of peripherals and
a lot of memory, but at the cost of only 16 user LVDS-lines. The design
described in this thesis was developed solely using this board, but the lack
of inputs makes it unfit as a ”Readout Card” (see 2.4).

Xilinx Virtex-5 LXT PCI Express
Development Kit (V5LX-EVL50-G) Key Features  

• Xilinx Virtex-5 LX50T
- 28 800 FFs and LUTs
- 2 160kb BlockRAM
- 4 10/100/1000 Ethernet MAC
- 48 DSP48 slices
- 12 RocketIO Tranceivers
- 1 PCIs Express endpoint

• 64MB DDR2 SDRAM
• 16MB Flash
• RS-232, JTAG, USB
• 2 10/100/1000 Ethernet PHY
• EXP connector: 84 LVDS-pairs

Table 2.3 - Key Features - Xilinx Virtex-5 LXT PCI Express Development Kit

A much better choice is thus the V5LX-EVL50-G evaluation kit, which
promotes an EXP connector with 84 LVDS-pairs, the same FPGA as the

25PHY is the physical layer in the OSI network model.
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ML505 (the LX50T, see fig. 2.9), and two Ethernet PHYs! The latter is very
interesting, because one may be used for high-speed data-transfer, and the
other for control activities (through the embedded project, see 2.4.5).

Xilinx Virtex-5 FXT Evaluation Kit
(V5FXT-EVL30T) Key Features  

• Xilinx Virtex-5 FX30T
- 20 480 FFs and LUTs
- 2 480kb BlockRAM
- 1 Embedded PowerPC core
- 4 10/100/1000 Ethernet MAC
- 64 DSP48 slices
- 8 RocketIO Tranceivers
- 1 PCIs Express endpoint

• 64MB DDR2 SDRAM
• 16MB Flash
• RS-232, JTAG, USB
• 1 10/100/1000 Ethernet PHY
• 30 pins SAM connector
• 1

2
EXP connector: 42 LVDS-pairs

Table 2.4 - Key Features - Xilinx Virtex-5 FXT Evaluation Kit (ML505)

Finally, the design needs a common card in charge of triggering and clock
distribution, a ”Trigger Unit” (see 2.4.2). The V5FXT-EVL30T might be fit
for this job, because of its 42 LVDS-lines, PowerPC core, and higher number
of DSP48 blocks. PowerPC based embedded networking are generally faster
than the soft-core alternatives, which might come in handy if it is to control
a large number of Readout Cards.

These cards were just examples, and may eventually not be used at all,
but introducing them gives a general idea of what to expect in terms of
functionality. Further note that most of the evaluation platforms comes
with variable sized FPGA, where the models just described is in the lower
end. Upgrades will be made should it prove necessary as more detector
channels are added.
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Functional Description 2.4
A functional overview of the digital part of the data acquistion system is
shown in fig. 2.4.
 

 
Figure 2.4 - ComPET readout system: Functional buildup

The readout system consists of several distinct physical parts. The detec-
tor is split into 4 modules, each with 250 channels. These channels are
pre-processed by the analog front-end electronics, and routed to a Readout
Card. The currently considered evaluation boards provides 84 GPIO-pins,
dictating the need for 3 of these per module, or 12 in total. The Readout
Card concurrently samples each channel (2.4.1), sends and receives triggers
to a Trigger Unit (2.4.2), computes the interaction time and energy from
the TOT-data (2.4.3), fan-in and ”builds” an event from the data over all
channels (2.4.4), and sends these via Ethernet to a computer farm (2.4.5).
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This section will introduce this functionality. Implementation details may
be found in the next chapter.

Data Capture 2.4.1
As shown in fig. 2.4, the TOT-pulses enter the Readout Cards from the ana-
log front-end, one line for every channel (in this and upcoming examples,
8 channels are chosen for simplicity). To avoid high speed signalling in the
FPGA-fabric, each of these are then sampled by on-board silicon deserialis-
ers, yielding frames of 10 bits synchronised with the system clock (see 3.3
for details).

Figure 2.5 - Visualisation of the TOT sampling accuracy

The theoretical accuracy of resolving one of these edges, and thus the time-
resolution αtime, is given by

α2
time(fs) =

1/2fs∫
−1/2fs

e2 p(e) de =
fs

3

[
e3

]1/2fs

−1/2fs

=
1

12f2
s

, (2.1)

where fs is the sampling frequency and e is the quantisation error. The
energy resolution αenergy, due to being inferred from both leading and falling
edge, is twice that of the time resolution,

α2
energy(fs) =

1

6f2
s

. (2.2)

Assuming a sampling frequency of 1GHz, this translates to a standard de-
viation of

αtime ≈ 0.29ns and αenergy ≈ 0.41ns. (2.3)

However, these are theoretical figures. Further distortion by walk and jitter
in the analog front-end must be expected, but as seen later in the system
assessment (e.g. in 5.2.1), these effects seem neglectable in our system.
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Triggering and Windowing 2.4.2
A PET detector, due to employing numerous channels sampled at very high
speeds, produces massive amounts of data. Fortunately, this data is also
very sparse; ComPET samples 1000 channels at 1 GHz, yielding a data-
rate of 1Tbps, but with an event-rate of, say, 3Mevents/s, the actual rate
of decent data is in the order of 100 Mbps (assuming 32 bits per event, see
2.4.3).

This is common to particle physics experiments, and is solved by employing
highly concurrent analog or digital electronics to monitor the data, and -
when something interesting occurs - ”trigger” data capture. What is inter-
esting is usually defined by a few criteria, and - depending on how long it
takes is to evaluate - may be grouped into levels.

The top level trigger, level 0, is a fast (latency typically in the ns-range)
real-time trigger used to capture raw data from the sensors. Traditional
PET-systems uses either an analog or digital26 level 0 trigger to enable data
capture with ADCs. The equivalent in our system is the voltage threshold
in the analog electronics, which discards gamma-rays with an energy less
than 50 keV27.

The next trigger in ComPET, level 1 (tagged event trigger), is asserted
when one, or several, TOT channels contains a leading edge (see 3.4.2.1).
Combinatorial logic is added to each channel to produce the trigger (the
”Edge Detect” block in fig. 2.4), and an or of these from all channels are
sent to the Trigger Unit. Depending on some coincidence criterion, the
Trigger Unit responds by asserting a coincidence trigger window.
 

 
Figure 2.6 - Coincidence validation

26The level 0 triggers can either be local ”asynchronous” triggers, or global ”system
synchronous” triggers.

27With 3D-readout this threshold may be set lower in order to include Compton scat-
ters. Clever signal processing algorithms can use this extra information to improve image
quality [5].
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Figure 2.7 - Event parameters

The coincidence window serves three purposes; it discards events which are
too far apart for improved contrast sensitivity, allows all events within the
same window to be assigned a unique event number, and can be used to
specify the relative time of interaction (see 2.4.3). This information is in
turn used by the Event Builder (see 3.5) to collect event data from all
channels and sort these according to event number. Another fortunate effect
of tagging events with event numbers is that the latency of the system
becomes largely unimportant.

Parameter Extraction 2.4.3
When an event occurs, the TOT-time and width is computed, and the rel-
evant channel number and associated event number is recorded (tab. 2.7).
These 4 parameters combined form an event packet, which should be as
small as possible, and preferably a power of two for maximum performance.
Since Microblaze processor has a 32-bit data-bus, setting the event packet
size to 32-bits is probably wise.

To accommodate this requirement, an obvious challenge is that the TOT-
time can not be specified absolutely. This was the case in an early version
of the design, but then every event required two Ethernet packages - one
dedicated to the TOT-time alone. However, the TOT-time is only used to
separate events within the same coincidence window, and as such only the
relative timing difference of these events are necessary.

Even if the final detector design will not require absolute timings, these
should somehow be attained to aid in the detector verification. This is pos-
sible, because the Trigger Unit must source a common clock to all Readout
Cards in order to attain synchronised coincidence windows and event num-
ber counters. Thus, if one of the Readout Cards - or the Trigger Unit - keeps
a system time counter running and maintains a look-up table relating event
numbers to the corresponding system time, the table may be read out over
a dedicated line, or after the scan has completed, to reconstruct absolute
timings for all events.
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Size Specification 2.4.3.1
Let us first consider the relative time of the TOT-pulse. The absolute re-
quirement for this value is that it spans an interval large enough to cover two
frames of bits28, but should naturally cover all values in the coincidence win-
dow. By using 7 bits, the relative time spans 27/fs = 128ns. It is unlikely
for the coincidence window to be wider than this.

Next, the width of the TOT-pulse has the same absolute requirement, but
should cover the entire TOT-width range. The current analog front-end
produces TOT-pulses with widths rarely exceeding 1µs, in which case a
parameter size of 12 bits, or 212/fs = 4.096µs, should suffice.

Setting the channel number size is easy, just add enough bits to be able
to address the channels the design is compiled for. Currently 6 bits are
used, dictating a maximum of 64 channels. The final design will most likely
require 84 channels, in which case another bit must be added.

Finally, the size of the event number counter is the hardest one to set. It
must be sufficiently large to make sure it does not wrap to an event number
that is potentially already being processed. Consider a case where one of
the channels receives an event with an TOT-width close to 2µs, while the
remaining channels successively receives TOT-pulses with 10ns separation.
To achieve a generally high efficiency of the system, short and frequent
coincidence windows should be used, but this increases the risk that the
event number counter wraps before the descending edge of the very first
long TOT-pulse. This will lead to incorrectly assigned event numbers, and
possibly cause system-lockup (because the event building structure is not
designed to handle this exception, if at all possible).

Thus, if the coincidence window is made shorter or the maximum length of
the TOT-pulse is made longer, more bits must be added to the event number.
In the case of a shorter coincidence window, less bits are needed to specify
the relative time, thus the overall bit requirement should not increase.

The above relations may be condensed into 3 equations:

2Btime

fs

optimal
> τco.win.

absolute
> 2W (2.4)

2Bevent no.

fco.win.

optimal
>

2Bwidth

fs

absolute
> 2W (2.5)

Btime + Bwidth + Bchannel no. + Bevent no. < 32 (2.6)

Here Bx is the number of bits for parameter x, W is the deserialisation width,
τco.win. is the length of the desired coincidence window, fs is the sampling

28This is due to how it is implemented.
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speed, and fco.win. is the rate at which the coincidence window repeats. A
preliminary suggestion for parameter sizes is summarised in tab. 2.5.

Parameter Bits Coverage
Event number 7 27/fs = 128ns.
Relative time 7 27/fs = 128ns.
Width 12 212/fs = 4096ns.
Channel number 6 26 = 64 channels.

Table 2.5 - Parameter size suggestions

The parameters may be set in the design file constants.vhd, see B.1.1.

Event Building 2.4.4
At this point the relevant parameters have been extracted from the TOT-
pulses and stored in the channel buffers. The question now is what to do
with it. Obviously, the data must be collected, but it should also be sorted
by event number.

There are two reasons for this; if the data is sorted in hardware, time is saved
in the post-processing, and ”bundling” all events from the same coincidence
window together allows for distributed processing of these events (see 2.4.5).

This operation will be referred to as ”building events”. The output of this
process should be a single stream of data, with events grouped by coincidence
window, each of which appearing chronologically. Ideally, this should be
done with 100% occupancy, meaning a new event will be appear at the
output at every single clock cycle. This is important, since every event must
pass through this structure, its throughput will then determine the system
throughput.

The decision tree shown in fig. 2.8 shows how this can be achieved. Each top
node represents a channel, and each of these nodes receive the eldest data
in the channel buffers (values chosen at random). Due to implementation
technicalities presented in 3.5, the decision tree must be implemented in a
pipeline.

This means that, in order to achieve 100% occupancy, all decisions must be
made on the first level. Instead of making any decisions inside the pipe, care
must be taken to ensure that only a single event enters the pipe at any given
clock cycle. All nodes inside the pipe are setup with predefined priorities,
so there are no ambiguities as to which event will be routed to the output.
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Figure 2.8 - Event Builder decision tree

Embedded Networking 2.4.5
As seen in fig. 2.4, the last part of the project the data passes through
prior to moving out on the network is an embedded project. The word
embedded implies the use an microprocessor, and this design runs a ”soft”
micro-processor from Xilinx called Microblaze. This is hosting an embedded
Linux system called PetaLinux, capable of performing various control and
network activities.

When this system sends packets over the network, different destination ad-
dresses can be specified. Now the reason for building events like described
becomes apparent. If a single network processing node can not handle the
amount of data sent to it, the Readout Card can e.g. send even numbered
events to node 1, and odd numbered events to node 2, or similar. In other
words, this is a way to distribute the load over as many processing nodes as
needed in order to avoid that these become the performance bottleneck in
the system.
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For more information on the embedded project, see 3.6 or have a look at the
”embedded tutorial” (C).

Summary 2.5
ComPET employs a compact geometric structure of LYSO-WLS matrices
that allows for a very high sensitivity, spatial resolution, and contrast sensi-
tivity. The light yield of these is converted to electrical energy by GAPDs,
and sent to a custom analog front-end, which ”reshapes” it into a pulse with
a very steep rising edge and a nearly linear falloff. A discriminator compares
this pulse with an energy threshold, with a resulting binary output pulse;
its rising edge being a measure of the interaction time, and its width - or
”Time over Threshold” (TOT) - being a measure of the interaction energy.

These parameters, along with the channel coordinate, are used to identify
photoelectric interactions, or the first interaction point of Compton scatters.
A Line of Response (LOR) is drawn for each of these interaction pairs, and
from these an image is computed. Its quality will depend on the accuracy
of each LOR, the number of LORs available, and the probability that each
LOR match γ-rays originating from the same radioisotope.

This impacts the readout system in several ways. To accurately estimate
the LORs, the TOT-pulses must be sampled very high speeds. To increase
the number of LORs, or the SNR, the throughput should be high enough
to avoid buffer overflows, and dead-time as low as possible. And finally, to
filter out events that has no coinciding event, a coincidence window must be
applied to all channels. This implies communication across channels, and to
an external ”Trigger Unit”, hence adds to structure and timing complexity.

A technology very capable of fulfilling these criteria, Field Programmable
Gate Arrays (FPGAs), are chosen. The FPGA design captures the TOT-
data using GPIO deserialisers, greatly compresses it by performing coincidence-
window validation and parameter extraction, collects and sorts data from
all channels, and sends these out over an Ethernet network for further pro-
cessing.

Next we will look at the design implementation (3).
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Figure 2.9 - The Virtex 5 LX50T internal architecture29

(for curiosity only, to get a feeling of what an FPGA is)

29Made from information provided by the Xilinx ISE Floorplanner.
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”Once a new technology rolls over you, if you’re
not part of the steamroller, you’re part of the
road.”

Stewart Brand 3
Implementation

Following up on the previous chapter, the basic functionality of the digital
readout system should now be known, although implementation details re-
mains to be described. Following the data path, the system must capture
data from all sensors (3.3), compress it by means of triggering and parame-
ter extraction (3.4), collect and sort data from all channels (3.5), and finally
send this over the network (3.6).

In addition to these topics, a few words will also be dedicated to the clock
and reset scheme (3.2), and design control (3.7).

First, however, an introduction to project versions and the Hardware De-
scription Language (HDL) used throughout this project will be presented.
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Introduction 3.1
This design can be split into several parts. Most of the design is written from
scratch in HDL (see 3.1.2), with the main exception being the embedded
project (see 3.6, C), which is composed of soft and hard Intellectual Property
(IPs) cores. The embedded project also runs PetaLinux, which requires
a few Linux kernels and the GNU tool-chain to be built. This adds to
the project size considerably, which is currently exceeding 100 000 files and
2.7GB (see B).

Thus, for the each implementation description in this chapter the most im-
portant design files will be identified. To obtain either of these, use the
hyperlinks, or look up the file location in B.1.1. This should be straight-
forward, as care was taken to ensure important source files never got mixed
with output files from the build tools.

Project Versions 3.1.1
The version control system used to track this project is called Git (see
A.4.1, B.2). Git tags commits by default with SHA-hashes, but allows hu-
man friendly version numbers be manually specified.

Only two major versions of this project have been specified, version 0.1 and
0.2. These designs are both stable, and represents the current state of the
project when the various readouts were conducted (see 4.3).

Version 0.1 was intended as a proof-of-concept; a single channel implemen-
tation that were able to extract TOT absolute time and width, store this
as 32 bits in a BlockRAM buffer, and send it out over an Ethernet network
using the embedded design.

Version 0.2, on the other hand, is a large upgrade over the first design. It
can handle an arbitrary number of channels, is able to extract TOT-width
and relative time from events, validates and tags these by coincidence, and
features the 100% occupancy event-builder and fan-in structure. It was also
made very general, to improve flexibility and portability, and reduce the
need for maintenance.

Since version 0.2, a few optimisations and corrections have been imple-
mented. This is nothing too severe, but will nonetheless be taken into
account in this thesis. To synchronise the project with the contents of this
document, all repositories will be tagged version 0.21 at the time of print.
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Hardware Description Language 3.1.2
An FPGA design is described using a Hardware Description Language (HDL).
For this design, two prominent alternatives were considered; Verilog 2001
and VHDL-1993. Verilog is a C-like, loosely typed language, developed
with emphasis on time to market. VHDL, on the other hand, is a strongly
typed language based on Ada, that was originally intended as a documenta-
tion language for large gate-arrays. Unlike Verilog, it supports abstract data
types and descriptive functions, which makes it very flexible and ”formal”.
For this reason, VHDL was chosen for this project.

It should be noted that more recent versions of these languages, like Sys-
temVerilog 2005/2009, or VHDL-2008, are far more powerful, but is not sup-
ported by Xilinx XST1. Alternative synthesisers, such as Mentor Graphics
Precision or Synopsys Synplify, supports these languages at least partially,
but since mixing software adds to the project complexity and licence costs,
it was decided against in this project.

For simulations, however, this design use Mentor Graphics Modelsim (see
A.3.2), which supports SystemVerilog. Thus, all testbenches are written in
SystemVerilog.

As for the choice of code syntax and conventions, this was chosen to con-
form with the Motorola Freescale HDL conventions [22], which seems to be
generally promoted throughout the HDL community.

1The current last release of ISE, version 12, still lacks support for SystemVerilog 2005.
Support for the even more recent VHDL 2008 and SystemVerilog 2009 seems to be even
further off (according to Xilinx forums).
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Figure 3.1 - Clock Reset Unit (on a Readout Card)

Clocks and Resets 3.2
Design Unit File
top top.vhd.... cru cru.vhd.... pll_all pll_all.xaw.... a2s a2s.vhd

Table 3.1 - CRU -
associated design units

The ComPET Readout Cards has a common
clock domain for most of the logic; a ”master”
clock running at 100 MHz. The exceptions are
a front-end clock running at 5 times the master
clock speed required by the deserialiser2, and a
microprocessor clock running at 125 MHz. The
design unit in charge of sourcing these and associ-
ated resets is the Clock Reset Unit (CRU, fig. 3.1).

Motivation 3.2.1
Designing a solid clock and reset scheme is a task whose importance is
largely underestimated. Since these signals are global, incorrect implemen-
tation may cause errors that are non-repeatable and seemingly non-causal,
which makes the debugging process very difficult. Thus it makes sense to
group all reset and clock functionality into a single design unit. This also
promotes portability (which is nice because this functionality often simi-
lar across designs), code cleanness and structure. Basically, the only place
where clocks and resets signals should be altered is in this unit. It might
seem unnecessary to be so strict, but not having absolute control over these
signals is a recipe for disaster, and will lead to countless hours of debugging.

2This clock rate, while always being a integer multiple of the master clock, depends on
the word width and clock mode (DDR/SDR). See [17, page 371, table 8.5].
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Implementation 3.2.2
The Readout Card should use the Trigger Unit clock as a source when
available, and when it is not use one of the on-board clocks. The system
shown in fig. 3.1 allows this switching to happen automatically. Two PLLs
are setup with exactly the same settings, one driven by the internal board
clock and the other by the Trigger Unit clock, and the output clocks are sent
to global glitch-free clock multiplexers. These multiplexers are controlled
with the locked-signal from the external clock PLL, such that if this PLL
is able to lock on the external clock, it will be used to drive the design. This
plug-and-play feature allows cards to be immediately synchronised with a
Trigger Unit when it is connected (which is required), but continue operation
even if disconnected.

Choosing whether to use asynchronous or synchronous resets is a frequently
debated topic. Flip-flops with asynchronous reset is guaranteed to be cleared
upon assertion, but unexpected behaviour might arise if the deassertion hap-
pens just prior to clock capture. The solution seems to be to use synchronous
flip-flop reset inputs, but if the reset is too short it might not get registered.
Furthermore, only some vendors (e.g. Xilinx or Altera) support components
with synchronous resets3, and in ASIC-designs this is not supported at all.
To promote portability a solution is use the component asynchronous reset
input (which is supported by everyone), and make sure that the deassertion
of the reset lines is synchronous [6]. As shown in fig. 3.1, this is achieved by
means of a few flip-flops.

It is possible to reset the FPGA front-end logic with a soft-reset, which may
be controlled through the ChipScope VIO interface (see 3.7.2). It may be
used to reset the event-number counter, or to synchronise all the Readout
Cards.

Conclusion 3.2.3
The Clock Reset Unit seems to be working as expected when it is running
on a single clock. However, the clock multiplexing has not yet been tested,
and will remain as a task to be carried out when the Trigger Unit is being
designed. It is likely the design will have to be soft-reset after a clock switch,
but this remains to be tested as well.

3It should be noted that Xilinx highly recommends the use of synchronous resets al-
together, to achieve better performance and slightly less logic usage with their FPGAs.
Unless portability is a concern (which it should be), then this is naturally the preferred
solution.
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Figure 3.2 - Deserialiser, 10 channels, DDR-mode

Data Capture 3.3
Design Unit File
top top.vhd.... fe fe.vhd.... fe_ch fe_ch.vhd.... fe_ch_iserdes fe_ch_iserdes.vhd

Table 3.2 - ISERDES -
associated design units

To achieve a good time-resolution
the TOT pulses are captured and de-
serialised using the silicon SERDES
blocks residing in each GPIO-tile.
These silicon-blocks can be run at 1-
1.25Gbps in a Virtex-5 [15, p29][19,
p32], depending on speed grade.

Implementation 3.3.1
A deserialiser always require a bit-clock and a frame-clock to sample the bits
and frames, respectively. To achieve the highest attainable sampling rate
the SERDES block is setup in DDR mode, allowing for a sampling speed of
1GHz with a 500MHz front-end clock (and a 100 MHz frame-clock)4. This
mode requires the cascading of two SERDES-modules (fig. 3.2).

A common request is to be able to disable channels, either block misbe-
haviour, or for testing or calibration purposes. This is possible though the
control interface (3.7.2). If a channel is disabled, the SERDES clock enable
will be deasserted to save power.

Conclusion 3.3.2
Using the GPIO-tile SERDES functionality to capture the TOT pulses fa-
cilitates reduced detector cost, allows for easy scalability, and yields a time-
resolution of less than 1 ns. However, as it turns out, the idea is not new.
A group at the University of Cheerbrooke, Canada, implemented a similar
TDC with a Virtex-4 [8]. In this design the input pulse was copied and
sent to 4 GPIO-pins, each running a 800 Mbps ISERDES with input clocks
shifted a quarter of period relative to each other. This is essentially how the
GPIO deserialiser works, they just expanded the functionality by utilising
more pins.

4To see all possible modes, see [17, page 371, table 8.5].
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A challenge when spatially oversampling a signal is to ensure linearity, but
the mentioned group reports good results here. The question, however,
is whether this is cost-efficient. The reason for using GPIO-pins in this
design was to reduce cost, but if several GPIO-pins are required to achieve
the desired time-resolution, it might be worth reconsidering the use multi-
gigabit transceivers (MGT) as well.

Using 10-bits frames, as opposed to e.g. 8 bits, may not seem optimal as
this is an ”awkward” binary size. However, computations based on these
data are performed in Multiply-Accumulate (MAC) blocks, meaning hardly
any extra logic will be required. Thus, it seems wiser to use 10-bits frames
to keep system clock speed at a minimum, ultimately minimising power
consumption and timing complexity.

Triggers and Parameters 3.4
Design Unit File
top top.vhd.... fe fe.vhd.... fe_cotrg_proc fe_cotrg_processing.vhd.... fe_ch fe_ch.vhd.... fe_ch_pargen fe_ch_pargen.vhd.... shift shift.vhd

Table 3.3 - Triggers and parameters -
associated design units

The generation of triggers and
data filtering includes several
design units. A per-channel
Parameter Extraction module
(fe_ch_pargen) tracks rising
and falling edges, and in case
of the former sends an event
trigger to the Trigger Unit5.
Continuously it keeps extract-
ing parameters from the data, and puts these into a delay-line long enough
for the output to be synchronised with the coincidence window.

This window is monitored by a global module (fe_cotrg_proc), which keeps
track of event numbers and the time passed since window assertion. These
are important event parameters, thus are kept available for all Parameter
Extraction modules.

Motivation 3.4.1
The complexity of a digital readout system increases with the number of
sensors involved, the amount of data to be processed from each, the time-
constraints imposed on the system, and the degree of intermediary commu-
nication required between channels.

This suggests compressing the data as early as possible in the processing
chain, just after the deserialiser, to avoid exhausting the buffer capabilities

5Ultimately, this will be the case, although no Trigger Unit yet exist.
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Figure 3.3 - Edge detection, various conditions

in the FPGA, and to relax the timing constraints imposed on the remain-
ing part of the design. The challenge is to perform this compression with
minimum logic utilisation, to allow the design to scale well towards higher
channel numbers. Further adding to the challenge is the aim to create a
design that is flexible, easily maintainable, and reliable.

Implementation 3.4.2
The first step is to detect the frames containing edges (3.4.2.1), then mea-
sure the edge location within these frames (3.4.2.2), and compute all other
parameters based on this.

Edge Detection and Triggering 3.4.2.1
The presence of an edge within a frame may be detected with either sequen-
tial circuitry running at the sampling frequency, or combinatorial logic.
High speed sequential solutions tend to require less logic, but are more error
prone, harder to debug, and more power-hungry than the equivalent combi-
natorial solutions. In turn, using combinatorial logic is less intuitive, since
a common Boolean equation must be derived to cover the entire range of
data input scenarios.

Some of these are illustrated in fig. 3.3. Notice that the simplest case to han-
dle is when a TOT transition occurs in a frame centre (case 1 in fig. 3.3),
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since here all the information required to perform the correct decision is
obtained from the single frame alone. When a TOT transition occurs be-
tween two frames (2), however, the data from both are needed to ensure the
correct detection. For these scenarios, the following simple implementation
should do the job (fig. 3.4).

Figure 3.4 - Edge detect circuit

This circuit flags a rising edge condition when a current frame contains ones,
and the previous one contained zeros. Vice versa for the falling edges. Note
that while this approach handles most scenarios depicted in fig. 3.3, it is
likely to fail in the case of burst noise (4) and sub-frame edge separation
(7,8). However, noise has so far only been observed on the TOT falling
edge6, and the probability of events with less than 10 ns separation is very
low.

TOT Time and Width 3.4.2.2
Since the TOT-data is segmented into frames synchronised with the system
clock (fig. 3.3), it makes sense to adapt the terminology of ”coarse” and
”fine” timings; the former indicating a timing resolution equal to the system
clock, and the latter a resolution equal to the sampling clock (fig. 3.5).

Figure 3.5 - Parameter extraction

As may be seen from fig. 3.5, the total time passed between two edges may
be decomposed into three parts; the (fine) time of the first edge relative
to the end of the first frame, the (fine) time for last edge relative to the

6The tail of the detector response is flat compared to the speed of the sampling clock,
making it the falling edge more susceptible to noise. However, a properly adjusted dis-
criminator hysteresis should correct this.
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start of the last frame, and the (coarse) time of the number of full frames
in between. In terms of number of bits, this may be expressed as

E{TOT} = E{τfalling edge − τrising edge}

=
1

fs

(
W Nfull frames + N1’s in first frame + N1’s in last frame + 17

)
.

(3.1)

The current implementation computes the TOT-time and width this way;
the number of ones in the first and last frame is found by bitwise sum, and
the number of frames is found by simply starting a counter at the rising
edge, and stopping it at the falling edge (fig. 3.6).

Figure 3.6 - TOT time and width computation

Note that while the TOT-width is found by counting the number of 1’s in the
data-stream, the TOT-time is found by counting the number of 0’s between
coincidence window assertion and the rising edge. The coarse TOT-time is
measured by the cotrg_proc block in a similar fashion as the coarse TOT-
width above, and the fine TOT-time is found by subtracting the number of
1’s in the first frame from the deserialisation width W .

Fig. 3.6 also shows that the design calculates the total TOT-width using
either Multiply Accumulate (MAC) blocks or CLBs, the decision is left for
the synthesiser to make. If logic needs to be saved in the future, or the DSP-
slices somehow can be put to better use, the coarse and fine values may be
kept separate and merged in the post-processing instead. However, a greater

7The expectation value of the pulse width equals the number of 1’s, plus one.
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dynamic range can be covered if this calculation is performed in the FPGA8.
Also, knowing that the network throughput is likely to become a bottleneck
in the final system, it is probably wise to make every bit as valuable as possi-
ble.

Figure 3.7 - State Diagram -
Parametrisation Filter

(simplified)

Note that in order to save logic, the bitwise
and, or, and sum is delayed instead of the
data itself. The delay is introduced using
LUT-based shift-registers, each being able to
shift a single bit up to 32 clock cycles. For a
10-bit deserialiser the parameters amount to 8
bits, allowing two LUTs to be saved per chan-
nel. Additional logic is also saved by reusing
the bitwise and and or, instead of recomput-
ing these after the delay.

The timings of the data capture in fig. 3.6
is described using a simple Mealy state ma-
chine (fig. 3.7), optimised for latency (4.2.1).
It captures the TOT time and width, and
stores these - along with the associated chan-
nel location and event number - into a 32-bit
event packet in a channel FIFO (3.5.2). What
happens with the data after this is up to the
Event Builder (3.5).

Exception Handling 3.4.2.3
The extraction of parameters from a TOT-
signal may seem intuitively easy, but is com-
plicated by the need to handle exception
cases, such as when the rising or falling edge
of a TOT-pulse ends up between two frames.
In these cases the state machine (as it is
shown in fig. 3.7) will ”overshoot” into the
next frame, causing incorrect parameters to
be computed. Creating some sort of hack for

8For example, consider a case with 10-bit frames, where maximum 12 bits can be used
to measure the TOT-width. The bitwise sum of two such frames can range from 0 to
20, requiring ⌈log2 20⌉=5 bits. This leaves 7-bits for the coarse width counter, allowing
a maximum TOT-width of ∼ 27(+1) = 128(129) frames, or 128W = 1280 bits. Really
disappointing, knowing that 12 bits can potentially cover ∼ 212 = 4096 values. The only
way to ”fix” this is merge the fine and coarse information in logic using a bit of two more
than necessary, and only truncate the end result.
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this is not too tricky, but finding a generic solution that allows for parame-
ter modifications, without adding any unnecessary design logic, is somewhat
less obvious.

The strategy deployed to handle these conditions consists of two parts. First,
a timing model where all parameters are correct at any given time is selected.
This implies that all fine timings are computed solely with combinatorial
logic, and that the sequential circuitry used to track coarse timings is ad-
vanced in time by one clock cycle9.

Second, some logic for preventing the overshoot, and advance data capture,
is added. More specifically,

• the state machine is prevented from overshooting. This is achieved by
modifying the ”falling edge condition” depicted in fig. 3.4 to take into
account the next value of the bitwise or, which will be 0 when the
TOT-edge comes between frames.

• data capture is forced. Aborting the state machine invalidates the data
capture condition, thus the data will be lost unless a capture is forced.

• the coarse width counter is stopped. Its running criterion is the same
as the state machine, causing it to overshoot as well. The conditions
under which it usually increments must now be invalidated.

Note that this will fail if the next frame contains one or more 1’s, either due
to a new event or noise (5.1.2). This is a problem with the entire design;
because a state machine is used to keep track of whether the last edge was
rising or falling, it will be very hard to make it handle both subframe pulse
widths and subframe event separation. Because the former is considered
far more important, a simple busy-signal is generated to make sure the two
frames following a falling edge is ignored. This will make sure no data
is corrupted, and since this condition is unlikely anyhow, the loss of SNR
should be minimal.

Conclusion 3.4.3
Although this design has evolved to become very reliable, there are ways to
make it perform better. However, the options are limited if emphasis on low
logic usage is to receive the same weight as it has so far.

This emphasis is seen throughout this design with the choice of a very simple
edge detection condition, delay of parameters instead of data, and stream-
lined data extraction procedure. Only a bitwise and and or is used as

9For example, event number must be ready at the exact same time as coincidence
window assertion, in case the event ends already in the first frame.
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control signals, and all event parameters are extracted using bitwise sum
and a few counters. Even the state machine runs off these variables, requir-
ing very little extra logic.

However, even when being this conservative, the logic consumption is rather
high. A rough estimate for the per-channel logic instantiated for 84 channels
indicates that more than 20% of all registers, and 35% of all LUTs available
in the LX50T FPGA will be used. The embedded project, event builder,
and debugging cores take up most of the remaining logic, so unless some of
these are removed there is not much logic left to play with.

The only ”waste” of logic in this design is the use of a bitwise sum to find
edge position, instead of a priority encoder. The reason for selecting the
former was to increase noise tolerance. However, so far noise has not been a
problem, and if this persists then using a priority encoder is probably a bet-
ter solution. Using a priority encoder will fix the TOT-time problems when
the TOT-width is less than a frame wide (see 4.2.2 and 5.1.2), but break
the currently perfect extraction of TOT-width under the same conditions.
To make both perfect with this condition, another priority encoder can be
utilised to scan the frame from the other end, or the use of bitwise sum and
a priority encoder can be combined.

In this design the event trigger and coincidence window is synchronised with
the system clock. In a future design each Readout Card should also mediate
the relative position of an edge within the frame to the Trigger Unit, to allow
it to produce a coincidence window with a resolution equal to the sampling
rate. This can be achieved over a single line using SERDES at each end-
point, or in parallel using 4-5 lines for the trigger and position, respectively.
The former is preferable because less logic is required to synchronise two
SERDES modules than to multiplex the data-lines, and because no extra
data lines will be required.

If someone feels really tempted, there is also a possibility that the state
machine here can be completely replaced by combinatorial logic. This would
mitigate any timing issues, but the price in terms of logic consumption and
design complexity will probably be too high.
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Event Builder 3.5
Design Unit File
top top.vhd.... fe fe.vhd.... fe_ch fe_ch.vhd...

.... fe_ch_buf fe_ch_buf.vhd...
.... fe_ch_fifo fe_ch_fifo.xco.... fe_eb fe_eb.vhd.... fe_eb_submux fe_eb_submux.vhd.... shift shift.vhd

Table 3.4 - Event Builder -
associated design units

The Event Builder is connected to
all channel FIFOs in the system
(fifo). These are read by ascending
event numbers by the Event Builder
(eb), fanned-in by a piped multi-
plexer (submux), and finally stored in
a BlockRAM shared with the embed-
ded project.

Motivation 3.5.1
Several implementation strategies will perfectly well fan-in data from all the
individual channels to a single sequential output. The question is what sort
of data throughput these can handle, and how priorities should be assigned
to each channel.

In low data-rate systems a simple ”scheduler” (state machine) will probably
suffice, to read channels in turn according to a predefined priority scheme,
and sequentially stack the data into a serial output stream. However, any
state machine is limited by its sequential nature; it only checks its inputs
and refreshes the output drivers once per clock cycle. This is not an ideal
solution in PET where the data is extremely sparse.

A better solution, it seems, is to make a purely combinatorial design which
always selects one of the channels containing data. But combinatorial de-
signs become slow when the number of inputs increases. In a test imple-
mentation of a MUX with 80 channels, each with a 25-bit data lines, the
implementation tools reported a worst-path delay of more than 50 ns in a
Virtex-5 FPGA10.

Hence, the MUX must be put in a pipeline. The challenge, however, is to do
this without adding delays to the control logic. Or in other words, the data
must be routed through a pipe, but the selection of data to enter it must be
performed in real-time. This is the only way to attain a 100% occupancy.

Implementation 3.5.2
To be able to see if any channels has data with a particular event number,
each of the channel FIFOs is setup in a first-word fall-through mode. This
means the first word each of these contains will always be present at the
output. The only issue with this solution is when a FIFO is read empty,
in which case the output will not clear but keep the last stored value. The

10Speedgrade -1.
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obvious solution is to and the data output line with the already available
empty flag (fig. 3.8).

To determine which channels have data to be read, the event number part
of the FIFO data is compared with the event number currently requested by
the Event Builder. For every channel the event numbers match, an ”event
ready flag” is set high, signalling that these channels have data to to be
read.

Figure 3.8 - The Event Builder (N = 8, F = 2, L = 3).

The Event Builder requests event numbers by means of a simple counter.
As discussed in 2.4.3.1, an event number can not be addressed before it is
certain that no event with this particular number is still being processed
by the parameter extraction module. The limit is specified with the ”event
number max” signal, which is basically a delayed version of the event number
counter. It is received from the coincidence processing block.

Since the Event Builder knows what event number it is addressing, the event
numbers is stripped off all the event packages before these are routed to the
multiplexer pipe. The event number is then delayed a few clock cycles to
synchronise it with the MUX-pipe output.

Finally, a state machine will fetch these data and write it to a BlockRAM
that is shared with the embedded design. All the addresses will be used
for data storage, except the first one, which is used to store the number
of events the buffer currently contains. When the buffer is full, the state
machine simply resets, and the cycle repeats.

SubMux 3.5.2.1
How can the multiplexer be put into a pipe in a way that ensures 100%
occupancy, no timing violations, and easy adaptability?

An elegant approach would be to implement this using recursive functions,
since this is how the hardware is eventually synthesised anyways. To be
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able to do so the pipe must be segmented into elemental design units with
similar functional behaviour and structure.

To make the task easier, a constant fan-in for all levels in the design are
chosen. This symmetry allows building the MUXs with a constant number
of inputs and outputs. Now, let N be the number of channels per MUX
module, F be the constant fan-in, and L be the total number of levels in
the pipe. If the following simple relation

N = F L (3.2)

can be satisfied using only positive integers, then the entire MUX-pipe can
be built using the ”SubMux” design unit.

Figure 3.9 - The recursive MUX-pipe (N = 8, F = 2, L = 3)

Fig. 3.9 depicts the structure a SubMux would instantiate with N = 8,
F = 2, and L = 3. If the event number size is 7 bits, then each data-line is
25 bits wide (32-7), thus each multiplexer in the drawing has 50 input lines.
How this is implemented internally in the FPGA, whether it be with LUTs
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or smaller MUXs, or a combination, will be left for the implementation tools
to decide. The important factor to consider for the designer is the longest
path delay from any of the given input lines through the multiplexer, relative
to the system clock speed. If it becomes too high, then the fan-in must be
reduced.

The tricky part of designing this logic was to get the routing correct. As
the tree is being built from right to left (as it is drawn in fig. 3.9), the
channel FIFO data, read and enable lines (fifo en, fifo rd, fifo data)
is distributed between the SubMux modules as the pipe is being recursively
instantiated, and only actually used at the maximum depth. For all other
depths, the routing focus is to descend the hierarchy. To do this correctly a
SubMux must know how many channels remains to be distributed, and what
the fan-in is. For every instantiation, the ”remaining channels” parameter is
reduced accordingly, and when there are less remaining channels than fan-in
the recursive process is stopped.

Further adding to the routing challenge is the control paths that must be
allowed to move at the bottom level of the pipe (the brown lines in fig. 3.9).
A large enable chain (priority in/out signals) is setup from channel to
channel at this level, such that only one channel can be addressed at any
given time. The chain is routed by collecting lines when ascending the
hierarchy, and by re-distribution them when descending the hierarchy.

When a channel is addressed, the enable signal (fifo en) is passed along
into the pipe, making sure that SubMux modules higher in the hierarchy
allow this data to pass. A read signal (fifo rd) is also sent to the channel
FIFOs to clear the data when it has been read. The enable line at the
top-level SubMux is also used as a data strobe (dstb), to allow the Event
Builder to constantly feed the pipe with new data. This is the key to attain
a 100% occupancy.

It might seem unnecessary to create the data strobe by or-ing all FIFO en-
able flags together when the same operation is partially also done in the last
level of the event-builder. While this is true, the implementation software
will recognise this and remove any unnecessary logic11.

11FPGA implementation software usually optimises the design to find the best com-
promise between logic usage, performance and power usage. A designer may, however,
specify an optimisation criteria of particular importance.
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Conclusion 3.5.3
It took a while to design it, but the Event Builder now seems to operate as
expected and has been tested with up to 16 channels. As long as eq. 3.2
is satisfied, the MUX-pipe seems able to handle various combinations of
channels and fan-ins, and the occupancy is indeed nearly 100%.

While its implementation was somewhat complex, it was developed with ease
of use in mind. A designer only needs to specify the number of channels, an
appropriate fan-in (as a suggestion, 2 or 3), and connect the data lines - and
a channel enable bus - to the SubMux input. That is basically it. There
is no need to worry about pipe-depth, because the SubMux will recursively
figure this out on its own.

As future work a suggestion is to implement overflow handling, which is
currently not present. Also, the design should be modified for the EVL50T
board to test the design with channel counts up to 84.

Embedded Networking 3.6
Design Unit File
top top.vhd.... system system.xmp

Source files Compatibility
clean_bram.c All
read_bram.c v0.1
read_bram2.c v0.2
read_bram_speed.c v0.2

Table 3.5 - Embedded project -
associated design units/applications

The embedded project was added to this
design for three main reasons. First, writ-
ing control applications using e.g. C is
much more efficient than creating state
machines, regardless of the HDL language
used. Second, a wide range of available
IP-cores makes it easy use common pe-
ripherals with the Microblaze micropro-
cessor, allowing all of these to be taken
into use very rapidly. And third, it allows
for the use of Embedded Linux.

An Embedded Linux system is usually a light-weight real-time operating
system that provides networking functionality, device and file system sup-
port, scheduling, and interrupt handling, among other things. Furthermore,
it represents a familiar development platform, is scalable, and open source.
For this design, an Embedded Linux system from PetaLogix was selected.

Of course, there are also downsides to adding an embedded project, the
most prominent possibly being the added design complexity and logic con-
sumption. Roughly 30% of the LX50T logic is utilised by the embedded
project, and although this is without attempting to optimise the implemen-
tation or slim the embedded project, its logic consumption is likely to remain
formidable.
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3.7. System Control & Adaptability

For more information on this project, refer to the ”embedded tutorial” (C),
or see tab. C.1 for a quick overview of its various features, and the IPs that
provides them.

C Readout Programs 3.6.1
Since the Microblaze microprocessor is configured without a Memory Man-
agement Unit (MMU), reading the BlockRAM - where event data from the
Event Builder is stored - is simply a matter of reading the address this
RAM-block is set up with in the embedded project.

Three small C applications for reading these data from the BlockRAM,
and writing it to file, were developed. For design version 0.1, a readout
application exists (read_bram) that reads all the data in the BlockRAM,
extracts the events parameters from the event data packet, and writes this
to an ASCII file.

For the design version 0.2, two applications exists. One is a rewrite of the 0.1
implementation that also allows for the the data to recorded continuously
(read_bram2). The other is a lighter version that does nothing but copy
data directly from the BlockRAM to the file (read_bram_speed), hence can
handle slightly higher data rates.

Finally, if the BlockRAM needs to be cleared, clear_bram can be run to
write ’0’ to all memory addresses.

Note that for this to work, the file system should be mounted on the em-
bedded system using e.g. the Network File System (NFS, see C.6.1).

System Control & Adaptability 3.7
Design Unit File
constants constants.vhd
functions functions.vhd
types types.vhd
top top.vhd.... core core.vhd.... icon icon.xco.... ila ila.xco.... vio vio.xco

Table 3.6 - System control -
associated design units

As mentioned, while creating this design a ma-
jor focus was put on flexibility, meaning the
system was to be easily adaptable to fit new
hardware platforms, or to allow experimenta-
tion with new features. Some of these parame-
ters are set during compile time, and some may
be set during run-time through the JTAG in-
terface.
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Compile-time Parameters 3.7.1
To mimimise maintenance, all compile time parameters are specified globally
in the design package constants. This currently includes the parameters
listed below.

• Number of channels, N . The number of system channels may be
changed at will, but naturally can not be set higher than the number
of GPIO LVDS-pairs available.

• Deserialisation width, W . The deserialisation width can be set to any
of the allowed modes listed in [17, page 371, table 8.5]. However, when
changed the PLLs must be rebuild to provide the correct clock fre-
quencies, and furthermore, if ⌈log2 W ⌉ is changes with the new width,
also revisit the event parameters.

• Size of event number, channel number, and TOT-time and width. See
2.4.3.1 for more information on these.

• Maximum Trigger Unit delay. This is the maximum allowable delay
that the Parameter Extraction module is allowed to apply to the TOT-
data in order to synchronise it with the coincidence window. Set it
large enough to account for Trigger Unit latency when calculating the
coincidence window, plus a few extra clock cycles. Lower values will
allow logic to be saved, but the exact delay will anyhow be set with
the data_delay parameter in run-time (see below).

• SubMux fan-in, F . The SubMux fan-in should be set to conform with
the suggestions in 2.4.4. Increasing the number allows a lower latency,
but at the cost of a reduced maximum system clock frequency.

• Size of VIO and ILA. The ChipScope logic consumption largely de-
pends on the port widths of the ILA and VIO cores, which should thus
be kept at a minimum. Adjusting these parameters takes care of the
design part of the equation, but the respective cores must naturally
also be rebuilt to fulfil the port change.

Run-time Control Logic 3.7.2
Initially, the idea was to let the microprocessor control the design completely.
However, since it is not yet completely decided whether the Readout Cards
should run a microprocessor, the control activities are currently carried out
with the help of a ChipScope Virtual Input/Output (VIO) module (see
A.2.3).

To improve flexibility, portability and maintainability this ”control line” is
setup with its own defined type defined in the global types package, and
currently contains the following control signals:
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3.8. Summary
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Figure 3.10 - ChipScope principle

• test enable. Once asserted the system will use internally generated
”TOT-pulses” instead of the input data pins. This may be used to
verify the correct behaviour of the design, or to synchronise it at power-
up.

• readout enable. Enables the write enable line of the final output buffer.
If deasserted the system will keep running but discard all data.

• fe soft reset. Active low. Resets all the front-end logic when asserted.
• coincidence trigger enable. If an external coincidence trigger is not

available, or should be disabled, this flag must be deasserted. This
will cause all the data to be accepted into the system.

• data delay. Specifies the delay that is to be applied to TOT-data to
synchronise it with the coincidence window received from the Trigger
Unit. The implementation is a dynamic shift register with a length
specified by a compile time parameter (see 3.7.1).

• negate inputs(N-1:0). The analog front-end is continuously being de-
veloped, which - amoung other things - means the data input polarity
is not fixed. Asserting bit n of this flag will invert all in the datastream
of channel n.

• mask inputs(N-1:0). This flag is similar to the one mentioned above,
but will mask the input data completely instead of inverting it. This
allows the designer to build all channels, and turn these on or off during
run-time.
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Summary 3.8
Sampling the TOT data with GPIO deserialisers allows for a system timing
resolution of down to 1 ns, but makes the subsequent data handling a bit
difficult. The exact time of the TOT edges must be inferred from sequen-
tial counters synchronised with the system clock, and combinatorial logic.
The computation is rather straight-forward when the TOT-pulses can be
assumed not to be noisy, too short, or too close to another TOT-pulse on
the same channel.

The solution implemented is slightly robust to noise, allows for very short
TOT-widths to be resolved accurately, and is very low on logic consumption.
However, the TOT-time parameters sometimes get incorrectly calculated
with very short TOT-pulses, and the circuit can not handle two TOT-pulses
on the same channel with temporal separation less than 20 ns. This is taken
care of with a channel busy, which effectively sets the channel dead-time to
20 ns.

When the TOT time and width is computed, these along with the corre-
sponding event and channel number, are wrapped in an event package and
stored in a channel FIFO. These are setup in first-word fall-through mode,
meaning the first word in each FIFO always will be visible on the output.
The Event Builder compares these data with an event number it requests
to read, and by means of comparators flags each channel to indicate which
contains relevant data.

All FIFO data lines, and the channel ready flags, are sent to a recursively im-
plemented MUX-pipe. By keeping control signals outside the delayed clock
domains, the Event Builder is able to constantly feed the MUX-pipe with
new events, hence promoting a 100% occupancy. Since the Event Builder
is synchronised with the system clock, this translates to a throughput of
100Mevents/s.

The embedded system, however, is nowhere near being able to handle this
event rate. Thus, another team member (M.Rissi) has investigated whether
the embedded project should be swapped with a UDP-core, which should be
able to provide much better performance. Initial results looks promising, so
a future design will probably use the UDP-core for the data path. However,
since the EVL50T boards has 2 Ethernet PHY’s, it might also be possible
to keep both solutions.
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”People love chopping wood. In this activity
one immediately sees results.”

Albert Einstein 4
Results

Normally, when creating FPGA designs, the first step toward verification
is by means of logical simulations. The design is wrapped in a testbench
that provides input stimuli, and a simulator theoretically computes how this
affects the design based on the HDL-description.

Four simulations are presented here. Two simulates the Parametriser (4.2.1)
and Event Builder (4.2.4), respectively, and are shown as a proof-of-concept.
The remaining two simulate varying pulse widths (4.2.2) and rates (4.2.3), to
investigate the designs ability to handle various TOT-data input scenarios.
If the reader is not accustomed to read such diagrams, feel free to skip these,
or look at the relevant part of the discussion instead (5.1.2).

A design can easily work in simulations, but not in reality. A few read-
outs will be presented to verify that it does. Two readouts of external test
pulses of fixed width are shown to investigate the accuracy of estimating
the TOT-width (4.3.1). Then the TOT spectrum of a LYSO-crystal with
and without exposure to 137Cs and 133Ba sources is shown, to investigate the
correlation between TOT values and the energy spectra (4.3.2). Finally, two
LYSO-crystals were setup around a 68Ga source, and the effect of applying
a coincidence window is presented (4.3.3).

Test Setup 4.1
The following tests use the latest stable version of this design, i.e. v0.2 (see
3.1.1), compiled with the following parameters:

• System clock set to either 50 or 100 MHz.
• 10-bit deserialisation width, yielding a sampling rate of 500 MHz/1GHz.
• System compiled with 16-channels (all LVDS lines on the ML505),

with any inactive channels masked out.

Page 57



Chapter 4. Results

• Fan-in of multiplexer pipe set to 4, inferring a pipe depth of 3 (amount-
ing to 16 channels).

Simulations 4.2
When simulating HDL designs for an FPGA there are two common options;
cycle based or event based simulation. A cycle based simulation only cal-
culates results at clock edges, ignores inter-phase timing, and usually only
considers Boolean states (’1’ or ’0’, not ’high impedance’ or similar). This
makes it very fast. Event based simulations, on the other hand, attempts
to take into account how each signal propagates the described logic, hence
is more precise, but slower.

The upcoming simulations are all event driven, created with Mentor Graph-
ics ModelSim. Each simulation is fully scripted, and can be recreated with
the .do-file specified under each timing diagram1.

Post-synthesis or post-place&route simulations will be omitted since these
are more complex, harder to interpret, slow to simulate, and because most
of the ”extra” information one might infer from these, in terms of timing
parameters, can also be found in the timing reports generated by the imple-
mentation software.

To further simplify the interpretation of the simulations only a handful of
the most vital signals are added.

1For a small guide on how to get started with ModelSim, and how to run the simula-
tions, see appendix A.3.2.
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4.2. Simulations

Parametriser 4.2.1

Figure 4.1 - Chronogram - Parametriser (one channel)
(generated with parametriser.do)

As shown in fig. 4.1, the Parametriser follows these steps:

1. A TOT pulse arrives at the deserialiser input.

2. Synchronised frames of data are ready for interpretation.

3. An event trigger is sent2 to the Trigger Unit.

4. The Trigger Unit - after having evaluated any event triggers - responds
by asserting a coincidence validation window.
• For each coincidence window an event-number counter increments.
• The bitwise And, Or and Sum comes out from the delay pipeline

and gets validated (”unmasked”) by the coincidence window3.
5. For each rising edge the event number, time since coincidence window

start, and the location of the edge within the frame is copied to register
memory. All parameters are now known except the TOT length.
• A ”coarse-time” counter starts to keep track of relative timing.

6. While waiting for the falling edge a coarse-width counter starts running
to keep track of the TOT length.

2To ensure glitch-free output to the Trigger Unit, the event trigger is synchronously
driven, hence the one-cycle delay.
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7. At the falling edge the value of the coarse-width counter in addition
to subframe edge position information (from rising and falling edge)
is used to compute the TOT length.
• All the parameters are copied to an ”event-package”, and flagged

with an ”event-ready” signal to indicate the presence of new data.

Varying Pulse Widths 4.2.2
A simulated ”sweep” over small TOT-widths was conducted, starting at
48 ns with a decrement of 5 ns. For every TOT-length, the TOT phase
was incremented with 1 ns for a total 10 times to ensure the results were
phase-independent. The sampling rate was set to 1GHz.

Figure 4.2 - Chronogram - Parametriser output with input pulses of
variable width and phase

(image parametriser_pws.svg, generated with parametriser.do)

Varying Pulse Rates 4.2.3
A simulation with two succeeding pulses was setup, testing numerous com-
binations of inter-pulse delays and pulse widths (fig. 4.3). As before, for
every said combination all possible frame positions was tested to ensure no
scenario was missed.

Figure 4.3 - Chronogram - Parametriser output with input pulses of
variable width, rate and phase

(image parametriser_prs.svg, generated with parametriser.do)
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4.2. Simulations

Event Builder 4.2.4
Synchronised TOT pulses of width 25 (hex 19) were generated for channels
0-3, parameters extracted and fed into a channel FIFO, and events were
built by collecting and sorting these (fig. 4.4). Figure description follows.

Figure 4.4 - Chronogram - Event Builder
(image event_builder_sim.svg, generated with eb.do)

1. A coincidence window validates the first event.

2. To ensure no event is attempted read before all channels are guaranteed
to have stored it, a waiting period slightly longer than the maximum
TOT-time commences. An ”event number max” counter indicates the
largest event-number the Event Builder is allowed to address4.

4Exceptions applies when the counters wraps.
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3. The Event Builder addresses event 1 using combinatorial control logic
(thus no introduced delay).
• ”Event ready flags” indicates which channels have data with the

addressed event number.
• A data strobe is asserted as long as either of the channels flags the

presence of valid data.
• Only when an event from a channel FIFO is sent to the multiplexer

pipe will the channel be ”read”.

4. The first event, first channel, comes out from the multiplexer pipe.
• An ”event ready” data strobe validates the output data of the mul-

tiplexer pipe, and acts as a write enable for the shared BlockRAM
between the readout logic and embedded design.

• Each event is stored in a new BlockRAM location5.

5. All events are read out.

Readout Tests 4.3
To verify the actual FPGA-implementation of this design, a series of read-
outs were conducted with input data either from a pulse generator or from
a few LYSO-crystals. The ML505 evaluation board were used in the study,
its LVDS inputs set to receive the pulses, and its Ethernet MAC connected
directly to a receiving computer.

Only recent readouts will be presented, to reflect the current state of the
project.

5The shared BlockRAM is byte-addressed, hence the increment of 4 for every event.
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4.3. Readout Tests

External Test Pulses 4.3.1
A Tektronix AFG3022 Dual Channel Function Generator was connected to
a custom LVDS-converter to produce test-pulses (fig. 4.5), in turn read by
the FPGA, and finally parameter spectra were computed (fig. 4.6).

Figure 4.5 - Asserted test pulses (LVDS-driver output)

Figure 4.6 - Parameter spectrum, ∼100k test pulses, 1 channel sampled at 500 MHz
(generated with run_2010_07_10.m)
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Figure 4.7 - Parameter spectrum, ∼100k test pulses, 3 channels sampled at 1 GHz
(generated with run_2010_07_10_100mhz_4ch.m)
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4.3. Readout Tests

LYSO Spectrum - Intrinsic,Ba133,Cs137 4.3.2
Three readouts were conducted6, one measuring the LYSO-crystal intrinsic
activity, the other two measuring the LYSO-response when exposed to a
133Ba or 137Cs source. The crystal was wrapped in a material with minimal
ambient light penetration, connected to the analog front-end (GAPD-voltage
set to 71.5V), in turn connected to a ML505 evaluation board. Each TOT-
width spectrum was computed, and normalised with the intrinsic activity
(fig. 4.8). For a list of expected emission energies, see tab. 5.1 (page 75).
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Figure 4.8 - TOT spectrum from a LYSO-crystal
(generated with run_2010_07_12_intrinsic_ba133_cs137.m)

Linearity 4.3.2.1
The peaks in the 133Ba and 137Cs spectra have known energies (see 5.1),
allowing the relation between TOT-values and energy to be investigated. To
do so, the spectra was upsampled by low-pass interpolation, and a sweep was
conducted to find the maximums. Combining the position of the maximums
with the known peak energies, a linear least-squares approximation was
conducted to measure the detector linearity (fig. 4.10).

Coincidence Processing 4.3.3
Two LYSO-crystals were set up around a positron emitting 68Ga source7,
independently treated by two front-end boards, and read out with a ML505
Readout Board running with a sample rate of 500 MHz. Coincidence win-
dows of varying widths were later applied in software (fig. 4.9).

6These readouts were performed by E.Bolle and M.Rissi using the readout design v0.1.
The data analysis, however, is the result of my own work.

7The daughter product of 68Ga is 68Ge, which is the actual positron emitter.
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Figure 4.9 - TOT spectra with software coincidence windowing
(top: no normalisation, bottom: normalised)

(generated with run_2010_07_12_coincidence.m)
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4.3. Readout Tests

Energy Resolution 4.3.3.1
In order to derive the energy resolution the standard deviation of the energy
peak must estimated. This was achieved by fitting a Gaussian to the 2 ns
windowed spectra (fig. 4.11).
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Figure 4.11 - Gaussian fitted TOT spectra obtained with a 2 ns coincidence window
(generated with run_2010_07_12_coincidence.m)

The univariate Gaussian used here is described by the well known function

f(x) =
1√
2πσx

exp
[
−(x − µx)

2

2σ2
x

]
. (4.1)

Substituting µx = 0, setting the exponential equal to 0.5, and solving for x
yields

x = ±
√
2 ln 2σx. (4.2)

From this the Full Width of Half Maximum (FWHM) energy resolution may
be found8, either absolutely or relatively,

FWHM = 2
√
2 ln 2σ ≈ 89.4ns (15.0%). (4.3)

8Actually, since the independent variable in this case is time, a better term might be
Full Duration at Half Maximum (FDHM).
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”However beautiful the strategy, you should oc-
casionally look at the results.”

Winston Churchill 5
Discussion

Simulations 5.1
Often there seems to be a ”gap” between the results acquired by HDL-
simulations and the results actually seen in the implemented FPGA-design.
However, this is usually not caused by simulation inaccuracies, but rather a
failure to recognise and embed all real-world scenarios that may occur into
the testbench1.

Fortunately, in this design, creating the input stimuli is rather straight-
forward; All possible variations of TOT-pulses, including varying phases,
widths or pattern across channels, should be tested, but the testbench may
be oblivious to how the design actually responds to this (as opposed to e.g.
simulations of buses, where the entire protocol must be simulated). This is
left as a manual task in this design by studying timing diagrams.

Parameter Extraction 5.1.1
To make the parametrisation logic able to handle every possible combination
of TOT-pulses, whether they are extremely short or alternates in between
deserialisation frames, the system must effectively perform decisions using
every bit in every frame. To make this work, an aggressive timing model
must be selected for the synchronous logic controlling the parameter extrac-
tion. Or in simpler terms, synchronous logic should be removed from any
decision making process, or advanced in time, in order remove unnecessary
decision ”lag”. Do not wait for decisions to be made, but align data from
the future, present and past in a fashion that allows any essential decision
to be made at any given time.

Consider the simulation of the parametriser (4.2.1), which displays the pa-
rameter extraction principle. Here the TOT-pulse (data) is neither short

1A testbench is a ”wrapper” for the FPGA-design, designed to generate input stimuli
and (sometimes also) validate these with the outputs, in which case the testbench is
referred to as ”self-testing”.
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nor alternates between frames, making it an ”easy case”. However, note the
following: There is no delay2 between the data from which parameters need
to be computed, and the parameters themselves.

As described in 3.4.2.3, this is the clue to remember in order to increase the
systems ability to handle exception cases. Make sure parameters are ready
at any given time, and the only remaining challenge is to decide when to read
them. In fact, as indicated by the ”variable TOT-width” simulation (4.2.2),
this approach is able to handle almost all combinations of TOT-widths and
phases that adheres to the parameter size constraints (see 2.4.3.1). The
exceptions are mentioned next.

Variable Pulse Widths and Rates 5.1.2
When the pulse repetition rate is low, the system has no problems resolving
the TOT-widths, even those less than a frame wide (fig. 4.2). However, for
these widths, the relative TOT-time may be incorrectly resolved. This hap-
pens because the relative time is effectively found by counting the number
of 0’s in the first frame, an erroneous approach when the tailing bits in the
first frame are not all 1’s. Finding the time using a priority encoder will
solve this, but will in turn decrease system tolerance to TOT-edge noise.

The system responds less well, however, to an increase in pulse repetition
rate (fig. 4.3). When the repetition rate is less than half the system clock
(i.e. less than 50 MHz), the design behaves as described above. But if
increased past this point the error rate will follow, and when set higher than
the system clock speed the design is quite useless. Thus, if the interval
between the falling and rising edge of two successive TOT-pulses hitting the
same channel is less than two frames, both events are likely to be corrupted
(but the system is stable, and will self-recover).

The reason this is not handled is because the exception logic was designed
to primarily handle short TOT-pulses, which was considered more impor-
tant than high repetition rates. Actually, by simply inverting the data, one
realises that the problem is essentially the same in either case. Thus, by
duplicating the parameter extraction logic, and have this duplicate treat
and inverted version of the data instead, the length of the pulse spacing can
be measured instead, allowing even these scenarios to be handled. However,
this is probably not necessary, and the logic can likely be put to better use
elsewhere in the design.

Thus, to ensure no data corruption occurs, a channel busy is asserted for
two clock periods after the rising edge of an event (introduced in version

2No visible delay in the simulation, that is. In reality there is a small delay, just
nowhere near the system clock period.
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0.21 of this design), in which period no other rising edge will be accepted.
This logic is simple and reliable, and effectively sets the channel dead-time
to 2 clocks, i.e. 20 ns with 100 MHz system frequency.

Event Building 5.1.3
The Event Builder was designed from the very beginning to handle event-
rates up to the system clock speed, i.e. 100 Mevents/s when running at
100MHz. Since it is completely recursive, and the number of inputs and
fan-in per multiplexer may be adjusted at will, the upper performance limit
of this structure should be way higher than the data link from the FPGA
to the outside world.

The principle is shown in fig. 4.4, displaying the multiplexing of 4 channels
with data, each being repeated with rates low enough to see some ”idle-time”
in the simulation. The only known weakness is if the channel FIFO buffers
are saturated before read out, in which case the event number counter may
”catch up” with the Event Builder (see 2.4.3.1) and the data will be cor-
rupted. However, this will also be temporary, and the design will eventually
self-recover.

Even if overflows are caused by unlikely high data rates, the system should
eventually be able to cope with it, or at least flag an overflow condition.
The channel FIFOs has overflow flags ready to use, and even almost full
flags, thus this should be fairly quick to implement. Although this design
employs the use of BlockRAM shared with a microprocessor, and a free-
running circular counter feeding it, the end design will probably utilise a
firmware UDP-block for improved networking performance, in which case a
FIFO - and more overflow logic - must also be added.

Finally, the system was never tested with more than 16 channels compiled
in, due to the lack of LVDS-pins on the ML505 board. The full potential of
the Event Builder will be discovered once the design is scaled to 84 channels.

Readout Tests 5.2
Generally speaking, even if simulations show the most promising results
imaginable, the FPGA-design may very well be completely unusable. This
especially applies to high speed parts of the design, since HDL-simulations
never take into account parasitic effects that will cause high-speed circuitry
to behave as if not entirely digital.

The clue is to make sure the synthesiser infers the logic described in the HDL-
code, but as even ”text-book” descriptions of hardware may be synthesised
incorrectly, one should never assume, always verify. With properly inferred
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logic, good clock and reset handling, and comfortable timing margins, the
design are likely perform as intended.

That being said, this design essentially works. Great care was taken to
ensure design stability and flexibility, and this seems confirmed by the read-
out tests. The design was left unattended for up to 12 hours while acquiring
data, with not flaws in the data observed3.

External Test Pulses 5.2.1
When studying the histograms of the parameters extracted from external
test pulses (fig. 4.6, fig. 4.7), one may conclude that the readout system
essentially behaves as it should. The plots contain no extreme values, and
the distribution of event numbers, relative timings and TOT-widths all seem
sane.

To start with the event numbers, these should be flatly distributed. All
events were accepted in this test, and assigned event numbers in increments
of one. This gives reason to expect a perfectly flat distribution, but the
plots indicate otherwise. The reason seems to be network saturation; if the
pulse rate is increased above the maximum of what the embedded design can
handle, events are simply dropped, leading to a more erratic event number
distribution.

No external logic for generating the coincidence window has yet been made,
but some internal logic is currently used to generate a coincidence window
every time a TOT-pulse enters the system. By looking at fig. 4.7 one may
notice that the first channel has timing values slightly higher than the other
two, with the last channel being the only one with events occurring no later
than 9 ns after coincidence window assertion. This indicates that the last
channel receives the pulse first, although by a very narrow margin. A further
study might be necessary to investigate the origin of this delay, whether it be
the test setup or the FPGA. Regardless of the cause, the phase differences
may be compensated for by adjusting the delay of each channel deserialiser.
In the end this will probably be necessary to achieve the timing accuracy
this system is designed for.

The TOT-spectra looks promising, at first eyesight a bit too promising,
perhaps. Consider the first channel in fig. 4.7, and notice the calculated
sample variance of 0.26 ns. Recalling that the sampling accuracy (see 2.4.1,
eq. 2.3) was calculated to 0.41 ns, how can the measured standard deviation
be better?

3The only issue was the FPGA became rather hot, even with just a few channels
capturing data.
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Figure 5.1 - Standard deviation of estimating TOT-widths in the sub-ns range,
with varying degree of Gaussian jitter
(generated with variance_plot.m)

The reason is that in this case one can not assume that the position of the
leading and falling edge is independent. In fact, if the width of the pulse is
known with minimal uncertainty, the two parameters are strongly correlated,
which reduces the uncertainty of computing the difference of the two. To
investigate this effect, a Monte Carlo simulation was conducted to find the
TOT standard deviation as a function of sub-ns pulse width variations with
varying amounts of Gaussian jitter. (fig. 5.1).

As indicated by the simulation, the standard deviation depends strongly on
the pulse width. Those being a multiple of the sampling period yield the
best measurement accuracy, and vice versa for pulses being of a multiple
plus one half a sampling period wide. Adding jitter decorrelates the rising
and falling edge position within the sampling interval, and thus flattens the
variance curve. Due to the measured standard deviation of 26 ns, it should
be safe to assume a jitter of less than 0.15 ns.

Finally, as for why one channel end up measuring a shorter TOT pulse than
the other two, this is not known. However, this channel is the only one
that receives an inverted test pulse, which may be something to look into.
In general, a note should be made regarding the widths of all TOT-pulses;
Counting the number of 1’s in the sampled data, and multiplying this with
the sampling period, will yield a figure one sampling period shorter than the
width expectation value. It may not matter, however, as a system calibration
will easily be able to mitigate the effect of constant offsets.
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LYSO Spectrum - Intrinsic,Ba133,Cs137 5.2.2
To match TOT-values with γ-ray energies, the detector must be calibrated.
This may be done by using a source emitting γ-rays of known energies,
collecting enough data to attain a statistically significant TOT-spectrum,
and match the peaks in this spectrum with the known energies.

The sources used in this study (4.3.2), 133Ba and 137Cs, emits a variation
of γ-rays at discrete energies (tab. 5.1), but some energies are emitted more
frequently than others. Indeed, because of the photoelectric effect, the spec-
trogram will thus peak at these energies (fig. 4.8).

For instance, Compton scatters causes γ-rays to lose energy, thus contributes
to lower energy levels of the spectrum. The spectra low-end is largely con-
taminated by X-rays and detector noise, and the characteristics of this areas
is not well known. Thus, in this study only energies above 80 keV (the first
133Ba-peak) was considered. All energies of large intensities (see bold figures
in tab. 5.1) are shown in the spectra, which is good news.

The linearity plot (fig. 4.10) seems promising as well, although with just a
single run these findings can hardly be assumed significant. A curiosity is
the 137Cs energy peak at ∼250 ns, of which the cause is unknown.

Naturally, the study will have to be repeated in order to conclude with
greater certainty. However, given the preliminary data at hand, the future
looks bright for ComPET.

Coincidence Processing 5.2.3
Even if coincidence windowing can not yet be fully carried out in hardware
(due to the lack of a Trigger Unit), it may very well be performed in the
post-processing.

As seen from the TOT spectra with various coincidence windows applied
(fig. 4.9), reducing the window length increases the energy resolution, but
decreases the photon sensitivity. Out of more than 7 million events only
∼1200 was accepted with a window length of 2 ns, and ∼5800 with a length
of 10 ns. Increasing the window width over this level accumulated mostly
single counts, thus no more than ∼20600 events were accepted even with a
window length of 10 µs.

The Full Width at Half Maximum (FWHM) energy resolution indicates the
minimum energy separation at which two events are guaranteed to be re-
solved, as defined by the Rayleigh criterion. The measured energy resolution
of 15.0% is very promising, especially since this is without optimisations.
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Energy (keV) Type Intensity (%) Origin
4.75 X-rays 16.0 (8) 133Cs
30-36 X-rays 119.6 (14) 133Cs
53.16 γ-rays 2.14 (3) 133Cs
79.61 γ-rays 2.65 (5) 133Cs
81.001 γ-rays 32.9 (3) 133Cs
160.61 γ-rays 0.638 (4) 133Cs
223.24 γ-rays 0.45 (3) 133Cs
276.40 γ-rays 7.16 (5) 133Cs
302.851 γ-rays 18.34 (13) 133Cs
356.011 γ-rays 62.05 (19) 133Cs

1
3
3
B

a
em

iss
io

ns

383.85 γ-rays 8.94 (6) 133Cs
4.88 X-rays 0.9 (5) 137Ba
31-38 X-rays 6.9 (41) 137Ba
283.5 γ-rays 0.00058 (8) 137Ba1

3
7
C

s
em

iss
io

ns

661.661 γ-rays 84.99 (20) 137Ba

Table 5.1 - Cs-137 and Ba-133 emissions [21]
1 Corresponds to the peaks in the TOT-spectra (fig. 4.8), and

the points used in the linearity study (fig. 4.10).
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6
Conclusion

The primary aim of ComPET is to create a preclinical PET scanner with
performance on-par with, or exceeding, that of commercially available prod-
ucts, at a reasonable price. The use of an inventive geometry combining
LYSOs and WLSs, coupled with a custom analog front-end that encodes
interaction parameters in a binary TOT-pulse, allows for a detector photon
sensitivity up to 16%, while maintaining a FWHM spatial resolution of less
than 1mm in the centre of FoV. In preclinical PET, this is a very potent
combination.

To accommodate this potential it is important that the readout system
acquires the data with sufficient precision, and without loss. Ideally, the
system should introduce no extra noise, never lose events, be able to handle
all possible combinations of events, at any rate, and at any time. In other
words, it should seem transparent, to ensure focus is kept on research rather
than technicalities.

This suggests using a technology that is highly capable of performing con-
current operations, is flexible, re-programmable, and available off-the-shelf
at a reasonable price. FPGAs and evaluation boards are chosen for this
reason. The FPGA design presented here samples the TOT-data at 1GHz
with the SERDES functionality residing in the GPIO-tile, and compresses
it by performing parameter extraction and coincidence validation. A fan-
in structure collects and sorts events from all channels, while promoting a
throughput of 100 Mevents/s with a 100 MHz system clock. Finally, the
data is sent out over a network with the use of an embedded system.

Does it work? Preliminary tests look very promising. Simulations were
carried out to ensure the readout system was theoretically able to cope
with various worst-case scenarios, which it did, except when two pulses were
separated by less than 20 ns (assuming 1 GHz sampling frequency). To avoid
data corruption, a channel busy is asserted in this time interval to ignore
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new events in that time span. Since all channels are treated concurrently,
the system dead-time will equal the front-end shaping time plus channel
dead-time, the latter being equal to the busy length of 20 ns.

Furthermore, the results from a readout of externally generated fixed-width
test-pulses suggested that the total pulse width jitter was less than 100 ps.
The setup did not include the analog front-end, but nonetheless indicates
a very high accuracy of the digital readout electronics. Readouts were also
conducted with LYSOs, the custom analog front-end, and gamma-emitting
and positron-emitting sources. These results indicated a promising detector
linearity, and when a software coincidence window of 2 ns were applied the
energy resolution was measured to 15.0%, which is a very decent result
without having optimised for light collection.

Note that these results are all preliminary, a further systematic studies are
definitely needed. However, they seem to indicate that the readout system
extracts the TOT time and width correctly, and tags events with proper
event and channel numbers. However, what remains to be verified is the
hardware coincidence matching. At this point the Trigger Unit is merely
”simulated” inside the readout design, but this is just a temporary solution.

Outlook 6.1
Some suggestions for future work is listed below.

• Fine resolution coincidence windowing. A high priority goal should
be to verify the hardware coincidence windowing, and add support for
adjusting these in steps equalling the sampling period.

• Scalability. The readout design has been tested running at 100MHz
core frequency, 1 GHz sampling frequency, and up to 16 channels. This
is because only 16 GPIO LVDS-pins were available on the ML505
evaluation board. The design should be modified to fit to the EVL50G-
board (fig. 2.3), and the effect of implementing up to 84 channels
investigated.

• Throughput. The per-channel logic and event building process are able
to handle a sustained system throughput of 100 Mevents/s. However,
the embedded project congests at speeds less than 1% of that. Another
project member has tested the design with a custom logic UDP-core,
thus being able to greatly enhance the networking speed.

• Drop the embedded project? The embedded project adds flexibility and
features to the design. However, if it turns out that only a UDP-core
is needed for each Readout Card, or extra logic must be saved (e.g.
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to sample 84 channels at 1 GHz), then the embedded design should be
removed.

• RocketIO deserialiser. Even if these resources are costly, some are
available on almost every FPGA. Unless these are used for other pur-
poses, a few could be used to sample the TOT-pulses at much higher
speeds, to investigate its performance potential, and whether it could
be used to measure γ-ray Time-of-Flight (ToF).

• User Friendliness. Although the design can be controlled using Chip-
Scope and the VIO module, this is hardly a user friendly solution.
A common front-end for performing these, and related tasks, should
eventually be created.

• System calibration. In the future several Readout Cards and a Trigger
Unit will be working together, which will require some synchronisation
mechanisms. The Clock Region Unit has support already for clock do-
main switching, but additional logic will have to be added to trigger
soft-reset of the front-end, and to synchronise the SERDES links be-
tween each Readout Card and the Trigger Unit.

• On chip image processing. In a 3D PET system like ComPET, the
image reconstruction algorithms will demand a lot of processing power.
A possibility is to offload some of this to the FPGA, or some to a GPU,
or even do both. As a curiosity, with enough processing power there
is also the possibility of attempting 4D PET, or PET-video. This was
gained relevance lately, as it would be useful in brain surgery.
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A
Getting Started

How to go about to get the various project software up and running? Can
it be run on Linux, or even unsupported Linux platforms? The answer is
yes, with a few exceptions. This appendix aims to provide hints and tips on
this matter.

Why Linux? Because the implementation tools are essentially just front-
ends to a large number of build scripts native to Linux, and interacting with
Embedded Linux designs it is simply easier when the development system
also runs Linux. The only hassle on an unsupported Linux platform is to
get USB-drivers for the Xilinx Programmer Dongle to work, but solutions
exists here as well.
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Development Environment A.1
The Integrated Software Environment (ISE) provides all the tools required to
develop FPGA-designs for Xilinx FPGAs, including a text editor, the XST
synthesiser, implementation tools (like translate, map and place&route) and
a binary configuration file (.bit) generator. The Embedded Development
Kit (EDK), on the other hand, is a graphical front-end to a collection of
tools and IP-cores intended to ease the process of building an embedded
design.

Xilinx ISE and EDK A.1.1
To install this software, just execute the setup binaries shipped with the ISE
and EDK software. Go with the default options, but do not choose to install
the cable drivers (see A.2.1). When done, source either settings.sh or
settings64.sh (in the root install path), which will add these environment
variables (or append to already existing ones):

1 PLATFORM=lin
2 XILINX="<ISE installation path>"
3 XILINX_EDK="<EDK installation path>"
4 LMC_HOME="${XILINX}/smartmodel/lin/installed_lin"
5 PATH="${XILINX}/bin/lin:${XILINX_EDK}/bin/lin"

This assumes a node-locked licence was used in the setup process. If a
network licence is required, a variable pointing to must naturally also be
added.

Conflicting or Missing Libraries A.1.2
With an unsupported Linux system it is highly unlikely that all the libraries
XST and EDK expects to find are actually present on the system. The prob-
lem is usually that the recompiled libraries bundled by ISE/EDK attempts
to access a very specific version of a system library, and fails when it can not
be found. There is two possible ways to solve this, either by removing the
conflicting ISE/EDK library completely, thereby forcing the use of system
defaults, or to substitute it with a symlink pointing to the closest matching
library on the system:

1 >> cd <EDK or ISE path>/lib/lin (assuming 32-bit architecture)
2 >> mv <conflicting_lib_name >.so <conflicting_lib_name >.so.bak

(try this, see if it works. in case it does not, continue)
3 >> ln -s -T /path/to/system/lib_location/<best_matched_version_lib_name >.

so <conflicting_lib_name >.so

Does it work? In most cases, yes. Mostly the libraries in question are
”common” (i.e. to for instance libstdc++), and most versions will work,
but there is simply no guarantee.
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Accessing the FPGA and Configuration Memories A.2
To configure the FPGA, view its internal signals, or setup configuration
memories, a direct link between the host computer and the board must
be setup. A popular solution is to use a JTAG USB-cable, but it is not
straight-forward to get this to work on an unsupported Linux platform.

USB Cable Drivers A.2.1
At the time of writing, the tools needed to upload the .bit-files to the FPGA
or configuration memories1 are available for free off the Xilinx webpage [14].
Recent versions contains a built-in user-space USB-driver called libusb.so2.
This is the only viable solution to getting the Xilinx cable drivers to work
on an unsupported Linux3. Thus, fetch and install.

Once installed, these tools can be accessed by executing the graphical front-
end iMPACT. Make sure it loads libusb.so by setting the following envi-
ronment variable:

1 XIL_IMPACT_USE_LIBUSB=1

Now, instead of putting the binaries and libraries of the newly obtained
programming tools to the global environment, and risk all sorts of system
conflicts, do it locally:

1 >> cd <EDK or ISE path>/bin/lin (assuming 32-bit architecture)
2 >> mv _impact _impact.bak (make a backup)
3 >> touch _impact (create a new file)
4 >> chmod a+x _impact (make it an executable)

Fire up the favourite editor and enter the following into this file:

1 #! /bin/bash
2 LD_LIBRARY_PATH="/path/to/programming_tools/lib/lin" /path/to/

programming_tools/bin/lin/_impact $1 $2 $3 $4 $5

Note that now, when ISE or EDK attempts to program the the FPGA, the
new version of Impact will be used. The libraries required by this version of
iMPACT is specified in the LD_LIBRARY_PATH, thus promotes a safe ”cross-
compilation” environment - with decent cable driver support.

1These are non-volatile memories from which the FPGA can fetch its configuration
upon power-up.

2Support added from ISE version 10.1.01 (although it has improved in more recent
releases). http://www.xilinx.com/support/answers/29310.htm

3A few other approaches exists, including compiling support into the Linux kernel. But
unless the system is supported, i.e. it uses Red Hat, I highly discourage attempting to
make this work. It takes a lot of effort, and every kernel update will cause it to break.
It is really too bad, as having the FPGA showing up as a character device in /dev would
have made it truly easy to stream files to it.
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iMPACT A.2.2
Sending a .bit-file to the FPGA or configuration memory should be easy
as anything. Simply use the ISE/XPS interface to do so. But in the - not
so unlikely - event that this does not work, this is how the solution. Start
impact and perform the following steps4:

• iMPACT Project is the title of the pop-up window you should get
when launching iMPACT. Select create a new project (.ipf) and
hit OK.

• iMPACT - Welcome to iMPACT is the title of the next window
you will get. Select Prepare a PROM File and click Next.

• iMPACT - Prepare PROM Files. Check that I want to target
a... is set to Xilinx PROM, PROM File Format... is set to MCS, and
Checksum Fill Value (2 Hex Digits)... is set to FF. Finally you need
to fill the PROM File Name... field, and set the location to where you
want the MCS file stored. When done, hit Next.

• iMPACT - Specify Xilinx PROM Device. Make sure the Select
a PROM (bits)... leftmost rolldown box says xcf, and the rightmost
rolldown box contains the name of the configuration device you want
to program. When these boxes are set hit Add. Make sure all the
checkboxes on this page are unchecked, and click Next.

• iMPACT - File Generation Summary. Verify the settings and
click Finish.

A small pop-up box informs you that you should now adding files to the
project. Click OK, then select the .bit file you want to program the configu-
ration device with. Answer NO to the next box asking you whether you want
to add more devices or not. Next doubleclick the “flow” named Boundary
Scan in the topleft “Flows” window. The “main” window should now say
Right click to Add Device or Initialise JTAG chain. Do the latter and select
the proper .bit file and .mcs file when confronted with this. In the same
window you should now be able to see two icons, respectively representing
the configuration device and the FPGA.

To start the programming procedure hit arrow tagged Program in the “iM-
PACT Processes” window. In the window that appears check the box read-
ing Erase Before Programming (under General CPLD And PROM Prop-
erties); likewise with the box labelled Load FPGA (under PROM Specific
Properties). All the other checkboxes I tend to leave unchecked. When
done hit the OK button and the programming should commence. That is it.
Optionally, the FPGA can also be configured with ChipScope.

4Approach may be slightly dependent on impact version.
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ChipScope A.2.3
ChipScope Pro is a JAVA based application providing an Integrated Logic
Analyser (ILA) and a Virtual Input/Output (VIO) module, which may be
used to study the relationship between internal signals or provide input
stimuli, respectively. These cores are optimised for size and performance,
but when operated at speeds exceeding 200MHz, or in a design with logic
utilisation exceeding 80%, the signals can often not be trusted. The Chip-
Scope cores utilise a fair bit of Distributed SelectRAM (see 2.3.2.2), thus
its buffer size should never be set higher than necessary.

Unfortunately, ChipScope does not fly well with Linux, mostly due to not be-
ing able to take advantage of the user-space libusb.so USB-drivers (A.2.1).
It is, however, very light-weight, so running it in a Virtual Machine (VM)
with Windows will do the trick5.

For more information, see the implementation section on ”control logic”
(3.7.2).

Simulation A.3
To get going simulating the design with Mentor Graphics ModelSim, one
must first compile a set of HDL simulation libraries for all the Xilinx prim-
itives (such as DCMs, PLLs, etc.).

Xilinx Simulation Libraries A.3.1
HDL-libraries of all primitives in the FPGA are required in order to fully
simulate the FPGA design. The most important ones are Unisim and
XilinxCoreLib. Compile them as follows:

1 Backup environment and substitute the proper libraries :
2 >> OLDLIBS=$LD_LIBRARY_PATH
3 >> export LD_LIBRARY_PATH="/lib:/usr/lib:<ISE path>/lib/lin:<EDK path>/

lib/lin""
4 Compile Unisim and XilinxCoreLib for ModelSim SE , VHDL+Verilog support :
5 >> compxlib -s mti_se -arch virtex5 -l verilog -lib unisim
6 >> compxlib -s mti_se -arch virtex5 -l vhdl -lib unisim
7 >> compxlib -s mti_se -arch virtex5 -l verilog -lib xilinxcorelib
8 >> compxlib -s mti_se -arch virtex5 -l vhdl -lib xilinxcorelib
9 Optional , compile the XST libraries aswell :

10 >>
11 Reset the environment :
12 >> LD_LIBRARY_PATH=$OLDLIBS
13 For a list of other possibilities :
14 >> compxlib -help

5However, if someone knows how to run it in Linux, please let me know.
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Now, reference these in the Modelsim (see A.3.2) .ini file, <ModelSim
path>/modeltech/modelsim.ini:

1 [Library]
2 . . .

3 unisim = <path to ISE>/vhdl/mti_se/unisim
4 XilinxCoreLib = <path to ISE>/vhdl/mti_se/XilinxCoreLib
5 . . .

If you want the XPS libraries as well (to simulate the embedded project),
open XPS, then click Simulation ▶ Compile Simulation Libraries...
In case a custom IP was created, the simulation library may be obtained by:

1 As before , setup the environment then type :
2 >> compedklib -s mti_se -lib <IP name> -X <path to EDK project>/edk/

pcores

ModelSim A.3.2
Mentor Graphics ModelSim is one of the leading HDL simulation tools on
the market, and was used extensively in the development of this design. Ob-
tain the ”SE” version (has SystemVerilog support) off the Mentor Graphics
homepage:

http://www.model.com/downloads/default.asp

When you are past the registration process, you get a temporarily user-
name and password which you may use to download ModelSim. In my case,
downloading ModelSim 6.5 on an x86 Linux box required me to fetch the
following files:

1 >> wget ftp://<username >:<password>@ftp.model.com/SE/6.5/
2

3 INSTALL_NOTES (Install notes for current release)
4 RELEASE_NOTES (Release notes for current release)
5 modelsim_se_install.pdf (Licensing and installation details)
6

7 install.linux (Install executable for x86 or x86_64 Linux)
8 modelsim-base.mis (Base functionality for all platforms)
9 modelsim-docs.mis (Documentation, i.e manuals, tech. notes, ...)

10 modelsim-linux.mis (Installation files specific to Linux Redhat)

When setup, add or append the following environment variables:

1 PATH="<installation path>/modeltech/linux"
2 MGLS_LICENSE_FILE="<licence host>@<licence server >"

Having obtained a running copy of ModelSim, I suggest performing these
initial procedures:
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• Clean Start. If ModelSim has been used to simulate the project be-
fore, I recommend heading over to the project location and delet-
ing the old work library (folder), the modelsim.ini file, and the
<projectname>.mpf before doing anything else. Sometimes Model-
Sim will misbehave unless these steps are carried out.

• Set Project Directory. File ▶ Change Directory.... Select a loca-
tion for ModelSim output files.

• Create Working Library. File ▶ New ▶ Library.... Use default
library name “work”, check that a new library and a logical mapping
to it is selected and hit OK. Make sure the library listing also contains
the Unisim and XilinxCoreLib libraries (see A.3.1).

• Create the Project. File ▶ New ▶ Project.... Select a proper
name for it, check that the project location is set right and make
sure “work” is set as the default library. Do not copy settings from
a previous modelsim.ini file, as we want to start blank in order to
know things are under control. Make sure that field is blank, and that
the option for copying library mappings is checked. When done, hit
OK.

• Add items to the Project. This is the label of the window appearing
after you created the project. You may want to start making some
folders to set up a hierarchy. When adding files I suggest you choose
to reference to your files instead of copying them (at least I want it to
simulate my source files and not some “backup” I made).

When this is all done, you will need to compile the files the “ModelSim way”
and add them to a simulation. This is best accomplished by using a .do file.
It is more reliable, much quicker and features a wide variety of options for
customising the simulation to better suit your preferences.

1 onerror {abort all} (in case of error, do not attempt to continue)
2

3 do compile.do (call another .do-file to compile all sources)
4

5 vlog +acc -sv <path to testbench >/<filename> (SystemVerilog/Verilog)
6 vcom -93 -explicit <path to testbench >/<filename> (VHDL)
7

8 quit -sim (quit any ongoing simulations)
9 vsim -voptargs=+acc -t 1ps tb (start simulation)

10

11 (Optional) Position the wave window (example values shown):
12 view -undock -height 900 -width 1400 -x 0 -y 0 wave
13

14 do wave.do (run a .do to populate the wavediagram with signals)
15 run 100000 ns (run the design)
16 radix hex (set radix to hex)
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To create the wave.do file mentioned above, run the simulation, then add
add signals to the ModelSim Wave-diagram, and export it to a .do-file with
File ▶ Save Format . . .

The designer looking to spend some serious time with ModelSim should also
read the following (located in <ModelSim path>/modeltech/docs/):

1 pdfdocs/modelsim_se_tut.pdf (Get started tutorial)
2 pdfdocs/modelsim_se_user.pdf (User manual)
3 technotes/sysvlog.note (SystemVerilog support note)

Server Setup A.4
This project use two different servers, one to hold the Git project reposi-
tories, and one to source a public webpage (see 1.5 and A.4.2) with real-
time pointers to these. This section briefly describes the setup of these two
servers. For more information on Git, and example usage when working
with this design, see B.2.

Git A.4.1
For convenience, it is nice to have a central server to push changes to (even
though with Git you do not have to). Assuming the server is accessible6,
log onto it and setup the Git repository:

1 >> adduser git (add a 'git' user)
2 >> mkdir /home/git (create a home folder for this user)
3 >> chown git:git /home/git (make sure 'git' owns its own home folder)
4 >> passwd git (set the password, e.g. to 'compet')
5 >> su git (login as 'git')
6 >> pwd (optional) (check that the path is indeed '/home/git')
7 >> mkdir compet.git (create a folder for the repository)
8 >> git --bare init (setup a 'bare' repository)

The --bare option tells git that this will be a server repository, allowing
external users to push to it without permission issues. The repository folder
suffix .git is simply a common way of indicating that the repository is in
fact ”bare”.

6This tutorial will not deal with the issues of accessing a computer across the internet,
although this project did. Suffice to say, somehow the DNS problems must be overcome,
or a virtual connection must be made (e.g. with Hamachi).
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The Webpage A.4.2
The project webpage is currently served and maintained using the following
software:
Apache 2.2.14 A web server (remember to open port 80).
MySql 5.0 An open source database.
PHP 5.2.12 For dynamic contents on the webpage.
phpMyAdmin 2.11.9.6 To handle databases and ease PHP interaction.

To install, refer to the extensive online documentation specific to your distri-
bution. These will explain in detail how to setup and configure these tools
in order source a basic homepage, which in this case is the one provided
in software/user-apps/web. However, if you wish to use Webgit, keep
reading.

Webgit A.4.2.1
From the project one may graphically navigate all the current repositories,
and check out the status of each. The program making this possible is
Webgit. It is natively available in Git if support for ’ctags’ and ’perl’ is
compiled in. To host this project, create or open the file /etc/gitweb.conf
and enter the following:

1 $projectroot = '/home/git/gitweb'; (the project repositories)
2 $sitename = 'ComPET Git Repos'; (custom title)
3 $project_maxdepth = 2; (the maximum tree display depth)

Here the /home/git/gitweb folder simply contain symlinks to the actual
project repositories. Just point to the repositories in one way or another.
Now, in addition you will need to setup Apache with ’CGI’ support. Edit
/etc/apache2/vhosts.d/default_vhost.include to include the follow-
ing:

1 DocumentRoot "/var/www/localhost"
2

3 # This should be changed to whatever you set DocumentRoot to.
4 <Directory "/var/www/localhost">
5 (...)
6 Options Indexes FollowSymLinks ExecCGI
7 <Files gitweb.cgi>
8 SetHandler cgi-script
9 </Files>}

10 (...)
11 AllowOverride All
12 (...)
13 Order allow,deny
14 Allow from all
15 </Directory>
16

17 SetEnv GITWEB_CONFIG /etc/gitweb.conf
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B
Project Management

My project consists of more than 100 000 files, mostly due to relying on the
Linux kernel source tree, Petalinux source and the GNU toolchain. ISE and
EDK projects are rather verbose too, so it is easy to get slightly lost in the
management of this project in the beginning.

There are 3 main challenges I would like to point out. First, as the project
complexity increases so does the challenge of maintaining it. Second, a
project of this size benefits greatly by being put under version control, but
it is cumbersome to version control projects consisting of mostly binary files.
Third, compiling FPGA-code is a slow and resource-demanding process,
thus a great deal of time can be saved by outsourcing the ”job” to faster
computers.

To solve these challenges one must first know what parts make up the
project. Thus this appendix will start off by introducing the project file
structure (B.1.1). Then some experiences with keeping it under version con-
trol with Git will be shared, along with some hints and tips to avoid a few
major pitfalls (B.1.1). Finally, to ease project maintenance and allow for
remote building of the HDL-source, a few self-composed makefiles will be
presented (B.3).
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Directory Structure B.1
The project file-structure is not random, but chosen at such that it fits well
with the PetaLinux source code tree, is easy to maintain, and is logical (to
the extent this is achievable). The table below lists a few selected folders
alphabetically, with a short description.

compet Main project folder (may have any name).
+ doc The project documentation.
+ bin Scripts used to customise the Latex build.
+ common My self-made all-in-one Latex style package.
+ doxygen Doxygen source and generated documents.
+ gfx Graphics for this document.
+ pdf Compiled pdf’s go here.
+ tmp Most temporary build files end up here.

+ hardware All hardware and firmware.
+ edk_user_repository PetaLinux Autoconfig BSP generation tools.
+ fs-boot A bootloaders used by PetaLinux.
+ user-platforms All the HDL-code! See tab. B.2.
matlab Recorded data and plots.
share Shared with the Trigger Card1.

+ software Various software.
+ linux-2.6.x-petalogix The Linux 2.6 kernel source tree.
+ petalinux-dist The PetaLinux kernel source tree2.
+ uClinux-2.4.x The Linux 2.4 kernel source tree3.
+ user-apps Self-composed applications.
+ shared The C-programs used to readout data4.
+ web The web-page source code.

+ user-modules Self-made Linux modules (hardly working).
+ tools Various PetaLinux tools.
+ common PetaLogix helper-scripts.
+ linux-i386 The GNU toolchain.

Table B.1 - Project folder list

The blue entries are separate Git-repositories, see B.2. The main folder of all
the above is the user-platforms, since it contains all the project HDL-code
and embedded projects. Its subfolders are structured as follows:

1This is an NFS export mount.
2Depends on the Linux 2.6 kernel source tree, including some of its binaries.
3Currently not used.
4This folder is mounted in the global share-folder as well, to be included in the NFS-

mount. This way all these programs may be launched from inside the PetaLinux environ-
ment.
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user-platforms All the HDL code.
+ <ISE project> HDL-source. See tab. B.3.

+ ise A folder where ISE can put its junk binaries.
+ bit A collection of old bit-files.
+ logs Logs from the automation scripts (TCL).

+ tcl TCL-scripts to automate builds (see B.3).
+ vsim ModelSim simulation files.

+ ml505peta The main XPS project.
+ __xps XPS temporaries1.
+ blkdiagram Project block diagram1.
+ bootloops Bootloop used to keep uP busy1.
+ bsp Board Specific Packages, if any1

+ data Contains a template .ucf-file.
+ etc A few scripts, including one to download .bit-file.
+ hdl HDL-code that may be used for simulation1.
+ implementation Resulting binaries, including .bit-file(s)1.
+ pcores Cores created with ”Add Peripheral”-wizard.
+ synthesis Synthesis temporaries1.
+ <application> Every EDK-application gets a distinct folder.

Table B.2 - Hardware sub-folder list

To keep the project clean, source code is grouped after functionality, and
implementation and simulation files are kept in subfolders, as is shown in
the table above. The main groups of functionality are:

_top_final This is the top-most ISE project, containing the en-
tire hardware project, including source files from all
the below listed folders.

chipscope Contains the ChipScope Core, Integrated Logical
Analyser (ILA) and Virtual Input/Output (VIO)
modules, and the HDL-source which includes these.

cru All the HDL source for the Clock Reset Unit (CRU).
front-end All the source for the readout logic, including - but

not limited to - the deserialiser, parametriser and
event-builder.

shared This contains global design units, such as a highly
flexible FIFO and global design constraints, types and
functions.

ml505peta Contains the entire XPS embedded design.
Table B.3 - ISE and EDK projects.

1All these folders are not essential and will be recreated by the implementation tools
if missing.
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Source Files B.1.1
A few source-files of particular importance are described below.

Hardware B.1.1.1
Knowing the essential files out of the masses makes life easier. A list of some
of the most important ones may be found below (most of these are referred
to in this document).

_top_final/...+ ise/...
...+ bit/ A collection of old bit-files....
...

.... top_download-0.1.bit Precompiled design version 0.1....
...

.... top_download-0.2.bit Precompiled design version 0.2....
.... top.tcl Used to build and manage the ISE-project....+ tcl/ Custom TCL-scripts to automate ISE....
.... ise.tcl Used to open and build the ISE-project....
.... settings.tcl A common script to set ISE-settings....
.... wrapper.sh Script-wrapper for environment setup etc.... top.vhd This is the top-module of the design..... top.ucf The constraints-file for the design..... tb_*.sv Testbenches (written in SystemVerilog)..... *.do ModelSim simulation scripts..... compile.do Builds the ModelSim work library..... Makefile The main Makefile. Used to create, build

or clean the project.
chipscope/ ChipScope files....+ projects/ ChipScope project files....

.... v0.1-1channel.cpj For design version 0.1....

.... v0.2-8channels.cpj For design version 0.2, up to 8 channels..... icon.ngc Integrated Controller (black box)..... ila.ngc Integrated Logical Analyser (black box)..... vio.ngc Virtual Input/Output (black box)..... core.vhd Wrapper for the black boxes above..... core_sim.vhd In simulations the file above is substituted
with this one.

cru/ Clock Reset Unit..... pll_all.xaw The PLL used in the design (black box)..... cru Clock Reset Unit, top file.
Table B.4 - Essential hardware files (part 1)
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front-end/ The digital readout front-end..... fe.vhd Front-end, top file..... fe_cotrg_processing.vhd Coincidence tracker..... fe_ch.vhd Wrapper for the per-channel logic..... fe_ch_iserdes.vhd Channel deserialiser..... fe_ch_pargen.vhd Channel parameter extraction..... fe_ch_fifo.xco Channel FIFOs (black box)..... fe_ch_buf.vhd Wrapper for the FIFOs black-box..... fe_eb.vhd The Event Builder..... fe_eb_submux.vhd The Recursive SubMux..... fe_input_stimuli.vhd Internal pattern generator, for testing..... fe_input_stimuli_sim.vhd In simulations the file above is substituted
with this one.

shared/ ”Global” design units..... a2s.vhd A parametrised FIFO for synchronisations..... constants.vhd Design parameters..... functions.vhd A collection of custom functions..... types.vhd Global types (buses, etc.)..... shift.vhd A shift-register description that ensures im-
plementation with LUTs.

ml505/ The embedded project (bad choice of name)....+ edk/...
.... system.bsb The Board System Builder project file....
.... system.mhs Hardware settings for the embedded project....
.... system.mss Software settings for the embedded project....
.... system.xmp General embedded project settings..... system.vhd Simulation ”dummy”.

Table B.5 - Essential hardware files (part 2).
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Software (Various) B.1.1.2
Furthermore, for the ones looking to continue either the documentation or
the embedded project software, be aware of the below listed files.

doc...+ bin/ Custom scripts to build the documentation....
.... la2pdf Wrapper for pdflatex/xelatex/etc....
.... laFigure An extension to graphics inclusion in Latex....+ common/...
.... mytemplate.cls Latex document type extension....+ doxygen/ Doxygen documentation....
.... hw-template.cfg Doxygen config template....
.... Makefile Custom makefile for Doxygen....+ gfx/ All the graphics in this document. Nuff said....+ pdf/ Last compiled version of this document..... *.tex/*.bib Sources for this document.

software...+ petalinux-dist/ The PetaLinux kernel tree....
.... .config The kernel config-file....+ user-apps/ Applications for the embedded design..... share/ Sources for the programs in the share export....

.... clean_bram.c Wipes the BlockRAMs contents....

.... read_bram.c Readout program for design version 0.1....

.... read_bram2.c Readout program for design version 0.2....

.... read_bram_speed.c A lightweight version of the one above..... web/ All files needed to host the webpage.

matlab/ A few runs with scripts to treat them..... run_*.txt Data from the runs..... run_*.m Scripts to recreate plots from the runs..... *.eps/*.svg Plots.

settings.sh/settings64.sh Environment setup scripts.
Table B.6 - Essential software files.
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Git B.2
Git is an open source, distributed version control system (VCS) designed to
handle everything from small to very large projects with speed and efficiency.
Every Git clone is a full-fledged repository with complete history and full
revision tracking capabilities, not dependent on network access or a central
server. Branching and merging are fast and easy to do. It is the VCS of
choice in ComPET.

It is worth mentioning that ISE has a ”snapshot” feature for making backups,
but these take up way too much space (from a few tens to hundreds of MBs).
Besides, it is not nearly as powerful as Git, nor is it open source.

What is tracked? B.2.1
As highlit in tab. B.1, this project is composed of 8 repositories. There is
a top repository called (compet), containing the matlab and share folder,
a repository tracking the documentation, one tracking user-generated hard-
ware, and a final one for the user-generated software. This amounts to four.

The remaining four repositories tracks the Linux kernel sources, and the
GNU toolchain (see C.1.1.1). These are kept apart from the rest of the design
because they hardly every change (except the PetaLinux source when the
kernel is recompiled), and because they amount to an excess of 100 000 files
and 2.7GB. Also, categorising the repositories this way makes the tracking
swifter, and change logs cleaner.

Before moving on, one thing should be said. The developers of the Linux
kernel also use Git, and thus a large number of .gitignore-files are present
in numerous kernel tree locations. These specify what files Git is allowed
to track, and inherently binaries are often left out. This makes sense, but
unfortunately PetaLinux depends on some of these files. Thus, the kernel
2.6 Git-info had to be slightly altered for this project1.

Sound good, but how to interact with the repositories? Coming up!

Initial Procedures B.2.2
Say you just installed Git, and do not have the slightest clue what to do
with it. This is a good time for introducing yourself to Git:

1 >> git config --global user.name "Your Name"
2 >> git config --global user.email your.email@your.domain

This stage will never have to be repeated.
1More specifically, the troubled .gitignore-files was localised in the 2.6 kernel and put

into exclude, an ”ignore” construct of higher priority provided by Git. This is not elegant,
but it works.
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Synchronising Repositories B.2.3
Now, proceed by fetching a few of the project repositories. Since this is the
first time the repository is downloaded, it must be cloned. To clone the top
repository from the server (setup as explained in A.4.1), proceed as follows:

1 >> git clone git@<server name>:compet.git ./compet

Why not clone the rest while you are at it?

1 >> cd compet
2 >> git clone git@<server name>:
3 compet.git/doc.git doc
4 compet.git/hardware.git hardware
5 compet.git/tools.git tools
6 compet.git/software.git software
7 >> cd software
8 >> git clone git@<server name>:
9 compet.git/software.git/uClinux -2.4.x.git uClinux -2.4.x

10 compet.git/software.git/linux -2.6.x-petalogix.git linux -2.6.x-petalogix.git
11 compet.git/software.git/petalinux-dist.git petalinux-dist
12 >> cd ..

This syntax is admittedly awkward. Fortunately, the clone is performed
only once. Later on, one instead ’pulls’ to fetch changes,

1 >> cd doc (enter the repository to update)
2 >> git pull master (merges changes from the 'master' branch)

If you do not know whether you want the changes to be merged with your
local copy, simply take a ”peek” by typing

1 >> git fetch master
2 >> git log -p HEAD..FETCH_HEAD

The log-command means ”show everything reachable from FETCH_HEAD,
but exclude everything reachable from HEAD”. HEAD is the current state of
the local repository, and FETCH_HEAD is the state of the fetched project.

Finally, to merge the fetched repository with the local one, use git merge:

1 >> git merge master (Merge <user>/master into current branch)

Making Changes B.2.4
Say you altered some files, what now? First you must tell Git which files it
should include in a commit (refered to as adding them to the index):

1 >> git add <files or folders>

To see what files are added to the index, check the status:

1 >> git status
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Red entries are files that are either not tracked by Git or not added to the
index, while green entries are. To commit the changes of the files added to
the index, simply type

1 >> git commit

If you want all tracked files to be commited, and not just a selection, add
the -a switch:

1 >> git commit -a

Before you commit, should you ever wish to see what changes will actually
be included, type

1 >> git diff --cached

You can also call git diff (without the –cached) in order to see any changes
that you have made but not yet added to the index. Finally, you may even-
tually want to push the changes back to the server, updating the repository
there:

1 >> git push master

Branches B.2.5
When two people work on the same repository, these two will branch, i.e.
the repository for each user started off alike, but will start to diverge. But
even as a single user one might want to create branches, e.g. to test some
experimental feature without risking to compromise the main branch (called
’master’). To create and switch to a new branch do the following:

1 >> git branch experimental (Creates a new branch called experimental)
2 >> git branch (Prints a list of all existing branches)
3 >> git checkout experimental (Switch to the experimental branch)

At the point of creating a branch from an initial one, the two will start to
diverge. To merge them, first make sure you are on the initial branch, then
type

1 >> git merge experimental (Merges experimental with current branch)

In case the merging fails, run git diff to see where the problem resides.
At any time, to finish off a branch, you may type

1 >> git branch -d experimental (Delete branch, ensuring changes are
merged)

2 >> git branch -D experimental (Delete branch, discarding changes)
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Error Correction B.2.6
Ahh, you screwed up, what now? Well, depends really.

A common error is to commit too quickly, realising some files were left out
or that the commit message was simply silly. This can be fixed by simply
continuing adding the files you lack, then typing

1 >> git commit --amend

which will effectively overwrite the last commit. Changes way back in the
history are trickier, but fixable (naturally, be cautious here). Say, for in-
stance, that you added a large chunk of binaries or temporary files which
simply has no value. You can ”undo” the history by using the git-filter-
branch command:

1 >> git filter-branch --index-filter "git rm -r --cached --ignore-unmatch
<reg.exp.>" HEAD

This removes it from Git history, but does not clean up Gits ”temporary”
cache of these files. This means the .git repository maintains its previous
size. To slim it you can use the - not so recommended - approach below:

1 >> rm -rf .git/refs/original/ && git reflog expire --all && git gc --
aggressive --prune

However, a smarter choice is simply to clone your own repository, which will
leave any temporary files out.

Makefiles B.3
Navigate to hardware/user-platforms/_top_final to find the main Make-
file in this project. It can be used to clean the entire project tree, rebuild
the ISE project, and compile the HDL code.

Remote compilation B.3.1
Compiling FPGA-code is resource-demanding, and implementing large de-
signs can take several hours. To offload the computer used to develop the
code, and allow the code to be compiled on a potentially faster computer,
the following procedure may be used.

1. Make sure all source files are tracked by Git, and commit changes (see
B.2).
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2. Either push the repository to the external machine2, or log on to
the external machine and pull changes from the development machine
(preferable).

3. When logged onto the external machine, enter _top_final (see B.1.1)
and simply type make.

2Unless the external repository is ”bare”, pushing changes must be forced (--force).
This overwrites potential changes in the external repository, and should be avoided.
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C
Embedded Tutorial

Quite a few steps are required to build an embedded micro-processor and
run embedded Linux. To ease the process for those seeking to do so, this
tutorial should come in handy. It explains how to build and run a complete
system with

• Xilinx Microblaze 7.10.d microprocessor, running
• PetaLogix PetaLinux 0.40 final, built for the
• ML505 Evaluation board.

The design is implemented using Xilinx ISE and EDK v10.1.03.

The tutorial is based on the official PetaLinux documentation [24], the Xil-
inx OpenSource Wiki [27] (and various pages linked to from that site), Xilinx
Embedded Linux on Xilinx Microblaze Workshop [25], and the various ex-
periences made while working on this design.
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Preparing the Host Computer C.1
Some software must be obtained and installed prior to developing the em-
bedded project (in addition to all implementation software, see A). These
will briefly be mentioned here.

PetaLinux C.1.1
PetaLinux from PetaLogix is based on uClinux, but designed specifically for
the Microblaze soft-processor. To get going with it, one must obtain the
PetaLinux source. Version 0.40 (final) is available for free through a Univer-
sity donation program, which this project applied for and kindly received.

Note that the free 0.40 version only supports ISE/EDK 10, for newer re-
leases1 PetaLinux is more advanced but not free. For these versions one
might want to check out the OpenSource Xilinx Linux instead [26].

Directory Structure C.1.1.1
When the PetaLinux source is obtained and unpacked, the directory struc-
ture contains the hardware, software, and tools folder listed in B.1.1.

The hardware folder contains 3 sub-folders; edk_user_repository, which
contains several auto-configuration tools used to merge PetaLinux with the
embedded hardware; fs-boot, a simple first-stage bootloader used to get the
micro-processor up and running with basic functionality after power-up; and
user-platforms, a folder intended to be used to store the entire FPGA-design.
See B.1.1 for more details.

The software folder contains 5 sub-folders; linux-2.6.x-petalogix, uCLinux-
2.4.x, and petalinux-dist, the kernel source tree for Linux 2.6, 2.4 and PetaL-
inux; and user-apps and user-modules, initially empty folders intended to
contain modules and applications designed to be run with the embedded
Linux.

Finally, the tools folder contains PetaLogix helper scripts and the GNU
toolchain. These are only added once to the design, and never changed.

Ethernet IP-address C.1.2
This embedded system will assume a static IP-address of the host system
of 192.168.1.5. Force the host Ethernet connection to use this IP, and an
IP-cable can be connected directly from the host-computer to the ML505
Evaluation Board. The physical layer of the ML505 MAC supports both
crossed and normal IP-cables (automatic switching).

1The version 12 of ISE and EDK is the currently most recent.
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Tftp C.1.3
The Trivial File Transfer Protocol (TFTP) is, as the name suggests, sim-
ple. Stated simply, it means not much can go wrong, but patience will be
required. The Linux kernel image provides native support for TFTP, so
setting the host computer up with TFTP allow it to exchange files with the
embedded system straight after downloading the .bit-file.

Start by setting up the root /tftpboot-folder, and assign full permissions.

1 (as root)
2 >> mkdir /tftpboot
3 >> chmod a+rwx /tftpboot
4 >> chown nobody /tftpboot (optional)

Make sure the TFTP directory is setup with /tftpboot. In the distribution
used throughout this development (Gentoo), ATFTP (Advanced TFTP)
was used, and the path was setup in /etc/conf.d/atftpf. Once done,
start the TFTP-service2, or add it to the default run-level to make it start
upon computer reboot 3. Some distributions may do this automatically.

NFS C.1.4
The Network FileSystem (NFS) will be used to share development files and
Linux kernel binaries between the host-computer and embedded system.
Install it, and specify the folder(s) that is to be shared in /etc/exports:

1 /tftpboot 192.168.1.10(rw,sync,all_squash ,no_subtree_check ,anonuid=500,
anongid=500)

2 /share 192.168.1.10(rw,no_subtree_check)

Of these options, make sure to include ’rw’ (permit read and write) and
’no_subtree_check’ (makes the NFS-connection slightly more robust). Now,
start (or restart) the NFS-daemon, which should make these folders visible
on the network.

RS232 Interface C.1.5
A RS232 serial link will be used for basic communication with the embedded
system. Thus, the host-system will need a program to control the serial link.
For Linux Kermit may be used, for Windows Hypertransport or Hercules,
all being free and light-weight. The latter was used in this project. Obtain,
and set the serial link with the parameters listed in tab. C.1.

2Gentoo: /etc/init.d/atftpd start
3Gentoo: >> rc-update add atftpd default
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Telnet C.1.6
To log onto the embedded system over Ethernet, telnet is the easiest way
(SSH (Secure Shell) can be made working, but requires some effort). It is
supported by the PetaLinux kernel by default, and will work as soon as the
embedded system is up and running. When it is, login with

1 >> telnet 192.168.1.10
2 Trying 192.168.1.10...
3 Connected to 192.168.1.10.
4 Escape character is '^]'.
5 login: root
6 Password: compet
7 #

Hardware Setup C.2
This project uses the Microblaze soft micro-processor from Xilinx. Due
to its soft nature, it is very customisable, which is advantageous but adds
complexity to the design procedure. Out of the myriad of options, it is easy
to get lost.

Base System Builder C.2.1
The Base System Builder is a Wizard providing basic embedded systems for
common evaluation and prototype boards, including the ML505.

Navigate to hardware/user_platforms and create a folder for the embed-
ded design, e.g. ml505peta. Launch Xilinx XPS and start the Base System
Builder. Go for ”I would like to create a new design” and save the project,
e.g. as ml505peta/system.xmp. Select the appropriate evaluation board,
e.g. ML505. For the remaining part of the wizard, go with the options
specified in tab. C.1 (page 107).

With the Base System Builder run with the settings mentioned, the design is
coming together. However, a few minor changes are required; the Microblaze
needs a Barrel Shifter and ”full” Processor Version Register. In XPS, open
the Microblaze IP, where these options may be found in the ”Barrel Shifter”
and ”PVR” tab.

Modifying Project Files C.2.2
All important settings for the embedded project are set in either the project
xmp-file, mss-file or mhs-file4.

To make the project compatible with PetaLinux, edit the .mss-file to add
operating system information:

4Thus, these are the key embedded files being tracked with Git.
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Design Unit Feature Settings

Processor

Type Microblaze
PLB frequency 125MHz
Reset Active low
Debug I/F1 On-chip H/W debug module
Memory2 Data and instruction memory,

use 8kB BlockRAM for each
MMU3 No
Cache Enabled
Floating Point Unit Disabled

RS232 (Uart1)

IP Xps_UartLite
Baud Rate 115 200
Databits 8
Parity None
Use interrupts Yes

Uart2 Disabled
GPIO (LEDs, IP

Use interrupts
Xps Gpio
NoPush Buttons,

DIP Switches)

Iic Eeprom1 IP Xps Iic
Use interrupts Yes

Flash IP Xps Mch Emc
Sram Disabled
PCI Express Disabled

Hard Ethernet MAC
IP Xps LL Temac
Scatter-Gather DMA4 Yes
Use interrupts Yes (default with DMA)

DDR2 SDRAM Use MPMC Yes

SysACE CompactFlash IP Xps SysACE

IO
de

vi
ce

s

Use interrupts Yes

Timer5

IP Xps Timer
Counter width 32
Number of timers 2

Pe
ri

ph
er

al
s

Use interrupt Yes

Instruction Size 2kB
Use cache for DDR2 SDRAM

Data Size 4kBC
ac

he

Use cache for DDR2 SDRAM
Standard Input/Output RS232 Uart1
Boot memory ilmb_cntlr (BlockRAM)

Table C.1 - Settings for Base System Builder
1 This functionality is implemented, but not used in this design. Remove if desirable.
2 The data and instruction memory consumes a fair bit of BlockRAM. However, as-

signing less will cause PetaLinux to fail (with cryptic address space messages).
3 To increase performance this design does not utilise a Memory Management Unit.
4 Gather-Scatter DMA is currently not used by the design, should be implemented for

improved networking performance.
5 A timer is required in order to run embedded Linux.
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5 BEGIN OS
6 PARAMETER OS_NAME = petalinux
7 PARAMETER OS_VER = 1.00.b
8 PARAMETER PROC_INSTANCE = microblaze_0
9 PARAMETER STDIN = RS232_Uart_1

Listing C.1 - hardware/user-platforms/ml505peta/edk/system.mss

The auto-configuration scripts (residing in edk_user_repository) are de-
signed to be called from XPS when the hardware project is built. This is
achieved by adding this path to the module search path in the .xmp-file:

3 VerMgmt: 10.1.03
4 IntStyle: ise
5 ModuleSearchPath: ../../../edk_user_repository/
6 MHS File: system.mhs
7 MSS File: system.mss

Listing C.2 - hardware/user-platforms/ml505peta/edk/system.xmp

Make sure all paths in these files are relative! Sometimes absolute paths
are introduced by XPS (or sub-programs), which will break the project
if moved to another folder or computer. Considering that this project is
entirely tracked by Git and designed to be remote compiled, sticking with
relative paths is certainly wise.

FS-Boot C.2.3
FS-Boot is a first-stage bootloader used to boot the embedded Linux. Enter
the XPS ”Add Software Application Project” menu and set it up as follows:

Feature Settings
Project name fs-boot
Processor microblaze_0

Sources
hardware/fs-boot/fs-boot.c
hardware/fs-boot/srec.c
hardware/fs-boot/time.c

Headers
hardware/fs-boot/fs-boot.h
hardware/fs-boot/srec.h

Add files

hardware/fs-boot/time.h
Application mode executable
Output ELF (binary) file Use default
Linker script Use default

Compiler
options

Stack size 1K
Optimisation level1 Size optimised (-Os)
(Advanced) compiler options2 -Wall

Table C.2 - FS-Boot setup
1 Naturally, keeping the binary size down is important to preserve resources

on the embedded device.
2 Gcc will used. -Wall (-W) enables verbose gcc output.
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Software Settings C.2.4
Before building libraries and software for the embedded project, the kind of
memory in which these can run must be selected. Look up Software Platform
Settings▶OS and Libraries and specify the following:

1 lmb_memory: dlmb_cntlr
2 flash_memory: FLASH
3 main_memory: DD2_SDRAM

PetaLinux Setup C.3

Sourcing Settings C.3.1
Before compiling anything, or using any of the PetaLogix binaries, a cross-
compilation environment must be setup (i.e. one that differ from the na-
tive host-machine environment). An easy way to do this is to ”source” the
settings.sh file5 in the project root folder

1 >> cd <project root>
2 >> source settings.sh (or settings64.sh if on a 64-bit achitecture)

The custom Makefiles described in B.3 will source these settings when nec-
essary, e.g. when remote compiling the project (see B.3.1).

MenuConfig C.3.2
Compiling the PetaLinux kernel source is performed in a similar way as other
distributions. Setting up a kernel from scratch is a cumbersome process, but
fortunately the PetaLinux default kernel configuration is rather sane. Thus,
only modifications will be listed here. Enter the software/petalinux-dist
folder and type

1 >> make menuconfig

which should bring up the PetaLinux kernel configuration menu. To navi-
gate, use the arrow keys, to toggle an option use the space bar, and ascend
or descend the hierarchy with enter (when ’OK’ or ’Exit’ is highlit, respec-
tively). Now, setup the Vendor/Product information

1 Vendor/Product Selection --->
2 --- Select the Vendor you wish to target
3 (Xilinx) Vendor
4 --- Select the Product you wish to target
5 (ML505-ll_temac-sgdma-edk101) Xilinx Products

5A few tweaks have been added to settings.sh to add binaries needed to build the
documentation to path as well.
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Next we want to customise some kernel settings. Toggle the following option

1 Kernel/Library/Defaults Selection --->
2 (linux -2.6.x) Kernel Version
3 (None) Libc Version
4 [ ] Default all settings (lose changes) (NEW)
5 [*] Customize Kernel Settings (NEW)
6 [ ] Customize Vendor/User Settings (NEW)
7 [ ] Update Default Vendor Settings (NEW)

Now hit Exit ▶ Exit ▶ Save new kernel configuration..., which should
launch a new menu (the uClinux 2.6 kernel menu).

uClinux Kernel Settings C.3.2.1
This design will use NFS extensively. The kernel is pre-configured for NFS
version 3, but this version seemed troubled with bugs. Version 4 seems
healthier.

1 --- Linux Kernel Configuration ---
2

3 File systems --->
4 Network File Systems --->
5 [*] Provide NFSv4 client support (EXPERIMENTAL)

To be able to load custom modules, select these options

1 Loadable module support --->
2 [*] Enable loadable module support
3 [*] Module unloading

When done exit the configuration menu with successive Exit’s and save the
configuration.

Vendor/User Settings C.3.2.2
Re-enter the initial menu by typing make menuconfig, but this time tog-
gle Customize Vendor/User Settings in the Kernel/Library/Defaults
Selection sub-menu. Exit and save.

This menu allows further customisation of the Linux system, as what settings
to use and programs and library to compile in and load. Start by setting up
networking address and specify host-name and root-password:

1 System Settings --->
2 Network Addresses --->
3 Static IP address: "192.168.1.10"
4 Server IP address: "192.168.1.1"
5 Default host name: "compet"
6 Default root password: "compet"
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There is also the possibility of setting up DHCP, for dynamic request and
acquisition of an IP-address. However, for simplicity only static IP-addresses
are currently used.

Insmod will be required be able to load custom modules. Furthermore, sleep
is handy as well to be able to ”pause” programs6.

1 BusyBox -->
2 [*] insmod
3 [*] insmod: lsmod
4 [*] insmod: rmmod
5 [*] insmod: 2.6 and above kernel modules
6 [*] sleep

When done, exit MenuConfig and save changes.

Building the Embedded Project C.4

Implementing the Hardware C.4.1
Xilinx XPS is simply a front-end to a library of scripts and executable bina-
ries. When the project are to be built one may either execute ”build” options
in the XPS Software and Hardware menu, or launch the behind-the-scenes
makefiles directly. The latter will be described here.

Enter a terminal and navigate to the embedded project folder (i.e. where
the .xmp/.mss/.mhs-files are stored). Then, request the project makefiles
from XPS (do not forget to source settings.sh first):

1 >> xps -nw system.xmp xps -nw system.xmp (substitute <system> with the
relevant project name)

2 % save make
3 % exit

Continue by building the bitstreams (hardware), libraries, FS-Boot, and
initialise the BlockRAM. This may take a while.

1 >> make -f system.make bits % Generate bitstreams
2 >> make -f system.make libs % Generate library files
3 >> make -f system.make program % Build FS-boot
4 >> make -f system.make init_bram % Initialise BRAM

6For example, in C simply use system("sleep 5"); to pause a program for 5s.
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Board Specific Package C.4.2
During the hardware implementation process a Board Specific Package (BSP)
was created (called Kconfig.in for kernel 2.6), which describes the hard-
ware platform. This information is required by the bootloader and Linux
kernel in order to correctly boot the system. Navigate to the embedded
project root folder and type

1 >> petalinux-copy-autoconfig

to copy the BSP-file to the Linux kernel source tree.

Compiling the Linux Kernel C.4.3
To compile the kernel, and go with with all the default answers to any
question that might be asked, navigate to the petalinux-dist folder and
type:

1 >> yes "" | make oldconfig dep all

When successful, the following files will be copied to /tftpboot (see C.1.3)
and software/petalinux-dist/images:

File Name Description
image.bin Linux kernel image and root filesystem (binary format)
image.elf Linux kernel image and root filesystem (ELF format)
image.srec Linux kernel image and root filesystem (SREC format)
image.ub Linux kernel image and root filesystem (U-Boot format)
linux.bin Linux kernel only, no filesystem (binary format)Li

nu
x

K
er

ne
l

romfs.img The ROMFS image in binary format
u-boot.bin The U-Boot image in binary format
u-boot.srec The U-Boot image in SREC format
u-boot-s.bin The relocatable U-Boot image in binary format
u-boot-s.elf The relocatable U-Boot image in ELF format
u-boot-s.srec The relocatable U-Boot image in SREC format

U
-B

oo
t

ub.config.img U-Boot platform configuration script in binary format

Table C.3 - PetaLinux kernel binaries [24]

The embedded system is now built. What remains is to download it to the
evaluation board and boot it.

Booting the Embedded System C.5
When the hardware project was built, a download.bit file appeared in
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the implementation-folder in the embedded project7. Ship this this to
the FPGA, and observe the output from FS-Boot over RS323 (see C.1.5).
Shortly after configuring the FPGA FS-Boot will request the image to load
the next-stage bootloader, U-Boot.

1 =================================================
2 FS-BOOT First Stage Bootloader (c) 2006 PetaLogix
3 Project name: edk
4 Build date: Mar 5 2010 14:55:10 FS
5 Serial console: Uartlite
6 =================================================
7 FS-BOOT: System initialisation completed.
8 FS-BOOT: Booting from FLASH. Press 's' for image download. % Press 's'

here
9 FS-BOOT: Waiting for SREC image....

U-Boot C.5.1
By not clicking ’s’ here, FS-Boot will attempt to boot from Flash, which is
eventually the desired solution (see below). By some means provided by the
RS232 interface, send the u-boot.srec file to the ML505.

1 FS-BOOT: Waiting for SREC image....
2 FS-BOOT: Use new image.
3 FS-BOOT: Booting image...
4 SDRAM :
5 Enabling caches :
6 Icache:OK
7 Dcache:OK
8 U-Boot Start:0x9ffc0000
9 Malloc Start:0x9ff80000

10 Board Info Start:0x9ff7ffd0
11 Boot Parameters Start:0x9ff6ffd0
12 FLASH: 32 MB
13 ETHERNET: MAC:00:0a:35:00:22:01
14

15 *** Warning - bad CRC, using default environment
16

17 Hit any key to stop autoboot: 0 % Hit 'b' here
18 U-Boot>

Putting U-Boot in Flash C.5.1.1
Before doing anything, one might want to run flinfo to see the Flash-
memory layout. If TFTP is setup correctly, U-Boot may be put set to Flash
by simply typing

7When ISE is used to build the embedded project, <topmodule name>_download.bit
appears in the ISE project root folder instead. This is the case with the design described
in this thesis.
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1 U-Boot> run update_uboot
2 eth0: Xilinx XPS LocalLink Tri-Mode Ether MAC #0 at 0x81C00000.
3 1000BASE-T/FD
4 TFTP from server 192.168.1.5; our IP address is 192.168.1.10
5 Filename 'u-boot-s.bin'.
6 Load address: 0x90000000
7 Loading: #####################
8 done
9 Bytes transferred = 107008 (1a200 hex)

10 .. done
11 Un-Protected 2 sectors
12

13 .. done
14 Erased 2 sectors
15 Copy to Flash... done
16 U-Boot>

This unprotects the first 2 blocks of Flash memory, and copies the image
there. Note that the server and embedded system IP-address are those
specified in the kernel configuration (C.3.2.2). To re-enable the protection
(not necessary, but recommended) type

1 U-Boot> protect on 1:0-1 % General syntax: protect <on/off>
<bank>:<block(s)>

2 Protect Flash Sectors 0-1 in Bank # 1
3 .. done
4 U-Boot>

Depending on the U-Boot image size, more than 2 blocks of memory may
be required. For the ML505 evaluation board, only bank 1 exists.

Now the card will boot straight to the U-Boot menu every time the FPGA is
configured with a .bit-file containing an embedded project and the FS-Boot
bootloader.

PetaLinux C.5.2
To run PetaLinux the kernel image must be downloaded to the onboard
DDR2-RAM, and executed. To upload the image, use e.g. NFS:

1 U-Boot> nfs 0x90000000 192.168.1.5:/tftpboot/image.bin
2 File transfer via NFS from server 192.168.1.5; our IP address is

192.168.1.10
3 Filename '/tftpboot/image.bin'.
4 Load address: 0x90000000
5 Loading: len bad 46 < 241
6 ########################### ...
7 ...
8 ###########################################################
9 done
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10 Bytes transferred = 4292752 (418090 hex)
11 U-Boot>

0x90000000 is the start address of the DDR2-RAM in the design in this
project. These addresses equals the addresses listed in XPS aslong as the
Microblaze is setup without a MMU. Now, execute the image:

1 U-Boot> go 0x90000000
2 ( lots of output )
3 ...
4 eth0: XLlTemac: We renegotiated the speed to: 1000
5 eth0: XLlTemac: speed set to 1000Mb/s
6 eth0: XLlTemac: Send Threshold = 24, Receive Threshold = 4
7 eth0: XLlTemac: Send Wait bound = 254, Receive Wait bound = 254
8 Starting portmap:
9 Starting thttpd:

10

11 compet login: % Type 'root'
12 Password: % Type 'compet'
13

14 #

Congratulations! This is, in essence, a working system!

Putting Linux Kernel in Flash C.5.2.1
Yet again, use flinfo to see the Flash-layout. By default U-Boot is setup
to look up the Linux kernel image at 0x8c080000. This may be changed
by using the U-Boot environment commands, e.g. setenv kernel_addr
<address> (or editing the PetaLinux configuration), but there is no reason
to do so now. To send the kernel image to Flash, the normal procedure
consists of first transferring the file to DDR2-RAM via NFS/TFTP, and
then byte-copy it into Flash.

1 U-Boot> nfs 0x90000000 192.168.1.5:/tftpboot/image.ub
2 File transfer via NFS from server 192.168.1.5; our IP address is

192.168.1.10
3 Filename '/tftpboot/image.ub'.
4 Load address: 0x90000000
5 Loading: #################### ...
6 ...
7 #################################################################
8 done
9 Bytes transferred = 2990288 (2da0d0 hex)

10 U-Boot>

Pay attention to the number of bytes transferred, as this number must be
supplied to the byte-copy program. Optionally, one might want to verify
the kernel image
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1 U-Boot> imi 0x90000000
2

3 ## Checking Image at 90000000 ...
4 Image Name: PetaLinux Kernel 2.6
5 Image Type: Microblaze Linux Kernel Image (uncompressed)
6 Data Size: 2990224 Bytes = 2.9 MB
7 Load Address: 90000000
8 Entry Point: 90000000
9 U-Boot>

The ML505 Flash-memory is segmented into 256(+2) 128kB blocks of mem-
ory. In this project, the kernel image (image.ub) size is slightly more than
4MB, thus clearing 4-40 Flash-memory should be more than enough. Disable
the protection, and erase, these blocks:

1 U-Boot> protect off 1:4-33
2 Un-Protect Flash Sectors 4-40 in Bank # 1
3 .............................. done
4

5 U-Boot> erase 1:4-40
6 Erase Flash Sectors 4-40 in Bank # 1
7 .............................. done
8

9 U-Boot>

Finally, perform the byte-copy and re-enable the protection:

1 U-Boot> cp.b 0x90000000 0x8c080000 0x4180d0 % Syntax: cp.b <from> <to
> <size>

2 Copy to Flash... done
3

4 U-Boot> protect on 1:4-40
5 ...

Woila! The system should now boot PetaLinux without any manual inter-
ventions.

Hints and Tips C.6

NFS Development Share C.6.1
A very handy way of developing embedded-applications is by sharing the
cross-compilation binaries between the host- and embedded system. If, say,
/share is common for both the host and embedded system, then the devel-
opment flow could be similar to this
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Terminal 1 (host machine)
1. Write the code.
2. Compile and put binaries in /share

Terminal 2 (development board)
1. Navigate to /share
2. Run the binary file.

A way to do this is by directly editing the PetaLinux filesystem, situated in
petalinux-dist/romfs. All ”S-files” in petalinux-dist/romfs/etc/rc.d
are launched upon boot, so create a file there called S99nfs with the follow-
ing contents:

1 echo ' NFS: Mounting 192.168.1.5:/share as /mnt'
2 mount -t nfs -o tcp,nolock 192.168.1.5:/share /mnt

Assign full permissions to this file to rule that out of the list of potential
party-crashers:

1 >> chmod 777 petalinux-dist/romfs/etc/rc.d/S99nfs

Remake the kernel, upload it to the card, and watch the RS232 output:

1 U-Boot> go 0x90000000
2 ( lots of output )
3 ...
4 Starting thttpd:
5 NFS: Mounting 192.168.1.5:/share as /mnt
6

7

8 compet login: root
9 Password: compet

10

11 # cd /mnt
12 # ls
13 ( list of all binaries )

This is the link currently used to launch applications on the embedded de-
vice, and to send data back. The data acquisition programs store the data
in the /share-folder, which is actually located on the host-machine. This is
by means a high-performance solution, but it simple and reliable.

Cross-Compilation C.6.2
To compile code for the embedded system, first setup the cross-compilation
environment by sourcing settings.sh. Then compile as usual with the
microblaze-uclinux-* commands. E.g. to compile hello.c, and put the
binary in /share, do

1 >> microblaze -uclinux-gcc -W hello.c -o /share/hello
2 >> chmod a+x /share/hello

Now launch it from the embedded environment (e.g. by first logging in with
telnet), and watch the magic.
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D
ISE/EDK Messages

Ise and Edk outputs a rather verbose list of info-, warning- and error-
messages1. While the latter halts the implementation process completely,
and always must be resolved, the two former are of less severity and may
often be ignored. However, good design practise dictates that these are
carefully evaluated to ensure that synthesis and simulation coincide. When
the simulation shows promising results but the FPGA implementation fails
miserably, the reason may usually be found somewhere in the mentioned
messages. Despite my continuous efforts to keep the code clean and unam-
biguous, some messages simply will not vanish. I intend to comment on a
selection of these here.

Warnings D.1
VHDL not supported as a language.

This seems only to affect Linux systems, and may cause the implemen-
tation process to fail. Clear the LANGUAGE environment variable2 prior
to starting Ise/Edk to bypass this bug.

ProjectMgmt - Circular Reference: Architecture|fe_ch_submux|rtl
This is caused by the recursive nature of the SubMux (see 3.5.2.1), which
- according to AR#204803 - seems not to be supported by the Project
Navigator, but should cause no problems with Xst.

No primary, secondary unit in the file ”.../icon.vhd” (or ”ila.vhd”/vio.vhd”
. Ignore this file from project file ”.../top_vhdl.prj”.

These are simulation files for the ChipScope cores, automatically gen-
erated by CoreGen in the IP creation process. The warnings seems
pointless (these files are never added to the project, nor ever used), and
can be safely ignored.

1ISE and EDK versions used: 10.1.03.
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Xst:2211 - ”/path/to/somefile.vhd” line XX: Instantiating black box mod-
ule <module name>.

Look into AR#98384 if you wish to suppress these, which are there for
notification only.

Xst:819 - ”/path/to/somefile.vhd” line XX: One or more signals are miss-
ing in the process sensitivity list...

The sensitivity list should - if the logic is synchronous - contain the clock
and the reset (if asynchronous), and - if the logic is combinatorial - all
input signals. However, Xst will usually implement correct logic even if
the list is incomplete. In some cases, it makes sense leave it incomplete.
Consider an array of records, for instance, and you wish a process to
be sensitive to all signals in this array. Writing all of these into the
sensitivity list is inflexible, tedious, and makes the code less readable5.

Xst:2404 - FFs/Latches <signal name> (without init value) have a con-
stant value of 0 in block <block name>.

Signals where one or more bits have a constant value does not need logic,
but can simply be tied to static logical ’0’ or ’1’. The ”channel number”
variable in the event data is a typical ”victim” of this treatment since it
is set in synthesis, and never changed afterwards.

Due to other FF/Latch trimming, FF/Latch <signal name> (without init
value) has a constant value of 0 in block <block name>. This FF/Latch will
be trimmed during the optimization process.

Pay particular attention to these messages, as they often indicate a bro-
ken signal path somewhere.

Errors D.2
coreutil - License for component <xps_ll_temac_v1> not found

This is caused by a bug in EDK. The ComPET readout project uses a
hard Ethernet MAC that should not require a licence, but due to this
bug it needs one anyhow. Fortunately, it is free. See AR#320546.
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Glossary

Notation Description
ADC Analog to Digital Converter.
APD Avalanche Photodiode.
ASIC Application Specific Integrated Circuit.

BSP Board Specific Package.

CLB Configurable Logic Block (see 2.3.2.2).
CMT Clock Manager Tile.
CRU Clock-Reset Unit.
CT Computed Tomography.

DCI Digitally Controlled Impedance (see 2.3.2.1).
DCM Digital Clock Manager (see 2.3.2.3).
DDR Dual Data Rate.
DHCP Dynamic Host Configuration Protocol.
DLL Delay-Locked Loop .
DMA Direct Memory Access.
DNS Domain Name System.
DOI Depth-of-Interaction.
DSP Digital Signal Processing.

EDK Embedded Development Kit.

FF Flip-flop.
FIFO First In, First Out.
FoV Field of View.
FPGA Field Programmable Gate Array.
FWHM Full Width at Half Maximum.

GAPD Geiger-mode Avalanche PhotoDiode.
GPIO General Purpose IO.
GPU Graphics Processing Unit.

HDL Hardware Description Language.

ILA Integrated Logical Analyser.
IOB Input/Output Block (see 2.3.2.1).
IP Intellectual Property.
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Glossary

Notation Description
ISE Integrated Synthesis Environment.
ISERDES Input Serialiser/Deserialiser.

JTAG Joint Test Action Group.

LED Light Emitting Diodes.
LOR Line Of Response.
LUT LookUp Table (see 2.3.2.2).
LVDS Low Voltage Differential Signaling.
LYSO Lu1.8Y0.2SiO5(Ce).

MAC Medium Access Controller.
MAC Multiply-Accumulate.
MGT Multi-Gigabit Transceiver.
MMU Memory Management Unit.
MPMC Multi-Port Memory Controller.
MRI Magnetic Resonance Imaging.
MUX MUltipleXer.

NFS Network FileSystem.

PCB Printed Circuit Board.
PCI Peripheral Component Interconnect.
PET Positron Emission Tomography.
PLB Processor Local Bus.
PLD Programmable Logic Device.
PLL Phase Locked Loop.
PMT PhotoMultiplier Tube.

RAM Read Access Memory.
RF Radio Frequency.

SDR Single Data Rate.
SERDES Serialiser/Deserialiser.
SNR Signal to Noise Ratio.
SPECT Single Photon Emission Computed Tomography.
SRAM Static Random Access Memory.
SSH Secure Shell.

TCL Tool Command Language.
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Glossary

Notation Description
TDC Time-to-Digital Converter.
TFTP Trivial File Transfer Protocol.
ToF Time of Flight.
TOT Time Over Threshold.

UDP User Datagram Protocol.
USB Universal Serial Bus.

VCS Version Control System.
VHDL Very high speed Hardware Description Language.
VIO Virtual Input/Output.

WLS WaveLength Shifter.

XPS Xilinx Platform Studio.
XST Xilinx Synthesis Technology.
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