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Preface

The aim of this thesis is to apply concepts and methods from category theory and, in

particular,  topos  theory  within  quantum physics.  This  research  program,  called  topos
physics  by  some,  has  come  to  fruition  over  the  last  ten  years.  The  original  contribu-

tions were made by Chris Isham, Jeremy Butterfield and Andreas Döring. Later, Chris

Heuen,  Bas  Spitters,  Nicolaas  P.  Landsman  and  Sander  Wolters  have  developed  an

alternative  version  of  the  theory  in  which  the  topos-theoretical  foundations  of  the

approach  have  been  further  clarified.  For  these  authors,  topos  theory  (the  theory  of

generalized  universes  of  sets  and  generalizes  spaces)  is  a  tool  with  which  quantum

physics may be constructed by "gluing together" classical perspectives or "snapshots".

Thus,  in  words  which  would  please  the  classicist,  topos  physics  builds  the  "modern"

quantum world from fragments of the old. So far, the theory has led to a new, intuition-

istic  interpretation  of  quantum  logic.  It  is  also  thought  that  topos  physics  may  be  a

useful tool for building models of quantum gravity.

In  the present  thesis,  we review the basic  method of the topos-theoretical  approach

to  quantum physics:  the  construction  of  a  state  space  by means  of  (covariant  or  con-

travariant)  functors  on  a  category  of  commutative  operator  algebras.  We  then  study

how a certain theory of quantum gravity, so-called loop quantum gravity (LQG), may

be interpreted within topos physics by appeal to the Weyl algebra version of LQG due

to  Christian  Fleischhack.  We investigate  the  topological  properties  of  the  state  space

of LQG within  the topos  model  and show how to  interpret  the  gauge  and diffeomor-

phism  invariance  requirements  within  the  theory.  Finally,  using  a  little-known  tech-

nique for quantising on general  structures (due to Isham), we extend the apparatus of

topos physics  to a  larger category-theoretical  framework.  In order to achieve this,  we

define a measure theory on categories and study the basic entities, the arrow fields on

a  category,  in  the  category  of  their  representations.  It  is  suggested  how  this  may  be

applied to the theory of causal sets, and, more radically, to a theory of quantised logic.
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Full  descriptions  of  the  contents  of  the  thesis  are  given  in  the  introduction  to  the

each chapter. Beware, however, of the amount of theory necessary in order to get this

subject  off  the  ground.  The  fields  under  consideration,  topos  theory  and  quantum

physics,  normally  target  very  different  audiences,  so  we  have  tried  to  give  compact

introductions  to  both  subjects  (completeness  is  out  of  the  question).  The  first  section

of chapter 1 addresses the problems of quantum physics from a logical point of view,

and may be read in  isolation from the rest.  The remaining sections of the chapter are

an  attempt  to  fill  in  some  of  the  details  which  are  needed  in  order  to  appreciate  the

physical  motivation  behind  the  constructions  to  follow.  In  chapter  2,  we  present  the

fundamentals  of  category  theory  and  topos  theory  as  a  prelude  to  the  review  of  the

concepts and methods of topos physics. Both schools, the "neo-realism" of Isham and

the "Bohrification" approach of the Dutchmen, are given in some detail, and, in chap-

ter 3, the latter scheme is applied to the theory of LQG. This chapter therefore contains

a brief summary of the main results of LQG. Likewise, in chapter 4 we state the essen-

tials  of  Isham's  quantisation on  categories,  the  notion of an  arrow field.  As  a  general

rule, proofs which may be found elsewhere, are not included.

Thus,  an  important  part  of  this  long  work  is  taken  up  with  the  arrangement  and

preparation for  use of  existing theories:  original  work  is  only  to  be  found in  the sec-

tions  3.2  and  4.2–4.7.  I  have  tried  to  give  complete  credits  and  references  wherever

possible, but in chapter 1 and section 2.1, where the common lore of the topics, quan-

tum  physics  and  topoi,  is  dealt  with,  only  a  few  suggestions  for  reading  are  given.

Parts of the story can be found, for quantum physics, in chapter 1 of Weinberg (1995)

and, for topos theory, in the prologue to Mac Lane and Moerdijk (1992). No summary

can  give  full  justice  to  the  masterful  contributions  of  Chris  Isham.  Also,  the  present

thesis  can  only  hint,  in  the  manner  of  a  snapshot,  at  the  range  and  difficulty  of  the

themes  involved.  This  should  be  remedied:  in  foundational  work,  particularly  in

quantum  gravity,  one-sidedness  is  not  a  long-term  option.  There  is  little  space  (nor,

indeed,  space-time)  for  more  advanced  applications  of  the  theory.  These  must  be  a

subject for further study.

The present thesis brings together results from arenas as diverse as quantum gravity

and topos theory. This makes for difficult reading. Part of the difficulty resides in the

subjects  themselves,  another  part  is  due  to  the  clumsiness  of  the  eager  expositor.  I

would like to thank my thesis advisor, Dag Normann at the Department of mathemat-

ics, for his helpful assistance during the completion of this work. Also, I owe thanks to

him  and  Herman  Ruge  Jervell  at  the  Department  of  informatics  for  allowing  me  to

present  parts  of  the  thesis  in  the  friendly  atmosphere  of  their  logic  seminar.  I  also

thank  my  parents  for  their  kindness  and  support.  Finally,  I  take  the  opportunity  to

warn my great friends Rita and Cornelia against sleeping dragons and witchcraft.
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C  H  A  P  T  E  R    1

Quantisation, Space and Gravity

In  this  chapter,  we  shall  outline  a  fairly  standard  description  of  physical  theory,

based on genuinely physical, but initially vague, notions such as state, space, observ-
able  and probability.  Although  the assumptions  we make  may seem incontrovertible,

the  plausibility  we  ascribe  to  them should  be  based  on  the  strength  of  the  empirical

support  of  the  formal  theory,  not  on  the  almost  tautological  character  of  our  first

probings.  Also,  when  the  step  to  quantum  physics  is  taken,  plausibility  is  soon

replaced  by  non-arbitrariness  and  mere  correspondences,  often  bold,  with  classical

physics. As we broaden our description, so as to include the possible formulations of a

quantum theory of  gravity,  even analogy and  the negative notion of  lack of arbitrari-

ness will fail us. This may be discouraging. But along the way there will be directions

not taken, generalizations only hinted at. These will be our cues for the constructions

undertaken in chapter 3 and 4 of this treatise. Our main tool, the theory of categories

and topoi, will be the subject of the next chapter.

Section 1.1, which is a kind of pons asinorum to the description of physical systems

for logicians,  will  give the  reader sufficient  background  to  follow the  presentation of

topos  physics  in  chapter  2.  However,  in  order  to  gain  some  understanding  of  the

motivation  behind  the  models  there,  the  remaining  sections  of  the  present  chapter

should  also  be  read.  Section  1.2  focuses  on  the  standard  probabilistic  description  of

quantum physics (as found e.g. in Mackey (1963), or, for the algebraic viewpoint, the

first two chapters of Araki (1999)). Our reconstruction of physical theory is piecemeal,

but some steps differ from the rest by their steepness or importance. In particular, this

applies to the extension from a finite formalism to an infinite one, the transition from a

deterministic  to  a  probabilistic  theory,  the  quantisation  of  classical  theories,  and  the
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choice  between  discrete  and  continuum  concepts.  In  section  1.3  we  recapitulate  the

mathematical  theory  of  quantisation  in  some  detail.  We  discuss  the  sense  of  this

procedure  outside  the  standard  context  (of  infinite  dimensional  Hilbert  spaces),  and

ask  how  quantum  structure  may  arise  from  a  more  fundamental  theory.  In  the  next

section (1.4),  we turn to the non-standard approaches to space and time. We consider

three cases: the possibility of a discrete notion of space or space-time, the generalized

spaces of noncommutative geometry, and synthetic differential geometry, the study of

smoothness  without  classical  logic  and  ZF  set  theory.  Finally  (sec.  1.5),  the  major

problems confronting a consistent  quantum theory of gravity are  outlined, and we try

to show how the different approaches to a full theory derive from choices made at the

critical junctions encountered in the preceding sections.

1.1. The Logic of Physical Systems

1.1.1. The Logic of Classical Mechanics

In this section, we give a quick introduction to the description of physical systems,

both  classical  and  quantum-mechanical.  We  unify  the  presentation  by  choosing  the

logician's point of view. In particular, we ask if the logic governing these descriptions

is classical, or if a more unusual framework should be preferred, perhaps a non-distribu-

tive logic à la Birkhoff - von Neumann. The discussion will be simplified, but a more

detailed  review  of  the  conceptual  problems  facing  a  complete  theory  of  quantum

physics can be found in the remaining sections (1.2-1.5).

We  model  physical  systems  (classical  or  quantum-mechanical)  by  making  three

fundamental assumptions:

*   There is a set � of states for the system to be in;

*   There is a set � of observables associated with the system;

*   There is a value set � which contains the possible results of a measurement of an

observable for a system in a given state.

If  we  like,  we  may  regard  the  observables  as  classes  of  measuring  apparatuses

(Araki  (1999)).  Two  apparatuses  belong  to  the  same  class  if  they  record  the  same

measurement,  regardless of the state of the system. The other way round, we say that

two states are equal if there exists no measuring apparatus (and, hence, no observable)

to  distinguish  between  them.  The  availability  of  a  choice  between  states  and  observ-

ables  -  which  is  the  most  fundamental?  -  is  an  important  starting  point  for  algebraic
quantum  field  theory,  and  it  is  also  useful  for  the  setup  of  observational  contexts  in

topos physics (chapter 2). Notice that we could have introduced probability as a fourth

fundamental notion. This is certainly necessary when we are dealing with a system for

which our information is incomplete, or if measurements performed on the system in a

given  state  do  not  give  the  same  result  each  time.  But  for  the  moment  we shall  con-

sider only small systems (that is, systems with a low number of particles) from classi-

cal mechanics, a deterministic theory.
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It  is easy to identify candidates for the sets �,  �  and �  in newtonian physics.  Ass-

ume,  for  simplicity,  that  our  system  consists  of  only  one  particle  (or  point  mass)

moving in a one-dimensional space. This space will be called the configuration space,

and we identify it with �, the set of real numbers. We introduce the notation

q - the position of the particle in space;

p - the momentum of the particle.
The product space �2, which consists of all possible pairs (q, p), is the collection of

all  possible  states  of  the  system.  This  will  be  called  the  phase  space.  (For  a  larger

system,  say  n  particles  moving  in  three-dimensional  space,  the  phase  space  is  �6 n.)

The following principle is fundamental:

Newton's principle of determinacy   The initial state Hq0, p0) in the phase space of

the system at time t0 uniquely determines the states Hqt, pt) for all t > t0.

Particles  also  have  acceleration.  If  the  principle  of  determinacy  is  true,  even  the

acceleration a of the particle in our simple system should be given as a function F of q
and p. So we have the equation of motion

(1.1)ma = p
◊
= FHq, pL.

This is the classical picture. Future positions and velocities of the particle are found

by integration of second-order differential equations.

Example 1.1   Consider a particle or mass (M) attached to a spring (S), as illustrated

in the figure below.

Figure 1.1. The oscillator.
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It  is  known  from experiments  that  F(q,  p)  =  –kq.  Here,  F  is  the  negative  gradient

–∑U /∑q  of the function U(q, p) = kq2/2.  U is  the potential  energy  of the system.  The

kinetic  energy  of  the  mass  is  defined  as  T  =  p2/2m.  We  may  now  introduce  a  new

observable, the total energy of the system, or the Hamiltonian function: E = H(q, p) =

T + U = p2/2m + kq2/2. From (1.1), it is easily shown that dE/dt = 0, so total energy is

conserved.  This  system is  a  harmonic  oscillator,  a  fundamental  paradigm in  physics,

indispensable even within advanced subjects such as quantum field theory.

We shall demand that all observables are functions from the phase space to the real

numbers. For an n-particle system, the following picture emerges:

� = the phase space �6 n;

� = all functions f : S Ø R;
� = the real number set �.
We may now sketch a small language �cl  for this theory. For an observable o and D

Õ � we say that elementary sentences are of the form

D(o)

"the value of the observable o belongs to the subset D of the real numbers".

Sentences in �cl are interpreted as subsets of the phase space �:

[D(o)D = o-1(D).

We say that D(o) is true for the state s of the system if o(s) œ D, equivalently if s œ

[D(o)D = o-1(D). Thus, D(o) is interpreted as the set of states for which o is observed in

the number set D (e.g. an interval). The logical connectives ¬, fi and fl are interpreted

as the corresponding operations – (complement), ‹ and › on sets. The set-theoretical

operations S form a boolean algebra. The associated logic for �cl is classical.

1.1.2. The Logic of Quantum Mechanics

The construction of  �,  �  and  �  above seems very natural.  Nevertheless,  the  phase

space � is unsuitable as an exact model of ultimate physical reality. In order to recog-

nize  this,  we  shall  consider  a  system  which  consists  of  a  microscopic  particle.  Our

observables q  and p  will again be the position and momentum of the particle (that is,

the projections onto the first and second coordinate in the classical phase space). It is

well-known  that  the  standard  deviations  Dp  (=  X(p  –  Xp\L2\1ê2)  and  Dq  for  measure-

ments of p and q will be given by

Heisenberg's uncertainty principle   Dp · Dq ¥ Ñ/2 (Ñ is Planck's constant).
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Increased  precision  in  the  determination  of  the  position  of  the  particle  corresponds

to  greater  imprecision in  the determination of momentum, and vice versa.  Hence,  the

temporal  order of our experiments is no longer a matter  of indifference.  The physical

magnitudes  p  and  q  do  not  commute,  pq  ∫  qp.  Observables  in  O  are  therefore  no

longer functions inot the reals. This fact enforces a new model choice for �, � and �.

In the quantum-mechanical  description, the triple �,  �  and �  comes in the following

guise:

� = a complex Hilbert space H where the states are normalized vectors y;

� = the self-adjoint operators A : H Ø H represent observables;

� = the value set � (just as before).

Self-adjoint  operators  have  real  eigenvalues.  These  eigenvalues  are  the  possible

results  of a  measurement  of the corresponding observable  A.  For a  system in  a  given

state, experience tells us that A has some probability of assuming each of these values.

Accordingly, we must allow probability as a fourth fundamental notion. The probabil-

ity P that an observable (represented by the operator) A upon measurement of a system

in the state y assumes the eigenvalue a, is given by

P(a) = †Xa|y\§2, with Xa| the eigenvector corresponding to the eigenvalue a.

The eigenvectors of a self-adjoint operator A span subspaces (not just subsets) of the

state space � = H. The closed linear subspaces of a Hilbert space form a lattice with a

partial  order given by inclusion. From this point  of departure,  Birkhoff and von Neu-

mann suggested their famous quantum logic. Again we may define a simple language,

�qm , with an associated interpretation. For D Õ � and A œ O, we construct the elemen-

tary sentences

D(A)

"the value of the observable A belongs to the subset D of the real numbers".

And, once more,  we shall interpret  sentences by appeal to the states for which A  is

observed in the number set D:

[D(A)D = the linear subspace spanned by the eigenvectors y of A for an eigenvalue a
œ D

(i.e. y œ Im(E(D)), with E(D) the spectral projection defined by A and D).

The  lattice  structure  L(H)  of  the set  of subspaces  of  H now provides  an interpreta-

tion of the logical connectives. We get

@D1HA1) Í D2HA2LD =  @D1HA1)] +
◊
 @D2HA2)] (i.e. Span(@D1HA1)], @D2HA2)])),

@D1HA1) Ï D2HA2LD = @D1HA1)] › @D2HA2)] (also a subspace),

@Ÿ D1HA1)D = @D1HA1)D¦ (the orthocomplement of @D1HA1)]).

However, the lattice of subspaces is not boolean. The distributive law does not hold:

D1HA1) fl HD2HA2) Í D3HA3LL ñ (D1HA1) fl D2HA2)) fi ( D1HA1L Ï D3HA3LL
(Instead,  a  limited  kind  of  distribution  holds,  based  on  the  relation  U  Œ  V  fl  U  ‹

HU¦ › V) = V for subspaces U and V. The lattice is orthomodular.) On the other hand,

the principle of contradiction holds:
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¬(D1HA1) fl ¬D1HA1))

Likewise, we have tertium non datur:

D1HA1) Í Ÿ D1HA1L.
(This is easily shown. E.g. [D1HA1) Í Ÿ D1HA1L] = @D1HA1)] +

◊
 @D1HA1)D¦ = H = §.)

Quantum  logic,  therefore,  has  rather  unusual  characteristics.  Birkhoff  and  von

Neumann  described  it  as  essentially  quasi-physical  and  opposed  it  favourably  to

intuitionistic logic, which, in their eyes, was guided by "introspective and philosophi-

cal  considerations"  (Birkhoff  and  von  Neumann  (1936),  p.  837).  Others,  for  similar

reasons,  have  concluded  that  logic  is,  or  ought  to  be,  an  empirical  science.  (E.g.,

according to Hilary Putnam the true logic should be "read off" from the Hilbert space

(Putnam (1975),  p.  179).) In  practice,  the development  of quantum logic  has encoun-

tered  severe  difficulties.  A  natural  implication  operator  seems  to  be  lacking,  and  no

construction of a predicate calculus has succceded.

Example 1.2   It seems reasonable to demand that implication, fl, fulfills@p Ï qDŒ @rD
@pDŒ @q fl rD

in the lattice of subspaces. (fl  and fl  are adjoints in the category-theoretical sense.)

For  the  interpretation  of  the  classical  language  �cl,  ordinary  material  implication,

defined by p fl q := ¬p fi q, suffices. Assume that this definition is also the correct one

for the language �qm, interpret the sentences of �qm in the lattice L(H) of subspaces of

H,  and  consider  the  observables  Sx  and  Sz,  the  spin  of  an  electron  in  the  x-  and  z-

directions, both with eigenvalues in the set {–1/2, 1/2} (for a choice of units with Ñ =

1). Sx  and Sz  are not simultaneously observable. Hence,  [Sx  = 1/2] ›  [Sz  = 1/2] = «.

Now let p = (Sx = 1/2), q = (Sz = 1/2) and r = (Sz = –1/2). Then

« = [Sx = 1/2] › [Sz = 1/2] = [p fl q]  Œ [r],

but it is not the case that

[Sx  = 1/2] = [p] Œ [q fl r] = [¬q fi r] = Span([Sz  = 1/2D¦, [Sz  = –1/2]) = Span([Sz  =

–1/2]).

(The last  equality follows because the Hilbert space is spanned by the eigenvectors

of Sz.) As remarked above, it is not possible to measure spin in the x- and z-directions

at the same time.

In  chapter  2,  we  shall  pay  close  attention  to  the  way in  which  Isham and  Döring's

theory of topos physics modifies the present account of quantum logic. Meanwhile, let

us end this introductory sketch by noting that the link between observables in classical

physics and in quantum mechanics is deeper than we have suggested so far. Consider

the following example:
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Example 1.3   In example 1.1 we gazed briefly at the Hamiltonian function H(q, p)

= p2/2m + kq2/2 for a classical harmonic oscillator. It is postulated in quantum mechan-

ics  that  classical  observables  shall  be  represented  by  corresponding  operators.  These

will be the quantum-mechanical observables. For position and momentum, we have

q # q
`
 = x × - (multiplication by x)

p # –iÑ ∑

∑x
.

The Hamiltonian function may now be represented by the Hamiltonian operator

H(q, p) # H
`

 = p
` 2

/2m + k q
`2

/2 = –
Ñ

2 m
∑2

∑x2
 + 

k
2

x2× -.

Above, we said that the state space will be a complex Hilbert space. We now choose

L2(�)  for  this.  Let  y(t)  œ  L2(�)  be  the state  of  the harmonic  oscillator  at  time t.  We

postulate that the dynamical evolution of the system is given by the equation

iÑ
∑y

∑x
 = H

`
y.

Insertion of H
`

 gives Schrödinger's equation for the system under consideration. The

solution will be a curve in the Hilbert space.

The  quantisation  procedure  above  is  neither  complete  nor  unambiguous.  Firstly,

there  exist  quantum mechanical  degrees of  freedom (spin  is  an  example  of this)  with

no counterpart in classical physics. Secondly, we may ask if a classical observable ab

ought  to  be  represented  as  a
`
b
`

 or  b
`
a
`

 when  the  corresponding  quantum-machanical

observables do not commute (cf. section 1.3 below).

The  quantum-mechanical  perspective  is  limited  in  yet  another  way.  A  complete

physical  theory  should  be  consistent  with  the  special  theory  of  relativity.  In  special

relativity, simultaneous interaction between separate particles is excluded, and "action

at a distance" must be replaced by some kind of field theory. The physical fields will

be dynamical objects in their own right, and changes in the fields must propagate with

a  finite  velocity.  For  the  law  of  conservation  of  energy  to  hold,  at  least  locally,  the

fields ought also to be carriers of energy. In the final  quantisation of physical  theory,

these  field  must  themselves  be  quantised.  This  is  done  in  quantum field  theory.  In  a

nutshell:  Start  from  example  1.3  above,  and  build  the  physical  field  by  stationing

harmonic oscillators at each point of space. Then quantise these in such a manner that

invariance under Lorentz transformations is preserved, as demanded by special relativ-

ity (cf. subsection 1.2.5 below).

Gravity  apart,  succesful  quantum  field  theories  have  been  found  for  all  known

interactions  in  nature.  Quantisation  of  the  metric  tensor,  which  codes  information

about  the  curvature  of  space-time,  seems to  be  an  immensely  difficult  task.  We shall

have  more  to  say  about  quantisation  and  gravitation  theory  in  subsection  1.2.6  and

section 1.5 below. Also, in section 3.1, we give a more detailed review of a particular

theory of quantum gravity.  The topos models presented in chapter  2 are in part  moti-

vated by a wish to develop general methods for a future theory of quantum gravity. Let

us now have a closer look at the central notions in the brief sketch so far given.

Tore Dahlen Thesis.nb  13



1.2. The Description of Physical Systems

1.2.1. States, Observables and Probability

The fundamental notions are present at the very start of our description of a physical

system. In physics, a measurement is made on a system in a certain state, and the result

of  the  measurement  is  recorded  as  a  measured  value.  Recall  from  section  1.1  that

different  measuring  apparatuses  record  the  same  value  for  identically  prepared  states

of a system, we shall say that they measure the same classical observable. We denote

classical observables by letters P, Q, Q1, Q2, ... and the set of classical observables by

the  letter  �Cl.  Classical  states,  on  the  other  hand,  are  identical  when  their  recorded

values are  identical  for  all  classical  observables.  We denote  classical  states  by letters

a, a1, a2, ... and the set of classical states by the letter �Cl. Also, all recorded values r,

r1,  r2,  ...  are  members  of  a  value  set  �Cl.  (In  classical  mechanics,  a  state  would  be  a

point in the phase space of the system, an observable would be a function defined on

the phase space, and �Cl would be the real numbers.) Our protocol will then consist of

series of statements of the form Q(a) = r.

So  far,  we  have  made  no  decision  as  to  the  final  interpretation  of  our  states  and

observables.  Our letters  may be the  primitive  signs  of a  formal  language for  physics.

But the present vocabulary is too narrow in several respects. Firstly, information about

the state of a physical system may be incomplete. (This is certainly the case when we

are dealing with a  system with  a  large number of particles.)  Secondly,  it  may be that

the measurement of a system in a certain state has different results at different times.

We shall deal with the first difficulty by the introduction of a partially ordered set �.

We then consider functions m, perhaps partial, from P(�Cl), the power set of �Cl, to the

set �. We denote the members of � by p, p1, p2, ... Intuitively, m records our informa-

tion about a system by ordering sets of classical states according to their probability. It

seems  natural,  perhaps  unavoidable,  to  suppose  that  �  contains  members  0�  and  1�
such that  p  ¥  0�  and p    1�  for all p  œ  �.  (In statistical  mechanics,  the domain of m

would be a s-algebra, and m would be a countably additive measure with values in the

unit  interval  [0,  1].)  Tentatively,  the functions  m  are  introduced as  our next  construc-

tion step. We shall call them the probabilistic states, denote them by letters m, m1, m2,

...,  and collect  them in the set  �Pr.  It  is  simple to see how the classical  states  may be

represented in the new set �Pr. We shall map the classical state a1  to the probabilistic

state m1  with the property that m1(A) = 0�  and m1(B) = 1�  whenever a1–A  and a1œB,

where  A  and  B  are  sets  of  classical  states,  and    is  the  ordering  on  �.  In  general,  a

representative state m1 may not always exist, or it may not be unique.
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At present, there is no reason why the incompleteness of information should compel

us to assume the existence of new observables, so we keep the old set �Cl until further

notice. We also retain the value set �Cl. However, we still want to record our measure-

ments in a protocol, and statements of the form "Q (m) = r" does not make sense for the

probabilistic  states  m.  The  problem can  be  solved  by combining  the  maps  Q-1:  �Cl  Ø

�Cl and m : P(SCl) Ø � into the map wm
Q

 : P(�Cl) Ø � defined by wm
Q

(E) = m(Q-1(E)) for

E Õ �Cl. The record "wm
Q

(E) = p" then states that "when the system is in the probabilis-

tic state m,  the estimate that  the value of the observable Q  is  to be found in the set  E
should be ranked as p in our probability order".

If  there  is  only  a  finite  number  of  classical  states,  we  may  define  the  expectation
value of the observable Q in the state m as 

(1.2)Q HmL = S
aœ�Cl

m H8a<L ÿ Q HaL
This  presupposes some structure  on  the value set  �Cl  and the  probability set  �.  At

the very least, addition should be defined on �Cl, and �Cl  should have a zero element

0�. We shall also need a map · : � × �Cl Ø �Cl satisfying 0� · r = 0� and 1� · r = r for r

œ  �Cl.  We  then  have  Q(a)  =  Q(m)  whenever  a  classical  state  a1  is  identified  with  a

probabilistic state m1. In the infinite case, the family � of subsets E of the value set �Cl

would be a s-algebra, and wm
Q

 would be a measure defined on �. The expectation value

is then defined as Q (m)  = Ÿ r dwm
Q

.

The  extension  of  our  formal  apparatus  solves  the  problem  of  incomplete  informa-

tion.  In  doing  this,  it  seems  that  we  have  also  taken  care  of  the  second  problem,  the

possibility that the repetition of a measurement may give different results for the same

system state.  We still  have a  wide range  of representations  at  our  disposal,  including

systems based on the phase space of classical mechanics. The next problem, however,

will narrow our freedom of choice considerably.

1.2.2. Simultaneous Measurability and Quantisation

Above,  we had to  adjust  our explication of a  physical  state,  while the notion of an

observable remained intact. We do not want any unneccesary restrictions on the set �
(hereafter, we omit the subscript) of observables. That is, if f is any function on the set

H�ClLn  of  n-tuples  of  values  of  observables  such  that  Rn(f)  Õ�Cl,  we  would  like  to

have an observable f (Q1, ..., Qn), defined as the composition of f with Q1, ..., Qn. This

surely makes sense if the observables Q1, ..., Qn  are functions fi(Q) of a single observ-

able Q. We say that they are simultaneosly measurable. Then the observable f (Q1, ...,

Qn) = f ( f1HQL, ..., fnHQL) = g(Q) and we define wm
f HQ1, ..., QnL(E) = wm

Q
(g-1(E)).
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It is well-known from quantum mechanics that certain observables, such as position

and momentum, are not simultaneously measurable. It behoves us therefore to choose

the entities of physical theory with some care. Our first step will be to identify the set

of  states  �  with  a  complex  Hilbert  space.  The  letters  �(�)  will  denote  this  space,

while the vector states, the vectors with norm 1 that are unique up to multiplication by

a complex number of unit modulus, are denoted by letters f, y, y1, y2, ... Observables

P, Q, Q1,  ...œ  � then correspond to self-adjoint operators  on �(�). The basic defini-

tions of probability and expectation value now take the form

(1.3)wy
QHEL = Hy, cEHQLyL

(1.4)Q HyL = Hy, QyL
 The  brackets  on  the  right  denote  the  inner  product  on  the  Hilbert  space,  E  is  a

(Borel)  subset  of  the  value set  �  of  complex numbers (we omit  the subscript  on �),

and  cE  is  the  characteristic  function  of  E  Õ  �.  On  Hilbert  spaces,  two  self-adjoint

operators commute, PQ = QP, if there is a self-adjoint  operator Q1  and (Borel) func-

tions f and g such that P = f(Q1) and Q = g(Q1). Two observables that are not simultane

ously measurable, will then have a commutator, [P, Q] = PQ - QP, different from 0.

The representation of states and observables by means of vectors in a Hilbert space

and  operators  on  them  may  seem  arbitrary,  but  it  is  amply  born  out  by  successful

predictions in quantum physics. If we consider �, the subset of questions of the observ-

ables �, we shall find that there is also a strong theoretical justification for this choice

(e.g. Mackey (1963), p.  72f). In the notation of   subsection 1.2.1, a question Q  is an

observable such that  wm
Q

({0,1}) =  1�,  where 0 and 1 are mutually exclusive outcomes

("yes" and "no") of the measurement of Q in the state m. By switching the answers, we

have  the  complementary  question  1-Q.  It  is  also  possible  to  define  a  partial  ordering

on � in this way:

(1.5)Q1  Q2 i ff wm
Q1H1L  wm

Q2H1L for all states m.

For  an  observable  P,  Q1  may  be  the  question  cE1
HPL,  "Is  the  value  of  P in  the  set

E1?", and Q2 may be the question cE2
HPL, "Is the value of P in the set E2?" If E1 Õ E2,

then Q1    Q2.  Also,  if  Q1    1 - Q2,  Q1  and  Q2  are  disjoint  questions.  If the  partially

ordered set � of probability values is the unit interval [0, 1], we naturally expect that

(1.6)wm
Q1+Q2+...H1L = wm

Q1H1L+wm
Q2H1L+ ... for disjoint questions Qi.

wm
Q

(1) is then a probability measure on �.  If,  as above, we identify the observables

with self-adjoint operators on a Hilbert space, we see that the structure of complementa-

tion and the probability measure (interpreted as in (1.1)) are present in the subset of �
of self-adjoint operators Q such that Q has eigenvalues 1 and 0 and QQ = Q. The two

sets have the same "logic". We will return to the problem of the appropriate quantum

logic in chapter 2.

16   Tore Dahlen Thesis.nb



 With the definition of the expectation value of an observable (a self-adjoint opera-

tor) Q at hand, we are able to define its uncertainty DQ by HDQL2
 = Q2  - Q

2
. The conse-

quences of assuming the existence of observables that are not simultaneously measur-

able are then expressed as the uncertainty principle (for a proof, see e.g. Jordan (1969))

(1.7)HDPL HDQL ¥ 1

2
PQ - QP .

When Qi and Pi are the position and momentum variables (i = 1, 2, 3) the commuta-

tion relations [Qi, P j] = iÑd j
i  allow us to derive the Heisenberg uncertainty relations

(1.8)HDPL HDQL ¥ Ñ
2
d j

i
.

The canonical relations [Qi, P j] = iÑd j
i
,  together with the trivial relations [Qi, Q j] =

0  and  [Pi,  P j]  =  0,  specify  the  quantisation  algebra  of  the  system.  We  shall  explore

quantisation schemes for different systems in section 1.3.

1.2.3. The Symmetries of Time and Space

Although we spoke of simultaneous measurability in the last  subsection, time itself

did  not  enter  the  description.  Is  it  a  formal  parameter,  a  background  structure,  or  a

construction  within  the  theory?  For  the  system  sketched  above,  we  may  first  try  the

standard approach. We therefore leave the domain of statics and introduce a set 	 of

transformations of the vector states f  in the state space �(�).  The members Ut  of 	
are parameterized by t œ �, and we shall assume that U0  is the identity, and Ut1  ·  Ut2  =

Ut1+ t2 . 	 is the dynamical one-parameter group, and we identify the formal parameter

t as classical time. We shall also postulate strict causality: If the system is in the state

f with probability p then, t moments later, the system is in the state Utf with the same

probability.

  The  notion  of  continuous  development  belongs  to  the  same  family.  Formally,  we

have the condition

wUt y
Q HEL is a continuous function of t for all y œ S, Q œ � and Borel sets E œ �.

In �(�), the Hilbert space representation of � and �, the states and observables, Ut

is a unitary operator. By Stone's theorem, Ut  may be written as e-iHt, where H is a self-

adjoint  operator  (this  is  analogous  to  u  =  eiq
 for  q  a  real  number  and  u  a  complex

number of unit  modulus).  Then,  if  y(0)  is  the  state  at  time zero,  the state  at  time t  is

y(t) = e-iHty(t), and the Schrödinger equation may be derived:

(1.9)
„

„ t
y HtL = - iHyHtL
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We note in passing that the choice of a complex Hilbert space in subsection 1.2.2 is

founded on the presence of i  in Stone's  theorem. The self-adjoint  operator H must be

an observable. We shall call it the Hamiltonian of the system. (For the time being, we

identify observables and self-adjoint operators. Restrictions of the operators represent-

ing  physical  quantities  are  known  as  superselection  rules.)  It  may  be  proven  that

observables Q that are conserved in time (so that wUt y
Q JEN is independent of t for given

y, E) commute with H. These observables, including H itself, will be called symmetry

operations of the system. When  Q  is  not  conserved, the new observable  Q
†

 = i[H, Q]

has as its expectation value the time derivative of the expectation value of the observ-

able Q with respect to a given state.

Because  the  Hamiltonian  H  is  the  generator  of  the  dynamical  development  of  the

states y (in the Schrödinger picture) and the observables Q (in the Heisenberg picture),

its  concrete  form will  depend  on  the  physical  system under  consideration.  Normally,

this is done by canonical quantisation. Starting from a classical system (SCl, �Cl), we

find  suitable  analogues  (quantisations)  of  the  classical  observables  in  �Cl  among  the

operators in �. The quantisation of the classical Hamiltonian observable HCl  will then

be  our  Hamiltonian  H.  We will  look  further  into  quantisation  methods  in  section  1.3

below and (for some very general models) in chapter 4.

If we like, we may now define transformations (rotations and translations) of classi-

cal space that, together with the Galilei transformations x Ø x + vt, extend the construc-

tion of 	 in the present subsection. The generators for these transformations form the

ten-parameter Lie group called the Galilei group (Jordan (1969),  p. 107ff).  Instead of

pursuing  this  track,  we  shall  turn  directly  to  the  transformations  associated  with  the

space-time of special relativity.

1.2.4. The Symmetries of Special Relativity

Above,  time and space were present in our description as separate structures.  From

the  theory  of  special  relativity,  we  know that  this  will  not  do.  The  invariance  of  the

laws of  physics  in  all  inertial  frames  forces  us  to  continue  our  search  for  a  complete

theory  within  the  framework  of  the  four-dimensional  Minkowski  space-time  (
,  h).
Here, h defines the Lorentz-invariant scalar product (x, y) = hmnxmyn, where x = (xm) is

a four-vector in 
 and h00  = –1, h11  = h22  = h33  = 1 (hmn  has signature +2). The four-

vectors in 
 are classified as timelike, lightlike  and spacelike.  We now introduce the

group of Poincaré transformations T(L, a):

(1.10)xm Ø Ln
m xn + am.
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As in  the  case of  time evolution  above,  the  transformations  T(L,  a)  induce  unitary

linear transformations  U(L,  a)  on the  states  in  the Hilbert  space �(S).  The composi-

tion rule U(L
`

, â)U(L, a) = U(L
`
L, L

`
a+â) is then satisfied. (There are also anti-unitary

transformations, such as the PCT symmetry, of great importance. See e.g. Streater and

Wightman (1980), p. 17.) The transformations U(L, a) acting on states Y and observ-

ables Q are

(1.11)Y Ø UHL, aLY
(1.12)Q Ø UQU-1.

Then (Y, QY) = (UY, UQY) = (UY, (UQU-1
)UY), so the inner product on the Hilbert

space respects the special relativistic symmetry of the Poincaré group.

We  may now easily  incorporate  some  standard  features  of  physical  theories  in  our

description. As the vacuum state Y0  has zero energy, momentum and angular momen-

tum for all observers, we naturally expect U(L, a)Y0  = Y0  (up to a phase factor) for all

U(L,  a).  One-particle  states  with  zero  or  positive-definite  mass  may  be  introduced,

where the details of the representation depend on the spin of the particle. For positive-

definite  masses,  this  will  be  an  irreducible  unitary  representation  of  the  three-dimen-

sional  rotation  group  SO(3)  (Weinberg  (1995),  p.  68ff).  Multi-particle  states  with  no

interactions  between  the  particles  may  be  handled  as  direct  products  of  one-particle

states.  The  complete  space  for  states  with  an  arbitrary  number  of particles,  the  direct

product  of the  n-fold  tensor  product  spaces  for  all  n,  is  called  the  Fock  space  (Araki

(1999), p. 72).

Because  particles  are  effectively  non-interacting  before  and  after  a  collision,  the

description can be applied to physical experiments in scattering theory. Also, we may

label the states Yp,s  with the spin z-component s and momentum parameter p. (Here,

momentum is  defined group-theoretically.  P = (Pm)  is  the  generator  of the translation

U(1, a),  and PmY  = pmY.)  One observable feature of classical  mechanics,  the particle,

has therefore survived in our quantisation of the theory.

1.2.5. Quantum Field Theory

The  quantisation  of  another  fundamental  notion  of  physics,  the  field,  classically

understood as  an  observable  physical  magnitude defined  on the  points  of space-time,

is the subject  of quantum field theory.  If we apply the quantisation scheme suggested

above, quantum fields should be sets of self-adjoint operators (observables) on space-

time points,  and appropriate representations of the transformations T(L,  a) (and other

symmetries,  such  as  parity  P,  time inversion  T,  and  charge  conjugation  C)  should  be

found. Standardly, they will be built from the annihilation and creation operators a(p,

s) and a†(p, s) of quantum mechanics. As operators on the Fock space, a and a†  take

n-particle states to the particle level n–1 or n+1. The annihilation field  is of the form

(the creation field is defined in a corresponding manner)
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(1.13)y�+HxL = ‡ d3 p u�Hx; pL aHp, sL.
The  index  �  runs  over  the  components  of  the  representation  D(L)  of  the  Lorentz

transformations L. The coefficient functions u�  must satisfy the Lorentz transformation

rules for this representation (Weinberg (1995), p. 192). The four-vector representation

is particularly interesting, as it gives us a first glimpse of the existence of antiparticles,

particles  with  the  same  mass  and  spin  as  the  familar  ones,  but  with  opposite  charge

(op. cit., p. 211). Also, the connection between the spin and the statistics of a particle

emerges at this level.

The  family  of  nonabelian  gauge  transformations,  transformations  that  vary  with

place in  space-time, is  needed for  the representation of electroweak theory and quan-

tum chromodynamics (QCD). We shall not enter into the details. One of the formula-

tions of nonabelian gauge theory, Wilson's lattice gauge theory, has inspired the LQG

approach to quantum gravity presented in chapter 3 (cf. Smit (2002)).

Quantum field theories, sophisticated as they are, may still be only effective theories.

The descriptions provided by a quantum field theory may not be valid above a certain

energy level  L.  Above  this  level,  calculations  may diverge.  In  the theories  known as

renormalizable,  the  calculations are  halted at  this level,  and the apparent dependence

of the result on the cutoff level L is made to disappear by the introduction of coupling
constants (these are redefinitions of the physical constants, such as masses and charges

(Zee (2003), p. 150)). This solves the famous problem of "taming the infinities" for the

renormalizable  case.  While  the  nonabelian  gauge  theories  are  renormalizable,  the

theory  of  gravitation  is  not.  Even  such  theories,  where  the  dependence  on  L  is  not

eliminable, may be useful to some degree.

1.2.6.  The Curved Space-time Background 

The quantum theory above is formulated in flat (Minkowski) space-time. In order to

complete  our  sketch,  two  further  additions  to  the  description  should  be  considered.

First,  we  should  admit  the  possibility  that  the  quantum  fields  may  be  defined  on  a

curved  space-time  background.  Second,  the  curvature  of  the  background  may  be

included  in  the  dynamics  of  our  theory.  This  ideal,  yet  unrealized,  completes  the

former  descriptions  and  is  known  as  the  physics  of  quantum  gravity.  In  this  subsec-

tion, we give a brief outline of the first option, the theory of quantum fields in curved

space-time.
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In  curved  space-time,  the  Minkowski  metric  h  of  flat  space-time  is  supplanted  by

the  Lorentz  metric  g  on  the  four-dimensional  manifold  
,  and  it  is  assumed  that

Einstein's  field  equations,  governing  the  dynamics  of  g,  hold  on  
  (Hawking  and

Ellis  (1973),  sec.  3.4).  If  we  ignore  the  dynamics  of  g,  the  theory  of  quantum fields

may be  developed along  the same lines as  in  the  flat  case.  In  order  to  have  a  unique

solution of the field equations for given initial conditions, it is useful to consider only

globally hyperbolic space-times (
, g). On these manifolds there is a Cauchy surface
S,  a  closed  subset  of  
  such  that  every  point  in  
  has  a  causal  curve  that  passes

through  S.  The  construction  of  the  Fock  space  is  then  unhindered,  and  the  classical

observables may be represented as operators on the space (Wald (1994), p. 59).

The transition to curved space-time raises problems that were not present in the flat

background. The possibility of the definition of a  vacuum state and a  natural  particle

interpretation  was  mentioned  in  subsection  1.2.4.  In  fact,  in  many  approaches  to

quantum field theory on the Minkowski space (notably Weinberg (1995)), the particle

interpretation is built  into the theory at the outset, and the fields are derived from the

postulate  of  Lorentz  invariance.  In  physics  on  a  curved  space-time,  this  option  is  no

longer  available.  So  it  may  be  that  the  notion  of  a  particle  in  general  space-times  is

only approximate, and that the notion of a field is the more fundamental one.

The  algebraic  approach  to  quantum  field  theory  initiated  by  Haag  and  others

(overview  in  Araki  (1999))  has  been  suggested  as  a  natural  framework  for  a  field

theory  on  a  curved  space-time  background.  Here,  instead  of  identifying  the  states  of

the system with the unit vectors of a Hilbert space �, we start with observables �(D)

defined on a limited space-time region D and given the structure of a C*-algebra. The

states  are  then  objects  that  act  on  the  algebra  by  mapping  an  observable  onto  its

expectation value in the state. Possibly, this approach may be combined with the topos

methods found in chapter 2 and 3 below.

Quantum  field  theory  on  curved  space-time  has  been  successfully  applied  to  the

derivation of some quantum theoretical  phenomena,  most  notably Hawking's  analysis

of particle creation by black holes. We noticed above that the gravitational field is non-

renormalizable,  so  divergences  in  calculations  of  basic  physical  experiments  are  not

removable. Still, certain low-energy calculations may be carried out in the theory, and

the graviton,  the  interaction particle  of the  gravitational  field  may be associated with

the  perturbation  of  a  stationary  background  Lorentz  metric.  This  is  analogous  to  the

way the photon is introduced in electrodynamics.

Tore Dahlen Thesis.nb  21



The  full  quantisation  of  all  physical  fields,  including  the  gravitational  field,  is  the

subject of the theories of quantum gravity. One may then try to sort out the ingredients

of  a  theory  that  are  affected  by  quantisation.  Do  they  include  the  manifold  itself,

perhaps  even  the  topology  of  the  manifold  (cf.  Kiefer  (2004),  p.  21)?  Accordingly,

before  we  discuss  the  theory  of  quantum  gravity  (section  1.5),  we  shall  look  more

closely  at  two  of  the  intermediate  constructions  above,  the  quantisation  step  from

classical  dynamics  to  quantum theory  (1.3),  and  the  manifold  structure  of  space-time

(1.4).

1.3. Schemes of Quantisation

1.3.1. The Harmonic Oscillator in One Dimension

In subsection 1.2.3, we mentioned that there exists a recipe, canonical quantisation,

that allows us to find quantum mechanical representatives of the classical observables,

such  as  position  and  momentum.  Strangely,  as  we  pass  from  the  poorer  classical

system  to  quantum  physics  by  this  purely  formal  step,  we  seem  to  gain  some  extra

information for free. But it is well known from most textbooks in quantum mechanics

(see  e.g.  Shankar  (1994),  p.  120ff)  that  quantisation  is  neither  complete  nor  wholly

unambiguous.  It  is  incomplete  because  there  may  be  quantum  degrees  of  freedom,

such as  spin,  which  have no  classical  counterpart.  Also,  the classical  observables are

ambiguous with respect to order. Should the classical observable qp be represented by

the operator QP or PQ? Because Q and P do not commute, the choice matters. In fact,

according  to  the  Groenewold-Van  Hove  theorem,  it  is  impossible  to  quantise  all

classical observables in p and q on �2 n.

We  shall  first  have  a  look  at  a  guiding  example  from  the  mathematical  theory  of

quantisation.  For a  simple system, say the harmonic oscillator  with  basic  observables

given  by  the  position  coordinate  q  and  momentum  coordinate  p,  we  construct  the

Poisson brackets

(1.14)8q, q<= 8p, p<= 0, 8q, p<= 1.

Quantisation of this system is deceptively simple. We switch from Poisson brackets

to  commutator brackets,  and find self-adjoint  operators  Q and  P  on the Hilbert  space

L2  that fulfill  the corresponding relations (where ÑI is the identity operator multiplied

by Planck's constant)

(1.15)@Q, QD= @P, PD= 0, @Q, PD= iÑI.

The operators Q and P defined by Q(y)(q) = qy(q) and P = -iÑ ∑

∑q
satisfy (1.14), and,

by  substitution  in  the  classical  Hamiltonian  Hcl  =  p2/2m  +  kq2/2  of  the  system,  the

Hamiltonian  operator  H  is  found.  The  Schrödinger  equation  (cf.  (1.7)  above)  for  the

harmonic oscillator in one dimension may then be expressed as
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(1.16)i Ñ
∑y

∑ t
=-

Ñ2

2 m

∑2y

∑q2
+

k

2
q2 y.

1.3.2. The Semi-Classical Solution

Following Bates and Weinstein (1997),  we now outline how approximate solutions

can be found in the slightly more general case of a 1-dimensional potential V(x). (The

results  presented in this  section are  purely expository,  and will  not  be needed for  the

rest  of  the  thesis.)  Suppose  the  classical  Hamiltonian  of  the  system under  considera-

tion is

(1.17)Hcl Hq, pL = p2

2 m
+ VclHqL.

We  are  looking  for  the  stationary  state-solutions  y(x,t)  =  f(x)e-iwt  of  the

Schrödinger equation

(1.18)iÑ
∑y

∑ t
= Hy.

A solution that is accurate to order O(Ñ2) is then given by (ignoring the factor e-iwt)

(1.19)fHxL = eiSHxLêÑ aHxL
Here,  a  is  the  amplitude  function  and  S  is  the  real-valued  phase  function.  S  must

then satisfy the Hamilton-Jacobi equation

(1.20)Hcl Hx, S ' HxLL = HS ' HxLL2

2 m
+VclHxL = E HconstantL.

The  amplitude  function a must  satisfy  the homogeneous  transport  equation  (where

D is the Laplacian)

(1.21)aDS + 2 S
j

∑a

∑x j

∑S

∑x j

= 0.

This  procedure  is  known  as  the  Wentzel-Kramers-Brillouin  method  (see  Shankar

(1994), p. 435ff, for an elementary description). 

For the harmonic oscillator, the solution curves to the classical equation Hcl(q, p) =

E are ellipses in the phase space �2. As usual, we identify �2 with the cotangent space

T*  �  and  consider  the  differential  dS  :  �  Ø  T*  �  of  the  phase  function  S.  It  is  an

immediate  consequence  of  the  Hamilton-Jacobi  equation  that  L  =  im(dS)  Õ  H -1(E).

That is, the 1-dimensional manifold L is contained in the classical solution curve for a

constant energy E. Ignoring the amplitude a for the moment, it seems natural to iden-

tify  the  state  f  with  the  manifold  L.  This  is  known  as  the  geometric  viewpoint  on

quantisation.

The  amplitude  function  a  can  also  be  given  a  geometric  interpretation.  We rewrite

the homogeneous transport equation as
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(1.22)“Ia2 “SM = 0.

 Equivalently, this may be expressed as

(1.23)�a2 “SH dx1 Ô ... Ô dxn L = 0.

�  is  the Lie derivative.  The surrounding bars turn the n-form into a canonical den-

sity.  It  can  then  be  shown that  the  pull-back  of  the  density  a2 dx1 Ô ... Ô dxn  from

�n  to the manifold L under the usual projection p:  T* �n  Ø �n  is invariant along the

Hamiltonian  vector  field  XH  =  (
∑H
∑p

,  -
∑H
∑q

).  Accordingly,  we  identify  the  geometric

states  as  the  pull-back  of  half-densities  a dx1 Ô ... Ô dxn
1ê2  on  L  =  im(dS)  that  are

invariant along XH . (Densities and half-densities are explained in Bates and Weinstein

(1997), app. A.)

The  naturalness  of  the  geometric  approach  should  be  noted.  As  defined  by  the

functions S and a,  the approximate solution fHxL = eiSHxLêÑ aHxL  still  has some undesir-

able properties.  The amplitude a(x)  may have singularities on the configuration space

�n,  and   there  may  be  no  suitable  function  S(x)  such  that  L  =  im(dS).  The  geomtric

solution (L, a) does not have these weaknesses. The half-density a is smooth on L, and

the projection of XH  on the configuration space coincides with “S, so there is no need

to mention S at all. Before we turn to quantisation in 1.3.4, we shall give an outline of

the semi-classical picture in a more general setting.

1.3.3. Symplectic Geometry

A  natural  framework  for  further  analysis  of  the  quantisation  procedure  is  found  in

symplectic geometry.  A symplectic  manifold N is  a manifold  with a  symplectic struc-
ture (a closed, nondegenerate 2-form w) defined on it. Above, T* �n  was a 2n-dimen-

sional symplectic manifold with w = S dq j  Ô dp j. For w
è

(x) = w(x, -), Hamilton's equa-

tions of motion imply that the Hamiltonian vector field XH  is given by

(1.24)XH = w
è -1HdHL.

The  Hamiltonian  H and  the  symplectic  form w  thus  suffice  for  finding  the  integral

curves of the motion in the phase space. Also, it can be shown that H and w are invari-

ant along XH .  We now note  that  the characteristics of a  symplectic structure allow us

to reproduce these results in the general case.

(1) We rely on the nondegeneracy of w  and define the Hamiltonian vector field XH

by means of the equation (1.24).

(2) The invariance of H along XH , �XH
 H = w(XH , XH) = 0, is a consequence of the

skew-symmetry of the 2-form w.

(3) The invariance of w along XH , �XH
 w = 0, is a consequence of the closedness of

w.
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We  shall  concentrate  on  the  case  N  =  T*M,  the  cotangent  bundle  of  a  smooth

(riemannian) manifold M. In this case, the 2-form w = -da, where the primitive a is the

intrinsically defined Liouville form (here,  p  :  T*M  Ø  M  is  the projection and < ,  > is

the usual 1-form action on a vector):

(1.25)a Hx, bL HvL = < b, p* v > .

Above, the submanifold L Õ T* �n  was of particular interest to us. L is an example

of  a  lagrangian  submanifold.  For  these  submanifolds,  the  tangent  space  TpL  equals

ITp LM¦,  the  orthogonal  to  TpL  in  the  tangent  space  at  p œ  T*M  under  the  symplectic

form w.  There  is  a  bijection  between  the  closed  1-forms  f  of  M  and  the  projectable

lagrangian submanifolds of T*M (proof in Bates and Weinstein  (1997),  p.  29).  When

the  form  f  is  exact,  so  that  f  =  dS  for  some  function  S  on  M,  we  call  f  an  exact
lagrangian submanifold. The function S is called the generalized phase function.

It is now possible to find the geometric states when the basic space is the contangent

bundle T*M. The condition on a lagrangian embedding i : L Ø T*M corresponding to

the Hamilton-Jacobi equation (1.20) for the phase function S is

(1.26)i = H-1HEL for smooth functions H : T* M Ø �.

When  XH ,i  is  the  nonsingular  vector  field  on  L  induced  by  the  Hamiltonian  vector

field  XH ,  the  homogeneous  transport  equation  takes  the  following  form  for  a  half-

density a on L (cf. equations (1.21) - (1.23)):

(1.27)�XH ,i
a = 0.

 If the embedding i is exact, there is a generalized phase function f on L such that i*

maps the tautological Liouville form a to df. We then have a half-density eiSHxLêÑa on L

that can be pushed forward to M,  where it  is a stationary state Ii-1 ëp-1M*eifêÑa for the

time-independent  Schrödinger  equation  Hf  =  Ef.  Because  M  is  our  configuration

space, we identify the pull-back operation along L Ø M as prequantisation. (Note that

f, as a smooth half-density, is a state in the intrinsic Hilbert space of M. See Bates and

Weinstein (1997) for details.)
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1.3.4. Prequantisation and Maslov Quantisation

Let  us  review  what  has  been  achieved  so  far.  In  subsection  1.3.2,  we  found  semi-

classical  approximate  solutions  f(x)  = eiSHxLêÑ aHxL  in  C¶(�n)  to  the  Schrödinger  equa-

tion (H - E) f = 0. Although these solutions had asymptotic singularities, we were able

to  define  a  smooth  half-density  a  on  the  lagrangian  submanifold  L  =  im(dS)  that

mimicked the behaviour of the functions S and a.  That is,  the corresponding versions

of the Hamilton-Jacobi equation for  S (conservation of energy) and the homogeneous

transport  equation  for  a  (stationary  character  of  the  solution  under  the  flow  of  the

hamiltonian vector field XH) were satisfied.

We found that  these results  could be  generalized to  arbitrary riemannian manifolds

M (subsection 1.3.3).  The pull-back along M Ø  L then completed the quantisation of

the  semi-classical  solutions  by  letting  us  pass  from  half-densities  on  the  lagrangian

submanifold L to the intrinsic Hilbert space on the configuration space M. 
It  must  be noted  that  the  procedure  has certain  limitations,  well  described  in  Bates

and Weinstein (1997, ch. 4). Firstly, the embedding i : L Ø T*M may not be exact. But

in the absence of a global primitive f such that df = i *a, we can still find a cover {L j}

of L and functions f : L j Ø � with df j = i *a L j
. The half-densities (for a j = a L j

)

(1.28)I j = Ii-1 ëp-1M* eif jëÑ a j

can then be patched together, provided that the condition

(1.29)f j - f k œ 2 pÑ ÿ�

is fulfilled on all intersections L j› Lk. If the mapping pL  = pëi : L Ø M is a diffeo-

morphism, we shall say that the langrangian submanifold (L, i) is prequantisable.

We may now imagine cases where pL  is not a diffeomorphism. The embedding i : L

Ø  T*  �  defined  by i(x)  =  (x2,  x)  is  an  example  (Bates and  Weinstein  (1997),  p.  38).

Here,  we  may  still  find  a  quantisation  by  piecing  together  the  quantisations  on  the

upper  and  lower  components  of  the  parabola  i(L).  The  solution  is,  however,  not

defined for q0 in the configuration space �.

This necessitates a more general formulation of the theory, the Maslov quantisation.

In the simplest case, a lagrangian immersion i : L Ø T* � such that pL  is not a diffeo-

morphism onto �, we may switch the roles of the coordinates (q, p) on the phase space

and use the form -qdp instead of a = pdq. We then find a new phase function t = i*(-
qdp)  om L  such that  the mapping pp  from L  to  the p-coordinate  is a  diffeomorphism.

The  case  is  then  similar  to  quantisation  for  diffeomorphisms  pL  on  the  q-coordinate,

except  that  the  operation  in  (1.27)  gives  us  a  half-density  B  on  p-space  when  the

function t is used instead of f. B is then transferred to q-space by means of an asymp-

totic Fourier transform �Ñ. The Maslov quantisation is

(1.30)JÑ = �Ñ-1HBL ˝ dq 1ê2
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By finding a cover {L j} of the lagrangian submanifold i : L Ø T* � with the proper-

ties that each L j  is diffeomorhic in the p-  or q-coordinate and pL  is a diffeomorphism

when restricted to intersections L j› Lk. A partition of unity {h j} is defined for {L j},

and half-densities a on L are quantised by (pre- or Maslov) quantisation on each (L j, i,

a·h j). The half-densities I j are then summed to the final quantisation of L:

(1.31)
I jHL, i, aL = ‚

j

I j

A consistency criterion is imposed to make this definition coincide with the quantisa-

tion in (1.28) (see Bates and Weinstein (1997), p. 45).

1.3.5. Generalizations of the Theory of Quantisation

The theory of quantisation presented in the last subsection can be continued to cover

lagrangian  submanifolds  of  any  cotangent  bundle  T*M  and,  in  the  general  case,  any

symplectic  manifold  P.  There  is  also  an  alternative  approach,  algebraic  quantisation
or  deformation  quantisation,  where  the  noncommutative  algebraic  structure  of  the

quantum observables  is  derived  by  the  construction  of  a  family  of  algebras  
Ñ  such

that 
0 is commutative in the classical limit Ñ Ø 0. 

Generalizations in other directions are possible.  At the far end of the scale, there is

Isham's  work,  starting with  group-theoretical  quantisation and culminating in  a  series

of  articles  on  quantisation  in  a  general  category  (Isham (2003),  (2004)).  In  the  latter

framework,  quantisation  is  carried  out  on  a  configuration  space  consisting  of  the

object  set  Ob(C)  in  a  category C.  Exponentiated  versions of  the  canonical  commuta-

tion relations [Qi, P j] = iÑd j
i

 are then found for certain "arrow operators" on appropri-

ate function spaces on Ob(C).

In  chapter  4,  we  shall  try  to  situate  the  issue  of  quantisation  within  a  category-

theoretical approach to quantum theory. The choice of the correct level of quantisation

becomes  particularly  urgent  in  quantum  gravity.  Any  structural  level  of  space-time

may be regarded as a possible candidate  for quantisation,  from the point  set  structure

via topological and causal structure and up to the (Lorentz) metric (Isham (1993)). 

On  consideration,  the  issue  of  quantum  gravity  may  be  even  more  involved  than

this.  At  the  deepest  level,  we  confront  the  choices  between  discrete  and  continuum

versions of space-time,  and between space-time as a  set  elements (points)  or  as some

more general concept.

For a discrete space-time, as used e.g. in the common interpretation of loop quantum

gravity,  Isham's  technique  for  quantising  on  categories  may,  at  present,  be  the  sole

option available. We shall see how these intuitions can be formalized in chapter 4.
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As a formal theory,  loop quantum gravity is  built  on a  differentiable  manifold,  and

the theory is developed within the standard set-theoretical framework (the category of

sets,  Sets).  But  even  for  continuum theories  of  space-time  there  exists  a  well-known

non-standard approach, the models with infinitesimal (nilpotent) numbers. We present

the fundamentals of this theory,  known as synthetic differential  geometry,  in the next

section. Certain aspects of Hamiltonian mechanics (cf. 1.3.2 - 1.3.3 above), such as the

Liouville  form,  have  been  transferred  to  synthetic  differential  geometry  by  Lavend-

homme (1996).  This  opens the possibilty of a  geometric  quantisation in  the synthetic

context.

1.4. Non-standard Versions of Space

General relativity, also known as geometrodynamics, is a theory of the causal connec-

tions  between  events  in  space-time,  standardly  modelled  as  points  of  a  connected

Hausdorff manifold (
,  g), where g  is a Lorentz metric. The metric g  is a dynamical

object governed by Einstein's equations. Before we turn to the competing perspectives

on quantum gravity, we shall widen our range of options by presenting various alterna-

tive conceptions of space or space-time.

1.4.1. Synthetic Differential Geometry

(a)  Basics  of  smooth  infinitesimal  analysis.  The  possibility  of  a  consistent  way  of

reasoning with infintesimal magnitudes in classical logic surfaced again in the work of

a  logician,  Robinson.  The work  of Weil  and  Grothendieck also  suggests  that  alterna-

tives to the Newtonian calculus may be useful, or even necessary, in algebraic geome-

try. This led to the development of synthetic differential geometry (SDG) by Lawvere

and  Kock.  The  point  of  departure  for  this  theory  is  the  following  axiom  (where  the

geometric  line  R,  a  �-algebra,  is  the  synthetic  substitute  for  the  classical  field  �  of

real numbers):

Kock-Lawvere axiom   Let D be the set of square-zero elements in R. For every f : 
D Ø R, there exists one and only one b œ R such that, for every d œ D, f (d) = f (0) + d 
· b.

Using classical logic, the axiom is content-free, as we quickly derive the disturbing

proposition  R  =  {0}.  (For  all  results  in  this  section,  see  Kock  (2006)  and  Lavend-

homme  (1996).)  In  the  naïve  formulation  of  the  theory,  classical  logic  is  then  aban-

doned, and synthetic calculus is developed from axioms, using only the rules of intu-

itionistic logic. The derivative f'(a) of a function f : R Ø R at a can be defined at once

as the unique b in R such that

(1.32)" d œ D f Ha + dL = f HaL + d ÿ b
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Consequently,  all  functions  are  infinitely  differentiable.  Proofs  of  the  algebraic

properties of the derivative and a version of Taylor's formula are natural and simple in

this  context.  By  extension  to  several  variables,  directional  derivatives  are  also  defin-

able. The notion of an interval requires the introduction of the reflexive and transitive

preorder  relation  .  This  relation  is  assumed  to  be  compatible  with  the  algebraic

properties of R, but it is not antisymmetric, due to the further unusual assumption

(1.33)d œ D fl 0  d Ï d  0

Antisymmetry  would  collapse  the  set  of  nilpotent  elements  to  D  =  {0}.  It  is  now

possible to define the closed interval from a to b as

(1.34)@a, bD = 8x œ R a  x  b<
The nilpotent elements are then members of the infinitesimally short interval [0, 0].

In order to define integration, a new axiom is necessary:

Integration axiom (Kock-Reyes)   For any function f :  [0, 1] Ø R, there exists a
unique function g : [0, 1] Ø R such that g' = f and g(0) = 0.

Ÿ0

x
f HtL „ t (for x œ [0, 1]) is then simply the value g(x). The definition is extended to

any interval [a, b] by an application of Hadamard's lemma, and the usual properties of

the integral hold.

(b)  Manifolds  as  microlinear  objects.  (The  rest  of  this  subsection  is  a  tool  box  for

future  work  in  topos  physics,  but  the  material  will  not  be  needed  in  the  rest  of  this

thesis.) It  is now tempting to commence the subject of differential  geometry by intro-

ducing tangency in the following manner:

A tangent vector to a manifold M with base point m is a mapping t : D Ø M such

that t(0) = m.
Indeed, this is the correct definition, but we need to be clearer about the notion of a

manifold,  or  a  microlinear  object.  A  Weil  algebra  is  finitely  presented  as  W  >  R[X1,
X2,..., Xr] / I, where R[X1, X2,..., Xr] is the free R-algebra with r generators, and I is an

ideal  generated  by  a  finite  set  of  polynomials.  For  an  R-algebra  C,  we  define  the

spectrum of W in C as

(1.35)Spec
C

IW M = 8Ha1, ..., arL œ Cr P Ha1, ..., arL = 0 for all generators of I<.
The spectra are the "small" objects of SDG. Note that the set D is simply SpecR HW L

for W = R/(X 2). Several other small objects can now be defined, such as

(1.36)Dk = S pecR IR@X D ë IX k +1MM= 8d œ R dk+1 = 0<
(1.37)DHkL = SpecR IR@X1, X2, ..., XkD ë IXi X jMM = 9Hd1, d2, ..., dkL di d j = 0=
(1.38)D2 = Dµ D = SpecR IR@X , Y D ë IX 2, Y2MM = 9Hd1, d2L d1

2 = d2
2 = 0=.
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The  geometric  line  R  possesses  a  certain  "blindness"  with  regard  to  these  small

objects. E.g. if f (d1·d2) = 0 for all d1, d2 œ D, then f (d) = 0 for all d œ D. This idea can

be  given  a  formal  expression  by  means  of  category  theory.  By  applying  the  functor

SpecR  to a limit (L ö
li

  AiL in the category of R-algebras, we shall say that the result-

ing diagram is a finite quasi colimit when L itself is a Weil algebra and li are homomor-

phisms  of  Weil  algebras.  The  property  of  R  that  we  want  to  capture,  can  then  be

expressed by saying that an object M  is  microlinear  if M perceives (that is, M factors

uniquely through L) finite quasi colimits L of small objects as colimits. R is microlin-

ear in this sense (if we assume a general version of the Kock-Lawvere axiom), and so

are  Rn  and  RX (for  X  a  set).  Even  the  infinite-dimensional  RR  is  a  microlinear  object,

and, in general, so is M M .

With the notion of a "manifold" (a microlinear object) and a tangent vector in place,

the tangent vector set TmM at m œ M and the tangent bundle TM (t : M D  Ø M) on M

can  be  defined  in  the  natural  way.  A  vector  field  on  M  is  a  section  of  the  tangent

bundle  on  M.  A vector  field  may be  seen  as  a  mapping  X  :  D Ø  M M ,  the  image  Xd

being  an  infinitesimal  transformation.  �(M)  will  be  the  R-module  of  vector  fields,

another microlinear object. From the microlinearity of M M  it can be proven that there

is a unique vector field [X, Y], the commutator or Lie bracket of vector fields X and Y
such that (for d1, d2 œ D)

(1.39)@X , Y D Hd1 ÿ d2L = Y-d2
ëX -d1

ëYd2
ëXd1

In a natural manner, [X, Y] attempts to close the microcurve starting at a point m œ

M. The Jacobi identity is satisfied by the Lie bracket, so �(M) is an R-Lie algebra. For

a  vector  field  X,  the  Lie  derivative  of  a  function  f  :  M  Ø  R  is  the  function

LX H f L : M Ø R given by the equation

(1.40)f HX Hm, dLL = f HmL + d ÿ LX H f L
By  introducing  n-microcubes  on  M  as  mappings  g  :  Dn  Ø  M,  we  may  define

singular  differential  n-forms  on  M  with  value  in  the  R-module  E  as  mappings  w  :

M HDnL  Ø  E  that  are  alternated  (they  give  the  same  value  on  microcubes  g  that  are

permutated with respect to their arguments (d1, d2,..., dn), multiplied with the sign s of

the  permutation)  and  n-homogeneous  (w(g)(d1,...,  a ÿ dk,...,  dn)  =  a·w(g)(d1,  d2,...,  dn)

for every k). The microlinear R-module of differential n-forms is denoted by Wn(M; E).

We  note  that  the  notion  of  a  singular  differential  form  is  more  inclusive  than  the

classical notion. The latter is defined as a mapping from D(n) to E, and, as may easily

be  seen  from (1.36)-(1.37)  above,  there  exists  a  canonical  injection  i  :  D(n)  Ø  Dn.In

case  M  is  an  R-module,  the  flat  connection  “  :  M HDH2LLØ  M HDµDL  then  allows  us  to

construct a bijection from the classical to the singular 2-forms.
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The exterior differential  in SDG is constructed by modifying the n-microcubes into

the  classically strange  marked  n-microcubes.  These  are  pairs  (g,  e)  of  a  microcube  g

and  e  œ  Dn,  where  the  element  e  identifies  the  edge  of  the  microcube.  The  free  R-
module Cn(M) generated by the marked microcubes then contains the inifinitesimal n-

chains. The boundary operator ∑ can be defined, and it is easy to prove that the bound-

ary  of  a  boundary  is  zero.  The  integral  of  a  differential  n-form  w  on  the  marked

microcube (g, e) has a particularly simple form:

(1.41)‡Hg, eLw = e ÿ e ÿ ÿ ÿ ÿ ÿ e ÿ wHgL.
It  is  possible to prove the existence and uniqueness of a differential (n+1)-form dw

with the property that

(1.42)‡
∑Hg, eLw = ‡Hg, eLdw.

The form dw  is  the exterior derivative  of w.  For microlinear objects  M and E  = R,

the  definition  of  integration  can  be  extended  beyond  the  infinitesimal  case,  and  a

synthetic version of Stoke's theorem is provable. Common constructions of differential

geometry, such as an exterior algebra and Lie derivatives of differential forms, are also

within  reach.  The  definition  of  a  connection  has  a  strong  intuitive  motivation.  As

mentioned above, it is given as a map “ : M HDH2LLØ M HDµDL, and takes a pair of infinites-

imal line segments (t1,  t2) at  the point m to a microsquare at m,  thereby capturing the

notion of parallel transport.

(c) Symplectic structure on T*M and Hamiltonian mechanics. In subsection 1.3.3 we

discussed possible  applications of symplectic  geometry in  the mathematical  theory of

quantisation.  Let  us  have  a  look  at  how  the  notion  of  symplectic  structure  fares  in

SDG. The elements of the theory have been sketched in Lavendhomme ((1997), ch. 7).

In classical mechanics, our standard example of a 2n-dimensional symplectic mani-

fold is T* �n with symplectic structure w = Sdq j Ô dp j. Instead of the manifold �n, we

shall use the microlinear object Rn. As we have seen, the tangent bundle TRn  (t : IRnMD

Ø  Rn)  is  constructed  with  the  SDG  tangents,  maps  from  the  infinitesimal  geometric

line D into Rn, as members. The fibres of the cotangent bundle p  :  T*Rn
 Ø Rn  are then

the duals HTx RnL*. We recall the definitions of singular n-forms and exterior derivation

given above and introduce the Liouville 1-form q and the Liouville 2-form w on p as

(1.43)q : TT* Rn Ø Rn given by qHvL = vH0L HpëvL for tangent v

(1.44)w = -dq.
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If we work through the definition in (1.42), we find that the tangent vector w : D Ø

T*Rn  such that w(d) = (x, u) + d·(y, v) at the point (x, u) in T*Rn
 is mapped to q (w) =

w(0) (pëw) = (x, u)(x + d·y) = u(y) = S ui yi. If we use standard notation (q, p) = (x, u)

for  the  position  and  momentum  coordinates  in  the  phase  space  T*Rn,  we  derive  the

usual definitions q = Spidqi  and w = Sdq j  Ô dp j. The 2-form w is a symplectic struc-

ture  in the sense explained in  subsection 1.3.3  (closed and nondegenerate).  T*Rn  is  a

symplectic manifold.

The Hamiltonian H is a map from T*Rn  to the smoth line R, e.g. H = p2/2m + kq2/2

for the harmonic oscillator. We use the 1-form dH : TT* Rn Ø R and define the Hamilto-

nian vector field XH  : T* Rn
 Ø TT* Rn

 as the unique solution of the equation

(1.45)dHHY L = wHXH , Y L.
It can then be shown that an integral curve (qi(t), pi(t)) in T* Rn  for the Hamiltonian

field XH  satifies the equations

(1.46)

„qi

„ t
=

∑H

∑ pi

and
„ pi

„ t
= -

∑H

∑qi

These are  the canonical  equations of  Hamilton.  The symplectic  structure  discussed

in  this  section  is  the  special  case  (RHT* RnL,   �(T* Rn))  in  the  synthetic  theory  of  Lie
objects  (A, L), where A is an R-algebra and L is a Lie algebra over R.

(d) The model theory of SDG. The theory above has been developed using intuitionis-

tic logic in a naïve set-theoretical context. There exists, however, a family of sophisti-

cated models of SDG, the topos models. In these structures, the notion of an element x
as  a  member  of  a  set  A  is  understood  in  a  different  manner.  One  may  speak  of  the

"snapshot" of an object at a certain stage, of an object varying over or parametrized by

a domain of variation (such as a time line), or regard the commutative rings �, �[e] =

�[x]/(x2)  and �  as  the  "stages of  definition" of a  geometric  object.  The well-adapted
models  are  then  the  topoi  in  which  the   smooth  manifolds  are  contained  as  a

subcategory.

Most of these models are of the form Sets�, where Sets is the category of sets and �
is the category varied over. In the SDG case � may be a small category of rings. As an

example  (from  Lavendhomme  (1996)),  we  may  let  �  be  the  category  �-alg f  of  �-

algebras of finite type (here � is the standard set of reals). The forgetful functor R, the

functor  that  disregards  the  structure  of  the  objects  in  �-alg f  and  knows  the  �-alg f -

homomorphisms only as  functions in  the set-theoretical  sense,  will  then represent  the

real  line  in the topos Sets
�-alg f .  In  fact,  R  is  representable  in  the topos,  and the same

holds for the object D of square-zeros. Also, the object R is isomorphic to the functor

A  Ø  (the  set  of  elements  of  A[X]).  This  points  to  the  limitations  of  the  model:  all

functions from R to R are polynomials.
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Other  models  will  have  to  be  considered  in  order  to  compare  the  classical  and  the

synthetic  theory  of  manifolds.  Such  are  the  topoi  �  (the  topos  with  C¶-Alg fg,  the

finitely  generated  C¶-algebras,  as  the  category  varied  over)  and  �  (the  topos  of

sheaves  on  the  dual  of  the  category  of  C¶-algebras  with  germ-determined  ideals).

Topoi are also useful for modelling other aspects of quantum physics, as demonstrated

by  the  work  of  Döring  and  Isham  (2007).  We  shall  study  topos  models  more  thor-

oughly in chapter 2.

1.4.2. Discrete Models of Space-time

At the other extreme from the smooth spaces of synthetic differential  geometry, we

find research programs that  attempt  to  build  physical  theory on a  discrete  conception

of  space-time.  These  may  either  take  the  idea  of  a  discrete  structure  as  fundamental

(Sorkin's causal sets) and try to embed discreteness into standard manifolds (
, g), or,

if  the  theory  is  formulated  within  standard  differential  geometry,  one  may attempt  to

prove the discreteness of the spectra of certain geometric entities, such as the area and

volume operators (loop quantum gravity).

(a)  The  causal  set  programme.  The  idea  of  a  discrete  space  is  already  present  in

Riemann's  famous  Habilitationsschrift  (see  Spivak  (1979)).  The  systematic  study  of

discrete structure as a serious candidate for a theory of physical  space-time was initi-

ated  by  Sorkin.  (We  shall  follow  the  review  in  Henson  (2006).)  As  befits  a  discrete

theory, the basic construction is strikingly simple. A causal set or causet is a partially

ordered set C with the order relation � ("to the past of") and satisfying the condition of

local finiteness:

(1.47)" x, z œ C : card 8y œ C x � y � z< < ¶.

The diagram in figure 1 represents a simple causet C1.  This diagram, known as the

"crown", cannot be embedded in Minkowski 1+1-dimensional space 
2 (the elements

2  and  5  are  not  causally  related  in  C1,  but  their  light  cones  intersect  in  
2).  Yet,

unfolding  the  diagram in  2+1-dimensional  Minkowski  space,  we  find  that  the  causet

can be embedded in 
3.

1

4 5

2

6

3

Figure 1.2. The "crown" causet.
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As it  is  expected  that  sums  of  causets,  properly  weighted,  should  be  approximated

by a Lorentzian manifold 
 near classical solutions, this observation places an impor-

tant  condition  on  the  available  manifolds.  But  in  order  to  have  useful  information

about the manifold, it is also necessary that the elements of C have a certain density r

in  
.  The  concept  of a  sprinkling,  a  random selection  of points  in  
,  is  introduced

for this  purpose.  For a  causet  C  embedded in  a  manifold  
,  we say that  the embed-

ding is faithful if C comes from a sprinkling of 
 with high probability. An unproven

intuition (the "Hauptvermutung") that a causet should not be faithfully embeddable in

"dissimilar" manifolds, guides this research.

Given a causet C, it may be possible to extract information about the corresponding

manifold  
.  Estimators  of  dimension,  distance  and  volume  have  been  constructed.

The  volume  V  is  approximated  by  the  number  of  elements  sprinkled  into  the  region,

and timelike distance (in four dimensions) can then be found from the formula (where

I (x, y) is the interval between timelike points x and y)

(1.48)V HIHx, yLL = p

24
d Hx, yL4.

In our description of physical  theories above, we introduced the strongly supported

condition of Lorentz invariance (subsection 1.2.4). Due to the random character of the

sprinkling process, no preferred directions can be identified in causal set structures, so

the theory is Lorentz invariant by default. This contrasts with theories where discrete-

ness is modelled using lattices.

In  the  last  subsection,  we  saw  that  the  microlinear  objects  of  synthetic  differential

geometry  replaced  the  standard  manifolds  as  mathematical  structures  suitable  for

constructions in dynamics. The picture in causal set  dynamics is less clear.  One early

idea,  inspired by the path integral  formulation in quantum physics,  was to extract  the

equations of motion by finding the stationary value of the sum over histories  Sexp(i-
(S(C)), where S(C) is the action of the causal set C. Apart from the problem of defining

an  appropriate  action  for  causal  sets,  there  is  no  obvious  bound  to  the  terms  of  the

sum. Should causal sets that are not embeddable in a manifold be included?

Another  approach  to  causal  set  dynamics  relies  on  the  intuitive  idea  of  growing

causal  sets  by  adding  future  or  spacelike  points  to  finite  causets.  The  probability  of

each such transition is then constrained by physical laws. These spaces, the models of

classical  sequential  growth,  are  still  not  fully  developed  for  the  quantum  case  (cf.

1.4.4 below).

It  should  be  noted  that  a  particle  in  the  causal  set  picture  is  naturally  modelled  as

moving  along  a  branch  in  the  set.  In  order  to  determine  the  velocity  of  the  particle,

points in the past of the particle must be examined, as the set of points that are space-

like  to  the  position  of  the  particle  at  a  time  are  unstructured  as  a  causal  subset,  and

carry no information. Postulating a principle of locality for casual sets, it then follows

that  the  velocity of  the  particle  can  only be  determined  with  a  degree  of  uncertainty.

This phenomenon is referred to as a swerving of the particle or diffusion.
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Causal sets have been used by Isham (2003) as a simple illustration of quantisation

on a category. As they are bon à penser, we will return to them in chapter 4.

(b)  Loop  quantum  gravity.  Causal  set  theory  is  still  incomplete  in  many  respects.

There  is,  however,  another  approach  to  the  structure  of  space  and  time that  does  not

take discreteness for granted, but instead tries to derive it within the theory. This is the

program of loop quantum gravity (LQG). We shall sketch an outline of the geometric

implications of LQG and return to the full theory in chapter 3.

The  radical  space-time  structures  of  LQG  are  embedded  in  a  standard  differential

manifold, and physics is implemented by representing the observables of the theory as

operators  on  a  Hilbert  space.  Therefore,  the  cumbersome  name  "modern  canonical

quantum general  relativity"  is  sometimes  used.  The  real  geometrical  structure  of  the

theory emerges because the operators of the theory are constructed in accordance with

the principle of diffeomorphism invariance.  This  is the mathematical  reflection of the

background  independence  of  general  relativity:  at  the  outset,  there  is  no  space-time

structure, flat or curved, on which the states of the theory may be defined.

The  operators  corresponding  to  the  geometric  properties  of  the  system  are  then

defined,  and  the  attempt  is  made  to  deduce  the  spectral  properties  of  the  geometric

entities. In the case of the volume operator V,  the spectrum is claimed to be discrete,

leading to the non-classical picture of a space composed of finite, indivisible "grains"

or "quanta of gravity".  The eigenvectors  |s\  of the geometric operator form a basis of

the corresponding Hilbert space �Diff , and the radical picture of space as a superposi-

tion  of  "spin  networks"  emerges,  with  the  nodes  representing  volume  grains  and  the

links representing the adjacent areas. This is the real quantum geometry which underl-

ies the arbitrary coordinatization of the manifold we started with.

The  brief  description  above  relies  on  the  canonical  formulation  of  LQG.  There

exists an alternative version, inspired by Feynman's path integral recipe. In this formal-

ism, the spin networks are allowed to grow into "histories", known as spinfoams,  and

an  analogue  of  the  path  integral  in  quantum  mechanics  is  found  by  summing  over

histories.

1.4.3. Noncommutative Geometry

The incompatibility of the pictures presented in the last two sections, the point as a

nucleus  with  an  aura  of  infinitesimal  magnitudes  (synthetic  differential  geometry)  or

as  an  isolated node  in  a  discrete  network  tagged  by a  probability  distribution  (causal

sets), may lead one to doubt the coherence and usefulness of the notion of space-time

as a point-filled structure. As a final step, therefore, we should examine the "pointless"

spaces  investigated  in  noncommutative  geometry.  (The  main  reference  in  this  area  is

Connes (1994). A comprehensive introduction is found in Gracía-Bondia, Várilly and

Figueroa (2001).)

The  starting  point  of  the  theory  is  the  important  correspondence  between  algebras

and spaces stated in the following theorem:
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First theorem of Gelfand and Naimark. Every commutative C*-algebra A with a
unit is isomorphic to C(X) for some compact Hausdorff space X.

The  algebraic  operations  in  C(X)  are  pointwise,  and  involution  is  given  as  f*(x)  =

f HxL.  The  theorem is  proved  by  identifying  the  Hausdorff  space  X  with  the  Gelfand

spectrum D(A) of characters w  of the C*-algebra A. The points x of X are thus recov-

ered as algebra homomorphisms w : A Ø �.

One  may  now  translate  other  geometric  concepts  into  their  algebraic  counterparts,

creating a  series of correspondences between the two realms. In this way, it is shown

that the group of automorphisms of a commutative C*-algebra A is isomorphic to the

group of homeomorphisms of the space D(A). Also, there is a duality between probabil-

ity measures m defined on a metrizable space X and positive normalized linear function-

als r  on A.  The group structure of a compact topological group is represented as a *-

homomorphism  f  :  A  Ø  A≈A of the algebra A.  The  table  of  relationships  can  be

extended to include a wide range of examples from topology and differential geometry.

The  key  idea  of  noncommutative  geometry  is  to  generalize  the  correspondences

observed in the case of a commutative C*-algebra to an arbitrary C*-algebra A. By the

second  theorem  of  Gelfand  and  Naimark,  A  is  isomorphic  to  a  subalgebra  of  the

bounded operators B(H) that is norm-closed and involution-closed. These algebras are

in general associated with quantum spaces that may not have a standard topological or

manifold structure.  The space of leaves of foliation of a smooth manifold exemplifies

this.  Another beautiful  example is  the space of equivalence classes of Penrose tilings

(Connes (1994)). 

Standard  symplectic  structures  were  the  starting  point  for  the  quantisation  scheme

described in section 1.3. Then, in subsection 1.4.1, we noted that the basics of classi-

cal  symplectic  mechanics  were  readily  reproduced  in  the  framework  of  synthetic

differential  geometry.  The  difficulties  of  doing  canonical  quantum  mechanics  in  the

framework of synthetic differential geometry is an area yet to be opened for research.

This  contrasts  with  the close symbiosis  between quantum mechanical  concepts  and

the constructions of noncommutative geometry. Noncommutative geometry offers us a

quantum counterpart  to  the  classical  phase  spaces  of  symplectic  geometry,  the  quan-

tum space  (or  noncommtative  algebra)  A[n]  with  the  Fedosov  product  ø.  This  is  the

procedure of deformation quantisation mentioned briefly in 1.3.5. There is thus a deep

connection  between  the  programme  of  noncommutative  geometry  and  quantum

mechanical theory.
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Recently,  Banaschewski and Mulvey (2006) have proven that  the result  of Gelfand

and  Naimark  can  be  extended  to  a  duality  between  the  category of  commutative  C*-

algebras and the category of certain locales in a Grothendieck topos (the constructive
Gelfand  duality  theorem).  We  shall  look  into  the  construction  of  the  state  space  of

Heunen, Landsman and Spitters (2008) with the help of Gelfand duality when we turn

to the topos models of quantum physics in the next chapter. Because of the importance

of  topoi  as  models  for  synthetic  differential  geometry,  we  shall  also  consider  the

implications of constructive Gelfand duality in this context.

Likewise  we  may  point  out  some  common  ground  between  the  study  of  discrete

structures  and  noncommutative  geomtry.  A causet  C corresponds  to  a  noncoummata-

tive  C*-algebra of  operator  valued functions  (see  Criscuolo  and Waelbroeck  (1998)).

We also suggest that there may be a connection via the concept of diffusion mentioned

above.

1.5. Quantum Gravity

In  subsection  1.2.6,  we  briefly  explored  the  possibility  of  doing  quantum  field

theory  (QFT)  on  a  fixed,  non-dynamical  space-time  background.  We  interrupted  our

discussion of physical theory at the threshold of quantum gravity, the attempt to build

a consistent theory of quantum gravitational fields. From here, the road branches off in

several  directions.  There  seems  to  be  no  general  agreement  on  the  classification  of

these  programs,  but  two  main  lines  of  research  are  distinguished  by  most  observers

(see  e.g.  Kiefer  (2004)  and  Rovelli  (2003),  app.  C).  These  are  the  covariant  and  the

canonical approaches to quantum gravity (QG).

1.5.1. The Covariant Approach

Like QFT on a curved space-time, this program keeps a non-dynamical background,

and  introduces  gravitational  waves  as  perturbations  of  the  space-time  metric  on  the

manifold.  To  this  extent,  it  represents  the  least  radical  departure  from  the  physical

theory presented in section 1.2.  It  then tries  to quantise  the linear part  of the gravita-

tional  field,  preserving  Poincaré  invariance  in  the  process  (cf.  subsection  1.2.4).  For

this reason, it is known as the covariant apporach.

We shall begin, therefore, by assuming that the metric g on our model of space-time,

the  differentiable  manifold  
,  can  be  divided  into  two  components,  the  Minkowski

metric h and a small perturbation f:

(1.49)gmn = hmn + fmn.

Redefining  the  perturbation  field  f  as  f mn = fmn - 1 ê 2 hmn f r
r,  Einstein's  equations

can be written as the wave equation

(1.50)Ñ f mn= -16 pGT mn.
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The energy-momentum tensor T acts as a source of the field f. The solutions for the

vacuum are given as plane waves with the polarization tensor emn:

(1.51)fmn HxL= emn eikx + He*Lmn e-ikx.

Under natural  assumptions,  the plane wave has two independent  polarization states

transverse  to  the  direction  of  propagation.  Let  us  consider  the  states  of  right  and  left

circular  polarization,  eR  and  eL.  For  a  rotation  with  an  angle  q,  the  plane  wave  fmn

transforms as

(1.52)fmn Ø e≤i2q fmn.

We  say  that  fmn  has  the  helicity  ±2.  If  this  theory  is  developed  into  a  full  quantum

field theory on flat space-time in the manner explained in subsection 1.2.6, we are lead

back to  non-quantised general  relativity (Kiefer (2004),  p.  27f).  There we also hinted

at  the  approximate  nature  of  the  particle  interpretation  of  the  theory.  This  point  may

now be clarified. We fix the Minkowski metric h and consider the unitary transforma-

tions  U(L,  0)  on  the  states  Y  of  the  Hilbert  space  �(S),  where  (L,  a)  is  a  Poincaré

transformation  with  rotation  q  on  
  (see  1.2.4).  As  usual,  one-particle  states  are

introduced, and the Lorentz transformation for a massless particle of helicity 2 is given

by (Weinberg (1995), p. 72):

(1.53)UHLLYp,s = NexpHi2qHL, pLLYp,s.

This particle, definable in the context of equation (1.49), is called the graviton. The

step to quantum field theory (cf. 1.2.5) can now be taken by quantising the solution in

(1.50). The result is

(1.54)fmn HxL = ‚
s

·
„3 k

2 k

AaHk, sL emnHk, sL eikx +a†Hk, sL e*mnHk, sL e-ikxE.

As  noted in  subsection 1.2.5,  the  perturbation  theory of  this  formalism faces major

obstacles.  When  we  calculate  terms  corresponding  to  the  more  elaborate  Feynman

diagrams associated with a scattering situation, divergences show up. Analysis shows

that the degree of divergence is tied to  the dimensionality D  of the coupling constant

for the interaction in question. In general, D is found from

(1.55)
D = 4 - d -‚

f

n f Is f + 1M.

Here, d  is the number of derivatives of the interaction formula, n f  is the number of

fields  of  type  f,  and  s f  is  a  number  dependent  on  the  particle  type  Is f  = 0  for  gravi-

tons). When D  < 0, as in the case of the self-interaction Gf(∑f)(∑f)  of the gravitational

field,  the  calculation  diverges,  and  the  theory  is  therefore  non-renormalizable.  In

subection 1.5.3,  we shall  see  how work along these lines culminated in  the theory of

strings.
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1.5.2. The Canonical Approach

Like  the  covariant  approach,  the  canonical  approach  is  an  attempt  to  quantise  a

classical theory. Unlike the covariant line of research, it  does not preserve covariance

along the way. The canonical approach quantises a Hamiltonian system of constraints

for general relativity (GR). The abstract scheme for quantising such systems was given

in Dirac's Lectures on Quantum Mechanics (Dirac (1964)). 

In non-relativistic quantum theory, time  has a particular status. It is not an operator

of its own, but remains in the classical background during the quantisation of the other

parameters. The time-dependent Schrödinger equation (cf. 1.9) is thus manifestly non-

relativistic. In quantum field theory, the symmetries of special relativity are dealt with

by demanding that the Poincaré group has a unitary representation. Written as a condi-

tion on  the Hamiltonian density  �,  this  amounts  to  a  demand for  microcausality  (for

space-time points x, x' with spacelike separation; see Weinberg (1995), p. 191):

(1.56)@�HxL, �Hx 'LD = 0.

This  requirement,  along with  the transformation properties  of the scalar  �,  implies

the Lorentz-invariance of the S-matrix,  the main tool for describing scattering experi-

ments in quantum physics.

The absolute character of time in this conception does not accord very well with the

dynamical  notion  of  time  known  from GR.  One  may  try  to  hide  the  absoluteness  of

time by treating it as a dynamical variable. Formally, this can be done by transforming

absolute  time  t  into  a  formal  parameter  t(t).  In  the  simple  case  of  a  one-particle

system, the Lagrangian L(q, dq/dt) can then be rewritten as a  Lagrangian L(q, dq/dt,

dt/dt)  that  is  homogeneous  in  the  velocities.  For  the  new  dynamical  variable  t,  we

have the canonical momentum (using the Legendre transformation)

(1.57)pt =
∑L

∑ t
° = -H.

H is the Hamiltonian of L, not L. Defining the total Hamiltonian as HT = H + pt, we

have the constraint

(1.58)HT º 0.

The  notion  of  weak  equality  ('º'  in  the  equation  above)  was  introduced  by  Dirac

(1964).  We  are  only  allowed  to  use  the  dependency  of  the  dynamical  variables

expressed  by  (1.57)  after  working  out  the  Poisson  brackets  under  consideration.

Fundamentally, this is due to the non-uniqueness of the Hamiltonian for a system with

dependent variables.
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Turning  to  general  relativity,  the  steps  to  quantum  gravity  can  be  outlined  in  the

following  manner  (cf.  Kiefer  (2004),  p.  118ff).  Firstly,  we  identify  the  constraints

corresponding to  (1.57)  for  GR. Secondly,  using Dirac's  abstract  scheme of quantisa-

tion, we switch from Poisson brackets for the dynamical variables of GR to commuta-

tor brackets for the associated operators (cf. 1.13-1.14 above). Thirdly, the representa-

tion space for the operators is found. Commonly, this will be a space of functionals Y

on the space of 3-metrics. Finally, the GR constraints are quantised as

(1.59)�¦ Y = 0 Ï�a Y = 0.

The first of these constraints is known as the Wheeler-De Witt equation. Only states

for which (1.58) holds, qualify as physical. Later, in section 3.1, we shall see how the

quantisation  of  the  constraints  and  the  restriction  to  physical  space  is  carried  out  in

one  version  of  the  canonical  approach,  loop  quantum gravity  (cf.  subsection  1.4.2(b)

for the space-time interpretation associated with this program).

1.5.3. Quantum Gravity in String Theory

The  covariant  and  the  canonical  camps  start  with  a  classical  theory  of  gravity  and

try  to  apply  quantisation  rules.  String  theory,  introduced  in  the  1960s  as  an  attempt

within  covariant  physics  to  explain  the  proliferation  of  strongly  interacting  particles,

developed into something different. The aims of string theory are more comprehensive

than the approaches we have considered so far. String theory is, or should be, a unified

theory of all physical interactions, among them gravity. In it, quantum gravity appears

as a consequence of a larger quantum framework. Below, we give only a considerably

simplified review of this deduction. More details are found in the standard accounts of

Green,  Schwarz,  Witten  (1987)  and  Polchinski  (1998).  (Another,  very  accessible

account of the fundamentals of string theory is found in Zwiebach (2004).)

The  relativistic  string  sweeps  out  a  two-dimensional  world-sheet  in  Minkowski

space.  Its  surface  X m(t,  s)  is  described  by  two  parameters.  The  equations  of  motion

for the string is  obtained by defining the Nambu-Goto action SNG  as  (where  M  is  the

world-sheet and hab is the induced metric)

(1.60)SNG = -
1

2 pa '
‡

M
„t „sH-det habL1ê2.

The Nambu-Goto action is Poincaré invariant. An alternative version, the Polyakov

action, quickly gives us a useful wave equation for the case of an open string:

(1.61)

∑

∑t2
-

∑

∑s2
X mHt, sL = 0.

The solution for a string with freely moving endpoints (with xm  and pm  the position

and momentum of the centre of mass) is

(1.62)X mHt, sL = xm + 2 a ' pm + i 2 a ' ‚
n∫0

an
m

n
‰-int cosns.
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Instead  of  using  the  commutation  relations  for  X m  and  the  conjugate  canonical

momentum  Pm,  we  quantise  xm
,  pm  and  the  discrete  modes  an

m
.  For  the  case  of  the

closed string, we must also distinguish between rightmoving modes an
m
 and leftmoving

modes an
m. Quantising the Poisson brackets for these variables, we have the commuta-

tor brackets for the associated operators, e.g.

(1.63)@an
m, an

nD = mdm,-n h
mn.

The Fock space (cf. 1.2.4) may now be built from a ground state with the help of the

annihilation and creation operators an
m
 and an

m†
.  For the closed string, the first excited

state  is  massless  with  three  irreducible  parts.  One  of  these,  the  symmetric  tensor

representation,  is  a  spin-2  particle  in  four dimensions.  In  subsection 1.5.1,  we identi-

fied  the  massless  spin-2  particle  as  the  graviton,  the  particle  of  the  gravitational

interaction.

 It would seem that the richness of structure in string theory allows the development

of  a  quantum gravity  formalism.  Yet  we  are  in  a  strange  landscape.  The  theory  only

lives in 26-dimensional space-time, and there are no half-spin particles.  Supersymme-
try,  the  pairing  of  bosons  with  corresponding  fermions,  is  therefore  added  to  string

theory (cf. Dine (2007)). This is the theory of superstrings.

1.5.4. Other Approaches to Quantum Gravity

Among the other current approaches to  quantum gravity we mention the sum-over-
histories approach and lattice quantum gravity (of which Regge calculus and dynami-
cal  triangulations  are  varieties).  There  are  also  the  lesser  schools  of  QG  associated

with  the non-commutative  program, the causal  set  programme of Sorkin,  and Isham's

topos ideas.

In subsection 1.4.2(a) we looked at the discrete space of causal sets. The properties

of a  causal  set  that  are  relevant  for  the  reconstruction  of  space-time  geometry  are  its

order  and  number.  It  is  known that  the order  relation by itself suffices  if we  want  to

recover  a  conformal  metric  on  four-dimensional  Minkowski  space-time  
4.  The

conformal  factor,  or  the  volume  element  -g dnx,  is  then  found  by  counting  the

finitely many causet elements in the region. As an example, a light ray of 
4  is given

as  the  maximal  chain  such  that  an  interval  between  members  of  the  chain  is  also  a

chain.
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This takes care of the kinematics of the theory. Let us now try to state the implica-

tions for a discrete quantum gravity, or quantum causet dynamics  (cf. Sorkin (2003)).

In the sequential growth models (cf. 1.4.2), the causets are seen as developing in time

under a law of growth, an assignment of probability to the birth of a new element. The

assignments are limited by two principles, Bell  causality  (the exclusion of superlumi-

nal  influence)  and  a  particular  brand  of  covariance,  discrete  general  covariance  (the

probability  of  reaching  a  given  causet  is  independent  of  the  order  of  birth  of  its  ele-

ments). With these restrictions, Rideout and Sorkin (1999) have given formulae for the

transition probability C Ø C', where C' is the birth of a new element. In chapter 4, we

will  return  to  the  discrete  approaches  of  the  causal  set  program  in  the  context  of

category quantisation.

We will  be guided in our search by recent ideas on the connections between quan-

tum physics, category theory and the theory of topoi. Indeed, the relationship between

these fields is the main subject of this dissertation.
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C  H  A  P  T  E  R    T  W  O

Topoi for Quantum Physics

In chapter 1, the description of a physical system was organized around the concepts

"state",  "observable"  and  "value".  In  particular,  we  had  a  glimpse  at  the  ordinary

model  for  this  triple  in  quantum  mechanics.  Let  us  consider  briefly  the  setup  of  a

typical  experimental  situation.  The  Copenhagen  interpretation  of  quantum mechanics

presents us with the following picture:

SYSTEM OBSERVER

State y JMeasuring apparatusesL
Observables, O1, O2, ...

Values r1, r2, ...

Figure 2.1. Physical descriptions.

The  Kochen-Specker  theorem in  quantum mechanics  tells  us  that  we  may not  ass-

ume that the real values "exist" on the left-hand side above. The physically meaningful

real value is not an entity on the system side, it arises on the side of the observer as the

result of a measurement. This picture is conceptually troublesome: if everything in the

universe, the observer included, is moved over to the system side, there are no physi-

cally meaningful quantities left either.
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Let  this  problem  act  as  a  first  motivation  for  the  models  of  topos  physics  to  be

presented in this chapter.  They are meant to remedy this defect,  the paradox of quan-

tum  cosmology.  In  the  foundational  approach  of  Chris  Isham  and  Andreas  Döring,

physical  magnitudes  have  values  independent  of  observation.  We  shall  see  that  this

value  does  not  have  to  be  a  real  number.  In  section  2.1,  we  review the  backgrouond

from category theory and topos theory which is necessary in order to understand these

models. Then, in section 2.2, we turn to the latest version of the topos models, devel-

oped  by  Isham and  Döring  in  a  series  of  articles  in  2007.  A summary  of  the  closely

related work of Heunen, Landsman and Spitters (and several others) is also given.

2.1. A Short Introduction to Topoi

2.1.1. Some Basic Category Theory

The  standard  introduction  to  category  theory  is  Mac  Lane  (1997).  We  summarize

the  basic  definitions  and  results  that  will  be  needed  in  the  sequel.  A category  C is  a

collection  Ob(C)  of  objects  A,  A',...,  X,...  and  a  collection  of  morphisms  f,  g,...   The

morphisms (arrows) are assigned  objects dom(f ) = X and cod(f ) = Y. We write this as

f  :  X Ø  Y. From f  :  X Ø  Y and g :  Y Ø  Z  we form the composition g  ë  f  :  X  Ø  Z,  for

which  the  associative  law h  ë  (g  ë  f  )  =  (h  ë  g)  ë  f  holds.  For  any X,  there  is  also  an

identity  arrow  1X  fulfilling  the  identity  laws  f  ë  1X  =  f  and  1Y  ë  g  =   g.  We  write

Hom(A, A') for the set of arrows f with dom(f ) = A and cod(f ) = A. Hom(C) is the total

set  of arrows in C.  For a  category C,  the opposite category  Cop  has the same objects

and  arrows  as  C,  but  dom(f  )  and  cod(f  )  are  interchanged  for  all  f,  and  g  ë  f   in  C

equals f ë g in Cop. Sets is the category of sets.

A terminal object 1 of a category C is an object such that for any object X there is a

unique arrow X Ø A. (The terminal objects of Sets are the singleton sets {*}.)

The limit C for a diagram D in the category C is a cone above the diagram such that

any other cone above D factorizes through C (C has the universal property).

An equalizer of a pair f, g : C Ø D is a limit for the diagram

Cö
g

f

D.

Explicitly,  an  equalizer  is  an  arrow  such  that  the  diagram  below  commutes  for  a

unique k:

B Ø
e

C
ö

g

f

D

A
k

h
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Vi may also say that e is a pullback. This is a special case of a more general construc-

tion. We say that the limit of the diagram Bö
f

Dô
g

C is a pullback.

A product A × B is a limit for the diagram

A                    B.
We have dual constructions for cones under  a  diagram. These are are called colim-

its, coequalizers, pushouts and coproducts.

A morphism f is monic if, for any pair g and h, f ë g = f ë h implies g = h. f is epic if,

for any pair g and h,  g ë f  = h ë  f implies g  = h. Also, we write  A > B  (the objects A
and B are isomorphic) if there is an invertible arrow f : A Ø  B, that is, there exists an

arrow g such that  f ë g = 1B  and g ë f = 1A. A subobject of an object C in a category C

is a monic f : A >Ø C. We do not distinguish between subobjects  f : A >Ø C and  g : B
>Ø C if A > B.

A functor  between categories C  and D  is an operator which assigns an object F(C)

in D to each object C in C, and an arrow F(f) in D to each arrow f in C, such that F(g ë

f) = F(g) ë F(f) and F(1X ) = 1F HX L. We write F : C Ø D. If F and G are two functors, a

natural  transformation  a  from  F  to  G  is  an  operation  that  associates  an  arrow  aA  :

F(A) Ø G(A) with each A in C, such that the following diagram commutes for all f in

C:

FHAL

FHA'L

GHAL

GHA'L

GH f LFH f L

aA

aA'

Figure 2.2. A natural transformation.

The  composition  b  ë  a  of  two  natural  transformations  a  :  F  Ø  G and   b  :  G  Ø  H

defined by (b ë aLC  = bGHCL ë aC  then allows us to form the functor category D C, with

the functors F  :  C Ø  D  as objects and the natural  transformations as morphisms. The

case  SetsCop

 is  of  particular  interest  below.  An  object  P  (a  contravariant  set-valued

functor) in this category is called a presheaf on C. A global element of a presheaf P in

SetsCop

 is an arrow s : 1 Ø P, where 1 is the terminal object in SetsCop

defined by 1(A)

= {*} for all A œ C and 1(f ) is the map 1(f )(*) = *. For a given presheaf P, an arrow f

: D Ø C in C, and x œ P(C), we shall often use the notation x · f ª P(f )(x) ("the restric-

tion of x along f ").
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2.1.2. Elements of the Theory of Topoi

We  now  turn  to  the  characteristics  of  topoi.  (Useful  references  for  this  subsection

are Mac Lane and Moerdijk (1992), Goldblatt (1984) and Bell (1988).) Consider first

the following list of categories:

List 1. Topoi

Category Collection of objects Collection of morphisms

Sets all sets the set - theoretical functions

BG (or G-Sets) representations (X, m), (Y, n) ... of 

the group G

the equivariant functions f between

representations ( f(x·g) = f(x)·g)·g)

SetsCop

presheaves P over a given category 

C (the functors from Cop to Sets)

the natural transformations between

functors

Sh(X) sheaves F over a topological space 

X (presheaves over �(X) which can 

be "glued together")

the natural transformations between

functors

These categories have something in common: we may regard them as (generalized)
universes  of  sets.  Note  first  that  they  all  have  a  terminal  object.  For  example,  all

singleton  sets  {*}  in  Sets  are  terminal,  and  they  are  all  isomorphic.  In  SetsCop

,  the

terminal object 1 ( a presheaf) is defined by 1(C) = {*} and 1(f )(*) = *. 

We may also take products. For Sets, this is well-known: the product A  × B of two

sets  A  and  B  is  the  set  of  ordered  pairs  (a,  b),  with  a  œ  A  and  b  œ  B.  For  BG,  the

product (X, m) × (Y, n) will be the representation (X × Y, m × n). In the category SetsCop

,

the product F × G of two presheaves F and G must be a presheaf too (i.e. a contravari-

ant functor over C). We construct F × G pointwise (let A, B be objects in C, f : A Ø B

an arrow in C):

(F × G)(A) = F(A) × G(A) (defined because Sets allows products),

(F × G)(f )(x, y) =  Ff (x) × Gf (y) (with x œ F(B) and y œ G(B)).

(In  the  last  line,  (F  ×  G)(f)  is  a  set-theoretical  function  from  (F  ×  G)(B)  to  (F  ×

G)(A). In order to show that F × G is a product, we must find natural transformations

p1  og  p2  as  in  the  figure  below,  and  if  H is  a  cone  above  F  and  G,  there  must  be  a

unique natural transformation r (the dotted line):

H

GF
p1 p2

r

F µ G

Figure 2.3. A product of presheaves.
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This is easy. We let p1(A) :  (F × G)(A) = F(A) × G(A) Ø F(A) be the projection on

the  first  component,  and  correspondingly  for  p2.  The  procedure  illustrates  a  general

trait of topoi of functors (like SetsCop

): limits are taken pointwise.

We now turn to another, more uncommon property of these categories. In Sets there

is a correspondence between

the subsets S Õ X of a set X, and

the characteristic functions cS defined on X by cS = 0 for x œ S, cS = 1 for x – S.
Category-theoretically, this may be expressed by the following diagram:

W

1

cS
X

S

Figure 2.4. The subobject classifier.

We  introduce  the  notation  W  for  the  set  {0,1},  which  is  called  the  truth  object  in

Sets. The arrow from S to X is set inclusion (hence, S is a subobject of X in Sets), and

1 is the terminal object (a singleton set). We say that the arrow 1 Ø W is the subobject

classifier in Sets. In general, a category C with all finite limits has a subobject classi-
fier, a monic true : 1 Ø W, if all subobjects are unique pullbacks of true.

It turns out that this construction is available in the other categories in the list above.

Let us concentrate on the case SetsCop

. The truth object W must be a functor from Cop

to Sets. A sieve on the object C in the category C is a set S of arrows with codomain C
such  that  f  œ  S  implies  that  f  ë  h  œ  S  for  all  h  such  that  f  ë  h  is  defined.  S  is

"downwards  closed".  The  maximal  sieve  on  C,  t(C),  consists  of  all  arrows  with  C as

their codomain. The truth object W of SetsCop

 is defined as follows:

W(C) = {S | S is a sieve on C},

W(g) : W(C) Ø W(C') is given by S # S · g = {h | g ë h œ S} (for g : C' Ø C).

The subobject classifier true : 1 Ø W is defined by

trueC : 1C Ø WC given by * # t(C).
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It  is  clear  that  true  is  a  natural  transformation.  Now  W  is  a  subobject  classifier  in

SetsCop

if  subobjects  Q  of  functors  P  in  SetsCop

 are  unique  pullbacks  of  true.  This  is

indeed  the  case.  Let  us  outline  the  mode  of  reasoning  by  proving  the  pullback  prop-

erty.  For all  arrows f  :  A  Ø  C  in  C,  there  is  a  function P(f  )  :  P(C)  Ø  P(A).  Let  x  œ

P(C) be given. Then either x · f œ Q(A) or not. (We use the notation x · f introduced in

the preceding subsection). Define fC(x) to be the set of f for which x · f œ Q(A). Then

fC(x)  is  a  sieve,  and  f  is  a  natural  transformation  from P  to  W.  Suppose  x  œ  Q(C).

Then  x  ·  f  œ  Q(A)  for  all  f  with  codomain  C  (because  Q  is  a  subobject,  and  hence  a

subfunctor of P), so fC(x) = t(C), the maximal sieve. Also, if x · f œ Q(A) for all f with

codomain C, then x œ Q(C) (Let A = C, f = 1C.) f will be the characteristic function of

Q. We have shown that the diagram below commutes:

WC = tHCL

1C = 8 * <QHCL

PHCL
fC

trueC

Figure 2.5. The pullback property of true.

For presheaves, pointwise pullback implies full pullback, so we are through. Unique-

ness may also be proven, so W is a subobject classifier.

A final  important property is  exponentiation.  Recall that sets Z  and X  in Sets  allow

us to form a set ZX  of all functions f : X Ø Z. Phrased differently, there is a bijection

Y µ X Ø Z

Y Ø ZX .

We  say  that  the  functor  –  ×  X  is  left  adjoint  to  the  functor  H–LX  (which  is  right
adjoint). The categories in our list all have this property.
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We  may  now  define  an  elementary  topos  as  a  category  with  a  terminal  object,

pullbacks, exponentiation and a subobject classifier. The categories above are topoi in

this  sense.  Usually,  the  qualification  "elementary"  is  omitted.  An  important  group  of

examples is provided by the so-called Grothendieck topoi, which generalize the topos

Sh(X) of sheaves on a topological space X. Here, we simply note that Sh(X) is a subcat-

egory of Sets� HXLop

, where �(X) is the collection of open sets in X, partially ordered by

inclusion. The objects F in Sh(X) are those presheaves for which, given any covering

‹Vi  of the open set U such that fi  œ F(Vi) and f jœ F(V j) coincide on the intersection

of Vi  and  V j,  there  is  an  f  œ  F(U)  which  restricts  to  fi  and  f j.  (Thus,  the  continuous

functions on U form a sheaf, whereas the bounded functions do not.)

2.1.3. The Internal Language of a Topos

In  this  section,  we  shall  prove  a  theorem in  topos  theory  which  will  be  needed  in

subsection  2.2.2.  (Also,  def.  2.1  will  surface  again  in  the  final  section  of  chapter  4.)

Basically,  there  are  two ways  of  deriving results  for  topoi.  Mostly,  we  shall  treat  the

sets  of  objects  and  arrows  of  our  category  as  ordinary  set-theoretical  constructions,

and our reasoning shall be classically valid. When we follow this path, we say that we

choose an external viewpoint on the topos. Alternatively, we can collect the properties

of  the  topos  under  consideration  in  a  list  of  axioms,  including  both  rules  that  hold

generally for topoi and assertions which are endemic to the set-theoretical substrate of

the topos. By picking a suitable first-order language for this task, we then explore the

topos  from the  internal  viewpoint.  In  a  further  refinement  of  this  approach,  we  now

note that a topos �  is associated with a certain typed language, the Mitchell-Bénabou
language of the topos.  We proceed to  define this  language,  along with  its  interpreta-

tion in �. Each term in the language is interpreted as an arrow in the topos.

Definition 2.1 (Cf. Mac Lane and Moerdijk (1992), p. 298f, and Bell (1988), p. 92.)

The  terms  of  the  Mitchell-Bénabou  language  �  (or  �(�))  of  the  topos  �,  and  their
interpretations, are given inductively by the following conditions:

(a) Each object X in � is a type in �, and each variable x of type X is interpreted as
the identity arrow on X, i : X Ø X.

(b) If s is a term of type X and t is a term of type Y, then Xs, t\ is a term of type X ×
Y. If s and t are interpreted as arrows s : U1 × ··· × Un Ø X and t : V1 × ··· × Vn Ø Y,

then Xs, t\ is interpreted as the arrow Xsp, tq\ : W Ø X × Y, where W is a product of
the types corresponding to the variables in Xs, t\ (each variable counted only once), p
and q are the projections p : W Ø U1 × ··· × Un and q : W Ø  V1 × ··· × Vn, and X , \ is
the product map in a topos.
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(c)  If  s  and  t  are  terms  of  type  X,  then  s  =  t  is  a  term  of  type  W  (the  subobject
classifier). If s and t are interpreted as in (b), then s = t is interpreted as the arrow

(s = t) : W
Xsp, tq\

X µ X Ø
dX

W. Here, W, p and q are given as in (b), and dX  is the
characteristic map of the diagonal D : X Ø X × X (because � is a topos, charcteristic
maps always exist).

(d) If s is a term of type X, then, for each arrow f : X Ø Y in  �, there is a term f ë s
of  type  Y.  If  s  is  interpreted  as  in  (b),  then  f  ë  s  is  interpreted  as  the  arrow f  ë  s  :

U Ø
s

X Ø
f

Y . Here, ë is composition in the category �.
(e) If s is a term of type X and q is a term of type Y X , then q(s) is a term of type Y.

If s is interpreted as in (b) and q is interpreted as q : V1  × ··· × Vn  Ø Y X , then q(s) is

interpreted as the arrow q(s) : W
Xqq, sp\

Y X µ X Ø
e

Y, where W, p and q are as in
(b), and e is the evaluation map in the topos.

(f) If s is a term of type X and t is a term of type WX , then s œ t is a term of type W.

If s is interpreted as in (b) and t is interpreted as t : V1 × ··· × Vn Ø WX , then s œ t is

interpreted  as  the  arrow  s  œ  t  :  W
Xsp, tq\

X µ WX Ø
e
W,  with  W,  p,  q  and  e  as

above.
(g) If x is a variable of type X and s is a term of type Z, then lxs is a term of type

ZX . If x is interpreted as in (a) and s : X × U1  × ··· × Un  Ø Z (that is, x occurs in s),

then lxs is interpreted as the transpose of s, lxs : U1  × ··· × Un  Ø ZX  (because � is

a topos, the transpose can always be found). If x does not occur in s, interpreted as s
:  U1  ×  ···  ×  Un  Ø  Z,  then  lxs  is  interpreted  as  the  arrow  lxs  :

U1 µ ÿ ÿ ÿ µ Un Ø
s

Z Ø
i

ZX , where the monomorphism i is the image of Z in ZX .

(The last clause allows the formation of l-terms from variable-free terms and differs

a  little  from the  standard  definition.)  Terms  of  type  W  will  be  called  formulae.  Now

recall that, in a general topos, we always have morphisms corresponding to the logical

operations  fi,  fl,  fl  and  ¬.  Let  us  consider  fl  as  an  example.  In  lemma 3.1,  we  noted

that the subobjects of an object in a topos are a Heyting algebra. For subobjects X and

Y of an object A, we form the meet-subobject X › Y. The characteristic function of X ›
Y  may  then  be  factored  as  cX › Y  :  A

XcX , cY \
W µ W Ø W.  The  last  arrow  will  be  the

internal meet, fl : W × W Ø W. By using clause (d) above, the standard connectives are

added to �.
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In a similar manner, quantifiers have been present in the topos � from the outset. By

definition, each object A in a topos has a power object PA. In fact, it can be shown that

P is a contravariant functor in �. For any arrow f : X Ø 1, the arrow P(f) : P(1) Ø P(X)

then belongs to �. As usual in a topos, PA is identified with the exponential WA, so we

have P(f) : W Ø WX . (For � = Sets, this is the operation which picks the characteristic

function  of  X  considered  as  a  subset  of  itself.)  It  is  well-known  (Mac  Lane  and

Moerdijk (1992), p. 206, 209) that P(f) has a left adjoint $ f  : P(X) Ø P(1) and a right

adjoint  " f  :  P(X)  Ø  P(1).   (For  �  =  Sets,  $ f  maps  non-empty  subsets  of  X  to  §,

whereas " f  maps X to § and all proper subsets of X to ¦.) Again invoking clause (d), $

x f := $ f  ë  lxf and "x f := " f  ë  lxf are formulae of �.

Finally,  the  notation  {x  |  f(x)}  is  available  in  �.  For  f(x)  :  X  Ø  W  a  formula,  we

simply interpret {x|f(x)} as the subobject of X with f(x) as its "characteristic function".

We shall  say that  the formula fHx1,  ...,  xn)  :  U1  × ···  ×  Un  Ø  W  is  valid  in  �  when

fHx1, ..., xn) factors through § : 1 Ø W, the truth arrow. For f : 1 Ø W variable-free, we

say that f is true in �. Using the interpretation above, we may now prove results about

the validity and truth of formulae in �. This task may be considerably simplified if we

formulate  our  proofs  by  means  of  the  forcing  relation  of  Kripke-Joyal  semantics.

Recall that the familiar notion of an element a  of a set s has the following equivalent

in a topos �: the arrow a : U Ø X is a generalized element of X defined at stage U. 

Definition 2.2 (Mac Lane and Moerdijk (1992), p. 303f.)   The formula f(x) : X Ø W

is forced to hold for the generalized element a : U Ø X if and only if a factors through
the subobject {x | f(x)} of X. We say that f(a) is forced at stage U (or U forces f(a))

and write
U |¢ f(a).

One  notable  trait  of  '|¢'  above  is  that  clauses  similar  to  the  standard  definition  of  a

forcing relation hold as  theorems  about  �.  E.g.  it  can be shown that  U |¢  $y  f(a,  y))

(for y a variable of type Y) if and only if there exist an epimorphism p :  V Ø U and a

generalized element b : V Ø  Y such that V |¢ f(ap, b). Validity of a formula f can be

expressed as the demand that 1 |¢ f. For a topos of presheaves, SetsCop

 (considered as a

category  of  sheaves  with  the  trivial  Grothendieck  topology),  these  clauses  simplify

further.  In  this  case,  they are  identical  with  the rules  of Kripke semantics  (Mac Lane

and Moerdijk (1992),  p.  317f).  Thus,  for formulae f(x) and y(x),  x  a  variable of type

X, C œ C and a œ X(C), we have

(i) C |¢ f(a) fl y(a) iff C |¢ f(a) and C |¢ y(a);

(ii) C |¢ f(a) fi y(a) iff C |¢ f(a) or C |¢ y(a);

(iii) C |¢ f(a) fl y(a) iff for all f : D Ø C in C, D |¢ f(af ) implies D |¢ y(af ) (where

af = X(f )(a) is the restriction of a along f in the presheaf X);

(iv) C |¢ ¬f(a) iff there is no  f : D Ø C such that D |¢ f(af );
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(v) C |¢ $y f(a, y)) (for y a variable of type Y) iff there exists b œ Y(C) such that C |¢
f(a, b);

(vi) C |¢ "y f(a, y)) (for y a variable of type Y) iff, for all f : D Ø C in C and all b œ

Y(D), it holds that D |¢ f(af, b).

We shall also need a clause for identity statements:

(vii)  C |¢  s(a) = t(a) for  s(x) and t(x) terms of type Y  iff,  for  all  f  :  D  Ø  C  in C,

sD(af) = tD(af), where sD  and tD  are the components of s and t at D (and therefore

morphisms X(D) Ø Y(D)).

In general, the base category C may not have a terminal object 1. In these cases, we

say that a formula f is valid if and only if C |¢ f at all stages C.

As  an  illustration  of  the  semantical  method,  we  shall  prove  a  familiar  fact,  the

validity of the axiom of dependent choice (DC) in presheaf topoi. (Thus, in particular,

it holds in the topos BAFC, which we shall meet in chapter 4.) For X an object in the

topos �, R a subobject of X × X, N the n.n.o. object, r the characteristic function of R,

x and y variables of type X and f a variable of type X N , DC is the formula 

"x $y r(x, y) fl "x $f (f (0) = x fl "n r(f (n), f (n + 1))).

In  the  proof,  we  shall  need  a  basic  technical  lemma  from  category  theory,  the

Yoneda lemma (e.g. Mac Lane (1997), p. 61), which states that, for C an object in the

category  C  and  P  a  presheaf  in  C
`

 =  SetsCop

,  there  is  a  bijection  q  between  natural

transformations y(C) Ø P and elements of the set P(C), where y(C) denotes the repre-

sentable presheaf HomC(–, C):

q : Hom
C
` (y(C), P) @ P(C).

The bijection q is given by h # hCH1C) for a natural transformation h.

Theorem  2.1  The  axiom  of  dependent  choice  (DC)  holds  in  all  presheaf  topoi

SetsCop

.

Proof   The proof idea is simple. DC holds in set theory, so for each object C in C,

we can find a sequence f in the set X(C) for a relation fulfilling the antecedent of DC.

We then just need to make sure that f picks the same object at different stages in C.

Let � = SetsCop

 be a presheaf topos. We must prove that C |¢ DC for all stages C. By

clauses (iii) and (vi) above, this means that if,

for all g : D Ø C in C and all b œ X(D), it holds that D |¢ $y r(b, y),

then,

for all h : D Ø C and all g œ X(D), it holds that D |¢ $f (f (0) = g fl "n r(f (n), f (n +

1))).

By clause (v), we know that, for all b,

D |¢ $y r(b, y) iff there exists d œ X(D) such that D |¢ r(b, d),   (*)

and, again by (v), we want to prove that the right-hand side of this implies that

there exists f œ X N(D) such that D |¢ f(0) = g fl "n r(f(n), f(n + 1)).   (**)

By the Yoneda lemma, we have the isomorphism

X N(D) @ Hom
C
` (y(D), X N),

and, by the definition of exponentiation in a topos,
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Hom
C
` (y(D), X N) @ Hom

C
` (y(D) × N, X ).

Recall that the n.n.o. N in a presheaf topos is the constant sheaf D(�), where � is the

ordinary natural numbers, so N(C) = � for all objects C in C. We also need the identifi-

cation (y(C))(A)  = HomC(A,  D).  The claim in  (**) is,  then, that  there exists  a natural

transformation f between the presheaves y(D) × N and X such that

(1) fA : HomC(A, D) × � Ø X (A) is a set-theoretical function for all A in C,

(2) for all h : A Ø D in C, g œ X (D), fh(0) = eA(fh, 0) = HfhLAH1A, 0) = gh œ X (A),

(3)  for  all  h  :  A  Ø  D  in  C  and  all  n  œ  N,  it  holds  that  A  |¢  (rhLA((fhLAH1A,  n),

(fhLAH1A, n + 1)).

Here,  the  second  line  uses  condition  (e)  in  the  definition  of  the  language  �,  the

forcing condition (vii) for identity, and the meaning of evaluation e in a presheaf topos

(cf.  Mac  Lane  and  Moerdijk  (1992),  p.  46).  The  last  line  comes  from  the  forcing

condition (vi) and the constancy of the n.n.o. N. 

By assumption of the right-hand side in (*), for all b in the set X(D), there exists d œ

X(D) such that D |¢ r(b, d). However, DP holds in ordinary set theory, so, for any g œ

X(D), we can find a set-theoretic function sD  :  � Ø  X(D) with sD(0) = g and "n (D |¢

r(sD(n), sD(n + 1))). By the constancy of the n.n.o. and (vi) above, it follows that D |¢ "
n (r(sD(n), sD(n + 1))). Applying the Yoneda lemma once more, we find the bijection

X (D) @ Hom
C
` (y(D), X ).

So,  corresponding  to  sD  and  fulfilling  the  same conditions,  we  have  a  set-theoretic

function s
è

D  : � Ø Hom
C
` (y(D), X ) with g = sD(0) corresponding to HsèD(0)LD(1D) under

the bijection, and sD(n) corresponding to HsèD(n)LD(1D). (s
è

D  is the sequence f mentioned

at  the beginning of the proof.)  But then the following definition of the f  will  do:  for

any object A in C and arrows h : A Ø D (so h œ y(D)(A) = HomC(A, D)), we define

fA(h, n) := H s
è

DHnLLA(h) œ X(A).

Note first that f, with fA as its components, is a natural transformation. Indeed, for f

: B Ø A and h : A Ø D morphisms in C, we have

fBHHy HDL f L µ 1L Hh, nL = fBHhë f , nL = H s
è

DHnLLB Hhë f L
= H s

è
DHnLLB HyHDL Hhë f L H1DLL

= X Hhë f L HH s
è

DHnLLD H1DLL
= HX f ëX hL HH s

è
DHnLLD H1DLL = HX f L H s

è
DHnLLA HhL.

The second line is a consequence of the definition of the functor y(D), whereas the

third line is obtained because s
è

DHnL is a natural transformation between y(D) and X for

any n. Finally, the functorial nature of X is invoked, and the procedure is reversed. We

also have, by the definition of f,

HX f ëfAL Hh, nL = Xf HH s
è

DHnLLA HhLL.
Then the following diagram commutes, so f is a natural transformation:

Tore Dahlen Thesis.nb  53



f

A

B

f

fA

fB

Xfy HDL f µ 1

X HAL

X HBL

XyHDL µ N

HyHDL µ NLA

HyHDL µ NLB

Figure 2.6. f is a natural transformation.

It  is  evident  that  f  satisfies  (1)  above.  (2)  is  more  troublesome,  but  note  that  fh  =

X N(h)(f), the restriction of f along h : A Ø D which takes f œ Hom
C
` (y(D) × N, X ) to

fh in Hom
C
` (y(A) × N, X ). Here, (fhLB(g, n) = fB(h ë g, n) for all g : B Ø A in C, by

the  definition  of  exponentiation  in  a  topos.  Then  (fhLA(1A,  0)  =  fA(h,  0).  As

HsèD(0)LD(1D) corresponds to g = sD(0), we must show that HsèD(0)LD(1D)h = HfhLAH1A, 0)

for all h : A Ø D in C. But we have

HsèD H0LLD H1DL h = fD H1D, 0L h = X HhL HfD H1D, 0LL
= fAHHy HDL hL µ 1L H1D, 0L = fAH1D ëh, 0L = fAHh, 0L.

The  last  step  uses  commutativity  of  a  diagram similar  to  2.5,  but  with  h  :  A  Ø  D
instead of f. This proves (2).

Finally,  (3)  can  be  proven.  We  noted  above  that  D  forces  r(HsèD(n)LD(1D),  HsèD(n  +
1)LD(1D)) for all n. By definition of f, this means that D |¢ "n rD(f DH1D, n), f DH1D, n
+ 1)). (As in clause (vii) above, the subscript D on r here becomes necessary, because

r  is  really  the  "characteristic  function"  of  the  relation  R,  and,  therefore,  a  natural

transformation from X × X to W.) By clause (vi) of the semantics, for any h : A Ø D in

C and all n œ N, it then holds that A |¢ (rhLA((fhLAH1A, n), (fhLAH1A, n + 1). This ends

the proof.   Ñ
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The  axiom of  dependent  choice  is  quite  powerful.  Whereas  the  full  version  of  the

Hahn-Banach theorem for  normed spaces  presupposes  Zorn's  lemma,  DC  suffices for

the case of a separable space (see Bridges and Richman (1987), ch. 2, for the develop-

ment  of analysis  in  a  constructive setting).  With  the tools  of  this  section in  hand,  we

may now approach the models of topos physics.

2.2. Neo-realism and Bohrification

In  a  series  of  articles,  Chris  Isham  and  Andreas  Döring  (2008a,  2008b,  2008c,

2009d)  have  proposed  a  set  of  new  models  for  quantum  physics,  dubbed  as  neo-
realism.  Neo-realism  is  conceived  as  an  alternative  to  the  well-known  Copenhagen
interpretation,  which introduces a separation of the measurement process for a physi-

cal  magnitude  into  two  components,  a  quantum system S  and  a  classical  observer  V.
Here, the possible states of S are wave functions Y from a configuration space into the

set  of  complex  numbers,  whereas  the  observer  V  always  registers  a  real  value  as  the

outcome of his experiment. In Copenhagen terminology, the wave function "collapses"

onto the registered value with probability

PHrL= †Xr Y\§2.

The  physically  meaningful  (real)  value  r  is  not  a  value  of  the  physical  quantity

before  the  measurement  is  made.  The  interpretation  breaks  down  for  closed  systems

where no "outside" observer is to be found, such as quantum cosmology. In the topos

scheme suggested by Isham and Döring, physical quantities does have a value indepen-

dent of any observer V. The scheme relies on non-standard representations of the states

and  quantity  values  of  physics.  It  also  turns  out  that  a  new,  intuitionistic  quantum

logic  supplants  the  familiar  non-distributive  logic  of  Birkhoff  and  van  Neumann.  (It

should be noted that the choice of the tag "neo-realism" would be protested by philoso-

phers  and  logicians,  such  as  Michael  Dummett,  who regard  acceptance  of  the  law of

excluded  middle  as  the  hallmark  of  philosophical  realism  (cf.  Dummett  (2010),  p.

130ff.))

In subsection 2.2.1, we only give a brief outline of the topos scheme introduced by

Döring  and  Isham,  including  sketches  of  some  central  proofs.  In  order  to  appreciate

the  full  scope  of  the  models,  it  is  necessary  to  read  the  original  articles.  Then,  in

subsection 2.2.2, we sketch the alternative, mathematically sophisticated version of the

topos-theoretical  approach  found  in  the  work  of  Heunen,  Landsman  and  Spitters

(2007,  2009).  Appealing  to  the  related  work  of  Banaschewski  and  Mulvey  (2006),

where the Gelfand duality for C*-algebras is extended to arbitrary topoi, these authors

stress  the  connection  between  quantum  logic  and  quantum  space.  In  chapter  3,  we

shall  try  to  apply  the  topos  model  of  these  authors  to  the  theory  of  loop  quantum

gravity.
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2.2.1. The Döring-Isham Scheme for Quantum Mechanics

Following  earlier  work  by  Isham  and  Butterfield,  Döring  and  Isham  (2008b)  start

their  approach  to  quantum  systems  by  assuming  that  the  physical  quantities  A  of  a

system  S  are  represented  by  self-adjoint  operators  Â  in  the  non-commutative  von

Neumann algebra, �(�), of all bounded operators on the separable Hilbert space � of

the states of S. The unital, commutative subalgebras V of �(�) are then considered as

classical  contexts  or  perspectives  on  the  system S,  and  the  context  category  �(�)  is

defined with Ob(�(�))  as the set  of contexts V  and Hom(�(�)) given by the inclu-

sions  iV ' V  :  V'  Ø  V.  (The  reader  may  prefer  to  regard  the  contexts  as  experimental

situations, that is, an observer and his measuring apparatuses.)

A self-adjoint operator Â, if present in a subalgebra V, makes the physical quantity A
fully  measurable  from  the  classical  perspective  represented  by  the  subalgebra.  The

possible  values  of  A  are  contained  in  the  spectrum  of  Â,  s(Â),  a  subset  of  the  real

numbers. It is possible to form propositions of the form 'AœD', where D is a Borel set,

and, by the spectral theorem, each proposition of this form is represented by a projec-

tion operator P
`
 (the "yes-no" questions of subsection 1.1.2).

In  general,  a  context  V  will  exclude  many  operators.  But,  in  a  certain  sense,

excluded operators still have "proxys" in V. For we note that P
`
, even if not present in

the context V,  may be approximated by the set  (where �(V) is the complete lattice of

projections in V, and the ordering t is defined as Q
`
t P

`
 if and only if ImP

`
 Œ ImQ

`
, or,

equivalently, P
`
Q
`

 = P
`
)

(2.1)dHP` LV := Ì 8Q` œ �HV L Q
`
t P<` .

This is a first step towards the definition of states, observables and values as entities

in a presheaf topos. The set of approximations of P
`
, one for each context V, may now

supplant  P
`

 as  the  interpretation  of  the  proposition  'AœD'  in  the  model  to  be  con-

structed. We try

"PAœDT := dHP` L := 8dHP` LV » V œObH�H�LL<".

However, the logical structure of these sets is limited, so this will not quite do. Note

now that  truth  values  may be  assigned  the  projectors  in  each  context  V  by  using  the

Gelfand spectrum SV . This is the set

(2.2)SV := 8l : V Ø � l is a positive multiplicative linear functional of norm 1<.
Lemma 2.2    When P

`
 is  a projection, the value l(P

`
)  is  either 0  (false) or 1  (true).

(Proof: l(P
`
) =  l(P

`
P
`
) = l(P

`
)l(P

`
).)
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So l behaves like a "local" state for V: it answers "yes" or "no" to the "question" P
`
.

The construction of the state object S, the representation of the physical state space in

the  topos  scheme,  may  now  be  undertaken.  (Hereafter,  objects  of  the  topos  will  be

underlined.) The state object will be an element in the class of objects of the topos of

presheaves over the context category �(�),

(2.3)t := Sets�H�Lop

.

Definition  2.3  (Döring  and  Isham  (2008b))    The  spectral  presheaf  (or  state

object), S, is an element in Sets�H�Lop

 (that is, a contravariant functor from �(�) to
Sets) such that SV  := SV  and, for morphisms iV' V  : V' Ø V in �(�), S (iV' V ) : SV  Ø
SV' is defined by S (iV' V )(l) := l V ' (the restriction of l : V Ø � to V' Œ V).

In  classical  physics,  the  states  of  the  system are  given  as  points  of  the  state  space.

By analogy, one might try to define the states in the topos model as global elements of

the state space, that is, as morphisms 1 Ø S in t (where 1 is the terminal object in t). It

has been shown by Butterfield and Isham that the existence of global elements in t is

inconsistent with the Kochen-Specker theorem, the famous "no-hidden-variable" result

from quantum physics.  Instead,  interest  focuses  on  the  entities  known  as  the  'clopen'

subobjects of S:

Definition 2.4 (Döring and Isham (2008b))   A contravariant functor S from �(�)

to Sets is a clopen subobject of S if S is a subfunctor of S (in the standard sense) and
the set SV  is both open and closed as a subset of the compact Hausdorff space SV .

There  is  now,  from  Gelfand  spectral  theory,  a  lattice  isomorphism  between  the

lattice �(V)  of projections in  V  and the lattice  of closed and open subsets,  SubclHSV L,
of SV :

(2.4)a :�HV L Ø SubclHSV L where a HP` L := 9l œ SV l HP` L = 1= ª S
P
` .

Lemma 2.3   �HV L and Subcl HSV L are Boolean algebras.

Proof   Firstly, it must be shown that SubclHSV L is a Heyting algebra, i.e. a distribu-

tive lattice with an implication operator which satisfies the adjunction scheme
a › b Œ c

a Œ Hb fl cL .
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This can be done by defining implication a fl b as ac  ‹ b. It is clear that SubclHSV L
is  a  distributive  lattice  because  the  usual  set-theoretical  operations  preserve  clopen-

ness; we shall show that the adjunction property holds. It is clear that ac ‹ b is clopen.

Assume that a › b Œ c. Then a Œ (bc  ‹ c); this follows from a = (a › b)‹(a › bc).

Now assume  that  a  Œ  (bc  ‹  c),  and  let  x  œ  a  ›  b.  It  follows  that  x  œ  c.  ac  ‹  b  is

therefore  a  suitable  implication  operator.  It  now  suffices  to  point  out  that  a  Boolean

algebra is defined by adding just the condition of material implication

a fl b = Ÿ a ‹ b (with ¬ a ª ac).

 Hence, SubclHSV L (and, by the isomorphism, �(V)) is a Boolean algebra.   Ñ

We also note for use in chapter 4 that a Heyting algebra is Boolean if and only if the

law of excluded third holds (Mac Lane and Moerdijk (1992), p. 55). The commutative

algebras V  are classical  contexts within  the theory,  so  it  is  certainly proper that  these

lattices are Boolean. Certainly, extraordinary logic is the last thing we would expect to

find when we are engaged in experimental physics. (Call this the "principle of charity"

in our interrogation of physical reality.) This construction can now be extended to the

total context category �(�). Döring and Isham ((2008b), th. 2.4) prove that, for each

projection P
`

 œ  �(�), there is a clopen sub-object S
P
`  of the spectral presheaf S  given

by

(2.5)S
P
` := :S

dHP` LV
Œ SV V œ ObH�H�LL>.

Lemma 2.4   S
P
`  is a clopen subobject of S.

Sketch of proof   If the context V' is poor compared to V, the representation dHP` LV '

will be a less fine-grained operator than dHP` LV , i.e. it projects onto a greater subspace.

So  we  may  define  an  operator  Q
`

 =  dHP` LV '  –  dHP` LV .  We  now  pick  l  œ  S
dHP` LV

.  Then

l(dHP` LV ) = 1, so  l(dHP` LV ') = l(dHP` LV ) + l(Q
`

) = 1 (because Q
`

 is an operator with vaules

in {0, 1}). Then the restriction of l to V' belongs in S
dHP` LV '

. But restrictions along V' Ø

V is just how the functor S handles morphisms, so the subobject S
P
`  is a clopen subob-

ject of S.   Ñ

This  leads  to  the  cornerstone  of  the  theory,  the  concept  of  daseinisation,  the  map

which "throws" the observable into a world of classical perspectives:

Definition  2.5  (Döring  and  Isham  (2008b))    The  daseinisation  d  of  projection

operators P
`
 œ �(�) is the mapping

d : �(�) Ø SubclHSL
 P
`
 # S

P
` .
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The daseinisation map is injective. In chapter 1, we interpreted quantum mechanical

sentences D(A)  as [D(A)D,  the linear subspace spanned by vectors y,  the eigenvectors

of  the  observable  A  for  an  eigenvalue  a  œ  D.  This  amounts  to  an  identification  of

[D(A)D with the projection onto this subspace. Recall also that we interpreted classical

sentences as a subspace of the classical state space. The importance of the definition of

daseinisation rests on the mapping between a projection, which in quantum physics is

the representative of a proposition of the theory,  and a  sub-object  of the 'state object'

S, the topos analogue of a subset of the state space, which is the classical notion of a

proposition in physics:

 projection P
` @"a quantum mechanical statement"D Ød

subobject S
P
` @topos analogue of a subspace or a "classical statement"D

.

The  above  constructions  now  allow  us  infer  the  logic  appropriate  for  quantum

physics in topoi. For an arbitrary topos it is known that

Lemma 2.5   The subobjects of an object in a topos is a Heyting algebra.

Sketch of proof   The complete proof is found in Mac Lane and Moerdijk ((1992),

p. 186ff, 198ff). Firstly, it must be shown that the partially ordered set Sub A of subob-

jects of A forms a lattice. Let S >Ø A and T >Ø A be subobjects of A. Then meet, S ›
T, is a pullback (which, in a topos, always can be found):

A

T

S

S › T

Join (union) is a little more demanding: 

A

T

S

S + T
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We start  by forming the coproduct  (sum) S  + T.  Then, by definition of the coprod-

uct,  there is a unique arrow from S  + T  to A.  Using another result  from topos theory,

this arrow may be split into an epic S + T Ø> M and a monic M >Ø A, aand it can be

shown that M is the union S ‹ T. 0 >Ø A and 1A : A Ø A will be top and bottom in the

lattice. To prove that this lattice is also a Heyting algebra, the exponentiation property

in topoi must be used.   Ñ

Theorem 2.6   SubclHSL, the clopen subobjects of S, is a Heyting algebra.

Sketch of proof   For S and T subobjects of S, and V a context, we define

(S fi TLV  = SV  ‹ TV

(S fl TLV  = SV  › TV .

If S  and T  are clopen, it  may be shown that S fi  T  are S  fl  T  clopen also. 0 = 8«V }

and 1 = S are easily defined, and clopen. Negation is more complicated:

(¬SLV  = int ›V 'Œ V 8l œ SV | l V ' œ SV '
c

}.

The  interior  of  the  set  is  used  to  guarantee  openness  of  the  meet,  which  may  be

infinite. Implication may also be defined (but not as ¬S fi T).   Ñ

Suppose that  P
`

 is the projection operator which answers "yes" or "no" to the ques-

tion  "Is  the  observable  A  in  the  real  number  set  D?".  We  then  have  the  following

interpretation of the quantum physical sentences D(A):

D(A) # P
`
 # d(P

`
) = S

P
` .

The  truth-functional  connectives  are  to  be  interpreted  as  the  corresponding  opera-

tions  in  the  Heyting  algebra  SubclHSL.  The  distributive  law  holds  in  all  Heyting

algebras:

x fl (y fi z) ¨ (x fl y) fi (x fl z)

Hence,  it  is  valid  in  or  propositional  logic.  The  well-known  laws  below,  however,

do not hold:

x fi ¬x og ¬¬x Ø x.

The logic of the quantum-theoretical propositional calculus is intuitionistic.

With  the  topos  equivalent  of  a  state  space  in  hand,  the  next  step  is  to  consider  a

topos  representation  of  the  physical  quantities  A  (the  self-adjoint  operators  Â).The

final  aim is  to  represent  each  Â  as  an  arrow between  the  state  object,  S,  and  a  value

object still to be defined. This is done by appeal to the spectral theorem, which associ-

ates a spectral family of projection operators, 9ÊA
l<lœ�, with each self-adjoint operator

Â. Then

(2.6)Â = ‡
�

l „ÊA
l.

The construction in (2.1) above is now very useful.
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Definition 2.6 HDöring and Isham H2008 cLL For P
`

a projection

operator and V a context in � H�L, the outer daseinisation operator is

doHP` LV := Ì 8Q` œ �HV L Q
`
t P<` .

The inner daseinisation operator is

diHP` LV :=  8Q` œ �HV L Q
`
d P<` .

doHP` LV  approximates  P
`

 from above,  while  diHP` LV  approximates  it  from below.  The

extension of inner and outer daseinisation to the self-adjoint operators is then close at

hand.

Definition 2.7 (Döring and Isham (2008c))   For Â a self-adjoint operator and V a
context in �(�), the outer and inner daseinisation of Â are

doIÂM
V

 := Ÿ�l „ IdiIÊA
lMV

M,
diIÂM

V
 := Ÿ�l „ fl

m>l
doIÊA

lMV
.

The  operators  doIÂM
V

 and  diIÂM
V

 are  self-adjoint  operators  in  the  context  V.  They

can be represented by a Gel'fand transform with values in the spectrum, e.g.

(2.7)do IÂM
V

: SV Ø sp Ido IÂM
V
M.

Döring and Isham therefore introduce the functions (where l œ SV  and ∞V is the set

of unital von Neumann subalgebras of V)

(2.8)d
Ô oIÂM

V
HlL : ∞V Ø sp IÂM

(2.9)IdÔ oIÂM
V

HlLM HV 'L # l IdoIÂM
V '
M.

The  density  of  the  notation  may  cause  some  confusion.  But  note  that  for  V''  a

smaller subalgebra of V' Œ V, it must be the case that (in the ordering of the operators)

(2.10)doIÂM
V '
d do IÂM

V ''
.

The functional l : V Ø � will take a greater or equal real value on the coarser of the

two  operators,  so  d
Ô oIÂM

V
(l)  is  an  order-reversing  function.  If,  in  general,  we  had

equality  in  (2.10),  we  could  use  the  standard  real  number  object  �  (the  constant

functor  from  �(�)  to  �)  and  define  a  morphism  from  S  to  �  by  means  of  the

prescription

"do IÂM
V

: SV Ø spHdoHÂLV L Ø �".

When  we  switch  from a  "rich"  observational  context  to  a  "poorer"  one,  we  should

not expect the representative of the observable Â to give the same measurement outc-

ome. The daseinisation of Â will change as we move between classical perspectives V,

so instead of using the constant presheaf �, a more elaborate construction is needed:
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Definition 2.8 (Döring and Isham (2008c))   The value object �t in Sets�H�Lop

 is is
an object in Sets�H�Lop

 (that is, a contravariant functor from �(�) to Sets) such that
�V
t

 := 8m : ∞V Ø � | m is an order-reversing function} and, for morphisms iV' V  : V' Ø
V in �(�),  �t  (iV' V ) :  �tV  Ø  �tV '  is defined by �t  (iV' V )(m) := m V '  (the restric-
tion of m : V Ø � to V' Œ V).

This,  finally,  leads  to  a  satisfactory  interpretation  of  a  physical  quantity  as  a  mor-

phism in  the  topos.  From (2.8)  above,  it  is  clear  that  d
Ô oIÂM

V
HlL  is  an  order-reversing

function  from  ∞V  to  sp  (Â)  Œ  �  (for  any  given  l),  so  the  connection  between  the

spectral presheaf, S, and the value object, �t, can be made:

Theorem 2.2 (Döring and Isham (2008c))   The mappings d
Ô oIÂM

V
, V œ �(�), given

by

d
Ô oIÂM

V
 : SV  Ø �V

t

l # d
Ô oIÂM

V
HlL,

are the components of a natural transformation (a morphism in the topos)

d
Ô oIÂM : S Ø �t.

Again, the formulae may be rather unfamiliar, but the physical interpretation is close

at hand. Recall that l is a functional in the Gel'fand spectrum of the classical (abelian)

context  V,  and,  as  such  takes  a  value  in  the spectrum of doIÂM
V

,  sp(doIÂM
V

)  Œ  �,  the

representation of Â from the perspective of V. As we approach V from the subalgebras

V'  Õ  V, we pick decreasing values l(doIÂM
V '

)  œ  �  because the representations doIÂM
V

grow smaller  in  the  operator  order.  That  is,  we  approach  the  supremum of  the  value

range of Â from above.

The  mapping  d
Ô oIÂM  may  be  combined  with  a  twin  mapping,  d

Ô iIÂM,  which  corre-

sponds to the inner daseinisation, to give the context-dependent 'spread' of the opera-

tor  Â.  If  this  is  done,  the  components  of  the  new  value  object,  �¨,  will  be  sets  of

pairings of order-reversing and order-preserving functions. This definition of the reals

as  de  facto  intervals  which  are  refined  as  we  switch  to  richer  contexts,  is  closely

related  to  the intuition  of  "what  a  topos  really  is".  Brouwer's  construction of  the  real

numbers as Cauchy sequences of rational numbers also comes to mind.

The value object  �t  still  has palpable weaknesses.  As it  stands,  the presheaf �t  is

only a  monoid object  in  the topos Sets�H�Lop

,  a  far  cry from the field  structure  of the

"real"  reals  in  �.  However,  using  a  construction  of  Grothendieck,  Döring  and  Isham

show that there is a completion of �t, called k(�t), which is an abelian group object

in the topos. We shall not enter into this.
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The  relationship  between  classical  mechanics,  quantum  mechanics  and  the  topos

models is summarized in the table below:

State space HSL Observables HOL Value space HRL Logic

�6 n f : �6 n → � � Classical

� self − adjoint operators A : H → H � Birkhoff − von Neumann

state object Σ natural transformations δ
Ô o
IÂM : Σ → �t value object �t Intuitionistic

Note that the constructions of Döring and Isham provide an answer to the challlenge

posed  by  the  Copenhagen  interpretation:  In  the  topos  t,  all  physical  magnitudes  A

have a  value independently  of  observation,  namely  d
Ô oIÂM(S).  Here,  Â  is  a  self-adjoint

operator, and S is a subobject of the state space S. The value d
Ô oIÂM(S) is a subobject of

the value space �t.

2.2.2. Bohrification

An  alternative,  mathematically  sophisticated  version  of  the  topos-theoretical

approach  is  found  in  the  work  of  Heunen,  Landsman  and  Spitters  (2008,  2009).  The

HLS alternative,  known as 'Bohrification',  utilizes the topos-theoretical  generalisation

of the  notion  of  space,  locales.  The  quantum logic  is  then  read  off  from the  Heyting

algebra structure of the open subsets of a locale L (or, strictly, the frame �(L)), identi-

fied as the state space of the system. Because locales will be important to us when we

formulate  loop  quantum  gravity  in  topos  physics  in  chapter  3,  we  review  the  main

characteristics of Bohrification in this subsection.

Above, the context category was given by a family of commutative subalgebras V of

a  non-commutative  von  Neumann  algebra.  The  state  object  S  was  a  functor  in  the

topos, with SV  the Gelfand spectrum in the context V. The states were then defined as

clopen subobjects  of  S.  The  last  construction relied  on  the rich  supply of projections

available  in  von  Neumann  algebras.  In  the  HLS  approach,  a  family  of  commutative

subalgebras  of  a  non-commutative  C*-algebra  is  used  instead  of  the  von  Neumann

algebras.  These  algebras  are  generally  poor  in  projections,  special  cases  (such  as

Rickart algebras or von Neumann algebras) excepted, so the former notion of a state is

no longer useful.

HLS topos physics starts from the topos Sets�HAL  of covariant functors,  where �(A)

is the set  of commutative C*-subalgebras of a C*-algebra A.  The tautological  functor

A :  �(A) Ø Sets,  which acts on objects as A(C) = C,  and on morphisms C Œ D as the

inclusion A(C) Ø A(D), is called the Bohrification of A.

Tore Dahlen Thesis.nb  63



Now consider the functor � : CStar Ø Topos, where CStar is the category of unital

C*-algebras (with arrows defined as linear multiplicative functions which preserve the

identity  and  the  *-operation),  and  Topos  is  the  category  of  topoi  (with  geometric

morphisms as arrows). � is defined by �(A) = Sets�HAL on objects and �(f )*(T)(D) = T

(f (D)) on morphisms f : A Ø B, with T œ Sets�HBL and D œ �(A). (�(f )* is the inverse

image part of the geometric morphism �(f ).) It can then be shown that A is a commuta-

tive  C*-algebra  in  the  topos  �(A)  =  Sets�HAL.  This  crucial  result  rests  upon  a  general

fact from topos theory:

Fact. If Model(�, T) denotes the category of models of a geometric theory � in the

topos T, there is an isomorphism of categories
Model(�, Sets�HAL) º Model(�, SetsL�HAL.

This  is  a  special  case  of  lemma  3.13  in  the  HLS  article.  (For  a  proof,  see  cor.

D1.2.14 of the Elephant, Johnstone (2002).)

The proof of the commutativity of A (Heunen, Landsman and Spitters (2009), p. 19)

appeals to Kripke-Joyal semantics for Kripke topoi (cf. subsection 2.1.3 above). It also

makes use of the axiom of dependent choice (DC), which holds in Sets�HAL (see subsec-

tion 2.1.3 for the statement and proof of DC in a similar context). Commutativity of A

in  Sets�HAL  is  proved  by  exploiting  the  proximity  of  the  theory  of  C*-algebras  to  a

geometric theory. In these theories, all statements have the form

"(x
”
)[y(x

”
) Ø f(x

”
)].

Here, y and f are positive formulae; i.e. formulae built by means of finite conjunc-

tions  and  existential  quantifiers.  Thus,  geometric  theories  are  formulae  with  "finite

verification" (see Mac Lane and Moerdijk (1997), ch. X for more about this notion). If

the  theory  of  abelian  C*-algebras  (Banach  algebras  with  involution,  and  satisfying

∞a*a¥ = ∞a¥2) had been a geometric theory, we could start from the following piece of

information about A:

A œ Model(The theory of abelian C*-algebras, SetsL�HAL.
This  is  true  by  the  definition  of  A  as  the  tautological  functor,  and  because  �(A)

contains only commutative subalgebras.  By the fact  stated above, it  would then seem

follow that

A œ Model(The theory of abelian C*-algebras, Sets�HAL).
That  is,  A  is  an  internal  C*-algebra  in  the  topos  Sets�HAL.  However,  the  theory  of

abelian C*-algebras is not a geometric theory: the axiom of completeness (the conver-

gence  of  any  Cauchy  sequence  in  the  algebra)  fails  us.  In  order  to  circumvent  this

difficulty,  the  authors  introduce  the  notion  of  a  "pre-semi-C*-algebra".  All  C*-alge-

bras are "pre-semi", and the theory of these algebras is geometric. Again, by appeal to

the fact above, A is an internal abelian "pre-semi". It is then shown "by hand" that A is,

in fact, an internal abelian C*-algebra.
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Now  recall  that,  in  the  topos  Sets,  there  is  an  equivalence  (the  Gelfand  duality)

between  the  categories  cCStar  (the  commutative  C*-algebras)  and  KHausTop  (the

compact Hausdorff topological  spaces).  In  turn,  KHausTop  is  equivalent to  the cate-

gory  KRegLoc  of  compact  regular  locales  in  Sets.  (We  shall  apply  the  notion  of

"pointfree" spaces, or locales, in section 3.2, and give the precise definitions there.) As

mentioned in subsection 1.4.3, Banaschewski and Mulvey (2006) have shown that the

equivalence cCStar  V  KRegLoc holds in any topos.  We shall  not give the details of

this  beautiful,  but  demanding  construction,  which  recently  has  been  improved  by

Coquand and Spitters.

Let  S  be  the  morphism  from cCStar  to  KRegLocop  in  Sets�HAL.  (The  underlining,

also of S,  is a reminder that objects and morphisms between them are now internal to

this topos.) Consider the locale S(A), the Gelfand spectrum of A (which, as we noted,

is commutative in Sets�HAL). S(A) is the state space of HLS topos physics, correspond-

ing  to  the  state  object  S  in  the  Isham-Döring  model  (definition  2.3  above).  Interest-

ingly, the locale S(A) is pointfree for A = Hilb(H, H), with H a Hilbert space of dimen-

sion  greater  than  2  (Heunen,  Landsman  and  Spitters  (2009),  theorem 4.10),  and  also

for  more  general  classes  of  C*-algebras.  This  is  the  HLS  version  of  the  Kochen-

Specker theorem, which was formulated for topos physics by Isham and Butterfield.

The  construction of  S(A)  is  done by means of formal  symbols  for  each self-adjoint

element a  of A,  but  we shall not need this.  As usual for entities in topoi, the Gelfand

spectrum S(A) may alternatively be given an external description, and it can be shown

that S(A) is determined by the value taken at � (the algebra of complex numbers is the

least member of �(A)). S(A)(�), denoted by SA, is known as the Bohrified state space
of  A.  We  shall  study  a  concrete  example  of  an  external  state  space  when  we  apply

topos methods within loop quantum gravity in the next chapter.

Finally, the frame (or Heyting algebra) �(SA) provides a new quantum logic, which

may be compared with the old Birkhoff-von Neumann logic when the C*-algebra has

enough  projections.  This  is  the  case  when  A  is  a  Rickart  C*-algebra  (see  Heunen,

Landsman and Spitters (2009), sec. 5, for definitions and results). The atomic proposi-

tions  of  the  theory  are  identified  with  elements  of  �(SA),  and  the  resulting  logic  is

intuitionistic.
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C H A P T E R   3

A Topos Model for Loop Quantum Gravity

One  of  the  motivations  behind  topos  physics  is  to  provide  a  framework  for  new

theories  of quantum gravity.  We shall  not  search for  such theories  presently.  Instead,

we  ask  how  some  of  the  known  candidates  for  a  final  theory  fit  into  the  approach

sketched in the foregoing chapter. As a first application of the methods developed, we

shall try to represent a particular version of quantum gravity, the theory of loop quan-

tum gravity (LQG), within the topos-theoretical framework. We had a glimpse of this

theory when we discussed discrete space-time in subsection 1.4.2 above. LQG general-

izes  the  canonical  methods  from  standard  quantum  mechanics,  so  it  seems  to  be  a

natural  choice  for  a  topos  model.  In  section  3.1,  a  very  dense  overview  of  the  main

formulae  of  LQG  is  given,  not  an  introduction  to  loop  theory  as  such.  An  excellent

one, Rovelli's Quantum Gravity (Rovelli (2004), is already available. Rovelli's book is

informal on some points, but many of the technical details and proofs can be found in

Thiemann (2007). We then (section 3.2) give a fairly detailed presentation of a topos-

theoretical  version  of  LQG,  relying  on  the  methods  of  Heunen,  Landsman  and  Spit-

ters. The description will supplement the sketch of the Bohrification approach given in

subsection  2.2.2  above.  The  construction  relies  on  the  C*-algebra  version  of  loop

quantum gravity introduced in Fleischhack (2004). We bring together LQG results and

methods from topos physics in a proof of the non-sobriety of the external "state space"

S  of  the  "Bohrified"  LQG theory,  and  show that  the  construction  obeys  the  standard

requirements of diffeomorphism and gauge invariance.

3.1. The Basic Structure of Loop Quantum Gravity

Loop quantum gravity has been described as the "attempt to construct a mathemati-

cally  rigorous,  non-perturbative,  background  independent  quantum  theory  of  four-

dimensional,  Lorentzian  general  relativity  plus  all  known  matter  in  the  continuum"

(Thiemann (2007), p. 16). While the theory does not assume a background space-time,

a standard differentiable manifold is still presupposed for the construction of states and

operators. Contracting the description above even further, we may say that LQG is the

quantisation of the canonical (hamiltonian) formulation of general relativity.
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It is common practice to write the equations of LQG in the framwork of Hamiltonian

mechanics,  and we will  do so too. In  the Lagrangian formulation, one starts from the

Einstein-Hilbert action

(3.1)S = k-1 ‡
M
„4 x -g R.

The Euler-Langrange equations for this functional then allow us to derive the fami-

lar Einstein field equations (for a proof, see e.g. Wald (1984), p. 450ff). The Einstein-

Hilbert action is covariant, but the covariance is lost if we turn from the Lagrangian to

the  Hamiltonian  formulation.  This,  however,  we  must  do,  because  we  want  to  apply

standard  quantisation  to  canonical  position  and  momentum  variables.  We  therefore

foliate  the  4-dimensional  space-time  M  into  Cauchy  surfaces  St.  This  amounts  to

giving M the topology

(3.2)M = �µ S.

A new form of the action principle, the ADM action, is now available:

(3.3)S = k-1 ‡
�

„ t ‡
S
„3 x�.

A  time  coordinate  is  thereby  introduced,  and  we  can  define  canonical  momenta  in

the usual manner by deriving the Lagrangian density �  with respect to the velocities.

In  particular,  we  have a  momentum pab  conjugate  to  the  three-metric  hab  induced by

gmn on the surface S (so a, b = 1, 2, 3):

(3.4)pabHt, xL = ∑�
∑h

◊

ab

.

We may picture the choice of hab  and pab as dynamical variables as the evolution of

a  three-metric  on  a  given  3-dimensional  manifold  S.  The  configuration  space  is  then

the  set  of  three-metrics  hab  defined  on  S,  and  the  state  space  of  the  corresponding

quantum theory will consist of functionals defined on this configuration space.

This  is  a  reasonable  starting point,  but  the  new formalism of loop quantum gravity

invites  us  to  mix these  variables  in  a  different  manner.  LQG uses the  tetrad  field  (or

Vierbein)  formalism.  We  shall  see  that  these  variables  are  particularly  suitable  for

quantisation.  (Kiefer  (2004),  sec.  4.1-4.2,  has  a  nice  review  of  the  older  approach.

Below, we follow mainly Rovelli (2004).)

3.1.1. The Choice of Variables

In  Einstein's  theory  of  general  relativity  (GR),  it  will  always  be  possible  to  pick

coordinates  such  that  the  metric  is  locally  flat.  GR may therefore  be  seen  as  a  set  of

rules for the transformation of an arbitrary reference frame x = (xm ) to a locally inertial

reference frame X = (X I) (here the index I  labels components in Minkowski space or

Euclidean space). Assuming that  an event A  has coordinates X I (A)  = 0 in the inertial

frame, we have (by Taylor expansion to the first non-vanishing term)
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(3.5)X I IxM = ∑X I HxL
∑xm

x=xHAL
ÿ xm

We may then define the gravitational field  em
I (x) (also known as the Vierbein field)

as the Jacobian of the transformation to locally inertial coordinates:

(3.6)em
I IxM ª ∑X I HxL

∑xm
x=xHAL

In  the  usual  metric  field  formalism,  the  metric  tensor  may  be  used  to  introduce  a

unique  connection,  that  is,  a  prescription  for  a  directional  derivative  depending  only

on a direction at a given point. This can also be done with the tetrad field eI (x) = em
I (x)

dxm. The spin connection w (with values in the Lie algebra of the Lorentz group SO(3,

1)) will be of the form

(3.7)wJ
I HxL = wmJ

I IxM dxm.

SO(3,  1)  is  the  group  preserving  the  Minkowski  metric  hIJ ,  so  we  can  use  it  to

correct the deviaton of the coordinate derivative with respect to parallel translation of

vectors vIwith local Minkowski labels. This gives the covariant derivative

(3.8)Dm vI = ∑mvI + wmJ
I vI .

 A complex self-dual connection A is given by (with i = 1, 2, 3 and wi = 1 ê 2 e jk
i w jk)

(3.9)Ai = wi + iw0 i.

This  last  step,  introduced  by  Ashtekar  in  1986,  is  crucial,  as  it  simplifies  the  con-

straints  to  follow.  Note  that  the  six  components  of  wmJ
I  simply  are  collected  in  the

three components  of  the  complex connection  A.  The discovery that  the  connection A
and  (a  version  of)  the  field  e  may  be  treated  as  the  configuration  and  momentum

variables with classical  Poisson brackets is the starting point for LQG theory. In fact,

further simplification may be achieved (Rovelli (2004), section 4.2): we may choose to

use the Euclidean connection

(3.10)Ai = wi +w0 i.

This  time,  however,  simplification  comes  at  a  price.  The  Hamiltonian  (see  below)

will be more complicated. 

Let us now consider the phase space of LQG. In the "old" canonical  formalism hab

and  pab  were  dynamical  variables  on  a  given  3-dimensional  manifold  S.  We  now

choose  the  space  of  three-dimensional  forms  AiHt”L  =  Aa
i Ht”L dta  induced  by  the  four-

dimensional form Ai as our configuration space G. The momentum variables will be

(3.11)Ei
aHt”L = 1

2
eijk e

abc eb
j Jt”N ec

k It”M.
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The small  indices are a reminder that  we consider the three-dimensional forms (the

triads) of the tetrads em
I . It follows that Eai  = (det eL eai, so this is simply e densitized.

Importantly, we now have the Poisson bracket

(3.12)9Aa
i Ht”L, Ei

bIt” 'M= = H8 piGL da
b d j

i d3It”, t
”

'M.
(For the Euclidean connection, i is omitted on the right.)

3.1.2. The Quantization of Euclidean General Relativity

Heuristically, quantisation of a classical theory is the translation of Poisson brackets

into commutator relations. The Poisson bracket of the variables Aa
i  and Ei

b
 above thus

becomes

(3.13)BA
`

a
i Ht”L, E

`
i
bIt” 'MF = H8 piGÑL da

b d j
i d3It”, t

”
'M.

The connection A
`

a
i
 gives the intrinsic three-geometry on the Cauchy surface S,  and

the  momentum E
`

i
b

 can  be  shown  to  be  related  to  the  extrinsic  curvature,  the  embed-

ding  of  S  in  space-time.  By  making  measurements  of  the  gravitational  field  more

precise,  measurements  of  the  momentum ("the  time-rate  of  change  of  the  field")  will

grow correspondingly imprecise,  and  our picture  of the  three-surface as  embedded in

the  4-dimensional  manifold  will  grow "blurry".  To  put  it  bluntly,  in  quantum gravity

space-time does not exist.

Still at the formal stage, the commutation relations hold if we let the operators act on

functionals in the manner below:

(3.14)A
`

a
i Ht”LY@AD = Aa

i Ht”LY@AD

(3.15)E
`

i
bIt” 'MY@AD = –iÑ

d

d Aa
i Ht”L Y@AD.

A  state  space  of  complex-valued  functionals  Y[A]  can  now  be  defined.  Just  as  in

standard  quantum  mechanics,  the  configuration  space  S  of  the  classical  theory

becomes  the  domain  of  the  wave  functions  (functionals  in  our  case)  of  the  quantum

theory. The state space � (which also will include unphysical states) is obtained as the

linear space of functionals

(3.16)YG, f @AD = f HUHA, g1L, ..., UHA, gLLL.
Here,  f (U1, ..., UL) is a smooth function of the group elements of the connection. G

is a collection of L oriented paths gi on the 3d space S, and UHA, gL is the holonomy of

the connection A along the curve g, that is, the rule for parallel transport along g. Look

at  the  holonomy as  a  recipe  for  computation:  given  a  vector  vB,  we  calculate  UB
A(A,

gL vB  to  find  the  parallel  transport  of  vB  at  the  endpoint  of  g.  The  functional  YG, f

therefore tests the connection A at the endpoints of G. The cylindrical functional Y has

support on the graph G.
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(A short remark on the foundations in differential geometry of the last paragraph: A
is  a  connection  on  the  fiber  bundle  over  the  base  manifold  S  with  structural  group

SO(3). The Lie algebra of SO(3) is identical with ��(2) = {B œ ��(n) | B + B* = 0 fl tr B
= 0}, the Lie algebra of SU(2), so it is common in the LQG literature to regard A as an

��(2)  connection over S.  Note  also  that  we  have suppressed the dependency of U  on

the local trivialization of the fibre bundle over S with structure group SU(2).)

In  the special  case where g  = a,  a  closed curve or loop,  and f  = tr,  the trace of the

matrix U(A, a), one usually writes

(3.17)Ya, tr@AD = XA a\.
If  we have a  scalar  product  it  is  then  possible,  using the  Riesz-Fréchet  theorem, to

define functionals on the loop space as Y[a] = XYa, tr»Y\  (hence the name "loop quan-

tum gravity"). And we do have one. We may define the scalar product on the space �
(where L is the number of paths in G' ‹ G'') as

(3.18)YYG', f ' YG'', f ''] ª ‡ f ' HU1, ..., ULL f '' HU1, ..., ULL dU1 ... dUL.

(The Haar measure is  used on the group SU(2).) The completion of �  in  the scalar

product above will be the state space  �. Label irreducible representations R of SU(2)

by their half-integer spin (quantum number) j and write the matrix elements as

(3.19)R b
H jL a HUL ª XU j, a, b\.

According to the Peter-Weyl theorem, we may span the space � with the vectors |G,

j1, ..., jL, a1, ..., aL, b1, ..., bL\ ª |G, jl, al, bl\ given by

(3.20)XA G, jl, al, bl\ ª R b1

H j1L a1 HU HA, g1LL ... R bL

H jLL aL HU HA, gLLL.
It must be noted that different paths may have different quantum numbers associated

with them, corresponding to the different varieties of matter that make up the states. In

order to fulfill the demands of invariance under gauge transformations and diffeomor-

phisms in LQG, we are interested in the projection of the space � onto the space �Diff

of  invariant  functionals  Y.  A  first  step  towards  this,  is  the  construction  of  the  space

�0,  the space of spin network states. A spin network is a set S = XG, jl,  in\ of L links

and N nodes, where in  is the intertwiner of the tensor product of the SU(2) representa-

tions  on  links  starting  or  ending  on  the  node  n.  The  state  |S\  in  �0  is  then  found  by

contracting the state |G,  jl,  al,  bl\ with the intertwiners. States |S\ are invariant under

local SU(2) gauge transformations.

Finally,  the  kinematical  state  space  �Diff  of  diffeomorphism  invariant  states  is

found as a subspace of the space of linear functionals on the states Y. A state in �Diff

is an image under a map PDiff  defined by

(3.21)
HPDiff YL HY 'L = ‚

Y''=Uf Y

XY '' Y '\.
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The  (finite)  sum is  taken  over  the  states  Y''  equivalent  to  Y  under  a  representation

Uf  of a  diffeomorphism f  on the 3d manifold  s.  The state PDiff Y  is  then diffeomor-

phism invariant by definition. One may also regard the diffeomorphism invariant states

as  equivalence  classes  of  colored  (c)  knots  K  with  nodes.  The  denotation  |s\  =  |K,c\
will be used for the spin-knot states. In contrast to the space � above, the space �Diff

is separable.

Let us hint at the interpretation of these states. The spin-knot states |s\ = |K,c\ are to

be understood as orientation-free versions of the spin network states †S\ =  †G, jl, in\ of

L  links  and  N  nodes.  No  information  about  the  localization  of  the  state  †S\  on  the

manifold is preserved in |s\. The links are, however, still colored with half-integer spin

values  jl.  Let  the  set  G  of  links  signify  relations  of  contiguity  between  the  nodes.

Following  Rovelli  (2003,  p.  190)  we  associate  a  surface  l  with  the  link  between  two

nodes, and interpret jl  as the area of the surface. We interpret the intertwiner in  as the

volume of the node n. A very tagged simple network (with two nodes and three links)

is shown in figure 3.2 below (from Rovelli (2003), p. 13).

Figure 3.1. A spin network [From Rovelli (2004), p. 235].

3.1.3. The Quantum Operators

The  basic  operators  may  now be  defined.  In  order  to  stay  in  the  state  space  �,  we

use the multiplication operator corresponding to the holonomy U instead of the connec-

tion operator A:

(3.22)IU B
A HA, gLYM@AD = U B

A H- , gLY@AD.
For the vectors |G, jl, al, bl\ (and choosing a representation RH jL of SU(2)) this gives

(3.23)R b
H jL a HU HA, gLL G, jl, al, bl^ = G‹ 8g<, j, jl, a, al, b, bl^.

We may therefore think of the holonomy operator as adding a link g in the j represen-

tation to G.

The momentum operator E is given as (Rovelli (2003), p. 174)
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(3.24)Ei HSL ª - iÑ‡
S

ds1 ds2 naHsL d

dAa
i Ix HsLM .

Here,  s  = (s1,  s2)  are  coordinates  on the surface S  in  the 3d manifold  S.  naHsL  is

the normal 1-form on S. By letting the curve g of the holonomy cross the surface S, we

derive the action of the momentum operator on the holonomy in any representation j:

(3.25)Ei HSL R j HUHA, gLL= S
pœHS›gL ≤ iÑ R j IU IA, g1

pMM H jLti R j IU IA, g2

pMM.
In  this  formula,  the curve g  is  divided into  two parts  g1

p
 and g2

p
 by the intersection

point p, and the generator H jLti in the j representation of SU(2) is inserted at the intersec-

tion. The operator Ei HSL grasps g. A peculiar feature of the momentum operator Ei HSL
may already be noted: When acting on a spin network state, the operator adds a node

in each point of intersection of the links l and the surface S. Likewise, the holonomy U
(the "configuration variable" in our quantising procedure) adds a new link to the state.

(The trace operator of U adds a closed loop.)

This operator is not invariant under the internal gauge transformations. However, by

means of E  we may define the geometric  operators  A (area) and  V (volume).  This is

done by partitioning the surface S in N smaller surfaces Sn:

(3.26)A HSL ª lim
N Ø¶

S
n

Ei HSL Ei HSL .

The operator A  is  gauge invariant and self-adjoint,  and it  has the discrete spectrum

given by

(3.27)A HSL S] = Ñ S
pœHS›gL jpI jp+1 + 1M † S\.

This  formula,  predicting  the  quantisation  of physical  area,  may be  the most  impor-

tant result of the theory. It is not yet strictly proven. Indeed, there are indications that a

proof is still some way off (Dittrich and Thiemann (2008)): such observables have not

been defined for the physical space, that is, the area operator above does not commute

with the Hamiltonian operator.

Similar  difficulties surround the volume operator  V(�).  This  operator is  defined by

taking the limit  on small  cubes,  and  it  is  shown that  the  action of V  on  the spin  net-

work states |S\ is restricted to the intertwiners (Rovelli (2004), p. 259). V is also self-

adjoint  and  has  a  discrete  spectrum.  Neither A  nor  V  are  physical  observables  in  the

full sense demanded by LQG. Although SU(2)-invariant, they are not diffeomorphism-

invariant (see Kiefer (2004), p. 175).
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3.1.4. The Dynamics

The  central  dynamical  equations  of  general  relativity  are  the  Einstein  equations,
providing six independent differential equations for the metric in terms of the energy-

momentum  tensor.  The  equations  may  be  derived  by  requiring  that  the  Einstein-

Hilbert  action  is  stationary  under  variation  of  the  metric  components.  An  even  more

general  approach  would  be  to  define  the  Hamilton-Jacobi  equation  for  the  Euclidean

system above as (Rovelli (2003), section 4.1)

(3.28)Fab
ij Ht”L dS@AD

dAa
i Ht”L

dS@AD
dAb

jHt”L
= 0.

Here,  S[A]  is  the  principal  Hamilton  functional,  and  F  is  the  curvature  of  A.  The

complex field A is defined on a 3-dimensional space s without boundaries and coordi-

natized by t
”
. (On s the value of A will be an element of the Lie algebra ��(2) @ ��(3).)

We may regard A as the collection of measurements of A on s. The functional S[A] is

defined on the space Riem S of the 3d connections A, and it is invariant under internal

gauge transformations and 3d diffeomorphisms.

The quantisation of the physical  theory now proceeds in the following manner. We

obtain  the  quantum  dynamical  Wheeler-DeWitt  equation  by  interpreting  S[A]  as  Ñ  ×

the  phase  of  Y[A],  simultaneously  replacing  the  derivatives  in  the  Hamilton-Jacobi

equation above with derivative operators:

(3.29)Fab
ij Ht”L d

dAa
i Ht”L

d

dAb
jHt”L

Y@AD = 0.

Or, defining the hamiltonian operator H,

(3.30)HY = 0.

In  this  way,  a  classical  constraint  has  been  turned  into  a  restriction  on  the  state

space of  the quantum  theory:  the physically allowable  states  must  obey the Wheeler-

DeWitt equation. 

The states in physical space � are found as solutions of the Wheeler-De Witt equa-

tion.  The hamiltonian operator  H  of the equation is  given as the limit  when e  Ø  0 of

the operator

(3.31)

He S\ = -
i

Ñ
S
nœS

Nn S
l,l',l''

ell' l''

Tr IU IA, gxHnL,l-1 M U IA, axHnL,l',l''M AVH�nL, U IA, gxHnL,lMEM † S \ .

Here, x(n) is the position of the node n, gxHnL,l  is a path of coordinate length e along

the link l, and axHnL,l',l'' is the triangle along the links l' and l'' with side lengths e closed

by  a  line  connecting  the  end  points.  �n  is  the  small  region  around  the  node  n.  The

limit  can be shown to  exist  on diffeomorphism invariant  states.  Also,  on these states,

the operator is quantised.
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3.2. The Bohrification of Loop Quantum Gravity

Quantum  physics,  even  including  quantum  gravity,  should  satisfy  Bohr's  principle

of  classical  observation.  Interpreted  in  a  topos  model,  this  implies  that  all  measure-

ments  on  observables  derived  from the  gravitational  field  should  be  contained  in  the

family  of  classical  contexts.  As  indirect  justification  for  this  doctrine  in  the  quantum

gravitational case, one may perhaps cite evidence pointing to the difficulty of quantis-

ing  a  system without  also  quantising  any other  system to  which  it  is  coupled  (Kiefer

(2004), p. 19). 

Our goal is to find a certain generalized space (to be precise, a locale) which may be

identified  as  the  state  space  of  quantum gravity  in  the  topos  model.  This  space  will

turn  out  to  be  the  Gelfand  spectrum of  the  commutative  (in  the  topos)  algebra  �  of

observables in the topos Sets�H�L. The Bohrification procedure, as outlined in subsec-

tion 2.2.2, suggests that we should proceed in the following manner:

1.  Find  a  suitable  non-commutative  C*-algebra  �  which  will  represent  a

(complete) set of (kinematical) observables of LQG.

2. Delineate the family of commutative subalgebras of �.

3.  Compute  the  (external)  description  S�  (the  Bohrified  state  space  of  �)  of  the

locale S(�) (the Gelfand spectrum of �).

4. Investigate the topological properties of S�.

5.  Are  the  requirements  of  gauge  and  diffeomorphism  invariance  satisfied  in  the

"Bohrified" version of LQG?

 Below, we give just  the basic  construction of the topos model  of LQG, and a first

discussion of its elementary properties. In a more advanced exposition, one should ask

whether  the  model  is  relevant  for  attacking  some  of  the  remaining  issues  in  LQG

theory, such as the problem of the classical limit (see Rovelli (2004), p. 292, for a list).

Can we start from an algebra � of physical ('Dirac') observables, and is the correspond-

ing  state  space  S�  the  true  dynamical  space  of  the  theory?  Is  it  possible  to  calculate

transition amplitudes in this model?

We refer the reader to section 3.1 for some of the physical justification of the LQG

constructions to  follow.  A compact  reference for  C*-algbras is  de  Faria  and  de Melo

((2010), appendix B).
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3.2.1. The Choice of a C*-Algebra

In this subsection, we sketch some of the difficulties connected with the choice of a

suitable operator algebra for a topos model of LQG. We shall simplify matters consider-

ably  by  considering  only  the  non-dynamical  case.  Thus,  we  will  not  enter  into  the

problems  connected  with  the  (physical)  Hamiltonian  constraint  here  (cf.  subsection

3.1.4). For the moment, this is not unduly restricting. As mentioned in section 3.1, the

gauge  and  diffeomorphism  constraints  already  give  us  a  glimpse  of  the  fine-scale

structure  of  space-time  in  LQG.  In  fact,  the  space  �0  of  states  which  are  invariant

under the local SU(2) gauge transformations suffices for this.

In  subsection  3.1.3,  the  canonical  variables  of  LQG,  U B
A  (the  configuration  vari-

ables)  and  Ei HSL  (the  momentum  variables)  were  promoted  to  operators.  We  also

include the  identity  operator,  thus  completing the  set  of  "fundamental"  variables.  We

saw  that  these  operators  could  be  represented  on  a  space  �.  A  scalar  product  was

defined for �, and, completing � in the associated norm, we found the state space � , a

Hilbert space. Can we build a concrete C*-algebra from these materials? (Recall that a

set � of bounded linear operators on a Hilbert space H is called a concrete C*-algebra
if it is a *-subalgebra of B(H) and closed in the norm topology, i.e. if a sequence An of

operators  satisfies  lim ∞An  –  A¥  =  0,  then  A  œ  �.)  Briefly,  we  outline  a  result  which

shows that we must be careful with our construction.

Lemma  3.1    (i)  All  multiplicative  operators  defined  from  cylindrical  functionals

(cf.  3.16  above)  are  bounded.  In  particular,  the  cylindrical  operators  U B
A  are

bounded. (ii) The flux operators Ei HSL are unbounded and the area operators A(S) are

unbounded and positive.

Sketch  of  proof    (i)  Multiplicative  operators  given  by  cylindrical  functionals  are

smooth functions f : SU(2LN  Ø �. But SU(2LN  has the product topology built from the

compact Lie group SU(2). Therefore, SU(2LN  is a compact space, so f is bounded. The

operator norm then coincides with the sup norm of f.
(ii) In order to prove that an operator Ei HSL is unbounded, it  suffices to consider its

action on states which are of the form G, jl, al, bl\, where G = 8g1, ..., gN} is a graph

in the 3d space S, jl  is a representation of SU(2) and al,  bl  are matrix components of

R b
H jL a HU HA, glLL  (cf.  (3.20)  above).  Assume  there  is  an  N  such  that  ∞Ei HSL¥  <  NÑ.

Recall from (3.25) above that (cf. also Rovelli (2007), p. 245)

(3.32)Ei HSL HUHA, gLL = S
pœHS›GL ≤ iÑU IA, gl1

p M ti U IA, gl2
p M.

Each path gl  is cut in two halves, gl1
p

 and gl2
p

, at the intersection points in S › G. For

simplicity, we have chosen the representation j = 1/2. It is possible to pick paths gl and

a connection A such that the graph G intersects the surface S in N points and
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(3.33)ti = U*IA, gl1
p M U*IA, gl2

p M.
It then follows that

(3.34)
Ei HSL G, jl, al, bl\ = S

pœHS›gL ≤ iÑ .

U(A, g) œ SU(2), so the last result implies that

(3.35)∞Ei HSL¥ ¥ S
pœHS›gL ≤ iÑ = NÑ.

This contradicts our assumption, hence Ei H�L is unbounded.

It can also be seen that the area operators A(S) are unbounded and positive. The spin

network  states  »S\  form  an  orthonormal  basis  in  �0  (Rovelli  (2004),  p.  236).  The

properties then follow from the action of A(S) on »S\ as given in (3.27).  Ñ

The operators  Ei HSL  are  neither  bounded  nor  self-adjoint.  Now,  selfadjointness  can

be had if we switch to the area operators A(S), but these operators are still unbounded.

If  we  want  to  use  the  C*-algebra  formalism of  the  Bohrification  approach,  we  must

find  a  way to  tame these  operators.  At  this  point,  it  might  be  of interest  to  introduce

Weyl's device for avoiding unbounded operators. If we stick to the unbounded opera-

tors A(S), we may try to define the one-parameter group of Weyl operators

(3.36)V HtL = eitAHSL.
These will be bounded operators, in fact, they are unitary. Naively, we may then try

to create a C*-algebra in the following manner. Consider holonomies U(A, a) with a a

single closed curve. The Wilson loops Ta[A] = 
1

2
tr U(A, a) are multiplicative operators

on  the  state  space  �.  (The  algebra  generated  by  these  functionals  is  known  as  the

holonomy algebra.) Generally, the holonomy fulfills U(A, g)U(A, –g) = I for any curve

g.  For the gauge group SU(2), this implies that U(A, gL†  = U(A, –g). From the defini-

tion  of  the  scalar  product  (3.18),  we  see  that  Ta
*[A]  =  Ta@AD  (here,  *  is  the  adjoint

operation). We deduce the elementary properties

(3.37)Ta@AD = Ta
*@AD,

(3.38)Ta
*@AD = 1

2
trUHA, aL = 1

2
trUHA, aL† =

1

2
trUHA, –aL = T–a@AD.

By  the  first  property,  the  operators  Ta[A]  are  self-adjoint.  Also,  the  operator  norm

coincides  with  the  supremum  norm  on  the  Wilson  loops,  so  we  note  that  ∞Ta¥  =  1

because  the  trace  of  an  element  in  the  group SU(2)  is  less  than  or  equal  to  2.  Let  us

assume for simplicity that »S\ is a state such that the loop a does not intersect it. Then

Ta[A]»S\ = »S‹a\. Together with the unbounded operators A(S), the Ta[A]'s then form

canonical commutation relations

(3.39)@Ta@AD, AHSLD = - iÑ S
pœHS›aL jpI jp+1 + 1M Ta@AD.
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For  the  usual  construction  of  a  Weyl  C*-algebra,  we  expect  a  relation  such  as

"@Ta@AD, AHSLD  =  –iÑI"  in  order  to  apply  the  Baker-Hausdorff  formula,  so  the  above

result  is  not  very  useful.  If  we  want  to  proceed  within  the  topos  approach,  we  shall

have  to  appeal  to  a  deeper  analysis  of  the  operators  involved.  Several  such  analyses

are  available  in  the  litterature  on  LQG.  The  best  known  is  probably  the  so-called

holonomy-flux algebra, a *-algebra (Thiemann (2007)). Below, we shall use the Weyl

C*-algebra developed in Fleischhack (2004).

Before  we  turn  to  the  construction,  we  remark  that  the  procedure  outlined  above

suggests the following supplement to the Bohrification method of section 2.2.2. Accord

ing  to  Bohr's  thesis,  observation  is  always  filtered  through  classical  concepts.  How-

ever,  one  may  argue  that  it  is  not  the  observables  themselves  that  are  of  primary

importance,  but  rather  their  evolution.  Of  main  interest  in  particle  physics  is  the

calculation of transition probabilities when one or several particles approach an interac-

tion region from infinitely far off, and leave again at infinity. In fact, these probability

distributions  (the  cross-sections)  are  all  that  is  measured.  For  example,  suppose  that

Yin is the incoming particle state, and we want to find the probability that the outgoing

state is Yout. The amplitude for development from Yin  to Yout  will then be given by the

quantity XYout  » e-iHt  Yin\, where U ª e-iHt  is the unitary Weyl operator corresponding

to the Hamiltonian H.

So  the contexts  of our  topos model  ought  to  be subalgebras  of a  Weyl  algebra  AW

(to  be named �  in  the LQG case below).  The functor  AW ,  the  counterpart  of AW  in

the  topos,  may  then  be  called  the  Weylification  of  the  original,  untamed  algebra  A
generated  by  the  "position"  and  "momentum"  operators  of  A.  Quite  apart  from  the

present topic, quantum gravity, it would be of interest to see to if Weylification modi-

fies the constructions of the topos-theoretical approach to quantum physics. Presently,

we shall  pursue  a  variant  of this  scheme.  Figure  3.2  below sums up the  path  that  we

shall follow in the rest of this chapter.
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Figure 3.2. The Bohrification of LQG.

3.2.2. The Configuration Space �

We have already spoken of the quantum states as  defined on a configuration space


  consisting  of  the  "position"  observables  A,  the  connections  defined  on  a  Cauchy

surface S. Let us now be a bit more precise. (Variants of the definitions to follow can

be found e.g. in Thiemann (2007), p. 162-175, and Fleischhack (2004), p. 14-34.) For

technical reasons (e.g. Fleischhack (2004), p. 2), it  is useful to extend the space 
  to

include generalized connections. 

Below, S is a 3d manifold, but we leave it open whether S is differentiable, analytic

or even, for some purposes, semi-analytic (see Thiemann (2007), p. 162, for an enumer-

ation of demands on S). The reader may prefer to think of S as the Cauchy surface on

which we collect our physical data.

The  set  of  all  paths  in  S  (equivalent  up  to  endpoints,  orientation-preserving

reparametrizations  and  the  deletion  of  retraced  curves  c  ë  c-1)  is  denoted  by  �.  We

may  regard  �  as  a  groupoid  under  composition  of  paths.  (We  shall  only  be  able  to

compose paths  when  the second  path  takes  off from the  end point  of the  first,  so  the

operation  is  only  partial.)  Informally,  we  say  that  graphs  v  are  finite  collections  of

independent edges, where an edge  is a path with no crosses (but possibly closed). All

paths  are  finite  combinations  of  edges.  A  collection  of  edges  is  independent  if  the

edges meet  each other at  most  in  the beginning and  final  points.  Then �v  is  the  sub-

groupoid in � generated by the edges in the graph v.
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Definition 3.1   (i) Hom(�, SO(3)) is the set of groupoid morphisms from the set of
paths in S into SO(3). (ii) HomH�v, SO(3)) is the set of groupoid morphisms from the

subgroupoid �v to SO(3). (Homomorphisms in this set will be denoted by xv.)

In section 3.1, paths g in S and connections A in 
 were associated with matrices in

SO(3) (or SU(2)), the holonomies hg(A) = U(A, g)(1). The holonomy is defined as the

unique solution of the equation

(3.40)
„

„ s
UHA, gL HsL= UHA, gL HsL AiHgHsLL g

† i HsL.
Formally, one also writes

(3.41)hgHAL = P ‡
g
A.

For  holonomies,  it  holds  that  hg1ëg2
(A)  =  hg1

(A)hg2
(A)  and  hg-1(A)  =  hg(AL-1  (this

simply  says  that  parallel  transport  forth  and  back  along  a  curve  does  not  change  the

vector), so any connection A may be identified with its groupoid morphism g # hg(A).

Thus 
 Õ Hom(�, SO(3)).

Definition 3.2   (i)  
  = Hom(�,  SO(3)) is  the set of generalized connections  (on a

principal SO(3) bundle with base manifold S). (ii) 
v = HomH�v, SO(3)).

It has been pointed out (e.g. Thiemann (2007), p. 169) that 
 also contains distribu-

tional elements, so it is very large. (This is what we expect to find in a quantum field

theory: in the Wightman axiomatization (Streater and Wightman (1980)) the fields are

operator-valued distributions.)

The  next  step  is  to  find  a  topology for  the  space  
.  Note  that  the  sets  
v  may be

identified  with  SO(3LÒ v  (where  #v  is  the  number  of  edges  in  v).  SO(3)  is  a  compact

Hausdorff space,  so  
v  is  compact  Hausdorff too.  Recall  that  the Tychonov topology

on  a  direct  product  X¶  (of  any  cardinality)  of  topological  spaces  Xv  is  the  weakest

topology such that the projections onto the component spaces are continuous. Also, by

Tychonov's  theorem,  the  direct  product  space  of  compact  topological  spaces  is  a

compact  topological  space (in  the Tychonov topology).  Accordingly,  the direct  prod-

uct space 
¶ := ¤vÕ� 
v is compact (it is also Hausdorff). 
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In order to situate 
 within 
¶, we appeal to the notion of a projective limit. We let

� be the set of subgroupoids of �, and say that �v  � �v'  (or simply v � v') iff �v  is a

subgroupoid of �v'.  It can be shown that �  is a partially ordered and directed set (the

last point is not entirely trivial; see Thiemann (2007), th. 6.2.13). The set � is associ-

ated with a projective family H
v, pv' vLv�v'œ�, where pv' v  : 
v'  (= HomH�v', SO(3))) Ø


v (= HomH�v, SO(3))) is the projection of the groupoid 
v' onto its subgroupoid 
v.

The  projective  limit  
  of  the  projective  family  H
v,  pv' vLv�v'œ�  is  the  subset  of  
¶

given by

(3.42)
 = 9HxvLvœ� " v � v ' Hpv' vHxv'L = xvL=.
The  elements  HxvL  ª  HxvLvœ�  are  called  nets.  Note  that  the  sign  
  here  makes  a

second entrance. This is justified by the following lemma.

Lemma 3.2 [cf. Thiemann (2007), th. 6.2.22]   The set of generalized connections 

is the projective limit of the projective family HXl, pl' lLl�l'œ�.

If  we  let  pg  :  
  Ø  
v  >  SO(3LÒ v  be  the  projection  of a  generalized  connection  A

onto  its  family  member  in  
v,  we  may  extend  the  domain  of  the  holonomies  hg  to

include all generalized connections A by the stipulation

(3.43)hgHAL := pgHAL.
Below, we shall also switch to the notation hAHgL = hgHAL, or even A(g), whenever it

is more convenient (e.g. in proposition 3.4). We now define the topology on 
 as the

subspace topology of 
 with respect to the Tychonov topology on 
¶.

Lemma 3.3 [cf. Thiemann (2007), th. 6.2.19]   
 is a closed subset of 
¶.

Because  
¶  is  compact,  it  follows from the last  lemma that  
  is  a  compact.  
  is

the configuration space upon which the states of the theory are to be defined.

 3.2.3. The State Space �

The next step on the construction ladder (fig. 3.2) will be to identify the state space

�  as  L2(
,  m0),  the  square-integrable  functions  on  the  space  of  generalized  connec-

tions.  To do this,  we must  define a  measure m0  on 
.  Note  that  SO(3),  as  a  compact

Lie  group,  has  a  unique  Borel  measure,  the  Haar  measure  dg.  The  Haar  measure  is

invariant under left and right translation by g in SO(3):

(3.44)‡
SOH3L

f HgL dg = ‡
SOH3L

f HghL dg = ‡
SOH3L

f HhgL dg.
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By  Fubini's  theorem,  integration  over  
v  º  SO(3) Ò v  may  be  reduced  to  iterated

integration over SO(3)  (e.g.  Sepanski  (2007)).  Denoting the projection  of 
  onto  
v

by pg, we demand that a measure m0 on 
 shall satisfy the condition

(3.45)m0 = dg1 dg2 ÿ ÿ ÿ dgÒ v ëpg.

There  is  a  unique  (regular)  Borel  measure  which  fulfills  this  requirement,  the

Ashtekar-Lewandowski  measure  m0  (for  a  precise  definition,  see  Thiemann  (2007),

def.  8.2.4).  (It  has  been  proven  that  the  state  space  �  introduced  in  subsection  3.1.2

can be identified with L2(
,  m0).)  As usual,  we have the norm on L2(
,  m0) induced

by the standard inner product.

Definition  3.3   The  state  space  �  is  the  Hilbert  space  L2(
,  m0)  of  measurable

square-integrable functions over the space 
 of generalized connections, where m0  is

the Ashtekar-Lewandowski measure.

3.2.4. The Operators and Their Interpretation

We now have the set of bounded operators on the state space, B(L2(
,  m0)),  at our

disposal,  and  may  proceed  with  the  construction  of  the  C*-algebra  by  picking  the

appropriate  operators  within  this  set.  Firstly,  we  shall  need  representatives  of  the

holonomy (or "configuration") operators U B
A . We remarked in the proof of lemma 3.1

that  these  are  multiplicative  operators.  But  if  f  is  any  continuous  function  on  
,  we

define the operator T f  œ B(L2(
, m0)) by

(3.46)IT f fM HAL = f HAL fHAL, f œ L2I
, m0M.
We therefore identify the set of configuration operators with the set of multiplicative

operators corresponding to the continuous functions on the configuration space 
.

Definition  3.4   T  =  {T f  œ  B(L2(
,  m0))  »  f  œ  C(
)}  is  the  set  of  configuration

operators on the state space (L2(
, m0).

Above,  we  considered  two  kinds  of  flux  (or  "momentum")  operators,  Ei HSL  and

A(S).  We now concentrate on Ei HSL,  which was defined relative to  a surface S  in the

3d  manifold  S  (the  Cauchy  surface).  Recall  (from (1.24))  that  the  full  expression  for

Ei(S) was

(3.47)Ei HSL = - iÑ‡
S

ds1 ds2 naHsL d

dAa
i Ix HsLM .
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We first focus on the notion of a surface. There are several options available in the

LQG  literature  for  the  definition  of  a  surface,  and  we  choose  to  follow  Fleischhack

((2004), p. 22). We say that a subset S of S is a quasi-surface iff every edge g can be

decomposed  into  a  finite  set  of  segments  8g1,  ...,  gn}  such  that  the  interior  of  any

segment gi  is either included in S or has no points in common with S. As we have not

yet  commited ourselves  to  a  particular  choice of  smoothness properties  for  S  and the

edges  in  S,  this  flexibility  carries  over  into  the  definition  of  S.  We  shall,  however,

suppose  that  the  surfaces  have  an  orientation.  For  this  purpose,  we  say  that  a  quasi-

surface  S  is  oriented  if  there  exists  a  function  sS  from  the  set  of  all  parameterized

paths to the set {–1, 0, 1} such that

sS(g) = ∂ ≤1 if g H0L œ S and g does not have an initial segment included in S

0 if gH0L – S or g has an initial segment included in S.
 

We also demand that, if g1  and g2  are paths such that g1  ends where g2  begins, then

sS(g1  ë g2) = sS(g1) unless g1  ends on S.  For a g which starts and ends on S without

crossing it,  we demand sS(g) = sS(g).  This assures that sS(g1) = sS(g2) for paths g1

and  g2  which  start  on  S and  have  an  initial  segment  in  common.  Another  reasonable

requirement is to set sS(g) = (–LnsS(g) for paths which start and end on S, after cross-

ing it n times. The function sS is called the intersection function.

The  second  ingredient  in  the  definition  of  Ei(S)  is  the  functional  differential

d/dAa
i Ix HsLM,  which  is  smeared  across  the  surface  S.  From  quantum  mechanics,  we

expect  the  momentum operator,  as  the  conjugate  of  the  configuration  operator,  to  be

the generator of (infinitesimal) translations in configuration space. Indeed, for a parti-

cle moving in the one-dimensional space �,  we can define the translation operator Te

by stipulating that

(3.48)HTe yL HxL = yHx - eL.
Expanding both sides to first order in e, we have

(3.49)I -
ie

Ñ
P y HxL = yHxL- „y

„ x
e.

It  follows at  once that  P = –iÑd/dx,  so the momentum operator generates a transla-

tion  by  e.  Analogously,  we  should  define  the  quantum  gravity  momentum  as  the

generator  of small  translations in our configuration space,  the generalized connection

space 
. The next result is therefore important:

Proposition 3.4  [Fleischhack (2004),  prop. 3.19]   Given a quasi-surface S and an
intersection function sS, and let g be a path in S which does not traverse the surface

S. There is a unique map QS,sS  :  
 × Maps(S, SO(3)) Ø 
 such that
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hQS,sS IA,dM(g) = 
dHgH0LLsSHgL hAHgL dHgH1LL–sSIg-1M if int HgL is not included in S

hA HgL if int HgL is included in S.

QS,sS  is continuous if Maps(S, SO(3)) is given the product topology. We define Qd
S,sS

: 
 Ø 
 by

Qd
S,sS

(A) = QS,sSIA, dM.
Then Qd

S,sS  is a homeomorphism which preserves the measure m0 on 
.

Qd
S,sS

 is  the  sought-for  momentum operator (or  rather,  class  of operators).  We shall

give a heuristic motivation of its definition. For simplicity, we shall consider the case

when the triple (S, sS, dg) is given, with dg the constant mapping of S to the element g

in  SO(3),  and  where  S  is  a  quasi-surface  with  orientation  sS.  We  then  denote  the

corresponding operator simply by Qg  (= Qdg

S,sS
). By the second clause of the definition,

hQgHAL(g) = hA HgL when int(g) is on the surface, so Qg  leaves the holonomy unchanged

for such paths. (This corresponds to case (a) in figure 3.3.) For a path g1  which leaves

the  surface at  g1(0)  on  the  upper  (positive)  side,  we  have  hQgHAL(g1)  =  gsSHg1LhAHg1L  =

ghAHg1L  (case  (b)),  whereas  a  path  g2  entering  on  the  upper  side  gives  hQgHAL(g2)  =

hAHg2Lg–sSIg2
-1M  =  hAHg2Lg–1,  because  sS(g1)  =  sS(g2

-1)  =  1  (case  (c)).  For  a  path  g3

which  starts  on  the  surface  and  then  returns  to  it,  we  have  hQgHAL(g3)  =

gsSHg1LhAHg3Lg–sSIg3
-1M  = ghAHg3Lg–1  (case (d)). Similar results hold for paths entering or

leaving  the  surface  from below  (negative  side).  The  cases  (e)  -  (g)  in  the  figure  are

excluded. 
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Figure 3.3. Some combinations of surfaces and paths.

The holonomy hA(g) smears the connection A along the path g. We now see that the

operators Qg  act  upon the holonomy where the path g  hits the surface S.  E.g.  in case

(b) we saw that

(3.50)hQgHALHgL = g hAHgL.
For  paths  g  of  small  length  e,  multiplication  by  an  element  g  in  SO(3)  reduces  to

addition  by  a  linear  combination  eiti  in  the  corresponding  Lie  algebra  ��(3)  º  ��(2).

So  Qg  (or,  generally,  Qd
S,sS

 when  d  is  non-constant)  is  a  generator  of  infinitesimal

translations. Briefly,

"Q = I + eiti".

In  most  cases,  Qd
S,sS

 will  be  unbounded,  but  this  difficulty  is  quickly  removed.

Again,  we  may  pursue  an  analogy  with  quantum  theory.  Here,  it  is  demanded  that

symmetry transformations (such as the Galilean or the Lorentz transformation) should

be  represented  by  unitary  operators  on  the  state  space.  It  then  turns  out  (Weinberg

(1995), p. 59) that the first-order term of the unitary operator U of the Lorentz transfor-

mation can be identified as the momentum operator P. The construction in Fleischhack

((2004), p. 26) achieves this by means of the following result:

Proposition 3.5   For (X, m) a compact Hausdorff space, m a regular Borel measure
on X and y  :  X  Ø  X a  continuous surjective  map which  leaves  m  invariant,  the  pull-
back map y* : C(X) Ø C(X) can be extended to a unitary operator on L2(X, m).
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Proof    The  proof,  though  simple,  is  omitted  from  most  text  books  on  functional

analysis,  so we include it  here.  It  suffices to  prove that  y*  is  an  isometry of L2(X,  m)

onto L2(X, m). Note first that y* is an isometry on the linear subspace C(X) of L2(X, m):

†y* f §2 = ‡
X
y* f y* f „m = ‡

X
f f ëy „m = ‡

X
f f „m = † f §2.

 By the Stone-Weierstrass theorem, C(X) is dense in L2(X, m), so y* can be extended

to L2(X, m). By continuity of y, y* is an isometry on L2(X, m). It is also onto, for given

f œ L2(X, m), there is a sequence 8 fn} in C(X) such that fn  Ø f.  But y is surjective, so

there is a convergent sequence 8 fn'} in C(X) with y* fn' = fn' ë y = fn for each n. Let f '

= lim fn'. Then y* f ' = y*(lim fn') = lim y fn' = lim ( fn' ë y) = lim fn = f .   Ñ

We also have the following useful lemma:

Lemma 3.6   For f œ C(X) and y : X Ø X, the corresponding operators T f  and w ª

y* in BHL2(X, m)) satisfy w ë T f  ë w-1 = TwH f L.

Proof   Assume h œ C(X). Then (TwH f L ë w)h = TwH f L(w(h)) = TwH f L(h ë y) = w(f ) (h ë

y)  = (f  ë  y)  (h  ë  y)  =  (f  h)  ë  y  = w(f  h)  = w(T f h)  = (w  ë  T f )h.  But  C(X)  is  dense  in

L2(X, m), so the relation holds also for h œ L2(X, m).   Ñ

The  configuration  space  
  with  measure  m0  fulfills  the  conditions  in  proposition

3.5. Also, Qd
S,sS

 is a homeomorphism, hence surjective. Application of the proposition

to the momentum operators now allows us to define the Weyl operators:

Definition 3.5  [Fleischhack (2004),  def.  3.21]  Let Qd
S,sS  :  
  Ø  
  be a momentum

operator  as  in  proposition  3.4.  The  Weyl  operator  wd
S,sS

 :  L2(
,  m0)  Ø  L2(
,  m0)  is

defined as the pull-back of the momentum operator,

wd
S,sS  := (Qd

S,sS)*.

We may regard the first-order terms of the operators w above as generators of transla-

tions in the space of generalized connections 
. 

3.2.5. The Weyl C*-algebra �

The  discussion  has  prepared  us  for  the  next,  central  definition,  which  gives  us  the

C*-algebra needed for the toposification of loop quantum gravity:
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Definition 3.6 [Fleischhack (2004), def. 4.1]   The loop quantum gravity C*-algebra

�  is  the  subalgebra  of  bounded operators  in  BHL2(
,  m0))  generated by  T  =  {T f  œ

B(L2(
,  m0))  »  f  œ  C(
)} (where  T f  is  the  multiplicative  operator associated  with  f)

and the Weyl operators wd
S,sS

.

We say that T is the set of position (or configuration) operators. The choice of C(
)

for this purpose is analogous to the definition of position operators in quantum mechan-

ics  (cf.  Fleischhack  (2004),  p.  15  and  Rovelli  (2004),  p.  199).  �,  as  defined  above,

fulfills the demands on a (concrete) C*-algebra. (The norm of the algebra is simply the

operator norm in BHL2(
, m0), which satisfies the additional norm condition ∞A*A¥ =

∞A¥2.)  It  is  also  clear  that  �  has  non-trivial  commutative  subalgebras.  Below,  we

mention some of them.

Example 3.1   Let WT  be the subalgebra of � generated by the set of configuration

operators T = {T f  œ B(L2(
, m0)) » f œ C(
)}. Then WT  is a commutative C*-subalge-

bra of �.

Example 3.2 [Cf. Fleischhack (2004), cor. 3.23]   Let (S, sS) be an oriented quasi-

surface, and let D be a set of functions d : S Ø SO(3) such that d1d2  = d2d1  for all d1,

d2 œ D. Define WS,D as the subalgebra of � generated by the set of all operators wd
S,sS

with d  œ  D.  Then wd1

S,sSwd2

S,sS
 = wd1 d2

S,sS
 = wd2

S,sS wd1

S,sS
.  Indeed, assume f  œ  L2(
,  m0) and

let 8 fn} be a sequence in C(X) such that fn Ø f. We have, for each n,

(wd1

S,sSwd2

S,sS
) fn = wd1

S,sS
( fn ë Qd2

S,sS
) = ( fn ë Qd2

S,sS
) ë Qd1

S,sS
 = fn ë Qd1 d2

S,sS
 = wd1 d2

S,sS fn.

By taking the limit, we find that  these operators are commutative over all of L2(
,

m0). Above, we used the relation

Qd2

S,sS
 ë Qd1

S,sS
 =  Qd1 d2

S,sS
.

This can easily be derived from the definition (in prop. 3.4) of Q.  Consider e.g. the

case where a path g leaves the surface S in the positive direction without return. Then

hQd1 d2

S,sS HAL(g)  =   d1(g(0)) d2(g(0))  hA(g)  =  d1(g(0))  hQd2

S,sS HAL(g)  =  hQd1

S,sS IQd2

S,sS HALM(g)  =

hQd1

S,sS ëQd2

S,sS HAL(g).

This  shows  that  WS,D-algebras  are  commutative  subalgebras  of  �.  The  proof

depended  crucially  on  the  commutativity  of  the  "translator  functions"  d.  For  a  given

surface S, the algebra WS  generated by the set ‹D commutative WS,D  will in general not be

commutative.
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Example 3.3    The algebras WT  and WS,D  belong to the configuration operator and

momentum operator  region,  respectively.  We  might  wonder  if  there  are  commutative

subalgebras of � which combine these regions. Let S be a given quasi-surface. If we

apply lemma 3.6  to  the operators   wd
S,sS

 and T f ,  we see that  the relation  wd
S,sS  ë  T f  ë

Jwd
S,sSN-1

 =  Twd
S,sS H f L  holds  in  �.  Therefore,  whenever  f  =  wd

S,sS
(f  ),  this  reduces  to  a

commutative relation

(3.51)wd
S,sS
ëT f = T f ëwd

S,sS
.

Writing  f  ª  T f  for  the  multiplicative  operator  and  calculating  with  h  œ  L2(
,  m0),

this amounts to the demand that

(3.52)wd
S,sSH fhL = f ÿ wd

S,sSHhL.
Now consider the relation

(3.53)f JQd
S,sS JANN = Jwd

S,sS H f LN HAL = f HAL for all A œ 
.

We say that  f  is  q-invariant  when relation (3.53) holds for a momentum operator q.

Given a set V of commuting Weyl operators, f  is said to be V-invariant  if the relation

holds  for  all  momentum  operators  corresponding  to  the  Weyl  operators  in  V.  If  we

like, we may also consider the subalgebra generated by V and the set of all multiplica-

tive  operators  for  which  the  relation  holds.  In  particular,  given  the  set  WS,D  as  in

example 3.2.2, we define F(S, D) = {T f  œ C(
) »  f is WS,D-invariant} and let WFHS, DL
be the subalgebra generated by WS,D ‹ F(S, D).

Lemma 3.7   For f a q-invariant function in C(
), wd
S,sS=  (Qd

S,sS
)* commutes with

T f .

Proof   First, note that, for A œ 
,

[wd
S,sSH fhL](A) = [(fh) ë Qd

S,sS
](A) = f (Qd

S,sS
(A)) · h (Qd

S,sS
(A)).

We also have

[f · wd
S,sS

(h)](A) = f (A) · [wd
S,sS

(h)](A)

=  f (A) · h (Qd
S,sS

(A) = f (Qd
S,sS

(A)) · h (Qd
S,sS

(A)).

The  last  step  uses  the  q-invariance  of  f.  This  shows  that  (3.52)  holds,  from which

commutativity follows.   Ñ
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One  may inquire  further  about  the  circumstances  under  which  q-invariance  occurs.

For  d(x)  =  I  (the  identity  in  SO(3)),  we  have  the  trivial  case,  wd
S,sS

 =  wI
S,sS

 =  I  (the

identity  operator  on  L2(
,  m0)).  If  f  is  Qd
S,sS -invariant  for  all  operators  Qd

S,sS  defined

with respect to a given surface S, we say that f is S-invariant. We also say that f is S-

invariant around A if f (B) = f (A) for all connections B such that B(g) ª hBg = g(g(0))

hAg g(g(1)L-1 for some function g : S ØSO(3) and all loops g starting and ending on S.

Lemma 3.8   f is S-invariant if f is S-invariant around A for all generalized connec-

tions A.

Proof   Immediate from the definition of the operators Qd
S,sS

.  Let A  be any connec-

tion.  Then, for the connection Qd
S,sS

(A),  we may take g = d S  (the restriction of d  to

S). From the S-invariance of f  around A,  it  follows that f  (Qd
S,sSHAL) = f  (A),  so f  is S-

invariant.   Ñ

In quantum theory, position and momentum operators do not commute when there is

a  time-like  or  light-like  separation  between  the  points  at  which  the  operators  are

defined. Likewise, operators T f  and Qd
S,sS

 will not, in general, commute. There are still

other  results  for  surfaces,  functions  and  operators  which  one  may exploit  in  order  to

harvest  abelian  relations  inside  �  (e.g.  Fleischhack  (2004),  cor.  3.26).  The  above

examples suggest that a complete classification of the commutative subalgebras of �
should be possible, but we will leave this task aside.

Note  that  the  operators  in  �  may  also  have  commutative  relations  with  operators

outside the algebra. Thus, lemma 3.9 below gives the commutative instances of Fleis-

chhack's  constructions  of  "graphomorphisms".  Assume  that  f  :  S  Ø  S  is  a  bijective

function such that f(S) = S and that f does not switch the orientation of the surface S.

The  smoothness  properties  of  f  should  correspond  to  those  of  the  paths  (which  we

have left undecided). Now f  induces a map f�  :  � Ø �  on �,  namely f�(g) = f  ë g.

Also, we may define still another map f
, this time on the connections in 
:

(3.54)f
HAL HgL := hAI f-1 ëgM.
It can been shown (by a proof similar to Fleischhack (2004), prop. 3.31) that f
 is a

homeomorphism. The final step is to define the "external" operator af  : C(
) Ø C(
)

by

(3.55)afH f L := f ëf
-1.

Again, the domain of af may be extended to all of L2(
, m0) by prop. 3.5.
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Proposition 3.9 [Cf. Fleischhack (2004), prop. 3.34]   For a function d : S Ø SO(3)

such that d = d ë f-1, we have the commutative relation

(3.56)wd
S,sS
ëaf = af ëwd

S,sS
.

Proof   For f œ C(
), A œ  
, we have

{[wd
S,sS
ëaf](f )}(A) = {wd

S,sS
( f ëf
-1)}(A) = [ f ë f
-1 ë Qd

S,sS
](A)   (*)

and

{[af ëwd
S,sS

](f )}(A) = {af( f ë Qd
S,sS

)}(A) = [ f ëQd
S,sS

 ë f
-1](A).   (**)

There  are  now several  instances  to  consider.  As in  example  3.2,  we  give  the proof

for the case where a path g leaves the surface S in the positive direction without return.

Then, by our assumption on d,

hQd
S,sS HAL(g) = d(g(0)) hA(g) = (d ë f-1)(g(0)) hA(g)

= d(f-1(g(0)) hA(g) = d(f-1(g(0)) · hf
-1HAL(f-1 ë g).

The last step follows because f maps S to S and because, by (3.54), 

hf
-1HAL(f-1 ë g) = f
If
-1HALM HgL = hA(g).

From prop. 3.4 we then have

hQd
S,sS HAL(g) = hQd

S,sS Af
-1 HALE(f-1 ë g).

But, by the definition of the map f
, 

hAI f-1 ëgM = hf
HAL(g).

Putting the last two steps together, we have

hQd
S,sS HAL(g) = hf
HALAQd

S,sS Af
-1 HALEE(g).

This shows, finally, that

 Qd
S,sS

 = f
HAL ë Qd
S,sS

ë f
-1.

The remaining cases for paths g  are similar.  By (*) and (**) above, this suffices to

prove commutativity of wd
S,sS  and af  for f œ C(
). The general result then follows by

the density of C(
) in L2(
, m0).   Ñ

Ought  we  to  include  operators  like  the  af's  in  our  algebra?  We  will  return  to  this

question in subsection 3.2.8. This ends the construction in the familiar topos Sets. We

now switch  to  another  topos  and  proceed  with  the  investigation  in  the  less  explored

surroundings of Sets�H�L.

3.2.6. The Commutative Algebra �

In  subsection  3.2.1,  we  argued  that  Fleischhack's  non-commutative  C*-algebra  �
has an appropriate format if we want to apply topos-theoretical methods to loop quan-

tum gravity. We shall use the Bohrification method sketched in chapter 2, and our first

step is the construction of the commutative algebra � in a certain topos, namely
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Definition 3.7   Let �(�) be the partially ordered set of commutative C*-subalge-

bras of �. Then t�  := Sets�H�L  (or [�(�), Sets]) is the topos of covariant functors

from the category  �(�) to the category Sets.

(Note that the category structure �(�) stems from the partial order on �(�) given

by inclusion: there is a morphism C Ø D iff C Õ D.)

Definition 3.8   � is the tauological functor � :  �(�) Ø Sets such that C # C,

and C Õ�H�L D # C ÕSets D for morphisms.

As a special case of the result proven by Heunen, Landsman and Spitters (2008), it

holds  that  �  is  a  commutative  C*-algebra  in  the  topos  [�(�),  Sets].  The  same

authors  then  apply  the  constructive  Gelfand  duality  of  Banaschewski  and  Mulvey  in

order  to  find  the  Gelfand  spectrum  S(A)  of  a  commutative  algebra  A  in  the  topos

[�(A), Sets] (cf. subsection 2.2.2). The computation of this spectrum has been greatly

clarified in the general case in Wolters (2010). We will  seek out its consequences for

the  Gelfand  spectrum  S(�)  (hereafter  denoted  by  S)  of  the  LQG  algebra  �  in

[�(�), Sets]. Our aim is to deduce the sobriety properties of the external description

of this functor.

In the long run, the attempt should be made to sort out if a non-standard topos (that

is,  a  topos  different  from  Sets)  is  the  most  natural  setting  for  LQG.  Recall  that,  in

LQG, the discrete nature of space-time emerges as a calculation within the theory. One

may  hope  that,  if  the  theory  is  stripped  of  non-physical  content  in  the  manner  sug-

gested by the topos approach, the auxilliary apparatus of standard differential geome-

try  may  be  overcome,  and  the  radical  geometric  structure  of  the  theory  may  be

founded on sound empiricist principles. It  is unclear to what extent this program may

be carried out, and we will not go far towards it in the present thesis. A less ambitious

task is  to  work out  toy examples to  show what  the  physics  of quantum gravity looks

like from a stance within the topos t� above. 

3.2.7. The Topological Properties of the External Gelfand Spectrum S

In  order  to  prove  results  about  the  sobriety  of  the  Gelfand  spectrum,  it  will  be

advantageous to rely on the external description of S(�).

Definition 3.9 [cf.  Wolters  (2010)]   The external Gelfand spectrum S  of �  is  the
set {(C, l) » C œ C(�), l œ SC  (the Gelfand spectrum of the commutative subalgebra

C)} with topology �S such that
U  œ  �S  iff  (1) UC  ª  {l  œ  SC  | (C,  l) œ  U} is  open (in the weak*-topology of  SC),

and (2) if l œ UC, C Œ C' and l' C = l for l' œ SC', then l' œ UC'.

As an easy consequence of the definition, we may characterize the closed sets:
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Lemma 3.10   A set  V is closed in S  iff  (1) VC  is closed (in the weak*-topology of

SC) for all C œ C(�) and (2) if l œ VC and D Œ C then l D œ VD.

Proof   Assume first that V  is closed in S. Then S\V is open, so (S\VLC  = SC \ VC  is

open in SC.  Hence,  VC  is  closed in SC  for  all  C.  Let  l  œ  VC  and  D  Œ  C,  and assume

that l D  –  VD.  Then l D  œ  (S\VLD,  which is open in SD. But S\V  is open in S,  so l œ

VC  Œ  SC  implies  that  l  œ  (S\VLC  = SC \ VC,  which contradicts  l  œ  VC.  So closedness

implies  condition  (2)  also.  Implication  in  the  opposite  direction  may  be  proven  in  a

similar manner.   Ñ

Now, S is the external description of the Gelfand spectrum S(�): 

Proposition  3.11  [cf.  Wolters  (2010),  cor.  2.18]    The  projection  p  :  S  Ø  �(�)

given by p (C, l) = C is isomorphic to S(�) as a locale.

The  proof  was  completed  recently  by  Wolters  (2010),  and  we  shall  not  repeat  it

here. We should, however, use this opportunity to clarify a few points with respect to

the internal/external  distinction in  topoi  (see  also  subsection 2.1.3  above).  Recall  (cf.

Mac  Lane  and  Moerdijk  (1992),  ch.  IX)  that  a  locale  is  an  object  of  the  category

Locales,  the opposite of the category of frames, Frames.  A frame is a lattice with all

finite meets and all joins which satisfies the infinite distribution law

(3.57)U Ì fi
i

Vi = fi
i

HU Ï ViL.
If X is a locale, one usually denotes the corresponding frame by �(X). A map f : X Ø

Y  between  locales  corresponds  to  a  frame  map  denoted  by  f -1  :   �(Y)  Ø   �(X).  A

point p* in a frame F is a map p* : F Ø {0, 1} = �(*). (Hence, for F = �(X), the open

sets of a space X, p œ X defines a point p* in f if we set

p*(U) = 1 iff p œ U.
We also say that Pt(F) are the points in F with open sets Pt(U) ª {p* » p*(U) = 1}. A

frame  F  is  spatial  if  it  is  isomorphic  (as  a  frame)  to  �(Pt(F)).  Dually,  a  topological

space X is sober if it is homeomorphic to Pt(�(X)).

An internal frame (or a frame object) of a topos is an object F in the topos together

with arrows fl : F × F Ø F and fi : F × F Ø F such that the usual lattice identities and

the distribution law (1.57) can be translated into commutative diagrams. In this sense,

S(�) is an internal locale of the topos [�(�), Sets]. Now note that the projection p :

S  Ø  �(�)  is  a  map  between  locales;  that  is,  p-1  :  ��(�)  Ø  �S  is  a  map  between

frames. Thus, it is claimed in prop. 3.11 that p-1 is a frame isomorphism.
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Relationship  with  the  Döring-Isham  formalism.  The  reader  may  have  noticed  that

the  external  spectrum  S  looks  quite  similar  to  the  state  object  S  as  defined  in  the

Döring-Isham approach presented in chapter 2.  (This presupposes that  we replace the

von Neumann algebra �(�) with a C*-algebra A, so the daseinisation procedure is no

longer available.)  Indeed, the connection can be made precise  by the following piece

of category theory:

Lemma 3.12   S, regarded as a category with morphisms (C, l) Ø (C', l C') for C' Œ

C, is the category of elements of the state object S; briefly,
S = ŸCH�LS.

Proof    This  follows  directly  from  the  definition  of  a  category  of  elements  (Mac

Lane  and Moerdijk  (1993),  p.  41).  According  to  the  definition,  the  objects  of  ŸCH�LS
are all pairs (C, l) with C œ A and l œ S(C) = SC, the Gelfand spectrum of C, and the

morphisms are (C, l) Ø (C', S(C' Ø C) (l)) = (C', l C') for C' Œ C.   Ñ

The  sobriety  of  a  topological  space  may  also  be  characterized  in  the  following

manner: we shall say that a topological space S is sober iff every nonempty irreducible

closed subset  V  Œ  S is  the  closure  of a  unique point  s;  explicitly,  V  =  8s<  (Mac Lane

and  Moerdijk  (1992),  p.  477);  recall  that  a  closed  set  is  irreducible  if  it  is  not  the

union of two smaller closed subsets).

In  the  next  theorem,  the  3d  surface  S  should  not  be  confused  with  the  Gelfand
spectrum S. We also assume, as before, that surfaces and paths have matching smooth-

ness  properties.  Recall  from  the  start  of  this  chapter,  that  in  geometrodynamics  we

assume  that  space-time  (
,  g)  is  globally  hyperbolic.  By  a  theorem  of  Geroch  (cf.

Wald (1984), th. 8.3.14) it follows that 
 may be given the spatial topology 
 > � ×

S,  with  arbitrary  topology  on  the  3d  manifold  S,  a  Cauchy  surface.  This  topology  is

exemplified by de Sitter and anti-de Sitter space-times of constant curvature, R > 0 or

R < 0 (see Hawking and Ellis (1973), p. 124, 131). For the following theorem, we also

choose one among several reasonable ways of simplying the structure of S. 

Theorem 3.13    For  S  >  �  ×  S,  the  external  Gelfand  spectrum  S  ª  S(�)  is  not
sober.

Proof   First note that if (C, l) is any point in S, its closure is

8HC, lL< = {(D, l') » D Œ C fl l' = l D}.      (*)

92   Tore Dahlen Thesis.nb



Indeed, if we write X = {(D, l') » D Œ C fl l' = l D}, the singleton set XD  = X  › SD

= {(D, l')} is trivially closed in SD  (under the weak*-topology), and, if l' œ XD  and E
Œ D, then l' = l D, so l' E  = (l D) E  = l E  œ XE, so X is closed by lemma 3.10. But if Y

is  an  arbitrary  closed  set  which  contains  (C,  l),  by  closedness  Y  contains  all  (D,  l')

such that D Œ C and l' = l D, so X Œ Y. That is, X is the closure of 8HC, lL<.
We shall construct an irreducible closed subset X* of S(�) which is not of the form

(*),  thereby  proving  that  S(�)  is  not  sober.  By  Wolters  ((2010),  lemma  2.24),  irre-

ducibility of a closed subset V of S(�) is equivalent to the following conditions:

1. For all C œ C(�), VC ª V › SC is either empty or singleton, and

2.  For  all  nonempty  VC  and  VC',  there  exists  C''  such  that  C,  C'  Œ  C''  and  VC''  is

nonempty.

We shall now simplify the structure of S by assuming that it has the topology S = �

× S for an arbitrary 2d manifold S. We may then use a sequence 8Si<iœ� of non-intersect-

ing surfaces in S as the basis for our construction of X*. 

For each i,  we now pick a Weyl operator wd
Si,sSi  (with d  œ  Maps(S,  SU(2)) an arbi-

trary mapping), and define a sequence 8Vi} of subalgebras of �:

Vi = the C*-algebra generated by {1, wd
S1,sS1 , ..., wd

Si,sSi }.

For a given i, assume that wd
S j,sS j

, wd
Sk ,sSk  œ Vi. Then

wd
S j,sS j wd

Sk,sSk  = wd
Sk ,sSk wd

S j,sS j
.

(This is lemma 3.26 in Fleischhack (2004).) Thus Vi  is commutative, so Vi  œ C(�)

for each i.

Now assume that a character ln  has been constructed on Vn  for a given n (that is, a

multiplicative linear map ln  : Vn  Ø �). We may then extend ln  to a character on Vn+1

by defining ln+1(wd
Sn+1,sSn+1 )  = c  for  some complex number c.  (As multiplicative linear

maps  on  a  C*-algebra  have  norm  1  and  the  Weyl  operators  are  unitary,  we  must

demand that c is on the unit circle.) Consider the set

X* = {(C, l) » there is some n œ � such that Vn Œ C Œ Vn+1 fl l = ln+1 C}.
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It follows that XC
*  is either a singleton or the empty set, hence closed in SC. Also, if

XC
*  is nonempty then XC

*  = {(C, l)}, so  l = ln+1 C  for some n. But then D Œ C implies

l D  = (ln+1 C) D  =  ln+1 D  œ  XD
* .  By lemma 3.10 again,  X*  is  closed. Irreducibility of

X*  is  likewise  an  easy  consequence.  We  just  noted  that  condition  1  holds,  and  for

nonempty  XC
*  and  XC'

*  there  are  n,  n'  such  that  C  Œ  Vn  and  C'  Œ  Vn'.  If  we  let  n*  =

max{n, n'}, we have C, C' Œ Vn*, and Vn*  contains ln*, hence is nonempty. Condition 2

above is thus satisfied.

Finally, we see that X* is not the closure of a unique point in S(�). Assume, to the

contrary,  that  (F, l F)  is  a  point  such that  X*  = 8HF, l FL<  =  {(D, l')  »  D  Œ  C fl  l'  =

(l F) D}. Note that ‹iVi  is a commutative subalgebra of �, with a character l‹ given

by stipulating that l‹(wd
Si,sSi ) = li(wd

Si,sSi ) for each i. By definition of X*, X‹iVi

*  = X* ›
S‹iVi

 = «,  so (‹iVi,  l‹) –  X*.  From the assumption that X*  = 8HF, lL<  we also know

that  there  is  no  n  such  that  Vn  Œ  F  Œ  Vn+1.  Yet  HVi,  li)  œ  8HF, lL<  for  all  i,  which

implies  that  Vi  Õ  F and  li  =  l‹ Vi
 for  all  i.  Hence,  ‹iVi  Œ  F  and  l‹ =  l F ‹iVi

,  from

which it immediately follows that (‹iVi, l‹) œ 8HF, l FL<.
We have a contradiction, so the irreducible closed subset  X* is not the closure of a

unique point, and, accordingly, S is not a sober space.   Ñ

We say that  C(�) satisfies the ascending chain condition iff for every chain C1  Œ

C2  Œ  C3  Œ  ...  of  contexts  in  C(�),  there  is  an  n  such  that  Cm+1  =  Cm  for  all  m  ¥  n

[Wolters (2010), th. 2.25].

Corollary 3.14   The algebra � does not satisfy the ascending chain condition.

Proof    Immediate from the construction in the proof of theorem 3.13, or by noting

that soberness is a consequence of the ascending chain condition (Wolters (2010), th.

2.25).   Ñ

Theorem  3.13,  then,  brings  together  concepts  from  the  arenas  of  loop  quantum

gravity  and  topos  physics.  Let  us  comment  briefly  on  the  status  of  this  result.  As  a

property  of  topological  spaces,  sobriety  is  situated  between  T0  (the  Kolmogorov

condition) and T2  (the Hausdorff condition) (Mac Lane and Moerdijk (1993), p. 477).

Intuitively,  the  soberness  of  a  space  implies  that  if  we  continue  to  split  a  closed  set

into  closed  proper  subsets,  the  process  will  only  terminate  at  sets  which  are  the  clo-

sures  of  singleton  sets.  The  L2  state  spaces  familiar  from  quantum  mechanics  are

Hausdorff spaces, and therefore sober. The non-sober state space S above may be seen

as a generalized (pointfree) space by noting that the  functors X # �(X) and Pt(F) " F
give an equivalence between the categories
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Sober spaces > Spatial framesop.

Above we defined  the category of pointfree spaces, Locales, as the opposite of the

category of frames (Heunen, Landsman, Spitters, Wolters (2010)):

Locales := Framesop.

From  Mac  Lane  and  Moerdijk  ((1993),  p.  480f)  it  now  follows  that,  even  if  the

external  Gelfand  spectrum  S  is  non-sober,  the  associated  frame  �(S)  is  spatial,  or,

differently phrased, the locale has "enough points".  Thus,  the scarcity of points (non-

sobriety)  in  the  external  space  does  not  rule  out  the  availability  of  corresponding

spatial  frames (locales) in the topos,  where the notion of a  locale emerges as a proxy

for  the  notion  of  a  space.  The  duality  of  external  non-sobriety  and  internal  sobriety

seems to be a topological counterpart to the algebraic duality between the non-commu-

tative algebra  �  in  Sets  and  the commutativity  of  its  representative �  in  the topos

t�. It should be explored further.

3.2.8. Gauge Invariance and Diffeomorphism Invariance

As a  quantised  theory  of  general  relativity,  LQG should  fulfill  the  requirements  of

gauge invariance (under the Poincaré group for the full-blown theory) and diffemomor-

phism  invariance  (full  freedom  of  coordinate  choice).  We  must  now  ask  how  these

invariance types are to be understood within topos physics. Focusing on the diffeomor-

phism case, the following interpretation is suggested. Note first that we may associate

any  diffeomorphism  f  :  S  Ø  S  with  the  *-morphism  Af  :  �  Ø  �  defined  by  the

following action on all generators T f  and wd
sS of �:

(3.58)IAfIT f MM HAL = T f IfHALM Ifor A œ 
M,
(3.59)AfJwd

S,sSN = wfHdL
fHSL,fHsSL

.

Note that here, as in subsection 3.2.5, we use the lifting of f to a map f ª f
 : 
 Ø


  by stipulating  that  f(A)(g)  ª  pf-1ëg(A),  with  pf-1ëg  the  projection  onto  the  compo-

nent space 
f-1ëg   of the path f-1 ë g  (that  is,  f
HAL(g) = hAI f-1 ëgM).  We also write

f(S)  ª  f  ë  S;  f(d)  =  d  ë  f-1;  and  fHsSL(g)  =  sf-1HSL(f-1 ë g)  (cf.  Fleischhack  (2004),

def. 3.25).
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Fleischhack (2004) shows that we can associate the diffeomorphisms f : S Ø S with

operators af on L2(
, m0) in a natural manner (cf. subsection 3.2.5): for any f œ C(
),

we let af  :  C(
) Ø C(
) be given by af  (f  ) ª f  ë f

-1  ª f ë  f-1,  the pullback of f-1

(the lifting of f-1  to 
). Applying proposition 3.5, we extend af  to a unitary operator

on L2(
,  m0). As the operators af  merely reflect a switch of coordinates and have no

observational content, we have chosen not to include them in the Weyl algebra �. 

For a subalgebra C, we denote by fC the algebra generated by the image Af(C).

Definition 3.10   A context (that is, a commutative subalgebra) C œ C(�) is diffeo-

morphism invariant if, for any diffeomorphism f : S Ø S, the algebra fC is a commuta-
tive  subalgebra  in  C(�).  If  this  holds  for  all  contexts  C,  we  say  that  C(�)  itself  is
diffeomorphism invariant.

Keep in  mind that,  just  as  when  we were discussing  paths and surfaces,  we do not

want to commit ourselves to a particular choice of diffeomorphism type. (Fleischhack

(2004) considers the "stratified analytic diffeomorphisms".) The definition is intended

to capture the intuition that an observer who, perhaps in order to ease his calculations,

chooses  to  change  his  coordinates,  should  still  be  able  to  conduct  his  investigation

within  a  classical  (commutative)  context.  The  following  lemma  shows  that  this  is

indeed possible:

Theorem 3.15   C(�) is diffeomorphism invariant.

Proof   Let C be any context in C(�). Then any Weyl operators wd1

S1,sS1  and wd2

S2,sS2

in C commute:

wd1

S1,sS1  ë wd2

S2,sS2  = wd2

S2,sS2  ë wd1

S1,sS1 .

For any diffeomorphism f : S Ø S and f œ C(
), we have

AfJwd
S,sSN(f ) = wfHdL

fHSL,fHsSL
 (f ) = f ë QfHdL

fHSL,fHsSL
.

Let g be a path which starts from f(S) without returning. (The proof for the remain-

ing choices of g is similar.) By the same steps as in in prop. 3.9, it follows that (for any

generalized connection A œ  
)

h
QfHdL

fHSL,fHsSLHA L(g) = d(f-1(g(0)) hA(g)

= d(f-1(g(0)) · hf
-1HAL(f-1 ë g) = hf
AQd
S,sS Af
-1 HALEE(g).

This establishes that

QfHdL
fHSL,fHsSL

 = f
 ë Qd
S,sS

ë f
-1.   (*)

Using (*) and the definition af  (f ) ª  f ë f

-1  repeatedly, we may now reason in the

following manner:

{af ë wd
S,sS  ë af

-1}(f ) = af(wd
S,sS(af

-1(f ))) = af({af
-1(f )} ë Qd

S,sS)

= af({af
-1(f )} ë If
-1 ë QfHdL

fHSL,fHsSL
 ë f
)) = ({af

-1(f )} ë If
-1 ë QfHdL
fHSL,fHsSL

 ë f
)) ë f
-1
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= {af
-1(f )} ë f
-1 ë QfHdL

fHSL,fHsSL
 = af(af

-1(f )) ë QfHdL
fHSL,fHsSL

 = f ë QfHdL
fHSL,fHsSL

.

This proves that (cf. proposition 3.34 in Fleischhack (2004))

AfJwd
S,sSN = af ë wd

S,sS
 ë af

-1.

It then follows by trivial steps that Af preserves commutativity of Weyl operators:

Af(wd1

S1,sS1 ) ë Af(wd2

S2,sS2 ) = (af ë wd1

S1,sS1  ë af
-1) ë  (af ë wd2

S2,sS2  ë af
-1)

= af ë (wd1

S1,sS1  ë wd2

S2,sS2 ) ë af
-1 = af ë (wd2

S2,sS2  ë wd1

S1,sS1 ) ë af
-1

= (af ë wd2

S2,sS2  ë af
-1) ë  (af ë  wd1

S1,sS1  ë af
-1) = Af(wd2

S2,sS2 ) ë Af(wd1

S1,sS1 ).

The  two remaining cases,  involving the multiplicative operators  by themselves and

the mixed case of multiplicative operators and Weyl operators, are far simpler.   Ñ

Let us, briefly, consider the corresponding definition and result for gauge invariance

of C(�).  Following,  in  part,  Fleischhack  ((2004),  def.  3.26),  we  define  the  general-
ized gauge transformations � as the set of maps g : S Ø SO(3). For each g, we say that

bg(f  )(A)  :=  f  (Ag),  where  Ag  is  given  by  hAg
g  :=  g HgH0LL-1  hAg  gHgH1LL.  Then

IBgIT f MMHAL := T f (Ag) and BgJwd
S,sSN := wgÿdÿg-1

S,sS
 define the transformations correspond-

ing to (3.58) and (3.59) above. 

Definition 3.11   A context C œ C(�) is gauge invariant if, for any gauge transfor-
mation  g  :  S  Ø  SO(3),  the  algebra  generated  by  the  image  Bg(C)  is  a  commutative

subalgebra in C(�). If this holds for all contexts C, we say that C(�) itself is gauge

invariant.

Theorem 3.16   C(�) is gauge invariant.

Proof   Similar to theorem 3.15.   Ñ

The  approach  to  quantum  gravity  outlined  above  has  been  strictly  limited  to  a

globally hyperbolic space-time 
 > � × S. This foliation into separate entities "time"

and  "space"  is  dependent  on  the  choice  of  an  observer,  and  the  requirement  of  4-

dimensional diffeomorphism invariance in general  relativity is not  fulfilled.  Thus,  the

diffeomorphism  invariance  established  in  lemma  3.15  does  not  hold  for  the  general

case,  but  solely  for  the  restricted  group  of  diffeomorphisms  on  the  3-dimensional

hypersurface S. In a fully coordinate-free description of the laws of physics, we should

expect  the  observational  contexts  in  C(�)  to  respect  the  full  diffeomorphism group.

This  would  dispel  the  implicit  notion  of  a  "meta-observer",  slicing  space-time  from

some arbitrary perspective. More precisely, in a complete topos theory on gravity, the

unrealistic  kinematical  observational  contexts  would  be  replaced  by  dynamical  con-

texts  with  physically  realistic  observables.  This  is  an  important  task,  but  we  will  not

enter into it in this thesis.
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C  H  A  P  T  E  R    F  O  U  R

Quantisation in Generalized Contexts

In the preceding chapters, quantum theory has been modelled on the basis of a set of

partially  ordered  classical  observational  contexts.  The  elements  of  this  ordering  were

the  commutative  subalgebras  of  the  operator  algebra  of  a  quantum  physical  system.

The  operators  were  realized  as  operators  on  Hilbert  spaces  by canonical  quantisation

of classical  variables.  There are several  alternatives available  if we want  to relax one

or  more  of  these  assumptions.  In  section  4.1,  we  present  a  broader  picture  of  the

observational  structure  of  quantum  physics,  relying  for  an  example  on  the  systems-

processes  scheme  of  so-called  categorical  quantum  mechanics.  While  differing  from

this approach, the construction of a mathematical basis for quantum theory in the rest

of the chapter will  be undertaken within  the framework of category theory.  We shall,

in  section  4.2,  concentrate  on  the  task  of  quantisation,  generalized  by  Isham  to  a

category-theoretic setting. We introduce Isham's notion of an arrow field on a category

and study the operator relations for  representations of these entities.  In  particular,  we

construct  a  representation  that  takes  the  shape  of  a  "particle  fable",  the  C-particle

representation (section 4.3). We also try to develop a measure theory for a certain s-

algebra, the algebra of double cones, on a general category (section 4.4). Admittedly,

our objects of study are far removed from the standard structures of classical or quan-

tum physics.  It  is  an  important  task  for  further  study  to  investigate  how far  physical

principles  and  methods  can  be  seen  as  analogues,  or  even  special  cases,  of  the  more

abstract  scheme.  (E.g.  one may ask in  what  sense refined approaches to  quantisation,

such  as  the  geometric  method  of  section  1.3,  can  be  implemented  at  the  categorial

level.) We choose instead to continue in a more speculative, or more playful, manner.

Firstly,  as  an  illustration  (section  4.5),  we  turn  to  causal  sets.  Attempts  to  develop  a

quantum theory for causal sets have so far been unsuccessful. We suggest how this can

be done with the methods introduced in the preceding sections. Thereafter, we situate

quantisation of arrow fields within a wider theory of representations (section 4.6), and

extend the topos formalism presented in chapters 2 and 3 to the more general setting of

quantised  categories.  Finally,  we  speculate  on  the  possibility  of  a  new  quantum  (or

rather, a quantised) logic based on the arrow field approach.
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4.1. Categories for Quantum Physics

The  constructions  in  topos  physics  in  chapter  2  and  3  have  all  been  carried  out

against  the  background  of  a  given  quantisation  of  physical  theory.  To  wit,  an  alge-
braic  viewpoint has been assumed, and classicality has been reintroduced in the form

of commutative subalgebras, "snapshots" of a von Neumann or C*-algebra, represent-

ing  the  quantum  world.  Of  course,  the  procedure  of  "toposification",  in  whatever

shape, can hardly be expected to eliminate all weaknesses from the background quan-

tum theory. Thus, in chapter 3, the topos approach was only applied to the kinematical

fragment of loop quantum gravity, and the problems of the full dynamical theory, such

as  the  mysterious  behaviour  of  the  geometric  operators  at  this  level,  were  put  aside.

This  lacuna  should  certainly  be  filled.  Also,  the  main  motivation  behind  the  topos-

theoretical approach is not to bottle up existing theories of quantum physics, but rather

to provide tools for the construction of new theories.

There are several directions to explore if we seek to develop topos physics from the

present state. Firstly, one may stay with the starting point, a context category based on

an  underlying  operator  algebra,  and  then  try  to  develop  quantum field  theory  within

the  algebraic  program of  Haag  and  Kastner.  Here,  a  set  of  observables  �(D)  will  be

locally defined on a space-time region D,  and observables from different C*-algebras

	(D1)  and  	(D2)  will  commute  for  regions  D1  and  D2  with  spacelike  separation.  The

completion of this picture is a fascinating task. No less fascinating is the idea that this

may be combined with a non-standard approach to the geometry of space. The natural

setting  for  smooth  geometry  in  topoi  is  not  standard  differential  geometry,  but  the

microlinear spaces of synthetic differential geometry (cf. subsection 1.4.1). (Note that

the  category  of  C¶-manifolds  in  not  cartesian  closed;  that  is,  the  space  of   C¶-maps

between  manifolds  does  not  have  to  be  a  manifold  (cf.  Moerdijk  and  Reyes  (1991).)

This possibility is at the opposite extreme of the proposal explored in chapter 3 above.

Instead of the finite chunks of elementary volume implied by the theory of loop quan-

tum  gravity,  we  are  led  to  postulate  "crowded"  points,  surrounded  by  infinitesimal

structure.

Perhaps the boldest suggestion on record is to invert the usual procedure of starting

from  a  classical  context  and  then  quantising  the  system.  Thus,  quantum  systems  or

processes  (axiomatized  or  modelled  in  the  appropriate  way)  will  be  primary  notions,

and the classical processes will be characterized as special cases within the framwork.

In  fact,  this  is  the  path  chosen  by  the  adherents  of  categorical  quantum  mechanics
(CQM  hereafter;  for  an  introduction,  see  Coecke  (2010)).  Within  this  subject,  at  the

crossroads between quantum theory,  category theory,  computer  science and topologi-

cal quantum field theory, the notion of a process is more central than that of a system:

the  internal  structure  of  a  system is  disregarded,  and  focus  is  shifted  to  the  external
connections with other systems, as mediated by interacting processes.
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From this  point  of  view,  it  seems  natural  to  mimic  physical  structures  within  cate-

gory  theory,  representing  physical  systems  as  the  objects  of  a  certain  category,  and

modelling  processes  (evolutions,  measurements,  preparations,  etc.)  by  means  of  mor-

phisms. There will be two kinds of composition of processes. The first of these, sequen-
tial composition,  is modelled in the category by the usual (partial) binary operation ë,

so the processes f  :  A  Ø  B and g  :  B  Ø  C  will relate the input system A  to the output

system C by the sequential composition g ë f : A Ø C. On the other hand, independent
processes f1 : A1 Ø B1 and f2 : A2 Ø B2 may always be glued together in the separate

composition f1 ≈ f2 : A1 ≈ A2 Ø B1 ≈ B2. Consequently, the systems A1 and A2 (and,

likewise,  B1  and  B2)  must  also  be  independent.  If  we  liken  the  physical  processes  to

derivation  rules  of  a  logical  system,  with  sequential  composition  ≈  corresponding  to

conjunction, we note that processes

A Ø A ≈ A and A ≈ B Ø A
may  not  always  be  available.  That  is,  it  may  not  always  be  possible  to  clone  a

system  or  "lose"  a  system  into  the  enviroment.  The  logical  parallel  is  given  by  the

failure of the rules

A ¢ A ≈ A and A ≈ B ¢ A
in Girard's linear logic. (Here, ≈ is linear conjunction.) The relation between sequen-

tial and separate composition is captured by the interaction rule:
(g1 ë f1 ) ≈ (g2 ë f2 ) = (g1 ≈ g2) ë ( f1 ≈ f2).

The  mathematical  structures  which  reflect  these  properties  are  known  as  strict
symmetric  monoidal  categories.  The  classical  (i.e.  non-quantum)  processes  are  now

identified within this framework as the processes for which the process of cloning, A Ø

A ≈ A, (or "sharing of information by copying") is available. The very special substruc-

tures  which  match  the  classicality  concept,  are  the  commutative  Frobenius  algebras
(see Kock (2003)).

Although we shall not pursue the matter in the present thesis, the Frobenius algebras

seem eminently worthy of further study, for the following reason. The category of such

algebras  (cFA)  is  equivalent  to  the  category  of  2-dimensional  topological  quantum

fields (2TQFT).  The n-dimensional  TQFTs,  on  the other  hand,  may be characterized

as  the  functors  conserving  monoidal  structure  from  the  category  of  n-cobordisms

(nCob) to the category of vector spaces over a field k HVectk). By regarding the closed

manifolds (the objects of nCob) as representing space and the cobordisms (the arrows

of nCob,  oriented manifolds with  boundaries)  as  representing time,  one may then try

to build miniature models of quantum gravity. 

The  development  of  CQM  has  affinities  with  our  subject,  topos  physics.  In  fact,

Coecke ((2010), sec. 1.2) claims that the CQM framework is broad enough to accomo-

date  the  topos-theoretical  perspective.  As  noted,  CQM enters  physics  from the  quan-

tum end,  and  classical  objects  are  introduced  as  citizens  of  the  quantum community.

We  shall  not  be  so  daring  in  the  present  thesis.  Our  point  of  departure  will  be  the

quantisation of a "classical" structure (albeit a very general one, namely a category).
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4.2. Quantisation on a Category

We now turn  to  Isham's  proposal  for  a  scheme  of  quantisation  at  the  most  general

level, the theory of categories. By choosing this rather abstract approach, our geometri-

cal  and physical  commitments  are  minimal.  On the other hand,  it  may prove difficult

to interpret the theory unless we introduce further principles along the way. The theory

may then be useful for suggesting procedures of quantisation in quantum gravity. The

basic definitions 4.1-4.6 are all found in Isham (2003a). We introduce the simple states

of  a  representation,  and  investigate  analogues  of  the  commutation  relations  known

from quantum mechanics.

4.2.1 Isham's Arrow Fields

In  chapter  1,  we  noted  that  the  configuration  and  momentum variables  of  classical

physics are quantised as operators which satisfy certain commutation relations. Equiva-

lently, the commutation relations can be implemented as conditions on an appropriate

representation  space,  in  most  cases  a  Hilbert  space  �.  For  variables  q  and  p,  the

commutation relation for the corresponding operators, [Q,  P] = iÑI, can be realized as

Q Y = qY and P Y = –iÑ(∑/∑q) Y for Y œ  �.  In fact, all of the familiar quantum field

theories  satisfy  canonical  commutation  (or  anticommutation)  relations.  (One  might

wonder if the procedure can be generalized to include some, or all, of the non-standard

spaces we considered in the first chapter.)

A scheme for  quantisation  in  a  very general  context  has  been  suggested  by Isham.

Loosely,  the idea is  to  view the objects  of  a  category as  the  configuration space of a

physical theory, and to interpret the arrows as momentum variables. Below, we give a

short review of Isham's quantisation on a category. A fuller account is found in Isham

(2004), with details in Isham (2003a, 2003b, 2003c).

Let C be a category of objects A, A', ... Pursuing the analogy of the canonical repre-

sentation  Q Y  =  qY,  we  identify  the  configuration  variables  as  the  real-valued  func-

tions b on Ob(C).

What  are  the  momentum  variables  in  this  setting?  In  relativistic  mechanics  on

Minkowski space, we expect the (exponential of) the representation of the momentum

variable,  expI–iPm am),  to  handle  finite  translations  on  the  space  �.   Translations  act

uniformly  on  the  configuration  space,  but  we  should  not  expect  this  to  be  a  general

trait  of  momentum  transformations.  If  we  want  our  quantisation  scheme  to  be  of

relevance  for  non-standard  versions  of  space-time  such  as  discrete  sets,  we  should

leave open the possibility that  the transformations between two objects A and A' may

depend on the internal structure of the objects. The set of arrows Hom(A, A') is thus a

candidate for the transformations between A and A'.

Tore Dahlen Thesis.nb  101



Upon  closer  inspection,  this  will  not  quite  do.  By  the  definition  of  a  category,  the

composition g  ë  f  of the arrows f  and  g  may be undefined,  and yet  it  seems perfectly

reasonable  that  the  representation  U(g  ë  f)  on  a  space  �  exists,  as  it  should  equal

U(g)U(f).  Isham  therefore  introduces  the  notion  of  an  arrow  field,  defined  in  the

following manner:

Definition  4.1  [Isham (2004)]    An  arrow field  X  is  an  assignment  X  :  Ob(C)  Ø
Hom(C) such that dom(X(A)) = A for A œ Ob(C).

Arrow  fields  X1  and  X2  are  combined  in  the  arrow  field  (X1&X2)(A)  :=  X2(cod

X1(A)) ë X1(A) for A in C. Also, we define i(A) := 1A. 

Definition 4.2  [Isham (2004)]   AF(C) is the monoid of  arrow fields  on the cate-
gory C equipped with the combination operation & and the two-sided identity i.

The  arrow  fields  X  are  Isham's  analogues  of  the  momentum  variables  in  classical

physics. The following arrow fields are of particular interest:

Definition 4.3 [Isham (2004)]   If f : A Ø B, then X f  is the arrow field X f (C) := f if
C = A, X f (C) := 1A otherwise.

We shall use the notation �X (A) := codX(A). The utility of the last definition emerges

when we try to find a representation of the configuration variables b  and the momen-

tum variables X. Note that we shall also say that A œ �X
-1 8B<  iff �X (A) = B and X(A) ∫

1A.  (We  "divide"  X  over  the  physically  uninteresting  identity.)  The  simplest  choice

will be to represent b (configuration variable), X (momentum variable) as operators b
`
,

â(X) on the vector space � of complex-valued functions y : Ob(C) Ø � and define

(4.1)HâHX LyL HAL := yH�X HALL
(4.2)Ib` yM HAL := bHALyHAL.

However,  if  f  ∫  g,  we  want  â(X f )  ∫  â(Xg).  According  to  (4.1),  this  does  not  hold

when f and g have the same domain and codomain. The arrows are not separated. The

definitions of the operators are therefore amended by the introduction of a presheaf k œ

SetsCop

. As a presheaf, k fulfills the contravariant functor condition

(4.3)kH f L ë kHgL = kHgë f L for all f , g such that domHgL = codH f L.
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We also generalize the definition of the quantum states in order to capture the inner

structure of the objects A of C. This is done by associating (possibly different) Hilbert

spaces k(A) with each A, and letting a state y be a section of the bundle ‹AœObHCLk(A).

In the notation from chapter 1, �  will be the state space of these section states.  If we

now demand that the arrow f : A Ø B is assigned the linear map k(f) : k(B) Ø k(A) by

the presheaf k,  we have the following faithful  representation of the configuration and

momentum variables:

Definition 4.4 [Isham (2004)]   For k a presheaf over C, the operators â(X) and b
`

are

(â(X)y)(A) := k(X(A))y(�X (A)) and

Ib` yM HAL := bHALyHAL.
We note that the former identification of y  with complex-valued functions is based

on the presheaf k(A) = � (for each A) and k(f ) = Id�  (for each f). The complex-valued

states are problematic for all linear maps k(f ), as the following example shows:

Example 4.1   Assume that  k(A) = �  (for each A) and that k(f) is multiplication by

some constant c f  œ � (for each f ). This implies k(g ë f) = k(f ë g) for all arrows f, g by

(4.3).  If  f  ë  g  ∫  g  ë  f,  the  representation  will  be  unfaithful.  Of  course,  such  f  and  g
abound. The case for a set A and maps f, g : A Ø A is shown in the figure below.

Figure 4.1. Noncommutativity of arrows.

Note also that if y had been defined as a section of the presheaf (a global element),

the  definition  of  â(X)  would  have  been  reduced  to  the  identity  operator  I.  (Isham

(2004a), p. 356.)

The quantum states have a natural inner product, at least in the finite case:

Definition 4.5 [Isham (2004)]   For Ob(C) finite, the inner product on � is

Xy,f\ := ⁄AœObHCL Xy HAL, f HAL\k HAL,
where X , \k HAL is the inner product on the Hilbert space k(A).
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Early on, in subsection 1.2.2, it  was pointed out that we need self-adjoint operators

for  the  representation  of  the  observables  in  quantum  mechanics.  In  order  to  define

adjointness, we use the covariant functors k† œ SetsC.

Definition 4.6 [Isham (2004)]   The adjoint âHX L†
 of the operator â(X) is given by 

(âHX L†y)(B) := ⁄Aœ�X
-1 8B< k†HX HALLy HAL,

where k†H f L  : k(A) Ø k(B) for f : A Ø B is the adjoint of the linear operator k(f ) in

definition 2.4. (And so XF, kH f LY\k HAL = YkH f L† F, Y]
k HBL for F œ k(A) and Y œ k(B).)

Lemma 4.1   For a finite category C, the definition 4.6 of the adjoint implies the
standard adjointness condition Xf,âHX Ly\ = XâHX L†f,y\.

Proof   We let �X (A) = B. Then, using definition 4.5 of the inner product on �,

Xf, âHX Ly\= ‚
AœObHCL

XfHAL, HâHX LyL HAL\
kHAL

= ‚
AœObHCL

XfHAL, kHX HALLy H�X HALL\kHAL

= ‚
AœObHCL

YkHX HALL† fHAL, y H�X HALL]
kH�X HALL

= ‚
BœObHCL

‚
Aœ�X

-1 8B<
YkHX HALL† fHAL, y HBL]

kHBL

= ‚
BœObHCL

[ ‚
Aœ�X

-1 8B<
kHX HALL† fHAL, y HBL_

kHBL
=

‚
BœObHCL

YIâHX L† yM HBL, y HBL]
kHBL = YâHX L† f, y]. Ñ

By calculation, we also find the operator relations

(4.4)

IAâHX L, âHX L†EyM HAL := IIâHX L âHX L† -âHX L† âHX LMyM HAL =
‚

Cœ�X
-1 8�X A<

kHX HALL kHX HCLL† yHCL - ‚
Cœ�X

-1 8A<
kHX HCLL† kHX HCLLyHAL

(4.5)

I9âHX L, âHX L†=yM HAL := IIâHX L âHX L† + âHX L† âHX LMyM HAL =
‚

Cœ�X
-1 8�X A<

kHX HALL kHX HCLL† yHCL + ‚
Cœ�X

-1 8A<
kHX HCLL† kHX HCLLyHAL.
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Here, [,] are the usual commutator brackets. {,} is the anticommutator. The utility of

these expressions will appear more clearly below.

4.2.2. Creation and Annihilation

At this stage, we would like to introduce Dirac's bracket notation and write XA»y\ for

y(A). If the states y are complex-valued functions y  :  Ob(C) Ø  �,  this is unproblem-

atic. We may then identify the state vector »A\ with the function fA  that takes the value

fA(A) = 1 and is zero everywhere else. Then XA»y\ = XfA,y\ = ⁄BœObHCL fAHBL* yHBL =
y(A), using the definition of the inner product for the special case of complex-valued

state  functions.  However,  we  saw  above  that  this  representation  does  not  separate

arrows, and, hence, is unfaithful.

For  the  general  case  of  section  states,  we  also  want  to  use  the  notation  XA»y\  :=

y(A). From definition 4.4 we may try

(4.6)
XA âHX Ly\
= Hâ HX LyL HAL= k HX HALLy H�X HALL= X�X HAL k HX HALLëy\.

Using definition 2.6, we find that

(4.7)

YB â† IX My]= IâHX L† yM HBL
= ‚

Aœ�X
-1 8B<

kHX HALL† y HAL= ‚
Aœ�X

-1 8B<
YA kHX HALL†

ëy].

But note that, for section spaces �, the condition "XfA, y\ = XA»y\ = y(A) for all y œ

�"  is  senseless,  as  y(A)  is,  in  general,  not  a  complex  number.  We  replace  it  by  the

demand that

(4.8)
for each A œ ObHCL, there is a section state fA such that XfA, y\
= XfAHAL, yHAL\kHAL for all yœ�.

Thus,  the  inner  product  depends  only  on  the  value  of  fA  at  A.  This  reduces  to  the

usual  condition  for  complex-valued  state  vectors.  For  section  states,  it  is  a  conse-

quence of definition 4.5 that fA(B) is the zero-vector in k(A) whenever A ∫ B.

In preparation for the probability interpretation of quantum physics, we also require

that the states fA are normalized. That is,

(4.9)XfA, fA\ = 1 for all A œ ObHCL.
There may be several section states fA  that fulfill the condition (4.8). Our choice of

a  particular  state  corresponding  to  the  configuration  space  element  A  should  thus  be

informed by the physical system under consideration. For a given realization, we shall

write »A\ := fA. These are the simple states in �. One must be aware that the notations

XfA,y\ and XA»y\ are not exchangable in the general case. The first expression denotes

a complex number, the second a vector in the Hilbert space �(A).
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We would certainly like to keep as many of the standard bracket relations as possi-

ble.  For  complex-valued  states,  it  is  easily  found  that  âHX L†»A\  =  »�X A\  (see  Isham

(2003a),  p.  357).  We  may  also  work  out  the  corresponding  formula  (âHX L†fA)(B)  =

f�X A(B),  so  the  identification  »A\  :=  fA  is  justified  in  the  simplest  case.  The  bundle-

valued case is more complicated. We shall assume that the presheaf adjoint k† satisfies

the condition

(4.10)fBHBL = k†H f L fAHAL for f : A Ø B.

Trivially,  (4.10)  is  consistent  with  the  covariant  functor  condition  k†(g)  ë  k†(f  )  =

k†(g ë f ) on k†. Equivalently, we may demand of the presheaf k that it satifies

(4.11)kH f L fBHBL = fAHAL for f : A Ø B.

If we prefer the bracket notation, we may write †B\ = kH f L††A\ and k(f  )†B\ = †A\ for

these relations.  The correct  interpretation of k  and k†  should probably be judged case

by case. The choice of k for causal sets will occupy us in section 4.5.

Lemma 4.2   If k†satisfies (4.10), the equality (âHX L†fA)(B) = f�X A(B) holds for A,
B œ Ob(C).

Proof   Using definition 4.6, we find that

(âHX L†fA)(�X A) = ⁄Cœ�X
-1 9�X A= k†HX HCLL fA HCL = k HX HALL†fA(A).

The last equation follows from A œ �X
-1 8�X A< and fA(B) = 0 for B ∫ A. Also, for B

∫ �X A, we have

(âHX L†fA)(B) = ⁄Cœ�X
-1 8B< k†HX HCLL fA HCL = 0.

Here, the expression reduces to zero because B ∫ �X A fl A – �X
-1 8B< and  fA(C) =

0  when  C  ∫  A.  From  condition  (4.10)  it  then  follows  that  (âHX L†fA)(�X A)  =

f�X A(�X A) and, for B ∫ �X A, (âHX L†fA)(B) = 0 = f�X A(B). This proves the lemma.   Ñ

The notation âHX L†»A\ = »�X A\ is then justfied in the general case.

The  operators  âHX L†  and  â(X)  have  important  affinities  with  the  correspondingly

named  operators  in  quantum  mechanics.  Using  the  bracket  notation,  we  know  from

lemma 4.2 that

(4.12)âHX L† †A\ = †�X A\.
Similarly, for â(X) we derive the relation

(4.13)
âHX L †A\= ‚

Bœ�X
-1 8A<

†B].
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 These  expressions  are  the  generalized  versions  of  the  formulae  for  the  complex-

valued  states  (as  given  in  Isham  (2004a)).  The  latter  expression  can  be  derived  by

noting that (âHX LfA)(C) = kHX HCLL fA H�X CL = kHX HCLL fA HAL = fC HCL for C œ �X
-1 8A<,

where  the  last  equality  follows  from (4.11).  When  A  is  not  the  codomain  of  any  f  =

X(B) for B œ Ob(C), we have

(4.14)âHX L †A\ = 0.

Due  to  this  property,  we  shall  say  that  â(X)  is  an  annihilation  operator  on  �.

Because the  arrow field  X  is  defined on  all  objects  in  Ob(C),  âHX L†  is  never  zero on

the normalized states  †A\.  We say that  âHX L†  is  the  creation operator  on �.  We shall

need the creation and annihilation operators for our particle interpretation of quantisa-

tion  on  categories  in  the  next  section.  Let  us  first  pursue  some  analogies  with  the

operator relations in quantum mechanics.

4.3. The C-Particle Representation

In  this  section, we define the particle  states  of the representation,  thereby imitating

the  construction  of  the  Fock  space  in  the  context  of  categories.  These  developments

are built into the definition of a C-particle representation of a causal category.

Definition 4.7   The number operator n
`
(X) is given as n

`
(X) := â HX L† â HX L.

In  quantum  mechanics,  the  number  operator  N  =  a†a  satisfies  the  relation  N†n\  =

n†n\, where n is the number of quanta of the system. The operator n
`
(X) is analogous to

N   because  of  the  following  property  (here,  †�X
-1{A}§  is  the  number  of  objects  in

�X
-1{A}):

(4.15)â HX L† âHX L †A\ = °�X
-1 8A<• †A\.

When  the  arrow  field  has  no  arrows  with  codomain  A,  this  reduces  to  the  zero

vector.  Note  how the commutation relations (4.4)  and  (4.5)  fare  in  the  context  of the

normalized states †A\:

(4.16)

AâHX L, âHX L†E †A\ = âHX L âHX L† †A\-âHX L† âHX LM †A\
= ‚

Bœ�X
-1 8�X A<

†B\- ‚
Bœ�X

-1 8A<
†A\ = ‚

Bœ�X
-1 8�X A<

†B\- °�X
-1 8A<• †A\

(4.17)

9âHX L, âHX L†= †A\ = âHX L âHX L† †A\+ âHX L† âHX LM †A\ =
‚

Bœ�X
-1 8�X A<

†B\+ ‚
Bœ�X

-1 8A<
†A\ = ‚

Bœ�X
-1 8�X A<

†B\+ °�X
-1 8A<• †A\.
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The  above  relations  are  more  complicated  than  e.g.  the  familiar  commutation  rela-

tion "[a,  a†] = 1" known from the case of the quantised harmonic oscillator. As these

relations play a crucial role for many constructions in quantum physics, we must find a

way  to  circumvent  this  difficulty.  This  will  be  the  subject  of  the  present  subsection.

For the arrow fields X f  which correspond to  single  arrows f  :  A  Ø  B in  C (def.  4.3),

the relations simplify in the expected manner, e.g.: 

(4.18)
AâH f L, âH f L†E †A\= ‚

Cœ�X f

-1 9�X f A=
†C\-†�X

-1 8A<§ †A\= †A\- 0 †A\= †A\.

Note  that  we  write  â(f  )  and  âH f L†  instead  of  âIX f )  and  âIX f M†
.  Also  note  that  the

"division by identity" in the definition of �X
-1 plays a crucial role in this derivation.

In subsection 1.2.6 we commented on the choice between particles and fields as the

fundamental  notion  of  quantum  physics.  We  shall  now  try  to  transfer  the  standard

particle  interpretation  (cf.  Weinberg  (1995),  ch.  4,  for  quantum  field  theory)  to  the

context of category quantisation. For this purpose, we need the commutation relations

between  the  number  operator  n
`
(X)  and  the  creation  and  annihilation  operators  âHX L†

and âHX L.

Lemma 4.3   The operators n
`
(X), â(X) and âHX L† satisfy the commutation relations

[â(X), n
`
(X)]†A\ = ⁄Bœ�X

-1 8A< sA,B †B\ and

[âHX L†, n
`
(X)]†A\ = – dA†�X A\,

where sA,B(X)  :=  †�X
-1 8A<§  –  †�X

-1 8B<§  for  B œ �X
-1 8A<  (otherwise  sA,B(X)  :=  †�X

-1 8A<§);
and dA(X) := †�X

-1 8�X A<§ – †�X
-1 8A<§.

Proof   This is a straightforward calculation, using (4.15). We have

[â(X), n
`
(X)]†A\ = [â(X), â HX L† â HX L]†A\ = â(X)â HX L†â(X)†A\ – â HX L†â(X)â(X)†A\

= â(X)(°�X
-1 8A<•†A\) – â HX L†(⁄Cœ�X

-1I�X
-1 8A<M †C\)

= °�X
-1 8A<•⁄Bœ�X

-1 8A< †B\ – ⁄Cœ�X
-1I�X

-1 8A<M †�X C\ = °�X
-1 8A<•⁄Bœ�X

-1 8A< †B\ – ⁄Bœ�X
-1 8A< °�X

-1 8B<• †B\
= ⁄Bœ�X

-1 8A< I°�X
-1 8A<• – °�X

-1 8B<•M †B\.

The second equation is proven in a similar manner.   Ñ

When the arrow field X is given, we often omit the argument X in sA,B(X) and dA(X).

We  shall  call  sA,B  the  causal  surplus  of  A  over  B.  dA  is  the  causal  deficit  of  A  with

regard to its immediate successor.
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The relations  above  are  more  similar  to  the  commutation  rules  of  quantum physics

than may appear at first sight. In fact, if we assume that sA,B = 1 and dA = 1 for all A, B

œ Ob(C), we find that [â(X), n
`
(X)]†A\ = ⁄Bœ�X

-1 8A< †B\ = â(X)†A\ and [âHX L†, n
`
(X)]†A\ = –

†�X A\  =  –  âHX L††A\.  This  means  that  the  ordinary commutation  rules  for  the  construc-

tion of states of non-interacting particles are at our disposal (see e.g. Shankar (1994)).

Including (4.15), we have

(4.19)n
` HX L †A\ = °�X

-1 8A<• †A\
(4.20)AâHX L, n

` HX LE = âHX L
(4.21)AâHX L†, n

` HX LE = – âHX L†.

Before  we move on,  we should have a  closer  look at  the conditions for  this  reduc-

tion to the canonical  case.  The condition for sA,B  says that  †�X
-1 8B<§  = †�X

-1 8A<§  – 1 for

all B œ �X
-1 8A<. If we envisage the arrow field X as a graph GX  over Ob(C), this means

that  all  immediate  predecessors  B  of  A  in  GX  have  one  immediate  predecessor  less

than A.

The physical interpretation of this demand will depend on the category under consid-

eration.  In  a  finite  category  of  causal  sets  (subsection  1.4.2),  the  condition  on  the

causal surplus sA,B  says, roughly, that a causet is influenced by a larger past than any

of its causal predecessors. The demand that the causal deficit dA equals 1 has a related

meaning: The past of a causet is properly included in the past of its causal successors.

The two conditions are not equivalent, as sA,B = 0 and dA ¥ 1 when A has no predeces-

sors in GX . We state the following trivial consequences without proof:

Lemma 4.4   Given A œ Ob(C), the following statements hold for all arrow fields
X such that †�X

-1 8A<§ ∫ 0:

a) sA,B = 1 for all B œ �X
-1 8A< if and only if dA = 1.

b) If dA = 1, then †�X
-1 8B<§ = †�X

-1 8A<§ – 1 for all B œ �X
-1 8A<.

It  is  now easy to  verify,  using (4.19) -  (4.21),  that  âHX L†  and âHX L  behave  like the

creation  and  annihilation  operators  familiar  from  quantum  mechanics.  We  have

n
`
(X)â(X)†A\  =  (â(X)n

`
(X)  –  [â(X),  n

`
(X)])†A\  =  (â(X)n

`
(X)  –  â(X))†A\  =  (†�X

-1 8A<§  –

1)â(X)†A\,  and,  likewise,  n
`
(X)âHX L††A\  =  (†�X

-1 8A<§  +  1)âHX L††A\.  Writing  eA  for  the

eigenvalue †�X
-1 8A<§ corresponding to the eigenstate †eA\ := †A\ of the number operator

n
`
(X), we have found that †eA  – 1\ := â(X)†eA\ = â(X)†A\ = ⁄Bœ�X

-1 8A< †B\ and †eA  + 1\ :=

âHX L††eA\ = âHX L††A\ = †�X A\ are eigenstates for which

(4.22)n
` HX L †eA –1\ = HeA –1L †eA –1\

(4.23)n
` HX L †eA + 1\ = HeA + 1L †eA + 1\.
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This  looks  very  much  like  particle  creation  and  annihilation.  In  (4.15)  we  noticed

that the simple states †A\ have a "particle number" for each counter n
`
(X). For arbitrary

states y œ � we have

(4.24)
In` HX LyM HAL= ‚

Bœ�X
-1 8A<

kHX HBLL† kHX HBLLyHAL

This reduces to (4.15) if we assume that kHX HBLL†kHX HBLL = 1 for all B. The follow-

ing definition will be useful:

Definition 4.8   The presheaf k œ SetsCop

 such that f : A Ø B is assigned the linear
map k(f ) : k(B) Ø k(A) is unitary if the linear map k(f ) is unitary for all f œ Hom(C).

For a unitary representation k of C we then have

(4.25)In` HX LyM HAL= °�X
-1 8A<• yHAL.

For the simple states †B\ = yB, the equality above is not dependent on the argument

A. In general, we shall speak of such states as C-particle states.

Definition  4.9    A  state  y  œ  �  is  called  an  X-particle  state  if  In` HX LyM HAL  =

nXy(A) for the arrow field X and all A œ Ob(C), where nX  œ � depends only on X.
In  general,  if  y  is  an X-particle  state  for  some arrow field  X defined  on C,  we  say
that y is a C-particle state. If y is an X-particle state for all arrow fields X on C, and
if nX  = nY  for all arrow fields X and Y, y is a fundamental C-particle state.

The last clause mimics the distinction between fundamental particles (e.g. electrons)

and  particle-conglomerates  (e.g.  atoms)  in  particle  physics.  All  simple  states  are  C-

particle  states.  In  (4.22)  and  (4.23)  we  found  other  C-particle  states  from the  simple

states by applying the creation and annihilation operators.  There may exist  categories

C  with  a  unitary representation  k  for  which the  set  of  C-particle  states  is  even larger

than the closure of the set of simple states under âHX L†  and âHX L. In general, this will

depend on the arrow structure and the connectedness of the category C.

Example 4.2   Let us assume, for simplicity, that k(A) = � for all A œ Ob(C) and k(f)

= 1�  for all f œ Hom(C). If there are no arrows f pointing into the two elements A and

B, and if y is a state such that y(A) = y(B) = 1 (otherwise yk(C) = 0), it is easy to show

that y is a C-particle state with nX  = 0 for all X. In fact, y is a ground state of C.

Definition 4.10   A C-particle state y œ � is a ground state of the category C if nX

= 0 for all arrow fields X on C.

110   Tore Dahlen Thesis.nb



Trivially, â(X)y = 0 if y is a ground state. This reproduces the usual definition from

physics. There may exist several ground states in a category C. If Ob(C) is infinite, the

number of ground states may also be infinite.  (This should, perhaps, remind us of the

existence of an infinite number of vacua for certain potentials in quantum field theory

(see  e.g.  Zee  (2003)).  The  choice  of  a  particular  ground  state  would  be  a  sort  of

"symmetry breaking".)

The  operation  X1 & X2  (arrow field  composition)  was  introduced  in  Isham (2003a)

(see the remark preceding def. 4.2 above).  Note,  however,  that  even if dA(Xi) = 1 for

Xi  œ X (i = 1, 2), it will often be the case that dA(X1 & X2) ∫ 1. With this in mind, we

collect  some  of  the  conditions  we  may  want  to  impose  upon  a  category  and  its

representation.

Definition  4.11    If   X   is  a  subset  of  the  monoid  AF(C)  which  is  closed  under
arrow field composition X1 & X2, we shall say that the category 
 (or 
X  for preci-
sion)  with  Ob(
) = {*}, Hom(
) = X ‹  {i} and composition X2 ëX1  = X1 & X2  is a
pre-causal category.

In particular, AF(C) is pre-causal. In def. 4.11, we left out the condition dA(X )  = 1

on  the  causal  deficit  dA.  We  reintroduce  it  below,  tentatively,  in  order  to  keep  the

usual  commutation  rules.  Using  def.  4.4  and  4.6,  we  may  represent  pre-causal  cate-

gories on the following structures:

Definition 4.12  The pair �k  := (�, k) of a state space � and a presheaf k œ SetsCop

is a C-representation (of 
) if

(a) k(A) is a Hilbert space for each A œ Ob(C),

(b) k is unitary,

(c) the states y œ � are sections of the bundle ‹AœObHCLk(A),

(d)  there is  an inner product  X  ,  \  on �  such that  �  is  a  Hilbert  space (i.e.  is  com-
plete) in the associated norm,

(e)  for each A œ  Ob(C),  there is  a  normalized state  fA  such that  XfA,  y\  = XfA(A),

y HAL\kHAL for all y œ �, and for all fA and fB, kH f L fBHBL = fAHAL for f : A Ø B.

If,  in  addition,  dA(X )  = 1  for  some X in  
  and  all  A œ  C,  we say  that  �k  is  an X-
particle representation (or simply a C-particle representation).

As  introduced  above,  the  state  space  �  of  a  C-particle  representation  imitates  the

Fock  space  familiar  from  quantum  theory.  The  Fock  space  formalizes  the  idea  of  a

system of  free  (non-interacting)  particles.  We may now,  if  we  wish,  try  to  repeat  the

constructions of boson and fermion spaces in the context of pre-causal categories, and

introduce representations of arbitrary spin.
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Another  task would be to  look for  instances of pre-causal  categories,  and,  if  possi-

ble, examine the rôle of the C-particles available. We shall turn to this task in section

4.5.  Each  choice  of  a  category  for  quantisation  will  introduce  a  different  perspective

on  the  C-particles.  (One  should,  at  each  new  step,  question  if  the  difficulties  we

encounter point to weaknesses of the category-theoretical approach to quantisation, or

whether they are limitations inherent in any particle representation of physics.)

4.4. Measure Theory on a Category

4.4.1. The ú-Measure

We now investigate various definitions of a measure on a category. We focus on the

notion of a s-algebra sú of "double cones" as particularly natural for the set of objects

in a general category. With this in hand, we define the inner product for measures on

sú  and demonstrate the simplicity and order of these notions by proving the bounded-

ness of an important class of operators on the state space.

We shall, firstly, try to remove one of the obstacles to a category theory of quantisa-

tion. We have spoken freely of categories of any size (albeit "small" in the set-theoreti-

cal  sense),  and yet  the inner product on the state  space �  of the category C  has only

been  given  (definition  4.5)  for  finite  Ob(C).  The  inner  product  chosen  there  seems

quite  natural,  and  may be  extended  to  the  countably  infinite  case  if  we  make  certain

restrictions on the states available:

Definition 4.13 [Isham (2004), p. 23]   The space �2(C) consists of the state vectors
y such that

Xy, y\ := ⁄AœObHCL Xy HAL, y HAL\k HAL < ¶.

It  is  a  consequence  of  the  Cauchy-Schwarz  inequality  for  the  Hilbert  spaces  k(A)

that  †Xy, f\§  =  °⁄AœObHCL Xy HAL, f HAL\k HAL•    ⁄AœObHCL °XyHAL, fHAL\k HAL•  

⁄AœObHCL ∞yHAL¥k HAL∞fHAL¥k HAL  <  ¶.  (Here,  ∞yHAL¥k HAL  :=  °Xy HAL, y HAL\k HAL•1ê2
 is  the

norm on k(A).) The inner product is therefore well-defined on �2(C), and completeness

of �2(C) with respect to the norm ∞y¥ := †Xy, y\§1ê2 is easily proven.

We  will  try  to  extend  this  inner  product  to  a  general  category.  Let  us,  at  first,  see

how far  we can  get  without  assuming the definition  of a  measure m  on the  object  set

Ob(C)  of  the  category  C.  As  we  may  want  to  sum  over  an  uncountable  number  of

objects, we shall need the definition (where the supremum is taken over all finite sets

X Õ Ob(C)) below:

(4.26)
‚

AœObHCL
∞yHAL¥k HAL := sup

XÕObHCL
‚
AœX

∞yHAL¥k HAL.
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This is infinite for states y such that y(A) ∫ 0 for an uncountable set of objects. We

introduce the state space

(4.27)
L2 HCL := :y œ � ‚

AœObHCL
∞yHAL¥k HAL < ¶>.

Finally, we define the inner product on L2HCL in the same manner (with X finite):

(4.28)
Xy, f\ := ‚

AœObHCL
Xy HAL, f HAL\k HAL := sup

XÕObHCL
‚
AœX

Xy HAL, f HAL\k HAL.

Lemma 4.5    Xy,  f\  <  ¶  for  all  y,  f  œ  L2HCL,  and L2HCL  is  complete  in  the inner
product.

Outline  of  proof    We  omit  the  proof  of  finiteness.  As  to  completeness,  assume

that 8yn<nœ� is a Cauchy sequence in L2HCL. Because the spaces k(A) are complete for

any A œ Ob(C), the sequences 8ynHAL<nœ� are Cauchy sequences in each k(A). There-

fore,  for  each A,  there  exists  yA  œ  k(A)  such  that  lim ynHAL  = yA  when  n  Ø  ¶.  We

may then define y by y(A) := yA  for A œ Ob(C), prove that y œ L2HCL, and that lim

yn = y when n Ø ¶.   Ñ

The inner product above reduces to the former one in the finite or countable case. If

we decide to use it,  we will forego the possibility of incorporating into our definition

any physically relevant traits the category under consideration may have. On the other

hand, if the category comes equipped with a natural measure m, we would surely want

to  include  it  in  our  definition  of  the  inner  product.  The  definition  for  a  general  cate-

gory C with state space � will then be (Isham (1984a), p. 352):

Definition 4.14 [Isham (2004), p. 352]   For a (small) category C with state space
�, the inner product  on �  is Xy,f\ := Ÿ Xy HAL, f HAL\k HAL „mHAL, where X , \k HAL  is the

inner  product  on  the  Hilbert  space  k(A),  and  the  measurability  of  f  (A)  :=

Xy HAL, f HAL\k HAL is assumed.

A proposal  for  a  (probability)  measure  on  a  space  of causal  sets  has  been given  in

Brightwell  et  al.  (2002).  While  suggestive,  the  measure considered  there  has features

that  are  intrinsic  to  the  causal  set  approach  (cf.  subsection  1.4.2;  also  section  4.5

below). The measurable space X is, in this case, the infinte causets (i), and the genera-

tors of the s-algebra are the "cylinder sets" cyl(b) of infinite causets starting from the

finite  causet  b,  together  with  their  isomorphic  copies  in  X  (ii).  The  probabilities  are

then  calculated  from  the  dynamics  of  the  theory.  In  the  so-called  sequential  growth

approach (cf. subsection 4.5 below), the dynamics is fully determined by the transition

probabilities governing the addition (or "birth") of a new element to a given structure

(iii).
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Here,  points  (i)  and  (iii)  are  obviously  endemic  to  the  causal  set  programme,  but

even (ii) may prove too narrow in a general category-theoretical context. If there is, in

any  sense,  a  natural  measure  on  a  category  C,  it  should  probably  be  based  on  the

arrow  structure  of  the  category.  The  simplest  choice  seems  to  be  to  start  from  the

following s-algebra:

Definition 4.15   (a) If A and B are elements in Ob(C), the set ùAB consists of all C
œ Ob(C) such that there exists f, g œ Hom(C) with f : A Ø C and g : C Ø B. We call
ùAB the double cone between A and B.

(b) The collection sú of subsets of Ob(C) such that (i) the set ùAB  is contained in sú

for all A, B œ Ob(C), (ii) sú  is closed under complementation and countable union,
and  (iii)  sú  is  the  smallest  set  satisfying  (i)  and  (ii).  We  call  sú  the  s-algebra  of

double cones. 

The s-algebra sú is named after the double cones or "diamonds" Va
b := 9x œ �4» a–x

œ V+  fl x–b œ V+} in Minkowski space, where V+  is the future cone at 0. (The double

cones  are  useful  e.g.  as  the  domains  of  the  local  observables  in  algebraic  quantum

field theory.) Due to this analogy, we can inspect the consistency of our assumptions

by  interpreting  them  in  the  "category  of  space-time  points",  where  the  "arrow  set"

consists of all lightlike and timelike vectors at each point.

There  is  also  a  notable  overlap  with  the  terminology  from  category  theory.  For  a

double  cone  ùAB,  A  is  a  cone  over  ùAB  and  B  is  a  cone  under  ùAB.  Because  of  the

identity arrows 1A  and 1B, we have A, B œ ùAB  whenever ùAB  is non-empty, so in this

sense the double cones are "closed". Note that ùAA  may be larger than {A}, also in the

case  where  1A  is  the  only  arrow  in  Hom(A,  A).  The  definition  of  the  s-algebra  of

double  cones  is  the  first  step  towards  a  definition  of  a  measure  on  a  category.  The

second step is standard:

Definition  4.16    A  measure  m  on  a  category  C  is  a  nonnegative  set  function
defined for all sets of a s-algebra such that m(«) = 0 and m I‹i =1

¶ Ai) = ⁄i=1
¶ mAi  for

any sequence of disjoint sets Ai in s. A measure category is a triple (C, s, m). If s =
sú, the s-algebra of double cones, we say that m is a ù-measure. A category with a  ù
-measure is a triple (C, sú, m).
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Example 4.3   An immediate choice of a measure seems to be the "volume" of the

double  cones  ùAB:  that  is,  the  product  of  the  number  of  elements  in  ùAB  with  the

number  of  arrows  from A and  the  number  of  arrows  into  B.  Basic  category-theoretic

notions  may  come  into  play  when  we  pick  the  appropriate  measure  for  a  particular

category.  E.g.  if  C  is  a  cocomplete  category,  we  recognize  that  if  B  is  the  colimit  of

the diagram associated with the double cone ùAB,  the addition of a cone C under ùAB

to form the double cone ùAC  introduces a unique arrow B Ø C, so in this case we get

the  "law"  m(ùAC)  =  m(ùAB)  +  m(ùCC).  For  a  category  where  the  objects  carry  equal

weight,  this  means  that  the  arrow count  drops  out  of  the  measure.  This  is  the  simple

counting measure that was implicit in definition 4.5 (see also def. 4.22 below).

For categories with one object, such as the monoid category M, the arrows must be

counted, or promoted to the status of objects, perhaps as in a 2-category. We will give

some more  details  on  properties  of  a  natural  choice  of  a  ù-measure  in  the  section  on

the category of causal sets below.

4.4.2. Boundedness of the Operators â(X)

Let  us,  meanwhile,  consider  some  general  characteristics  of  the  ù-measures.  In

particular, we are interested in the boundedness properties of our operators under these

measures.  We will  prove under what  conditions the operators  â(X)  are  bounded for  a

category  C  with  Ob(C)  infinite.  For  this  purpose,  we  need  a  few  definitions  and

results.   Due  to  the  novelty  or  strangeness  of  some  of  the  notions  involved,  we  will

spell  out  the  proofs  in  some  detail.  The  definition  of  boundedness  is,  of  course,  the

familiar one from operator theory. A linear operator L on a Hilbert space � is bounded
if  there  is  a  positive  number  b  such  that  ∞Ly¥    b∞y¥  for  every  vector  y  œ  �.  The

smallest number b with this property is called the operator norm and is denoted by ∞L¥.

Definition 4.17   An arrow field X on a category C is weakly translatable if �XùAB =

ù�X A�X B  for  all  A,  B  œ  Ob(C).  (In  other  words,  we  demand the  closure  of  the  dotted

lines in the diagram below.) If, in addition, �X A = �X B implies A = B for all A and B,
we  say  that  X  is  strongly  translatable.  If  X  is  strongly  translatable  and,  for  each  A,

there exists B such that B
X HBL

A, X is called a Minkowski arrow field.
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A B

E = �X D

C

D

X HCL

X HAL X HBL

X HDL

f

g

�X B

�X C

�X A

Figure 4.2. Weak translatability of an arrow field.

The  definition  can  be  broken  down  into  a  few  simpler  conditions.  We  say  that  an

arrow  field  X  on  a  category  C  is  completable  if,  whenever  A Ø
f

B  is  an  arrow  in

Hom(C), there exists an arrow �X A Ø
g �X B in Hom(C) (the diagram below closes). An

arrow  field  X  is  commutable  if,  whenever  A
X HAL �X A Ø

f
E  is  an  arrow  chain  in

Hom(C), there exists an object D œ Ob(C) such that  A Ø
g

D
X HDL

E =�X D in Hom(C).

If X  is  completable  and commutable  it  will  also  be weakly translatable.  We shall  not

need this finer structure now.

A B

�X A �X B

X HAL X HBL

f

g

Figure 4.3. Completability of an arrow field.

Lemma 4.6    If X is a Minkowski arrow field on C and U œ  sú  (that is, U is a  ù
-measurable set) then �X U œ sú.

Proof    By  induction.  Assume  first  that  U  =  ùAB  for  some  A,  B  œ  Ob(C).  Then

�X U  = �X ùAB = ù�X A�X B œ sú by the translatability of X.
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For the induction step, assume first that U = V  œ sú  (where V  is the complement

of  V  in  Ob(C)),  with  V  œ  sú  such  that  �X V  œ  sú.  We  must  prove  that  �X V  œ  sú.

Because the s-algebra sú  is closed under complementation, it suffices to prove that

�X V  = �X V . Assume A œ �X V . Then  we have B
X HBL

A for some B œ V . If now A œ

�X V  we  have  C
X HCL

A  for  some  C  œ  V ,  but  then  �X B  =  A  =  �X C,  so  B  =  C  by

strong  translatability  of  X.  We have  a  contradiction,  hence  A œ  �X V .  On  the  other

hand,  if  A  œ  �X V  there  exists  no  arrow  B
X HBL

A  for  any  B  in  V.  Because  X  is  a

Minkowski arrow field, there must, however, be an arrow B in V  with this property,

so A œ �X V .

Finally,  assume that  U  =  ‹V  œ  sú  for  a  countable  union  of sets  V,  with  V  œ  sú

such that  �X V  œ  sú.  We must  prove that  �X (U)  = �X (‹V )  œ  sú.  We find,  trivially,

that  �X (‹V ) = ‹(�X V ).  But  then �X (‹V ) is a  countable union of sets  in sú,  hence

itself a member of sú.   Ñ

Definition 4.18    If  m  is  a measure on a category C and X is a Minkowski arrow
field such that m(�X U) = m(U) for all U in the s-algebra, we say that X conserves m
on C.

The notion of conservation is well-defined for sú  by lemma 4.6. Lemma 4.6 is also

needed for the definition of a new measure on sú:

Definition  4.19    If  (C,  sú,  m)  is  a  ù-measure  category  then,  for  a  Minkowski
arrow field X which conserves m  on C,  �X *m  is the X-induced measure  on C  and s
defined by (�X *m)(U) := m(�X U) for all U œ sú.

As usual, we shall say that a measure n is absolutely continuous  with respect to the

measure m if n(A) = 0 for all A œ sú for which m(A) = 0. We use standard notation n `

m  to  symbolize  this.  Also,  we  say that  a  category C is  s-finite  for  a  given  s-algebra

and  a  measure  m  if  Ob(C)  is  the  union  of  a  countable  collection  of  sets  U  in  the  s-

algebra with measure m(U) < ¶. The next lemma is trivial.

Lemma 4.7   If X is a Minkowski arrow field which conserves m then �X *m ` m.

Proposition 4.8   If  C = (C, sú, m) is a ù-measure category such that C is s-finite
for sú, and X is a Minkowski arrow field which conserves m, then the operators â(X)

are  bounded  for  unitary  representations  �k  =  (�,  k)  whenever  the  Radon-Nikodym
derivative of �X *m with respect to m is bounded on Ob(C). 
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Proof    The  operators  â(X)  are  linear  on  �.  In  order  to  prove  boundedness,  we

must  show  that  there  is  a  positive  number  b  such  that  ∞â(X)y¥    b∞y¥  for  every

vector y œ �. Here, ∞ ¥ is the norm on � given by the inner product X , \ in definition

4.14 for the ù-measure m in C. By definition,

∞y¥ = †Xy, y\§1ê2 = °Ÿ XyHAL, yHAL\k HAL „mHAL•1ê2
 and

∞â(X)y¥ = †Xâ HX Ly, â HX Ly\§1ê2 = °Ÿ XHâ HX LyL HAL, Hâ HX LyL HAL\k HAL „mHAL•1ê2

= °Ÿ Xk HX HALLy H�X AL, k HX HALLy H�X AL\k HAL „mHAL•1ê2

= °Ÿ Xy H�X AL, y H�X AL\k H�X AL „mHAL•1ê2
.

The  last  step  follows  because  k  is  unitary  in  the  C-particle  representation  �k.  We

have seen that the X-induced measure �X *m is another ù-measure on C. Due to the s-

finiteness of C and the absolute continuity of �X *m with respect to m (lemma 4.7), we

may invoke the Radon-Nikodym theorem. Hence, for each U œ sú we have

�X *m(U)  =  ŸU
B d�X *m

dm
F „mHAL,  where  B d�X*m

dm
F  is  the  Radon-Nikodym  derivative  of

�X *m with respect to m.

We continue the derivation above and find that

∞â(X)y¥ = °Ÿ Xy H�X AL, y H�X AL\k H�X AL „mHAL•1ê2
=

 °Ÿ Xy HAL, y HAL\k HAL „ H�X * mL HAL•1ê2
= ¢Ÿ Xy HAL, y HAL\k HALB d�X *m

dm
F „m HAL¶1ê2

 C1ê2·°Ÿ Xy HAL, y HAL\k HAL „m HAL•1ê2
= C1ê2·∞y¥.

The second step uses the definition of �X * m. The third step uses a general property

of the  Radon-Nikodym derivative  (cf.  Royden  (1967),  p.  241,  and  note  that  the  inte-

grand on the left is non-negative because X , \k HAL is the inner product on k(A)). For the

fourth  step,  the  assumption  of  the  boundedness  of  the  Radon-Nikodym derivative  on

Ob(C)  is  needed,  with  C  a  positive  constant  such  that  †B d�X*m

dm
F(A)§    C  for  all  A  œ

Ob(C). This proves the proposition.   Ñ

This result provides an example of the application of the ideas of category quantisa-

tion. Algebras of bounded operators were important for the topos models in chapters 2

and 3.  We should note  that  there  are,  still,  several  lacunae in  the presentation above.

Among other things, the theory of operators and representations in sections 4.2 and 4.3

should  be  developed,  from the  "ù-point  of  view",  for  the  non-finite  case.  One  would

also  like  to  know when  a  C-particle  representation  �k  =  (�,  k)  of  a  given  ù-measure

category C = (C, sú, m) is irreducible (cf. Isham (2003a), p. 363). We should also try

to  gain  some  intuition  for  the  theory  by  studying  the  incarnations  of  its  entities  in

"concrete" categories. As an illustration, we now look at the category of causal sets.
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4.5. Quantisation on a Category of Causal Sets

We  encountered  the  causal  set  program in  section  1.4.2  above.  The  proponents  of

this approach attempt to build a theory of quantum gravity by imposing simple causal-

ity  conditions  on  a  discrete  space-time.  A  somewhat  unusual  classical  dynamics  has

been developed on the basis of stochastical growth processes on the causal sets, and it

is  hoped that  this  model  may be extended to  a  full  quantum theory,  e.g.  by means of

the  theory  of  "quantum measures"  (Sorkin  (1994)).  Below,  we  shall  use  some  of  the

ideas from this chapter in order to formulate a different quantum theory of casual sets.

Our first step (subsection 4.5.1) will be to define a category with a ù-measure, ��� =

(CS,  sú,  m),  which  captures  the  central  assumptions  of  the  (classical)  causal  set  pro-

gram, such as local finiteness, general covariance and Bell causality. Then, in subsec-

tion 4.5.2,  we explore a quantised theory for causal sets by means of the arrow fields

on CS and their associated "position" and "momentum" operators. We also explain the

notion of a CS-particle for the theory.

4.5.1. The Category of Causal Sets

Recall  that  the  causal  sets  are  partially  ordered  sets  that  are  locally  finite  in  the

sense  explained  in  subsection  1.4.2.  The  order-relation  �  is  irreflexive:  an  element

does not precede itself. Also beware that causal  sets are insensitive to labelling: thus,

we shall  identify order-isomorphic  sets.  These will  be  the objects  of the category CS

below.

The  terminology of the theory is  very suggestive ("event",  "universe",  "big  bang").

We shall  use it  in some places,  but it  must be kept in mind that the underlying struc-

ture  (oriented graphs) is  very elementary.  If C is  a  causal  set  and e  is  an  element  (or

"event") in C, the "past" of e is defined as Past(e) = {a œ C » a � e}. We will also speak

of the  past  of  a  subset  D  of  C,  Past(D).  The  n-antichain  A(n)  is  the  completely  uno-

rdered set with n elements.

The clause on order-preserving in part (a) of the definition below was suggested by

Isham (2004). Part (c) is based on the notion of Bell causality (see Rideout and Sorkin

(1999),  sec.  3).  Hereafter,  we  simplify  our  notation  by  writing  mAB  for  m(ùAB),  the

value  of  the  ù-measure  m  on  the  double  cone  ùAB.  We  say  that  the  causal  set  D
(immediately) succeeds the causal set C (for C, D different) if C Ø D and C Ø A Ø D
implies A = C or A = D. (We also call such morphisms C Ø D successions.)

Definition 4.20   A classical category of causal sets with a ù-measure is a triple 

��� = (CS, sú, m), where
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(a) CS is the category of causal sets, with Ob(CS) the collection of causal sets and 

Hom(CS) the collection of functions f : A Ø B for A, B œ Ob(CS), such that, if a � b 
for a, b œ A, then f (a) � f (b) in B (preservation of order), and, if  b œ B but b – Im(f), 
there is no a œ A such that b � f (a) (internal temporality).

(b) sú is the s-algebra of double cones on CS, and
(c) m is a ù-measure which satisfies the condition

if  the  causal  sets  B and C succeed the causal  set  A,  and  if  there are  monics (i.e.
injective functions) f : A Ø A', g : B Ø B' and h : C Ø C' in Hom(CS) such that there
exist successions A' Ø B' and A' Ø C', it holds that

mAB

mAC
 = 

mA' B'

mA' C'
.

Thus, the objects of the causal category CS are not discrete points, but ordered sets

of  such  points.  One  may think  of  the  arrows  f  :  A Ø  B  as  possible  transitions  of  the

universe from stage A to stage B. The condition on m, an attempt to capture the notion

of Bell causality within the present framework, will be explained later in this section.

The  set  of  morphism  may  be  restricted  further,  e.g.  by  demanding  injectivity.  (Yet

another possibility  would  be to  define the  objects  of the  category as  triples  of causal

sets with a s-measure (C, s, m), and extend the morphisms so that they also represent

changes in the measure theory of the causets. In this way, s and m become dynamical

objects of the theory.)

Above,  the  elementary  properties  of  the  causal  sets  (such  as  local  finiteness)  are

mirrored in the internal structure of the objects of the category CS. In addition, collec-

tions of causets satisfy the condition of internal temporality: that is, the condition that

no  new  elements  in  the  causal  growth  process  are  introduced  to  the  past  of  existing

elements.  In  our  definition,  this  is  reflected  in  the  temporality  condition  on  the  mor-

phisms  f.  The  usual  dynamical  conditions  on  the  causets  (e.g.  Rideout  and  Sorkin

(1999))  will  be  implemented  as  requirements  on  the  external  structure.  Thus,  the

principle  of  discrete  general  covariance  and  the  Bell  causality  condition  are  refound

at the level of the s-algebra sú and the ù-measure m. We examine covariance and Bell

causality in  this  subsection.  In  subsection  4.5.2  we quantise  ���  by means  of arrow

fields.
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(a)  Discrete  general  covariance.  Invariance  principles  are  central  in  physics  (see

e.g.  subsection  1.2.4  above)  because  they  narrow the  field  of  possible  solutions.  The

principle  of  discrete  general  covariance  has  been  coined  to  do  the  same  work  in  the

theory of causal sets. A causal set C grows by the addition of a new element (event) c.

Dynamics  is  introduced  by  the  assignment  of  a  probability  P  to  the  subset  of  b  œ  C
such that b � c, the past of c. There should be no elements b in C such that c � b. The

covariance principle then states that the probability of reaching a given finite causet B
from another causet A (perhaps the empty causet 0, "the big bang") should be indepen-

dent  of  the  path  taken  from A  to  B.  For  example,  the  two  paths  to  the  top  causet  in

figure  4.4  are  physically  indistinguishable.  As  each  path  corresponds  to  a  natural

labelling of the causets where the order of birth of the elements is indicated, the covari-

ance principle may be formulated in an alternative manner: the labels of a causet have

no physical significance.

Figure 4.4. The principle of discrete general covariance.

It  has  been  shown  that  this  requirement  is  fulfilled  in  classical  sequential  growth

(CSG) models, the most common approach to causal set dynamics. Essentially, this is

done  by  proving  that  the  probability  of  transition,  an,  from  a  given  causet  with  n

elements to another causet with n + 1 elements, depends on a countable set of parame-

ters q0 ¥ q1  ¥ q2  ¥ ... (in the terminology of the theory, this is the "physical" coupling

constants). The parameter qn  is the probability of transition from the totally unordered

set with n elements, the n-antichain A(n), to the (n + 1)-antichain A(n + 1). The proba-

bility of growth from a causet A with k elements to a causet B with k + l elements turns

out  to  be  independent  of  the  particular  path  chosen  between  the  two  causets  (details

are found in Rideout and Sorkin (1999)).
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In our model ���, this trait is captured at the level of the s-algebra sù. The steps in

the growth process of CSG are simply morphisms in the category CS. The double cone

ùAB  contains the causal sets found along all possible paths from A to B, so a probabil-

ity  measure  defined  on  this  structure  will  not  distinguish  between  different  paths

between the two sets.

(b) Bell  causality.  In CSG, the choice of a non-increasing sequence of constants qk

determines the dynamics completely. The proof relies on the Bell causality condition,

which may be interpreted as a causal  set-equivalent of the ban on superluminal influ-

ence  known  from relativity  theory.  We  now ask  about  the  relationship  between  Bell

causality and condition (c) on ��� above.

Bell causality is usually stated as the requirement that, given the size of the causet C
("the  development  of  the  universe  so  far"),  the  probability  of  a  new  event  e  should

only  depend  on  the  subset  past(e).  (The  qualification  on  the  size  of  C  is  important:

events  with  the  same  past,  but  occuring  against  the  background  of  different  causets

(universes)  will  not  generally  have  the  same  probability.)  In  CSG,  this  condition  is

expressed as an equality between ratios of transition probabilities prob between causal

sets:

(4.29)

probHgABL
probHgACL =

probHgA' B'L
probHgA' C'L .

We use the notation gAB  for a path (or "causal  growth sequence") from causet  A  to

causet  B.  It  is  demanded  that  the  probability  ratio  of  single-step  processes  (that  is,

processes for which a single element is added to the causet) gA' B'  and gA' C'  starting from

the causet A' may just as well be calculated from the (often) simpler processes starting

from the union A of the pasts of B' and C', and completed in single-step processes gAB

and gAC, with a new element added in the same manner as in B' and C', respectively.

In our model, we frame Bell causality as a condition on the ù-measure m. When m is

a  probability  measure  prob  as  in  (4.29),  the  requirement  stated  in  the  definition  of  a

classical causal set category follows. To see this, we define:

Definition 4.21   For prob a probability measure which satisfies general covariance
and Bell causality, the classical measure mcl is given by mcl(ùAB) := prob(gAB).

Lemma 4.9    mcl  is a  ù-measure which satisfies the Bell causality condition for CS

(condition (c) of def. 4.20).

Proof    All  paths  gAB  from A to  B  are  assigned  the same probability  because prob

satisfies  general  covariance,  so  mcl(ùAB)  is  well-defined  as  a  ù-measure.  Assume  that

we have triples of causets A, B, C and A', B', C' related by succession,  and a triple of

monics f, g, h for which we can find successions j : A' Ø B' and k : A' Ø C'.
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Figure 4.5. Bell causality.

Both B and C succeed A,  so the number of elements ("events") in B  and C must be

one greater than the number of elements in A (otherwise, we could find D ∫ A, B such

that A Ø D Ø B, and likewise for C). Also, the monics g and h in the definition must

respect temporality by clause (a) of def. 4.20, so no elements are added in B' (or C') to
the past  of the element b  (or c) that  was "born" in B (or C).  Because morphisms pre-

serve order, it follows that the past of the image b' of b added in B' is isomorphic to the

past  of  b,  and  likewise  for  the  image  c'  of  c  in  C'.  We  now  define  the  triple  A''  =

Past(b) ‹ Past(c), B'' = A'' ‹ {b}, C'' = A'' ‹ {c}. From (4.29) and past isomorphism

we have

(4.30)

probHgABL
probHgACL =

probHgA'' B''L
probHgA'' B''L =

probHgA' B'L
probHgA' C'L .

Condition (c) then follows by definition 4.21.   Ñ

Thus,  if  we think  of m  as  the  "causal  weight"  of  the double  cones ùAB,  the  relative

value of the weights should be unchanged by the monic mappings.  As another exam-

ple, we may look at

Definition 4.22   The counting measure m0 is the ù-measure defined on sú by setting

Hm0LAB = †ùAB§, the number of objects in ùAB.

Lemma 4.10   If m0  is the counting measure on the category of causal sets CS, it
is the case that

(i) Hm0LAA = 1;

(ii) Hm0LAB = 2 for successions A Ø B;

(iii) in general, Hm0LAB ¥ #(events in B) – #(events in A);
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(iv) Condition (c) of def. 4.20 holds for m0.

Proof   (i)  Beacuse order-isomorphic causal  sets  are identified,  there  can be only

one morphism A  Ø  A,  namely the identity 1A,  so  A  œ  ùAB.  Also,  there  is  no B  ∫  A
such that A Ø B Ø A. So †ùAB§ = 1. (ii) and (iii) are also trivial, and (iv) follows from

(ii) because the morphisms in def. 4.20(c) are successions.    Ñ

The counting measure satisfies Bell causality, but in a non-informative manner: all

succession ratios are equal to 1. In general, the arrow structure should be taken into

account.

4.5.2. Arrow Fields and Operators on Causal  Sets

We  start  this  subsection  with  a  quotation:  "When  all  one  has  to  work  with  is  a

discrete set and a partial order, even the notion of what we should mean by a dynamics

is not obvious" (Rideout,  Sorkin (2004),  p.  1). In CSG, this problem is solved by the

assignment  of  values  to  the  coupling  constants  qn:  the  dynamical  evolution  of  the

theory is wholly contained in the transition probabilities between the antichains. In the

category approach,  on the other hand,  arrow fields are  the carriers of dynamical  con-

tent.  Also,  the  techniques  from  sections  4.2  and  4.3  make  these  fields  immediately

available for quantisation. In fact, quantisation has not been achieved within the CSG

program, which remains a purely classical construction.

In both approaches, a complete "physical" dynamics will require the equivalent of a

"Hamiltonian" within the theory. (This is inexact: the causets may belong to different

time  stages,  so  a  Hamiltonian  formulation  is  out  of  the  question.)  So  far,  this  is  not

within  reach.  The  table  below sums  up  the  implementation  of  standard  notions  from

causal  set  theory  within  arrow field  theory for  ���,  the  quantum category of  causal

sets.

Table 4.1.

Causal sets Arrow field theory in ���

Partial ordering,

local finiteness

Internal structure

of objects in CS

Temporality Morphisms in CS

General covariance σ − algebra σ�

Bell causality and classical dynamics �−measure µ

Quantum dynamics Operator repr. of arrow fields X on CS

We now consider  the  monoid  AF(CS)  of  arrow fields  X  on the  causal  set  category

CS. This is a pre-causal category in the sense of def. 4.11. We shall deal only with the

finite  case,  so  the  analysis  in  section  4.3  can  be  applied.  This  corresponds  to  the

choice of m0 as our ù-measure, so Bell causality is trivially fulfilled.
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Definition 4.23   A quantum representation of causal sets ���  is a CS-representa-

tion (�, k) with a state space � and a presheaf k œ SetsCSop

 which satisfies the condi-
tions  (a)-(e)  of  def.  4.12.  (In  particular,  the  states  y  œ  �  are  sections  of  the  bundle

‹AœObHCSLk(A), where k(A) is a Hilbert space for each causet A œ Ob(CS).)

In subsection 4.2.1, the presheaf k was introduced in order to represent arrow fields

X faithfully as operators â(X). It was noted that presheaves k for which k(A) = � (with

A now a causet) were unsatisfactory because they do not capture any inner structure of

the objects A. The nearest alternative of any interest is to try a contravariant functor k

such that

(4.31)
kHAL = �†A§ for A œ ObHCSL and kH f L some linear map k f :�†B§ Ø

�†A§ for f : A Ø B.

For  the  choice  of  the  linear  maps  k(f  ),  there  are,  in  effect,  three  special  cases  to

consider, as exemplified below.

Figure 4.6. Object and arrow domain of the multiplier k.

(i) For arrows f : A Ø B where the causet B introduces new events, we let k(f ) be the

projection of �†B§  onto �†A§  which erases the components of Hc1, ..., c†B§) corresponding

to the new elements.

(ii) For arrows g : A Ø C where the causet C collapses unrelated events, k(g) will be

the proper inclusion of  �†C§  in �†A§,  but  we must choose a unique source in A  for the

collapsed event in C. If there is a causally related source e in A (which must be unique,

due to order-preservation) then e is the natural choice for the mapping of components.

Otherwise, for event sources which are causally unrelated in A, the choice is arbitrary.

(Note  that  case  (ii)  is  ruled  out  if  we  restrict  further  the  set  of  morphisms,  as  in  the

remark following def. 4.20.)

Tore Dahlen Thesis.nb  125



(iii) There may also be arrows  h : A Ø D which introduce new causal structure, but

for which A  and D have the same event  set.  Then k(h) will  be the identity on  �†D§  =
�†A§. 

Other  cases are  combinations of  (i)-(iii).  Trivially,  the  unitarity  requirement  of def.

4.12  is  not  satisfied,  so  this  is  not  a  CS-representation  in  the  full  sense.  There  is,

nevertheless, a lesson to be had about the interpretation of the multiplier k. In the light

of the remarks  above,  it  seems possible  to  regard  k  as  a  sort  of non-physical  (gauge)

transformation, locally dependent on the causet A. Recall def. 4.4 of the operator â(X)

for an arrow field X. As shown in figure 4.7 for X(A) = f as above, â(X)y is a transla-

tion of the state y such that, from the point of view of particular causet A, the compo-

nents associated with new events in the causet B is superfluous.

Figure 4.7. Representation of arrows by k.

Let us now outline how the elementary theory of causal  sets within quantised cate-

gories may be further developed:

(1) More examples involving different choices of state spaces �, modifier k and pre-

causal categories X should be worked out to see if the definition of qunatum representa-

tion above is the natural one, or whether it should be modified.

(2) In a more advanced development, the counting measure should be replaced by a

general ù-measure.

(3)  The  question  of  Bell  causality  in  the  quantised  theory  should  be  investigated.

Should we really expect  (some analog of)  Bell  causality to  hold  in  the  quantum case

too, as suggested by Rideout and Sorkin ((1999), p. 24)? Or will this allow us to infer

Bell's  inequalities,  thus  violating  well-known  quantum  entanglement  effects  (see

Penrose (2004), p. 582ff, for an introduction to the subject)?
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(4) The "points" in a causet A are interpreted as events. But what is a particle? Can

we define a particle representation for CS, perhaps along the lines suggested in section

4.3? Can we have a particle interpretation which hints to the presence of gravity in the

model?  Ideally,  the  canonical  representation  on  the  causal  sets  should  be  structurally

similar to the spin-2 particle of gravitation theory, the graviton. At present, it remains

a mystery how this can be done.

(5)  Connected  with  the  last  point,  a  full  dynamical  account  should  complete  the

"kinematical" sketch above.

4.6. Representations of Arrow Fields

We  have  seen  that  arrow  fields  can  be  represented  as  operators  on  certain  state

spaces  �.  In  this  section,  we  take  a  step  further  away  from the   paradigm of  Hilbert

spaces, still prominent in the approach above. We shall try to extend the topos formal-

ism to a more general setting, where operators on Hilbert spaces are no longer the sole

option.  The  basic  idea  is  to  assume  that  operators  are  really  representations  of  arrow

fields.  To start  with,  in  subsection 4.6.1  we collect  all  representations of arrow fields

on a category C in a category BAFC of monoid representations, and derive the elemen-

tary  properties  of  this  category.  There  is  a  technical  issue  here,  due  to  the  fact  that

some of the operators we have to deal  with are really anti-representations (subsection

4.6.2). Finally, we unify quantisation on categories and the topos scheme described in

chapters  2  and  3.  A  presheaf  topos  t(C)  for  a  quantised  category  C  may  then  be

constructed (subsection 4.6.3).

4.6.1. The Category of Representations BAFC

In  section 4.1  we introduced arrow fields X  on a  category C  and defined operators

â(X)  and â(XL†  by means of them. Where do  these entities  belong?   The arrow fields

have a simple structure indeed: there is a unit arrow field, combination of arrow fields

is  associative,  and,  in  contrast  with  the  arrows  in  C,  combination  is  always  defined.

The  set  of  arrow  fields  with  combination  on  C  is  a  monoid,  AF(C)  (def.  4.2).  From

elementary  category  theory,  any  monoid  may  be  regarded  as  a  category  with  one

object. We therefore define

Definition  4.24    The  category  of  arrow  fields  over  a  category  C,  AFC,  is  deter-

mined by
(i) Ob(AFC) has exactly one element, the set * := Ob(C) of objects in C;

(ii) Hom(AFC) = AF(C), the arrows in AFC are the arrow fields over C;

(iii)  the  (unique)  identity  arrow  1*  is  the  arrow field  i  defined  by  i(A)  :=  idA,  with

idA the identity arrow on A œ Ob(C);

(iv)  composition  ë  is  defined  by  X2ëX1  :=  X1&X2  for  X1,  X2  œ  Hom(AFC),  where

X1&X2  is  the  arrow  field  combination  (defined  in  section  4.1  as)  (X1&X2)(A)  :=

X2(Cod(X1(A)) ëC X1(A), where 'ëC ' denotes composition in the category C.
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Note the inverted order of the arrow fields in 'ë' and '&' (see remark in example 4.8

below). It is easy to show that associativity of ë holds. In addition, Dom(X) = Cod(X) =

*,  and X ëY  is  defined for all  arrows (arrow fields) X, Y.  In general,  commutativity of

composition, X ëY  = YëX , will not hold. From now on, we shall stick to the one-object

category AFC, not the monoid XAF(C), i, &\.
Arrow fields are quite abstract entities, so we are interested in their representations.

It is a basic fact in topos theory that the set of all representations of any monoid M (or

group G) forms a category M-Sets or BM (G-Sets or BG for groups), moreover, it can

be  shown  that  BM  (BG)  is  a  topos  (lemma  4.11  below).  Let  us  spell  out  what  this

means for M = AFC.

Definition 4.25    The category of all  representations  of AFC,  denoted as BAFC  or

AFC-Sets, is determined by
(i) Ob(BAFC) = {XS, m\ | S is a set and m : S × AF(C) Ø S}, where we denote m(a, X)

by a · X for a œ S and X œ AF(C). We also demand that a · i = a and (a · X) · Y = a · (X

ë Y) = a · (Y&X) for all a œ S and X, Y œ AF(C) (m is the right action of AFC on S);

(ii) Hom(BAFC) = {f | f : S Ø T is a function and f(a · X) = f(a) · X for a œ S and X œ

AF(C}  (that  is,  morphisms  f  between  representations  XS,  m\  and  XT,  n\  respect  the
action; we also say that f is equivariant);

(iii) the identity arrow 1XS, m\ is the identity function iS : S Ø S for all sets S;
(iv) composition ë is functional, (g ë f )(a) := g(f (a)) for a œ S, f : S Ø T and g : T Ø

U.
If, instead, we demand that  (a · X) · Y = a · (Y ë X) for all a œ S and X, Y œ AF(C),

we say that we have the category of anti-representations of AFC, denoted by BAFC
* .

Example 4.4   It is obvious that the translational representation S = Ob(C), A · X =

m(A, X) = Cod(X(A)) (for A an object in C) is an element in BAFC. This representation

moves  elements  A  in  C  one  step  along  arrow  fields  X.  (In  section  4.1,  A  ·  X  was

denoted as �X (A)  or �X A, and we will use this notation freely.) If C is a subcategory of

a category D, we may form an extended translational representation of AFC  by choos-

ing, for each arrow field X over C, an arrow field X' which coincides with X on Ob(C).

Example 4.5    In general,  the elements of an algebraic structure may be associated

with vectors in a vector space. The regular (or adjoint) representation of the structure

then consists of mappings on the associated vector space, and these are defined from a

combinatorial operation in the algebraic structure. For the monoid AFC, we let S be a

vector space  with  basis  {eX  |  X œ  AF(C)} and  define the  linear mapping  eY  ·  X  := X
(eY ) := eXY  as the representation of the element (an arrow field) X in the monoid.
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Example 4.6   We now consider the operator representations of AFC  constructed in

section 4.1. Recall that the vector space (state space) �k  there had vectors y that were

sections  of  the  bundle  ‹AœObHCLk(A),  where  k(A)  was  a  Hilbert  space  for  each  A  œ

Ob(C). The action of the annihilation operator, â(X), associated with an arrow field X
was  defined  as  (â(X)y)(A)  :=  k(X(A))y(CodHX (A))),  where  k  was  a  contravariant

functor on C, k(f) : k(B) Ø k(A) for f : A Ø B in Hom(C). We may therefore represent

annihilation in BAFC as â := X�k, m\, with y · X = m(y, X) := â(X)y. Then

(4.32)
Hy ÿ X L ÿY = mHmHy, X L, Y L =
= â HY & X Ly = y ÿ HY & X L= y ÿ HX ëY L.

So  condition  (i)  on  representations  (objects  in  BAFC)  is  satisfied.  (The  third  equa-

tion is the only non-trivial step: note that

(4.33)

@â HY L Hâ HX LyLD HAL= k HY HALL@â HX LyD H�Y AL
= k HY HALL@k HX H�Y ALLy H�X H�Y ALLD
= k HHY & X L HALLy H�Y& X AL= Hâ HY & X LyL HAL.

We  have  thus  derived  the  representation  â(Y)â(X)  =  â(Y&X)  of  the  arrow  field

combination '&'.)

Example 4.7   One may ask if the creation operator, â†, furnishes another representa-

tion  of  AFC.  We  consider  only  the  finite  case.  By  definition  4.6,  (â(XL†y)(B)  :=

⁄Aœ�X
-1 8B< k†HX HALLy HAL,  where  k†  is  a  covariant  functor.  By  a  calculation  similar  to

the above, it can be shown that  â(YL†â(XL†  = â(X&YL†. If we define â†
= X�k, m†\, with

y · X = m†(y, X) := â(XL†y, it is clear that

(4.34)

Hy ÿ X L ÿ Y = m† Im† Iy, X M, Y M
= â HY L† Iâ HX L† yM= â HX & Y L† y = y ÿ HX & Y L= y ÿ HY ëX L.

Whereas â is a representation of AFC, â†  is an anti-representation of the monoid of

arrow fields. Thus, â†  is an object of BAFC
* . The choice of â† as an anti-representation

is of course conventional, and may be changed by inverting the order of the composi-

tion  'ë'  in  definition  4.25.  But  it  is  not  a  matter  of  convention  that  â  and  â†
 do  not

belong in the same category.

Let us collect some simple characteristics of the category BAFC. In general, we may

identify categories BM  with the category of presheaves SetsMop

,  where M  is the one-

object category corresponding to the monoid M.

Lemma 4.11   BAFC is a topos of presheaves (namely, BAFC > SetsAFC

op

).

Proof    Assume  the  representation  XS,  m\  is  an  object  in  BAFC.  The  presheaf  P

corresponding to XS, m\  will  assign the set  S  to the sole object  * in AFC,  and to each

arrow field X in Hom(AFC) an arrow P(X) : S Ø S given by P(X)(a) = m(a, X). We have
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PHX ëY L HaL = mHa, X ëY L = a ÿ HX ëY L = Ha ÿ X L ÿ Y = mHa, X L ÿ Y

= PHX L HaL ÿ Y = mHPHX L HaL, Y L = PHY L HPHX L HaLL = HPHY LëPHX LL HaL.
Thus,  the functors are contravariant,  so the tag 'op'  is justified.  Also,  we may iden-

tify  the  morphisms  f  between  representations  XS,  m\  and  XT,  n\  as  natural  transforma-

tions q between presheaves Q and P by setting q* = f for *, the sole object in AFC.   Ñ

What are the subobjects of the representations in BAFC? If f : S >Ø T is a monomor-

phism (that is, injective) and a œ S, we see that f(a) · X = f(a · X) by equivariance of f.

So f(S) is closed under the action of AFC. Since S and f(S) are the same (up to isomor-

phism),  it  follows  that  subobjects  of  T  are  subsets  closed  under  the  right  action.  We

shall say that a subobject S of a representation T is a subrepresentation. For groups, it

will also be the case that the complement of S  in T is closed, and hence ~S is a subob-

ject too. For monoids, such as AFC, this will, generally, not be the case.

Example  4.8    Let  X  be  an  arrow  field  over  a  category  C,  and  assume  that  f  is  a

morphism between the translational representation C over C and an extended represen-

tation D over the category D, where Ob(C) Õ Ob(D). C will then be a subobject of D,

but if X' is the extension in AFD of an arrow field X over C, it may well happen that X'

takes Ob(D)îOb(C) into Ob(C), that is, for some A œ Ob(D)îOb(C),  A ·  X' =  �X 'A œ

Ob(C).

The lack of invariance on complements makes BAFC  a little more complicated than

the  category Sets  (or  even  BG  for  G  a  group).  Some  basic  facts  are  gathered  below.

(Heyting algebras were defined in subsection 2.2.1.)

Lemma 4.12   The set Sub S of subrepresentations of a representation S in BAFC is

a Heyting algebra.

Proof   This holds for the set of subobjects of an object in any topos (Mac Lane and

Moerdijk (1992), p. 201), and a subrepresentation in BAFC  is just a subobject, so the

statement  follows immediately.  Let  us  spell  out  some of the  details  in  the case under

consideration.  As  usual,  a  Heyting  algebra  is  a  distributive  lattice  with  implication

satisfying x  (y Ø z) if and only if x fl y  z. The ordering '' is given by the subob-
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fl
ject  relation.  Now let  S  be  a  representation  of  AFC,  and  consider  the  subrepresenta-

tions V and W of S. Denoting the intersection (the greatest lower bound) as V fl W, we

observe that if the action does not take us outside V and W for any arrow field X, then

V fl W is also closed under the action. (BAFC is a topos, so V fl W is the pullback of V

Ø S along W Ø S.) Similarly, it is easy to define intersection (least upper bound) V fi
W  in  the  manner  of  lemma  2.5  (join).  Because  AFC  is  a  one-object  category,  the

obvious definition of implication also works: the representation V Ø W is the set of a œ

S such that for all arrow fields X on B, if a · X œ V, then  a · X œ W. Negation, ¬V, is

defined  as  V  Ø  0  (0  is  the  initial  object  of  the  topos,  the  empty  representation).  ¬V
therefore  consists  of the elements  in  the complement  of  V that  are  not  sent  into  V  by

the action in S. It is then easy to show that the laws of a Heyting algebra are satisfied.

(In fact, we already met the required proof of the law of implication in lemma 2.3.)  Ñ

We define a right ideal L of AFC as a set of arrow fields such that, for X œ L, X ë Y œ

L for all arrow fields Y in AFC.

Lemma 4.13   The subobject classifier W = WBAFC
 in BAFC  is the pair XS, m\, where

S is the set of right ideals of AFC, and the action m is defined as m(L, X) := L · X := {Y

œ AF(C) | X ë Y œ L} for all X œ AF(C)..

Proof   This is the instance C = AFC  of the general case SetsCop

, for which a proof

can be found e.g. in Bell (1988), p. 62. We sketch the special case. For V a subrepresen-

tation of T, the characteristic function fV  : T Ø W is defined for all a œ T by fV (a) :=

the set of arrow fields X on C such that a · X œ V. That is, we include the arrow fields

whose  action  representation  sends  everything  into  V.  V  is  invariant,  so  this  is  a  right

ideal.  Also,  if  a  œ  V,  fV (a)  =  AF(C),  which  is  consistent  with  the  definition  of  the

truth  arrow  §  :  1  Ø  W  as  §(*)  :=  AF(C),  the  maximal  right  ideal.  (Recall  that  the

terminal object 1 in BAFC is the trivial representation {*}.)   Ñ

We say that a topos � is two-valued if its subobject classifier W has only two global

sections 1 Ø W, or, equivalently, if W has only two subobjects ("true" and "false"). For

the  case  �  =  Sets,  these  are  the  familiar  truth  values  0  (the  initial  object)  and  1  (the

terminal  object).  Perhaps  surprisingly,  this  does  not  guarantee  that  the  topos  is

Boolean, i.e. that the Heyting algebra of subobjects is Boolean for every object in the

topos (cf. lemma 2.5):

Lemma 4.14   The topos BAFC  is two-valued (but BAFC  is Boolean if only if AFC

is a group).
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Proof    Again,  the proof is  standard (e.g.  Mac Lane and Moerdijk  (1992),  p.  274).

Suppose g : 1 Ø W is a global section ("global truth-value"), that is, L = g(*) = g(*) · X
= L · X, where L is a right ideal and X an arrow field. Then, if L ∫ «, there exists X œ L

such that for any Y œ AF(C), we have X ë Y œ L, but then, by the definition of action in

W, Y œ L ·  X = L, so L = AF(C). Hence, there are only two global truth-values, corre-

sponding to the choices « and AF(C) of right ideals in W.

Because  this  is  reminiscent  of  the  two-valued  semantics  of  classical  logic,  it  may

appear that BAFC  is a Boolean topos (that is, S fi  ¬S  = T  for any subrepresentation S

of T), but such is not generally the case. We noted above that the complement ~S of S

in T is closed only when AFC  is a group. On the other hand, we defined the negation

of S in the Heyting algebra Sub T by

¬S = {the elements in ~S that are not sent into S by the action n in XT, n\}.
Therefore, generally ¬S is a proper subset of ~S (the complement of S as a set), and

S fi ¬S ∫ T. If AFC is a group, consider an element a in ~S such that n(a, X) = b œ S for

some arrow field X. Then X-1
 exists, and  n(b, X-1) = a – S. But S is a representation,

hence  closed  under  the  action,  so  we  have  a  contradiction.  It  follows  that   ¬S  =  ~S

when AFC is a group. Then S fi ¬S = T holds, so BAFC is Boolean in this case.  Ñ

The  non-boolean  character  of  BAFC  is  therefore  tied  to  the  monoid  structure  of

AFC. This implies some more weirdness: an object G generates a category C if f ∫ g :

A  Ø  B  implies  that  there  exists  u  :  G  Ø  A  such  that  fu  ∫  gu.  We say that  C  is  well-

pointed if the terminal object 1 generates C. Thus e.g. Sets is a well-pointed category. 

Lemma 4.15   BAFC is, in general, not well-pointed.

Proof    A well-pointed topos  is  two-valued and  Boolean (Mac Lane  and Moerdijk

(1992), p. 276). It follows from lemma 4.14 that BAFC is well-pointed only when AFC

is  a  group.  In  more  detail,  consider  the  terminal  object  1  in   BAFC,  given  by  1(*)  =

{*} and 1(X) = the map * Ø *. Now note that there are not that many points s : 1 Ø S
(with some action m) available in a representation S: by def. 4.25, s is really an equivari-

ant  morphism,  and,  for  simplicity,  we write  s(*)  = s,  identifying the  arrow s  with  the

element  picked  by it.  But  then s  = s(*)  =  s(*  ·  X)  = s(*)  ·  X = s  ·  X,  so  these  are  the

members of  S  which are  invariant  under the  action in  S.  Morphisms f  and  g  between

representations S and T may agree on these points, and yet be different elsewhere.   Ñ
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All  presheaf  topoi  have  a  natural  numbers  object  (n.n.o.),  namely  the  the  presheaf

with constant value � (Mac Lane and Moerdijk (1992), p. 269), so BAFC  has one too,

to be identified with �. The natural numbers are a modest starting point for represent-

ing  physics,  but  by  invoking  standard  constructions  for  topoi,  a  lot  of  construction

work may be done. In subsection 2.1.3, we defined the Mitchell-Bénabou language for

topoi  such as  BAFC.  Objects  Q  (the  object  of rational  numbers)  and  R  (the  object  of

real  numbers)  may  then  be  constructed.  For  the  reals,  this  construction  applies  the

usual  definition  by  means  of  Dedekind  cuts.  For  presheaf  topoi  SetsCop

,  the  real

number object  R coincides with  the constant  presheaf,  D(�),  which assigns the set  of

ordinary reals � to every C œ C. (For one-object categories we simply identify R with

the ordinary reals.)

Using  the  Mitchell-Bénabou  language,  we  may  derive  valid  formulae  by  using

intuitionistic predicate calculus (as noted in lemma 4.14, we may not appeal to the rule

of  excluded  middle:  BAFC  is  not  Boolean).  Our  set-theoretical  machinery  is  also

limited, in particular, the axiom of choice (AC) does not hold for all topoi. However,

from theorem 2.1 and lemma 4.11 it follows that a restricted version of AC, the axiom

of dependent choice (DC), does hold in BAFC.

The statements above are also valid (appropriately modified, by using left ideals and

so on) for the category of anti-representations BAFC
* .

4.6.2. Tensor Products and Adjoints

Above we saw that representations and anti-representations of the arrow fields on a

category belong in different  topoi.  E.g.  â  belongs to  BAFC  and â†  belongs to  BAFC
* .

Here, â  = X�k,  m\ and â†= X�k,  m†\,  where the maps m  and m†  are given by the opera-

tions of def.  4.4  and 4.6  and �k  is  the  usual  state  space.  We shall  try to  extend what

was done earlier in this chapter for the Hilbert space representations on �k  to the more

general setting provided by these categories.

Generally, for a given (physical) system, we consider only representations and anti-

representations  which  act  on  the  same  set  S,  the  set  of  states  of  the  system.  (But

beware, hereafter we often write S for representations XS, m\ and S* for anti-representa-

tions  XS,  m*\.  The  actions  will,  equivocally,  be  denoted  by  "·".)  As  before,  we  shall

expect  the  adjoint  of  any  representation  (in  BAFC)  to  be  an  anti-representation  in

BAFC
* , but it is less than clear how this is to be implemented.

Let  us  start  by  inquiring  into  the  meaning  of  adjointness  in  the  present  context.  A

minimal  demand,  given  a  function  X  ,  \  :  S  ×  S  Ø  k (�  or  �)  identified  as  the "inner

product", is that (for a given arrow field X)

(4.36)XaS HX L, b\ = Xa, S*HX L b\ Hfor all states a, b in SL.
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This holds for the special case S = â, S* = â†, as shown in lemma 4.1. Other require-

ments,  such  as  symmetry and  bilinearity/sesquilinearity  may or  may  not  be  meaning-

ful, depending on the state space under consideration. The condition would hold if we

were able to factorize X , \ like this:

(4.37)S µ S Ø S ≈ S Ø k.

Here, "≈" denotes some kind of product such that

(4.38)a ÿ SHX L≈ b = a ≈ S*HX L ÿ b.

Because  a  ·  S(X)  =  m(a,  X)  =  a  ·  X  and  S*(X)  ·  b  =  m*(b,  X)  =  X  ·  b,  this  may  be

written as (now also dropping "·")

(4.39)aX ≈ b = a ≈ X b.

This looks very much like a tensor product, except that we have no additivity condi-

tion in the general case. Analogously to the construction in module theory, it is possi-

ble  to  build  tensor  products  also  in  a  category-theoretical  context  (Mac  Lane  and

Moerdijk (1992),  p. 351).  Below, we go through the construction in the present case.

In fact, we shall see that the product may be taken in such a manner that all representa-

tions and anti-representations fulfill condition (4.39).

Let  S  be  a  given  representation  in  BAFC.  That  is,  S  is  a  contravariant  functor  (a

presheaf) over the one-object category AFC:

(4.40)S : AFC

op
Ø Sets.

Likewise, T will be a given anti-representation in BAFC
* . So T is a covariant functor

over AFC:

(4.41)T : AFC Ø Sets.

Recall  that  AFC  is  the  category-theoretical  version  of  AF(C)  ª  M,  the  monoid  of

arrow fields (def. 4.2). Working in Sets, we form the cartesian products S × T and  S ×

M × T (with S, T the domains of the (anti-)representations S, T) and define mappings

(4.42)qHa, X , bL = Ha ÿ SHX L, bL = HaX , bL,
(4.43)tHa, X , bL = Ha, THX L bL = Ha, XbL.

This gives the following diagram:

(4.44)S µ M µ T ö
t

q

S µ T .

In Sets, this diagram has a coequalizer C (that is, there is an arrow S µ T Ø
f

C  such

that f ë q = f ë t, and, for all arrows S µ T Ø
y

C' with  y ë q = y ë t, there is a unique

arrow C Ø
u

C' such that y = u ë f). We denote the coequalizer of (1.44) as S ≈M  T and

compose:

(4.45)S µ M µ T ö
t

q

S µ T ö
f

S ≈M T.
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Again, in Sets the tensor product S ≈M  T is simply the quotient of S × T by the least

equivalence relation identifying q  (a, X, b) and t  (a, X, b). Introducing the notation f

(a, b) ª a ≈ b, we have found that aX ≈ b = f (aX, b) = f ë q (a, X, b) =  f ë t (a, X, b)

= f (a, Xb) = a ≈ Xb. This proves the following proposition:

Proposition  4.16    For  all  representations  S  in  BAFC,  anti-representations  T  in

BAFC
*  and  arrow  fields  X  over  the  category  C,  there  is  a  tensor  product  -  ≈M  -  :

BAFC × BAFC
*  Ø Sets, given by S × T # S ≈M T , for which we have the equality

aX ≈ b = a ≈ X b.

(Here, aX = m(a, X) for S = XS, m\ and Xb = m*(b, X) for T = XT, m*\.)
Note that for the special case S = â, T = â†, both defined on the space �k, this rela-

tion takes the form (â(X))y  ≈  f  = yX  ≈  f  = y  ≈  Xf  = y  ≈  âHX L†f  (for y,  f  œ  �k).

The significance of the result above seems to be this: given a physical system in which

the  constructions  above  are  interpreted  (no  mean  task),  the  choice  of  an  adjoint

(anti-)representation  is  not  arbitrary,  but  depends  on  the  "inner  product",  and  this

should reflect a real constraint of the system.

4.6.3. Arrow Fields in Topos Physics

By means of the development in the last two subsections, we may try to extend the

topos  formalism  of  chapter  2  to  the  case  of  quantised  categories.  Let  C  be  a  given

category, and consider a set X of arrow fields X, Y, ... in AF(C) closed under composi-

tion. From def. 4.11, this set determines a pre-causal category 
X . Above, we defined

the category BAFC as the set of representations of the monoid AFC. Similarly, we may

define BX as the representations of the submonoid X (or the one-object category  
X ).

Full subcategories of BX will contain a choice of representations of X and all equivari-

ant maps between them. Subcategories of BX for which all representations are defined

over the same domain S,  are  denoted by S.  Let  †,  the "adjoint  selector"  be a  map † :

BAFC Ø BAFC
*  given by S # †(S) ª S†. We now define:

Definition 4.26   The operator set �(S) of a subcategory S (of BX) is the set of maps
S(X) : S Ø S given by a # m(a, X) ª (S(X))(a)

such that S = XS, m\ œ S and X œ X. Also, �(S) is closed under adjunction: that is, if

S(X) œ �(S) then S†(X) œ �(S), and S† has the same domain of representation as S. 

Presently,  a collection �(S) of operator sets  which are  subsets of a given �(S) will

be  the  context  category  of  the  topos  of  the  system  under  consideration.  The  arrow

structure of �(S) is partial ordering by inclusion. We shall assume, as in chapter 2, that

commutativity is the criterion which settles the classicality of a given context.
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Definition 4.27   A representational topos tS(X, C) (or simply tS(C) if X = AF(C))

is a topos of presheaves
tS(X, C) := Sets

�HSLop

,

where �(S) is a commutative collection of operator subsets of �(S); i.e.
if S(X) and T(Y) are maps in �(S) (with T, S (anti-)representations in BAFC (BAFC

* )

and X, Y arrow fields over C), then S(X)T(Y)(a) = T(Y)S(X)(a) for all a œ S, the com-
mon space of the (anti-)representations.

The  choice  of  contravariant  functors  is  in  accordance  with  the  Isham-Döring

approach,  but  the covariant  functors  of  Bohrification scheme may also  be  used.  Note

that the construction of a presheaf topos in chapter 2 falls into place as a rather degener-

ate  case  of  the  present  scheme.  Indeed,  choose  as  the  intial  category  C  =  Hilbk,  the

category of Hilbert spaces (for a field k)  with linear maps as morphisms, and let X be

the  set  of  all  arrow  fields  XB,  where  the  B's  are  bounded  linear  maps  over  a  fixed

Hilbert space H. Now let S be the set of representations which take the fields XB  back

to the linear maps B, and define the collection �(S) as the commutative von Neumann

subalgebras of the full algebra of bounded linear maps over H.

4.7. Prolegomenon to a Quantised Logic

Let  us  end  by  suggesting,  very  briefly,  another  application  of  the  ideas  above.  We

have noted earlier (e.g. in subsection 1.3.5) that one may ask at which structural level

a  procedure  of  quantisation  (superposition  of  states)  is  meaningful.  It  has  been  sug-

gested,  e.g.  by  Isham,  that  even  the  deeper  levels,  such  as  the  topological  structure,

should be treated according to the precepts of quantum theory.

In  fact,  using  the  method  of  quantisation  on  categories  in  this  chapter,  one  step

further may be taken: logic itself may be involved. Now note that the quantum logics

spoken  of earlier  (Birkhoff-von  Neumann logic  in  section  1.1;  the  intuitionistic  logic

of topos physics in section 2.2) really are "fixed background logics"; that is, there is no

"superposition of different logics" within these frameworks. What would a "quantised"

(as opposed to a quantum) logic mean?

In quantum mechanics, the states of the system are functions defined on the classical

configuration  space.  What,  in  (propositional)  logic,  corresponds  to  the  notion  of  a

space?  One  suggestion  which  comes  to  mind  is  the  following:  points  in  logic  are
types. The quantum-mechanical smearing of the position of a particle over a region in

space thus should have an analogue in the smearing of a "logical" state over a space of

types.  Recall  that  a  construction  which  is  relevant  to  the  present  purpose  was  pre-

sented in section 2.1.  There,  we spoke of the internal  logic associated with a class of

categories,  the  topoi,  and  we identified  the  types  of a  certain  language,  the  Mitchell-

Bénabou language,  as  the objects  of the topos under consideration.  This  suggests  the

following strategy for a quantisation of logic:
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1.  As  in  section  4.2,  all  constructions  are  to  be  carried  out  on  a  category.  We

demand, in addition, that the category is a topos � (not necessarily Boolean, cf. subsec-

tion 4.6.1 or Mac Lane and Moerdijk (1992), p. 270).

2. Within the topos �, the set of objects of �, Ob(�), will be the types A, B, ... of the

language  �(�)  (cf.  subsection  2.1.3).  Earlier,  the  terms  of  �(�)  were  defined  induc-

tively as arrows in Hom(�). This time, we shall identify "arrow terms" s : A Ø B with

their arrow fields Xs  (cf.  definition 4.2),  the  arrow field  whose only non-trival  arrow

starts  from the  type  (object)  A.  We  shall  speak  of  arrow  fields  Xs  as  proto-terms  of

�(�).  Proto-terms  Xy  such  that  cod(y)  =  W,  the  truth  object,  are  proto-formulae  of

�(�). For each pair of proto-terms Xs, Xt, there is a pairing XXs,t\. The logical connec-

tives  fi,  fl,  fl,  ¬  will  also  show up as  proto-terms Xfi,  Xfl,  Xfl,  XŸ  in  �(�):  note  e.g.

that fl is the arrow fl : W × W Ø W defined in terms of the internal Heyting algebra of

W (cf. comment after definition 2.1 above), so Xfl is the corresponding arrow field.

3. The set of types, Ob(�), is the configuration space on which we define the logical
states Y, F, ... In this chapter, we have mainly considered such states as sections on a

bundle  ‹AœObHCLk(A),  where  k  is  a  contravariant  functor  from  the  category  C  to  be

quantised into a category with Hilbert spaces. For the quantisation of logic, C must be

a topos �.  So far in this chapter,  we have restricted attention to the case where k  is a

functor with k(A) a Hilbert  space for all  types A,  but  there  seems to be less reason to

do so now (but see pt. 5 below). Probably, we should demand that k(W) "extracts" the

logical  structure  of  the  truth  object  in  some  way.  If  we  do  choose  the  Hilbert  space

functor, the logical structure will be given by the lattice of subspaces of Hilbert space.

The interpretation of k on types other than W is still open.

 

4.  The  main  vehicles  of  quantisation  are  the  representations  â(Xs)  of  proto-terms

Xs, where â(Xs) is given in definition 4.4:

(4.46)Hâ HXsLFL HAL = k HXs HALLF H�X HALL= k HsLF H�X HALL.
The operators â(Xs) are the terms of �(�). For a proto-formula Xy, â(Xy) ª [y] is a

formula. Because y is an arrow from a logical type A to the truth object W  (i.e. �X (A)

= W), [y]F really maps the logical state F by looking into its value at the truth object,

F(W). Then

(4.47)H@yDFL HAL = k HyLF HWL.
It  is  natural,  perhaps,  to  interpret  k(y)  as  the  "truth  content"  of  the  type  A  with

respect to the formula [y]. Consider the simple case where k(W) = {0, 1} and let F be a

state which corresponds to some the set of individuals of type A, i.e. F(A) = 8a1, a2, ...}

for  a1,  a2,  ...  :  A,  but  otherwise  zero.  (As  before,  we  write  F  =  »A\  for  such  states.)

Informally,  k(y)  should  then  be  given  by  stipulating  that  k(y)(0)  is  the  (n-tuples  of)

individuals of type A for which y holds classically.
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5. The advantage of picking a Hilbert space functor is that the former definition 4.14

of the scalar product is then at our disposal. We may use this to define truth values for

formulae  [y].  Appropriately  for  a  quantised  logic,  this  value  is  a  complex  number.

Tentatively, the truth value [yDF of a (closed) formula [y] with respect to the state F is

given by (where the denominator equals 1 for normalized states Y)

(4.48)@yDF =
Ÿ XF HAL, @yDF HAL\k HAL „mHAL

Ÿ XF HAL, F HAL\k HAL „mHAL .

If we focus on the countable case, which seems reasonable for a space of types, we

get

(4.49)@yDF =
⁄AœObHCL XF HAL, @yDF HAL\k HAL

⁄AœObHCL XF HAL, F HAL\k HAL
.

6.  The  proposal  above  raises  several  questions.  What  are  the  valid  formulae  of

�(�)? In what sense is the logic complete? Does it make sense to ask about the classi-

cal limit of quantised logic (Boolean in a Boolean topos, intuitionistic otherwise)? No

less difficult are questions of the possible interpretation of the theory (the notion of a

"smearing" of types seems particularly recalcitrant). Is it possible to apply a quantised

logic within quantum physics, or is it just a formal possibility created by the theory of

arrow fields? We shall reserve the full elaboration of pts. 1-6 for future work.
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