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Preface

The aim of this thesis is to apply concepts and methods from category theory and, in
particular, topos theory within quantum physics. This research program, called fopos
physics by some, has come to fruition over the last ten years. The original contribu-
tions were made by Chris Isham, Jeremy Butterfield and Andreas Doring. Later, Chris
Heuen, Bas Spitters, Nicolaas P. Landsman and Sander Wolters have developed an
alternative version of the theory in which the topos-theoretical foundations of the
approach have been further clarified. For these authors, topos theory (the theory of
generalized universes of sets and generalizes spaces) is a tool with which quantum
physics may be constructed by "gluing together" classical perspectives or "snapshots".
Thus, in words which would please the classicist, topos physics builds the "modern”
quantum world from fragments of the old. So far, the theory has led to a new, intuition-
istic interpretation of quantum logic. It is also thought that topos physics may be a
useful tool for building models of quantum gravity.

In the present thesis, we review the basic method of the topos-theoretical approach
to quantum physics: the construction of a state space by means of (covariant or con-
travariant) functors on a category of commutative operator algebras. We then study
how a certain theory of quantum gravity, so-called loop quantum gravity (LQG), may
be interpreted within topos physics by appeal to the Weyl algebra version of LQG due
to Christian Fleischhack. We investigate the topological properties of the state space
of LQG within the topos model and show how to interpret the gauge and diffeomor-
phism invariance requirements within the theory. Finally, using a little-known tech-
nique for quantising on general structures (due to Isham), we extend the apparatus of
topos physics to a larger category-theoretical framework. In order to achieve this, we
define a measure theory on categories and study the basic entities, the arrow fields on
a category, in the category of their representations. It is suggested how this may be
applied to the theory of causal sets, and, more radically, to a theory of quantised logic.
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Full descriptions of the contents of the thesis are given in the introduction to the
each chapter. Beware, however, of the amount of theory necessary in order to get this
subject off the ground. The fields under consideration, topos theory and quantum
physics, normally target very different audiences, so we have tried to give compact
introductions to both subjects (completeness is out of the question). The first section
of chapter 1 addresses the problems of quantum physics from a logical point of view,
and may be read in isolation from the rest. The remaining sections of the chapter are
an attempt to fill in some of the details which are needed in order to appreciate the
physical motivation behind the constructions to follow. In chapter 2, we present the
fundamentals of category theory and topos theory as a prelude to the review of the
concepts and methods of topos physics. Both schools, the "neo-realism" of Isham and
the "Bohrification" approach of the Dutchmen, are given in some detail, and, in chap-
ter 3, the latter scheme is applied to the theory of LQG. This chapter therefore contains
a brief summary of the main results of LQG. Likewise, in chapter 4 we state the essen-
tials of Isham's quantisation on categories, the notion of an arrow field. As a general
rule, proofs which may be found elsewhere, are not included.

Thus, an important part of this long work is taken up with the arrangement and
preparation for use of existing theories: original work is only to be found in the sec-
tions 3.2 and 4.2-4.7. I have tried to give complete credits and references wherever
possible, but in chapter 1 and section 2.1, where the common lore of the topics, quan-
tum physics and topoi, is dealt with, only a few suggestions for reading are given.
Parts of the story can be found, for quantum physics, in chapter 1 of Weinberg (1995)
and, for topos theory, in the prologue to Mac Lane and Moerdijk (1992). No summary
can give full justice to the masterful contributions of Chris Isham. Also, the present
thesis can only hint, in the manner of a snapshot, at the range and difficulty of the
themes involved. This should be remedied: in foundational work, particularly in
quantum gravity, one-sidedness is not a long-term option. There is little space (nor,
indeed, space-time) for more advanced applications of the theory. These must be a
subject for further study.

The present thesis brings together results from arenas as diverse as quantum gravity
and topos theory. This makes for difficult reading. Part of the difficulty resides in the
subjects themselves, another part is due to the clumsiness of the eager expositor. I
would like to thank my thesis advisor, Dag Normann at the Department of mathemat-
ics, for his helpful assistance during the completion of this work. Also, I owe thanks to
him and Herman Ruge Jervell at the Department of informatics for allowing me to
present parts of the thesis in the friendly atmosphere of their logic seminar. I also
thank my parents for their kindness and support. Finally, I take the opportunity to
warn my great friends Rita and Cornelia against sleeping dragons and witchcraft.
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CHAPTER 1

Quantisation, Space and Gravity

In this chapter, we shall outline a fairly standard description of physical theory,
based on genuinely physical, but initially vague, notions such as state, space, observ-
able and probability. Although the assumptions we make may seem incontrovertible,
the plausibility we ascribe to them should be based on the strength of the empirical
support of the formal theory, not on the almost tautological character of our first
probings. Also, when the step to quantum physics is taken, plausibility is soon
replaced by non-arbitrariness and mere correspondences, often bold, with classical
physics. As we broaden our description, so as to include the possible formulations of a
quantum theory of gravity, even analogy and the negative notion of lack of arbitrari-
ness will fail us. This may be discouraging. But along the way there will be directions
not taken, generalizations only hinted at. These will be our cues for the constructions
undertaken in chapter 3 and 4 of this treatise. Our main tool, the theory of categories

and topoi, will be the subject of the next chapter.
Section 1.1, which is a kind of pons asinorum to the description of physical systems

for logicians, will give the reader sufficient background to follow the presentation of
topos physics in chapter 2. However, in order to gain some understanding of the
motivation behind the models there, the remaining sections of the present chapter
should also be read. Section 1.2 focuses on the standard probabilistic description of
quantum physics (as found e.g. in Mackey (1963), or, for the algebraic viewpoint, the
first two chapters of Araki (1999)). Our reconstruction of physical theory is piecemeal,
but some steps differ from the rest by their steepness or importance. In particular, this
applies to the extension from a finite formalism to an infinite one, the transition from a
deterministic to a probabilistic theory, the quantisation of classical theories, and the
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choice between discrete and continuum concepts. In section 1.3 we recapitulate the
mathematical theory of quantisation in some detail. We discuss the sense of this
procedure outside the standard context (of infinite dimensional Hilbert spaces), and
ask how quantum structure may arise from a more fundamental theory. In the next
section (1.4), we turn to the non-standard approaches to space and time. We consider
three cases: the possibility of a discrete notion of space or space-time, the generalized
spaces of noncommutative geometry, and synthetic differential geometry, the study of
smoothness without classical logic and ZF set theory. Finally (sec. 1.5), the major
problems confronting a consistent quantum theory of gravity are outlined, and we try
to show how the different approaches to a full theory derive from choices made at the
critical junctions encountered in the preceding sections.

1.1. The Logic of Physical Systems

1.1.1. The Logic of Classical Mechanics

In this section, we give a quick introduction to the description of physical systems,
both classical and quantum-mechanical. We unify the presentation by choosing the
logician's point of view. In particular, we ask if the logic governing these descriptions
is classical, or if a more unusual framework should be preferred, perhaps a non-distribu-
tive logic a la Birkhoff - von Neumann. The discussion will be simplified, but a more
detailed review of the conceptual problems facing a complete theory of quantum

physics can be found in the remaining sections (1.2-1.5).
We model physical systems (classical or quantum-mechanical) by making three

fundamental assumptions:
x There is a set S of states for the system to be in;
x There is a set O of observables associated with the system;
x There is a value set R which contains the possible results of a measurement of an

observable for a system in a given state.
If we like, we may regard the observables as classes of measuring apparatuses

(Araki (1999)). Two apparatuses belong to the same class if they record the same
measurement, regardless of the state of the system. The other way round, we say that
two states are equal if there exists no measuring apparatus (and, hence, no observable)
to distinguish between them. The availability of a choice between states and observ-
ables - which is the most fundamental? - is an important starting point for algebraic
quantum field theory, and it is also useful for the setup of observational contexts in
topos physics (chapter 2). Notice that we could have introduced probability as a fourth
fundamental notion. This is certainly necessary when we are dealing with a system for
which our information is incomplete, or if measurements performed on the system in a
given state do not give the same result each time. But for the moment we shall con-
sider only small systems (that is, systems with a low number of particles) from classi-
cal mechanics, a deterministic theory.
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It is easy to identify candidates for the sets S, O and R in newtonian physics. Ass-
ume, for simplicity, that our system consists of only one particle (or point mass)
moving in a one-dimensional space. This space will be called the configuration space,
and we identify it with R, the set of real numbers. We introduce the notation

q - the position of the particle in space;
p - the momentum of the particle.

The product space R?, which consists of all possible pairs (g, p), is the collection of
all possible states of the system. This will be called the phase space. (For a larger
system, say n particles moving in three-dimensional space, the phase space is R®".)

The following principle is fundamental:

Newton's principle of determinacy The initial state (go, po) in the phase space of
the system at time #; uniquely determines the states (g;, p,) for all # > .

Particles also have acceleration. If the principle of determinacy is true, even the
acceleration a of the particle in our simple system should be given as a function F of g
and p. So we have the equation of motion

ma = p = F(q, p). (1.1)

This is the classical picture. Future positions and velocities of the particle are found
by integration of second-order differential equations.

Example 1.1 Consider a particle or mass (M) attached to a spring (S), as illustrated
in the figure below.

e |
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It is known from experiments that F(q, p) = —kq. Here, F is the negative gradient
—AU/dq of the function U(g, p) = kq*/2. U is the potential energy of the system. The
kinetic energy of the mass is defined as T = p?*/2m. We may now introduce a new
observable, the rotal energy of the system, or the Hamiltonian function: E = H(q, p) =
T+ U = p*/2m + kqg*/2. From (1.1), it is easily shown that dE/dt = 0, so total energy is

conserved. This system is a harmonic oscillator, a fundamental paradigm in physics,
indispensable even within advanced subjects such as quantum field theory.

We shall demand that all observables are functions from the phase space to the real

numbers. For an n-particle system, the following picture emerges:
S = the phase space R%";
O = all functions f: S - R;
R = the real number set R.
We may now sketch a small language L for this theory. For an observable 0 and A

C R we say that elementary sentences are of the form
A(0)
"the value of the observable o belongs to the subset A of the real numbers".
Sentences in £ are interpreted as subsets of the phase space S:

[A(0)] = 07! (A).

We say that A(o) is true for the state s of the system if o(s) € A, equivalently if s €
[A(0)] = 07 !(A). Thus, A(o) is interpreted as the set of states for which o is observed in
the number set A (e.g. an interval). The logical connectives =, V and A are interpreted
as the corresponding operations — (complement), | and () on sets. The set-theoretical
operations S form a boolean algebra. The associated logic for L is classical.

1.1.2. The Logic of Quantum Mechanics

The construction of S, O and R above seems very natural. Nevertheless, the phase
space S is unsuitable as an exact model of ultimate physical reality. In order to recog-
nize this, we shall consider a system which consists of a microscopic particle. Our
observables g and p will again be the position and momentum of the particle (that is,
the projections onto the first and second coordinate in the classical phase space). It is
well-known that the standard deviations Ap (= ((p — (p))*)'/?) and Ag for measure-
ments of p and g will be given by

Heisenberg's uncertainty principle Ap - Ag = #/2 (% is Planck's constant).
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Increased precision in the determination of the position of the particle corresponds
to greater imprecision in the determination of momentum, and vice versa. Hence, the
temporal order of our experiments is no longer a matter of indifference. The physical
magnitudes p and g do not commute, pq #+ qp. Observables in O are therefore no
longer functions inot the reals. This fact enforces a new model choice for S, O and R.
In the quantum-mechanical description, the triple S, O and R comes in the following
guise:

S = a complex Hilbert space H where the states are normalized vectors i;

O = the self-adjoint operators A : H — H represent observables;

R = the value set R (just as before).
Self-adjoint operators have real eigenvalues. These eigenvalues are the possible

results of a measurement of the corresponding observable A. For a system in a given
state, experience tells us that A has some probability of assuming each of these values.
Accordingly, we must allow probability as a fourth fundamental notion. The probabil-
ity P that an observable (represented by the operator) A upon measurement of a system
in the state ¥ assumes the eigenvalue a, is given by

P(a) = |{aly)|?, with (al the eigenvector corresponding to the eigenvalue a.

The eigenvectors of a self-adjoint operator A span subspaces (not just subsets) of the
state space S = H. The closed linear subspaces of a Hilbert space form a lattice with a
partial order given by inclusion. From this point of departure, Birkhoff and von Neu-
mann suggested their famous quantum logic. Again we may define a simple language,
Lym , with an associated interpretation. For A ¢ R and A € O, we construct the elemen-
tary sentences

A(A)
"the value of the observable A belongs to the subset A of the real numbers".

And, once more, we shall interpret sentences by appeal to the states for which A is

observed in the number set A:
[A(A)] = the linear subspace spanned by the eigenvectors s of A for an eigenvalue a

eA
(i.e. ¥y € Im(E(A)), with E(A) the spectral projection defined by A and A).

The lattice structure L(H) of the set of subspaces of H now provides an interpreta-
tion of the logical connectives. We get
[A1(AD) V Ax(Ap)] = [A1(AD] + [A2(A2)] (ie. Span([Ai(Ap], [Ax(AD])),
[A1(AD) A Ax(A2)] = [A1(A1)] N [A2(A2)] (also a subspace),
[~ Ai(A)] =[A1(A))]" (the orthocomplement of [A{(A})]).

However, the lattice of subspaces is not boolean. The distributive law does not hold:
A(AD) N (Ax(A2) V A3(A3)) @ (A1(A)) A Ax(A2) V (A(AD A Asz(A3))
(Instead, a limited kind of distribution holds, based on the relation U C V = U U
(U* (N V) =V for subspaces U and V. The lattice is orthomodular.) On the other hand,

the principle of contradiction holds:
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(A1(A) A —A(AY))
Likewise, we have tertium non datur:
A(AD) V = Al(A)).

(This is easily shown. E.g. [A1(A) V = A1(A)] =[A(A))] + [Af(AD]F=H=T.)

Quantum logic, therefore, has rather unusual characteristics. Birkhoff and von
Neumann described it as essentially quasi-physical and opposed it favourably to
intuitionistic logic, which, in their eyes, was guided by "introspective and philosophi-
cal considerations" (Birkhoff and von Neumann (1936), p. 837). Others, for similar
reasons, have concluded that logic is, or ought to be, an empirical science. (E.g.,
according to Hilary Putnam the true logic should be "read off" from the Hilbert space
(Putnam (1975), p. 179).) In practice, the development of quantum logic has encoun-
tered severe difficulties. A natural implication operator seems to be lacking, and no
construction of a predicate calculus has succceded.

Example 1.2 It seems reasonable to demand that implication, =, fulfills
[p Aglclr]

[plclg=T]
in the lattice of subspaces. (A and = are adjoints in the category-theoretical sense.)

For the interpretation of the classical language /L, ordinary material implication,
defined by p = g := —p V ¢, suffices. Assume that this definition is also the correct one
for the language L, interpret the sentences of L, in the lattice L(H) of subspaces of
H, and consider the observables S, and §,, the spin of an electron in the x- and z-
directions, both with eigenvalues in the set {—1/2, 1/2} (for a choice of units with # =
1). S, and S, are not simultaneously observable. Hence, [S, = 1/2] () [S. = 1/2] = @.
Now letp = (S, =1/2), g = (S, =1/2) and r = (S, =—1/2). Then
O =[S, =121 [S.=1/21=[p Agl CIr],
but it is not the case that
[Sx=12]=[pl Clg = rl=[~gq V rl = Span([S; = 1/2]", [S; = -1/2]) = Span([S; =
—-1/2)).

(The last equality follows because the Hilbert space is spanned by the eigenvectors
of §;.) As remarked above, it is not possible to measure spin in the x- and z-directions
at the same time.

In chapter 2, we shall pay close attention to the way in which Isham and Doring's
theory of topos physics modifies the present account of quantum logic. Meanwhile, let
us end this introductory sketch by noting that the link between observables in classical
physics and in quantum mechanics is deeper than we have suggested so far. Consider
the following example:
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Example 1.3 In example 1.1 we gazed briefly at the Hamiltonian function H(g, p)
= p*/2m + kq*/2 for a classical harmonic oscillator. It is postulated in quantum mechan
ics that classical observables shall be represented by corresponding operators. These
will be the quantum-mechanical observables. For position and momentum, we have

g q =x x - (multiplication by x)
pe —ih;—x.
The Hamiltonian function may now be represented by the Hamiltonian operator
r A2 A2 Pk
Hig, p)» H=p12m+kq /2 =—5- "5+ 50% -,

Above, we said that the state space will be a complex Hilbert space. We now choose
L*(R) for this. Let ¥(f) € L*(R) be the state of the harmonic oscillator at time . We
postulate that the dynamical evolution of the system is given by the equation

2 =
1 g = ll/

Insertion of H gives Schrodinger's equation for the system under consideration. The

solution will be a curve in the Hilbert space.

The quantisation procedure above is neither complete nor unambiguous. Firstly,
there exist quantum mechanical degrees of freedom (spin is an example of this) with
no counterpart in classical physics. Secondly, we may ask if a classical observable ab

ought to be represented as ab or ba when the corresponding quantum-machanical

observables do not commute (cf. section 1.3 below).
The quantum-mechanical perspective is limited in yet another way. A complete

physical theory should be consistent with the special theory of relativity. In special
relativity, simultaneous interaction between separate particles is excluded, and "action
at a distance" must be replaced by some kind of field theory. The physical fields will
be dynamical objects in their own right, and changes in the fields must propagate with
a finite velocity. For the law of conservation of energy to hold, at least locally, the
fields ought also to be carriers of energy. In the final quantisation of physical theory,
these field must themselves be quantised. This is done in quantum field theory. In a
nutshell: Start from example 1.3 above, and build the physical field by stationing
harmonic oscillators at each point of space. Then quantise these in such a manner that
invariance under Lorentz transformations is preserved, as demanded by special relativ-

ity (cf. subsection 1.2.5 below).
Gravity apart, succesful quantum field theories have been found for all known

interactions in nature. Quantisation of the metric tensor, which codes information
about the curvature of space-time, seems to be an immensely difficult task. We shall
have more to say about quantisation and gravitation theory in subsection 1.2.6 and
section 1.5 below. Also, in section 3.1, we give a more detailed review of a particular
theory of quantum gravity. The topos models presented in chapter 2 are in part moti-
vated by a wish to develop general methods for a future theory of quantum gravity. Let
us now have a closer look at the central notions in the brief sketch so far given.
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1.2. The Description of Physical Systems

1.2.1. States, Observables and Probability

The fundamental notions are present at the very start of our description of a physical
system. In physics, a measurement is made on a system in a certain state, and the result
of the measurement is recorded as a measured value. Recall from section 1.1 that
different measuring apparatuses record the same value for identically prepared states
of a system, we shall say that they measure the same classical observable. We denote
classical observables by letters P, O, O, O,, ... and the set of classical observables by
the letter O¢;. Classical states, on the other hand, are identical when their recorded
values are identical for all classical observables. We denote classical states by letters
a, a1, @a, ... and the set of classical states by the letter S¢y. Also, all recorded values r,
r1, r2, ... are members of a value set R¢y. (In classical mechanics, a state would be a
point in the phase space of the system, an observable would be a function defined on
the phase space, and R¢; would be the real numbers.) Our protocol will then consist of

series of statements of the form Q(«) = r.
So far, we have made no decision as to the final interpretation of our states and

observables. Our letters may be the primitive signs of a formal language for physics.
But the present vocabulary is too narrow in several respects. Firstly, information about
the state of a physical system may be incomplete. (This is certainly the case when we
are dealing with a system with a large number of particles.) Secondly, it may be that

the measurement of a system in a certain state has different results at different times.
We shall deal with the first difficulty by the introduction of a partially ordered set #.

We then consider functions u, perhaps partial, from P(S¢)), the power set of S¢y, to the
set . We denote the members of £ by p, pi, p, ... Intuitively, u records our informa-
tion about a system by ordering sets of classical states according to their probability. It
seems natural, perhaps unavoidable, to suppose that # contains members Op and 1p
such that p = Op and p < 1p for all p € P. (In statistical mechanics, the domain of u
would be a o-algebra, and u would be a countably additive measure with values in the
unit interval [0, 1].) Tentatively, the functions u are introduced as our next construc-
tion step. We shall call them the probabilistic states, denote them by letters u, uy, (p,
..., and collect them in the set Sp,. It is simple to see how the classical states may be
represented in the new set Sp,. We shall map the classical state @, to the probabilistic
state u; with the property that p;(A) = Op and u;(B) = 1p whenever a;¢A and a;€B,
where A and B are sets of classical states, and < is the ordering on #. In general, a
representative state ¢y may not always exist, or it may not be unique.
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At present, there is no reason why the incompleteness of information should compel
us to assume the existence of new observables, so we keep the old set O¢; until further

notice. We also retain the value set R¢;. However, we still want to record our measure-
ments in a protocol, and statements of the form "Q (1) = r" does not make sense for the
probabilistic states u. The problem can be solved by combining the maps Q~': R¢; >

Sciand u : P(Z¢)) - P into the map wg : P(Rc1) — P defined by wg(E) = u(Q~Y(E)) for

E c Rcy. The record "w;(E) = p" then states that "when the system is in the probabilis-
tic state u, the estimate that the value of the observable Q is to be found in the set £

should be ranked as p in our probability order".
If there is only a finite number of classical states, we may define the expectation

value of the observable Q in the state u as

0 (u) = Z u(a))-Q (@) 12)

This presupposes some structure on the value set R¢; and the probability set £. At
the very least, addition should be defined on R, and R should have a zero element
Og. We shall also need a map -: P x R¢| - Ry satisfying Op - r = 0g and 1p - r = r for r
€ Rc1. We then have Q(e) = O(u) whenever a classical state «; is identified with a
probabilistic state y;. In the infinite case, the family 8 of subsets E of the value set R¢;

would be a o-algebra, and w,,Q, would be a measure defined on 8. The expectation value

is then defined as O (1) = [r dw?.

The extension of our formal apparatus solves the problem of incomplete informa-
tion. In doing this, it seems that we have also taken care of the second problem, the
possibility that the repetition of a measurement may give different results for the same
system state. We still have a wide range of representations at our disposal, including
systems based on the phase space of classical mechanics. The next problem, however,
will narrow our freedom of choice considerably.

1.2.2. Simultaneous Measurability and Quantisation

Above, we had to adjust our explication of a physical state, while the notion of an
observable remained intact. We do not want any unneccesary restrictions on the set O
(hereafter, we omit the subscript) of observables. That is, if f is any function on the set
(Rc)" of n-tuples of values of observables such that Rn(f) c R¢;, we would like to

have an observable f (Q;, ..., Q,), defined as the composition of f with Qy, ..., Q,. This
surely makes sense if the observables Qy, ..., O, are functions f;(Q) of a single observ-

able Q. We say that they are simultaneosly measurable. Then the observable f (Qy, ...,
Q) =F(fi(Q), ..., fu(Q)) = g(Q) and we define w2 (E) = wii (g™ (E)).
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It is well-known from quantum mechanics that certain observables, such as position
and momentum, are not simultaneously measurable. It behoves us therefore to choose
the entities of physical theory with some care. Our first step will be to identify the set
of states S with a complex Hilbert space. The letters H(S) will denote this space,
while the vector states, the vectors with norm 1 that are unique up to multiplication by
a complex number of unit modulus, are denoted by letters ¢, ¥, ¥, ¥», ... Observables
P, O, Oy, ...€ O then correspond to self-adjoint operators on H(S). The basic defini-

tions of probability and expectation value now take the form

Wo(E) = (W, x5(Q)¥) (13)
oW) =W, QY (14)

The brackets on the right denote the inner product on the Hilbert space, E is a
(Borel) subset of the value set R of complex numbers (we omit the subscript on R),
and yg is the characteristic function of £ c R. On Hilbert spaces, two self-adjoint
operators commute, PQ = QP, if there is a self-adjoint operator Q; and (Borel) func-
tions fand g such that P = f(Q) and Q = g(Q). Two observables that are not simultane

ously measurable, will then have a commutator, [P, Q] = PQ - QP, different from 0.
The representation of states and observables by means of vectors in a Hilbert space

and operators on them may seem arbitrary, but it is amply born out by successful
predictions in quantum physics. If we consider Q, the subset of questions of the observ-
ables O, we shall find that there is also a strong theoretical justification for this choice
(e.g. Mackey (1963), p. 72f). In the notation of subsection 1.2.1, a question Q is an

observable such that wg({O,l }) = 1p, where O and 1 are mutually exclusive outcomes

("yes" and "no") of the measurement of Q in the state yu. By switching the answers, we
have the complementary question 1-Q. It is also possible to define a partial ordering
on Q in this way:

Q) = Qriff wl'(1) = w(1) for all states . (1.5)

For an observable P, Q; may be the question yg, (P), "Is the value of P in the set
E,?", and Q, may be the question yg,(P), "Is the value of P in the set E;?" If E| C E;,
then O < Q,. Also, if Q1 < 1-0,, 0y and Q, are disjoint questions. If the partially

ordered set # of probability values is the unit interval [0, 1], we naturally expect that

01+02+... — @ o PPN i .
w2 (1) = wi' (1) + wiz2(1) + ... for disjoint questions Q. (1.6)

wg(l) is then a probability measure on Q. If, as above, we identify the observables
with self-adjoint operators on a Hilbert space, we see that the structure of complementa-
tion and the probability measure (interpreted as in (1.1)) are present in the subset of O
of self-adjoint operators Q such that Q has eigenvalues 1 and 0 and QQ = Q. The two
sets have the same "logic". We will return to the problem of the appropriate quantum
logic in chapter 2.
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With the definition of the expectation value of an observable (a self-adjoint opera-

tor) Q at hand, we are able to define its uncertainty AQ by (AQ)* = Q> - @2. The conse-

quences of assuming the existence of observables that are not simultaneously measur-
able are then expressed as the uncertainty principle (for a proof, see e.g. Jordan (1969))

1
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When Q; and P; are the position and momentum variables (i = 1, 2, 3) the commuta-

tion relations [Q;, P;] = ihéj allow us to derive the Heisenberg uncertainty relations
h .
(AP) (AQ) = 5 5’].. (1.8)

