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� Introduction

In the �rst GITEC project the UIO group performed a series of case studies concern�
ing tsunami events in the Atlantic� the eastern Mediterranean and the Norwegian
sea� During the project the focus was slightly shifted towards general model analysis
and development� Preliminary Lagrangian run�up models and FE ��nite element�
techniques for Boussinesq equations were reported� Moreover� tests concerning the
convergence and applicability of the standard long wave models were included in the
case studies or carried out as separate tasks� Continuing this trend� we have spent
the �rst year of GITEC�TWO mainly on model activities� even though the work on
the ���� tsunami outside Portugal has continued� All the model development and
analysis rely heavily upon the experience from this and other case studies from the
preceding project� In the second year more attention will be devoted to case studies�
We will then �rst address a set of idealized� but challenging� cases before we proceed
to exploit our new modeling tools and insight in the full studies of actual events�
Even though we are not committed on this point in the work program� we hope to
reach this stage within GITEC�TWO�
A small number of test cases have already been established� including wave gen�

eration and interaction with a shallow seamount� run�up on an idealized headland
and wave propagation in two dimensional geometries corresponding to cross sections
of the Portuguese coasts� Some of these problems are also addressed by the LDG�
The prolonged study of the ���� tsunami� originating near the Gorringe Bank� is

linked to the publication of a common paper 	
� with the ICTE and the LDG� Due to
the complexity of the problem and the diversity of the subtopics involved the paper
has been substantially revised during GITEC�TWO before being �nally accepted by
the JGR� In particular a new study of convergence and non�hydrostatic e�ects has
been included� This is further described in section 
� In addition a part of the study
has served as a benchmark problem for veri�cation and comparison of models at the
LDG and the UIO�
It might seem surprising� but some of the properties of the most standard tsunami

models are insu
ciently documented in the literature� This is alarming since much of
the tsunami work world wide still have to rely on the standard methods� Naturally�
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many of the features will also be inherited by more advanced models� Facing this
problem during the preceding project we have undertaken a study of the optical
properties of FD ��nite di�erence� and FE models� as well as on the in�uence of
so called staircase �sawtooth� boundaries on the coastal response to incident waves�
The results are summarized in section �� Together with section 
 these topics form a
fairly broad analysis on the shortcomings and accuracy of linear hydrostatic models�
The FE ��nite element� model for the Boussinesq equations has been upgraded�

analyzed and fully documented in the manuscript 	��� The evaluation and veri�cation
of the method are partly based on the test cases described above� More details are
given in section ��
Finally we describe the activity on run�up models in section �� The FD Lagrangian

model for run�up� employed under the �rst GITEC project� has been further devel�
oped� tested and documented in two journal articles� A comparison with results
obtained by run�up models of the LDG� as well as inclusion of breaking waves� is
under way� Moreover� a related� but more general� FE technique has been imple�
mented in object oriented code and compared to analytical solutions as well as to the
pre�existing FD method� So far� the tests are promising�

� Formulation

Marking dimensional quantities by a star we introduce an orthogonal coordinate sys�
tem with horizontal axes ox�� oy� in the undisturbed water level and oz� pointing
vertically upwards� We specify the bottom according to z� � �h��x�� y�� t��� where
the time dependence corresponds to a slide or bottom deformation due to an earth�
quake� Moreover� �� is the surface elevation� �v� and �� the depth averaged horizontal
particle velocity and velocity potential respectively� Employing h�� the maximum
depth for instance� as �vertical� length�scale and L as �horizontal� length�scale we
then de�ne non�dimensional variables

x� � L�x� y� � L�y� t� � L��gh���
�

�
� t� h� � h�h

�� � �h���� z� � h��z� �v� � ��gh���
�
��v� �� � �L�gh���

�
��

�
���

where g is the constant of gravity and � may be chosen as a characteristic amplitude�
The choice of L varies� L may be chosen as a wavelength� as a characteristic length
of the bathymetry or equal to h�� In section 
� that concerns the ���� tsunami at the
Portuguese coast� we almost exclusively employ dimensional quantities� Here� as well
as a few places elsewhere� the stars are omitted� but the units are explicitly stated�

��� Long wave equations

In Eulerian form the equations are best described with L as a wavelength� Assum�
ing that the temporal depth variations are comparable to the amplitudes� it is also
convenient to specify the time derivative of the depth as �q� Provided � � h���L

�
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is small the �uid motion is governed by the Boussinesq equations� With � and � as
dependent variables we obtain equations of the form �	���� 	����

�t � q � �r � �Q ���

�t �
�

�
�r��� � � � �

�
h

�
qt �

h

�
r �

�
hr�t

�
� h�

�
r��t

�
� O���� ��� �
�

where �Q is given by

�Q � �h� ���r�� �h

�
�

�
�t � q � �



rh � r�

�
rh� O���� ���� ���

The subscript t denotes di�erentiation with respect to time and r is the horizontal
component of the gradient operator�
We have also employed another set of Boussinesq equations� based on �v as de�

pendent variable instead of �� In ��� we then insert �Q � �h � ����v� whereas �
� is
replaced by the two components of the horizontal momentum equations� each hav�
ing a structure very similar to �
�� Omitting the terms of order � we then obtain
Airy�s equations� whereas omission also of the order � terms yields the linear shallow
water equations that are the basis of the simplest tsunami models� Further details
concerning the equations and their relations are found in 	����
In the Lagrangian run�up models the factor � is most conveniently set to unity�

Owing to the long wave assumption� we introduce a Lagrangian description by mark�
ing material columns of water by label coordinates �a� b�� The relation between the
Lagrangian coordinate a and Eulerian coordinates reads

�a

�t
� �v � ra � �� a�x� y� �� � a��x� y�� ���

where a��x� y� may be chosen as to obtain a domain of regular shape n in the �a� b�
plane� Naturally� the other Lagrangian coordinate� b� ful�lls a corresponding equa�
tion� A complete treatment of Lagrangian coordinates is found in 	��� In the present
context� the main advantage of Lagrangian coordinates is the �xed computational
domain that enables a simple and accurate treatment of the moving shoreline�
The continuity equation� that can be integrated once in time� reads

H
��x� y�

��a� b�
� V� ���

where H � h�� is the total depth� V is the volume per da�db and �� � �
��a�b� denotes the

Jacobian determinant� We note that equation ��� explicitly states mass conservation
for a material water column� The momentum equations are employed with di�erent
expressions for the pressure term� In the hydrostatic case �� � �� the x component
reads

V
��x

�t�
� �H���� y�

��a� b�
� � �

�a

�
�

�
H��y

�b

�
�
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�
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�x
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We note that the rightmost expression for the pressure term is in conservative form�






��� Numerics

During the �rst half of the GITEC�TWO project we have performed much analysis
on existing and new numerical techniques� which involves a considerable amount of
manipulation of �nite di�erence expressions� This work is facilitated by a simple
notation as well as a number of standard formulas� Omitting the latter we report the
former brie�y� The approximation to a quantity f at a grid�point with coordinates

�	�x� 
�y� ��t� where �x� �y and �t are the grid increments� is denoted by f
���
��� �

We introduce symmetric di�erence and average operators� �x and
�x according to

�xf
���
��� �

�

�x
�f

���

�� �
� ��
� f

���

�� �
� ��
�� �f

x
�
���
��� �

�

�
�f

���

�� �
� ��
� f

���

�� �
� ��
�� ���

It is easily shown that these operators are commutative in all combinations� To
abbreviate the expressions further we also group terms of identical indices inside
square brackets� leaving the super� and subscripts outside the right bracket�
In all our numerical techniques we apply a time staggered grid in the sense that

values for � orH � as well as x� y in the Lagrangian description� are speci�ed at integral
time steps� n�t� whereas �v and � are sought at intermediate times� �n� �

���t� In ���
we treat the nonlinear term by an arithmetic average of �� while the convective term
of �
�� or the momentum equations� is represented by a geometric temporal average�
For each time step this yields linear decoupled systems of implicit equations for � and
�� or �v� with a corresponding e
ciency bene�t both for FE and FD formulations�
When the O��� �� terms are omitted� and the mass matrices are lumped for FE
formulations� we obtain a centered explicit scheme� On the other hand� for the
hydrostatic equations in Lagrangian form we obtain an explicit scheme also in the
non�linear case�
The spatial FD discretizations are based on the Arakawa C�grid for Eulerian

equations� while a B�grid is used for Lagrangian formulations� Detailed descriptions
are found in 	��� and 	��� Herein� we present only the Eulerian scheme for �� � � ��
In terms of the formalism as outlined above it may be compactly expressed as

	�t� � ��x�hxu�� �y�h
y
v��

�n� �
� �

i�j � 	�tu � ��x���n�i� �
� �j
� 	�tv � ��y���n�i�j� �

�

� ���

where we have assumed that values for the depth are available at � nodes and the
terms involving a time dependent bottom are omitted� From these equations we may
easily eliminate the velocities by application of the di�erence operators �x� �y and �t�
We then arrive at a scheme for the standard wave equation with variable coe
cients�
Moreover� if we assume temporal periodicity we may insert � � Re����x� y�e�i�t�� to
obtain

�x�h
x
�x��� � �y�h

y
�y ��� � �


��� � � ����

where �
 � �
�t
sin ��t

� � This equation is the starting point for the analysis in section ��
Concerning the FE methods we have paid particular attention to the relation

to the FD formulations� Naturally� this depends on the element discretizations� of
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which we employ a variety� as well as on the integration rules used in the generation
of element matrices� Often we may observe that the result resembles a B� or C�grid
FD formulation�

� The ���� case study

Most of the computations in 	
� for the ���� Portuguese event are based on shallow
water theory that neglects the in�uence of non�hydrostatic �dispersive� and non�linear
e�ects� This will �rst a�ect the initial surface elevation that is deduced from the sea
bed deformation� In hydrostatic shallow water theory rapid bottom displacements
are directly transferred to the surface� thereby introducing an unphysical as well as
inconvenient discontinuity in the surface elevation� In our simulations this unwanted
feature was avoided by a direct smoothening� However� a more accurate description
of the response of the liquid to the sea bed motion will prevent the discontinuity in
the �rst place and replace it by a comparatively steep gradient� Secondly� in view of
the presence of regions with rapid variations in the initial surface elevation� the e�ect
of dispersion must have some in�uence on the wave propagation� in deep water at
least� For the rather low amplitude tsunami of ���� nonlinear e�ects will primarily
be important in large areas of very shallow water� as in river deltas and coastal marsh
lands� Indeed� some of the important harbors at the Iberian coast are situated in or
close to such areas� A reliable estimation of nonlinear e�ects in such sites requires
a formidable amount of local analysis with high resolution models� Our partners at
the LDG make progress on this topic at present� However� in the present section we
will focus mainly on dispersion and grid re�nement e�ects�
During the study of the ���� tsunami we have performed a large number of tests

on the importance of dispersion� nonlinearity and discretization errors� Herein we
focus at a fresh study involving idealized two dimensional simulations�
In two dimensions �the vertical � � horizontal� the LDG has produced a fairly

complete hydraulic response to the Okada source model by employing the program
Nasa�Vof
D that solves the incompressible Navier�Stokes equations with a free sur�
face 	���� The source is implemented by specifying a vertical velocity �sink�source
distribution� at the bottom� with total periods of duration ranging from � to �� sec�
onds� All duration times gave virtually identical surface elevations � the subsequent
results are based on �� seconds� As shown in �gure ��a� the resulting surface eleva�
tion is very close to the bottom displacement� except for the discontinuity over the
focal line that is replaced by a transition zone of about �� km� Associated with this
zone we still obtain a large content of short waves in the spectrum that will have
bearing on the subsequent analysis of dispersion e�ects and discretization errors� It
is also noteworthy that the maximum surface elevation is reduced almost 
� as
compared to the bottom deformation� while the region of depression at the surface
is substantially reduced�
We now turn to the discussion of non�hydrostatic e�ects during wave propagation�

For plane waves on constant depth the dispersion relation may be written in the
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generic form

c � c���� 
k� � O�k���� 
 �
�

�
h� �

�

��
��x� � c���t

�� ����

where �x� �t are the grid increments� k is the wave number� c� �
p
gh is the shallow

water wave celerity and the direction of wave advance is assumed to be parallel to
the x�axis� We have incorporated both physical and numerical dispersion in such a
manner that omission of the second term in 
 yields the analytic dispersion relation for
the Boussinesq equations� whereas omission of the �rst term corresponds to discrete
solutions of the hydrostatic equations according to ���� Observing that discretization
errors from the dispersion term are of order k�� we then realize that keeping both
terms in 
 gives the wave celerity for numerical solutions of the Boussinesq equations�
Some useful observations follows immediately from ���� combined with geomet�

rical optics that implies k � h�
�
� � The part of the di�erence c� c� that stems from

real dispersion will then vanish in proportion to h in shoaling water� whereas the
contribution from discretization errors will increase as h��� Naturally� in the limit
h � �� the latter result no longer applies because the optical description collapses
and the wave length� however de�ned� does not approach zero� An indication of
the validity range of the optics is given implicitly in �gure �� we may assume that
geometrical optics is applicable as long as Green�s law is valid� We may also extract
some information concerning the evolution of a pulse in water of constant depth from
����� Assuming a generic initial condition of the form ��x� �� � F �x���� where � is
a measure of the length of initial elevation� we �nd that the evolution of the wave
shape is governed by the dimensionless time

� � 
c�t��
� ����

that is a measure of the integrated e�ect of dispersion� This result is readily obtained
from a Fourier integral or by rescaling the KdV equation belonging to the dispersion
relation ����� The evolution of the initial pulse described above is given in �gure ��a�
�� set to ��� km� for di�erent values of � � The pro�les are obtained by numerical
solution of a KdV equation� With h � � km the action of physical dispersion over a
distance of ��� km then yields � � ���
������ For comparison we note that numerical
dispersion for

p
�c��t � �x � � km� over the same distance� corresponds only to

� � ��� � ���	� On the other hand� we may imagine that the pulse is conveyed to
shallow water of depth h � ��m� without any other change in shape than becoming
shorter according to geometrical optics �length � h

�
� �� Then� � � � ������ that is the

largest value in �gure ��a�� corresponds to a propagation distance of no more than
��
 km� The wave is a�ected by dispersion in two ways� First� the primary elevation
decreases in height while the shape is altered through the evolution of a prolongated
nose� An important consequence is the drastic reduction of the leading trough� In
fact� in view of the actual propagation distances for the ���� tsunami� the combined
non�hydrostatic e�ects during generation and propagation make a leading depression
virtually vanish� Thus� for the ���� tsunami the negative part of the Okadas source
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can hardly be directly observed at the coasts� Secondly a modulated wave train is
separated from the leading pulse� The characteristics of this train are connected with
the initial steep region above the fault�
Naturally� the importance of dispersive e�ects on a wave like the ���� tsunami will

inherit local variations according to the bathymetry and the orientation of the focal
line� Still� we may construct a typical plane geometry by having a deep region with
h � ����m for positions ���� km � x � � km� a slope from x � � km to x � ��� km�
where the depth is h � ��m� and �nally another slope stretching to x � ��� km where
the depth vanishes� The latter region� that contains a long interval with very shallow
water� will impose strong requirements on the numerical model� Invoking the initial
condition as given in �gure ��a� we then solve the linear shallow water equations �lin�
hyd�� linearized Boussinesq equations �disp�� Airy equations and the full Boussinesq
equations for grid increments in the interval � km � �x � ����
 km� In this context
we employ a set of Boussinesq equations based on velocities as primary unknowns
�see section ��� Simulations have also been performed for the inverse polarity as
compared to �gure ��a� that corresponds to a ���� rotation of the source�
We start by examining the e�ect of dispersion� As shown in �gure ��a�� inclu�

sion of dispersion yields a signi�cant wave train following the leading pulse� that is
markedly decreased in height� This is con�rmed by the actual ��D simulations� Fo�
cusing on the amplitude we de�ne f � �max�h�hm�

�
� �Am where hm� the depth in the

source region� is taken to be ����m� Am is the maximum surface elevation of the
initial condition� �max is the maximum of the right going wave and h is the depth at
which the maximum is found� A constant value of f will correspond to ful�llment
of the well known Green�s law 	��� According to �gure ��b�c� omission of dispersion
causes a ����� � say� overshot in the amplitude for the initial condition as given in
panel �a�� while the error is increased to 
���� � say� when the polarity of the source
is reversed� Other studies seems to agree with the prior� thereby indicating that the
�� error is some kind of worst case estimate� The arrival at the coast of the �rst
peak is delayed a few minutes by dispersion� As expected� retaining the nonlinearity
of the Boussinesq equations we observe little di�erence before the wave enters very
shallow water �h � ��m� where something like an undulatory bore starts to develop�
This causes an increase in the amplitude� In addition the arrival time of the �rst
peak is reduced by some minutes� However� the signi�cance of these features depends
crucially on the presence of large area with very shallow water as in this example� and
is not properly resolved even for �x � �
m� It is also noteworthy that the nonlinear
hydrostatic �Airy� equations predict breaking for the normal polarity source in rather
deep water� even for the small amplitudes involved�
The convergence of the linear shallow water model is demonstrated in �gure ��d�

e� where we observe that the standard resolution �x � � km yields good results for
depths h � ��m� say� and that even �x � ��� km becomes inaccurate for h � ��m�
Moreover� the convergence is poorer for the inverse polarity� at least as far as the
maximum wave height is concerned� More encouraging is the fact that the numerical
errors and the errors due to omission of the dispersive term are of opposite sign and
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often of comparable magnitude�
Finally we remark that the performed computations are based on source parame�

ters owing to the ���� event and an idealized geometry corresponding to the gentler
bottom slopes o� the Iberian peninsula� For the steeper regions numerical dispersion�
for instance� will have shorter time to develop and its e�ect will be reduced� More�
over� the results may be conveyed to other events and regions only with the utmost
caution� In general� every tsunami case study will require some tests of its own�

� Analysis of long wave models

��� Discrete optics

A key question for a researcher in wave theory is to what extent a given numerical
procedure de�nes a virtual medium with properties that are analogous to those of
the physical medium� In the present section we pursue this question by developing
an optical theory for discrete solutions of �nite di�erence or element methods� with
emphasis on ampli�cation and spurious behaviour in shallow water� Particularly� we
seek a numerical counterpart to the well known Green�s law� which states that the
amplitude of a normally incident long wave in shallow water is proportional to h�

�
� �

where h is the depth� There are several textbooks surveying this theory� for instance
	��� We devote most attention to the analysis of the standard long wave model�
as described in section �� However� we have established corresponding theories for
dispersive equations and element discretizations on regular grids as well�
Periodic waves may propagate in a slowly varying medium without signi�cant

di�raction or loss of identity� There are several mathematical formulations available
for such problems among which geometrical optics is the simplest� The basic idea
is to assume a dominant harmonic behaviour with a phase function that inherits
slowly varying derivatives� When also slow variation of the amplitude is taken into
account we advance to the level of physical optics� The equations of physical optics�
such as Green�s law� are derived either by formal perturbation expansions� like the
WKBJ method� or directly from energy considerations� We established an optical
theory for discrete harmonic solutions directly from a WKBJ approach based on the
assumption of a slowly varying medium� Then� starting with a non�trivial derivation
of expressions for the discrete energy density and �ux� we attempted to reproduce
these results� In spite of problems concerning ambiguity we were partially successful�
However� we leave out the rather long discussions and derivations associated with
the energy aspects� A more complete description of the present topic is found in the
manuscript 	��� that can be made available at request�
We start from an ansatz

�i�j � Ai�je
i�i�j � ��
�

where the fast variation �on the wavelength scale� is exhibited by �i�j only � while Ai�j

and the di�erences of � vary slowly� The wave number components� denoted by k and
� in the x and y directions respectively� may now be de�ned through di�erences of ��
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Figure �! �a�! Bold lines! Bottom deformation �dashed� and surface response �solid�
Thin lines! evolution of pulse shape due to dispersive e�ects as explained in the
text� �b�c�! Amplitude of incident wave� normalized as explained in the text� for
�x � �
m� �e�d�! Convergence of linear hydrostatic model with grid increments in
km and the depth in m�
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Skipping the mathematical details we will instead sketch the premises and strategy
for applying the WKBJ formulation to the numerical model� In the problem we may
recognize three length scales� The rapid scale is given by a typical wavelength� that
according to the scaling ��� is of order unity� We may characterize the long scale for
depth and grid variations by �

�
where 	 � h��dh�dx� say� Finally we have the grid

increment� �x� To assure generality with respect to coarse grids we allow �x to be
of the same order as the wavelength� Substitution of ��
� into the di�erence equation
����� followed by some manipulations� yields an expression where the fast variation
is represented by algebraic expressions in the wave number components� whereas the
slow variation manifest themselves through �nite di�erences of depth� amplitude�
wave numbers etc� This equation is then ordered simply by counting the number
of �slow di�erences� in each term� Equating the leading order terms we reproduce
geometrical optics� which expresses local ful�llment of the discrete dispersion relation�
while the corresponding balance of terms of order 	 yields the physical optics� Now
we observe that any second order discrete approximation to a slowly varying quantity
will inherit relative errors of order 	��x�� Since we neglect terms of O�	�� in physical
optics we may then replace all such di�erences of slow variables by the derivatives
to obtain a di�erential equation involving A� h etc� Naturally� this requires that
analytic continuations exist for all discrete variables� including the unknowns A and
�� Hence� A and � are prescribed as analytical functions� rather than discrete data
distributed on a grid� Under extra assumptions the di�erential equation may actually
be integrated in closed form �see below��
One important observation can be made from geometrical optics� or rather from

the numerical dispersion relation� namely the existence of a minimum depth� hc� for
which real wave numbers may exist� A general lower bound is easily found to be

hc � �x��y��
�

���x� ��y��
� ����

where �
 � �
�t
sin ��t

� �
The result of physical optics may be recasted into the conservative form

r �
�
A�h�Cx

�k���m�
yCy

�����
�
� �� ����

where �k � �
�x
sin�k�x

� �� Cx � cos�k�x
� � etc� We observe the analogy with the trans�

port equation obtained from the di�erential equations� A case of particular interest
is normally incident waves in a plane bathymetry� corresponding to h � h�x� and
� � �� In this case ���� is easily integrated and the solution for A can be recasted
into the very simple form

A � B�h� hc�
�

�
� ����

where B is a constant and hc is the turning point depth� which is now given by hc �
�
��x���� We note that ���� is a discrete generalization of Green�s law and reproduces
the latter in the limit �x� �� When h� h�c the amplitude A becomes in�nite and
the physical optics collapses� As mentioned above� no real solution for k exists for
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h � hc� At h � hc we must thus expect a turning point with complete re�ection of
the incident wave� That re�ection does occur may be demonstrated by matching the
WKBJ solution to a local solution valid in the vicinity of the point� However� beyond
noting that the local solution has the form �j � ����jCAi���j�x� d��� where C� d
and � are constants� we omit the details� Naturally� the presence of a total re�ection
is also veri�ed through direct numerical solution of the di�erence equations�
The formula ���� has been compared to exact discrete solutions� in the sense

that they are obtained by solving the di�erence equation ���� directly� A convincing
agreement is found� even for rather steep bottom gradients�

��� Run�up and staircase boundaries

As stated in the preceding subsections the optical theory collapses before the shoreline
and cannot describe run�up� Consequently every harmonic retain �nite length as well
as amplitude� On the other hand� at the shoreline the governing equations inherit
a singularity that may be expected to produce errors and artifacts in numerical
solutions� The combination of the shoreline singularity with coarse grids� inaccurate
digitized bathymetry and staircase boundaries calls for particular caution� In real case
studies� as well as more idealized tests� we have observed a strong contamination by
unphysical noise at the shore� Naturally� the use of staircase boundaries is a prime
suspect concerning the noise production�
In the present section we focus on a simple geometry consisting of an o�shore

domain of constant depth combined with a plane slope extending to the shoreline�
We align a Cartesian coordinate system with � and 
 axes normal and parallel to the
shore respectively and obtain a bathymetry independent of 
� Moreover� we choose
the o�shore depth as h� and the slope length as L �see �����
A periodic incident wave is speci�ed by its wavenumber �ki � k�� cos�����sin������

which means that � is the angle of incidence�

����� The analytical solution

After elimination of �v from the linear shallow water equations and separation of
variables� according to � � ���� exp�i�k�
 � 
t�� we �nd

d

d�

�
h
d�

d�

�
� �
� � k��h�� � � ����

Provided dh���
d� �� � this equation inherits a regular singular point at � � �� which

implies that one solution is �nite as � � �� whereas the other displays a logaritmic
singularity� We note that for the singular � we obtain a �nite� nonzero� limit for the
�ux hu� The requirement of �nite � at � � � may then be replaced by a no��ux
condition� which has implications for the discrete procedure� For � � � and normal
incidence� � � �� the non�singular solution of ���� reads ���� � CJ���


p
�� where J�

is the Bessel function of zeroth order� There is a well known nonlinear generalization
	��� that is employed in section �� For oblique incidence the form of the solution

��
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Figure �! De�nition sketch of staircase boundary �N � �� and coordinate systems�

becomes slightly more complex� now involving the Kummer function� At � � � the
zeroth and �rst derivatives of nearshore solutions are patched to the o�shore solution�
that contains the incident and the re�ected harmonic waves� A closer investigation
of these solutions� including the discussion of some nontrivial features� is reported in
	���

����� Separation of variables in the discrete case�

We now assume that the grid is rotated an angle �� in the clockwise direction� relative
to the bathymetry� Moreover� we align the x� y coordinate system with axes parallel
to the axes of the grid� If � �� �� ��� the shore then has to be represented as a �staircase
boundary�� consisting of segments being parallel to the x and y axes alternatively�
Due to the simplicity of the bathymetry it is naturally to assume a grid with regular
steps in the boundary� where a single increment in one direction is adjacent to a step in
the other direction� counting a �xed number of increments� Without loss of generality
we may then assume boundary segments of lengths �y and N�x respectively� as
displayed in �gure � for the special case N � �� To factorize a discrete solution it is
not su
cient that the coe
cients of the di�erence equation are independent of a given
coordinate� In addition also the grid� including the representation of the boundary�
must be invariant with respect to a shift in the coordinate� Thus we cannot employ
separation in neither the 
�� nor the x�y coordinates� Fortunately� the regularity of
the sawtooth boundary enables a separation in the non�orthogonal system spanned
by the x and 
 axes� Hence� we proceed from ���� by the substitution

��j�p � eik
����p�p�������j�j���p�p��N � ����

where j��p� is some reference node adjacent to a boundary segment parallel to the
y�axis and �
 � ��y���N�x��� �� is the grid increment in the 
 direction� We note
that that �� corresponds to the leftmost wet nodes�
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From ���� we now obtain the ordinary di�erence equation
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where the quantity h
�s�

j�N
�

equals the actual depth when j � N and zero otherwise�

The latter case corresponds to the presence of the boundary segments parallel to the
x�axis� At the o�shore boundary we implement a combined input�radiation condition
N times to close the system� which is then easily inverted by Gaussian elimination�
For small N and �at bottom some progress can be made by analytical means as well�

����� Results

We start with the simplest case� namely � � �� which implies N � �� In the absence
of a staircase boundary the problems concerning accuracy and singularity remain� So
far� we have not discovered any particular di
culties associated with the singularity
for N � �� For �ne grids the dominant error is due to the absence of a surface node
at the shore� However� this is amended through a simple extrapolation� The results
for a given set of parameters� corresponding to � � ��� a slope length of ��� km
and a wavelength in deep water equal to �� km� are given in �gure 
a� To make the
relevance to real tsunami cases more readily accessible we retain dimensions in the
�gure� Proper convergence is not obtained until the grid size becomes a few hundred
meters� We note that the error seems to increase roughly as k�	
 for small �x and
that � � ��� yields almost identical relative errors in the run�up as � � ���
An investigation of the case N � � �a one by one staircase boundary� reveals

that no extra features will be introduced as compared to N � �� The norm of the
form function j�j is displayed in �gure 
b for the case � � 
��� k � �� and �x � �

�
 �
which means that the length of the incident wave equals the length of the slope� We
observe good overall convergence in spite of the coarse grid�
For N � � the numerical solution becomes more complex� In addition to the

two independent solutions that corresponds to the incident and re�ected waves� the
di�erence equation ���� now possesses N � � decaying �evanescent� and N � � ex�
ponentially growing modes as x � �� Naturally� the latter is discarded from the
solution� whereas the former give rise to noise adjacent to the shore� In �gure 
c
we have displayed the result for the same parameters as in 
b� There is substantial
degradation in performance of the numerical method relative to the case N � ��

� The FE Boussinesq solver

We have developed a fairly general �nite element simulator for weakly nonlinear and
dispersive water waves� The potential advantages of the �nite element method� com�

�




�a� N � �� run�up

�b� N � �� form function

�c� N � �� form function

Figure 
! Comparison of numerical and analytical solutions as explained in the text�
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pared to traditional �nite di�erence schemes� are related to more accurate represen�
tation of coastal geometries� elimination of staircase boundaries� increased �exibility
with respect to adaptive re�nements etc�� and simple generation of higher order spa�
tial schemes� The disadvantages concern increased CPU�time �mostly due to the
�nite element assembly process�� extra memory requirements� larger computer code�
and less obvious means to develop ad hoc improvements of standard schemes�
The �nite element simulator solves the Boussinesq equations� ���
�� with the

surface elevation and the velocity potential as primary unknowns� For potential �ow�
this reduces the work by one third compared to the more standard approach where
the velocity vector �eld is used as primary unknown� As mentioned in section ��
the equations are discretized in time by centered di�erences on a staggered grid�
The spatial problems at each time level is then solved by a Galerkin �nite element
method� Our particular formulation has the no mass �ux condition at the coastlines
as natural boundary condition� The simulator is implemented in an object�oriented�
yet e
cient� fashion in C��� using the Di�pack library 	���
As an option� we have introduced correction terms in the equations� These �small�

terms cancel certain terms in the local truncation error such that the time discretiza�
tion of the linear hydrostatic equations becomes of fourth order� With a suitable
choice of the time step �related to the dispersion parameter �� and quadratic ele�
ments of size comparable to the depth� the numerical errors will then be of the same
order as the residual O���� ��� in the Boussinesq equations themselves�
A comprehensive analysis of the numerical accuracy has been performed by study�

ing the error in the numerical wave velocity as a function of wave length� direction
of wave advance� grid increments� grid distortion� consistent vs� lumped mass matrix
representations etc� Only linear equations on constant depth are included in the the�
oretical analysis� We refer to a recently submitted journal article 	�� for a detailed
picture of the performance of various numerical strategies� One important result is
that biquadratic elements loose their expected superiority when the elements become
signi�cantly distorted�
The �nite element method has been investigated further in two idealized� but still

challenging� test cases� The �rst case concerns an incoming plane wave on a bell�
shaped beach� where the depth varies linearly in the vicinity of the beach� A contour
plot� showing the re�ection of an icident wave� is shown in �gure �� upper panel�
Localized noise has been observed outside the headland� and this noise decreases as
the curvature of the bell�shaped coastline decreases� Biquadratic elements seem to
be less stable than linear or bilinear elements in this particular case�
The second application concerns the propagation of waves over a shallow seamount�

This case is inspired by earthquake induced tsunamis at the Gettysburg seamount�
Both the depth and the initial surface elevation have the shape of a bell function�
Biquadratic elements and grids adapted to the bathymetry are much more e
cient
than �nite di�erence methods on uniform grids in this case� As the water gap at the
summit becomes very small �� percent of the deep water depth�� the superiority of
biquadratic elements is somewhat reduced� Results for a plane wave passing over a
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Figure �! Left panel! Element mesh outside southern Portugal� Right panel! zoom
of the Lisbon area� Axis units in km� �From U� Kolderup�s Master thesis��

very shallow seamount are displayed in �gure �� lower panel� The surface elevation
is depicted by contours� while the seamount is shown as a wire plot�
We have also carried out some preliminary studies of the �nite element model in

the Atlantic ocean outside Iberia� Particularly� we have developed a technique for
extracting coastline polygons from a depth matrix such that standard grid generation
methods produce grids of acceptable quality close to the coastline� see �gure �� In
this work we have also tested sponge layers and radiation conditions in the �nite
element model�

� Lagrangian models

The UIO group has developed two sets of Lagrangian models to describe run�up of
tsunamis at sloping beaches� based on nonlinear hydrostatic theory� A FD model�
in several varieties due to di�erent forms of the momentum equation� has been fur�
ther developed since the �rst GITEC project� In addition mixed FE models are in
progress� All models have been veri�ed by comparison with two di�erent analytical
solutions as well as through intercomparison�

��� FD models

In addition to the comparison with analytical solution the FD procedure has been
thoroughly tested through a small number of idealized test cases� including run�up
on a headland �same geometry as in preceding section� and wave generation by a
land slide into a fjord or lake� This work is documented in the articles 	�� and 	���
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The former also reports a preliminary plane shock model based on the inclusion of an
arti�cial di�usion term� This model did not describe run�up of bores� Improved shock
models that include run�up have been devised lately� However� there are still some
conceptual problems concerning bores and run�up that need further elaboration� The
results will be reported in the �nal report�

��� FE models

In accordance with the experience from the Eulerian FE models the Lagrangian
technique is based on low order elements� Linear or bilinear trial functions de�ned
on triangles and quadrilaterals� respectively� are employed for velocities� The surface
elevation is constant over each element� which then yields a mixed formulation� The
nodes are Lagrangian� in the sense that they move with the �uid velocity� whereas
the shape functions are described in Eulerian coordinates� We model the continuity
equation simply by requiring mass conservation for each element� For element i we
then obtain

�iAi �

Z
Ei

h�x� y�dxdy � Vi�

where Ai�t� is the area and Vi is the initial volume of the element�
A weak formulation for the momentum equation is then designed as to yield a

natural boundary condition at the shoreline� Denoting the �uid domain by " and a
weight function by W the x component readsZ

�

W #xdxdy �

Z
�

f�� � h�
�W

�x
�

�h

�x
Wgdxdy�

where #x is the particle acceleration� For quadrilaterals we obtain a representation of
the pressure term that is very similar to the FD method based on the conservative
formulation�

��� Comparison with analytical solutions

A set of particularly simple analytical solutions of the fully non�linear hydrostatic
equations� concerning oscillations in parabolic basins� are found in 	�
�� We have
generalized one of these slightly to allow a depth function h�x� y� � h��y� � �x��
where h� is any smooth function� The analytical solution then becomes

� � A�t� �B�t�x� u � U�t�� B � B� sin�
t�� $U � �B� A � �B�

��

where 
 �
p
��� It can be shown that all our numerical techniques� including FE

methods with non uniform grids� reproduce this solution� save for modi�cations of
the relation between U and B and the value of 
 according to �

�t
sin���
�t� �

p
���

This provides a test of the coding rather than on the performance of the method due
to the simple spatial distributions� All our code has undergone this test�
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In ���� Carrier and Greenspan 	�� published an analytical treatment of the hydro�
static and fully nonlinear run�up on an inclined plane� The assumption of constant
bottom slope enabled an ingenious transformation� using the Riemann invariants�
to a linear problem� Recently the theory has been generalized to include run�up in
channels with parabolic cross�sections 	���� We will not go much into the particu�
lars of the theory� but focus on one fundamental solution only� namely the standing
wave oscillation� This solution is of fundamental importance and is closely related
to the linear solutions in section �� Moreover� it allows us to study the numerical
reproduction of waves that are arbitrarily steep at the shoreline� even to the point of
breaking� According to our experience this is a more challenging test for Lagrangian
models than simulations involving large run�up distances� but small wave steepness�
Assuming h� � �x� and a characteristic time scale� T � we select typical length

scales according to
L � gT ��� h� � gT ��� ����

which gives h � x� Carrier and Greenspan arrived at the linear wave equation!
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where the transformation to the physical quantities can be expressed as!

u � ���� �
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� � � �
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t � �
��� u� x � ��
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��

	�
� ����

Choosing T as to give a nondimensional frequency equal to � we may write a standing
wave solution of ���� according to!

� � AJ���� cos� ��
�

where J� is the Bessel function of zeroth order andA is an amplitude factor� ForA � �
the transformations in ���� become multivalued as an indication of wave breaking�
We obtain the solution in the physical plane by converting the algebraic equations
in ���� by means of an iterative solver� Combining this solver with a Runge�Kutta
technique we may also obtain particle trajectories corresponding to the Lagrangian
description�
We have performed simulations in a basin of length �� and di�erent amplitudes

A for the FE and the non conservative� as well as the conservative� FD formulations
�see ����� Di�erent aspects of the solution for the high amplitude A � ���� are
displayed in the various panels of �gure �� In panel �a� we have compared the surface
elevations for comparatively coarse grids� A closer investigation of the results reveals
that the largest errors are generally found at the shoreline� Hence we focus on the
shoreline motion in panel �b� for the non conservative FD method� We observe close
convergence even though we have a �near cusp� in the analytical solution� All the
other formulations do also converge� though at somewhat di�erent rates� When an
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analytical solution is available the convergence rate should always be investigated
more rigourously� This is done in panel �c� where the error itself� relative to �a�� is
depicted� Around the time of �near breaking� we often obtain only what seems� after
a closer analysis� to be a �a� ln�a convergence� Such a behaviour can be observed�
more or less clearly� for all methods� For practical purposes this convergence rate may
be considered as quadratic� Still it must be noted that lumping of the FE method
at the shore produces spurious oscillations that yields an even slower convergence�
However� the rate is still faster than linear� A direct comparison between the di�erent
methods is found in panel �d�� We observe that the consistent FE formulation is
clearly superior� whereas the two FD techniques are more or less equivalent�
A more complete treatise of the comparsion with the standing wave solution is

given in an internal report that can be made available at request�
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