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ABSTRACT 

This thesis presents a framework that expands upon the idea of a fully model-driven 

approach to editor development for Graphical Domain Specific Languages (DSL), 

originally put forth by the Graphical Modeling Framework (GMF). The framework's main 

component consists of a language for the declarative definition of editing behavior for said 

editors. We define the Behavioral Definition Language (BDL), and the execution semantics of a 

BDL-instance, Behavioral Definitions (BD).   

Inconsistent DSL-instances are not desired when modeling them using modern editors. 

However, during user-interaction with the editor, edits may be attempted that would, if 

permitted, create inconsistent models. Instead of denying such edits we propose a different 

approach: to commit the edit to a separate model capable of representing the result of an 

inconsistency-creating edit. Upon this model we use editing behaviors to resolve the 

inconsistencies before committing any alterations to the DSL-instances. To simplify the 

complexity of reasoning about what editing behaviors may be applied, we present a 

method for presenting editing behaviors to a user for selection. Letting editing behaviors 

focus on resolving small fragments of inconsistency, while letting the user select the 

appropriate set of behaviors to ultimately create a DSL-consistent model.  

The method presented for defining editing behaviors is based on graph transformation; we 

use graph transformation rules and patterns therein, to pattern-match rules against models 

capable of representing inconsistent DSL-instances ("models of inconsistency"). This to 

determine when and for what inconsistencies we may present editing behaviors to the user 

for selection. Using comprehensive examples, we argue for the validity of our approach to 

the definition and applicability of editing behaviors defined in such a manner. 

. 
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1 INTRODUCTION 

1.1 MOTIVATION 

Before the introduction of the Graphical Modeling Framework (GMF) [1] many 

developers had undertaken the task of binding the Graphical Editing Framework (GEF) 

[2]to Eclipse Modeling Framework (EMF) [3] models, to create editors for models of 

graphical languages, like UML [4]. Among these editors one has a particular relevance to 

the motivation behind this thesis; the Papyrus UML Editor[5]. The author of this thesis has 

partaken in the process of developing the Sequence Diagram editor component of the 

Papyrus UML editor, which was based on an editor developed as part of a master's thesis 

at the University of Oslo [6]. During the development we were presented with several 

challenges regarding the definition of the editor's behavior when interacted with by users. 

We found the process of programmatically defining and incorporating automatic 

inconsistency resolutions to inconsistency creating edits, to be a daunting task. Quickly 

resulting in never-ending cascading behaviors, inconsistencies within the models the editor 

created, and in the code. Leading at times to crashes or to the editor behaving non-

deterministically. 

Some of these problems we believe to be related to the following issues; (1) the complexity 

of defining editing behavior consistently using a purely programmatic approach. (2) the 

lack of a formal method for defining concrete graphical syntax and enforcing the 

constraints it defines. (3) the special nature of UML Sequence Diagram's concrete graphical 

syntax; it does not match well with typical node-arrow-only type languages, resulting in 

added complexities since common layout-algorithms for those kinds of languages, like 

XYLayout and ToolbarLayout as presented in [7] by IBM for defining the layout of 

elements in a graphical syntax, quickly become to primitive to guarantee well-formed 

sequence diagrams.  

GMF with its model-driven-development approach rectifies some of these issues by 

applying an abstract (implementation-distant) and formal modeling approach to the 

development of editors for graphical languages. Especially GMFs notation meta-model, 
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and subsequently IBM's GMF inspired Diagram Definition proposal [7] attempts to rectify 

issue (2). 

However, in our view there still lacks a component able to rectify (1) and (3); a form of 

editing behavior definition that uses a DSL's own concepts to express the editing behavior 

needed to produce consistent and well-formed diagrams and models. This while 

supporting on an implementational level not merely the constriction and denial of edits 

resulting in inconsistencies, but rather support giving users inconsistency solutions to 

choose from during editing. Thereby leveraging the user's own knowledge about the 

diagram and model to restore consistency, instead of programmatically trying to enforce it 

at all times.  

1.2 GOALS OF THE THESIS 

The goal of this thesis is to present our findings regarding the relationship between 

graphical domain specific languages and editing behavior for editors of said languages. Our 

findings stem for work done on a prototype editor behavior subsystem and from work on 

this thesis. We will show how we may, when modeling DSLs, not only model their abstract 

and concrete graphical syntax, but also model their editing behaviors on an abstract level. We 

will define our Behavioral Definition Language (BDL), and show a Behavioral Definition 

(BD) for an extensively examined example of editing behaviors in response to an 

inconsistency creating edit. We will give the execution semantics of a generic Behavioral 

Definition and show how an executing Behavioral Definition may be integrated into the 

workflow of editor development. We will lay the formal foundation, upon which BDL and 

its supporting framework, depends upon. Since several of the components needed to 

create an executing Behavioral Definition are conceptual, we will explore in detail the 

features that we require of these conceptual components.  

1.3 THESIS STRUCTURE 

Chapter 2 Background: Domain Specific Languages This chapter focuses on what a 

Domain Specific Language (DSL) is. We will give a short presentation of the difference 

between abstract and concrete syntax, and then explain the concept of graphical languages 

and concrete graphical syntax. Will give some examples of languages capable of expressing 
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this syntax in different ways. We will also define a conceptual graphical definition language 

(GDL) based on the presented languages and that we will rely upon for the rest of the 

thesis. 

Chapter 3 Background: Editors For Graphical Languages This chapter focuses on 

defining what an editor for a graphical languages is, and how they differ from common 

textual editors for programming languages. We will show the advantages and disadvantages 

of having completely syntax strict editors, in both the textual and graphical domain. We 

will also show how we may model editors for graphical languages using a model-driven 

development approach, and show the relationships between the models involved. Lastly 

we will examine how we customize modeled editors in a model-driven-development process. 

Chapter 4 Editing Behavior This chapter focuses on defining what editing behavior is. 

We will give examples of helpers in a current state-of-the-art editor, laying the foundation 

for our motivation of giving editor users a choice of editing behavior instead of 

automatically implementing them. We will also see how we may define editing behaviors 

on an abstract level, and how we define editing behaviors on an more implementation 

specific level. We draw parallels to the realm of inconsistency management and show how we 

may represent inconsistent  DSL-instances consistently using a non-constrained variant of the  

DSL in question.  

Chapter 5 Behavioral Framework This chapter focuses on explaining our framework. 

We will present the components, our meta-modeling architecture, and present our 

language BDL along with an small example of it in use. We will explain a generic 

Behavioral Definition's execution semantics, and give the motivations behind the elements 

in BDL and behind the elements in the execution semantics. 

Chapter 6 Example: Problem 1 Deals with a concrete example of a problematic edit on a 

sequence diagram that results in inconsistencies in the diagram model. We will show how we 

may find a set of editing behaviors capable of solving the inconsistency by examining and 

constricting the solution-space. We show how we naturally end up with concepts similar to 

concepts from the field of graph transformation when reasoning about editing behavior. 

We then proceed with formally defining editing behaviors, capable of solving the problem, 

as graph transformation rules, using the methods presented in Chapter 4. We will also 

show what we require of the special model presented in Chapter 4 to be able to reason 
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about the applicability of editing behaviors. We then give  these rules in a Behavioral 

Definition.  

Chapter 7 Behavioral System Prototype In this chapter we will talk about the prototype 

that was developed, what was examined during its development, and what we found. We 

will also talk about problems with the tools used to create the prototype, and with the 

prototype itself. We will also give concrete suggestions for future prototypes within this 

field of study. 

Chapter 8 Conclusion and Further work In this chapter we will conclude with our 

findings, and give examples of further work within the field of editing behavior for editors 

of graphical languages, based on the findings presented in this thesis. 

1.4 GOALS OF THE FRAMEWORK 

Develop DSL Meta-Model Develope DSL Graphical Definition Develop Editor Tooling Definition

Develop Mapping Model

Develop Executable Model Generate Code Deploy Editor

Implementational Level

Abstract Level
Legend

Fork/Join

Points of manual customization

Develop DSL Behavioral Definition

 

Figure 1-1 Reducing the amount of manual customization by modeling editors even more precisely with 

Behavioral Definitions 

The goals of the framework is to reduce the amount of customization (in the figure: ) 

not done on an abstract level when defining editing behavior in editors for graphical 

languages, and to make such customizations more consistent. We also want to be able to 

provide a different approach to when and how an editor executes editing behavior, in that 
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we do not automatically alter or deny edits performed by the user when they result in 

inconsistent models, but give the user a choice of which editing behavior to implement to 

resolve the inconsistency.  We do this by capturing what we call a Behavioral Definition in its 

own model, which focuses on the definition of relevant behaviors, and by defining an 

underlying execution semantics for Behavioral Definitions that focuses on finding relevant 

behaviors. We show in Figure 1-1 the insertion of a Behavioral Definition in a GMF 

workflow (which will be explained in 3.2), but argue that such a definition is in fact more 

closely related to the process of developing a DSL than to the process of editor 

development, as we use will only use concepts from the DSL and BDL to create the 

Behavioral Definition, remote from any editor implementation specific concepts. 
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2 BACKGROUND: DOMAIN SPECIFIC LANGUAGES 

“Language serves not only to express thought, but to make possible thoughts which may 
not exist without it” – Bertrand Russell 

2.1 DSL 

Domain Specific Language, or DSL, is a term used by many and but perhaps not 

consistently. As put in [8] by Gronback et. al. "much has been written on the general topic 

of DSLs, with the domain-specific aspect being the most controversial and reminiscent of 

discussions regarding "meta-ness"".   

The concept of using specialized languages to express concepts and relationships in a 

domain is not new, with COBOL (COmmon Business-Oriented Langauge)  being one of 

the more famous as a language actually acknowledged of "domain-specific" [9]. But the 

problem with using the term doman-specific as a qualifier for the proceeding term language is 

that the term is relative. One may argue, as Gronback in [8] that for some UML [4] is a 

language a consisting of several other languages describing domains such as; state 

machines, use cases, interactions and so on. Others may consider UML as a language that 

describes the domain of software development, not viewing it as a  language for describing 

abstract concepts like state machines, but a language  for describing software. 

We also find those who differentiate between Domain-Specific-Languages and Domain-

Specific-Modeling Languages[10], or DSML for short. A DSML may be thought of as a 

language described using meta-models. A meta-model is, to put it short, a model of a 

model. From Haugen in [11] we find the following citations from [12] :  

"... meta-power, that is the power to change the rules of the game, the matrix of actions 

and interaction possibilities and their outcomes ... " 

" ... meta-power as a relational control, i.e. control over social relationships and structures 

..." 
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The citations are from a sociological text, but are clearly possible to translate into 

"software" terms. In fact we may think of meta-models as models that define legal 

constructs of other models. In "Matters of (meta-) modeling" [13], Kühne gives a quite 

concise example of what meta is:   

"...  a discussion of how to conduct a discussion is a "meta-discussion"".   

Problems arise however if we start "discussing how conduct the discussion of the 

discussion" (a meta-meta-discussion?).  

To summarize, we have a term, Domain-Specific-Language, that uses a somewhat relative 

term; domain-specific. We also have the concept of creating them using meta-models, also a 

somewhat relative term as the degree of meta can be fluctuating. E.g. is a language defined 

only by its meta-model, or is it also defined by the meta-model's meta-model?  We will not 

delve deeper into the implications of meta-ness, and/or domain-specificity in this thesis, 

but to move forward we need a definition of what a DSL is in this thesis. Ruscio et. al. 

defines it as the following: 

"DSLs are languages able to raise the level of abstraction beyond coding by specifying 

programs using domain concepts. In particular, by means of DSLs, the development of 

systems can be realized by considering only abstractions and knowledge from the domain 

of interest."  

All computer languages consists of a concrete and abstract syntax, DSLs included [14]. 

Abstract syntaxes are the backbone of the language as they define how the language views 

information from an internal view-point. This in contrast to the concrete syntax which defines 

how a user of the language views the information. For instance a language for graph 

manipulation would contain the concepts of nodes and edges. From an internal view-point 

these concepts are merely objects, things of an abstract nature, or more precisely just data. 

From an external view-point however they are not just data, they are actual nodes and 

edges; boxes, lines, circles etc. This defines concrete syntax.  

For textual programming languages these distinctions are easy to make; the abstract syntax 

defines how a compiler would view the language, the concrete syntax how programmers 

would view the language [15]. For instance; x := 5  is an expression following an imagined 
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concrete syntax, the abstract syntax representation of it may however be: 

assignStmt(ConstExp(x), ConstExp(5)).  

The step from going from the above abstract syntax representation of the expression, to a 

model representation is not hard; assignStmt as a element with 2 children-elements with 

two (typed) attributes x and 5. For the concrete syntax expression a model representation is 

also possible: An concrete syntax assignment-element has an attribute defining a string 

":=" and two relationships, one left and one right. left points to the character x and right 

points to the character 5.  

2.2 GRAPHICAL LANGUAGES 

Mapping Model

DSL Meta-Model
DSL Graphical 

Definition

Graphical Language Development 

Models

 

Figure 2-1 Develop and map abstract and concrete syntax 

Graphical languages have concrete graphical syntaxes, either in addition to or in-place-of a 

regular concrete textual syntax.  Among the challenges in graphical language development 

we have those of how to formally represent and define the graphical syntax. We also find 

challenges relating to how to create a mapping model capable of binding the abstract and 

concrete graphical syntax together in a coherent definition of a DSL. Consequently the 

challenge of creating a such a mapping model also becomes a challenge of defining a 

mapping meta-model [7]. We will in the following sub-chapters focus on the challenge of 

defining concrete graphical syntax, and assume for the remainder of the thesis that the 

mapping model is implicit between abstract and concrete syntax; that the challenge of 

mapping has been resolved. In Figure 2-1 we show the abstract and concrete graphical 

syntax as a DSL meta-model and DSL graphical-definition respectively. These are mapped 
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to each other via a mapping model to define the relationships between elements in the 

models. 

2.2.1 CONCRETE GRAPHICAL SYNTAX 

In this chapter we will present some of the attempts to create a language capable of 

defining concrete graphical syntax, and also present an interesting parallel to the field of 

Geographical Information Systems. 

2.2.1.1 Espe's Graphical Description Language (E-GDL) 

Type Attribute Description 

Geometrical 

lx left-most x-position 
rx right-most x-position 
by lowest y-position 
ty top-most y-position 

Direction 
tail a line's start point 

head a line's end point 

Visualization appearance how the symbol looks 

Table 1 GDL symbol attributes 

GDL (Graphical Description Language, we refer to it E-GDL from now on, to separate it 

from another GDL later in the thesis) [16], was tested on a subset of the Unified Modeling 

Language [4]. This language specifies valid concrete syntactic constructions of a visual 

language using schemata. It relies on predicates and concepts from topology (intersects, in, 

touch etc.) to specify the spatial relationship between the various graphical elements of the 

language.  Viewing graphical symbols (atomic entities in the syntax) as point-sets and 

exposing symbol attributes, allows E-GDL to specify predicates not so easily described 

with topology in a simple way. 

 

Figure 2-2 Examples of E-GDL-predicate: " x is inside y", courtesy of [16] 

Figure 2-1 shows the inside relationship in the E-GDL-notation. It defines the following 

predicate; OBJECT x is inside y if x  is a subset of y where x and y are point-sets on a 2-
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dimensional plane. E-GDL lacks the capability of defining elements on a 3- or 2,5-

dimensional plane, so as to define what is commonly called the z-order between elements.  

 

Figure 2-3 Example of using E-GDL to define a Sequence Diagram Symbol 

Figure 2-3 shows a E-GDL-instance of a SequenceDiagram symbol. Defining constraints 

that use predicates, symbols and sets of symbols,  to define valid SequenceDiagrams.  

2.2.1.2 Diagram Interchange (DI), Diagram Definition (DD) and Diagram Graphics 
(DG) by IBM 

IBM's Diagram Interchange (DI) (subsuming OMG DI), Diagram Definition and Diagram 

Graphics [7] are part of a response to an OMG Request For Proposal (RFP) on Diagram 

Definition [17]. The proposal is inspired by the mapping that GMF provides between 

EMF Ecore [18] models, notational elements and their tooling.  

They split the concept of concrete graphical syntax into three parts: a language for 

persisting diagrams and interchanging them (DI), a language for the concrete syntax of DI 

with respect to a DSL (DD) and a language for expressing graphical syntax and mapping it 

to the abstract syntax (DG).  

DI is a language used to persist and interchange diagrams between applications. DD 

defines valid usage of the elements that DI consists of for a given target domain; a 

definition that defines constraints upon instances of DI, for a given domain.  
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Essentially we may think of DD as defining the valid usage of elements in DI, when DI is 

to be used as the diagram persistence/interchange language of a DSL. Implying that DI 

has differing concrete syntaxes depending on the DSL in question. Therefore requiring an 

separate Diagram Definition model to define valid usages of DI for a given source DSL. 

They calls this diagram syntax, different from concrete graphical syntax. Diagram syntax in 

this manner is actually a form of abstract syntax, which when combined with the abstract 

syntax from the DSL, is capable of representing valid DSL-specific diagrams in a model.  

The third language regards the concrete graphical syntax, DG. This language deals with how 

to define how graphical elements should be rendered on screen in an abstract manner; not 

defining painting logic itself, but the attributes and relationships needed to paint a building 

block. E.g. attributes like position, size, color, line-style . DG also is capable of defining how one 

may access attribute values in the underlying models (DSL meta-model instances, and DI-

instances) to populate attributes in a DG-model. DG therefore consists of two parts; one 

part for the declarative description of graphical syntax and another part for the declarative 

descriptions of mappings from the model (abstract syntax and diagram syntax) to graphics. 

The complexity of the proposal from IBM, and the large amount of meta-models involved 

prohibit us describe them in detail here. However, we are able to simplify our explanations 

by viewing the entire set of languages as a language for the definition of concrete graphical 

syntax. This since all of the meta-models may define constraints and values that affect how 

the concrete graphical syntax is presented to the user for interaction. We feel this is an 

important point to make; that a DSLs concrete graphical syntax is in many ways the net 

result of all the constraints defined upon the models used in its definition.  The proposal 

segments the definition into multiple languages, but adhere to the basic notion of using 

constraints defined on instances of the languages to define valid syntax. DD-instances place 

constraints on loosely constrained DI-instances. While DG-instances have constraints 

defined on elements within it, elements that reference DI-instance elements. The sum of 

these constraints are, in our view, all constraints on the concrete graphical syntax, as it is the 

sum of the constraints that define the syntax ultimately need to interact with and adhere to. 

Some of these constraints can be user-settable. DI defines a concept called StyleSheets that 

may contain appearance properties like colors, and layout constraints. DD defines valid 

styles for a given DSL so as to constrict the realm of possible stylesheets a user may 
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choose from. DG does not have user-settable constraints (as far as we can see) but does 

define a concept of Layout that DG-elements may enforce upon child elements according 

to some layout constraints.  

2.2.1.2.1 GIS Extended OCL 

OCLBasicType

<<singleton>>

Integer

<<singleton>>

Real

<<singleton>>

String

<<singleton>>

Boolean
BasicGeoType

<<singleton>>

Point

<<singleton>>

Polyline

<<singleton>>

Polygon
 

Figure 2-4 Extending OCL with a new type: BasicGeoType 

Pinet et. al. [19] propose an extension to OCL [20] to allow for spatial constraint definition 

in response to the complexities of modeling Geographical Information Systems (GIS). Systems 

that require heavy use logical reasoning with spatial information [21]. UML [4] and MOF 

[22] only allow for topological constraint representation via relationships (e.g. Building ↔ 

disjoint ↔ River, where disjoint is a relationship). This approach is however lacking in its 

expressiveness, as complexities arise when trying to express more complex constraints (IF .. 

THEN .. the constraint is applied ELSE ... ).   

Especially when examining spatial constraints. This is why they propose an extended OCL 

adjust for spatial reasoning. They do this by first; defining a new OCLBasicType called 

BasicGeoType (alongside Integer, Real, Boolean and String) which is the super type for 3 

fundamental geographic types; Point, Polyline and Polygon. They further define that any 

element to be evaluated spatially in an OCL constraint to have a geometry attribute. This 

geometry attribute is a collection of elements were each element in the collection  has a 

BasicGeoType. The geometry attribute is viewed by OCL to be equivalent to a OCL-

collection, allowing for the use of OCL collection operations like forAll, select and size.  

The spatial operations they defined are either equivalent or similar to E-GDLs predefined 

predicates, so we will not reiterate them here.  The example below shows how we may 

define an invariant on  a Diagram: 
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context Diagram inv: 

 self.geometry -> forAll(p1, p2 | p1<>p2 implies p1 -> disjoint(p2)) 

This constraint states that all elements p1 and p2 in the collection must be spatial disjoint 

as long as they are not equal.  

Although this extension of OCL was not intended to define a concrete graphical syntax we find 

the resemblance between it and E-GDL striking. This extension shows that it is possible to 

use OCL to express spatial constraints, making OCL translations of E-GDL definitions 

possible.   

2.2.1.3 Our conceptual language: Graphical Definition Language (GDL) 

The concept of having a language purely for the formal definition of concrete graphical 

syntax is not new [23]. Unfortunately no OMG-supported standard has emerged yet, 

although as we saw in the previous chapter, an OMG RFP (Request for Proposal) and 

actual proposals for such a standard are under consideration. 

For our purposes in this thesis we must create a conceptual language that allows us to 

reason about the effect of the concrete graphical syntax combined with the abstract syntax 

on how an editor behaves. We will however not attempt to create a GDL meta-model and 

represent it here, as this is not the purpose of the thesis. Rather we will find instances of an 

conceptual language that fits the problems we will examine in this thesis, and that 

hopefully are general enough to match a wide range of future meta-models for graphical 

definition. 

We will simplify the ideas from E-GDL and IBMs Diagram Definition proposal, and use 

those ideas together with GIS extended OCL constraints, to allow us to create simple 

constrained models representing concrete graphical syntax for a DSL. Ignoring aspects 

such as persistence and interchangeability, and focusing on creating elements that are as 

closely related to the DSL abstract syntax as possible with respect to naming. 

In our definitions using OCL we will employ E-GDL's predefined set of predicates using 

syntax derived from GIS extended OCL. We will also use the concept of E-GDL's 

Symbols to gain access to attributes, such as (x,y) coordinates; we assume that all Symbols 

have a collection akin to the geometry attribute in the previous chapter (and like Symbols and 
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point-sets in E-GDL) but that this attribute does not need to be explicitly stated or 

referenced, and is automatically inferred during constraint evaluation.  

Interaction

+ lx : Integer

+ ly : Integer

+ by : Integer

+ ty : Integer

+ p : Point

+ d : Dimension
 

Figure 2-5 All Symbols have position and size attributes 

In our conceptual GDL a Symbol is also not only a spatial entity consisting of constraints 

and other Symbols, but may also include model references to its domain meta-model 

instance. This allows us to just refer to a single Symbol when talking about both an 

elements graphical properties and model properties, shortening our statements.  

Our GDL needs a form of diagrammatic concrete graphical syntax so that we may easily 

depict the situations we will be examining. There exists however no such diagrammatic 

graphical notation for either E-GDL or DG, yet. We will therefore imagine one: Given the 

E-GDL Symbol for SequenceDiagrams in Figure 2-3 we may draw a simplified class-

diagram excluding the PENTAGON, NAME, InteractionFragment, and focusing only on the 

relationships defined by the predicates inside and disjoint: 
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SequenceDiagram

Interaction

lls

<<predicate>>

disjoint

interaction

Lifeline
<<predicate>>

inside
1

1

1

1

*

*

CombinedFragment

<<predicate>>

intersect

0..*

0..*

cfs
*

<<operator>>

implies

1

<<predicate>>

inside

1

1

1

 

Figure 2-6 MOF-type representation of a subset of a GDL instance (GDSQ) for SequenceDiagram 

Symbol in Figure 2-3 

context SequenceDiagram 

 inv: 

  self.cfs -> forAll(cf1, cf2 : CombinedFragment | cf1 <> cf2 and cf1 ->         

intersects(cf2) implies cf1 -> inside(cf2) or cf2 -> inside(cf1)) 

  self.lls -> forAll(lfl1, lfl2 : Lifeline | lf1 <> lf2 and lf1 -> disjoint(lf2)); 

  self.lls -> forAll(lfl : Lifeline | lfl -> inside(self.interaction)) 

The diagram of the model GDSQ presents a translation of GIS extended OCL expressions 

into relationships and stereotyped nodes. This so that we may give a class-diagram 

representation that shows the model-representation of the constraints defined  on the 

elements, in our case constraints defined on the SequenceDiagram. Although not a formal 

model representation of OCL-expressions in any way, the above model does represent the 

relationships we require between elements. We do this by deducing what the OCL 

expressions, defined on the SequenceDiagram, mean structurally with respect to the 

relationships between nodes and the multiplicities on the relationships. Importantly, what 
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the model does not represent are the parts of the OCL expressions dealing with non-equality 

of objects (<>). CombinedFragment, Lifeline, Interaction, SequenceDiagram are all Symbols. 

The GDL Definition (GDSQ) in Figure 2-6 can be viewed as a subset of a model which in 

total represents the graphical definition of a SequenceDiagram, as it describes nothing 

about the elements in the syntax, only their relationships to each other. The nodes disjoint 

and inside (stereotyped to <<predicate>> for readability) can be viewed by the reader as a 

model representation of the OCL predicates used in the SequenceDiagram context and that 

we have extracted from the SequenceDiagram element and visualized. The associations 

between the predicates define the direction of the predicate evaluation (e.g. Lifeline -> 

inside(Interaction)) and the multiplicities define that they must always exist in a valid 

instance of this model. 

Based on GDSQ we may define the relationships between graphical elements in instances 

of this meta-model. Figure 2-7 depicts a model A that conforms to its GDL Definition 

meta-model (GDSQ) and that defines the spatial predicates currently true between elements 

in the diagram. We use bi-directional relationships to denote the existence of 2 uni-

directional relationships of the same type that relate the same elements for conciseness. 

sd : 

SequenceDiagram

lf1 : Lifeline lf2 : Lifeline

i : Interaction

interaction 1

disjoint

inside inside

 

Figure 2-7 Model  A conforming to GDSQ 

Figure 2-8 is a graphical representation that is a true representation of the model A in 

Figure 2-7. 
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sd : SequenceDiagram
f : Frame

lf2 : Lifeline

lf2 : Lifeline

 

Figure 2-8 Graphical representation of Model A 

The GDSQ places constraints on which relationships must be present at all times in a valid 

GDSQ instance. Also by negating an expression with a predicate like disjoint (not lf1 : 

Lifeline -> disjoint( lf2 : Lifeline2) ) we get what relationships must never be present at all times 

in a valid GDSQ instance like A. We define that relationships missing from the model 

means that its constraint has evaluated to false in the model; e.g. if the statement  

 lfl : Lifeline | lfl -> inside(self.interaction) 

evaluates to false we remove the relationship between the lfl and the Interaction. 

Importantly this renders the model inconsistent with respect to its meta-model GDSQ (a 

violation of the constraints defined on the meta-model), of which the model A' in Figure 

2-9 is an example of. 

sd : 

SequenceDiagram

lf1 : Lifeline lf2 : Lifeline

i : Interaction

interaction 1

disjoint

inside

 

Figure 2-9 A inconsistent model A' not conforming to GSDQ 
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Another example is the model R in Figure 2-10 conforming to GDSQ but where we only 

show a subset of the model, focusing on the Lifelines and CombinedFragments. 

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

inside

 

Figure 2-10 Model R conforming to GDSQ 

Figure 2-10 shows an instance of a model where the implies operator binds the two 

relationships intersect and inside together using a association class-like notation. We have 

chosen this notation for elements stereotyped as <<operator>> since association classes 

only exist while the association exists (the directed arrows show which association was 

responsible for creating it; the source-association). This coincides nicely with what the 

invariant for CombinedFragments states: that if 2 CombinedFragments intersect one must 

be inside the other. We further define that for inside relationships between 

CombinedFragments it is the responsibility of the association class to manage the 

information about the existence of the relationship. The multiplicities on the relationships 

in GSDQ between intersects and implies [1..1], implies and inside [1..1] show that the 

relationships are strict. One may not exist without the other. Since we use bi-directional 

relationships to denote the existence of two "equal" relationships between elements 

(different in direction only) we say that the iff viewing them as uni-directional they would 

both have a relationship to the same implies instance. Figure 2-11 is a graphical 

representation of model R.  
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seq

seq
lf1 : Lifeline

lf2 : Lifeline lf3 : Lifeline
cf1 : CombinedFragment

cf2 : CombinedFragment

 

Figure 2-11 Graphical representation of Model R 

Figure 2-12 and Figure 2-13 show an inconsistent model G with respect to its meta-model 

GDSQ. Looking at the graphical representation we see that we have intersecting 

CombinedFragments where none is inside the other. This creates a dangling implies 

association class (similar to the well-known dangling-else problem in programming 

language development and compiler theory [15], a problem regarding ambiguity in concrete 

syntax) that has no reference to its required inside relationship, which is missing from the 

model. 

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

 

Figure 2-12 Inconsistent model G: dangling implies with missing inside-relationship relationship 

alt

alt

 

Figure 2-13 Graphical Representation of model G 
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3 BACKGROUND: EDITORS FOR GRAPHICAL 
LANGUAGES 

" If thought corrupts language, language can also corrupt thought" - George Orwell 

3.1 SYNTAX-DIRECTED EDITORS  

Programs are often written and manipulated with text editors. A text editor, as the name 

implies, manipulates textual entities that are organized into a basic hierarchy that consists 

of characters and lines. The editor provides simple functions such as insertion and deletion 

of characters and lines. However, a program is not merely text - they are only represented 

textually. A program is a collection of syntactically and semantically meaningful objects 

such as identifiers, procedures, loops and data types. We therefore often build editing tools 

that employ knowledge about the programming language constructs, and allow users of the 

editing tools to create and manipulate programs in the terms of these language constructs 

[24].  

We call these structured, language-sensitive or syntax-directed editors. Structured editors 

employ operations from the programming languages compiler to give users information 

about errors in the program while it is written rather than compiled. This is often solved 

via running a portion of a typical compiler process while the user is interacting with the 

editor, like Eclipse's Abstract Syntax Tree (AST)[13] . While editing a user may create a 

program that is inconsistent, in the sense that it would not compile if we tried to compile it. 

The editor would notice this and proceed with notifying the user of the error. One of the 

first such editors was the Cornell Program Synthesizer [25]. 

Similarly we have editors for graphical languages. Most of which are completely syntax directed or 

completely structured, such as [5, 26, 27]. By this we mean that inconsistent states, which are 

common in textual editors and result in the editor notifying the user of the error, are not 

permissible at all. Such editors place syntactic correctness as an absolute requirement at all 

times.   
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We can construct an example of this difference: 

Class

If |condition| Then |statement| 

else |statement| 

else |statement|  

Figure 3-1 Graphical language: Dangling Association. Textual language: If-statement with dangling Else 

A completely syntax-directed editor for a graphical language would not permit the above 

graphical situation, as it is not syntactically correct. If a user attempted to accomplish the 

above inconsistent edit the editor would deny the edit. We may easily claim that most modern 

and popular editors for a textual language would permit the above textual situation, even 

though it is syntactically incorrect, since inconsistent interim states are permitted in most 

such editors, as they are not completely syntax strict. If a user created the above situation a 

syntax oriented editor would inform the user of the error, but not deny the mere existence 

of it. 

This example highlights the major difference between textual and graphical editors for 

formal languages. In editors for graphical languages the user is vastly more constrained when 

it comes to possible edits, and we therefore need to closely examine the implications of this 

and how we deal with inconsistency creating edits.  

3.1.1 WORKING WITH COMPLETELY SYNTAX-DIRECTED TEXTUAL 
EDITORS 

The implications of completely syntax-directed editors on textual languages has  been 

researched for many years. Since the programs in such editors much remain syntactically 

correct after each editing operation, a large number of edits that are otherwise very simple 

become awkward and frustrating [24]. An example of this is the following well-known if-to-

while transformation problem. The following program is supposed to calculate the factorial: 
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read(n):

a := 1;

fact := 1;

IF a <= n THEN

BEGIN 

   a := a + 1;

   fact := fact * a;

END

 

Figure 3-2 Syntactically correct textual program 

The above program does not calculate the factorial n! although it is perfectly syntactically 

correct in our pseudo-language. The error is that instead of using a while-loop an if-statement 

is used. But fixing this in a completely syntax-directed editor is not simple. If we were to 

try to replace the IF with a WHILE we would create a syntactically incorrect program since the 

syntax for while-statements is while |condition| do, not while |condition| then. The solution in 

this case is to use "trickery" to accomplish the desired program; for instance by creating a 

new while-statement and copying the conditions and statements of the if-statement into it, and 

then deleting the old if-statement. This is of course more awkward than in a regular text-

editor in which we simply type in while in place of if and proceed with typing in do in place 

of then. 

3.1.2  WORKING WITH COMPLETELY SYNTAX-DIRECTED GRAPHICAL 
LANGUAGE EDITORS 

This method of "getting-around" constraints put upon the user by the editor is exists also 

in modern graphical editors. Figure 3-3 is a screenshot of a state-of-the-art editor for UML 

Class Diagrams [4]: 
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Figure 3-3 Interface erroneously created by user instead of Class. Neatly depicted inside a Package 

In this case we presume that the user did not intend to create an Interface-element or wishes 

to alter the element to a Class-element. To accomplish this without losing the content of 

Class2 (attributes and operations) the user must do the following:  

1. Create a new Class-element : Class3 

2. Drag-and-drop the attributes and operations from the old Class2 to the new 

Class3.  

3. Move the association-end from Class2 to Class3 

4. Delete Class2. 

5. Rename Class3 to Class2  

There are several problems with this approach: 

1. It is time-consuming compared to just deleting the <<interface>> stereotype (which 

is not possible in the editor). 

2. It entails expanding the Package1 graphical element to be able to fit in the new 

Class3. 

3. It also entails that we need to scale Package1 back again once we have 

accomplished the goal.  

4. Fourthly and importantly, it also means that we cannot guarantee that elements in 

other diagrams that referenced the old Class2 have updated their reference to the new 

Class2 (which was temporarily Class3). 

A more elegant solution would be for the editor to accomplish the above without the user 

needing to use "trickery", while at the same time ensuring that all references to the old 
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Class2 are updated to the new Class2.  To do this the editor would need to expose the 

<<interface>> element for selection and deletion, and have some routine that atomically 

does the steps above and updates references. We call this type of routine an Editing 

Behavior.  

3.1.3 BENEFITS OF COMPLETELY SYNTAX-DIRECTED EDITORS 

Although completely syntax-directed editors can be awkward from a usability stand-point, 

as we have seen in the previous chapter, there are several benefits to such editors.  

One benefit is that it allows us to implement the well-known Model-View-Controller 

pattern (MVC-pattern) in editors. The Model-View separation principle states that the model 

(domain) objects should have no direct knowledge about the view (commonly interface 

objects) [28]. In our case we may view the model as an instance of a DSL Meta-Model, and 

the view as an instance of the DSL Graphical Definition (a model) with some direct 

relationship to an on-screen rendered figure (what is commonly referred to as the view, but 

we will think of the view as instances of the Graphical Definition). 

A relaxation of this principle is the Observer pattern, famously described by the "Gang of 

Four" [29], which allows entities to observe and see events. In the context of an MVC-

pattern we say that model elements are permitted to send messages to view elements, but 

then only by using an interface. This way the model is able to communicate notifications, for 

instance updates, about events  that have taken place to the view without actually having any 

knowledge about the view element other than that it implements the interface.  

To summarize, the benefits of complete syntax-direction with respect to editor 

development are as follows; 

1. The MVC pattern allows us to have multiple representations (Views) on the same 

model element 

a. This is particularly important for multi-diagram editors, in which the same 

model element may be represented multiple times in several different 

diagrams. 
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2. The Observer pattern allows us to keep model and view synchronized at all times; if a 

model-element is updated via some other mechanism than the controller itself, the 

controller is notified and it may update the view, or vice versa if the view updates. 

a. This fits well with completely syntax-directed editors in that we are never 

allowed to have inconsistent or illegal models. We may then continuously, 

and in the "background", synchronize and  update either view or model 

whenever one or the other has been updated.  

3. The MVC pattern also allows us to create a direct link between Controllers and a 

DSL Mapping Model. Controllers may be viewed in a sense as executing instances of a 

Mapping Model in the DSL development process[7]. Said using meta-modeling terms 

we may say that Controllers may be seen as instances of elements in the mapping 

model between the abstract and concrete syntax. This since controllers and maps 

fulfill some of the same tasks; to provide the link between model and view and 

keeping them synchronized at all times. 

model : DSL 

Meta-Model 

diagram : DSL 

Graphical Definition

Mapping Model

DSL Meta-Model
DSL Graphical 

Definition

 

Figure 3-4 Controllers as instances of the Mapping Model elements 
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3.2 MODELING EDITORS FOR GRAPHICAL LANGUAGES 

Develop DSL Graphical Definition Develop Editor Tooling Definition

Develop Mapping Model

Develop Generator Model Generate Code Deploy Editor

Develop DSL Meta-Model

Implementational Level

Abstract Level
Legend

Fork/Join

Points of manual customization

 

Figure 3-5 The workflow when modeling an editor using state-of-the-art tools 

Modern state-of-the-art frameworks for the development of editors for graphical languages 

(graphical-editor-modeling-frameworks) like GMF, employ a model-driven development 

approach (MDD). Graphical languages consist of both an abstract syntax and a concrete 

graphical syntax. These are separated into two different models when creating an editor 

with a model-driven development approach. In GMF these are respectively called the 

Domain Model (instances of the EMF Ecore meta-model [18])  and Graphical Definition 

(instances of the GMF notation meta-model). GMF also employs a Tooling Definition 

(instances of GMF tooling meta-model);  as editors typically include a palette and other tools 

to create, modify and delete content in the diagram and model. The Tooling Definition 

specifies these elements on an abstract level; defining what buttons should be in which 

menus and so on; basically defining a simple model of the user-interface.  

Henceforth and throughout this thesis we will refer to what GMF calls a Domain Model as a 

DSL Meta-Model (DSL-MM), so as not to confuse the very distinct terms Meta-Model 

(defining the DSL) and Model (instances of the DSL Meta-Model). We will also rename what 

GMF calls a Graphical Definition to DSL Graphical Definition (DSL-GD) to more closely bind 

the Graphical Definition to the DSL it was created for. The Tooling Definition will rename to 

Editor Tooling Definition (ETD), again to more closely bind the model to it intention; to 

define the tooling for an editor.   
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DSL-MM DSL-GD ETD

Mapping Model

Generator Model

 

Figure 3-6 Models involved when modeling an editor using state-of-the-art tools (GMF) 

Once these three models (DSL-MM, DSL-GD, ETD) have been created we create a 

mapping model (MAP) (GMF Mapping Model) that binds the elements of the 3 models 

together into a coherent map; tying the underlying DSL meta-model together with its DSL 

graphical definition and the editor tools needed to create and manipulate it.   

Interaction

DSL-MM DSL-GD ETD

Create Interaction

 

Figure 3-7 Creating a MAP-element 

A typical mapping in a GMF mapping model would be similar to the figure above. We 

map the Interaction (DSL-MM element) to its graphical representation (DSL-GD) and to a 

button with a label "Create Interaction" (ETD-element), which defines a button in the 

editor responsible for creating an Interaction.  Once a mapping model has been created a 

model-to-model transformation (M2M) generates a Generator Model from which executable 

code may be generated. Different from the Mapping Model the Generator Model 

necessarily contains all the information needed to automatically generate an editor for the 

DSL and therefore contains information about the technicalities of the intended 

implementation platform. 
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We differentiate between two levels in the workflow in Figure 3-5; the abstract and 

implementational. On the abstract level reasoning about the editor under development takes 

place in an abstract manner; a Toolsmith (Editor Developer) focuses on modeling the 

editor using the concepts from the DSL Meta-Model, DSL Graphical Definition and the 

Editor Tooling Definition without needing to use modeling concepts that refer to the 

concrete implementational platform. On the Implementational level we begin work on 

these technicalities; what runtimes and APIs to use, we define necessary identifiers used in 

the generation, define the file extensions needed, copyright information, and perhaps 

import into the models some action language for the advanced behaviors the editor is required to 

exhibit. Within GMF the Generator Model is the most likely to be extended and 

manipulated to provide customizations [8].  

3.2.1 CUSTOMIZATIONS 

Customizations are alterations of the default generated Generator Model. We may have 

specific requirements for how an editor is to behave with respect to the DSL that a 

Toolsmith needs to implement. But which is not possible to define in any of the previous 

models, and that is not possible to inherit from the graphical-editor-modeling-framework 

being used. The amount of customization needed for a language depends on how little the 

language deviates from the type of languages the creators of the framework have anticipated 

it being used for. Typically, very simple languages just containing nodes and lines in its 

DSL-GD and few elements in its DSL-MM may require no customizations of the 

generator model at all, while others more complex (dare we say more domain-specific?) 

require heavy customization.  In Figure 3-5 we have used -icons to depict the imagined 

amount of customization required during editor development for a DSL. We may say that; 

 The number of required in the workflow is directly correlated with how much 

the language in question aligns with the languages the graphical-editor-modeling-

framework developers had in mind when developing the framework. 

GMFs Generator Model supplies some basic methods for accomplishing customizations 

via Custom Behavior elements. A Custom Behavior element simply allows for a class-name of 

an EditPolicy to be entered. EditPolicies are coded elements in Java, a concept stemming 
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from GEF and provide the main and undisputed mechanism for adding behavior to a 

diagram element [8].  

More often than not, customizations do not only take place in the Generator Model but 

also in the code that has been generated. This "generated-code customization" process is a 

artifact when using a model driven development approach, perhaps due to a lack of 

expressivity in the meta-models used in the development. This is not always desirable, as 

we can quickly create modifications in the code that are not in-sync with the models; 

leading to code customizations being overwritten in an iterative editor development 

process,  or becoming inconsistent with the code generated.   

We may also customize by affecting and customizing the generation itself via templates [8]. 

This is somewhat more in-line with a model-driven development approach, but as with the 

process of direct code manipulation, we need to create such templates with the concrete 

implementation in mind, instead of reasoning about the customization with a more 

abstract and DSL-"near" approach. 
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4 EDITING BEHAVIOR 

"The quality of our thoughts is bordered on all sides by our facility with language" 
 - J. Michael Straczynski 

 

Editing

 Behavior

CF2

CF1

CF2

CF1

Edit ?

 

Figure 4-1 Edit resulting in inconsistency, Editing Behavior resulting in ? 

When we do not have strict editors that only allow users to perform a basic set of  edits 

(e.g. buttons for all edits, grayed out if currently illegal), but allows users to attempt a wide 

range of edits, which may or may not be consistency preserving (e.g. move, scale, place 

with a mouse), then we must examine the implications of the edit. We need to find out 

what to do if the edit violates some constraint in the DSL.  To do this we need to examine 

the procedures in the editor that deals with such edits. There are multiple possible 

solutions to the problem of a constraint violation as a result from an edit (inconsistency 

creating edit): 

1. To deny the edit and revert to a previous consistent diagram state (at least visually 

as the diagram may not have been altered at all). Notify the user of which 

constraint was broken. This is the MOF-default action for constraint violations 

[22]. 

2. For the editor to permit the edit. Depending on how the model repository reacts 

and how strictly it enforces constraints, will either create an inconsistent model or 

will result in the repository denying the edit, and not the editor. 
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3. To solve the violation by automatically initiating an editing behavior that modifies the 

original edit (what some have called "compensating actions" w.r.t. to inconsistency 

management in general [30]) and failing that do 1. 

4. To not automatically initiate a behavior, but find all the possible editing behaviors 

capable of solving the violation/inconsistency, and present these to the user for 

user-selection. If no behaviors are found or the user does not select a solution, then 

do 1. 

The first solution is partially implemented in most state-of-the-art editors; if a user 

attempts to do something deemed illegal the editor undo's the interaction, and in some cases 

notifies the user about why. As is the case in IBM's Rational Software Modeler that runs a 

model validator in the background checking pre-defined and user-settable constraints [26]. 

The most common solution is however to merely deny the interaction without feedback, as 

is the case in popular tools such as Eclipse's UML2Tools, Papyrus UML and in the 

perhaps less popular tool; Limyr's SeDi [5, 6, 27]. IBM's Rational Software Modeler also 

denies most illegal edits without explanation, although a structure for feedback does at 

least exist, as we have mentioned. 

The second "solution" may exist in editors that have been manually developed, heavily 

customized or loosely constrained. Illegal situations not anticipated by the developers may 

not be tested for and therefore not detected. This is also perhaps a direct consequence 

resulting from the immaturity of the field of formally defining the constraints on meta-

models, especially on the concrete graphical syntax. E.g. the DSL does not define enough 

constraints to be able to guarantee that it is consistent with respect to the intention of the 

DSL developers. The worst case scenario in this "solution" is the corruption of the 

model(s), due to a controller trying and failing to synchronize an inconsistent diagram with 

the model.  
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cf2

cf1

 

Figure 4-2 Who owns the message head? 

Figure 4-2 is an example of such a situation where the worst may occur: Which box is the 

arrow-head contained within? If we automatically deduce parentage of model elements 

based on the diagram every time we receive a notification from the model of updates 

(which is common for controllers in MVC-type editors to receive) we may find ourselves 

stuck in an infinite loop: Checking first cf1, setting it as parent of the arrow-head. 

Receiving an update from the model. Skipping cf1 as it already has all its children, not 

resulting in model-alterations. Then checking cf2, setting it as a parent. Receiving an update 

from the model. Setting cf1 as parent etc. 

The third solution is the standard way of dealing with constraint violations (although not 

necessarily violations against model constraints, but also constraints given in the code to 

specify how an editor reacts). This is often exhibited by the way arrows in box-arrow-type 

diagrams route themselves around other elements in order to maintain visibility, and not 

become overlapped/hidden by other elements. This behavior could be a reaction to a 

constraint defined in a Graphical Definition, or just constraints defined in the editor code). 

These types of behaviors are often included in editor frameworks such as in GMF and GEF 

[1, 2], as they are behaviors that the Toolsmiths request, or take for granted exist in the 

framework. The Toolsmith therefore merely inherits the behavior from the framework, 

requiring little or no developer effort to implement (as with predefined EditPolicies in GEF 

and GMF mentioned earlier). Behaviors that fall outside of what the framework developers 

envisioned being needed, are defined manually via customizations of a generated editor.  

The fourth solution is what we will try to accomplish in this thesis. This type of solutions is 

akin to how syntax-oriented editors that are not completely strict w.r.t. the syntax react to 

an inconsistency, presenting errors and possible fixes based on a background parsing 

strategy. This while at the same retaining the MVC-pattern used in state-of-the-art editor 
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development, that in theory ensures that model and diagram are in constant consistency. 

An important requirement of such a solution is that it does not in any way lock the editor 

during its search for solutions, but runs in parallel with the editor, as do background 

parsers in syntax directed textual language editors.  

4.1.1 WHY GIVE THE USERS A CHOICE OF BEHAVIOR? 

"We can think of the “scaffolding” here as providing a knowledge framework upon which 

a learner can learn while gaining expertise, as a way to help the user climb the learning 

curve. This suggests organizing content to build on the learner’s accumulated knowledge." 

[31] 

An important aspect of the success of any DSL is the tool-support surrounding it. 

Consequently the success of the tools will also determine the success of the DSL. An 

important aspect of tools are their usability. Several industry leading tools, such as [26] 

acknowledge this and provide users with small helpers or "scaffolding" from which a user 

may learn about the DSL while using it.  Examples of this are depicted in Figure 4-3 and 

Figure 4-4. Other examples are how many editors support drag-and-drop of elements, 

initiating an editing behavior that automates an otherwise complicated process. For 

instance IBM Rational Software Modeler [26] supports dragging the Class1 in Figure 4-3 

out of its Package1 and into another, automating the operations needed to change 

parentage, maintain certain associations etc., instead of the user manually creating a 

duplicate Class and reproducing it in the other package.  
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Figure 4-3 Helper: Associating to "nothing" leads to a context-menu with list of possible Creates 

 

Figure 4-4 Helper: Mouse-over on blank space leads to "bubble" of possible Creates 

In these editor interface screenshots we see how an editor helps the user learn about the 

DSL that is being used, by presenting the user with all the different DSL elements (known 

and unknown to the user) that the user may create as a result of attempting to create an 

element on a blank space in the diagram. 

It is scaffolding such as these that we will attempt to lay the foundation for with the 

Behavioral Framework, including but not limited to element creation. During editor usage 

we may often find ourselves attempting to create what the editor deems as inconsistent with 
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respect to the DSL. This is of course reasonable as we usually want consistent models. 

However, the current method of denying user-interactions without any given reason, or 

merely by stating to the user that a constraint has been violated is not enough. What is 

needed is a form of error-reporting mechanism with solution finding capabilities that does 

not necessarily automatically implement the inconsistency solving solution, but gives the users 

the possible solutions for user selection. This we believe will improve editor usability and 

provide the users with a greater chance of "learning (the DSL) by doing".  
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4.1.2 DEFINING EDITING BEHAVIOR 

4.1.2.1 Edits as model transformations 

Source 

Metamodel

Source Model

Transformation 

Definition

Target

Metamodel

Target Model
Transformation 

Engine
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Reads Writes

Conforms toConforms to Uses

 

Figure 4-5 Basic concepts of model transformation 

Many have researched the topic of combining graph transformation with field of model 

transformation. Of the many model transformation techniques, graph transformation-

based techniques are present in many current model transformation implementations [32]. 

Some have also used graph transformations and rules to actually define graphical languages 

and editors for them, by viewing the transformations as edits on graphs representing the 

language [33, 34]. Others have also examined how to translate OCL Constraints, which 

lack a model representation, into graphs for efficient evaluation and visualization of them 

[35].  

There exists a considerable interest for establishing standards that deal with model 

transformations in Model-Driven-Architecture (MDA) [32], and there exists several 

languages  with different design choices that provide the definition of model 

transformations. Among which are the ATLAS Transformation Language (part of 

Eclipse's model-to-model (M2M) project) (ATL) [36] and OMG's standardized 

specification QVT [37]. The full extent of the interest in model transformations are far 

beyond the scope of this thesis, but importantly there exist a general consensus that it is 

possible to use graph patterns as rules for transformations and match those patterns to 

patterns in a source model for the transformation. This is called the graph-transformation-

based approach to model transformation. According to Czarnecki and Heckel, patterns can 

be represented using both the structure of a model (strings, terms and graphs) or the abstract 

or concrete syntax of the corresponding source or target model language, the syntax may 

be either textual or graphical [32].  



37 

 

Graph transformation rules have a LHS (left-hand-side) and a RHS (right-hand-side). LHS 

patterns are matched in a model being transformed and replaced by the RHS in place. LHS 

usually also have NACs (negative application conditions) and PACs (positive application 

conditions). Heckel in [38] gives the following three steps to performing a graph 

transformation given a rule t: 

1. Find an occurrence of the LHS of t in a given graph R. 

2. Delete from G all vertices and edges matched by LHS but not in RHS.  

3. Paste to the result a copy of the RHS, yielding the new graph G. 

An important aspect of graph rule patterns w.r.t. DSL transformation is that it is 

theoretically possible to render them in the concrete graphical syntax of their respective 

source or target language [32]. The ability to incorporate the source language's own syntax 

into rules for its transformation would greatly simplify the creation of such rules. 

However, those approaches that we have found that use graph transformations and rules 

to define editing behavior [39, 40] differ from what we are after in this thesis; they explore 

graph transformation rules that never create inconsistencies; the only edits available to the 

editor are rules that operate on initially consistent models and lead to consistent models. In 

this way they may guarantee the consistency of both the LHS and the RHS of any 

transformation. We on the other hand wish to use graph transformations to represent edit 

executions, and that transform from a consistent target model w.r.t. to its DSL into a 

source model which might be inconsistent w.r.t to the DSL. And use information from this 

transformation process to deduce the applicability of predefined editing behaviors.  

4.1.2.2 Edits as transactions 

Other approaches to defining how edits are handled (editing behaviors) are related to 

transaction processing; how to handle an edit as a transaction (like in EMF's 

TransactionalEditingDomain [3]). We may define a transaction as "a collection of 

operations on the physical and abstract application state" [41]. ACID is a set of properties 

on the transaction that must hold for a valid transaction on a state (we may view this state 

as the models in the DSL repository): 
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 Atomicity: A transaction's changes to the current state are atomic; all changes 

happen at once. 

 Cosistency: A transaction is a consistent transformation of the state. It does not 

violate any consistency constraints on the state.  

 Isolation: Even if transactions may execute concurrently, each transaction T views 

itself as either executing before or after another T.  

 Durability: Once a transaction is completed successfully (committed) its changes 

to the state are persisted.  

modelElement : 

Domain Model 

Element

diagramElement : 

Graphical Definition 

Element

Domain Model
Graphical 

Definition

figures : 

GraphicalObject

ep : EditPart

installs

EditPolicy

Request
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Figure 4-6 EditPolicy and Transactions: Commands 

GMF uses EMF's TransactionalEditDomain along with entities called EditParts and 

EditPolicies (from GEF) to manage editing behavior. EditParts define the controller entity 

between model-elements(s) and view (on-screen-rendered elements), while EditPolcies are 

pluggable contributions to the overall editing behavior of an EditPart [8]. EditParts delegate the 

handling of edits to the EditPolicy classes, which are installed upon the EditParts during 

instantiation. EditPolicies respond to Requests originating from, among other elements, 

Tools and return Commands (and stacks of Commands) for execution within a transactional 

editing domain. EditPolicies  may collect contributions from other EditParts by delegating 
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and/or forwarding Requests or new Requests. It is within these EditPolicies that most of 

the DSL specific editing behavior is usually performed, and is also among those concepts 

designated for manual customization by GMF. There are many benefits to this structure 

that we will not examine in this thesis, but we may in the context of this thesis think of 

Requests as close to what we have called previously called edits and Commands as the 

execution of said edits.  

As we have mentioned before we would like to explore the use of graph transformation as 

a way of defining editing behaviors, instead of using the method employed by EditPolicies 

of programmatically defining them. We want to explore the possibility of using pattern 

matching on "inconsistent" models against patterns in rules, which when matched, define 

when and for what inconsistencies an editing behavior is applicable. This as a result of 

needing to allow users to perform inconsistency creating edits when the initial state of the 

models are consistent. If we are to use the concepts from graph transformation to express 

editing behaviors, and graph transformation rules to express when we can use editing 

behaviors we need a way to define a form of inconsistent model, capable of representing the 

result of an inconsistency creating edit. 

4.1.3 LIVING WITH INCONSISTENCIES FROM EDITS AND EDITING 
BEHAVIOR 

Goedicke et. al. [42] argue for the need to be able to live with inconsistencies during the 

lifetime of systems, and that tool-support is needed to tolerate inconsistencies and help 

developers use them to drive the development process forward. They put forth several 

activities needed to manage inconsistencies: inconsistency detection, inconsistency classification, and 

inconsistency handling. We will adapt these terms to our problem domain, in which we in need 

to live with inconsistencies resulting from edits, at least temporarily.  

Inconsistency detection: We need to define what an inconsistency is in our terms and how it is 

detected; As we have mentioned before, we say that constraints in the DSL define what 

relationships must exist between elements (consistency conditions). Detection of an 

inconsistency is therefore done, in our view, by a MOF-like model repository; one that can 

check constraints defined in the DSL.  
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Inconsistency classification: Goedicke et. al. argue to classify inconsistencies as either minor 

(suitable for automatic solutions) or major (which may represent severe design errors). We 

view all inconsistencies as major, and therefore never actually attempt to fix them 

automatically (although we may easily envision such a solution for inconsistencies for 

which only one solution exists).  

Inconsistency handling:  We handle inconsistencies in line with point 4 in chapter  4, of the 

possible solutions to inconsistency creating edits.  

For us to use graph/model transformation rules as representations for edits and editing 

behaviors that might create inconsistent models, we will need a method of living with the 

inconsistencies, at least until we are able to find editing behavior(s) that solve the 

inconsistency. A regular repository would not permit us to create inconsistent models, for 

good reason. However if we are to be able to use patterns representing inconsistent 

situations as rules for editing behaviors, we need to be able to represent the inconsistencies 

in a model capable of being pattern matched against.  

4.1.4 THE NEED FOR A META-MODEL CAPABLE OF DEFINING AN 
INCONSISTENT DSL-INSTANCE CONSISTENTLY 

What we need is a special meta-model capable of representing the inconsistencies not 

permitted in another meta-model. For instance, for a graphical definition, constrained 

according to the intended graphical syntax of the DSL, we want a variant of the graphical 

definition that is not constrained, so that we actually may create an "inconsistent" model 

consistently.  

Hausmann et. al. in [43] employ graph transformations to express model transformations 

and use them to denote the consistency conditions between models. Model 

transformations describe the applications of techniques on a source model to produce a 

target model. The transformation may either be monolithic or done in steps.  

Transformations can be regarded as functions of models: 

t : Model → Model' 

Models represent (views on) information. If the same information is represented in 

multiple models, we may say that they overlap. A typical example of overlapping models 
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could be a class diagram and sequence diagram. Although expressing different views they 

can do so on the same information; a sequence diagram showing the interactions of a class, 

which is also defined in a class diagram. Another example of overlapping models is how 

the UML meta-model represents the meta-view of a UML Model. The overlap relationship 

can be represented as:  

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ∶ 𝑀𝑜𝑑𝑒𝑙𝑛  

When overlapping models are consistent we mean that they represent information in a non-

contradictory way. Typically consistency between models is determined via consistency conditions. 

(e.g. the <<instance of>> consistency condition between a UML Class Meta-Model element 

and a Class in a model claiming conformance to UML). We regard consistency conditions as a 

relation over models.  

𝑐𝑐 ∶ 𝑀𝑜𝑑𝑒𝑙𝑛  

We may use the above relationships to define what a well-formed model with respect to its 

meta-model is. Hausmann et. al. define it as the following: 

∀ 𝐴, 𝐵 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐(𝐴, 𝐵)  ⇒ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝐴, 𝐵) 

when they only view static consistency (the structure of models) and not dynamic consistency 

(the behavior of models), and only look at binary consistency relations. If a consistency 

condition holds between two models A and B, then the models A and B also are 

overlapping (e.g. if a Model:Class <<instance of>> UML:Class then Model and UML 

overlap). So following the above cc is a subset of overlaps: 𝑐𝑐 ⊆ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠  

Hausmann et. al. also arrived at multiple interesting, and for this thesis relevant, questions 

when combining the concepts of consistency and transformation. 
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Figure 4-7 Scenarios with interrelation of consistency and transformations (fig. courtesy of [43]) 

1. Is the transformation consistency-preserving; does it alter a model (A) in such a 

way (A') that its consistency with another model (B) is preserved? E.g. if a UML 

Model A is consistent with the UML Meta-Model B, does a transformation t result 

in a model that is consistent with B? Formally we say that a transformation t is 

consistency-preserving iff 

∀ 𝐴, 𝐵 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐 𝐴, 𝐵 ⇒ 𝑐𝑐(𝑡 𝐴 , 𝐵) 

2. Is a transformation consistency-enforcing; does it alter a model (A) in such a way that 

(A') is consistent with a model (B) when the original (A) was not? A transformation 

not proven to be consistency-preserving can result in models that are inconsistent. 

Some inconsistent situations can be solved by providing transformations that re-

establish the consistency.  Formally we say that a transformation t is consistent-enforcing 

iff 

∀ 𝐴, 𝐵 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶  𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 𝐴, 𝐵  ∧ ⇒ ¬𝑐𝑐 𝐴, 𝐵   ⇒ 𝑐𝑐 𝑡 𝐴 , 𝐵 ) 

3. Is the transformation itself consistent, does it produce a target model that is 

consistent with the source model? This question is usually related to concerns 

regarding the preservation of semantic properties. Formally a transformation is a 

consistent transformation iff 

∀ 𝐴 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐 𝐴, 𝑡 𝐴   

E.g. is the code generated from the model (t(A)) consistent with the model (A)? 
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4. A combination of the above scenarios is a common case. The target model (B') 

must be consistent with its meta-model (B) and be semantically related to its source 

model (A'). For a transformation the consistency conditions would state the 

semantic relation, or that a target model is a true representation of the 

transformation defined given the source.  

∀ 𝐴, 𝐴′ , 𝐵, 𝐵′ ∈ 𝑀𝑜𝑑𝑒𝑙 ∶  𝑐𝑐𝐴 𝐴, 𝐴′  ∧  𝑡 𝐴′ = 𝐵′ ⇒ (𝑐𝑐𝑡 𝐴
′ , 𝐵′ ∧ 𝑐𝑐𝐵(𝐵, 𝐵′)) 

E.g. A  Model (A') is <<instance of>> the UML Meta-Model (A),  the 

transformation of the Model (A') results in the Program (B'). This should imply 

that the Model and Program are consistent (𝑐𝑐𝑡 𝐴
′ , 𝐵′ ) and that the Program (B') 

is <<instance of>> Java (B). 

We may use the above definitions to represent what we require in this thesis of the special 

"relaxed" DSL that we need to represent inconsistencies. Once we have a model that can 

represent inconsistencies we may match model transformation rules to the inconsistencies 

and attempt to solve them. Formally for an initial consistent model R instance of meta-

model DSLGD, a meta-model I which is consistent with DSLGD but with none of its 

constraints, and a model G instance of I we say that: 

𝑅, 𝐷𝑆𝐿𝐺𝐷 , 𝐼, 𝐺 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶  𝑐𝑐𝐷𝑆𝐿𝐺𝐷
  𝐷𝑆𝐿𝐺𝐷 , 𝑅  ∧  𝑡 𝑅 = 𝐺 ⇒ (𝑐𝑐𝐼(𝐼, 𝐺)) 

meaning that for a model R, that is consistent with its meta-model DSLGD, we need a 

transformation t on R resulting in the model G. G is consistent with the relaxed meta-

model of DSLGD called I. Importantly, since t is an inconsistency creating transformation 

w.r.t. R and its DSLGD, then G is not consistent with R as G is not consistent with DSLGD 

due to the introduction of an inconsistency by t.  

Below we show a subset of a "relaxed" meta-model I based on the meta-model GDSQ 

(Figure 2-6) so that we can represent the model in Figure 2-9 consistently. 
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Figure 4-8 Meta-model I : Relaxing the implies constraint in GDSQ 

Here we have relaxed one of the constraints on the syntax of GDSQ, giving us model I. 

We redefine the multiplicity of the relationship between the operator implies and the 

predicate inside to 0..*. This allows us to have 0 or 1 relationships between them, meaning 

that we now permit intersection without a CombinedFragment being inside another. In 

contrast GDSQ defines that the relationship must be 1; that if 2 CombinedFragments 

intersect one must be within another.  
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5 BEHAVIORAL FRAMEWORK 
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Figure 5-1 Framework Components 

The framework we have created consists of components defined in this thesis, of 

components that exist conceptually, and of components that we have imported. We will 

here give a brief description of each.  

1. Behavioral Definition Language (BDL): a declarative language for the 

definition of editing behavior in editors for graphical languages, in a manner that 

allows for the use of rule matching to determine when the behaviors are applicable 

on a DSL-inconsistent model to make it consistent. 

2. Behavioral Definition (BD): instances of BDL that define the editing behavior 

for editors of a given DSL.  

3. BD2UML Transformation: A conceptual component. BDL aligns with concepts 

from UML and is therefore transformable into UML.  

4. UML2JavaFrame: An imported component. We have used a prototype, created 

directly in UML, for our experiments into editing behavior. 
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5. JavaFrame Runtime [44]: JavaFrame supports the execution semantics of a 

Behavioral Definition.  

6. Pattern matcher: A conceptual component. We require the existence of a 

component able to match our patterns to a model. 

7. Advanced Repository: A conceptual component. We query the repository for 

consistency when given an edit on one or several elements, and expect it to return 

either an OK-type message or NOK-type message. If it responds with NOK we 

also require that it is capable of representing the inconsistency in a model. We also 

require that it is capable of producing snapshots of this model pre edit and post 

edit so that we may incorporate knowledge of previous model states when 

determining applicable editing behaviors. These models should be returned to the 

executing behavioral definition. 

8. Mediator Model Libraries: A simple model library of BDL-mediators that act as 

APIs between a Behavioral Definitions and GEF editor has been created as part of 

the prototype. 

5.1 JAVAFRAME 

 

Figure 5-2 JavaFrame Concepts 

We have for the prototype created UML models that are compatible with JavaFrame [44]. 

JavaFrame is a framework for implementing a subset of UML in Java. Consisting of a Java 

API (Application Programming Interface) for representing UML models in Java and 

programming guidelines. The API contains classes for UML model elements such as 

Statemachine, Composite and Port (in JavaFrame terminology called Mediator). A 

JavaFrame system is a Composite which contains ActiveObjects. ActiveObjects may 
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themselves either be Composites or Statemachines. ActiveObjects communicate by 

sending asynchronous messages through Mediators. 

5.2 OUR META-MODELING ARCHITECTURE 
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Figure 5-3 Meta-modeling architecture 
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5.2.1 CONCEPTS OF THE META-MODELING ARCHITECTURE 

DSL
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Graphical 

Definition
 

Figure 5-4 The DSL composite 

Throughout the figure we make several visual statements when structuring the architecture, 

one of which is the boxing together of mapped models. This allows us to view DSLs in our  

meta-modeling architecture not only as the DSL meta-models, but as the composition of both 

Meta-Model (MM) and Graphical Definition (GD); the first containing the definition of 

the abstract syntax, the second of the concrete graphical syntax. Mapping models needed 

for binding the two models together are in our view implicit in the boundary between 

models in the composite. We will denote this composite of models defining a DSL as just 

DSL for the remainder of this thesis.  

DSL Instance

Model Diagram

 

Figure 5-5 The DSL Instance composite 

Viewing the DSL as a composite also allows us to view the DSL Instance as a composite, 

or more precisely as a composite model consisting of Model, Diagram and some synchronizing 

model (instance of the implicit mapping-model, also implicit in the boundary between the 

two models), that are instances of their respective meta-models.  

MOF

MM GD

 

Figure 5-6 Simplified MOF composite 

In our meta-modeling figure we assume that every language consists of both meta-model 

and graphical definition, as every language is a DSL. MOF and GDL included.  

GDL

MM GD
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Figure 5-7 Simplified GDL composite 

GDL is a term we use for any language capable of defining a DSL's concrete graphical 

syntax, and we assume that it is possible to express such a language using MOF. Instances 

of GDL are DSL Graphical Definitions (GD).  

GDLMOF

 

Figure 5-8 Element for Meta-Model-Only 

When referring exclusively to a meta-model we may use the meta-model-only elements 

above; so that we may show how a DSL composite's GD is <<instance of>> GDL and 

GDL <<instance of >> MOF in a concise way.  

 

Figure 5-9 Ellipsis for "model instance of model" relations 

We use an Ellipsis to show the infinite MOF <<instance of>> MOF relationship, since 

MOF can be defined by MOF. This also gives us a theoretical infinite number of meta-

modeling levels.  

Another important visual statement in the figure is the upwards shifting of meta-modeling level 

when defining Behavioral Definitions for DSLs, and the << defines editor behavior of >> and 

<< works on repos. of >> relations that span hierarchies. More on this aspect in 5.2.3 

Domain-Specific Language / Behavioral Definition Hierarchy (DSL/BD).  

The hierarchies are named after the intended goal of the meta-modeling process.  

5.2.2 DOMAIN-SPECIFIC-LANGUAGE INSTANCE HIERARCHY (DSL 
INSTANCE) 

The first hierarchy we call the Domain-Specific-Language Instance Hierarchy. It represents 

the meta-modeling hierarchy involved when modeling Domain Specific Languages (DSLs) 
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capable of creating a DSL Instance models. The goal in this hierarchy is to create and 

represent domain specific information. From bottom to top we have: 

 At the M0 level we have the executing DSL Instances, typically runtime objects. 

 At the M1 level we have the models that are instances of the DSL itself, both the 

model (instance of the meta-model) and the diagram (instance of the graphical 

definition).  

 At the M2 level we have the meta-model of the DSL, represented as a model 

which is an instance of Meta-Object Facility (MOF) meta-model. And the 

Graphical Definition of the DSL, represented as a model which is an instance of 

the Graphical Definition Language (GDL) meta-model.  

 At the M3 level we have MOF and GDL. Both having internally within their 

composites meta-model and graphical definition.  

 At the M4 level and onwards repeated <<instance of >> relationships. We define 

GDL to be <<instance of>> the MOF meta-model. On this level we only 

represent meta-models and not graphical definitions.  

5.2.3 DOMAIN-SPECIFIC LANGUAGE / BEHAVIORAL DEFINITION 
HIERARCHY (DSL/BD) 

The second hierarchy we call the Domain-Specific-Language / Behavioral Definition 

Hierarchy, within which lies the focus of this thesis; the modeling of editor behavior for 

graphical DSLs. The goal in this hierarchy is to produce a Behavioral Definition for a DSL. 

 At the M0 level we have the executing Behavioral Definition for the DSL. It works 

on a repository which contains the instances of the DSL in question (model and 

diagram).  

 At the M1 level we have the Behavioral Definition composite for the DSL. It defines 

the editor behavior for an editor of the DSL meta-model and graphical definition. 

Since BDL is a graphical language we have both a model which is an instance of 

the BDL Meta-Model, and a diagram which is an instance of the BDL Graphical 

Definition. Element names in a BD should reflect the element names from the 

DSL to ease the process of reasoning about Editing Behavior. We therefore in the 

<<defines editor behavior of>> relationship say that the relationship also defines a 



51 

 

automatic initial generation of the Behavioral Definition using concepts and names 

from the DSL. 

 At the M2 level we have the Behavioral Definition Language composite which 

contains both Meta-Model and Graphical Definition.  

The rest of the hierarchy is straight forward and is the same as in the DSL Instance 

Hierarchy. 

5.2.4 BEHAVIORAL DEFINITION LANGUAGE / BEHAVIORAL DEFINITION 
HIERARCHY (BDL/BD) 

This hierarchy is included in the figure to show the benefits of the structuring that we have 

chosen. It shows how we may create a Behavioral Definition for the Behavioral Definition 

Language itself. Using BDL upon itself has not been attempted, but is deemed plausible.   

5.2.5 BDL'S RELATIONSHIP THE DSL 

DSL

Meta-model
Graphical 

Definition

Behavioral Definition

Model Diagram

 

Figure 5-10 BD Behavioral Definition relationship to DSL 

GEF and GMF employ a MVC-pattern, as mentioned. BD defines an integral part of what 

is usually defined in Controllers; editing behavior. A Behavioral Definition needs to 

employ and use knowledge about the DSL; what makes constraints in them invalid, and 

what makes them true, what possible behaviors can be attempted on which elements, and 

on which attributes. All this with the goal of making consistent models as a result of the 

behavior. This requires an intimate understanding of the DSL in question. We will in this 

thesis leverage a toolsmith's understanding of a DSL1, but leave open the possibility for 

                                                 

1 The writer of this thesis has extensive experience with Sequence Diagrams 
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automatically generating at least a part of the BD to help toolsmiths on their way. With this 

relationship we also show that we use the DSL's own graphical syntax within a Behavioral 

Definition (as patterns for transformation rules), although with certain modifications as we 

wish to be able to represent both invalid and valid graphical syntax. 

5.2.6 BDL AND THE RELATIONSHIP WITH THE DSL INSTANCE  

DSL Instance

Model Diagram

Executing Behavioral 

Definition

 

Figure 5-11 Executing Behavioral Definition relationship to DSL Instance 

A vital component is the conceptual repository defined previously in the thesis. We require 

a repository capable of creating intentionally inconsistent models w.r.t. to the DSL, meaning 

that it conforms to a constraint-wise relaxed meta-model of the DSL. This is an important 

requirement to be able to use graph transformations in the way we have envisioned; where 

we match the "inconsistent" model against patterns representing inconsistencies on the 

left-hand-sides of rules. We also require the repository to be able to create snapshots of the 

model. We use these snapshots to reason about how things were in editing behaviors action 

blocks using a History-concept; as we will see later (for editing behavior 1, EB1) we 

sometimes need to determine the difference between the same attribute in two different 

snapshots to be able to extrapolate attribute values in the actions blocks. Additionally we 

require the repository to be able to provide transformations that conform to a given edit. 

Transforming an edit (consisting of a reference to one or several model elements, and one 

or more attribute values) into a transformation. We imagine this may be accomplished by 

mapping Edits to transformations using model element types and attribute types.  
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5.3 BEHAVIORAL DEFINITION LANGUAGE 

 

Figure 5-12 Behavioral Definition Language Meta-Model 

The Behavioral Definition Language allows for the declarative description of the editing 

behavior for an editor of a graphical language. The metamodel focuses on defining the 

main structures needed for reasoning about editor behavior in an abstract way that is 

conceptually close to elements defined in the DSL using its own syntax in Patterns used to 

find applicable editing behaviors. 

5.4 MODELING A BEHAVIORAL DEFINITION 

We will here present an example Behavioral Definition, using BDL's (not formally defined 

in this thesis) graphical syntax, as we feel this is the best way to explain the concepts 

concisely.  
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Mapping Model

DSL-MM DSL-GD

Modeling a DSL including a 

Behavioral Definition

BD

 

Figure 5-13 Behavioral Definition creation after mapping 

The Behavioral Definition requires knowledge of which elements are mapped to each 

other to be able to give a coherent definition of how elements are to behave when 

interacted with by the user, and must therefore be created after the mapping has been 

accomplished. We will omit the tooling element from this point on as it, although an 

integral part of state-of-the-art graphical editor modeling, of little explanatory value once 

we have included a BehavioralDefinition.  

CombinedFragmentComposite

MoveCombinedFragmentService

CombinedFragment

DSL-MM DSL-GD

seq

BD

MoveCF

 

Figure 5-14 Example: mapping a BehavioralComposite to its meta-model and graphical definition element 

Given a mapping for a CombinedFragment element from the DSL (UML) we may create a 

CombinedFragmentComposite that references this mapping element for knowledge of the 

DSL elements. This allows us to access both meta-model and graphical definition. In 

particular we use a variant of the DSLs graphical definition to render patterns in a BD 

graphical syntax. We also define a service called MoveCombinedFragmentService, with an 
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entry trigger Edit called MoveCF. This service will be instantiated every time a MoveCF-type 

edit is received from the editor. 

SDBehavioralSystem

SequenceDiagramComposite

CombinedFragmentComposite

MoveCombinedFragmentService

MoveOtherCFEqually ScaleActiveCFToContainScaleActiveToNotIntersect

MoveCF

MoveElementService

MoveElement

cf2
cf1

cf2
cf1

cf2
cf1

cf2

cf1

cf2

cf1

cf2

cf1

DeleteElementMoveElementToContain

sd

sd

sd

sd

to_editor : GEFSolutionOut

from_editor : GEFEditIn

to_repository : ReposOut

from_repository : ReposIn MoveElement DeleteElement

MoveCF ScaleCF ScaleCF

 

Figure 5-15 Example: Simple Behavioral Definition for a Sequence Diagram Editor with all composite 

levels visible 

The above figure shows a BehavioralDefinition which includes the root-composite 

defining the mediators required to communicate with the context; here a GEF editor and 

an generic Repository. Internally in the services we show the different editing behaviors 

that services may provide, names of behaviors are shown above the patterns. The use of 
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"box-arrows" that "slide" into the next is not without consideration; although not explored 

in this thesis we may imagine the search for solutions to be possibly quite time consuming. 

For a toolsmith the ordering of editing behaviors from left to right can be used to 

prioritize the order in which the behaviors are pattern matched. Allowing the toolsmith to 

put the most likely behaviors first.  

In this view the behaviors use the DSLs graphical syntax (relaxed, so that we may show 

actual illegal syntax) to render the left-hand-side and right-hand-side patterns. The black 

arrows in between denote the direction of the transformation rule. At the bottom of every 

behavior we show what kind of Edit it produces and sends back to the Editor for user-

selection. This allows toolsmiths to quickly see whether or not they have defined services 

capable of supplying editing behaviors problems created by Edits stemming from other 

editing behaviors (which we have not in the figure above; we lack services capable of 

handling inconsistencies from ScaleCF and DeleteElement). 

 

Figure 5-16 Example: Edit hierarchy 

Another aspect of Figure 5-15 worth mentioning, but that is not explored in this thesis, are 

the Services in the DiagramComposite. Figure 5-16 shows that MoveCF is an extension of 

MoveElement, meaning that we may trigger both services when receiving a MoveCF. In 

this way we may have fundamental services in the DiagramComposite (e.g. MoveCF may 

also mean that it has moved outside of the Diagram; move it in again so it is contained). 

while having specialized services in the internal composites.   
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MoveOtherCF_Same

LHS in H(0)

RHS

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf2.p = diff(H(1).cf1.p, H(0).cf1.p))

Edit e = new MoveCF(H(0).cf2, cf2.p);

assertRHS(cf1 -> intersect(cf2) implies cf2  -> inside(cf2))

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

cf1 : 

CombinedFragment

<<Active>>

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

 

Figure 5-17 Example: Editing Behavior MoveOtherCF_Same 

When viewing just an editing behavior we expand its complexity. We denote negative 

application conditions with dotted lines in LHS. This editing behavior (EB1 later in the thesis) 

is capable of solving a problem with intersecting CombinedFragments, where one is not 

inside the other, by moving the other element (cf2) the same amount as (cf1) was moved by 

the Edit that initiated the service (MoveCF).  

The Action-block of the editing behavior, in between the patterns, contain assertions and 

expressions. Importantly the assertions of the LHS and RHS check all the predicates (the 

OCL statements defined on GDSQ) "just in case" the structural model is not consistent 

with the spatial attributes defined within the Symbols (e.g. the relationship intersect exists 

structurally, but evaluating a intersects predicate using the spatial data shows that they 

don't). LHS sides always refer to the last snapshot, while RHS always refer to the locally 

scoped snapshot. Modifications done on elements for calculation in the editing behavior 

are always done on a new snapshot scoped within the Editing Behavior. Asserting the 
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validity of the structure in RHS by checking attributes, rather than just structurally 

matching guarantees that the editing behavior has done what it has intended (e.g. cf2 might 

not have been inside cf1 before, then moving it the same amount would be an invalid 

behavior). This is in line with how one may define guards on patterns in ATL [36].   

The expression in between the assertions define the calculation needed to find out how far 

to move cf2. We use the snapshot in the history to deduce how far it has moved as a result 

of the edit that triggered this service. The second line in the expression defines the new 

MoveCF edit that will be sent back to the editor. It contains the last snapshot's 

CombinedFragment cf2, and a copy of an object of type Point which was created in the 

locally scoped snapshot during calculation in the expression. 

RHS patterns are actually not used to manipulate a model at all. In regular a graph 

transformation setting we would insert instances of the types in the RHS into the model. 

We however only use it to represent the consistency creating abilities of the Action, or more 

precisely the Edit that is returned to the Editor. It is the Editor that is responsible for 

executing the Edit, resulting in the DSL model changing. The RHS does however fill a vital 

purpose for the visualization of the editing behavior, especially when we render it using the 

DSLs graphical syntax as we have seen in Figure 5-15. 
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5.5 BDL DESCRIPTION 

5.5.1 BEHAVIORALMEDIATOR 

A BehavioralMediator defines the interaction boundary between an executing behavioral 

definition and its context. We may liken a mediator to  a application-programming-

interface (API). However as input to a mediator we require messages of type 

BehavioralMessage. E.g. a user interacts with an editor, the editor creates an 

Edit::BehavioralMessage, and puts this message on a queue in a mediator. The Executing 

BehavioralDefinition continuously checks and retrieves messages from the queue. 

Similarly we require of an Editor and a Repository that they also check the mediators for 

new messages and, importantly, that they do this in a separate execution thread so as not to 

lock the editor or repository during editing behavior searches.  

5.5.2 BEHAVIORALMESSAGE 

 

Figure 5-18 BehavioralMessages 

BehavioralMessage which contains the necessary information to route and/or broadcast 

messages between the context and a executing behavioral definition, and internally 

between components in an executing behavioral definition. The instances of 

BehaviorlMessage, not marked as <<metaclass>> defined in the diagram above must be 
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handled by a BehavoralDefinition editor and repository integrator in accordance with BD 

execution semantics. In particular Rollback is the only BDL pre-defined Edit, used to allow 

Editors to send Rollback Edits as solutions to inconsistencies stemming from a previous 

Edit (which resets the executing BD to a non-searching state). 

We refer to chapter 5.6 on Execution Semantics for details of the messages that an executing 

behavioral definition expects to receive and send with the context, and in which order. 

5.5.3 EDIT 

Edit is abstract and needs to be extended by a BD developer. Edits are BDL 

representations of attempted edits on the model via an Editor, versus an actually executed 

edit on the model. This distinction is important as BDL views Edits as "not yet executed", 

meaning that we liken them to queries stemming from the Editor about whether or not a 

particular Edit will result in a consistent model.  We refer to "Figure 5-16 Example: Edit 

hierarchy" for a concrete example of Edit extension. 

5.5.4 BEHAVIORALOBJECT 

The main abstraction in BDL. Allows us to extend the JavaFrame ActiveObject to be 

able to inherit a runtime. It provides attributes to name services and composites. It 

additionally contains an identifier required if we need to route messages between elements.  

5.5.5 BEHAVIORALCOMPOSITE 

A BehavioralComposite is a composite structure that encapsulates the editing behavior 

of a particular element in the DSL. It may contain multiple services, in addition to multiple 

children BehavioralComposites. The RootBehavioralComposite is a special type of 

BehavioralComposite. It contains the mediators(ports) needed to communicate with the 

context, such as an Editor and a Repository. 

A BehavioralComposite is a static structure, different from BehavioralServices that are 

dynamic. Composites act as wrappers for BehavioralServices and are responsible for creating 

instances of services when Edits are received.  
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5.5.6 BEHAVIORALSERVICES 

BDL employs service-orientation to group editing behaviors together so that we may have 

multiple services running at once, each capable of searching for editing behaviors in 

parallel. BehavioralServices are created when messages of type Edit are received. 

BehavioralComposites are responsible for actually creating instances of BehavioralServices. 

5.5.7 EDITINGBEHAVIOR, PATTERN AND ACTION 

An EditingBehavior is a named element and is a BDL equivalent of  a graph 

transformation rule. 

Pattern: It has  associations to both LHS and RHS patterns. We may generalize the 

pattern-element in the BDL meta-model to a pattern in some other meta-model (like ATL 

or QVT), so that we may in the future import the pattern matcher component in the 

framework. We can also allow for the BDL user definition of the super-type of Pattern if 

the user has a preference for a concrete pattern matching component. 

Action: Actions have assertions and expressions. The assertions help us determine the 

editing behaviors applicability to the current problem in addition the LHS pattern. 

Expressions contain any calculations or logical statements needed to create a new Edit and 

populate its attributes with values. 

5.6 BEHAVIORAL DEFINITION: EXECUTION SEMANTICS 

In this section we will discuss the execution semantics of a Behavioral Definition. We 

require several more entities that those that are defined in a Behavioral Definition to be 

able to search for editing behaviors. We refer to the sequence diagrams in this chapter for 

these entities. 

As we have mentioned earlier, there exists considerable efforts within the research 

community to formally define model and graph transformations. To create a formal search 

and pattern matching strategy is beyond the scope of this thesis. What we therefore 

propose is a simple rule-finding strategy that lacks formal backing, but that can find isolated 

solutions to problems when we do not consider its implications, but leave this up to the 

user for selection. We do this by assuming the existence of two major components: a 
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repository capable of producing inconsistent models, snapshots and converting Edits in to 

transformations, and a pattern matcher capable of matching our LHS patterns to the 

inconsistent models. The search strategy is dictated by the structure of BDL ( composites 

and services) and our choice of communication paradigm. The concrete pattern matching 

strategy we leave to an external entity as this also is beyond the scope of this thesis.  

5.6.1.1 Our solution finding strategy 

The strategy we have chosen is a simple one; any BehavioralService that can accept the Edit, 

defined via its entryTriggers, is initiated no matter where in the composite-hierarchy they 

exist. We do this by broadcasting the Edit throughout the BehavioralComposite hiearchy. This 

via a special Coordinator entity in every composite, capable of creating services and routing 

messages. Another execution specific entity, called Archive, receives the Edit and queries the 

Repository via a BD-defined BehavioralMediator for repository communication, for any 

constraint violations pertaining to the a current stack of Edits.  

The Archive maintains a stack of Edits so long as the Repository responds with CheckNOK 

on the stack. Once all Edits on the stack result in a CheckOK from the repository (meaning 

that the stack of Edits, evaluated atomically in the Repository, do not violate any constraints 

in the DSL). A CheckNOK consists of a set of models capable of representing the 

inconsistency in a consistent model w.r.t. to constraint-wise relaxed DSL model.  

If a CheckOK is received from the Repository we return the current stack of Edits to the 

Editor for it to execution. In the intermediate time between returning the stack to the 

Editor, and receiving a NotifyUpdate from the Repository, we lock the Archive. This to 

ensure that we may not try to handle any other Edits in the time being. 

If a CheckNOK is received from the Repository we send an EditNOK to the Editor containing 

the current stack of edits deemed illegal. We assume the editor itself realizes that a roll-back 

is one of the solutions and adds it to the solution view. The CheckNOK contains two model 

snapshots: one of the repository model with the Edit stack not applied (called H(1)), and 

one of the repository model with the stack applied (and inconsistent w.r.t. the DSL) called 

H(0). We define that snapshots are objects local to the Archive, and that any service may 

reference to these objects but not modify. When services modify snapshots they do so on 

ones that are locally scoped. 
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The CheckNOK is broadcasted to all services currently in session (those created by the 

previous Edit). The services search for EditingBehaviors matching the current 

inconsistencies in the H(0) models, use information from the snapshots to create new 

Edits, and return this Edit within a Solution message to the Editor. This searching process 

continues until the user has selected an Edit, upon which we terminate all current searches, 

and start the entire process all over. Adding the selected Edit to the stack, on top of the 

previous Edit. Unless the Edit is a Rollback::Edit. Then we remove all Edits from the stack 

and terminate all searches, finally responding to the Editor with EditOK and a empty stack. 

5.6.2 GENERIC SOLUTION FINDING INTERACTION 

Executing Behavioral 

Definition

BehavioralSystem : 

RootBehavioralComposite

ref BS_DecisionMaking

 

Figure 5-19 Executing Behavioral Definition ↔ BehavioralSystem 

The following sequence diagrams and statemachine diagram depict how a generic 

Behavioral Definition would flow during execution. We view the Executing Behavioral 

Definition element in our meta-modeling architecture figure (Figure 5-3) as equal to the 

Lifeline called BehavioralSystem in the context sequence diagram. 
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Searching

Editor

BehavioralSystem : 

RootBehavioralComposite

ref BS_Searching

e1:Edit

CheckNOK(snapshots)
EditNOK(stack)

User

ref
UserPerformsEdit

loop [DSL constraints violated]

Repository

Check(stack)

loop(i = 0; i++)

Solution(i:Edit)
DisplaySolution(i:Edit)

SelectSolution(ex:Edit)

ex

Check(stack)

CheckOK
EditOK(stack)

DisplayResult

CommitChanges

ej:Edit := e1;

stack.add(e1);

ej:Edit := ex;

stack.add(ej);

break

NotifyUpdated

DisplaySolutionView

opt

 

Figure 5-20 Searching : Context 

This interaction specifies the generic interactions between a User, Editor, Executing 

Behavioral Definition, and Repository. We use the abstract message Edit in place of BD-

defined  Edits. 
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BS_Searching

loop

Archive : 

JavaFrame::ActiveObject

child : 

BehavioralComposite

ref CBS_Searching

Coordinator : 

JavaFrame::ActiveObject

e1:Edit

ej

stack.add(ej); 

Check(stack)

CheckNOK(snapshots)

p : Problem(stack, CheckNOK)

EditProblem(stack)

<<broadcast>> CheckNOK

loop(i = 0; i++)

Solution(i:Edit)

DisplaySolution(i:Edit)

break

ex:Edit
<<broadcast>> terminate(ej)

ej

stack.add(ej); 

Check(stack)

CheckOK

EditOK(stack)

EditOK(stack) stack.clear();

setState(LOCKED);

<<broadcast>> ej

<<broadcast>> ej

ej:Edit = e1; 

ej:Edit = ex; 

NotifyUpdated

stack.clear();

setState(IDLE);

opt

 

Figure 5-21 Searching: RootBehavioralComposite 

This sequence diagram depicts the internal interactions of a generic 

RootBehavioralComposite. Coordinator and Archive are of type JavaFrame::ActiveObject, so 

that we may define them using UML in a future prototype. The special case where the 

solution selected by a user is a Rollback (in place of ex : Edit) would result in the 

Coordinator not broadcasting it, while the Archive would clear its stack, add the Rollback 
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and reply with an EditOK(stack). Clearing the stack afterwards. Internally in the system we 

only use one internally defined BehavioralMessage; Problem. Problems  acts as wrapper 

messages to be able to send both the current stack and the snapshots to the Coordinator. 

The stack is used to tell the Edit exactly what stack has not been permitted, while the 

CheckNOK is extracted and broadcasted to all children of this composite. 

CBS_Searching

loop

Coordinator : 

JavaFrame::ActiveObject

ej

service : BehavioralService

ref SCBS_Searching

serviceWithEntryTrigger(ej)

child : 

BehavioralComposite

ref CBS_Searching

<<broadcast>> ej

CheckNOK

<<broadcast>> CheckNOK

<<broadcast>> CheckNOK

<<broadcast>> ej

loop(i = 0; i++)

Solution(i:Edit)alt

Solution(i:Edit)

break

<<broadcast>> terminate(ej)

Terminate

<<broadcast>> terminate(ej)

<<broadcast>> ej

Solution(i:Edit)

opt

 

Figure 5-22 Decision Making with Behavioral Definitions : BehavioralComposite 

This sequence diagram depicts the internal workings of a generic BehavioralComposite. At 

some first level in the hierarchy we would have a composite for a diagram element, along 
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with services for common Edits. The Lifeline child decomposes into CBS_Searcing to show 

that we repeat this interaction throughout the composite hierarchy.   

BehavioralService

Idle

Problem / PatternMatcher.searchForMatch(editingbehaviors, snapshot.last) 

Waiting

EditingBehavior

Terminate, SearchExhausted

[EditingBehavior.checkActionAssertions()]

/ send Solution to coordinatorService

! [EditingBehavior.checkActionAssertions()]

 

Figure 5-23 Internal workings of a BehavioralService 

The above statemachine shows the internal workings of a generic BehavioralService, and 

how it finds solutions to problems with the Edits. First the service is initialized as the result 

of an Edit. Then it waits for the CheckNOK-message, containing the model snapshots 

needed to match editing behaviors against. It then takes its internally defined list of 

EditingBehavior instances and gives the list, along with the last snapshot to some matcher 

capable of matching a EditingBehavior instance's left-hand-side Pattern with the last 

(inconsistency representing) snapshot.  We assume that this matcher returns a single match 

at a time by creating and sending EditingBehavior message. We do not depict the Pattern 

Matcher as its own Lifeline is the previous sequence diagrams, as we imagine the pattern 

matcher may either by a separate entity, or an internal entity in an executing behavioral 

definition. 

We then run the assertions defined on the Action (similar to an ATL Action block [36]). If 

the assertions pass we extract the Edit instance created by the Action, and insert it into a 

Solution-message and send it to the Coordinator. If the user selects this Edit the Editor 

merely sends the back Edit to the BehavioralSystem in the same manner as when sending a 
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regular user-created Edit. And we may repeat the entire process once again, in case new 

constraint violations have been introduced. 

5.7 INTEGRATING A BD INTO AN EDITOR AND REPOSITORY 

Once a BehavioralDefinition for a DSL has been created we can integrate it into an 

existing Editor. We imagine this may be done by importing BD interaction boundary elements 

into a model similar to a GMF Generator Model  capable of using BD-elements, and 

converting user-initiated edits on the diagram into BDL Edit-type. Interaction boundary 

elements between Editor and a executing BD consist of: instances of BehavioralMediators. 

Instances of elements extending Edit, Solution, EditOK and EditNOK. Interaction boundary 

elements between a Repository and a executing BD consist of: CheckOK, CheckNOK, 

Check, and NotifyUpdated. 
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6 EXAMPLE: PROBLEM 1 

In this chapter we will formally analyze the possible editing behaviors that an editor may 

initiate in reaction to a given Edit (E1) that would result in an inconsistent DSL Instance 

(model R) if given to the repository and being allowed to commit; we call this problem 

Problem 1. We will see how we may view Edits and Editing Behaviors as transformation 

rules, and how we may use a Behavioral Definition to handle edits (both user-initiated and 

edits stemming from the Behavioral Definition itself) that result in inconsistencies, by 

searching for transformation rules (solutions) that match inconsistency patterns in snapshots 

of the model capable of representing the inconsistencies. We will show how we then may 

return these solutions back to the editor for presentation to the user. One a solution 

selected, we treat it in the same way as the user-initiated edit E1. By delegating the 

responsibility of transformation rule selection to the user, we remove several complexities 

involving deduction of user intent, and the possibility of cascading and never-ending 

transformation rule cycles due to rules competing and/or creating more inconsistencies. In 

the following we will employ a variant of the UML specification for Interactions [4], 

simplified for the sake of readability. We call it Simple-UML. 

6.1 FROM CONSISTENT TO INCONSISTENT 

seq

seq
lf1 : Lifeline

lf2 : Lifeline lf3 : Lifeline
cf1 : CombinedFragment

cf2 : CombinedFragment

 

Figure 6-1 Graphical representation of Model R 



70 

 

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

inside

 

Figure 6-2 Model R conforming to GDSQ 

In this chapter we will make heavy use of "Figure 2-11 Graphical representation of Model 

R" as the initial consistent diagram and its model representation (R) for our analysis of 

Problem 1. Repeated again here for readability. 

 

SequenceDiagram

lls

<<predicate>>

disjoint
Lifeline

1

1

*

CombinedFragment

<<predicate>>

intersect

0..*

0..*

cfs
*

<<operator>>

implies

1

<<predicate>>

inside

1

1

1

Simple-UML MM

GDSQ

CombinedFragment

Lifeline

 

*

coveredBy

1

*

fragment

 

Figure 6-3 Abstract and Concrete Syntax Definitions, mapped 
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Using the format of a mapping-element given in Figure 3-7, but excluding the tooling 

element we define the in Figure 6-3 a map of meta-model and graphical definition for 

Simple-UML; the rules and constraints in the meta-model are given by a MOF-type 

diagram, while the constraints in the graphical definition is given as a sub-set of GDSQ, 

excluding the frame/interaction. We will still call the model GDSQ in the following. The 

constraints placed on the graphical syntax are the same those given in 2.2.1.3, only 

excluding the constraint dealing with containment of Lifelines within the Interaction. Also 

for the sake of readability we will only focus on the elements which are instances of 

GDSQ-element, and not include elements from the meta-model in our problem analysis. 

CF2

CF1

 

Figure 6-4 Problem 1: State during user-interaction which is illegal to commit to model: intersecting 

CombinedFragments. 

 

From the consistent diagram the user attempts to accomplish the situation given in Figure 

6-4. The user uses a movement-tool to move the outer CombinedFragment (cf1) translated 

by the Editor in an Edit (E1) which contains the element under manipulation and the 

values of the desired attribute modifications.  

It now intersects a new Lifeline, does not intersect a previously covered Lifeline, and is 

intersecting with the previous inner CombinedFragment (CF2) which is no longer inside 

CF1. For the Editor E1 poses multiple questions that needs answering.  

1. Who do we need to ask to find out if the Edit is consistency preserving (meaning 

that it results in a consistent model)? 

2. What do we do if we find that the state is illegal (meaning an execution of the Edit 

would result in an inconsistent model? 
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To answer the first we need to examine the constraints and rules defined in the syntaxes of 

the DSL (abstract and concrete, meta-model and graphical definition). There exists no 

constraint violation from this new state in the meta-model, but there does exist a constraint 

violation in the graphical definition. This constraint states that the graphical elements of 

CombinedFragments are not allowed to intersect in a valid Diagram if a 

CombinedFragment graphical element is not inside another.  The violation of the 

constraint in the graphical definition gives us the following inconsistent model G (which is 

the same as model G in 2.2.1.3): 

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

 

Figure 6-5 Inconsistent model G: dangling implies with missing inside relation 

The inconsistency is in the model (Figure 6-5) the lack of a relationship between the implies-

node (imp1) to the relationship inside (since GDSQ defines a 1-multiplicity on the 

relationship between an Implies instance and an inside-instance). We may also deduce this 

from evaluating the OCL constraints using the values in E1.   
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6.1.1 PROBLEM SOLVING WITH EDITING BEHAVIORS 

Spatial 

Spatial

Structural

Destructive

Non- 

destructive

 

Figure 6-6 Solution space when reasoning about graphical definitions that define spatial attributes 

There are several possible solutions to the situation given in Figure 6-4. We call solutions 

instances of Editing Behaviors; meaning that we may find an Editing Behavior capable of 

responding to the problem of inconsistency, but are in fact not solutions until they have 

been actually executed upon the model, resulting in an consistent model. We have an 

infinite number of possible solutions as we work with a model for graphical representation 

that includes the concept of 2-dimensional spaces. Our conceptual language GDL uses a 

combination of E-GDL and GIS extended OCL (both languages that use spatial 

attributes). A solution in this domain needs to include the positions and dimensions of the 

graphical elements. Since any x and y-coordinate in theory may be between 0 and 

approaching ∞ the solution-space itself approaches ∞ in size. The solutions below 

therefore only represent a small sub-set of the spatial solution space.  However, if we 

examine the solution space using exclusively the structure of the models like that given in 

GDSQ we find that we may drastically reduce it. We may also further reduce the solution-

space by defining a requirement on the possible Editing Behaviors: 

1. Requirement: Editing Behaviors should not be destructive for modifications or 

creations. They should not delete any symbols from either of the models unless the 

Edit in question is of a deletion-type. 

EX(a)

 

Figure 6-7 An user-initiated Edit on a symbol a 
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The above graphical notation denotes a user-initiated edit on a symbol a. In our case an 

edit E1 on a symbol cf1, depicted  below. We may write this formally using a graph 

transformation notation as:  

𝑅 {𝑃𝑟𝑒}  
𝐸 𝑎 
    {𝑃𝑜𝑠𝑡} 𝐺  

where R is the initial consistent diagram, the function E(a) is as defined above, and G is 

the resulting diagram, either consistent or inconsistent depending on E(a). We also show 

pre- and post-conditions for the edit E(a) with  {𝑃𝑟𝑒}  and {Post}, respectively. This 

allows us to show what must be true in the diagram before the edit, and what is true in the 

diagram after the edit. We state that these truth of these conditions are representations of 

the relationships in the model, and we define them using the GIS-extended OCL syntax. 

When we express that relationships do not exist in the model in pre and post conditions we 

will use the ! character as a logical not. When we are expressing bi-directional relationships 

in the notation we only define one uni-directional relationship for conciseness.  

The exact contents of an edit E can be either; a structural modification (e.g. a deletion or 

creation of an symbol) or an attribute modification (e.g. modifying the spatial position of 

an symbol) or both.  

CF2

CF1

CF2

CF1

E1(cf1)

 

Figure 6-8 Graphical representation of E1 

For the edit E1 was may then say that:  

𝑅  𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1  

𝐸1 𝑐𝑓1 
       

 𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓2   𝐺
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Here we exclude some relationships and refer to the models R and G for all the 

relationships. The interesting one, however, is the disappearance of the relationship with 

name inside (the two negations of the expression that use the predicate inside in the post-

conditions of E1) creating the inconsistent model G with respect to its meta-model GDSQ.  

By  reducing the solution space and employing our knowledge about the DSL (GDSQ) and 

the information in the current diagram we find the following solutions:  

1. Move CF2 the same amount as CF1, moving CF2 inside CF1. 

2. Positive scale CF1 along its y-axis so that CF2 is inside. 

3. Negative scale CF1 along its y-axis so that CF1 no longer intersects with CF2. 

4. Roll-back to G, undo E1. 

EBX(b)

 

Figure 6-9 An editor-initiated edit performed on a symbol b 

This graphical notation denotes an edit resulting from an EditingBehavior on a symbol b. 

We treat in the same manner as a user-initiated edit and may therefore use the same 

graphical and textual notation to show how it would affect the inconsistent model G. We 

define chain of edits as: 

𝑅  𝑃𝑟𝑒 
𝐸 𝑎 
     𝑃𝑜𝑠𝑡 𝐺  𝑃𝑟𝑒 

𝐸𝐵 𝑏 
     𝑃𝑜𝑠𝑡 𝐺′ 

where G' is the resulting model of the editing behavior EB(b). This model may be either 

consistent or inconsistent as we do not attempt to reason about all the possible implications of 

an editing behavior, only its defined effects in its post-condition.  

6.1.1.1 Defining the Editing Behaviors 

We excluded pre and post-conditions of E1 to shorten the statements and refer to them 

now as: p1 and p2. We will now define the 4 solutions in the previous chapter, named 

respectively EB1 through 4. 

 



76 

 

- EB1: 

EB1(cf2)CF2

CF1

CF2

CF1

CF2

CF1

E1(cf1)

 

Figure 6-10 EB1 : graphical representaiton 

𝑅 𝑝1
𝐸1(𝐶𝐹1)
       𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵1  𝐶𝐹2 
       {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑐𝑓2 , 𝑐𝑓2

→ 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1 → 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}  𝐺′ 

- EB2: 

EB2 CF2

alt

CF2

CF1

E1(cf1) CF2

CF1 CF1

 

Figure 6-11 EB2 : graphical representation 

𝑅 𝑝1
𝐸1(𝐶𝐹1)
       𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵2  𝐶𝐹1 
       {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑐𝑓2 , 𝑐𝑓2

→ 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1 → 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}  𝐺′ 

- EB3: 

EB3 CF2

alt

CF2

CF1

E1(cf1) CF2

CF1 CF1

 

Figure 6-12 EB3: graphical representation 
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In this solution we do not need to represent the no longer existing relationships of type 

inside as the entire implication is removed by removing the intersects relationship. 

𝑅 𝑝1
𝐸1(𝐶𝐹1)
       𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵3  𝐶𝐹1 
       {! 𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑐𝑓2 }  𝐺′ 

- EB4: 

EB4 CF2

CF1

CF2

CF1

E1(cf1) CF2

CF1

 

Figure 6-13 EB4: graphical representation 

In this solution we roll-back to the initial model R. EB4 therefore restores E1's pre-

conditions p1. 

𝑅 𝑝1
𝐸1(𝐶𝐹1)
       𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵4  𝐶𝐹1 
       {𝑝1}  𝐺′ 

Of the behaviors above it is reasonable to assume that EB1 is the most likely to be 

implemented by toolsmiths; it is common that symbols spatially inside another are moved 

with the same ∆x and ∆y as its containing symbol, as is the case in [5, 26]. However we 

may also envision a situation in which this should not be implemented; if the symbol was 

not inside another symbol in the initial model R, but are intersecting in the model G. Then 

moving CF2 with the same deltas as CF1 would not be very reasonable. 

We may also imagine a situation where we do not want to move CF2; for instance by a 

locked attribute or if the user anticipates that moving it will result in further inconsistencies 

in the model. Then the behavior to execute would be EB2 or EB3, where we scale or 

shrink the Active-element and don't alter CF2. We may say that EB3 is perhaps the least 

plausible intention of the user if we employ our domain knowledge of UML and sequence 

diagrams, but nonetheless results in a consistent diagram state, as does the revert behavior 

EB4. 
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6.1.1.2 Possible Destructive Behaviors 

EB5CF2

CF1

E1(cf1)

CF1

CF2

CF1

 

Figure 6-14 EB5 : Destructive behavior 

EB6CF2

CF1

E1(cf1) CF2CF2

CF1

 

Figure 6-15 EB6 : Destructive behavior 

The above 2 behaviors EB5 and EB6 we deem, although possible solutions, too 

destructive for implementation as they both delete one of the elements in response to an 

edit that was not a deletion-type edit.  

6.1.2 EDITING BEHAVIORS AS MODEL TRANSFORMATIONS 

The previous chapter helped us visualize and formalize the process of finding editing 

behaviors for the given problem 1 resulting from the edit E1, and that edits and editing 

behaviors resemble graph-transformation rules; We have left-hand-sides (LHS) of graphs 

and pre-conditions (graph-patterns), right-hand-sides (RHS) of graphs and post-conditions 

(graph patterns), with the EB's and E's between as graph transformations. We will now 

show how we can use concepts from graph and model transformations to find solutions to 

inconsistent models resulting from edits.  

6.1.2.1 How Behavioral Definitions manage Inconistencies 

A BD's response to inconsistencies is non-monolithic and step-wise, allowing the user to 

determine the most appropriate transformation at every step. BDL does not differentiate 

between an inconsistency stemming from an Edit performed by a user, or an inconsistency 
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created by a matched transformation rule that a BD has presented to the editor as a 

solution. This allows us to view Edits and Edits from Editing Behaviors in the same way 

and with the same formalism, as we have done in 6.1.1.1. Both Edits and Editing 

Behaviors may create inconsistent models, in which case we again try to match the new 

inconsistencies with transformation rules.  

DSL Instance

Model Diagram

Executing Behavioral 

Definition

GRR t(R)

 

Figure 6-16 Building G 

The Executing Behavioral Definition queries the repository of the DSL instance which 

finds that no constraints are currently violated. Here a transformation t is an initial 

transformation rule that transforms the model R (Figure 2-10 Model R conforming to 

GDSQ) into some model GR that is an instance of a meta-model we call I, capable of 

representing inconsistencies. As t is a non-modifying transformation (just transforming 

from a model conforming to GDSQ to a model conforming to I), and I is the same model 

as GDSQ with relaxed constraints then R and GR are consistent. Formally: 

 𝑅, 𝐺𝐷𝑆𝑄, 𝐼, 𝐺𝑅  ∈ 𝑀𝑜𝑑𝑒𝑙 ∶  𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅  ∧  𝑡 𝑅 = 𝐺𝑅 

⇒ (𝑐𝑐𝐼 𝐼, 𝐺𝑅  ∧ 𝑐𝑐𝑡 𝑅, 𝐺𝑅  ∧  𝑐𝑐(𝐺𝑅 , 𝐺𝐷𝑆𝑄) 

where t is a non-structurally and attribute modifying transformation. We may say that the 

transformation is endogeneous. 

R = 𝐺𝑅  

Next the Executing Behavioral Definition receives an Edit E1. Any service capable of 

handling the Edit is initiated. The Executing Behavioral Definition queries the repository 

asking for a model which is a transformation of R equal to what is defined in E1. We call 

the transformation tE1. It structurally transforms and modifies the relevant attributes 

according to the edit E1 and produces the model G. 
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DSL Instance

Model Diagram E1

Executing Behavioral 

Definition

GR tE1(R)

 

Figure 6-17 Building G 

Here G does not conform to GDSQ, as it is a model that breaks a consistency in GDSQ. 

It does however conform to the relaxed meta-model I. Formally: 

 𝑅, 𝐺𝐷𝑆𝑄, 𝐼, 𝐺 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶  𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅  ∧  𝑡𝐸1 𝑅 = 𝐺 

⇒ (𝑐𝑐𝐼 𝐼, 𝐺 ∧  ¬ccGDSQ  GDSQ, G ) 

The following figure depicts the model G (same as in Figure 2-12) represented again here 

for readability. 

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

 

Figure 6-18 The resulting G model from the transformation tE1(R). 

We see here the necessity of transforming into a separate model G that conforms to a 

special meta-model I capable of representing inconsistencies in GDSQ. GDSQ denies the 

existence of the above model; 2 CombinedFragments may not intersect without one being 

inside the other.  

Our task (with a Behavioral Definition) is therefore to find a set of transformations capable 

of creating a model R' which is consistent with GDSQ while at the same time trying to 
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maintain the attribute modifications (for E1) and structural modifications (for some other 

Edit, e.g. a deletion) of the transformation tE1 (edit E1). Formally we may say: 

𝐺𝐷𝑆𝑄, 𝑅, 𝑅′ , 𝐺, 𝐺 ′ , 𝐼 ∈ 𝑀𝑜𝑑𝑒𝑙, ∀ 𝑡𝐸 ∈ 𝐸𝑑𝑖𝑡𝑜𝑟, ∃ {𝑡𝐸𝐵1, … , 𝑡𝐸𝐵𝑛−1 }

∈ 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

∶  𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅 ∧ 𝑐𝐼 𝐼, 𝐺  ∧  𝑡𝐸 𝑅 = 𝐺 ∧ 𝑡𝐸𝐵1 𝐺 

= 𝐺1 ∧ …  ∧ 𝑡𝐸𝐵𝑛−1(𝐺𝑛−1 = 𝐺𝑛 = 𝑅′ ⇒ 𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅′  

Meaning that for any edit E in the Editor there exists a ordered set consisting of editing 

behavior transformations {𝑡𝐸𝐵1, … , 𝑡𝐸𝐵𝑛−1 } existing in a Behavioral Definition, capable 

of rendering the target-model 𝐺𝑛  of the transformation 𝑡𝐸𝐵𝑛−1  a consistent model w.r.t. 

GDSQ. This definition is however somewhat problematic.  

6.1.2.2 Cascading transformation rules and coordination 

We cannot guarantee that we will not end up with an infinite long set of transformations 

based on editing behaviors. Never capable of producing a model that conforms to GDSQ. 

If we have multiple conditions we may also have rules that, while fulfilling one or more 

conditions, make others inconsistent. Thus if we attempt to automatically infer what 

transformations to execute we may find ourselves in non-terminating transformation 

process. One possible solution is to have more generalized rules that solves multiple 

inconsistencies at once, ideally solving any problems in the model by a single 

transformation. Although it might be theoretically possible to great such a "super"-

consistency-creating-transformation, it would certainly be a cumbersome process and 

would affect both modularization and changeability [43]. We however do not need to take 

this into consideration as we never try to infer the "correct" behavior to initiate, but merely 

give the user a list of possible solutions that might result in consistency, but might also 

result in inconsistencies. This is similar to how syntax direct textual editors work; they may 

give suggestions of how to fix a syntactic error in the code, but never guarantee that any 

suggestion will not introduce more errors.  
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6.1.3 STRUCTURAL PATTERN MATCHING AGAINST RULES 

A common matching strategy [35] for rule application in graph transformations is looking 

for a match 𝑚 ∶ 𝐿𝐻𝑆 → 𝐺 of the left-hand side into a host graph. A match is then a total 

mapping, i.e. were each object of LHS is embedded in the graph G. If a variable occurs 

several times in the rule's LHS they must be matched with the same value. There may be 

multiple matches of the rule's LHS into the host graph, or there may be no matches at all.  

In the last case the rule is not applicable. A rule is applicable if all its negative application 

conditions (NAC) and other positive application conditions (PAC) are met [32].  

The second step entails taking the matching pattern found for the rule's LHS and take it 

out of the host graph and replace it with the appropriate matching pattern for the rule's 

RHS. Since the match is a total mapping, any object o of the rule's LHS has a "proper 

image" object m(0) in G. If o has an image r(0) in the rule's RHS, its corresponding 

object m(0) in the graph G is persevered during the transformation. Otherwise it is removed. 

Objects in RHS that are not in the image of an object in LHS are created during the 

transformation. Objects of the graph G that are not covered by the match are not affected 

by the rule application at all.  

The second step is in our approach irrelevant. We do not use the RHS for any actual 

transformations, and only for rule visualization. We will explain this in more detail in the 

next sub-chapter.  

We will denote NACs with dotted lines, meaning that the element does not exists. We also 

use dotted lines to show the removal of elements by the rule in RHS.  

6.1.4 "HEDGING OUR BETS": STEREOTYPES IN PATTERNS & ASSERTING 
ATTRIBUTE MODIFICATIONS IN ACTIONS  

To find a transformation that results in a model with only valid relationships based solely 

on structural pattern matching and running a structural transformation is one thing, 

defining exactly what the transformation does to the attributes within the model is another ; 

the relationships in a graphical definition instance are not possible to create at will just by 

structural transformation, but depend on (as in our Problem1) the spatial data in our 

Symbols. 
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Our strategy for combating this complexity is relatively straightforward: any transformation 

rule also has some action that modifies the relevant spatial attributes where the symbols on 

which to modify are defined by matching the LHS pattern to the model. We ensure that 

the modifications fit with the transformation with respect to the RHS by asserting the truth 

of the predicates of the structural relationships.  

Another important aspect is that we require of all transformations that they mark Symbols 

that have been modified with the stereotype <<Active>>. This so that we can direct our 

Editing Behaviors onto non-active elements so as to differentiate between behaviors that 

solve inconsistencies resulting from edits by altering the edited elements, and solutions that 

solve inconsistencies by altering non-edited elements. This allows us to define rules that can 

only be pattern matched against edited elements instead of pattern matching against the 

entire model which can be a time-consuming process. We ignore the possibility in this 

thesis of inconsistencies being created by between two non-active elements while the active 

element and all its relations are consistent. The default editing behavior is a roll-back that 

would fix such a inconsistency.  

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

 

Figure 6-19 LHS : EB1-4 

For our Editing Behaviors 1-4 we have LHS pattern Figure 6-19. Here the elements do not 

refer to actual symbols in the model, but are named and typed elements that we require 

instances of to exist in the model in this exact pattern. In the above figure we see that it is 

impossible to infer the direction of the uni-directional inside relationship (that was or never 

existed). This is why we will use assertions in combination with model snapshots later.  

We have 6 possible RHS patterns that structurally restore consistency to a target-model 

with respect to the meta-model GDSQ given the source-model G.  
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cf1 : 

CombinedFragment

<<Active>>

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

 

Figure 6-20 RHS 1: Connect implies to a inside relationship from cf2 to cf1 by manipulating cf2 

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

 

Figure 6-21 RHS 2: Connect implies to a inside relationship from cf2 to cf1 by manipulating cf1 

cf1 : 

CombinedFragment

<<Active>>

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

 

Figure 6-22 RHS 3 : Connect implies to a inside relationship from cf1 to cf2 by manipulating cf2 

cf1 : 

CombinedFragment

<<Active>>

cf2 : 

CombinedFragment

intersect

imp1 : implies

 

Figure 6-23 RHS 5 : Delete the intersect relationship (and therefore implies) between cf1 and cf2 by 

manipulating cf1 
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<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

 

Figure 6-24 RHS 6 : Delete the intersect relationship (and therefore implies) between cf1 and cf2 by 

manipulation cf1 

Of the 6 possible RHS patterns we only will define Editing Behaviors for those that render 

a  non-active (not stereotyped with <<Active>>) CombinedFragments on the LHS, inside 

an LHS active CombinedFragment; i.e. putting the non-active element inside the active. 

6.1.5 DEFINING EDITING BEHAVIORS WITH TRANSFORMATION RULES 
AND ACTIONS 

The Editing Behavior EB1 seeks to restore the inside relationship by manipulation CF2. 

This transformation has as NAC that the relationship inside does not exist in the model 

(dotted-line). It has as PAC (positive applications conditions) that 2 CombinedFragments exist in 

the model and are connected by intersect with a dangling-implication. 

EB1

Action:

assertLHS

| modify attributes |

assertRHS

LHS RHS

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

cf1 : 

CombinedFragment

<<Active>>

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

 

Figure 6-25 EB1 as a model transformation with Action on attributes 

We further restrict the applicability of EB1 by defining that it may only work on the 

element that is not Active (making it Active after the transformation). This ensures that the 

Action will not attempt to modify CF1, which is not the intention of EB1. This also in part 

solves the problem of irreflexive versus reflexive relationships, and determining what element is 
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supposed to be inside  another. The Active stereotype allows us to express that it is the 

target-model Active element that we intend to put inside another, and not the source. If this 

is the actually intention of the user's initial edit E1 is of little importance since we do not 

automatically apply the action. 

Another benefit of this structure is that we answer a question posed in 6.1.1.1: what if CF2 

was not inside CF1 in the model pre edit E1? If CF2 was not a child of CF1 in the initial 

consistent diagram we would not be able to deduce this from the relationships in the 

current model using patterns. We can, however, deduce this via assertions in the Action by 

referencing snapshots of the previous model (R). If the Action attempts to move CF2 

with the same ∆x,y as CF1, and CF2 was not inside previously and assertion of the RHS 

relationships using actual attributes and predicates and not only structural relationships will 

fail, letting us rule out EB1 as a possible solution. 

Action:

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf2.p = diff(H(1).cf1.p, H(0).cf1.p))

Edit e = new MoveCF(H(0).cf2, cf2.p);

assertRHS(cf1 -> intersect(cf2) implies cf2  -> inside(cf2))

 

Figure 6-26 EB1 Action 

The set of snapshots is H (H for history). The most current snapshot is always referred to 

as H(0). H(1) refers to the snapshot before H(0). In our case the model pre E1 is H(1) 

relative to EB1 during evaluation. The model post E1 is H(0) relative to EB1 during 

evaluation. Any attribute modifications always take place on a new snapshot local to the 

EditingBehavior, not needing a explicit reference to in the action. To shorten the 

statements we say that: a LHS assertion always refers to the H(0) snapshot, while a RHS 

always refers to the new local snapshot.We use a hybrid of GIS-extended OCL and Java 

notation to define the assertions and actions. The set of snapshots in H are also useful in 

that we may deduce the ∆x,y by merely running a diff operation that returns a new point 

based on the two distinct positions of CF1 in H(0) and H(1). We use a Point p instead of 

our Symbol attributes lx and ly for conciseness.  
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CF2

CF1 CF1

CF2

CF1

CF2

EB1

Action:

assertLHS

| modify attributes |

assertRHS

 

Figure 6-27 Assertion is ok for LHS, fails for RHS 

The figure above shows the a valid LHS, but where CF2 was pre edit not inside CF1. We 

may say that CF1 has in fact move onto CF2. Since EB1 LHS matches the current model 

(intersecting CombinedFragments) we may try to use EB1 to move CF2 the same amount. 

This does not result in the attributes being modified in such a way so that the assertion of 

RHS passes (intersecting and an active CF2 inside CF1) and EB1 is marked as not 

applicable. We leave it up to the reader to imagine if EB2 is applicable in this situation. 
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6.1.6 DEFINING THE MOVECOMBINEDFRAGMENTSERVICE 

First we define a MoveCombinedFragmentService which will contain the solutions. We also 

define what Edit(s) will trigger it and make it participate in any search for solutions to 

problems.  

MoveCombinedFragmentService : 

BehavioralService
MoveCF

 

Figure 6-28 Basic MoveCombinedFragmentService 

Then we define the solutions to possible problems that a MoveCF edit may create. 

Internally MoveOtherCF_Same also refers to a concrete action language for creating a 

message (Edit e) without actually sending it, just storing it within the Action's scope (we will 

use Java). It is up to the service to actually extract this created Edit and send it to the editor.  

Exactly how smart an EditingBehavior is depends in addition to the patterns it is capable of 

matching, on the complexity of the expressions given in the Action. For EB1 we merely run 

a diff-operation on two points from the history of snapshots; finding out how much the 

Active CombinedFragment has moved and moving the non-active the same amount.  

EB1 : MoveOtherCF_Same is defined previously in this thesis: "Figure 5-17 Example: 

Editing Behavior MoveOtherCF_Same".  
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ScaleActiveToContain

LHS

RHS

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf1.dim = Util.calcDimToContain(H(0).cf1.dim, H(0).cf2.dim);

Edit e = new ScaleCF(H(0).cf1, cf1.dim); 

assertRHS(cf1 -> intersect(cf2) implies cf2  -> inside(cf2))

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

 

Figure 6-29 Solution 2 (EB2): ScaleActiveCFToContain 

EB2 : ScaleActiveToContain Here the editing behavior acts a bit smarter: We use a static 

Util class capable of calculating the needed dimension for one dimension to contain 

another. In our case expanding cf1 enough so that cf2 is inside. 
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ScaleActiveToNotIntersect

LHS 

RHS

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf1.dim = Util.calcDimToNotIntersect(H(0).cf1.dim, H(0).cf2.dim);

Edit e = new ScaleCF(H(0).cf1, cf1.dim); 

assertRHS(!cf1 -> intersect(cf2))

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

inside

<<Active>>

cf1 : 

CombinedFragment

cf2 : 

CombinedFragment

intersect

imp1 : implies

 

Figure 6-30 Solution 3 (EB3) : Shrink Active to Not Intersect 

EB3 : ScaleActiveToNotIntersect has a different RHS; it removes the intersects 

relationship between cf1 and cf2, and therefore also the implies element. As inside was a 

NAC in the LHS and did not exist, is does not exist at all in the RHS.  

Now we insert the Solutions into the MoveCombinedFragmentService : BehavioralService, 

which itself should be within a CombinedFragmentComposite : BehavioralComposite.  
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CombinedFragmentComposite

MoveCombinedFragmentService

MoveOtherCF_Same ScaleActiveToContainShrinkActiveToNotIntersect

MoveCF

cf2
cf1

cf2
cf1

cf2
cf1

cf2

cf1

cf2

cf1

cf2

cf1

MoveCF ScaleCF ScaleCF

 

Figure 6-31 CombinedFragmentComposite with MoveCFService 

In this view have hidden the details of the Solutions, and based on the LHS and RHS-sides 

drawn visual representations of the patterns the solutions match using elements from the 

DSL Graphical Definition itself. Highlighted in gray are the <<Active>> elements. 
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7 BEHAVIORAL SYSTEM PROTOTYPE 

The prototype confirms two claims in this thesis; that it is possible to define mediators to 

communicate with a GEF-based editor at least in part asynchronously, and that it is 

possible to generate messages and mediators capable of communicating notifications 

stemming from an implementation of the Observable pattern in EMF-repositories to the 

prototype. The prototype focuses on the segment of our framework that deals with editor 

integration, and does not focus on the validity of using graph transformations and rules to 

find possible solutions to inconsistency creating edits. However the prototype was essential 

for experimenting with ideas of how to actually create an editor that contains more precise 

and formally defined editing behaviors, than state-of-the-art-editor frameworks such as 

those that use a programmatic approach. We did by attempting to use UML to describe 

editing behaviors. These experiments with the prototype are what eventually led us to the 

findings presented in this thesis, and to many concrete paths of examination for future 

prototypes within the same field.  
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7.1 INTERACTION BOUNDARY 

 

Figure 7-1 Prototype interaction boundary, user-interface event and editpart notifications 

We have tested different approaches of how to integrate a behavioral system into a GEF-

based editor; where to intercept what BDL calls Edits. The development of the prototype 

stopped at a point where we intercepted user-interface events and forwarded them (on the 

EditDomainUIEventMediator) to representations of the user-interface tools in the prototype. 

From there the idea was to translate and deduce the user-interface events into Edits and to 

send them to composites and services defined using statemachines and JavaFrame for 

examination. We also experimented with having references to all the information required 

to reason about editing behavior within the prototype. This is why we have the 

EditPartNotificationMediator connected to the RootBehavior, so that we may initialize 

Composites with the information contained within EditParts. EditParts are, as described 

previously in the thesis, the controller entities in GEF-based editors, giving us access to figures 

and both models (DSL meta-model model, and DSL graphical definition model).  

Although beneficial for the process of examining where it would be best to place the 

interaction boundary between the Editor and the prototype, this approach proved ultimately 

to not be the most fruitful. As we have seen previously in this thesis, the interaction 

boundary is tied to Edits directly from the Editor, and not to user-interface events.  
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For future work with the prototype we imagine the interaction boundary between an 

Executing Behavioral Definition and a  GEF-based Editor to exist by intercepting 

Requests in EditPolicies. Replacing incrementally those EditPolicies that the BD is capable 

of subsuming. In this way we may intercept Requests, translate them into BDL Edits, 

present Solutions to the user,  wait until one has been selected by the user, and then 

ultimately return this stack to the Editor for execution upon the models if no more 

consistencies have been introduced (as per Behavioral Definition Execution Semantics). 

Translating the stack of Edits into a EMF TransactionalEditingDomain compatible stack of 

Commands to be executed atomically in the repository.  An added benefit of placing the 

interaction boundary within EditPolicies is that we would then be able to quite simply insert 

the class responsible for interception in a GMF Generator Model using CustomBehavior 

elements (as mentioned previously in this thesis).  

 

Figure 7-2 Example of Request-Command Interaction (from [45]) 

However there are problems with this approach, and they are related to how GEF handles 

sending Requests. Sending Requests in GEF to EditParts is done sequentially with a 

method call, and not with a signal or some other form of non-blocking operation. It 

effectively locks the editor until a Command has been received in return, as we see in 

Figure 7-2. A Delete "tool" calls a getCommand(Request deleteReq) method on an EditPart, 

and waits until a ShapeDeleteCommand is returned. This is one of the reasons why we 
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needed to intercept user-interface events in the prototype, as the sending of such events is 

non-blocking. We imagine that we may be able to solve this in part by automatically 

denying all  requests.  

An additional complexity stems from the fact that Requests in GEF are sent for every 

mouse-event received by a "tool", meaning that a prototype will become flooded with 

Requests (translated to Edits) if we forward all of them. To this problem we propose some 

counter strategies; to not send Edits to the prototype unless for instance the mouse has 

been idle for a set amount of time. This in combination with a hot-key that allows users to 

explicitly state that they want solutions to be presented. This hot-key would be absolutely 

necessary also to allow users to select a solution using the mouse without generating new 

GEF Requests, which would cancel the search process and cause all the solutions to 

disappear.  

7.1.1 MODEL-LIBRARIES OF MEDIATORS AND MESSAGES AS API'S 

 

Figure 7-3 Model-library for the communication of EditPart Notifications 

The prototype confirms an aspect of our framework regarding  communication with the 

required context, the Editor, by using JavaFrame mediators and BDL messages 

(conforming to UML signal). We defined the required messages needed for 

communication, created classes stereotyped to be JavaFrame mediators and generated code 

functioning as the API between prototype and editor.  
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Although not a part of the definition of our interaction boundary in this thesis, Figure 7-3 

shows such an example. The goal here is to intercept Notifications stemming from an 

implementation of the Observable pattern and send them as BehavioralMessages to a sub-

system (our prototype) of an Editor, asynchronously and via JavaFrame Mediators. 

EPEvent extends a BDL BehavioralMessage. Several other signals extend EPEvent for the 

different types of notifications that are sent by EditParts (incorporating the Observable 

pattern). The EditPartNotificationMediator acts as the mediator between the prototype and 

the EditPart-segment of a GEF-editor.  We then transformed this model into its JavaFrame 

equivalent. The next step in the process was to inject calls to an instance of this mediator 

from within the GEF-editor. To do this we create objects of the 

EditPartNotificationMediator, set its scope to the rootmost object in the Editor (in our case 

an object BehavioralEditor extending a real sequence diagram editor, SeDiEditor), and then 

initialize our Behavioral prototype (called SequencedGEB) from within BehavioralEditor 

using a constructor that passed the initialized mediator to the SequencedGEB.  

The next step in the process, once we have an initialized mediator connecting the sub-

system (prototype) to the Editor, is to initialize a Listener which subscribes to notifications 

capable of sending BehavioralMessages to the mediator. This Listener may either reference 

the Editor for access to the mediator, or have a reference passed to it during construction. 

We implemented GEF EditPartListener interface  on our Listener 

(BehaivoralEditPartListener), installed it on EditParts and sent messages using the mediator 

for every notification received; e.g. when an EditPart calls the listener's method 

childAdded(EditPart child, int index)  we send a message EPChildAdded(child) on the mediator 

to the prototype.  

Although the method given above pertains to EditParts and EditPartListener, we give this as 

an example of how to inject a Behavioral Definition into Editors that rely upon the 

Observable pattern to communicate important events. For instance, as EMF-repositories 

use the same principle as GEF w.r.t. observable pattern we could easily define the BD 

execution semantics required message NotifyUpdated.  
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7.2 BEHAVIORAL DEFINITION EXECUTION SEMANTICS 

Our prototype does not conform completely to the framework given in this thesis, or to 

our definition of BD execution semantics. It did however allow us to experiment and find 

what we require of the framework and a future prototype.  

 

Figure 7-4 DiagramBehavior Composite 

The prototype development stalled at a point in which we wanted to have a Composite per 

GraphicalEditPart in the Editor. GraphicalEditParts are controller entities for graphical 

elements in the editor, such as a CombinedFragment, representing actual elements in the 

model. The Composites were initialized with information from the EditPart, stored 

internally within the Composite in a part called we call Constraints. The idea was to query 

this part when Edits were performed to check constraints defined on the abstract and 

concrete graphical syntax of the element in question, using a purely programmatic 

approach. 

Figure 7-4 shows an example of such a composite for a Diagram. We have a Controller 

entity responsible for routing messages, creating services and children (InteractionBehaviors 

in the figure). Service entities representing parts capable of reasoning about incoming 

messages pertaining to editing behavior.  And a Constraint part providing an "archive" of 
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information and the current state of the editor element, usable by services when reasoning 

about what kind of  editing behavior to perform.  

The approach of having parts for constraints for each composite within the prototype 

proved ultimately not fruitful. It introduced several problems with mutual-exclusion on 

data, and in itself generating problems with respect to the interaction boundary. Since we 

stored objects received from the Editor, and manipulated them in the Constraint parts, we 

also ended up with added complexities regarding initializing and synchronizing the 

prototype with the Editor. 

This is why we in our framework introduce the concept of a special type of Repository 

capable of providing snapshots of inconsistent models. Instead of using actual references 

to the model (as we have done via EditPart-storage in Constraint parts), checking constraints 

and manipulating values, we leave this up to the Repository and the Editor. Letting an 

executing Behavioral Definition (i.e. a future prototype) focus solely on finding Editing 

Behaviors using the strategy put forth in this thesis.  

Services in the prototype were created with the thought of them being capable of reacting 

to a BehavioralMessage and respond with an editing behavior.  This by using information 

stored in their local Constraint-part and by communicating with other services in other 

Composites. In fact we thought of Composites being akin to Agents in an hierarchical agent-

oriented structure, were the hierarchy was given by the nesting of composites, and all 

agents having local descriptions of the world using the Constraint-part. The idea was to 

define editing behavior using advanced communication between agents; composites and 

services communicating with each other to try to find solutions to a problematic edit 

performed by the user.  This strategy is more or less similar to how EditPolicies in GEF try 

to resolve problematic Requests, instead of denying them. EditPolicies in GEF may 

delegate Requests to other EditPolicies in order to create a set  of Commands capable of 

solving the problematic Request. Letting other EditPolicies reason about local issues and 

constraints, and returning a Command if it succeeds to the EditPolicy that initiated it.  

However, trying to create a similar solution using agents, UML and a separate process for 

finding editing behaviors, proved unfruitful. 
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This is why in our framework we do not think of Composites as agents and do not try to 

reflect the structure of the Editor in our Behavioral Definitions. Rather we define a 

Composite in BDL as a static element.  

Instead of having one composite per model element in the Editor (e.g. have a Composite for 

each CombinedFragment-EditPart in the Editor) we have in our framework one composite 

per element in the DSL (e.g.  for a mapping-element for CombinedFragments).  

Our concept called services has however remained more or less the same; its responsibility 

is to find editing behaviors. However instead of having services that communicate with 

other services trying to find a solution that makes a diagram globally consistent, we have in 

our framework only services that can find solutions guaranteeing only the consistency 

presented by the RHS pattern of an editing behavior.  And then repeating the entire 

process if the solution selected by the user results in additional inconsistencies.  

7.3 FUTURE WORK WITH PROTOTYPES 

We assume the existence of several components such as our conceptual graphical 

definition language GDL, the special repository and a pattern matcher.  

We therefore recommend that future work with the framework should be done 

sequentially and with smaller experiments in the following order: 

(1) Create a DSL using state of the art methods for its development, defining especially the 

graphical syntax formally and within models. This so that all constraints capable of 

affecting editing behavior are defined in models. This DSL would be the foundation upon 

which the next experiments may be built.  

 (2) Create a repository capable of generating models of the DSL that are inconsistent with 

respect to it, when constraint breaking alterations are made on the models, instead of 

denying them. This would require the definition of a separate DSL with little or no 

constraints defined. We also imagine the introduction of special structural elements for 

inconsistency representation. So to even further relax the syntax by allowing orphaned 

elements etc. This experiment would lay the foundation of the next experiment: matching 
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inconsistent models to patterns of inconsistencies and creating rules capable of fixing 

them. 

(3) Use BDL concepts and import an existing transformation language like ATL to define 

transformation rules that transform "patterns of inconsistency" into patterns of 

consistency w.r.t. the DSL. Not reasoning about global model consistency, but just 

patterns would greatly simplify this experiment. Of course we may encounter the pitfalls of 

such an approach, like the creation of additional inconsistencies and never-ending 

transformations if we try to apply the rules automatically, but this could be remedied by the 

next experiment. 

(4) Create an editor that is capable of presenting rules from the above experiment that 

match a current inconsistency as a result of a current user initiated edit, to a user for user 

selection. This would give the final responsibility for the applicability of the rules to the 

users themselves, letting the users handle the responsibility of global consistency of the 

models. On this prototype we imagined multiple additional experiments may be 

undertaken, which we will speak of in the next chapter. 

7.4 TOOLS: CHALLENGES AND PROBLEMS 

A reason for the prototype's immaturity are, in addition to the overall scale of the prototype 

(in hindsight) and other reasons, the tools we used to create it. The application Rational 

Software Modeler from IBM [26] is based on Eclipse, and is a quite extensive tool for 

UML Modeling. It also supports the integration of model transformations, which suited us 

well as we wished to transform from UML to Java (JavaFrame). However, we experienced 

extensive problems with the tool once the prototype had reached a certain size; random 

and frequent crashes when modifying diagrams and model. Consequently at lot of time was 

spent trying to find out if we had a problem in the model, or if it was a problem with the 

tool. We also spent quite some time investigating whether or not it could be a problem 

relating to plug-ins that we incorporate into RSM (IFI-UML-Total tool-package [46]), used 

for creating sequence diagrams and transforming to JavaFrame. This was however not the 

case as RSM still continued to crash even without these plug-ins,  once a model became of 

some undetermined size or complexity.  
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After a great deal of examination we believe the problems are related to a bug or several,  

regarding OpaqueExpressions and the Properties view in the tool. OpaqueExpressions may 

be used in UML models to refer to actual action language expressions within UML 

elements, using both a body attribute for the expressions and a language attribute to denote 

the language used. We use OpaqueExpressions heavily when creating JavaFrame 

compatible UML models, and it was during our work with these that most of the problems 

arose.  

Another challenge stems from working with tools that are themselves in a somewhat 

prototype state, like the transformation engine creating JavaFrame consistent code. 

Although JavaFrame is a very stable platform, its UML2JavaFrame transformation is not. 

We suspect this to have mostly to do the drift that occurs between two components 

intended to be consistent, that necessarily happens when one side is updated more often 

that the other. Therefore a lot of time was invested into updating routines in the 

transformation-engine to make it more compatible with the UML-meta-model 

implementation in RSM.  

The prototype development stalled at a point in which we were in the process of changing 

expressions of Java-statements into  a formal UML-model. We were never able to 

complete this process and the prototype is therefore at the moment of writing quite non-

functional, except for some basic functionality for initialization upon Editor initialization, 

and for intercepting and changing the state of Tool-statemachines from user-interface-

events. We will in Appendix A  give the diagrams of the prototype that we are successfully 

able to open.  
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8 CONCLUSION AND FURTHER WORK 

This thesis lacks some of the empirical backing needed to conclude whether or not the 

approaches laid forth are valid, although extensive examples have been given in an effort 

to remedy the lack of a functional prototype. We will in the conclusion summarize our 

findings and in the section on Further Work give concrete suggestions for future 

examinations within the field of editing behavior for graphical language editors.  

It is possible to view editing behaviors as a special form of transformation; as 

transformations on "consistent models of inconsistency". Or more precisely; to use 

transformation rules that have left-hand-side patterns depicting inconsistent models to find 

rules that lead to right-hand-side patterns capable of reintroducing consistency. The 

obvious problem with this approach is of course that the transformation itself may lead to 

inconsistencies as we do not try to infer its wider-reaching consequences on the model, 

other than what is defined in its right-hand-side. We solve this complexity by allowing the 

user to decide which transformations to use, allowing an editor to leverage the user's 

knowledge with respect to the current model and diagram to solve the inconsistencies. This 

is in line with how syntax-oriented editors of textual programming languages solve the 

problem of global consistency when presenting syntax and semantic corrections to 

programmers; they do not consider it a problem as it is ultimately up to the user to create a 

valid program and not the editor's. 

Tied to the above is also the conclusion that we require a meta-model capable of defining 

the inconsistencies of another meta-model's instances. Our approach for our small 

example was to merely create another meta-model which was exactly the same as its 

source, only with a 0..1 multiplicity instead of 1. We have shown how such a "model of 

inconsistency" may be used in conjunction with transformation rules with 

"inconsistencies" in their left-hand-side patterns, to give actions capable of reintroducing 

consistency.   

With BDL we see the benefits of how a specially tailored language for the definition of 

editing behavior may help editing-behavior-developers reason about the consequences of 

inconsistency creating edits. By incorporating a DSLs own graphical syntax into both 
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"inconsistent" patterns in the LHS and in consistent pattern in the RHS, BDL allows for a 

intuitive, declarative and elegant description of editing behaviors for different situations. 

8.1 FURTHER WORK 

We believe our approach to the definition and the implementation of editing behavior in 

editors for graphical languages deserves further investigation. In combination with the 

findings presented in this thesis, and with our findings of working with the prototype, we 

recommend 3 concrete steps for further work; (1) experiments examining the consistent 

representation of inconsistencies, (2) experiments regarding the determination of 

applicability of transformation rules using such an inconsistency representing model , (3) 

experiments with how to present the findings of such rule-matching to a user and leverage 

their knowledge of both DSL and current diagrams and models to the task of 

inconsistency management, simplifying the complexity needed when trying to find valid 

editing behaviors.  

Several more questions arise if the 3 suggestions are proven to be valid approaches; some 

pertaining to the editor and editing behavior, some pertaining to DSLs and editing 

behavior. For the relationship between editors and editing behavior: Can we deduce any 

automatic behavior from the user-interaction instead of letting users choose every time an 

inconsistency is found? Would it be possible to create editors in this manner that 

purposefully change the way they auto-correct by learning from previous user selections?  

For the relationship between DSL and editing behavior: What can we say about a specific 

graphical DSL if edits constantly result in inconsistencies?   

Additionally, there already exists an approach similar to the one we have put forth in this 

thesis, but it did not become apparent until the very end. DiaGen [33] is a rapid 

prototyping tool for creating editors that supports both syntax-directed and freehand-

editing. It uses an internal hypergraph to represent the current diagram state. This 

hypergraph may also be used for error-correction and editing behavior deduction. One of 

the main problems with DiaGen, and the hypergraph representation is, according to the 

authors themselves, that hypergraphs quickly become very large for even small diagrams. 

Although similar to our findings in this thesis, it has not, as far as we can tell, been aligned 
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with meta-modeling concepts, but is more closely aligned with classic compiler theory. A 

closer examination of DiaGen would be a an interesting approach for further work.  

 

  



105 

 

9 REFERENCES 

1. Eclipse. Graphical Modeling Framework (GMF). Available from: 
http://www.eclipse.org/modeling/gmf/. 

2. Eclipse. Graphical Editing Framework (GEF). Available from: 
http://www.eclipse.org/gef/. 

3. Eclipse. Eclipse Modeling Framework Project (EMF). Available from: 
http://www.eclipse.org/modeling/emf/. 

4. OMG. UML 2.2, OMG Document: formal/2009-02-04. Available from: 
http://www.omg.org/spec/UML/2.2/. 

5. CEA. Papyrus UML. Available from: http://www.papyrusuml.org. 

6. Limyr, A., Graphical Editor for UML 2.0 Sequence Diagrams, in Institute of Informatics. 
2005, University of Oslo: Oslo. 

7. IBM. Diagram Definition Version 0.1 - Initial Submission.  2009; Available from: 
http://www.omg.org/. 

8. Gronback, R.C., Eclipse modeling project : a domain-specific language toolkit. The Eclipse 
series. 2009, Upper Saddle River, N.J: Addison-Wesley. XXV, 706 s. 

9. Sammet, J. The early history of COBOL. 1978: ACM. 

10. Schmidt, D., Guest editor's introduction: Model-driven engineering. Computer, 2006: p. 25-
31. 

11. Haugen, Ø., Hierarkibegreper i Programmering og Systembeskrivelse, in Institute of 
Informatics. 1980, University of Oslo: Oslo. 

12. Burns, Deville, and Meeker, Power, Conflict, and Exchange in Social Life, in Working 
paper no. 88a. 1977, Institute of Sociology, University of Oslo. 

13. Thomas Kuhn, E.M.G. and I.O.L. Olivier Thomann (2006) Eclipse - Abstract Syntax 
Tree. 

14. Di Ruscio, D., et al., Extending AMMA for supporting dynamic semantics specifications of 
DSLs. 2006. 

15. Louden, K., Compiler construction. 1997: PWS Publ. 

16. Espe, T.H., A meta-language for UML concrete graphical syntax. 2004, University of 
Oslo. p. 104. 



106 

 

17. OMG. Diagram Definition RFP, OMG Document : ad/07-09-02. Available from: 
http://www.omg.org/cgi-bin/doc?ad/2007-9-2. 

18. Eclipse. EMF- Ecore. Available from: 
http://www.eclipse.org/modeling/emf/?project=emf. 

19. Pinet, F., M. Kang, and F. Vigier, Spatial Constraint Modelling with a GIS Extension of 
UML and OCL: Application to Agricultural Information Systems. Lecture Notes In 
Computer Science, 2005. 3511: p. 160-178. 

20. OMG. OCL 2.0, OMG Document: formal/2006-05-01. Available from: 
http://www.omg.org/spec/OCL/2.0/. 

21. Tor, B., Geographic information systems: an introduction. 2001: John Wiley and Sons, New 
York. 

22. OMG. Meta Object Facility (MOF), OMG Document: formal/2006-01-01. Available 
from: http://www.omg.org/. 

23. Mauw, S., The formalization of message sequence charts. Computer Networks and ISDN 
Systems, 1996. 28(12): p. 1643-1657. 

24. Arefi, F., C.E. Hughes, and D.A. Workman, Automatically generating visual syntax-
directed editors. Commun. ACM, 1990. 33(3): p. 349-360. 

25. Teitelbaum, T. and T. Reps, The Cornell program synthesizer: a syntax-directed 
programming environment. Commun. ACM, 1981. 24(9): p. 563-573. 

26. IBM. IBM Rational Software Modeler 7.5. Available from: 
http://www.ibm.com/developerworks/rational/products/rsm/. 

27. Eclipse. UML2Tools. Available from: 
http://www.eclipse.org/modeling/mdt/?project=uml2tools. 

28. Larman, C., Applying UML and patterns: an introduction to object-oriented analysis and 
design and the unified process. 2001: Prentice Hall PTR Upper Saddle River, NJ, USA. 

29. Gamma, E., Design patterns : elements of reusable object-oriented software. Addison-Wesley 
professional computing series. 1995, Reading, Mass.: Addison-Wesley. xv, 395 p. 

30. Verheecke, B. and R. Van Der Straeten. Specifying and implementing the operational use of 
constraints in object-oriented applications. in ACM International Conference. 2002. Sydney, 
Australia: Australian Computer Society, Inc. 

31. VanderMeer, D. and K. Dutta, Applying Learner-Centered Design Principles to UML 
Sequence Diagrams. Journal of Database Management, 2009. 20(1). 

32. Czarnecki, K. and S. Helsen, Feature-based survey of model transformation approaches. IBM 
Systems Journal, 2006. 45(3): p. 621-645. 



107 

 

33. Minas, M., Concepts and realization of a diagram editor generator based on hypergraph 
transformation. Science of Computer Programming, 2002. 44(2): p. 157-180. 

34. Bardohl, R., et al., Integrating meta-modelling aspects with graph transformation for efficient 
visual language definition and model manipulation. Lecture Notes In Computer Science, 
2004. 2984: p. 214-228. 

35. Bottoni, P., et al., Consistency checking and visualization of OCL constraints. Lecture notes 
in computer science, 2000: p. 294-308. 

36. Eclipse. ATLAS Transformation Language (ATL). Available from: 
http://www.eclipse.org/m2m/atl/. 

37. OMG. MOF QVT, OMG Document : formal/08-04-03. Available from: 
http://www.omg.org/spec/QVT/1.0/. 

38. Heckel, R., Graph Transformation in a Nutshell. Electronic Notes in Theoretical 
Computer Science, 2006. 148(1): p. 187-198. 

39. Bardohl, R. and A. GENGED. A Generic Graphical Editor for Visual Languages based 
on Algebraic Graph Grammars. 1998. 

40. Costagliola, G. and V. Deufemia. Visual language editors based on LR parsing techniques: 
Citeseer. 

41. Gray, J. and A. Reuter, Transaction processing: concepts and techniques. 1993: Morgan 
Kaufmann Pub. 

42. Goedicke, M., T. Meyer, and G. Taentzer. Viewpoint-oriented software development by 
distributed graph transformation: Towards a basis for living with inconsistencies. 1999: IEEE 
Computer Society. 

43. Hausmann, J., R. Heckel, and S. Sauer. Extended model relations with graphical consistency 
conditions. 2002: Citeseer. 

44. Haugen, Ø. and B. Møller-Pedersen. Javaframe : Framework for Java enabled modeling. in 
Ericsson Conference on Software Engineering. 2000. 

45. Majewski, B. A Shape Diagram Editor.  2004; Available from: 
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html. 

46. IFI, U. IFI UML Total. Available from: 
http://www.uio.no/studier/emner/matnat/ifi/INF5150/index-eng.xml. 

 

 



108 

 

  



109 

 

APPENDIX A   

 

Figure A-9-1 Root composite GEBSystem 

 

Figure A-9-2 Tools composite 
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Figure A-9-3 RootBehavior Composite 

 

Figure A-9-4 Controller statemachine 
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Figure A-9-5 Constraints statemachine 

 

Figure A-9-6 RootBehavior Services statemachine - activation only 
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Figure A-9-7 DiagramBehavior Composite 

 

Figure A-9-8 DiagramBehavior Composite, with services for geometrical queries 
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Figure A-9-9 InteractionBehavior Composite ; awaiting child composites like CombinedFragmentBehavior 

 

Figure A-9-10 UIEvent signals and EditDomainUIEventMediator in <<modelLibrary>> 

GEFMediators 


