

UNIVERSITY OF OSLO
Department of Informatics

Modeling Editing Behavior for
Editors of Graphical Languages

Master thesis
60 credits

Rayner Ron Vintervoll

February 1st, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30802178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

III

ABSTRACT

This thesis presents a framework that expands upon the idea of a fully model-driven

approach to editor development for Graphical Domain Specific Languages (DSL),

originally put forth by the Graphical Modeling Framework (GMF). The framework's main

component consists of a language for the declarative definition of editing behavior for said

editors. We define the Behavioral Definition Language (BDL), and the execution semantics of a

BDL-instance, Behavioral Definitions (BD).

Inconsistent DSL-instances are not desired when modeling them using modern editors.

However, during user-interaction with the editor, edits may be attempted that would, if

permitted, create inconsistent models. Instead of denying such edits we propose a different

approach: to commit the edit to a separate model capable of representing the result of an

inconsistency-creating edit. Upon this model we use editing behaviors to resolve the

inconsistencies before committing any alterations to the DSL-instances. To simplify the

complexity of reasoning about what editing behaviors may be applied, we present a

method for presenting editing behaviors to a user for selection. Letting editing behaviors

focus on resolving small fragments of inconsistency, while letting the user select the

appropriate set of behaviors to ultimately create a DSL-consistent model.

The method presented for defining editing behaviors is based on graph transformation; we

use graph transformation rules and patterns therein, to pattern-match rules against models

capable of representing inconsistent DSL-instances ("models of inconsistency"). This to

determine when and for what inconsistencies we may present editing behaviors to the user

for selection. Using comprehensive examples, we argue for the validity of our approach to

the definition and applicability of editing behaviors defined in such a manner.

.

IV

V

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest gratitude to my supervisor, Dr. Øystein Haugen

at SINTEF. For all the help, encouragement and guidance I have received from you over

the years. I am forever in your debt.

To my girlfriend, Cathrine Skandsen, thank you so much for being as kind and

understanding as you have been to me throughout all these years. Without your love and

support I would have never made it this far.

I also would like to thank my mother and father. Thank you from the bottom of my heart,

for always being there and supporting me in all my endeavors.

Rayner Ron Vintervoll,

1st of February, 2010

VI

VII

TABLE OF CONTENTS

Abstract .. III

Acknowledgements ... V

Table of Contents ... VII

Table of Figures .. XI

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Goals of the Thesis ... 2

1.3 Thesis Structure ... 2

1.4 Goals of the framework ... 4

2 Background: Domain Specific Languages .. 6

2.1 DSL ... 6

2.2 Graphical Languages ... 8

2.2.1 Concrete Graphical Syntax .. 9

3 Background: Editors For Graphical Languages .. 20

3.1 Syntax-Directed Editors ... 20

3.1.1 Working with completely Syntax-directed textual editors 21

3.1.2 Working with completely syntax-directed graphical language editors .. 22

3.1.3 Benefits of completely Syntax-Directed Editors 24

3.2 Modeling editors for graphical languages .. 26

VIII

3.2.1 Customizations .. 28

4 Editing Behavior... 30

4.1.1 Why Give the users a choice of behavior? .. 33

4.1.2 Defining Editing Behavior .. 36

4.1.3 Living with Inconsistencies from Edits and Editing Behavior 39

4.1.4 The need for a meta-model capable of defining an inconsistent DSL-

instance consistently .. 40

5 Behavioral Framework .. 45

5.1 JavaFrame ... 46

5.2 Our meta-modeling architecture ... 47

5.2.1 Concepts of the Meta-modeling Architecture .. 48

5.2.2 Domain-Specific-Language Instance Hierarchy (DSL Instance) 49

5.2.3 Domain-Specific Language / Behavioral Definition Hierarchy

(DSL/BD) .. 50

5.2.4 Behavioral Definition Language / Behavioral Definition Hierarchy

(BDL/BD) .. 51

5.2.5 BDL's Relationship The DSL ... 51

5.2.6 BDL and the Relationship with the DSL Instance 52

5.3 Behavioral Definition Language .. 53

5.4 Modeling A Behavioral Definition .. 53

5.5 BDL Description ... 59

5.5.1 BehavioralMediator .. 59

IX

5.5.2 BehavioralMessage ... 59

5.5.3 Edit ... 60

5.5.4 BehavioralObject .. 60

5.5.5 BehavioralComposite ... 60

5.5.6 BehavioralServices .. 61

5.5.7 EditingBehavior, Pattern and Action .. 61

5.6 Behavioral Definition: Execution Semantics .. 61

5.6.2 Generic Solution Finding Interaction .. 63

5.7 Integrating a BD into an Editor and Repository .. 68

6 Example: Problem 1 .. 69

6.1 From consistent to inconsistent .. 69

6.1.1 Problem Solving With Editing Behaviors ... 73

6.1.2 Editing Behaviors as Model transformations ... 78

6.1.3 Structural Pattern matching against Rules .. 82

6.1.4 "Hedging our bets": StereoTypes in Patterns & Asserting Attribute

modifications in Actions .. 82

6.1.5 Defining Editing Behaviors with transformation rules and actions 85

6.1.6 Defining the MoveCombinedFragmentService 88

7 Behavioral System Prototype ... 92

7.1 Interaction Boundary .. 93

7.1.1 Model-Libraries of Mediators and Messages as API's 95

X

7.2 Behavioral Definition Execution Semantics .. 97

7.3 Future work with Prototypes ... 99

7.4 Tools: challenges and problems .. 100

8 Conclusion and Further work .. 102

8.1 Further work .. 103

9 References ... 105

Appendix A .. 109

XI

TABLE OF FIGURES

Figure 1-1 Reducing the amount of manual customization by modeling editors even more

precisely with Behavioral Definitions .. 4

Figure 2-1 Develop and map abstract and concrete syntax ... 8

Table 1 GDL symbol attributes .. 9

Figure 2-2 Examples of E-GDL-predicate: " x is inside y", courtesy of [16] 9

Figure 2-3 Example of using E-GDL to define a Sequence Diagram Symbol 10

Figure 2-4 Extending OCL with a new type: BasicGeoType .. 12

Figure 2-5 All Symbols have position and size attributes ... 14

Figure 2-6 MOF-type representation of a subset of a GDL instance (GDSQ) for

SequenceDiagram Symbol in Figure 2-3 ... 15

Figure 2-7 Model A conforming to GDSQ... 16

Figure 2-8 Graphical representation of Model A .. 17

Figure 2-9 A inconsistent model A' not conforming to GSDQ .. 17

Figure 2-10 Model R conforming to GDSQ .. 18

Figure 2-11 Graphical representation of Model R ... 19

Figure 2-12 Inconsistent model G: dangling implies with missing inside-relationship

relationship .. 19

Figure 2-13 Graphical Representation of model G ... 19

Figure 3-1 Graphical language: Dangling Association. Textual language: If-statement with

dangling Else ... 21

XII

Figure 3-2 Syntactically correct textual program .. 22

Figure 3-3 Interface erroneously created by user instead of Class. Neatly depicted inside a

Package ... 23

Figure 3-4 Controllers as instances of the Mapping Model elements 25

Figure 3-5 The workflow when modeling an editor using state-of-the-art tools 26

Figure 3-6 Models involved when modeling an editor using state-of-the-art tools (GMF) 27

Figure 3-7 Creating a MAP-element .. 27

Figure 4-1 Edit resulting in inconsistency, Editing Behavior resulting in ? 30

Figure 4-2 Who owns the message head? ... 32

Figure 4-3 Helper: Associating to "nothing" leads to a context-menu with list of possible

Creates .. 34

Figure 4-4 Helper: Mouse-over on blank space leads to "bubble" of possible Creates 34

Figure 4-5 Basic concepts of model transformation ... 36

Figure 4-6 EditPolicy and Transactions: Commands .. 38

Figure 4-7 Scenarios with interrelation of consistency and transformations (fig. courtesy of

[43]) ... 42

Figure 4-8 Meta-model I : Relaxing the implies constraint in GDSQ 44

Figure 5-1 Framework Components .. 45

Figure 5-2 JavaFrame Concepts .. 46

Figure 5-3 Meta-modeling architecture.. 47

Figure 5-4 The DSL composite .. 48

Figure 5-5 The DSL Instance composite .. 48

XIII

Figure 5-6 Simplified MOF composite ... 48

Figure 5-7 Simplified GDL composite .. 49

Figure 5-8 Element for Meta-Model-Only ... 49

Figure 5-9 Ellipsis for "model instance of model" relations .. 49

Figure 5-10 BD Behavioral Definition relationship to DSL .. 51

Figure 5-11 Executing Behavioral Definition relationship to DSL Instance 52

Figure 5-12 Behavioral Definition Language Meta-Model ... 53

Figure 5-13 Behavioral Definition creation after mapping .. 54

Figure 5-14 Example: mapping a BehavioralComposite to its meta-model and graphical

definition element ... 54

Figure 5-15 Example: Simple Behavioral Definition for a Sequence Diagram Editor with all

composite levels visible .. 55

Figure 5-16 Example: Edit hierarchy ... 56

Figure 5-17 Example: Editing Behavior MoveOtherCF_Same ... 57

Figure 5-18 BehavioralMessages .. 59

Figure 5-19 Executing Behavioral Definition ↔ BehavioralSystem 63

Figure 5-20 Searching : Context ... 64

Figure 5-21 Searching: RootBehavioralComposite .. 65

Figure 5-22 Decision Making with Behavioral Definitions : BehavioralComposite............. 66

Figure 5-23 Internal workings of a BehavioralService .. 67

Figure 6-1 Graphical representation of Model R ... 69

Figure 6-2 Model R conforming to GDSQ .. 70

XIV

Figure 6-3 Abstract and Concrete Syntax Definitions, mapped .. 70

Figure 6-4 Problem 1: State during user-interaction which is illegal to commit to model:

intersecting CombinedFragments. .. 71

Figure 6-5 Inconsistent model G: dangling implies with missing inside relation 72

Figure 6-6 Solution space when reasoning about graphical definitions that define spatial

attributes ... 73

Figure 6-7 An user-initiated Edit on a symbol a .. 73

Figure 6-8 Graphical representation of E1 ... 74

Figure 6-9 An editor-initiated edit performed on a symbol b .. 75

Figure 6-10 EB1 : graphical representaiton... 76

Figure 6-11 EB2 : graphical representation... 76

Figure 6-12 EB3: graphical representation .. 76

Figure 6-13 EB4: graphical representation .. 77

Figure 6-14 EB5 : Destructive behavior .. 78

Figure 6-15 EB6 : Destructive behavior .. 78

Figure 6-16 Building G .. 79

Figure 6-17 Building G .. 80

Figure 6-18 The resulting G model from the transformation tE1(R). 80

Figure 6-19 LHS : EB1-4 ... 83

Figure 6-20 RHS 1: Connect implies to a inside relationship from cf2 to cf1 by

manipulating cf2 .. 84

XV

Figure 6-21 RHS 2: Connect implies to a inside relationship from cf2 to cf1 by

manipulating cf1 ... 84

Figure 6-22 RHS 3 : Connect implies to a inside relationship from cf1 to cf2 by

manipulating cf2 ... 84

Figure 6-23 RHS 5 : Delete the intersect relationship (and therefore implies) between cf1

and cf2 by manipulating cf1 .. 84

Figure 6-24 RHS 6 : Delete the intersect relationship (and therefore implies) between cf1

and cf2 by manipulation cf1 .. 85

Figure 6-25 EB1 as a model transformation with Action on attributes 85

Figure 6-26 EB1 Action ... 86

Figure 6-27 Assertion is ok for LHS, fails for RHS .. 87

Figure 6-28 Basic MoveCombinedFragmentService ... 88

Figure 6-29 Solution 2 (EB2): ScaleActiveCFToContain ... 89

Figure 6-30 Solution 3 (EB3) : Shrink Active to Not Intersect ... 90

Figure 6-31 CombinedFragmentComposite with MoveCFService ... 91

Figure 7-1 Prototype interaction boundary, user-interface event and editpart notifications

 ... 93

Figure 7-2 Example of Request-Command Interaction (from [45]) 94

Figure 7-3 Model-library for the communication of EditPart Notifications 95

Figure 7-4 DiagramBehavior Composite .. 97

Figure A-9-1 Root composite GEBSystem .. 109

Figure A-9-2 Tools composite .. 109

Figure A-9-3 RootBehavior Composite .. 110

XVI

Figure A-9-4 Controller statemachine ... 110

Figure A-9-5 Constraints statemachine ... 111

Figure A-9-6 RootBehavior Services statemachine - activation only 111

Figure A-9-7 DiagramBehavior Composite .. 112

Figure A-9-8 DiagramBehavior Composite, with services for geometrical queries 112

Figure A-9-9 InteractionBehavior Composite ; awaiting child composites like

CombinedFragmentBehavior .. 113

1

1 INTRODUCTION

1.1 MOTIVATION

Before the introduction of the Graphical Modeling Framework (GMF) [1] many

developers had undertaken the task of binding the Graphical Editing Framework (GEF)

[2]to Eclipse Modeling Framework (EMF) [3] models, to create editors for models of

graphical languages, like UML [4]. Among these editors one has a particular relevance to

the motivation behind this thesis; the Papyrus UML Editor[5]. The author of this thesis has

partaken in the process of developing the Sequence Diagram editor component of the

Papyrus UML editor, which was based on an editor developed as part of a master's thesis

at the University of Oslo [6]. During the development we were presented with several

challenges regarding the definition of the editor's behavior when interacted with by users.

We found the process of programmatically defining and incorporating automatic

inconsistency resolutions to inconsistency creating edits, to be a daunting task. Quickly

resulting in never-ending cascading behaviors, inconsistencies within the models the editor

created, and in the code. Leading at times to crashes or to the editor behaving non-

deterministically.

Some of these problems we believe to be related to the following issues; (1) the complexity

of defining editing behavior consistently using a purely programmatic approach. (2) the

lack of a formal method for defining concrete graphical syntax and enforcing the

constraints it defines. (3) the special nature of UML Sequence Diagram's concrete graphical

syntax; it does not match well with typical node-arrow-only type languages, resulting in

added complexities since common layout-algorithms for those kinds of languages, like

XYLayout and ToolbarLayout as presented in [7] by IBM for defining the layout of

elements in a graphical syntax, quickly become to primitive to guarantee well-formed

sequence diagrams.

GMF with its model-driven-development approach rectifies some of these issues by

applying an abstract (implementation-distant) and formal modeling approach to the

development of editors for graphical languages. Especially GMFs notation meta-model,

2

and subsequently IBM's GMF inspired Diagram Definition proposal [7] attempts to rectify

issue (2).

However, in our view there still lacks a component able to rectify (1) and (3); a form of

editing behavior definition that uses a DSL's own concepts to express the editing behavior

needed to produce consistent and well-formed diagrams and models. This while

supporting on an implementational level not merely the constriction and denial of edits

resulting in inconsistencies, but rather support giving users inconsistency solutions to

choose from during editing. Thereby leveraging the user's own knowledge about the

diagram and model to restore consistency, instead of programmatically trying to enforce it

at all times.

1.2 GOALS OF THE THESIS

The goal of this thesis is to present our findings regarding the relationship between

graphical domain specific languages and editing behavior for editors of said languages. Our

findings stem for work done on a prototype editor behavior subsystem and from work on

this thesis. We will show how we may, when modeling DSLs, not only model their abstract

and concrete graphical syntax, but also model their editing behaviors on an abstract level. We

will define our Behavioral Definition Language (BDL), and show a Behavioral Definition

(BD) for an extensively examined example of editing behaviors in response to an

inconsistency creating edit. We will give the execution semantics of a generic Behavioral

Definition and show how an executing Behavioral Definition may be integrated into the

workflow of editor development. We will lay the formal foundation, upon which BDL and

its supporting framework, depends upon. Since several of the components needed to

create an executing Behavioral Definition are conceptual, we will explore in detail the

features that we require of these conceptual components.

1.3 THESIS STRUCTURE

Chapter 2 Background: Domain Specific Languages This chapter focuses on what a

Domain Specific Language (DSL) is. We will give a short presentation of the difference

between abstract and concrete syntax, and then explain the concept of graphical languages

and concrete graphical syntax. Will give some examples of languages capable of expressing

3

this syntax in different ways. We will also define a conceptual graphical definition language

(GDL) based on the presented languages and that we will rely upon for the rest of the

thesis.

Chapter 3 Background: Editors For Graphical Languages This chapter focuses on

defining what an editor for a graphical languages is, and how they differ from common

textual editors for programming languages. We will show the advantages and disadvantages

of having completely syntax strict editors, in both the textual and graphical domain. We

will also show how we may model editors for graphical languages using a model-driven

development approach, and show the relationships between the models involved. Lastly

we will examine how we customize modeled editors in a model-driven-development process.

Chapter 4 Editing Behavior This chapter focuses on defining what editing behavior is.

We will give examples of helpers in a current state-of-the-art editor, laying the foundation

for our motivation of giving editor users a choice of editing behavior instead of

automatically implementing them. We will also see how we may define editing behaviors

on an abstract level, and how we define editing behaviors on an more implementation

specific level. We draw parallels to the realm of inconsistency management and show how we

may represent inconsistent DSL-instances consistently using a non-constrained variant of the

DSL in question.

Chapter 5 Behavioral Framework This chapter focuses on explaining our framework.

We will present the components, our meta-modeling architecture, and present our

language BDL along with an small example of it in use. We will explain a generic

Behavioral Definition's execution semantics, and give the motivations behind the elements

in BDL and behind the elements in the execution semantics.

Chapter 6 Example: Problem 1 Deals with a concrete example of a problematic edit on a

sequence diagram that results in inconsistencies in the diagram model. We will show how we

may find a set of editing behaviors capable of solving the inconsistency by examining and

constricting the solution-space. We show how we naturally end up with concepts similar to

concepts from the field of graph transformation when reasoning about editing behavior.

We then proceed with formally defining editing behaviors, capable of solving the problem,

as graph transformation rules, using the methods presented in Chapter 4. We will also

show what we require of the special model presented in Chapter 4 to be able to reason

4

about the applicability of editing behaviors. We then give these rules in a Behavioral

Definition.

Chapter 7 Behavioral System Prototype In this chapter we will talk about the prototype

that was developed, what was examined during its development, and what we found. We

will also talk about problems with the tools used to create the prototype, and with the

prototype itself. We will also give concrete suggestions for future prototypes within this

field of study.

Chapter 8 Conclusion and Further work In this chapter we will conclude with our

findings, and give examples of further work within the field of editing behavior for editors

of graphical languages, based on the findings presented in this thesis.

1.4 GOALS OF THE FRAMEWORK

Develop DSL Meta-Model Develope DSL Graphical Definition Develop Editor Tooling Definition

Develop Mapping Model

Develop Executable Model Generate Code Deploy Editor

Implementational Level

Abstract Level
Legend

Fork/Join

Points of manual customization

Develop DSL Behavioral Definition

Figure 1-1 Reducing the amount of manual customization by modeling editors even more precisely with

Behavioral Definitions

The goals of the framework is to reduce the amount of customization (in the figure:)

not done on an abstract level when defining editing behavior in editors for graphical

languages, and to make such customizations more consistent. We also want to be able to

provide a different approach to when and how an editor executes editing behavior, in that

5

we do not automatically alter or deny edits performed by the user when they result in

inconsistent models, but give the user a choice of which editing behavior to implement to

resolve the inconsistency. We do this by capturing what we call a Behavioral Definition in its

own model, which focuses on the definition of relevant behaviors, and by defining an

underlying execution semantics for Behavioral Definitions that focuses on finding relevant

behaviors. We show in Figure 1-1 the insertion of a Behavioral Definition in a GMF

workflow (which will be explained in 3.2), but argue that such a definition is in fact more

closely related to the process of developing a DSL than to the process of editor

development, as we use will only use concepts from the DSL and BDL to create the

Behavioral Definition, remote from any editor implementation specific concepts.

6

2 BACKGROUND: DOMAIN SPECIFIC LANGUAGES

“Language serves not only to express thought, but to make possible thoughts which may
not exist without it” – Bertrand Russell

2.1 DSL

Domain Specific Language, or DSL, is a term used by many and but perhaps not

consistently. As put in [8] by Gronback et. al. "much has been written on the general topic

of DSLs, with the domain-specific aspect being the most controversial and reminiscent of

discussions regarding "meta-ness"".

The concept of using specialized languages to express concepts and relationships in a

domain is not new, with COBOL (COmmon Business-Oriented Langauge) being one of

the more famous as a language actually acknowledged of "domain-specific" [9]. But the

problem with using the term doman-specific as a qualifier for the proceeding term language is

that the term is relative. One may argue, as Gronback in [8] that for some UML [4] is a

language a consisting of several other languages describing domains such as; state

machines, use cases, interactions and so on. Others may consider UML as a language that

describes the domain of software development, not viewing it as a language for describing

abstract concepts like state machines, but a language for describing software.

We also find those who differentiate between Domain-Specific-Languages and Domain-

Specific-Modeling Languages[10], or DSML for short. A DSML may be thought of as a

language described using meta-models. A meta-model is, to put it short, a model of a

model. From Haugen in [11] we find the following citations from [12] :

"... meta-power, that is the power to change the rules of the game, the matrix of actions

and interaction possibilities and their outcomes ... "

" ... meta-power as a relational control, i.e. control over social relationships and structures

..."

7

The citations are from a sociological text, but are clearly possible to translate into

"software" terms. In fact we may think of meta-models as models that define legal

constructs of other models. In "Matters of (meta-) modeling" [13], Kühne gives a quite

concise example of what meta is:

"... a discussion of how to conduct a discussion is a "meta-discussion"".

Problems arise however if we start "discussing how conduct the discussion of the

discussion" (a meta-meta-discussion?).

To summarize, we have a term, Domain-Specific-Language, that uses a somewhat relative

term; domain-specific. We also have the concept of creating them using meta-models, also a

somewhat relative term as the degree of meta can be fluctuating. E.g. is a language defined

only by its meta-model, or is it also defined by the meta-model's meta-model? We will not

delve deeper into the implications of meta-ness, and/or domain-specificity in this thesis,

but to move forward we need a definition of what a DSL is in this thesis. Ruscio et. al.

defines it as the following:

"DSLs are languages able to raise the level of abstraction beyond coding by specifying

programs using domain concepts. In particular, by means of DSLs, the development of

systems can be realized by considering only abstractions and knowledge from the domain

of interest."

All computer languages consists of a concrete and abstract syntax, DSLs included [14].

Abstract syntaxes are the backbone of the language as they define how the language views

information from an internal view-point. This in contrast to the concrete syntax which defines

how a user of the language views the information. For instance a language for graph

manipulation would contain the concepts of nodes and edges. From an internal view-point

these concepts are merely objects, things of an abstract nature, or more precisely just data.

From an external view-point however they are not just data, they are actual nodes and

edges; boxes, lines, circles etc. This defines concrete syntax.

For textual programming languages these distinctions are easy to make; the abstract syntax

defines how a compiler would view the language, the concrete syntax how programmers

would view the language [15]. For instance; x := 5 is an expression following an imagined

8

concrete syntax, the abstract syntax representation of it may however be:

assignStmt(ConstExp(x), ConstExp(5)).

The step from going from the above abstract syntax representation of the expression, to a

model representation is not hard; assignStmt as a element with 2 children-elements with

two (typed) attributes x and 5. For the concrete syntax expression a model representation is

also possible: An concrete syntax assignment-element has an attribute defining a string

":=" and two relationships, one left and one right. left points to the character x and right

points to the character 5.

2.2 GRAPHICAL LANGUAGES

Mapping Model

DSL Meta-Model
DSL Graphical

Definition

Graphical Language Development

Models

Figure 2-1 Develop and map abstract and concrete syntax

Graphical languages have concrete graphical syntaxes, either in addition to or in-place-of a

regular concrete textual syntax. Among the challenges in graphical language development

we have those of how to formally represent and define the graphical syntax. We also find

challenges relating to how to create a mapping model capable of binding the abstract and

concrete graphical syntax together in a coherent definition of a DSL. Consequently the

challenge of creating a such a mapping model also becomes a challenge of defining a

mapping meta-model [7]. We will in the following sub-chapters focus on the challenge of

defining concrete graphical syntax, and assume for the remainder of the thesis that the

mapping model is implicit between abstract and concrete syntax; that the challenge of

mapping has been resolved. In Figure 2-1 we show the abstract and concrete graphical

syntax as a DSL meta-model and DSL graphical-definition respectively. These are mapped

9

to each other via a mapping model to define the relationships between elements in the

models.

2.2.1 CONCRETE GRAPHICAL SYNTAX

In this chapter we will present some of the attempts to create a language capable of

defining concrete graphical syntax, and also present an interesting parallel to the field of

Geographical Information Systems.

2.2.1.1 Espe's Graphical Description Language (E-GDL)

Type Attribute Description

Geometrical

lx left-most x-position
rx right-most x-position
by lowest y-position
ty top-most y-position

Direction
tail a line's start point

head a line's end point

Visualization appearance how the symbol looks

Table 1 GDL symbol attributes

GDL (Graphical Description Language, we refer to it E-GDL from now on, to separate it

from another GDL later in the thesis) [16], was tested on a subset of the Unified Modeling

Language [4]. This language specifies valid concrete syntactic constructions of a visual

language using schemata. It relies on predicates and concepts from topology (intersects, in,

touch etc.) to specify the spatial relationship between the various graphical elements of the

language. Viewing graphical symbols (atomic entities in the syntax) as point-sets and

exposing symbol attributes, allows E-GDL to specify predicates not so easily described

with topology in a simple way.

Figure 2-2 Examples of E-GDL-predicate: " x is inside y", courtesy of [16]

Figure 2-1 shows the inside relationship in the E-GDL-notation. It defines the following

predicate; OBJECT x is inside y if x is a subset of y where x and y are point-sets on a 2-

10

dimensional plane. E-GDL lacks the capability of defining elements on a 3- or 2,5-

dimensional plane, so as to define what is commonly called the z-order between elements.

Figure 2-3 Example of using E-GDL to define a Sequence Diagram Symbol

Figure 2-3 shows a E-GDL-instance of a SequenceDiagram symbol. Defining constraints

that use predicates, symbols and sets of symbols, to define valid SequenceDiagrams.

2.2.1.2 Diagram Interchange (DI), Diagram Definition (DD) and Diagram Graphics
(DG) by IBM

IBM's Diagram Interchange (DI) (subsuming OMG DI), Diagram Definition and Diagram

Graphics [7] are part of a response to an OMG Request For Proposal (RFP) on Diagram

Definition [17]. The proposal is inspired by the mapping that GMF provides between

EMF Ecore [18] models, notational elements and their tooling.

They split the concept of concrete graphical syntax into three parts: a language for

persisting diagrams and interchanging them (DI), a language for the concrete syntax of DI

with respect to a DSL (DD) and a language for expressing graphical syntax and mapping it

to the abstract syntax (DG).

DI is a language used to persist and interchange diagrams between applications. DD

defines valid usage of the elements that DI consists of for a given target domain; a

definition that defines constraints upon instances of DI, for a given domain.

11

Essentially we may think of DD as defining the valid usage of elements in DI, when DI is

to be used as the diagram persistence/interchange language of a DSL. Implying that DI

has differing concrete syntaxes depending on the DSL in question. Therefore requiring an

separate Diagram Definition model to define valid usages of DI for a given source DSL.

They calls this diagram syntax, different from concrete graphical syntax. Diagram syntax in

this manner is actually a form of abstract syntax, which when combined with the abstract

syntax from the DSL, is capable of representing valid DSL-specific diagrams in a model.

The third language regards the concrete graphical syntax, DG. This language deals with how

to define how graphical elements should be rendered on screen in an abstract manner; not

defining painting logic itself, but the attributes and relationships needed to paint a building

block. E.g. attributes like position, size, color, line-style . DG also is capable of defining how one

may access attribute values in the underlying models (DSL meta-model instances, and DI-

instances) to populate attributes in a DG-model. DG therefore consists of two parts; one

part for the declarative description of graphical syntax and another part for the declarative

descriptions of mappings from the model (abstract syntax and diagram syntax) to graphics.

The complexity of the proposal from IBM, and the large amount of meta-models involved

prohibit us describe them in detail here. However, we are able to simplify our explanations

by viewing the entire set of languages as a language for the definition of concrete graphical

syntax. This since all of the meta-models may define constraints and values that affect how

the concrete graphical syntax is presented to the user for interaction. We feel this is an

important point to make; that a DSLs concrete graphical syntax is in many ways the net

result of all the constraints defined upon the models used in its definition. The proposal

segments the definition into multiple languages, but adhere to the basic notion of using

constraints defined on instances of the languages to define valid syntax. DD-instances place

constraints on loosely constrained DI-instances. While DG-instances have constraints

defined on elements within it, elements that reference DI-instance elements. The sum of

these constraints are, in our view, all constraints on the concrete graphical syntax, as it is the

sum of the constraints that define the syntax ultimately need to interact with and adhere to.

Some of these constraints can be user-settable. DI defines a concept called StyleSheets that

may contain appearance properties like colors, and layout constraints. DD defines valid

styles for a given DSL so as to constrict the realm of possible stylesheets a user may

12

choose from. DG does not have user-settable constraints (as far as we can see) but does

define a concept of Layout that DG-elements may enforce upon child elements according

to some layout constraints.

2.2.1.2.1 GIS Extended OCL

OCLBasicType

<<singleton>>

Integer

<<singleton>>

Real

<<singleton>>

String

<<singleton>>

Boolean
BasicGeoType

<<singleton>>

Point

<<singleton>>

Polyline

<<singleton>>

Polygon

Figure 2-4 Extending OCL with a new type: BasicGeoType

Pinet et. al. [19] propose an extension to OCL [20] to allow for spatial constraint definition

in response to the complexities of modeling Geographical Information Systems (GIS). Systems

that require heavy use logical reasoning with spatial information [21]. UML [4] and MOF

[22] only allow for topological constraint representation via relationships (e.g. Building ↔

disjoint ↔ River, where disjoint is a relationship). This approach is however lacking in its

expressiveness, as complexities arise when trying to express more complex constraints (IF ..

THEN .. the constraint is applied ELSE ...).

Especially when examining spatial constraints. This is why they propose an extended OCL

adjust for spatial reasoning. They do this by first; defining a new OCLBasicType called

BasicGeoType (alongside Integer, Real, Boolean and String) which is the super type for 3

fundamental geographic types; Point, Polyline and Polygon. They further define that any

element to be evaluated spatially in an OCL constraint to have a geometry attribute. This

geometry attribute is a collection of elements were each element in the collection has a

BasicGeoType. The geometry attribute is viewed by OCL to be equivalent to a OCL-

collection, allowing for the use of OCL collection operations like forAll, select and size.

The spatial operations they defined are either equivalent or similar to E-GDLs predefined

predicates, so we will not reiterate them here. The example below shows how we may

define an invariant on a Diagram:

13

context Diagram inv:

 self.geometry -> forAll(p1, p2 | p1<>p2 implies p1 -> disjoint(p2))

This constraint states that all elements p1 and p2 in the collection must be spatial disjoint

as long as they are not equal.

Although this extension of OCL was not intended to define a concrete graphical syntax we find

the resemblance between it and E-GDL striking. This extension shows that it is possible to

use OCL to express spatial constraints, making OCL translations of E-GDL definitions

possible.

2.2.1.3 Our conceptual language: Graphical Definition Language (GDL)

The concept of having a language purely for the formal definition of concrete graphical

syntax is not new [23]. Unfortunately no OMG-supported standard has emerged yet,

although as we saw in the previous chapter, an OMG RFP (Request for Proposal) and

actual proposals for such a standard are under consideration.

For our purposes in this thesis we must create a conceptual language that allows us to

reason about the effect of the concrete graphical syntax combined with the abstract syntax

on how an editor behaves. We will however not attempt to create a GDL meta-model and

represent it here, as this is not the purpose of the thesis. Rather we will find instances of an

conceptual language that fits the problems we will examine in this thesis, and that

hopefully are general enough to match a wide range of future meta-models for graphical

definition.

We will simplify the ideas from E-GDL and IBMs Diagram Definition proposal, and use

those ideas together with GIS extended OCL constraints, to allow us to create simple

constrained models representing concrete graphical syntax for a DSL. Ignoring aspects

such as persistence and interchangeability, and focusing on creating elements that are as

closely related to the DSL abstract syntax as possible with respect to naming.

In our definitions using OCL we will employ E-GDL's predefined set of predicates using

syntax derived from GIS extended OCL. We will also use the concept of E-GDL's

Symbols to gain access to attributes, such as (x,y) coordinates; we assume that all Symbols

have a collection akin to the geometry attribute in the previous chapter (and like Symbols and

14

point-sets in E-GDL) but that this attribute does not need to be explicitly stated or

referenced, and is automatically inferred during constraint evaluation.

Interaction

+ lx : Integer

+ ly : Integer

+ by : Integer

+ ty : Integer

+ p : Point

+ d : Dimension

Figure 2-5 All Symbols have position and size attributes

In our conceptual GDL a Symbol is also not only a spatial entity consisting of constraints

and other Symbols, but may also include model references to its domain meta-model

instance. This allows us to just refer to a single Symbol when talking about both an

elements graphical properties and model properties, shortening our statements.

Our GDL needs a form of diagrammatic concrete graphical syntax so that we may easily

depict the situations we will be examining. There exists however no such diagrammatic

graphical notation for either E-GDL or DG, yet. We will therefore imagine one: Given the

E-GDL Symbol for SequenceDiagrams in Figure 2-3 we may draw a simplified class-

diagram excluding the PENTAGON, NAME, InteractionFragment, and focusing only on the

relationships defined by the predicates inside and disjoint:

15

SequenceDiagram

Interaction

lls

<<predicate>>

disjoint

interaction

Lifeline
<<predicate>>

inside
1

1

1

1

*

*

CombinedFragment

<<predicate>>

intersect

0..*

0..*

cfs
*

<<operator>>

implies

1

<<predicate>>

inside

1

1

1

Figure 2-6 MOF-type representation of a subset of a GDL instance (GDSQ) for SequenceDiagram

Symbol in Figure 2-3

context SequenceDiagram

 inv:

 self.cfs -> forAll(cf1, cf2 : CombinedFragment | cf1 <> cf2 and cf1 ->

intersects(cf2) implies cf1 -> inside(cf2) or cf2 -> inside(cf1))

 self.lls -> forAll(lfl1, lfl2 : Lifeline | lf1 <> lf2 and lf1 -> disjoint(lf2));

 self.lls -> forAll(lfl : Lifeline | lfl -> inside(self.interaction))

The diagram of the model GDSQ presents a translation of GIS extended OCL expressions

into relationships and stereotyped nodes. This so that we may give a class-diagram

representation that shows the model-representation of the constraints defined on the

elements, in our case constraints defined on the SequenceDiagram. Although not a formal

model representation of OCL-expressions in any way, the above model does represent the

relationships we require between elements. We do this by deducing what the OCL

expressions, defined on the SequenceDiagram, mean structurally with respect to the

relationships between nodes and the multiplicities on the relationships. Importantly, what

16

the model does not represent are the parts of the OCL expressions dealing with non-equality

of objects (<>). CombinedFragment, Lifeline, Interaction, SequenceDiagram are all Symbols.

The GDL Definition (GDSQ) in Figure 2-6 can be viewed as a subset of a model which in

total represents the graphical definition of a SequenceDiagram, as it describes nothing

about the elements in the syntax, only their relationships to each other. The nodes disjoint

and inside (stereotyped to <<predicate>> for readability) can be viewed by the reader as a

model representation of the OCL predicates used in the SequenceDiagram context and that

we have extracted from the SequenceDiagram element and visualized. The associations

between the predicates define the direction of the predicate evaluation (e.g. Lifeline ->

inside(Interaction)) and the multiplicities define that they must always exist in a valid

instance of this model.

Based on GDSQ we may define the relationships between graphical elements in instances

of this meta-model. Figure 2-7 depicts a model A that conforms to its GDL Definition

meta-model (GDSQ) and that defines the spatial predicates currently true between elements

in the diagram. We use bi-directional relationships to denote the existence of 2 uni-

directional relationships of the same type that relate the same elements for conciseness.

sd :

SequenceDiagram

lf1 : Lifeline lf2 : Lifeline

i : Interaction

interaction 1

disjoint

inside inside

Figure 2-7 Model A conforming to GDSQ

Figure 2-8 is a graphical representation that is a true representation of the model A in

Figure 2-7.

17

sd : SequenceDiagram
f : Frame

lf2 : Lifeline

lf2 : Lifeline

Figure 2-8 Graphical representation of Model A

The GDSQ places constraints on which relationships must be present at all times in a valid

GDSQ instance. Also by negating an expression with a predicate like disjoint (not lf1 :

Lifeline -> disjoint(lf2 : Lifeline2)) we get what relationships must never be present at all times

in a valid GDSQ instance like A. We define that relationships missing from the model

means that its constraint has evaluated to false in the model; e.g. if the statement

 lfl : Lifeline | lfl -> inside(self.interaction)

evaluates to false we remove the relationship between the lfl and the Interaction.

Importantly this renders the model inconsistent with respect to its meta-model GDSQ (a

violation of the constraints defined on the meta-model), of which the model A' in Figure

2-9 is an example of.

sd :

SequenceDiagram

lf1 : Lifeline lf2 : Lifeline

i : Interaction

interaction 1

disjoint

inside

Figure 2-9 A inconsistent model A' not conforming to GSDQ

18

Another example is the model R in Figure 2-10 conforming to GDSQ but where we only

show a subset of the model, focusing on the Lifelines and CombinedFragments.

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

inside

Figure 2-10 Model R conforming to GDSQ

Figure 2-10 shows an instance of a model where the implies operator binds the two

relationships intersect and inside together using a association class-like notation. We have

chosen this notation for elements stereotyped as <<operator>> since association classes

only exist while the association exists (the directed arrows show which association was

responsible for creating it; the source-association). This coincides nicely with what the

invariant for CombinedFragments states: that if 2 CombinedFragments intersect one must

be inside the other. We further define that for inside relationships between

CombinedFragments it is the responsibility of the association class to manage the

information about the existence of the relationship. The multiplicities on the relationships

in GSDQ between intersects and implies [1..1], implies and inside [1..1] show that the

relationships are strict. One may not exist without the other. Since we use bi-directional

relationships to denote the existence of two "equal" relationships between elements

(different in direction only) we say that the iff viewing them as uni-directional they would

both have a relationship to the same implies instance. Figure 2-11 is a graphical

representation of model R.

19

seq

seq
lf1 : Lifeline

lf2 : Lifeline lf3 : Lifeline
cf1 : CombinedFragment

cf2 : CombinedFragment

Figure 2-11 Graphical representation of Model R

Figure 2-12 and Figure 2-13 show an inconsistent model G with respect to its meta-model

GDSQ. Looking at the graphical representation we see that we have intersecting

CombinedFragments where none is inside the other. This creates a dangling implies

association class (similar to the well-known dangling-else problem in programming

language development and compiler theory [15], a problem regarding ambiguity in concrete

syntax) that has no reference to its required inside relationship, which is missing from the

model.

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

Figure 2-12 Inconsistent model G: dangling implies with missing inside-relationship relationship

alt

alt

Figure 2-13 Graphical Representation of model G

20

3 BACKGROUND: EDITORS FOR GRAPHICAL
LANGUAGES

" If thought corrupts language, language can also corrupt thought" - George Orwell

3.1 SYNTAX-DIRECTED EDITORS

Programs are often written and manipulated with text editors. A text editor, as the name

implies, manipulates textual entities that are organized into a basic hierarchy that consists

of characters and lines. The editor provides simple functions such as insertion and deletion

of characters and lines. However, a program is not merely text - they are only represented

textually. A program is a collection of syntactically and semantically meaningful objects

such as identifiers, procedures, loops and data types. We therefore often build editing tools

that employ knowledge about the programming language constructs, and allow users of the

editing tools to create and manipulate programs in the terms of these language constructs

[24].

We call these structured, language-sensitive or syntax-directed editors. Structured editors

employ operations from the programming languages compiler to give users information

about errors in the program while it is written rather than compiled. This is often solved

via running a portion of a typical compiler process while the user is interacting with the

editor, like Eclipse's Abstract Syntax Tree (AST)[13] . While editing a user may create a

program that is inconsistent, in the sense that it would not compile if we tried to compile it.

The editor would notice this and proceed with notifying the user of the error. One of the

first such editors was the Cornell Program Synthesizer [25].

Similarly we have editors for graphical languages. Most of which are completely syntax directed or

completely structured, such as [5, 26, 27]. By this we mean that inconsistent states, which are

common in textual editors and result in the editor notifying the user of the error, are not

permissible at all. Such editors place syntactic correctness as an absolute requirement at all

times.

21

We can construct an example of this difference:

Class

If |condition| Then |statement|

else |statement|

else |statement|

Figure 3-1 Graphical language: Dangling Association. Textual language: If-statement with dangling Else

A completely syntax-directed editor for a graphical language would not permit the above

graphical situation, as it is not syntactically correct. If a user attempted to accomplish the

above inconsistent edit the editor would deny the edit. We may easily claim that most modern

and popular editors for a textual language would permit the above textual situation, even

though it is syntactically incorrect, since inconsistent interim states are permitted in most

such editors, as they are not completely syntax strict. If a user created the above situation a

syntax oriented editor would inform the user of the error, but not deny the mere existence

of it.

This example highlights the major difference between textual and graphical editors for

formal languages. In editors for graphical languages the user is vastly more constrained when

it comes to possible edits, and we therefore need to closely examine the implications of this

and how we deal with inconsistency creating edits.

3.1.1 WORKING WITH COMPLETELY SYNTAX-DIRECTED TEXTUAL
EDITORS

The implications of completely syntax-directed editors on textual languages has been

researched for many years. Since the programs in such editors much remain syntactically

correct after each editing operation, a large number of edits that are otherwise very simple

become awkward and frustrating [24]. An example of this is the following well-known if-to-

while transformation problem. The following program is supposed to calculate the factorial:

22

read(n):

a := 1;

fact := 1;

IF a <= n THEN

BEGIN

 a := a + 1;

 fact := fact * a;

END

Figure 3-2 Syntactically correct textual program

The above program does not calculate the factorial n! although it is perfectly syntactically

correct in our pseudo-language. The error is that instead of using a while-loop an if-statement

is used. But fixing this in a completely syntax-directed editor is not simple. If we were to

try to replace the IF with a WHILE we would create a syntactically incorrect program since the

syntax for while-statements is while |condition| do, not while |condition| then. The solution in

this case is to use "trickery" to accomplish the desired program; for instance by creating a

new while-statement and copying the conditions and statements of the if-statement into it, and

then deleting the old if-statement. This is of course more awkward than in a regular text-

editor in which we simply type in while in place of if and proceed with typing in do in place

of then.

3.1.2 WORKING WITH COMPLETELY SYNTAX-DIRECTED GRAPHICAL
LANGUAGE EDITORS

This method of "getting-around" constraints put upon the user by the editor is exists also

in modern graphical editors. Figure 3-3 is a screenshot of a state-of-the-art editor for UML

Class Diagrams [4]:

23

Figure 3-3 Interface erroneously created by user instead of Class. Neatly depicted inside a Package

In this case we presume that the user did not intend to create an Interface-element or wishes

to alter the element to a Class-element. To accomplish this without losing the content of

Class2 (attributes and operations) the user must do the following:

1. Create a new Class-element : Class3

2. Drag-and-drop the attributes and operations from the old Class2 to the new

Class3.

3. Move the association-end from Class2 to Class3

4. Delete Class2.

5. Rename Class3 to Class2

There are several problems with this approach:

1. It is time-consuming compared to just deleting the <<interface>> stereotype (which

is not possible in the editor).

2. It entails expanding the Package1 graphical element to be able to fit in the new

Class3.

3. It also entails that we need to scale Package1 back again once we have

accomplished the goal.

4. Fourthly and importantly, it also means that we cannot guarantee that elements in

other diagrams that referenced the old Class2 have updated their reference to the new

Class2 (which was temporarily Class3).

A more elegant solution would be for the editor to accomplish the above without the user

needing to use "trickery", while at the same time ensuring that all references to the old

24

Class2 are updated to the new Class2. To do this the editor would need to expose the

<<interface>> element for selection and deletion, and have some routine that atomically

does the steps above and updates references. We call this type of routine an Editing

Behavior.

3.1.3 BENEFITS OF COMPLETELY SYNTAX-DIRECTED EDITORS

Although completely syntax-directed editors can be awkward from a usability stand-point,

as we have seen in the previous chapter, there are several benefits to such editors.

One benefit is that it allows us to implement the well-known Model-View-Controller

pattern (MVC-pattern) in editors. The Model-View separation principle states that the model

(domain) objects should have no direct knowledge about the view (commonly interface

objects) [28]. In our case we may view the model as an instance of a DSL Meta-Model, and

the view as an instance of the DSL Graphical Definition (a model) with some direct

relationship to an on-screen rendered figure (what is commonly referred to as the view, but

we will think of the view as instances of the Graphical Definition).

A relaxation of this principle is the Observer pattern, famously described by the "Gang of

Four" [29], which allows entities to observe and see events. In the context of an MVC-

pattern we say that model elements are permitted to send messages to view elements, but

then only by using an interface. This way the model is able to communicate notifications, for

instance updates, about events that have taken place to the view without actually having any

knowledge about the view element other than that it implements the interface.

To summarize, the benefits of complete syntax-direction with respect to editor

development are as follows;

1. The MVC pattern allows us to have multiple representations (Views) on the same

model element

a. This is particularly important for multi-diagram editors, in which the same

model element may be represented multiple times in several different

diagrams.

25

2. The Observer pattern allows us to keep model and view synchronized at all times; if a

model-element is updated via some other mechanism than the controller itself, the

controller is notified and it may update the view, or vice versa if the view updates.

a. This fits well with completely syntax-directed editors in that we are never

allowed to have inconsistent or illegal models. We may then continuously,

and in the "background", synchronize and update either view or model

whenever one or the other has been updated.

3. The MVC pattern also allows us to create a direct link between Controllers and a

DSL Mapping Model. Controllers may be viewed in a sense as executing instances of a

Mapping Model in the DSL development process[7]. Said using meta-modeling terms

we may say that Controllers may be seen as instances of elements in the mapping

model between the abstract and concrete syntax. This since controllers and maps

fulfill some of the same tasks; to provide the link between model and view and

keeping them synchronized at all times.

model : DSL

Meta-Model

diagram : DSL

Graphical Definition

Mapping Model

DSL Meta-Model
DSL Graphical

Definition

Figure 3-4 Controllers as instances of the Mapping Model elements

26

3.2 MODELING EDITORS FOR GRAPHICAL LANGUAGES

Develop DSL Graphical Definition Develop Editor Tooling Definition

Develop Mapping Model

Develop Generator Model Generate Code Deploy Editor

Develop DSL Meta-Model

Implementational Level

Abstract Level
Legend

Fork/Join

Points of manual customization

Figure 3-5 The workflow when modeling an editor using state-of-the-art tools

Modern state-of-the-art frameworks for the development of editors for graphical languages

(graphical-editor-modeling-frameworks) like GMF, employ a model-driven development

approach (MDD). Graphical languages consist of both an abstract syntax and a concrete

graphical syntax. These are separated into two different models when creating an editor

with a model-driven development approach. In GMF these are respectively called the

Domain Model (instances of the EMF Ecore meta-model [18]) and Graphical Definition

(instances of the GMF notation meta-model). GMF also employs a Tooling Definition

(instances of GMF tooling meta-model); as editors typically include a palette and other tools

to create, modify and delete content in the diagram and model. The Tooling Definition

specifies these elements on an abstract level; defining what buttons should be in which

menus and so on; basically defining a simple model of the user-interface.

Henceforth and throughout this thesis we will refer to what GMF calls a Domain Model as a

DSL Meta-Model (DSL-MM), so as not to confuse the very distinct terms Meta-Model

(defining the DSL) and Model (instances of the DSL Meta-Model). We will also rename what

GMF calls a Graphical Definition to DSL Graphical Definition (DSL-GD) to more closely bind

the Graphical Definition to the DSL it was created for. The Tooling Definition will rename to

Editor Tooling Definition (ETD), again to more closely bind the model to it intention; to

define the tooling for an editor.

27

DSL-MM DSL-GD ETD

Mapping Model

Generator Model

Figure 3-6 Models involved when modeling an editor using state-of-the-art tools (GMF)

Once these three models (DSL-MM, DSL-GD, ETD) have been created we create a

mapping model (MAP) (GMF Mapping Model) that binds the elements of the 3 models

together into a coherent map; tying the underlying DSL meta-model together with its DSL

graphical definition and the editor tools needed to create and manipulate it.

Interaction

DSL-MM DSL-GD ETD

Create Interaction

Figure 3-7 Creating a MAP-element

A typical mapping in a GMF mapping model would be similar to the figure above. We

map the Interaction (DSL-MM element) to its graphical representation (DSL-GD) and to a

button with a label "Create Interaction" (ETD-element), which defines a button in the

editor responsible for creating an Interaction. Once a mapping model has been created a

model-to-model transformation (M2M) generates a Generator Model from which executable

code may be generated. Different from the Mapping Model the Generator Model

necessarily contains all the information needed to automatically generate an editor for the

DSL and therefore contains information about the technicalities of the intended

implementation platform.

28

We differentiate between two levels in the workflow in Figure 3-5; the abstract and

implementational. On the abstract level reasoning about the editor under development takes

place in an abstract manner; a Toolsmith (Editor Developer) focuses on modeling the

editor using the concepts from the DSL Meta-Model, DSL Graphical Definition and the

Editor Tooling Definition without needing to use modeling concepts that refer to the

concrete implementational platform. On the Implementational level we begin work on

these technicalities; what runtimes and APIs to use, we define necessary identifiers used in

the generation, define the file extensions needed, copyright information, and perhaps

import into the models some action language for the advanced behaviors the editor is required to

exhibit. Within GMF the Generator Model is the most likely to be extended and

manipulated to provide customizations [8].

3.2.1 CUSTOMIZATIONS

Customizations are alterations of the default generated Generator Model. We may have

specific requirements for how an editor is to behave with respect to the DSL that a

Toolsmith needs to implement. But which is not possible to define in any of the previous

models, and that is not possible to inherit from the graphical-editor-modeling-framework

being used. The amount of customization needed for a language depends on how little the

language deviates from the type of languages the creators of the framework have anticipated

it being used for. Typically, very simple languages just containing nodes and lines in its

DSL-GD and few elements in its DSL-MM may require no customizations of the

generator model at all, while others more complex (dare we say more domain-specific?)

require heavy customization. In Figure 3-5 we have used -icons to depict the imagined

amount of customization required during editor development for a DSL. We may say that;

 The number of required in the workflow is directly correlated with how much

the language in question aligns with the languages the graphical-editor-modeling-

framework developers had in mind when developing the framework.

GMFs Generator Model supplies some basic methods for accomplishing customizations

via Custom Behavior elements. A Custom Behavior element simply allows for a class-name of

an EditPolicy to be entered. EditPolicies are coded elements in Java, a concept stemming

29

from GEF and provide the main and undisputed mechanism for adding behavior to a

diagram element [8].

More often than not, customizations do not only take place in the Generator Model but

also in the code that has been generated. This "generated-code customization" process is a

artifact when using a model driven development approach, perhaps due to a lack of

expressivity in the meta-models used in the development. This is not always desirable, as

we can quickly create modifications in the code that are not in-sync with the models;

leading to code customizations being overwritten in an iterative editor development

process, or becoming inconsistent with the code generated.

We may also customize by affecting and customizing the generation itself via templates [8].

This is somewhat more in-line with a model-driven development approach, but as with the

process of direct code manipulation, we need to create such templates with the concrete

implementation in mind, instead of reasoning about the customization with a more

abstract and DSL-"near" approach.

30

4 EDITING BEHAVIOR

"The quality of our thoughts is bordered on all sides by our facility with language"
 - J. Michael Straczynski

Editing

 Behavior

CF2

CF1

CF2

CF1

Edit ?

Figure 4-1 Edit resulting in inconsistency, Editing Behavior resulting in ?

When we do not have strict editors that only allow users to perform a basic set of edits

(e.g. buttons for all edits, grayed out if currently illegal), but allows users to attempt a wide

range of edits, which may or may not be consistency preserving (e.g. move, scale, place

with a mouse), then we must examine the implications of the edit. We need to find out

what to do if the edit violates some constraint in the DSL. To do this we need to examine

the procedures in the editor that deals with such edits. There are multiple possible

solutions to the problem of a constraint violation as a result from an edit (inconsistency

creating edit):

1. To deny the edit and revert to a previous consistent diagram state (at least visually

as the diagram may not have been altered at all). Notify the user of which

constraint was broken. This is the MOF-default action for constraint violations

[22].

2. For the editor to permit the edit. Depending on how the model repository reacts

and how strictly it enforces constraints, will either create an inconsistent model or

will result in the repository denying the edit, and not the editor.

31

3. To solve the violation by automatically initiating an editing behavior that modifies the

original edit (what some have called "compensating actions" w.r.t. to inconsistency

management in general [30]) and failing that do 1.

4. To not automatically initiate a behavior, but find all the possible editing behaviors

capable of solving the violation/inconsistency, and present these to the user for

user-selection. If no behaviors are found or the user does not select a solution, then

do 1.

The first solution is partially implemented in most state-of-the-art editors; if a user

attempts to do something deemed illegal the editor undo's the interaction, and in some cases

notifies the user about why. As is the case in IBM's Rational Software Modeler that runs a

model validator in the background checking pre-defined and user-settable constraints [26].

The most common solution is however to merely deny the interaction without feedback, as

is the case in popular tools such as Eclipse's UML2Tools, Papyrus UML and in the

perhaps less popular tool; Limyr's SeDi [5, 6, 27]. IBM's Rational Software Modeler also

denies most illegal edits without explanation, although a structure for feedback does at

least exist, as we have mentioned.

The second "solution" may exist in editors that have been manually developed, heavily

customized or loosely constrained. Illegal situations not anticipated by the developers may

not be tested for and therefore not detected. This is also perhaps a direct consequence

resulting from the immaturity of the field of formally defining the constraints on meta-

models, especially on the concrete graphical syntax. E.g. the DSL does not define enough

constraints to be able to guarantee that it is consistent with respect to the intention of the

DSL developers. The worst case scenario in this "solution" is the corruption of the

model(s), due to a controller trying and failing to synchronize an inconsistent diagram with

the model.

32

cf2

cf1

Figure 4-2 Who owns the message head?

Figure 4-2 is an example of such a situation where the worst may occur: Which box is the

arrow-head contained within? If we automatically deduce parentage of model elements

based on the diagram every time we receive a notification from the model of updates

(which is common for controllers in MVC-type editors to receive) we may find ourselves

stuck in an infinite loop: Checking first cf1, setting it as parent of the arrow-head.

Receiving an update from the model. Skipping cf1 as it already has all its children, not

resulting in model-alterations. Then checking cf2, setting it as a parent. Receiving an update

from the model. Setting cf1 as parent etc.

The third solution is the standard way of dealing with constraint violations (although not

necessarily violations against model constraints, but also constraints given in the code to

specify how an editor reacts). This is often exhibited by the way arrows in box-arrow-type

diagrams route themselves around other elements in order to maintain visibility, and not

become overlapped/hidden by other elements. This behavior could be a reaction to a

constraint defined in a Graphical Definition, or just constraints defined in the editor code).

These types of behaviors are often included in editor frameworks such as in GMF and GEF

[1, 2], as they are behaviors that the Toolsmiths request, or take for granted exist in the

framework. The Toolsmith therefore merely inherits the behavior from the framework,

requiring little or no developer effort to implement (as with predefined EditPolicies in GEF

and GMF mentioned earlier). Behaviors that fall outside of what the framework developers

envisioned being needed, are defined manually via customizations of a generated editor.

The fourth solution is what we will try to accomplish in this thesis. This type of solutions is

akin to how syntax-oriented editors that are not completely strict w.r.t. the syntax react to

an inconsistency, presenting errors and possible fixes based on a background parsing

strategy. This while at the same retaining the MVC-pattern used in state-of-the-art editor

33

development, that in theory ensures that model and diagram are in constant consistency.

An important requirement of such a solution is that it does not in any way lock the editor

during its search for solutions, but runs in parallel with the editor, as do background

parsers in syntax directed textual language editors.

4.1.1 WHY GIVE THE USERS A CHOICE OF BEHAVIOR?

"We can think of the “scaffolding” here as providing a knowledge framework upon which

a learner can learn while gaining expertise, as a way to help the user climb the learning

curve. This suggests organizing content to build on the learner’s accumulated knowledge."

[31]

An important aspect of the success of any DSL is the tool-support surrounding it.

Consequently the success of the tools will also determine the success of the DSL. An

important aspect of tools are their usability. Several industry leading tools, such as [26]

acknowledge this and provide users with small helpers or "scaffolding" from which a user

may learn about the DSL while using it. Examples of this are depicted in Figure 4-3 and

Figure 4-4. Other examples are how many editors support drag-and-drop of elements,

initiating an editing behavior that automates an otherwise complicated process. For

instance IBM Rational Software Modeler [26] supports dragging the Class1 in Figure 4-3

out of its Package1 and into another, automating the operations needed to change

parentage, maintain certain associations etc., instead of the user manually creating a

duplicate Class and reproducing it in the other package.

34

Figure 4-3 Helper: Associating to "nothing" leads to a context-menu with list of possible Creates

Figure 4-4 Helper: Mouse-over on blank space leads to "bubble" of possible Creates

In these editor interface screenshots we see how an editor helps the user learn about the

DSL that is being used, by presenting the user with all the different DSL elements (known

and unknown to the user) that the user may create as a result of attempting to create an

element on a blank space in the diagram.

It is scaffolding such as these that we will attempt to lay the foundation for with the

Behavioral Framework, including but not limited to element creation. During editor usage

we may often find ourselves attempting to create what the editor deems as inconsistent with

35

respect to the DSL. This is of course reasonable as we usually want consistent models.

However, the current method of denying user-interactions without any given reason, or

merely by stating to the user that a constraint has been violated is not enough. What is

needed is a form of error-reporting mechanism with solution finding capabilities that does

not necessarily automatically implement the inconsistency solving solution, but gives the users

the possible solutions for user selection. This we believe will improve editor usability and

provide the users with a greater chance of "learning (the DSL) by doing".

36

4.1.2 DEFINING EDITING BEHAVIOR

4.1.2.1 Edits as model transformations

Source

Metamodel

Source Model

Transformation

Definition

Target

Metamodel

Target Model
Transformation

Engine

Refers to Refers to

Reads Writes

Conforms toConforms to Uses

Figure 4-5 Basic concepts of model transformation

Many have researched the topic of combining graph transformation with field of model

transformation. Of the many model transformation techniques, graph transformation-

based techniques are present in many current model transformation implementations [32].

Some have also used graph transformations and rules to actually define graphical languages

and editors for them, by viewing the transformations as edits on graphs representing the

language [33, 34]. Others have also examined how to translate OCL Constraints, which

lack a model representation, into graphs for efficient evaluation and visualization of them

[35].

There exists a considerable interest for establishing standards that deal with model

transformations in Model-Driven-Architecture (MDA) [32], and there exists several

languages with different design choices that provide the definition of model

transformations. Among which are the ATLAS Transformation Language (part of

Eclipse's model-to-model (M2M) project) (ATL) [36] and OMG's standardized

specification QVT [37]. The full extent of the interest in model transformations are far

beyond the scope of this thesis, but importantly there exist a general consensus that it is

possible to use graph patterns as rules for transformations and match those patterns to

patterns in a source model for the transformation. This is called the graph-transformation-

based approach to model transformation. According to Czarnecki and Heckel, patterns can

be represented using both the structure of a model (strings, terms and graphs) or the abstract

or concrete syntax of the corresponding source or target model language, the syntax may

be either textual or graphical [32].

37

Graph transformation rules have a LHS (left-hand-side) and a RHS (right-hand-side). LHS

patterns are matched in a model being transformed and replaced by the RHS in place. LHS

usually also have NACs (negative application conditions) and PACs (positive application

conditions). Heckel in [38] gives the following three steps to performing a graph

transformation given a rule t:

1. Find an occurrence of the LHS of t in a given graph R.

2. Delete from G all vertices and edges matched by LHS but not in RHS.

3. Paste to the result a copy of the RHS, yielding the new graph G.

An important aspect of graph rule patterns w.r.t. DSL transformation is that it is

theoretically possible to render them in the concrete graphical syntax of their respective

source or target language [32]. The ability to incorporate the source language's own syntax

into rules for its transformation would greatly simplify the creation of such rules.

However, those approaches that we have found that use graph transformations and rules

to define editing behavior [39, 40] differ from what we are after in this thesis; they explore

graph transformation rules that never create inconsistencies; the only edits available to the

editor are rules that operate on initially consistent models and lead to consistent models. In

this way they may guarantee the consistency of both the LHS and the RHS of any

transformation. We on the other hand wish to use graph transformations to represent edit

executions, and that transform from a consistent target model w.r.t. to its DSL into a

source model which might be inconsistent w.r.t to the DSL. And use information from this

transformation process to deduce the applicability of predefined editing behaviors.

4.1.2.2 Edits as transactions

Other approaches to defining how edits are handled (editing behaviors) are related to

transaction processing; how to handle an edit as a transaction (like in EMF's

TransactionalEditingDomain [3]). We may define a transaction as "a collection of

operations on the physical and abstract application state" [41]. ACID is a set of properties

on the transaction that must hold for a valid transaction on a state (we may view this state

as the models in the DSL repository):

38

 Atomicity: A transaction's changes to the current state are atomic; all changes

happen at once.

 Cosistency: A transaction is a consistent transformation of the state. It does not

violate any consistency constraints on the state.

 Isolation: Even if transactions may execute concurrently, each transaction T views

itself as either executing before or after another T.

 Durability: Once a transaction is completed successfully (committed) its changes

to the state are persisted.

modelElement :

Domain Model

Element

diagramElement :

Graphical Definition

Element

Domain Model
Graphical

Definition

figures :

GraphicalObject

ep : EditPart

installs

EditPolicy

Request

reponds to

Command
creates

Figure 4-6 EditPolicy and Transactions: Commands

GMF uses EMF's TransactionalEditDomain along with entities called EditParts and

EditPolicies (from GEF) to manage editing behavior. EditParts define the controller entity

between model-elements(s) and view (on-screen-rendered elements), while EditPolcies are

pluggable contributions to the overall editing behavior of an EditPart [8]. EditParts delegate the

handling of edits to the EditPolicy classes, which are installed upon the EditParts during

instantiation. EditPolicies respond to Requests originating from, among other elements,

Tools and return Commands (and stacks of Commands) for execution within a transactional

editing domain. EditPolicies may collect contributions from other EditParts by delegating

39

and/or forwarding Requests or new Requests. It is within these EditPolicies that most of

the DSL specific editing behavior is usually performed, and is also among those concepts

designated for manual customization by GMF. There are many benefits to this structure

that we will not examine in this thesis, but we may in the context of this thesis think of

Requests as close to what we have called previously called edits and Commands as the

execution of said edits.

As we have mentioned before we would like to explore the use of graph transformation as

a way of defining editing behaviors, instead of using the method employed by EditPolicies

of programmatically defining them. We want to explore the possibility of using pattern

matching on "inconsistent" models against patterns in rules, which when matched, define

when and for what inconsistencies an editing behavior is applicable. This as a result of

needing to allow users to perform inconsistency creating edits when the initial state of the

models are consistent. If we are to use the concepts from graph transformation to express

editing behaviors, and graph transformation rules to express when we can use editing

behaviors we need a way to define a form of inconsistent model, capable of representing the

result of an inconsistency creating edit.

4.1.3 LIVING WITH INCONSISTENCIES FROM EDITS AND EDITING
BEHAVIOR

Goedicke et. al. [42] argue for the need to be able to live with inconsistencies during the

lifetime of systems, and that tool-support is needed to tolerate inconsistencies and help

developers use them to drive the development process forward. They put forth several

activities needed to manage inconsistencies: inconsistency detection, inconsistency classification, and

inconsistency handling. We will adapt these terms to our problem domain, in which we in need

to live with inconsistencies resulting from edits, at least temporarily.

Inconsistency detection: We need to define what an inconsistency is in our terms and how it is

detected; As we have mentioned before, we say that constraints in the DSL define what

relationships must exist between elements (consistency conditions). Detection of an

inconsistency is therefore done, in our view, by a MOF-like model repository; one that can

check constraints defined in the DSL.

40

Inconsistency classification: Goedicke et. al. argue to classify inconsistencies as either minor

(suitable for automatic solutions) or major (which may represent severe design errors). We

view all inconsistencies as major, and therefore never actually attempt to fix them

automatically (although we may easily envision such a solution for inconsistencies for

which only one solution exists).

Inconsistency handling: We handle inconsistencies in line with point 4 in chapter 4, of the

possible solutions to inconsistency creating edits.

For us to use graph/model transformation rules as representations for edits and editing

behaviors that might create inconsistent models, we will need a method of living with the

inconsistencies, at least until we are able to find editing behavior(s) that solve the

inconsistency. A regular repository would not permit us to create inconsistent models, for

good reason. However if we are to be able to use patterns representing inconsistent

situations as rules for editing behaviors, we need to be able to represent the inconsistencies

in a model capable of being pattern matched against.

4.1.4 THE NEED FOR A META-MODEL CAPABLE OF DEFINING AN
INCONSISTENT DSL-INSTANCE CONSISTENTLY

What we need is a special meta-model capable of representing the inconsistencies not

permitted in another meta-model. For instance, for a graphical definition, constrained

according to the intended graphical syntax of the DSL, we want a variant of the graphical

definition that is not constrained, so that we actually may create an "inconsistent" model

consistently.

Hausmann et. al. in [43] employ graph transformations to express model transformations

and use them to denote the consistency conditions between models. Model

transformations describe the applications of techniques on a source model to produce a

target model. The transformation may either be monolithic or done in steps.

Transformations can be regarded as functions of models:

t : Model → Model'

Models represent (views on) information. If the same information is represented in

multiple models, we may say that they overlap. A typical example of overlapping models

41

could be a class diagram and sequence diagram. Although expressing different views they

can do so on the same information; a sequence diagram showing the interactions of a class,

which is also defined in a class diagram. Another example of overlapping models is how

the UML meta-model represents the meta-view of a UML Model. The overlap relationship

can be represented as:

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ∶ 𝑀𝑜𝑑𝑒𝑙𝑛

When overlapping models are consistent we mean that they represent information in a non-

contradictory way. Typically consistency between models is determined via consistency conditions.

(e.g. the <<instance of>> consistency condition between a UML Class Meta-Model element

and a Class in a model claiming conformance to UML). We regard consistency conditions as a

relation over models.

𝑐𝑐 ∶ 𝑀𝑜𝑑𝑒𝑙𝑛

We may use the above relationships to define what a well-formed model with respect to its

meta-model is. Hausmann et. al. define it as the following:

∀ 𝐴, 𝐵 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐(𝐴, 𝐵) ⇒ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝐴, 𝐵)

when they only view static consistency (the structure of models) and not dynamic consistency

(the behavior of models), and only look at binary consistency relations. If a consistency

condition holds between two models A and B, then the models A and B also are

overlapping (e.g. if a Model:Class <<instance of>> UML:Class then Model and UML

overlap). So following the above cc is a subset of overlaps: 𝑐𝑐 ⊆ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠

Hausmann et. al. also arrived at multiple interesting, and for this thesis relevant, questions

when combining the concepts of consistency and transformation.

42

Figure 4-7 Scenarios with interrelation of consistency and transformations (fig. courtesy of [43])

1. Is the transformation consistency-preserving; does it alter a model (A) in such a

way (A') that its consistency with another model (B) is preserved? E.g. if a UML

Model A is consistent with the UML Meta-Model B, does a transformation t result

in a model that is consistent with B? Formally we say that a transformation t is

consistency-preserving iff

∀ 𝐴, 𝐵 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐 𝐴, 𝐵 ⇒ 𝑐𝑐(𝑡 𝐴 , 𝐵)

2. Is a transformation consistency-enforcing; does it alter a model (A) in such a way that

(A') is consistent with a model (B) when the original (A) was not? A transformation

not proven to be consistency-preserving can result in models that are inconsistent.

Some inconsistent situations can be solved by providing transformations that re-

establish the consistency. Formally we say that a transformation t is consistent-enforcing

iff

∀ 𝐴, 𝐵 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 𝐴, 𝐵 ∧ ⇒ ¬𝑐𝑐 𝐴, 𝐵 ⇒ 𝑐𝑐 𝑡 𝐴 , 𝐵)

3. Is the transformation itself consistent, does it produce a target model that is

consistent with the source model? This question is usually related to concerns

regarding the preservation of semantic properties. Formally a transformation is a

consistent transformation iff

∀ 𝐴 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐 𝐴, 𝑡 𝐴

E.g. is the code generated from the model (t(A)) consistent with the model (A)?

43

4. A combination of the above scenarios is a common case. The target model (B')

must be consistent with its meta-model (B) and be semantically related to its source

model (A'). For a transformation the consistency conditions would state the

semantic relation, or that a target model is a true representation of the

transformation defined given the source.

∀ 𝐴, 𝐴′ , 𝐵, 𝐵′ ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐𝐴 𝐴, 𝐴′ ∧ 𝑡 𝐴′ = 𝐵′ ⇒ (𝑐𝑐𝑡 𝐴
′ , 𝐵′ ∧ 𝑐𝑐𝐵(𝐵, 𝐵′))

E.g. A Model (A') is <<instance of>> the UML Meta-Model (A), the

transformation of the Model (A') results in the Program (B'). This should imply

that the Model and Program are consistent (𝑐𝑐𝑡 𝐴
′ , 𝐵′) and that the Program (B')

is <<instance of>> Java (B).

We may use the above definitions to represent what we require in this thesis of the special

"relaxed" DSL that we need to represent inconsistencies. Once we have a model that can

represent inconsistencies we may match model transformation rules to the inconsistencies

and attempt to solve them. Formally for an initial consistent model R instance of meta-

model DSLGD, a meta-model I which is consistent with DSLGD but with none of its

constraints, and a model G instance of I we say that:

𝑅, 𝐷𝑆𝐿𝐺𝐷 , 𝐼, 𝐺 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐𝐷𝑆𝐿𝐺𝐷
 𝐷𝑆𝐿𝐺𝐷 , 𝑅 ∧ 𝑡 𝑅 = 𝐺 ⇒ (𝑐𝑐𝐼(𝐼, 𝐺))

meaning that for a model R, that is consistent with its meta-model DSLGD, we need a

transformation t on R resulting in the model G. G is consistent with the relaxed meta-

model of DSLGD called I. Importantly, since t is an inconsistency creating transformation

w.r.t. R and its DSLGD, then G is not consistent with R as G is not consistent with DSLGD

due to the introduction of an inconsistency by t.

Below we show a subset of a "relaxed" meta-model I based on the meta-model GDSQ

(Figure 2-6) so that we can represent the model in Figure 2-9 consistently.

44

CombinedFragment

<<predicate>>

intersect

0..1

0..*

cfs
*

<<operator>>

implies

1

<<predicate>>

inside

0..1

1

1

Relaxing the constraint

Figure 4-8 Meta-model I : Relaxing the implies constraint in GDSQ

Here we have relaxed one of the constraints on the syntax of GDSQ, giving us model I.

We redefine the multiplicity of the relationship between the operator implies and the

predicate inside to 0..*. This allows us to have 0 or 1 relationships between them, meaning

that we now permit intersection without a CombinedFragment being inside another. In

contrast GDSQ defines that the relationship must be 1; that if 2 CombinedFragments

intersect one must be within another.

45

5 BEHAVIORAL FRAMEWORK

JavaFrame Runtime ***

Behavioral Definition

Language*

Behavioral Definition*

Mediator Model Libraries *

BD2UML

Transformation**

Advanced Repository **

UML2JavaFrame

Transformation ***

* Thesis created components

** Conceptual components

*** Imported components

Pattern Matcher ***

Figure 5-1 Framework Components

The framework we have created consists of components defined in this thesis, of

components that exist conceptually, and of components that we have imported. We will

here give a brief description of each.

1. Behavioral Definition Language (BDL): a declarative language for the

definition of editing behavior in editors for graphical languages, in a manner that

allows for the use of rule matching to determine when the behaviors are applicable

on a DSL-inconsistent model to make it consistent.

2. Behavioral Definition (BD): instances of BDL that define the editing behavior

for editors of a given DSL.

3. BD2UML Transformation: A conceptual component. BDL aligns with concepts

from UML and is therefore transformable into UML.

4. UML2JavaFrame: An imported component. We have used a prototype, created

directly in UML, for our experiments into editing behavior.

46

5. JavaFrame Runtime [44]: JavaFrame supports the execution semantics of a

Behavioral Definition.

6. Pattern matcher: A conceptual component. We require the existence of a

component able to match our patterns to a model.

7. Advanced Repository: A conceptual component. We query the repository for

consistency when given an edit on one or several elements, and expect it to return

either an OK-type message or NOK-type message. If it responds with NOK we

also require that it is capable of representing the inconsistency in a model. We also

require that it is capable of producing snapshots of this model pre edit and post

edit so that we may incorporate knowledge of previous model states when

determining applicable editing behaviors. These models should be returned to the

executing behavioral definition.

8. Mediator Model Libraries: A simple model library of BDL-mediators that act as

APIs between a Behavioral Definitions and GEF editor has been created as part of

the prototype.

5.1 JAVAFRAME

Figure 5-2 JavaFrame Concepts

We have for the prototype created UML models that are compatible with JavaFrame [44].

JavaFrame is a framework for implementing a subset of UML in Java. Consisting of a Java

API (Application Programming Interface) for representing UML models in Java and

programming guidelines. The API contains classes for UML model elements such as

Statemachine, Composite and Port (in JavaFrame terminology called Mediator). A

JavaFrame system is a Composite which contains ActiveObjects. ActiveObjects may

47

themselves either be Composites or Statemachines. ActiveObjects communicate by

sending asynchronous messages through Mediators.

5.2 OUR META-MODELING ARCHITECTURE

DSL Instance

Model Diagram

DSL

Meta-model
Graphical

Definition

GDL

MM GD

Executing DSL Instance

DSL Instance Hiearchy

M0

M1

M2

M3

M4

M5

MOF

MM GD

Legend

<< instance of >>

<< works on repos. of >>

<< defines editor behavior of >>

GDL

MOF

MOF

M6

GDL

MOF

M0

M1

M2

M3

M4

M5

Behavioral Definition

Model Diagram

BDL

Meta-model
Graphical

Definition

Executing Behavioral

Definition

DSL/BD Hiearchy

MOF

MM GD

GDL

MM GD

M6

GDL

MOF

MOF GDL

MOF

M0

M1

M2

M3

M4

M5

Behavioral Definition

Model Diagram

BDL

Meta-model
Graphical

Definition

Executing Behavioral

Definition

BDL/BD Hierarchy

MOF

MM GD

GDL

MM GD

M6

GDL

MOF

MOF GDL

MOF

Figure 5-3 Meta-modeling architecture

48

5.2.1 CONCEPTS OF THE META-MODELING ARCHITECTURE

DSL

Meta-model
Graphical

Definition

Figure 5-4 The DSL composite

Throughout the figure we make several visual statements when structuring the architecture,

one of which is the boxing together of mapped models. This allows us to view DSLs in our

meta-modeling architecture not only as the DSL meta-models, but as the composition of both

Meta-Model (MM) and Graphical Definition (GD); the first containing the definition of

the abstract syntax, the second of the concrete graphical syntax. Mapping models needed

for binding the two models together are in our view implicit in the boundary between

models in the composite. We will denote this composite of models defining a DSL as just

DSL for the remainder of this thesis.

DSL Instance

Model Diagram

Figure 5-5 The DSL Instance composite

Viewing the DSL as a composite also allows us to view the DSL Instance as a composite,

or more precisely as a composite model consisting of Model, Diagram and some synchronizing

model (instance of the implicit mapping-model, also implicit in the boundary between the

two models), that are instances of their respective meta-models.

MOF

MM GD

Figure 5-6 Simplified MOF composite

In our meta-modeling figure we assume that every language consists of both meta-model

and graphical definition, as every language is a DSL. MOF and GDL included.

GDL

MM GD

49

Figure 5-7 Simplified GDL composite

GDL is a term we use for any language capable of defining a DSL's concrete graphical

syntax, and we assume that it is possible to express such a language using MOF. Instances

of GDL are DSL Graphical Definitions (GD).

GDLMOF

Figure 5-8 Element for Meta-Model-Only

When referring exclusively to a meta-model we may use the meta-model-only elements

above; so that we may show how a DSL composite's GD is <<instance of>> GDL and

GDL <<instance of >> MOF in a concise way.

Figure 5-9 Ellipsis for "model instance of model" relations

We use an Ellipsis to show the infinite MOF <<instance of>> MOF relationship, since

MOF can be defined by MOF. This also gives us a theoretical infinite number of meta-

modeling levels.

Another important visual statement in the figure is the upwards shifting of meta-modeling level

when defining Behavioral Definitions for DSLs, and the << defines editor behavior of >> and

<< works on repos. of >> relations that span hierarchies. More on this aspect in 5.2.3

Domain-Specific Language / Behavioral Definition Hierarchy (DSL/BD).

The hierarchies are named after the intended goal of the meta-modeling process.

5.2.2 DOMAIN-SPECIFIC-LANGUAGE INSTANCE HIERARCHY (DSL
INSTANCE)

The first hierarchy we call the Domain-Specific-Language Instance Hierarchy. It represents

the meta-modeling hierarchy involved when modeling Domain Specific Languages (DSLs)

50

capable of creating a DSL Instance models. The goal in this hierarchy is to create and

represent domain specific information. From bottom to top we have:

 At the M0 level we have the executing DSL Instances, typically runtime objects.

 At the M1 level we have the models that are instances of the DSL itself, both the

model (instance of the meta-model) and the diagram (instance of the graphical

definition).

 At the M2 level we have the meta-model of the DSL, represented as a model

which is an instance of Meta-Object Facility (MOF) meta-model. And the

Graphical Definition of the DSL, represented as a model which is an instance of

the Graphical Definition Language (GDL) meta-model.

 At the M3 level we have MOF and GDL. Both having internally within their

composites meta-model and graphical definition.

 At the M4 level and onwards repeated <<instance of >> relationships. We define

GDL to be <<instance of>> the MOF meta-model. On this level we only

represent meta-models and not graphical definitions.

5.2.3 DOMAIN-SPECIFIC LANGUAGE / BEHAVIORAL DEFINITION
HIERARCHY (DSL/BD)

The second hierarchy we call the Domain-Specific-Language / Behavioral Definition

Hierarchy, within which lies the focus of this thesis; the modeling of editor behavior for

graphical DSLs. The goal in this hierarchy is to produce a Behavioral Definition for a DSL.

 At the M0 level we have the executing Behavioral Definition for the DSL. It works

on a repository which contains the instances of the DSL in question (model and

diagram).

 At the M1 level we have the Behavioral Definition composite for the DSL. It defines

the editor behavior for an editor of the DSL meta-model and graphical definition.

Since BDL is a graphical language we have both a model which is an instance of

the BDL Meta-Model, and a diagram which is an instance of the BDL Graphical

Definition. Element names in a BD should reflect the element names from the

DSL to ease the process of reasoning about Editing Behavior. We therefore in the

<<defines editor behavior of>> relationship say that the relationship also defines a

51

automatic initial generation of the Behavioral Definition using concepts and names

from the DSL.

 At the M2 level we have the Behavioral Definition Language composite which

contains both Meta-Model and Graphical Definition.

The rest of the hierarchy is straight forward and is the same as in the DSL Instance

Hierarchy.

5.2.4 BEHAVIORAL DEFINITION LANGUAGE / BEHAVIORAL DEFINITION
HIERARCHY (BDL/BD)

This hierarchy is included in the figure to show the benefits of the structuring that we have

chosen. It shows how we may create a Behavioral Definition for the Behavioral Definition

Language itself. Using BDL upon itself has not been attempted, but is deemed plausible.

5.2.5 BDL'S RELATIONSHIP THE DSL

DSL

Meta-model
Graphical

Definition

Behavioral Definition

Model Diagram

Figure 5-10 BD Behavioral Definition relationship to DSL

GEF and GMF employ a MVC-pattern, as mentioned. BD defines an integral part of what

is usually defined in Controllers; editing behavior. A Behavioral Definition needs to

employ and use knowledge about the DSL; what makes constraints in them invalid, and

what makes them true, what possible behaviors can be attempted on which elements, and

on which attributes. All this with the goal of making consistent models as a result of the

behavior. This requires an intimate understanding of the DSL in question. We will in this

thesis leverage a toolsmith's understanding of a DSL1, but leave open the possibility for

1 The writer of this thesis has extensive experience with Sequence Diagrams

52

automatically generating at least a part of the BD to help toolsmiths on their way. With this

relationship we also show that we use the DSL's own graphical syntax within a Behavioral

Definition (as patterns for transformation rules), although with certain modifications as we

wish to be able to represent both invalid and valid graphical syntax.

5.2.6 BDL AND THE RELATIONSHIP WITH THE DSL INSTANCE

DSL Instance

Model Diagram

Executing Behavioral

Definition

Figure 5-11 Executing Behavioral Definition relationship to DSL Instance

A vital component is the conceptual repository defined previously in the thesis. We require

a repository capable of creating intentionally inconsistent models w.r.t. to the DSL, meaning

that it conforms to a constraint-wise relaxed meta-model of the DSL. This is an important

requirement to be able to use graph transformations in the way we have envisioned; where

we match the "inconsistent" model against patterns representing inconsistencies on the

left-hand-sides of rules. We also require the repository to be able to create snapshots of the

model. We use these snapshots to reason about how things were in editing behaviors action

blocks using a History-concept; as we will see later (for editing behavior 1, EB1) we

sometimes need to determine the difference between the same attribute in two different

snapshots to be able to extrapolate attribute values in the actions blocks. Additionally we

require the repository to be able to provide transformations that conform to a given edit.

Transforming an edit (consisting of a reference to one or several model elements, and one

or more attribute values) into a transformation. We imagine this may be accomplished by

mapping Edits to transformations using model element types and attribute types.

53

5.3 BEHAVIORAL DEFINITION LANGUAGE

Figure 5-12 Behavioral Definition Language Meta-Model

The Behavioral Definition Language allows for the declarative description of the editing

behavior for an editor of a graphical language. The metamodel focuses on defining the

main structures needed for reasoning about editor behavior in an abstract way that is

conceptually close to elements defined in the DSL using its own syntax in Patterns used to

find applicable editing behaviors.

5.4 MODELING A BEHAVIORAL DEFINITION

We will here present an example Behavioral Definition, using BDL's (not formally defined

in this thesis) graphical syntax, as we feel this is the best way to explain the concepts

concisely.

54

Mapping Model

DSL-MM DSL-GD

Modeling a DSL including a

Behavioral Definition

BD

Figure 5-13 Behavioral Definition creation after mapping

The Behavioral Definition requires knowledge of which elements are mapped to each

other to be able to give a coherent definition of how elements are to behave when

interacted with by the user, and must therefore be created after the mapping has been

accomplished. We will omit the tooling element from this point on as it, although an

integral part of state-of-the-art graphical editor modeling, of little explanatory value once

we have included a BehavioralDefinition.

CombinedFragmentComposite

MoveCombinedFragmentService

CombinedFragment

DSL-MM DSL-GD

seq

BD

MoveCF

Figure 5-14 Example: mapping a BehavioralComposite to its meta-model and graphical definition element

Given a mapping for a CombinedFragment element from the DSL (UML) we may create a

CombinedFragmentComposite that references this mapping element for knowledge of the

DSL elements. This allows us to access both meta-model and graphical definition. In

particular we use a variant of the DSLs graphical definition to render patterns in a BD

graphical syntax. We also define a service called MoveCombinedFragmentService, with an

55

entry trigger Edit called MoveCF. This service will be instantiated every time a MoveCF-type

edit is received from the editor.

SDBehavioralSystem

SequenceDiagramComposite

CombinedFragmentComposite

MoveCombinedFragmentService

MoveOtherCFEqually ScaleActiveCFToContainScaleActiveToNotIntersect

MoveCF

MoveElementService

MoveElement

cf2
cf1

cf2
cf1

cf2
cf1

cf2

cf1

cf2

cf1

cf2

cf1

DeleteElementMoveElementToContain

sd

sd

sd

sd

to_editor : GEFSolutionOut

from_editor : GEFEditIn

to_repository : ReposOut

from_repository : ReposIn MoveElement DeleteElement

MoveCF ScaleCF ScaleCF

Figure 5-15 Example: Simple Behavioral Definition for a Sequence Diagram Editor with all composite

levels visible

The above figure shows a BehavioralDefinition which includes the root-composite

defining the mediators required to communicate with the context; here a GEF editor and

an generic Repository. Internally in the services we show the different editing behaviors

that services may provide, names of behaviors are shown above the patterns. The use of

56

"box-arrows" that "slide" into the next is not without consideration; although not explored

in this thesis we may imagine the search for solutions to be possibly quite time consuming.

For a toolsmith the ordering of editing behaviors from left to right can be used to

prioritize the order in which the behaviors are pattern matched. Allowing the toolsmith to

put the most likely behaviors first.

In this view the behaviors use the DSLs graphical syntax (relaxed, so that we may show

actual illegal syntax) to render the left-hand-side and right-hand-side patterns. The black

arrows in between denote the direction of the transformation rule. At the bottom of every

behavior we show what kind of Edit it produces and sends back to the Editor for user-

selection. This allows toolsmiths to quickly see whether or not they have defined services

capable of supplying editing behaviors problems created by Edits stemming from other

editing behaviors (which we have not in the figure above; we lack services capable of

handling inconsistencies from ScaleCF and DeleteElement).

Figure 5-16 Example: Edit hierarchy

Another aspect of Figure 5-15 worth mentioning, but that is not explored in this thesis, are

the Services in the DiagramComposite. Figure 5-16 shows that MoveCF is an extension of

MoveElement, meaning that we may trigger both services when receiving a MoveCF. In

this way we may have fundamental services in the DiagramComposite (e.g. MoveCF may

also mean that it has moved outside of the Diagram; move it in again so it is contained).

while having specialized services in the internal composites.

57

MoveOtherCF_Same

LHS in H(0)

RHS

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf2.p = diff(H(1).cf1.p, H(0).cf1.p))

Edit e = new MoveCF(H(0).cf2, cf2.p);

assertRHS(cf1 -> intersect(cf2) implies cf2 -> inside(cf2))

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

cf1 :

CombinedFragment

<<Active>>

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

Figure 5-17 Example: Editing Behavior MoveOtherCF_Same

When viewing just an editing behavior we expand its complexity. We denote negative

application conditions with dotted lines in LHS. This editing behavior (EB1 later in the thesis)

is capable of solving a problem with intersecting CombinedFragments, where one is not

inside the other, by moving the other element (cf2) the same amount as (cf1) was moved by

the Edit that initiated the service (MoveCF).

The Action-block of the editing behavior, in between the patterns, contain assertions and

expressions. Importantly the assertions of the LHS and RHS check all the predicates (the

OCL statements defined on GDSQ) "just in case" the structural model is not consistent

with the spatial attributes defined within the Symbols (e.g. the relationship intersect exists

structurally, but evaluating a intersects predicate using the spatial data shows that they

don't). LHS sides always refer to the last snapshot, while RHS always refer to the locally

scoped snapshot. Modifications done on elements for calculation in the editing behavior

are always done on a new snapshot scoped within the Editing Behavior. Asserting the

58

validity of the structure in RHS by checking attributes, rather than just structurally

matching guarantees that the editing behavior has done what it has intended (e.g. cf2 might

not have been inside cf1 before, then moving it the same amount would be an invalid

behavior). This is in line with how one may define guards on patterns in ATL [36].

The expression in between the assertions define the calculation needed to find out how far

to move cf2. We use the snapshot in the history to deduce how far it has moved as a result

of the edit that triggered this service. The second line in the expression defines the new

MoveCF edit that will be sent back to the editor. It contains the last snapshot's

CombinedFragment cf2, and a copy of an object of type Point which was created in the

locally scoped snapshot during calculation in the expression.

RHS patterns are actually not used to manipulate a model at all. In regular a graph

transformation setting we would insert instances of the types in the RHS into the model.

We however only use it to represent the consistency creating abilities of the Action, or more

precisely the Edit that is returned to the Editor. It is the Editor that is responsible for

executing the Edit, resulting in the DSL model changing. The RHS does however fill a vital

purpose for the visualization of the editing behavior, especially when we render it using the

DSLs graphical syntax as we have seen in Figure 5-15.

59

5.5 BDL DESCRIPTION

5.5.1 BEHAVIORALMEDIATOR

A BehavioralMediator defines the interaction boundary between an executing behavioral

definition and its context. We may liken a mediator to a application-programming-

interface (API). However as input to a mediator we require messages of type

BehavioralMessage. E.g. a user interacts with an editor, the editor creates an

Edit::BehavioralMessage, and puts this message on a queue in a mediator. The Executing

BehavioralDefinition continuously checks and retrieves messages from the queue.

Similarly we require of an Editor and a Repository that they also check the mediators for

new messages and, importantly, that they do this in a separate execution thread so as not to

lock the editor or repository during editing behavior searches.

5.5.2 BEHAVIORALMESSAGE

Figure 5-18 BehavioralMessages

BehavioralMessage which contains the necessary information to route and/or broadcast

messages between the context and a executing behavioral definition, and internally

between components in an executing behavioral definition. The instances of

BehaviorlMessage, not marked as <<metaclass>> defined in the diagram above must be

60

handled by a BehavoralDefinition editor and repository integrator in accordance with BD

execution semantics. In particular Rollback is the only BDL pre-defined Edit, used to allow

Editors to send Rollback Edits as solutions to inconsistencies stemming from a previous

Edit (which resets the executing BD to a non-searching state).

We refer to chapter 5.6 on Execution Semantics for details of the messages that an executing

behavioral definition expects to receive and send with the context, and in which order.

5.5.3 EDIT

Edit is abstract and needs to be extended by a BD developer. Edits are BDL

representations of attempted edits on the model via an Editor, versus an actually executed

edit on the model. This distinction is important as BDL views Edits as "not yet executed",

meaning that we liken them to queries stemming from the Editor about whether or not a

particular Edit will result in a consistent model. We refer to "Figure 5-16 Example: Edit

hierarchy" for a concrete example of Edit extension.

5.5.4 BEHAVIORALOBJECT

The main abstraction in BDL. Allows us to extend the JavaFrame ActiveObject to be

able to inherit a runtime. It provides attributes to name services and composites. It

additionally contains an identifier required if we need to route messages between elements.

5.5.5 BEHAVIORALCOMPOSITE

A BehavioralComposite is a composite structure that encapsulates the editing behavior

of a particular element in the DSL. It may contain multiple services, in addition to multiple

children BehavioralComposites. The RootBehavioralComposite is a special type of

BehavioralComposite. It contains the mediators(ports) needed to communicate with the

context, such as an Editor and a Repository.

A BehavioralComposite is a static structure, different from BehavioralServices that are

dynamic. Composites act as wrappers for BehavioralServices and are responsible for creating

instances of services when Edits are received.

61

5.5.6 BEHAVIORALSERVICES

BDL employs service-orientation to group editing behaviors together so that we may have

multiple services running at once, each capable of searching for editing behaviors in

parallel. BehavioralServices are created when messages of type Edit are received.

BehavioralComposites are responsible for actually creating instances of BehavioralServices.

5.5.7 EDITINGBEHAVIOR, PATTERN AND ACTION

An EditingBehavior is a named element and is a BDL equivalent of a graph

transformation rule.

Pattern: It has associations to both LHS and RHS patterns. We may generalize the

pattern-element in the BDL meta-model to a pattern in some other meta-model (like ATL

or QVT), so that we may in the future import the pattern matcher component in the

framework. We can also allow for the BDL user definition of the super-type of Pattern if

the user has a preference for a concrete pattern matching component.

Action: Actions have assertions and expressions. The assertions help us determine the

editing behaviors applicability to the current problem in addition the LHS pattern.

Expressions contain any calculations or logical statements needed to create a new Edit and

populate its attributes with values.

5.6 BEHAVIORAL DEFINITION: EXECUTION SEMANTICS

In this section we will discuss the execution semantics of a Behavioral Definition. We

require several more entities that those that are defined in a Behavioral Definition to be

able to search for editing behaviors. We refer to the sequence diagrams in this chapter for

these entities.

As we have mentioned earlier, there exists considerable efforts within the research

community to formally define model and graph transformations. To create a formal search

and pattern matching strategy is beyond the scope of this thesis. What we therefore

propose is a simple rule-finding strategy that lacks formal backing, but that can find isolated

solutions to problems when we do not consider its implications, but leave this up to the

user for selection. We do this by assuming the existence of two major components: a

62

repository capable of producing inconsistent models, snapshots and converting Edits in to

transformations, and a pattern matcher capable of matching our LHS patterns to the

inconsistent models. The search strategy is dictated by the structure of BDL (composites

and services) and our choice of communication paradigm. The concrete pattern matching

strategy we leave to an external entity as this also is beyond the scope of this thesis.

5.6.1.1 Our solution finding strategy

The strategy we have chosen is a simple one; any BehavioralService that can accept the Edit,

defined via its entryTriggers, is initiated no matter where in the composite-hierarchy they

exist. We do this by broadcasting the Edit throughout the BehavioralComposite hiearchy. This

via a special Coordinator entity in every composite, capable of creating services and routing

messages. Another execution specific entity, called Archive, receives the Edit and queries the

Repository via a BD-defined BehavioralMediator for repository communication, for any

constraint violations pertaining to the a current stack of Edits.

The Archive maintains a stack of Edits so long as the Repository responds with CheckNOK

on the stack. Once all Edits on the stack result in a CheckOK from the repository (meaning

that the stack of Edits, evaluated atomically in the Repository, do not violate any constraints

in the DSL). A CheckNOK consists of a set of models capable of representing the

inconsistency in a consistent model w.r.t. to constraint-wise relaxed DSL model.

If a CheckOK is received from the Repository we return the current stack of Edits to the

Editor for it to execution. In the intermediate time between returning the stack to the

Editor, and receiving a NotifyUpdate from the Repository, we lock the Archive. This to

ensure that we may not try to handle any other Edits in the time being.

If a CheckNOK is received from the Repository we send an EditNOK to the Editor containing

the current stack of edits deemed illegal. We assume the editor itself realizes that a roll-back

is one of the solutions and adds it to the solution view. The CheckNOK contains two model

snapshots: one of the repository model with the Edit stack not applied (called H(1)), and

one of the repository model with the stack applied (and inconsistent w.r.t. the DSL) called

H(0). We define that snapshots are objects local to the Archive, and that any service may

reference to these objects but not modify. When services modify snapshots they do so on

ones that are locally scoped.

63

The CheckNOK is broadcasted to all services currently in session (those created by the

previous Edit). The services search for EditingBehaviors matching the current

inconsistencies in the H(0) models, use information from the snapshots to create new

Edits, and return this Edit within a Solution message to the Editor. This searching process

continues until the user has selected an Edit, upon which we terminate all current searches,

and start the entire process all over. Adding the selected Edit to the stack, on top of the

previous Edit. Unless the Edit is a Rollback::Edit. Then we remove all Edits from the stack

and terminate all searches, finally responding to the Editor with EditOK and a empty stack.

5.6.2 GENERIC SOLUTION FINDING INTERACTION

Executing Behavioral

Definition

BehavioralSystem :

RootBehavioralComposite

ref BS_DecisionMaking

Figure 5-19 Executing Behavioral Definition ↔ BehavioralSystem

The following sequence diagrams and statemachine diagram depict how a generic

Behavioral Definition would flow during execution. We view the Executing Behavioral

Definition element in our meta-modeling architecture figure (Figure 5-3) as equal to the

Lifeline called BehavioralSystem in the context sequence diagram.

64

Searching

Editor

BehavioralSystem :

RootBehavioralComposite

ref BS_Searching

e1:Edit

CheckNOK(snapshots)
EditNOK(stack)

User

ref
UserPerformsEdit

loop [DSL constraints violated]

Repository

Check(stack)

loop(i = 0; i++)

Solution(i:Edit)
DisplaySolution(i:Edit)

SelectSolution(ex:Edit)

ex

Check(stack)

CheckOK
EditOK(stack)

DisplayResult

CommitChanges

ej:Edit := e1;

stack.add(e1);

ej:Edit := ex;

stack.add(ej);

break

NotifyUpdated

DisplaySolutionView

opt

Figure 5-20 Searching : Context

This interaction specifies the generic interactions between a User, Editor, Executing

Behavioral Definition, and Repository. We use the abstract message Edit in place of BD-

defined Edits.

65

BS_Searching

loop

Archive :

JavaFrame::ActiveObject

child :

BehavioralComposite

ref CBS_Searching

Coordinator :

JavaFrame::ActiveObject

e1:Edit

ej

stack.add(ej);

Check(stack)

CheckNOK(snapshots)

p : Problem(stack, CheckNOK)

EditProblem(stack)

<<broadcast>> CheckNOK

loop(i = 0; i++)

Solution(i:Edit)

DisplaySolution(i:Edit)

break

ex:Edit
<<broadcast>> terminate(ej)

ej

stack.add(ej);

Check(stack)

CheckOK

EditOK(stack)

EditOK(stack) stack.clear();

setState(LOCKED);

<<broadcast>> ej

<<broadcast>> ej

ej:Edit = e1;

ej:Edit = ex;

NotifyUpdated

stack.clear();

setState(IDLE);

opt

Figure 5-21 Searching: RootBehavioralComposite

This sequence diagram depicts the internal interactions of a generic

RootBehavioralComposite. Coordinator and Archive are of type JavaFrame::ActiveObject, so

that we may define them using UML in a future prototype. The special case where the

solution selected by a user is a Rollback (in place of ex : Edit) would result in the

Coordinator not broadcasting it, while the Archive would clear its stack, add the Rollback

66

and reply with an EditOK(stack). Clearing the stack afterwards. Internally in the system we

only use one internally defined BehavioralMessage; Problem. Problems acts as wrapper

messages to be able to send both the current stack and the snapshots to the Coordinator.

The stack is used to tell the Edit exactly what stack has not been permitted, while the

CheckNOK is extracted and broadcasted to all children of this composite.

CBS_Searching

loop

Coordinator :

JavaFrame::ActiveObject

ej

service : BehavioralService

ref SCBS_Searching

serviceWithEntryTrigger(ej)

child :

BehavioralComposite

ref CBS_Searching

<<broadcast>> ej

CheckNOK

<<broadcast>> CheckNOK

<<broadcast>> CheckNOK

<<broadcast>> ej

loop(i = 0; i++)

Solution(i:Edit)alt

Solution(i:Edit)

break

<<broadcast>> terminate(ej)

Terminate

<<broadcast>> terminate(ej)

<<broadcast>> ej

Solution(i:Edit)

opt

Figure 5-22 Decision Making with Behavioral Definitions : BehavioralComposite

This sequence diagram depicts the internal workings of a generic BehavioralComposite. At

some first level in the hierarchy we would have a composite for a diagram element, along

67

with services for common Edits. The Lifeline child decomposes into CBS_Searcing to show

that we repeat this interaction throughout the composite hierarchy.

BehavioralService

Idle

Problem / PatternMatcher.searchForMatch(editingbehaviors, snapshot.last)

Waiting

EditingBehavior

Terminate, SearchExhausted

[EditingBehavior.checkActionAssertions()]

/ send Solution to coordinatorService

! [EditingBehavior.checkActionAssertions()]

Figure 5-23 Internal workings of a BehavioralService

The above statemachine shows the internal workings of a generic BehavioralService, and

how it finds solutions to problems with the Edits. First the service is initialized as the result

of an Edit. Then it waits for the CheckNOK-message, containing the model snapshots

needed to match editing behaviors against. It then takes its internally defined list of

EditingBehavior instances and gives the list, along with the last snapshot to some matcher

capable of matching a EditingBehavior instance's left-hand-side Pattern with the last

(inconsistency representing) snapshot. We assume that this matcher returns a single match

at a time by creating and sending EditingBehavior message. We do not depict the Pattern

Matcher as its own Lifeline is the previous sequence diagrams, as we imagine the pattern

matcher may either by a separate entity, or an internal entity in an executing behavioral

definition.

We then run the assertions defined on the Action (similar to an ATL Action block [36]). If

the assertions pass we extract the Edit instance created by the Action, and insert it into a

Solution-message and send it to the Coordinator. If the user selects this Edit the Editor

merely sends the back Edit to the BehavioralSystem in the same manner as when sending a

68

regular user-created Edit. And we may repeat the entire process once again, in case new

constraint violations have been introduced.

5.7 INTEGRATING A BD INTO AN EDITOR AND REPOSITORY

Once a BehavioralDefinition for a DSL has been created we can integrate it into an

existing Editor. We imagine this may be done by importing BD interaction boundary elements

into a model similar to a GMF Generator Model capable of using BD-elements, and

converting user-initiated edits on the diagram into BDL Edit-type. Interaction boundary

elements between Editor and a executing BD consist of: instances of BehavioralMediators.

Instances of elements extending Edit, Solution, EditOK and EditNOK. Interaction boundary

elements between a Repository and a executing BD consist of: CheckOK, CheckNOK,

Check, and NotifyUpdated.

69

6 EXAMPLE: PROBLEM 1

In this chapter we will formally analyze the possible editing behaviors that an editor may

initiate in reaction to a given Edit (E1) that would result in an inconsistent DSL Instance

(model R) if given to the repository and being allowed to commit; we call this problem

Problem 1. We will see how we may view Edits and Editing Behaviors as transformation

rules, and how we may use a Behavioral Definition to handle edits (both user-initiated and

edits stemming from the Behavioral Definition itself) that result in inconsistencies, by

searching for transformation rules (solutions) that match inconsistency patterns in snapshots

of the model capable of representing the inconsistencies. We will show how we then may

return these solutions back to the editor for presentation to the user. One a solution

selected, we treat it in the same way as the user-initiated edit E1. By delegating the

responsibility of transformation rule selection to the user, we remove several complexities

involving deduction of user intent, and the possibility of cascading and never-ending

transformation rule cycles due to rules competing and/or creating more inconsistencies. In

the following we will employ a variant of the UML specification for Interactions [4],

simplified for the sake of readability. We call it Simple-UML.

6.1 FROM CONSISTENT TO INCONSISTENT

seq

seq
lf1 : Lifeline

lf2 : Lifeline lf3 : Lifeline
cf1 : CombinedFragment

cf2 : CombinedFragment

Figure 6-1 Graphical representation of Model R

70

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

inside

Figure 6-2 Model R conforming to GDSQ

In this chapter we will make heavy use of "Figure 2-11 Graphical representation of Model

R" as the initial consistent diagram and its model representation (R) for our analysis of

Problem 1. Repeated again here for readability.

SequenceDiagram

lls

<<predicate>>

disjoint
Lifeline

1

1

*

CombinedFragment

<<predicate>>

intersect

0..*

0..*

cfs
*

<<operator>>

implies

1

<<predicate>>

inside

1

1

1

Simple-UML MM

GDSQ

CombinedFragment

Lifeline

*

coveredBy

1

*

fragment

Figure 6-3 Abstract and Concrete Syntax Definitions, mapped

71

Using the format of a mapping-element given in Figure 3-7, but excluding the tooling

element we define the in Figure 6-3 a map of meta-model and graphical definition for

Simple-UML; the rules and constraints in the meta-model are given by a MOF-type

diagram, while the constraints in the graphical definition is given as a sub-set of GDSQ,

excluding the frame/interaction. We will still call the model GDSQ in the following. The

constraints placed on the graphical syntax are the same those given in 2.2.1.3, only

excluding the constraint dealing with containment of Lifelines within the Interaction. Also

for the sake of readability we will only focus on the elements which are instances of

GDSQ-element, and not include elements from the meta-model in our problem analysis.

CF2

CF1

Figure 6-4 Problem 1: State during user-interaction which is illegal to commit to model: intersecting

CombinedFragments.

From the consistent diagram the user attempts to accomplish the situation given in Figure

6-4. The user uses a movement-tool to move the outer CombinedFragment (cf1) translated

by the Editor in an Edit (E1) which contains the element under manipulation and the

values of the desired attribute modifications.

It now intersects a new Lifeline, does not intersect a previously covered Lifeline, and is

intersecting with the previous inner CombinedFragment (CF2) which is no longer inside

CF1. For the Editor E1 poses multiple questions that needs answering.

1. Who do we need to ask to find out if the Edit is consistency preserving (meaning

that it results in a consistent model)?

2. What do we do if we find that the state is illegal (meaning an execution of the Edit

would result in an inconsistent model?

72

To answer the first we need to examine the constraints and rules defined in the syntaxes of

the DSL (abstract and concrete, meta-model and graphical definition). There exists no

constraint violation from this new state in the meta-model, but there does exist a constraint

violation in the graphical definition. This constraint states that the graphical elements of

CombinedFragments are not allowed to intersect in a valid Diagram if a

CombinedFragment graphical element is not inside another. The violation of the

constraint in the graphical definition gives us the following inconsistent model G (which is

the same as model G in 2.2.1.3):

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

Figure 6-5 Inconsistent model G: dangling implies with missing inside relation

The inconsistency is in the model (Figure 6-5) the lack of a relationship between the implies-

node (imp1) to the relationship inside (since GDSQ defines a 1-multiplicity on the

relationship between an Implies instance and an inside-instance). We may also deduce this

from evaluating the OCL constraints using the values in E1.

73

6.1.1 PROBLEM SOLVING WITH EDITING BEHAVIORS

Spatial

Spatial

Structural

Destructive

Non-

destructive

Figure 6-6 Solution space when reasoning about graphical definitions that define spatial attributes

There are several possible solutions to the situation given in Figure 6-4. We call solutions

instances of Editing Behaviors; meaning that we may find an Editing Behavior capable of

responding to the problem of inconsistency, but are in fact not solutions until they have

been actually executed upon the model, resulting in an consistent model. We have an

infinite number of possible solutions as we work with a model for graphical representation

that includes the concept of 2-dimensional spaces. Our conceptual language GDL uses a

combination of E-GDL and GIS extended OCL (both languages that use spatial

attributes). A solution in this domain needs to include the positions and dimensions of the

graphical elements. Since any x and y-coordinate in theory may be between 0 and

approaching ∞ the solution-space itself approaches ∞ in size. The solutions below

therefore only represent a small sub-set of the spatial solution space. However, if we

examine the solution space using exclusively the structure of the models like that given in

GDSQ we find that we may drastically reduce it. We may also further reduce the solution-

space by defining a requirement on the possible Editing Behaviors:

1. Requirement: Editing Behaviors should not be destructive for modifications or

creations. They should not delete any symbols from either of the models unless the

Edit in question is of a deletion-type.

EX(a)

Figure 6-7 An user-initiated Edit on a symbol a

74

The above graphical notation denotes a user-initiated edit on a symbol a. In our case an

edit E1 on a symbol cf1, depicted below. We may write this formally using a graph

transformation notation as:

𝑅 {𝑃𝑟𝑒}
𝐸 𝑎
 {𝑃𝑜𝑠𝑡} 𝐺

where R is the initial consistent diagram, the function E(a) is as defined above, and G is

the resulting diagram, either consistent or inconsistent depending on E(a). We also show

pre- and post-conditions for the edit E(a) with {𝑃𝑟𝑒} and {Post}, respectively. This

allows us to show what must be true in the diagram before the edit, and what is true in the

diagram after the edit. We state that these truth of these conditions are representations of

the relationships in the model, and we define them using the GIS-extended OCL syntax.

When we express that relationships do not exist in the model in pre and post conditions we

will use the ! character as a logical not. When we are expressing bi-directional relationships

in the notation we only define one uni-directional relationship for conciseness.

The exact contents of an edit E can be either; a structural modification (e.g. a deletion or

creation of an symbol) or an attribute modification (e.g. modifying the spatial position of

an symbol) or both.

CF2

CF1

CF2

CF1

E1(cf1)

Figure 6-8 Graphical representation of E1

For the edit E1 was may then say that:

𝑅 𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1

𝐸1 𝑐𝑓1

 𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓2 𝐺

75

Here we exclude some relationships and refer to the models R and G for all the

relationships. The interesting one, however, is the disappearance of the relationship with

name inside (the two negations of the expression that use the predicate inside in the post-

conditions of E1) creating the inconsistent model G with respect to its meta-model GDSQ.

By reducing the solution space and employing our knowledge about the DSL (GDSQ) and

the information in the current diagram we find the following solutions:

1. Move CF2 the same amount as CF1, moving CF2 inside CF1.

2. Positive scale CF1 along its y-axis so that CF2 is inside.

3. Negative scale CF1 along its y-axis so that CF1 no longer intersects with CF2.

4. Roll-back to G, undo E1.

EBX(b)

Figure 6-9 An editor-initiated edit performed on a symbol b

This graphical notation denotes an edit resulting from an EditingBehavior on a symbol b.

We treat in the same manner as a user-initiated edit and may therefore use the same

graphical and textual notation to show how it would affect the inconsistent model G. We

define chain of edits as:

𝑅 𝑃𝑟𝑒
𝐸 𝑎
 𝑃𝑜𝑠𝑡 𝐺 𝑃𝑟𝑒

𝐸𝐵 𝑏
 𝑃𝑜𝑠𝑡 𝐺′

where G' is the resulting model of the editing behavior EB(b). This model may be either

consistent or inconsistent as we do not attempt to reason about all the possible implications of

an editing behavior, only its defined effects in its post-condition.

6.1.1.1 Defining the Editing Behaviors

We excluded pre and post-conditions of E1 to shorten the statements and refer to them

now as: p1 and p2. We will now define the 4 solutions in the previous chapter, named

respectively EB1 through 4.

76

- EB1:

EB1(cf2)CF2

CF1

CF2

CF1

CF2

CF1

E1(cf1)

Figure 6-10 EB1 : graphical representaiton

𝑅 𝑝1
𝐸1(𝐶𝐹1)
 𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵1 𝐶𝐹2
 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑐𝑓2 , 𝑐𝑓2

→ 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1 → 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)} 𝐺′

- EB2:

EB2 CF2

alt

CF2

CF1

E1(cf1) CF2

CF1 CF1

Figure 6-11 EB2 : graphical representation

𝑅 𝑝1
𝐸1(𝐶𝐹1)
 𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵2 𝐶𝐹1
 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑐𝑓2 , 𝑐𝑓2

→ 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1 → 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)} 𝐺′

- EB3:

EB3 CF2

alt

CF2

CF1

E1(cf1) CF2

CF1 CF1

Figure 6-12 EB3: graphical representation

77

In this solution we do not need to represent the no longer existing relationships of type

inside as the entire implication is removed by removing the intersects relationship.

𝑅 𝑝1
𝐸1(𝐶𝐹1)
 𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵3 𝐶𝐹1
 {! 𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑐𝑓2 } 𝐺′

- EB4:

EB4 CF2

CF1

CF2

CF1

E1(cf1) CF2

CF1

Figure 6-13 EB4: graphical representation

In this solution we roll-back to the initial model R. EB4 therefore restores E1's pre-

conditions p1.

𝑅 𝑝1
𝐸1(𝐶𝐹1)
 𝑝2 𝐺 {𝑐𝑓1 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑐𝑓2 , ! 𝑐𝑓2 → 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑓1 , ! 𝑐𝑓1

→ 𝑖𝑛𝑠𝑖𝑑𝑒(𝑐𝑓2)}
𝐸𝐵4 𝐶𝐹1
 {𝑝1} 𝐺′

Of the behaviors above it is reasonable to assume that EB1 is the most likely to be

implemented by toolsmiths; it is common that symbols spatially inside another are moved

with the same ∆x and ∆y as its containing symbol, as is the case in [5, 26]. However we

may also envision a situation in which this should not be implemented; if the symbol was

not inside another symbol in the initial model R, but are intersecting in the model G. Then

moving CF2 with the same deltas as CF1 would not be very reasonable.

We may also imagine a situation where we do not want to move CF2; for instance by a

locked attribute or if the user anticipates that moving it will result in further inconsistencies

in the model. Then the behavior to execute would be EB2 or EB3, where we scale or

shrink the Active-element and don't alter CF2. We may say that EB3 is perhaps the least

plausible intention of the user if we employ our domain knowledge of UML and sequence

diagrams, but nonetheless results in a consistent diagram state, as does the revert behavior

EB4.

78

6.1.1.2 Possible Destructive Behaviors

EB5CF2

CF1

E1(cf1)

CF1

CF2

CF1

Figure 6-14 EB5 : Destructive behavior

EB6CF2

CF1

E1(cf1) CF2CF2

CF1

Figure 6-15 EB6 : Destructive behavior

The above 2 behaviors EB5 and EB6 we deem, although possible solutions, too

destructive for implementation as they both delete one of the elements in response to an

edit that was not a deletion-type edit.

6.1.2 EDITING BEHAVIORS AS MODEL TRANSFORMATIONS

The previous chapter helped us visualize and formalize the process of finding editing

behaviors for the given problem 1 resulting from the edit E1, and that edits and editing

behaviors resemble graph-transformation rules; We have left-hand-sides (LHS) of graphs

and pre-conditions (graph-patterns), right-hand-sides (RHS) of graphs and post-conditions

(graph patterns), with the EB's and E's between as graph transformations. We will now

show how we can use concepts from graph and model transformations to find solutions to

inconsistent models resulting from edits.

6.1.2.1 How Behavioral Definitions manage Inconistencies

A BD's response to inconsistencies is non-monolithic and step-wise, allowing the user to

determine the most appropriate transformation at every step. BDL does not differentiate

between an inconsistency stemming from an Edit performed by a user, or an inconsistency

79

created by a matched transformation rule that a BD has presented to the editor as a

solution. This allows us to view Edits and Edits from Editing Behaviors in the same way

and with the same formalism, as we have done in 6.1.1.1. Both Edits and Editing

Behaviors may create inconsistent models, in which case we again try to match the new

inconsistencies with transformation rules.

DSL Instance

Model Diagram

Executing Behavioral

Definition

GRR t(R)

Figure 6-16 Building G

The Executing Behavioral Definition queries the repository of the DSL instance which

finds that no constraints are currently violated. Here a transformation t is an initial

transformation rule that transforms the model R (Figure 2-10 Model R conforming to

GDSQ) into some model GR that is an instance of a meta-model we call I, capable of

representing inconsistencies. As t is a non-modifying transformation (just transforming

from a model conforming to GDSQ to a model conforming to I), and I is the same model

as GDSQ with relaxed constraints then R and GR are consistent. Formally:

 𝑅, 𝐺𝐷𝑆𝑄, 𝐼, 𝐺𝑅 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅 ∧ 𝑡 𝑅 = 𝐺𝑅

⇒ (𝑐𝑐𝐼 𝐼, 𝐺𝑅 ∧ 𝑐𝑐𝑡 𝑅, 𝐺𝑅 ∧ 𝑐𝑐(𝐺𝑅 , 𝐺𝐷𝑆𝑄)

where t is a non-structurally and attribute modifying transformation. We may say that the

transformation is endogeneous.

R = 𝐺𝑅

Next the Executing Behavioral Definition receives an Edit E1. Any service capable of

handling the Edit is initiated. The Executing Behavioral Definition queries the repository

asking for a model which is a transformation of R equal to what is defined in E1. We call

the transformation tE1. It structurally transforms and modifies the relevant attributes

according to the edit E1 and produces the model G.

80

DSL Instance

Model Diagram E1

Executing Behavioral

Definition

GR tE1(R)

Figure 6-17 Building G

Here G does not conform to GDSQ, as it is a model that breaks a consistency in GDSQ.

It does however conform to the relaxed meta-model I. Formally:

 𝑅, 𝐺𝐷𝑆𝑄, 𝐼, 𝐺 ∈ 𝑀𝑜𝑑𝑒𝑙 ∶ 𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅 ∧ 𝑡𝐸1 𝑅 = 𝐺

⇒ (𝑐𝑐𝐼 𝐼, 𝐺 ∧ ¬ccGDSQ GDSQ, G)

The following figure depicts the model G (same as in Figure 2-12) represented again here

for readability.

lf1 : Lifeline lf2 : Lifeline

disjoint

lf3 : Lifeline

disjoint

disjoint

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

intersect

intersect

intersect

intersect

imp1 : implies

Figure 6-18 The resulting G model from the transformation tE1(R).

We see here the necessity of transforming into a separate model G that conforms to a

special meta-model I capable of representing inconsistencies in GDSQ. GDSQ denies the

existence of the above model; 2 CombinedFragments may not intersect without one being

inside the other.

Our task (with a Behavioral Definition) is therefore to find a set of transformations capable

of creating a model R' which is consistent with GDSQ while at the same time trying to

81

maintain the attribute modifications (for E1) and structural modifications (for some other

Edit, e.g. a deletion) of the transformation tE1 (edit E1). Formally we may say:

𝐺𝐷𝑆𝑄, 𝑅, 𝑅′ , 𝐺, 𝐺 ′ , 𝐼 ∈ 𝑀𝑜𝑑𝑒𝑙, ∀ 𝑡𝐸 ∈ 𝐸𝑑𝑖𝑡𝑜𝑟, ∃ {𝑡𝐸𝐵1, … , 𝑡𝐸𝐵𝑛−1 }

∈ 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

∶ 𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅 ∧ 𝑐𝐼 𝐼, 𝐺 ∧ 𝑡𝐸 𝑅 = 𝐺 ∧ 𝑡𝐸𝐵1 𝐺

= 𝐺1 ∧ … ∧ 𝑡𝐸𝐵𝑛−1(𝐺𝑛−1 = 𝐺𝑛 = 𝑅′ ⇒ 𝑐𝑐𝐺𝐷𝑆𝑄 𝐺𝐷𝑆𝑄, 𝑅′

Meaning that for any edit E in the Editor there exists a ordered set consisting of editing

behavior transformations {𝑡𝐸𝐵1, … , 𝑡𝐸𝐵𝑛−1 } existing in a Behavioral Definition, capable

of rendering the target-model 𝐺𝑛 of the transformation 𝑡𝐸𝐵𝑛−1 a consistent model w.r.t.

GDSQ. This definition is however somewhat problematic.

6.1.2.2 Cascading transformation rules and coordination

We cannot guarantee that we will not end up with an infinite long set of transformations

based on editing behaviors. Never capable of producing a model that conforms to GDSQ.

If we have multiple conditions we may also have rules that, while fulfilling one or more

conditions, make others inconsistent. Thus if we attempt to automatically infer what

transformations to execute we may find ourselves in non-terminating transformation

process. One possible solution is to have more generalized rules that solves multiple

inconsistencies at once, ideally solving any problems in the model by a single

transformation. Although it might be theoretically possible to great such a "super"-

consistency-creating-transformation, it would certainly be a cumbersome process and

would affect both modularization and changeability [43]. We however do not need to take

this into consideration as we never try to infer the "correct" behavior to initiate, but merely

give the user a list of possible solutions that might result in consistency, but might also

result in inconsistencies. This is similar to how syntax direct textual editors work; they may

give suggestions of how to fix a syntactic error in the code, but never guarantee that any

suggestion will not introduce more errors.

82

6.1.3 STRUCTURAL PATTERN MATCHING AGAINST RULES

A common matching strategy [35] for rule application in graph transformations is looking

for a match 𝑚 ∶ 𝐿𝐻𝑆 → 𝐺 of the left-hand side into a host graph. A match is then a total

mapping, i.e. were each object of LHS is embedded in the graph G. If a variable occurs

several times in the rule's LHS they must be matched with the same value. There may be

multiple matches of the rule's LHS into the host graph, or there may be no matches at all.

In the last case the rule is not applicable. A rule is applicable if all its negative application

conditions (NAC) and other positive application conditions (PAC) are met [32].

The second step entails taking the matching pattern found for the rule's LHS and take it

out of the host graph and replace it with the appropriate matching pattern for the rule's

RHS. Since the match is a total mapping, any object o of the rule's LHS has a "proper

image" object m(0) in G. If o has an image r(0) in the rule's RHS, its corresponding

object m(0) in the graph G is persevered during the transformation. Otherwise it is removed.

Objects in RHS that are not in the image of an object in LHS are created during the

transformation. Objects of the graph G that are not covered by the match are not affected

by the rule application at all.

The second step is in our approach irrelevant. We do not use the RHS for any actual

transformations, and only for rule visualization. We will explain this in more detail in the

next sub-chapter.

We will denote NACs with dotted lines, meaning that the element does not exists. We also

use dotted lines to show the removal of elements by the rule in RHS.

6.1.4 "HEDGING OUR BETS": STEREOTYPES IN PATTERNS & ASSERTING
ATTRIBUTE MODIFICATIONS IN ACTIONS

To find a transformation that results in a model with only valid relationships based solely

on structural pattern matching and running a structural transformation is one thing,

defining exactly what the transformation does to the attributes within the model is another ;

the relationships in a graphical definition instance are not possible to create at will just by

structural transformation, but depend on (as in our Problem1) the spatial data in our

Symbols.

83

Our strategy for combating this complexity is relatively straightforward: any transformation

rule also has some action that modifies the relevant spatial attributes where the symbols on

which to modify are defined by matching the LHS pattern to the model. We ensure that

the modifications fit with the transformation with respect to the RHS by asserting the truth

of the predicates of the structural relationships.

Another important aspect is that we require of all transformations that they mark Symbols

that have been modified with the stereotype <<Active>>. This so that we can direct our

Editing Behaviors onto non-active elements so as to differentiate between behaviors that

solve inconsistencies resulting from edits by altering the edited elements, and solutions that

solve inconsistencies by altering non-edited elements. This allows us to define rules that can

only be pattern matched against edited elements instead of pattern matching against the

entire model which can be a time-consuming process. We ignore the possibility in this

thesis of inconsistencies being created by between two non-active elements while the active

element and all its relations are consistent. The default editing behavior is a roll-back that

would fix such a inconsistency.

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

Figure 6-19 LHS : EB1-4

For our Editing Behaviors 1-4 we have LHS pattern Figure 6-19. Here the elements do not

refer to actual symbols in the model, but are named and typed elements that we require

instances of to exist in the model in this exact pattern. In the above figure we see that it is

impossible to infer the direction of the uni-directional inside relationship (that was or never

existed). This is why we will use assertions in combination with model snapshots later.

We have 6 possible RHS patterns that structurally restore consistency to a target-model

with respect to the meta-model GDSQ given the source-model G.

84

cf1 :

CombinedFragment

<<Active>>

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

Figure 6-20 RHS 1: Connect implies to a inside relationship from cf2 to cf1 by manipulating cf2

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

Figure 6-21 RHS 2: Connect implies to a inside relationship from cf2 to cf1 by manipulating cf1

cf1 :

CombinedFragment

<<Active>>

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

Figure 6-22 RHS 3 : Connect implies to a inside relationship from cf1 to cf2 by manipulating cf2

cf1 :

CombinedFragment

<<Active>>

cf2 :

CombinedFragment

intersect

imp1 : implies

Figure 6-23 RHS 5 : Delete the intersect relationship (and therefore implies) between cf1 and cf2 by

manipulating cf1

85

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

Figure 6-24 RHS 6 : Delete the intersect relationship (and therefore implies) between cf1 and cf2 by

manipulation cf1

Of the 6 possible RHS patterns we only will define Editing Behaviors for those that render

a non-active (not stereotyped with <<Active>>) CombinedFragments on the LHS, inside

an LHS active CombinedFragment; i.e. putting the non-active element inside the active.

6.1.5 DEFINING EDITING BEHAVIORS WITH TRANSFORMATION RULES
AND ACTIONS

The Editing Behavior EB1 seeks to restore the inside relationship by manipulation CF2.

This transformation has as NAC that the relationship inside does not exist in the model

(dotted-line). It has as PAC (positive applications conditions) that 2 CombinedFragments exist in

the model and are connected by intersect with a dangling-implication.

EB1

Action:

assertLHS

| modify attributes |

assertRHS

LHS RHS

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

cf1 :

CombinedFragment

<<Active>>

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

Figure 6-25 EB1 as a model transformation with Action on attributes

We further restrict the applicability of EB1 by defining that it may only work on the

element that is not Active (making it Active after the transformation). This ensures that the

Action will not attempt to modify CF1, which is not the intention of EB1. This also in part

solves the problem of irreflexive versus reflexive relationships, and determining what element is

86

supposed to be inside another. The Active stereotype allows us to express that it is the

target-model Active element that we intend to put inside another, and not the source. If this

is the actually intention of the user's initial edit E1 is of little importance since we do not

automatically apply the action.

Another benefit of this structure is that we answer a question posed in 6.1.1.1: what if CF2

was not inside CF1 in the model pre edit E1? If CF2 was not a child of CF1 in the initial

consistent diagram we would not be able to deduce this from the relationships in the

current model using patterns. We can, however, deduce this via assertions in the Action by

referencing snapshots of the previous model (R). If the Action attempts to move CF2

with the same ∆x,y as CF1, and CF2 was not inside previously and assertion of the RHS

relationships using actual attributes and predicates and not only structural relationships will

fail, letting us rule out EB1 as a possible solution.

Action:

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf2.p = diff(H(1).cf1.p, H(0).cf1.p))

Edit e = new MoveCF(H(0).cf2, cf2.p);

assertRHS(cf1 -> intersect(cf2) implies cf2 -> inside(cf2))

Figure 6-26 EB1 Action

The set of snapshots is H (H for history). The most current snapshot is always referred to

as H(0). H(1) refers to the snapshot before H(0). In our case the model pre E1 is H(1)

relative to EB1 during evaluation. The model post E1 is H(0) relative to EB1 during

evaluation. Any attribute modifications always take place on a new snapshot local to the

EditingBehavior, not needing a explicit reference to in the action. To shorten the

statements we say that: a LHS assertion always refers to the H(0) snapshot, while a RHS

always refers to the new local snapshot.We use a hybrid of GIS-extended OCL and Java

notation to define the assertions and actions. The set of snapshots in H are also useful in

that we may deduce the ∆x,y by merely running a diff operation that returns a new point

based on the two distinct positions of CF1 in H(0) and H(1). We use a Point p instead of

our Symbol attributes lx and ly for conciseness.

87

CF2

CF1 CF1

CF2

CF1

CF2

EB1

Action:

assertLHS

| modify attributes |

assertRHS

Figure 6-27 Assertion is ok for LHS, fails for RHS

The figure above shows the a valid LHS, but where CF2 was pre edit not inside CF1. We

may say that CF1 has in fact move onto CF2. Since EB1 LHS matches the current model

(intersecting CombinedFragments) we may try to use EB1 to move CF2 the same amount.

This does not result in the attributes being modified in such a way so that the assertion of

RHS passes (intersecting and an active CF2 inside CF1) and EB1 is marked as not

applicable. We leave it up to the reader to imagine if EB2 is applicable in this situation.

88

6.1.6 DEFINING THE MOVECOMBINEDFRAGMENTSERVICE

First we define a MoveCombinedFragmentService which will contain the solutions. We also

define what Edit(s) will trigger it and make it participate in any search for solutions to

problems.

MoveCombinedFragmentService :

BehavioralService
MoveCF

Figure 6-28 Basic MoveCombinedFragmentService

Then we define the solutions to possible problems that a MoveCF edit may create.

Internally MoveOtherCF_Same also refers to a concrete action language for creating a

message (Edit e) without actually sending it, just storing it within the Action's scope (we will

use Java). It is up to the service to actually extract this created Edit and send it to the editor.

Exactly how smart an EditingBehavior is depends in addition to the patterns it is capable of

matching, on the complexity of the expressions given in the Action. For EB1 we merely run

a diff-operation on two points from the history of snapshots; finding out how much the

Active CombinedFragment has moved and moving the non-active the same amount.

EB1 : MoveOtherCF_Same is defined previously in this thesis: "Figure 5-17 Example:

Editing Behavior MoveOtherCF_Same".

89

ScaleActiveToContain

LHS

RHS

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf1.dim = Util.calcDimToContain(H(0).cf1.dim, H(0).cf2.dim);

Edit e = new ScaleCF(H(0).cf1, cf1.dim);

assertRHS(cf1 -> intersect(cf2) implies cf2 -> inside(cf2))

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

Figure 6-29 Solution 2 (EB2): ScaleActiveCFToContain

EB2 : ScaleActiveToContain Here the editing behavior acts a bit smarter: We use a static

Util class capable of calculating the needed dimension for one dimension to contain

another. In our case expanding cf1 enough so that cf2 is inside.

90

ScaleActiveToNotIntersect

LHS

RHS

assertLHS(cf1 -> intersect(cf2) implies !cf2 -> inside(cf1))

cf1.dim = Util.calcDimToNotIntersect(H(0).cf1.dim, H(0).cf2.dim);

Edit e = new ScaleCF(H(0).cf1, cf1.dim);

assertRHS(!cf1 -> intersect(cf2))

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

inside

<<Active>>

cf1 :

CombinedFragment

cf2 :

CombinedFragment

intersect

imp1 : implies

Figure 6-30 Solution 3 (EB3) : Shrink Active to Not Intersect

EB3 : ScaleActiveToNotIntersect has a different RHS; it removes the intersects

relationship between cf1 and cf2, and therefore also the implies element. As inside was a

NAC in the LHS and did not exist, is does not exist at all in the RHS.

Now we insert the Solutions into the MoveCombinedFragmentService : BehavioralService,

which itself should be within a CombinedFragmentComposite : BehavioralComposite.

91

CombinedFragmentComposite

MoveCombinedFragmentService

MoveOtherCF_Same ScaleActiveToContainShrinkActiveToNotIntersect

MoveCF

cf2
cf1

cf2
cf1

cf2
cf1

cf2

cf1

cf2

cf1

cf2

cf1

MoveCF ScaleCF ScaleCF

Figure 6-31 CombinedFragmentComposite with MoveCFService

In this view have hidden the details of the Solutions, and based on the LHS and RHS-sides

drawn visual representations of the patterns the solutions match using elements from the

DSL Graphical Definition itself. Highlighted in gray are the <<Active>> elements.

92

7 BEHAVIORAL SYSTEM PROTOTYPE

The prototype confirms two claims in this thesis; that it is possible to define mediators to

communicate with a GEF-based editor at least in part asynchronously, and that it is

possible to generate messages and mediators capable of communicating notifications

stemming from an implementation of the Observable pattern in EMF-repositories to the

prototype. The prototype focuses on the segment of our framework that deals with editor

integration, and does not focus on the validity of using graph transformations and rules to

find possible solutions to inconsistency creating edits. However the prototype was essential

for experimenting with ideas of how to actually create an editor that contains more precise

and formally defined editing behaviors, than state-of-the-art-editor frameworks such as

those that use a programmatic approach. We did by attempting to use UML to describe

editing behaviors. These experiments with the prototype are what eventually led us to the

findings presented in this thesis, and to many concrete paths of examination for future

prototypes within the same field.

93

7.1 INTERACTION BOUNDARY

Figure 7-1 Prototype interaction boundary, user-interface event and editpart notifications

We have tested different approaches of how to integrate a behavioral system into a GEF-

based editor; where to intercept what BDL calls Edits. The development of the prototype

stopped at a point where we intercepted user-interface events and forwarded them (on the

EditDomainUIEventMediator) to representations of the user-interface tools in the prototype.

From there the idea was to translate and deduce the user-interface events into Edits and to

send them to composites and services defined using statemachines and JavaFrame for

examination. We also experimented with having references to all the information required

to reason about editing behavior within the prototype. This is why we have the

EditPartNotificationMediator connected to the RootBehavior, so that we may initialize

Composites with the information contained within EditParts. EditParts are, as described

previously in the thesis, the controller entities in GEF-based editors, giving us access to figures

and both models (DSL meta-model model, and DSL graphical definition model).

Although beneficial for the process of examining where it would be best to place the

interaction boundary between the Editor and the prototype, this approach proved ultimately

to not be the most fruitful. As we have seen previously in this thesis, the interaction

boundary is tied to Edits directly from the Editor, and not to user-interface events.

94

For future work with the prototype we imagine the interaction boundary between an

Executing Behavioral Definition and a GEF-based Editor to exist by intercepting

Requests in EditPolicies. Replacing incrementally those EditPolicies that the BD is capable

of subsuming. In this way we may intercept Requests, translate them into BDL Edits,

present Solutions to the user, wait until one has been selected by the user, and then

ultimately return this stack to the Editor for execution upon the models if no more

consistencies have been introduced (as per Behavioral Definition Execution Semantics).

Translating the stack of Edits into a EMF TransactionalEditingDomain compatible stack of

Commands to be executed atomically in the repository. An added benefit of placing the

interaction boundary within EditPolicies is that we would then be able to quite simply insert

the class responsible for interception in a GMF Generator Model using CustomBehavior

elements (as mentioned previously in this thesis).

Figure 7-2 Example of Request-Command Interaction (from [45])

However there are problems with this approach, and they are related to how GEF handles

sending Requests. Sending Requests in GEF to EditParts is done sequentially with a

method call, and not with a signal or some other form of non-blocking operation. It

effectively locks the editor until a Command has been received in return, as we see in

Figure 7-2. A Delete "tool" calls a getCommand(Request deleteReq) method on an EditPart,

and waits until a ShapeDeleteCommand is returned. This is one of the reasons why we

95

needed to intercept user-interface events in the prototype, as the sending of such events is

non-blocking. We imagine that we may be able to solve this in part by automatically

denying all requests.

An additional complexity stems from the fact that Requests in GEF are sent for every

mouse-event received by a "tool", meaning that a prototype will become flooded with

Requests (translated to Edits) if we forward all of them. To this problem we propose some

counter strategies; to not send Edits to the prototype unless for instance the mouse has

been idle for a set amount of time. This in combination with a hot-key that allows users to

explicitly state that they want solutions to be presented. This hot-key would be absolutely

necessary also to allow users to select a solution using the mouse without generating new

GEF Requests, which would cancel the search process and cause all the solutions to

disappear.

7.1.1 MODEL-LIBRARIES OF MEDIATORS AND MESSAGES AS API'S

Figure 7-3 Model-library for the communication of EditPart Notifications

The prototype confirms an aspect of our framework regarding communication with the

required context, the Editor, by using JavaFrame mediators and BDL messages

(conforming to UML signal). We defined the required messages needed for

communication, created classes stereotyped to be JavaFrame mediators and generated code

functioning as the API between prototype and editor.

96

Although not a part of the definition of our interaction boundary in this thesis, Figure 7-3

shows such an example. The goal here is to intercept Notifications stemming from an

implementation of the Observable pattern and send them as BehavioralMessages to a sub-

system (our prototype) of an Editor, asynchronously and via JavaFrame Mediators.

EPEvent extends a BDL BehavioralMessage. Several other signals extend EPEvent for the

different types of notifications that are sent by EditParts (incorporating the Observable

pattern). The EditPartNotificationMediator acts as the mediator between the prototype and

the EditPart-segment of a GEF-editor. We then transformed this model into its JavaFrame

equivalent. The next step in the process was to inject calls to an instance of this mediator

from within the GEF-editor. To do this we create objects of the

EditPartNotificationMediator, set its scope to the rootmost object in the Editor (in our case

an object BehavioralEditor extending a real sequence diagram editor, SeDiEditor), and then

initialize our Behavioral prototype (called SequencedGEB) from within BehavioralEditor

using a constructor that passed the initialized mediator to the SequencedGEB.

The next step in the process, once we have an initialized mediator connecting the sub-

system (prototype) to the Editor, is to initialize a Listener which subscribes to notifications

capable of sending BehavioralMessages to the mediator. This Listener may either reference

the Editor for access to the mediator, or have a reference passed to it during construction.

We implemented GEF EditPartListener interface on our Listener

(BehaivoralEditPartListener), installed it on EditParts and sent messages using the mediator

for every notification received; e.g. when an EditPart calls the listener's method

childAdded(EditPart child, int index) we send a message EPChildAdded(child) on the mediator

to the prototype.

Although the method given above pertains to EditParts and EditPartListener, we give this as

an example of how to inject a Behavioral Definition into Editors that rely upon the

Observable pattern to communicate important events. For instance, as EMF-repositories

use the same principle as GEF w.r.t. observable pattern we could easily define the BD

execution semantics required message NotifyUpdated.

97

7.2 BEHAVIORAL DEFINITION EXECUTION SEMANTICS

Our prototype does not conform completely to the framework given in this thesis, or to

our definition of BD execution semantics. It did however allow us to experiment and find

what we require of the framework and a future prototype.

Figure 7-4 DiagramBehavior Composite

The prototype development stalled at a point in which we wanted to have a Composite per

GraphicalEditPart in the Editor. GraphicalEditParts are controller entities for graphical

elements in the editor, such as a CombinedFragment, representing actual elements in the

model. The Composites were initialized with information from the EditPart, stored

internally within the Composite in a part called we call Constraints. The idea was to query

this part when Edits were performed to check constraints defined on the abstract and

concrete graphical syntax of the element in question, using a purely programmatic

approach.

Figure 7-4 shows an example of such a composite for a Diagram. We have a Controller

entity responsible for routing messages, creating services and children (InteractionBehaviors

in the figure). Service entities representing parts capable of reasoning about incoming

messages pertaining to editing behavior. And a Constraint part providing an "archive" of

98

information and the current state of the editor element, usable by services when reasoning

about what kind of editing behavior to perform.

The approach of having parts for constraints for each composite within the prototype

proved ultimately not fruitful. It introduced several problems with mutual-exclusion on

data, and in itself generating problems with respect to the interaction boundary. Since we

stored objects received from the Editor, and manipulated them in the Constraint parts, we

also ended up with added complexities regarding initializing and synchronizing the

prototype with the Editor.

This is why we in our framework introduce the concept of a special type of Repository

capable of providing snapshots of inconsistent models. Instead of using actual references

to the model (as we have done via EditPart-storage in Constraint parts), checking constraints

and manipulating values, we leave this up to the Repository and the Editor. Letting an

executing Behavioral Definition (i.e. a future prototype) focus solely on finding Editing

Behaviors using the strategy put forth in this thesis.

Services in the prototype were created with the thought of them being capable of reacting

to a BehavioralMessage and respond with an editing behavior. This by using information

stored in their local Constraint-part and by communicating with other services in other

Composites. In fact we thought of Composites being akin to Agents in an hierarchical agent-

oriented structure, were the hierarchy was given by the nesting of composites, and all

agents having local descriptions of the world using the Constraint-part. The idea was to

define editing behavior using advanced communication between agents; composites and

services communicating with each other to try to find solutions to a problematic edit

performed by the user. This strategy is more or less similar to how EditPolicies in GEF try

to resolve problematic Requests, instead of denying them. EditPolicies in GEF may

delegate Requests to other EditPolicies in order to create a set of Commands capable of

solving the problematic Request. Letting other EditPolicies reason about local issues and

constraints, and returning a Command if it succeeds to the EditPolicy that initiated it.

However, trying to create a similar solution using agents, UML and a separate process for

finding editing behaviors, proved unfruitful.

99

This is why in our framework we do not think of Composites as agents and do not try to

reflect the structure of the Editor in our Behavioral Definitions. Rather we define a

Composite in BDL as a static element.

Instead of having one composite per model element in the Editor (e.g. have a Composite for

each CombinedFragment-EditPart in the Editor) we have in our framework one composite

per element in the DSL (e.g. for a mapping-element for CombinedFragments).

Our concept called services has however remained more or less the same; its responsibility

is to find editing behaviors. However instead of having services that communicate with

other services trying to find a solution that makes a diagram globally consistent, we have in

our framework only services that can find solutions guaranteeing only the consistency

presented by the RHS pattern of an editing behavior. And then repeating the entire

process if the solution selected by the user results in additional inconsistencies.

7.3 FUTURE WORK WITH PROTOTYPES

We assume the existence of several components such as our conceptual graphical

definition language GDL, the special repository and a pattern matcher.

We therefore recommend that future work with the framework should be done

sequentially and with smaller experiments in the following order:

(1) Create a DSL using state of the art methods for its development, defining especially the

graphical syntax formally and within models. This so that all constraints capable of

affecting editing behavior are defined in models. This DSL would be the foundation upon

which the next experiments may be built.

 (2) Create a repository capable of generating models of the DSL that are inconsistent with

respect to it, when constraint breaking alterations are made on the models, instead of

denying them. This would require the definition of a separate DSL with little or no

constraints defined. We also imagine the introduction of special structural elements for

inconsistency representation. So to even further relax the syntax by allowing orphaned

elements etc. This experiment would lay the foundation of the next experiment: matching

100

inconsistent models to patterns of inconsistencies and creating rules capable of fixing

them.

(3) Use BDL concepts and import an existing transformation language like ATL to define

transformation rules that transform "patterns of inconsistency" into patterns of

consistency w.r.t. the DSL. Not reasoning about global model consistency, but just

patterns would greatly simplify this experiment. Of course we may encounter the pitfalls of

such an approach, like the creation of additional inconsistencies and never-ending

transformations if we try to apply the rules automatically, but this could be remedied by the

next experiment.

(4) Create an editor that is capable of presenting rules from the above experiment that

match a current inconsistency as a result of a current user initiated edit, to a user for user

selection. This would give the final responsibility for the applicability of the rules to the

users themselves, letting the users handle the responsibility of global consistency of the

models. On this prototype we imagined multiple additional experiments may be

undertaken, which we will speak of in the next chapter.

7.4 TOOLS: CHALLENGES AND PROBLEMS

A reason for the prototype's immaturity are, in addition to the overall scale of the prototype

(in hindsight) and other reasons, the tools we used to create it. The application Rational

Software Modeler from IBM [26] is based on Eclipse, and is a quite extensive tool for

UML Modeling. It also supports the integration of model transformations, which suited us

well as we wished to transform from UML to Java (JavaFrame). However, we experienced

extensive problems with the tool once the prototype had reached a certain size; random

and frequent crashes when modifying diagrams and model. Consequently at lot of time was

spent trying to find out if we had a problem in the model, or if it was a problem with the

tool. We also spent quite some time investigating whether or not it could be a problem

relating to plug-ins that we incorporate into RSM (IFI-UML-Total tool-package [46]), used

for creating sequence diagrams and transforming to JavaFrame. This was however not the

case as RSM still continued to crash even without these plug-ins, once a model became of

some undetermined size or complexity.

101

After a great deal of examination we believe the problems are related to a bug or several,

regarding OpaqueExpressions and the Properties view in the tool. OpaqueExpressions may

be used in UML models to refer to actual action language expressions within UML

elements, using both a body attribute for the expressions and a language attribute to denote

the language used. We use OpaqueExpressions heavily when creating JavaFrame

compatible UML models, and it was during our work with these that most of the problems

arose.

Another challenge stems from working with tools that are themselves in a somewhat

prototype state, like the transformation engine creating JavaFrame consistent code.

Although JavaFrame is a very stable platform, its UML2JavaFrame transformation is not.

We suspect this to have mostly to do the drift that occurs between two components

intended to be consistent, that necessarily happens when one side is updated more often

that the other. Therefore a lot of time was invested into updating routines in the

transformation-engine to make it more compatible with the UML-meta-model

implementation in RSM.

The prototype development stalled at a point in which we were in the process of changing

expressions of Java-statements into a formal UML-model. We were never able to

complete this process and the prototype is therefore at the moment of writing quite non-

functional, except for some basic functionality for initialization upon Editor initialization,

and for intercepting and changing the state of Tool-statemachines from user-interface-

events. We will in Appendix A give the diagrams of the prototype that we are successfully

able to open.

102

8 CONCLUSION AND FURTHER WORK

This thesis lacks some of the empirical backing needed to conclude whether or not the

approaches laid forth are valid, although extensive examples have been given in an effort

to remedy the lack of a functional prototype. We will in the conclusion summarize our

findings and in the section on Further Work give concrete suggestions for future

examinations within the field of editing behavior for graphical language editors.

It is possible to view editing behaviors as a special form of transformation; as

transformations on "consistent models of inconsistency". Or more precisely; to use

transformation rules that have left-hand-side patterns depicting inconsistent models to find

rules that lead to right-hand-side patterns capable of reintroducing consistency. The

obvious problem with this approach is of course that the transformation itself may lead to

inconsistencies as we do not try to infer its wider-reaching consequences on the model,

other than what is defined in its right-hand-side. We solve this complexity by allowing the

user to decide which transformations to use, allowing an editor to leverage the user's

knowledge with respect to the current model and diagram to solve the inconsistencies. This

is in line with how syntax-oriented editors of textual programming languages solve the

problem of global consistency when presenting syntax and semantic corrections to

programmers; they do not consider it a problem as it is ultimately up to the user to create a

valid program and not the editor's.

Tied to the above is also the conclusion that we require a meta-model capable of defining

the inconsistencies of another meta-model's instances. Our approach for our small

example was to merely create another meta-model which was exactly the same as its

source, only with a 0..1 multiplicity instead of 1. We have shown how such a "model of

inconsistency" may be used in conjunction with transformation rules with

"inconsistencies" in their left-hand-side patterns, to give actions capable of reintroducing

consistency.

With BDL we see the benefits of how a specially tailored language for the definition of

editing behavior may help editing-behavior-developers reason about the consequences of

inconsistency creating edits. By incorporating a DSLs own graphical syntax into both

103

"inconsistent" patterns in the LHS and in consistent pattern in the RHS, BDL allows for a

intuitive, declarative and elegant description of editing behaviors for different situations.

8.1 FURTHER WORK

We believe our approach to the definition and the implementation of editing behavior in

editors for graphical languages deserves further investigation. In combination with the

findings presented in this thesis, and with our findings of working with the prototype, we

recommend 3 concrete steps for further work; (1) experiments examining the consistent

representation of inconsistencies, (2) experiments regarding the determination of

applicability of transformation rules using such an inconsistency representing model , (3)

experiments with how to present the findings of such rule-matching to a user and leverage

their knowledge of both DSL and current diagrams and models to the task of

inconsistency management, simplifying the complexity needed when trying to find valid

editing behaviors.

Several more questions arise if the 3 suggestions are proven to be valid approaches; some

pertaining to the editor and editing behavior, some pertaining to DSLs and editing

behavior. For the relationship between editors and editing behavior: Can we deduce any

automatic behavior from the user-interaction instead of letting users choose every time an

inconsistency is found? Would it be possible to create editors in this manner that

purposefully change the way they auto-correct by learning from previous user selections?

For the relationship between DSL and editing behavior: What can we say about a specific

graphical DSL if edits constantly result in inconsistencies?

Additionally, there already exists an approach similar to the one we have put forth in this

thesis, but it did not become apparent until the very end. DiaGen [33] is a rapid

prototyping tool for creating editors that supports both syntax-directed and freehand-

editing. It uses an internal hypergraph to represent the current diagram state. This

hypergraph may also be used for error-correction and editing behavior deduction. One of

the main problems with DiaGen, and the hypergraph representation is, according to the

authors themselves, that hypergraphs quickly become very large for even small diagrams.

Although similar to our findings in this thesis, it has not, as far as we can tell, been aligned

104

with meta-modeling concepts, but is more closely aligned with classic compiler theory. A

closer examination of DiaGen would be a an interesting approach for further work.

105

9 REFERENCES

1. Eclipse. Graphical Modeling Framework (GMF). Available from:
http://www.eclipse.org/modeling/gmf/.

2. Eclipse. Graphical Editing Framework (GEF). Available from:
http://www.eclipse.org/gef/.

3. Eclipse. Eclipse Modeling Framework Project (EMF). Available from:
http://www.eclipse.org/modeling/emf/.

4. OMG. UML 2.2, OMG Document: formal/2009-02-04. Available from:
http://www.omg.org/spec/UML/2.2/.

5. CEA. Papyrus UML. Available from: http://www.papyrusuml.org.

6. Limyr, A., Graphical Editor for UML 2.0 Sequence Diagrams, in Institute of Informatics.
2005, University of Oslo: Oslo.

7. IBM. Diagram Definition Version 0.1 - Initial Submission. 2009; Available from:
http://www.omg.org/.

8. Gronback, R.C., Eclipse modeling project : a domain-specific language toolkit. The Eclipse
series. 2009, Upper Saddle River, N.J: Addison-Wesley. XXV, 706 s.

9. Sammet, J. The early history of COBOL. 1978: ACM.

10. Schmidt, D., Guest editor's introduction: Model-driven engineering. Computer, 2006: p. 25-
31.

11. Haugen, Ø., Hierarkibegreper i Programmering og Systembeskrivelse, in Institute of
Informatics. 1980, University of Oslo: Oslo.

12. Burns, Deville, and Meeker, Power, Conflict, and Exchange in Social Life, in Working
paper no. 88a. 1977, Institute of Sociology, University of Oslo.

13. Thomas Kuhn, E.M.G. and I.O.L. Olivier Thomann (2006) Eclipse - Abstract Syntax
Tree.

14. Di Ruscio, D., et al., Extending AMMA for supporting dynamic semantics specifications of
DSLs. 2006.

15. Louden, K., Compiler construction. 1997: PWS Publ.

16. Espe, T.H., A meta-language for UML concrete graphical syntax. 2004, University of
Oslo. p. 104.

106

17. OMG. Diagram Definition RFP, OMG Document : ad/07-09-02. Available from:
http://www.omg.org/cgi-bin/doc?ad/2007-9-2.

18. Eclipse. EMF- Ecore. Available from:
http://www.eclipse.org/modeling/emf/?project=emf.

19. Pinet, F., M. Kang, and F. Vigier, Spatial Constraint Modelling with a GIS Extension of
UML and OCL: Application to Agricultural Information Systems. Lecture Notes In
Computer Science, 2005. 3511: p. 160-178.

20. OMG. OCL 2.0, OMG Document: formal/2006-05-01. Available from:
http://www.omg.org/spec/OCL/2.0/.

21. Tor, B., Geographic information systems: an introduction. 2001: John Wiley and Sons, New
York.

22. OMG. Meta Object Facility (MOF), OMG Document: formal/2006-01-01. Available
from: http://www.omg.org/.

23. Mauw, S., The formalization of message sequence charts. Computer Networks and ISDN
Systems, 1996. 28(12): p. 1643-1657.

24. Arefi, F., C.E. Hughes, and D.A. Workman, Automatically generating visual syntax-
directed editors. Commun. ACM, 1990. 33(3): p. 349-360.

25. Teitelbaum, T. and T. Reps, The Cornell program synthesizer: a syntax-directed
programming environment. Commun. ACM, 1981. 24(9): p. 563-573.

26. IBM. IBM Rational Software Modeler 7.5. Available from:
http://www.ibm.com/developerworks/rational/products/rsm/.

27. Eclipse. UML2Tools. Available from:
http://www.eclipse.org/modeling/mdt/?project=uml2tools.

28. Larman, C., Applying UML and patterns: an introduction to object-oriented analysis and
design and the unified process. 2001: Prentice Hall PTR Upper Saddle River, NJ, USA.

29. Gamma, E., Design patterns : elements of reusable object-oriented software. Addison-Wesley
professional computing series. 1995, Reading, Mass.: Addison-Wesley. xv, 395 p.

30. Verheecke, B. and R. Van Der Straeten. Specifying and implementing the operational use of
constraints in object-oriented applications. in ACM International Conference. 2002. Sydney,
Australia: Australian Computer Society, Inc.

31. VanderMeer, D. and K. Dutta, Applying Learner-Centered Design Principles to UML
Sequence Diagrams. Journal of Database Management, 2009. 20(1).

32. Czarnecki, K. and S. Helsen, Feature-based survey of model transformation approaches. IBM
Systems Journal, 2006. 45(3): p. 621-645.

107

33. Minas, M., Concepts and realization of a diagram editor generator based on hypergraph
transformation. Science of Computer Programming, 2002. 44(2): p. 157-180.

34. Bardohl, R., et al., Integrating meta-modelling aspects with graph transformation for efficient
visual language definition and model manipulation. Lecture Notes In Computer Science,
2004. 2984: p. 214-228.

35. Bottoni, P., et al., Consistency checking and visualization of OCL constraints. Lecture notes
in computer science, 2000: p. 294-308.

36. Eclipse. ATLAS Transformation Language (ATL). Available from:
http://www.eclipse.org/m2m/atl/.

37. OMG. MOF QVT, OMG Document : formal/08-04-03. Available from:
http://www.omg.org/spec/QVT/1.0/.

38. Heckel, R., Graph Transformation in a Nutshell. Electronic Notes in Theoretical
Computer Science, 2006. 148(1): p. 187-198.

39. Bardohl, R. and A. GENGED. A Generic Graphical Editor for Visual Languages based
on Algebraic Graph Grammars. 1998.

40. Costagliola, G. and V. Deufemia. Visual language editors based on LR parsing techniques:
Citeseer.

41. Gray, J. and A. Reuter, Transaction processing: concepts and techniques. 1993: Morgan
Kaufmann Pub.

42. Goedicke, M., T. Meyer, and G. Taentzer. Viewpoint-oriented software development by
distributed graph transformation: Towards a basis for living with inconsistencies. 1999: IEEE
Computer Society.

43. Hausmann, J., R. Heckel, and S. Sauer. Extended model relations with graphical consistency
conditions. 2002: Citeseer.

44. Haugen, Ø. and B. Møller-Pedersen. Javaframe : Framework for Java enabled modeling. in
Ericsson Conference on Software Engineering. 2000.

45. Majewski, B. A Shape Diagram Editor. 2004; Available from:
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html.

46. IFI, U. IFI UML Total. Available from:
http://www.uio.no/studier/emner/matnat/ifi/INF5150/index-eng.xml.

108

109

APPENDIX A

Figure A-9-1 Root composite GEBSystem

Figure A-9-2 Tools composite

110

Figure A-9-3 RootBehavior Composite

Figure A-9-4 Controller statemachine

111

Figure A-9-5 Constraints statemachine

Figure A-9-6 RootBehavior Services statemachine - activation only

112

Figure A-9-7 DiagramBehavior Composite

Figure A-9-8 DiagramBehavior Composite, with services for geometrical queries

113

Figure A-9-9 InteractionBehavior Composite ; awaiting child composites like CombinedFragmentBehavior

Figure A-9-10 UIEvent signals and EditDomainUIEventMediator in <<modelLibrary>>

GEFMediators

