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Abstract 
 

Adult neurogenesis has been subject to increasing interest over the past decades. 

In fish, this ability to create new neurons is impressive compared to most other vertebrate 

taxa. Several factors are known to influence adult neurogenesis, like environmental 

enrichment, learning, exercise, stress and aging. In this study, zebrafish were isolated and 

exposed to two different environments, a barren environment (control group) and an 

enriched environment (enriched group). The enriched environment was aquaria supplied 

with gravel and plastic plants, while the barren aquaria were left empty.  

Neurogenesis in the zebrafish was determined by proliferating cell nuclear antigen 

(PCNA) – immunohistochemistry. After development of a suitable protocol, this method 

gave staining of a quality that allowed quantification of stained nuclei in the telencephalic 

tissue. Number of PCNA positive cells per telencephalic volume, response time to 

distributed food, locomotion activity, cortisol levels and growth rate were measured and 

compared between the groups. Environmental enrichment led to a strong tendency 

towards higher neurogenesis, which is in concert with several studies performed of 

mammals. Also, a significantly higher inter-individual variation in number of new 

telencephalic cells was observed in the enriched group, indicating that heterogenic 

environments leads to greater heterogeneity in neurogenesis within a population. 

Response time to the distributed food was not significantly different between the groups, 

although the enriched group tended to have longer response time. The control group had 

significantly higher locomotor activity than the enriched group. In both experimental 

groups, the effect of time was significant and led to a decrease in both response time and 

locomotor activity. Whole-body cortisol levels were significantly higher in the enriched 

group, although this was likely an effect of longer capture time in this environment.  

This is the first study to examine environmental enrichment and its effects on 

neurogenesis and behaviour in zebrafish.   
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Abbreviations  

 
 
ACTH: adrenocorticotropic hormone 

BrdU:   5-bromo-2’-deoxyuridine 

BDNF:  brain-derived neurotrophic factor  

BSA:  bovine serum albumin 

CRH:  corticotrophin-releasing hormone  

D:  area dorsalis 

DAB:  3, 3’- diaminobenzidine 

DE:  diethyl ether 

DG:  dentate gurys 

Dl:  lateral pallium 

Dm:  medial pallium 

E:  epinephrine 

GC:  glucocorticoids 

HPA:  hypothalamic-pituitary-adrenal 

HPI:  hypothalamic-pituitary-interrenal  

HRP:  horse-raddish peroxidase 

Ig:  immunoglobulin  

IGF:  insulin-like growth factor 

NE:  norepinephrine 

NMDA: N-methyl-D-aspartate  

NGF:  nerve growth factor 

OB:  olfactory bulb 

PAP:  peroxidase anti-peroxidase 

PBS:  phosphate buffered saline  

PBT:  PBS with Triton X-100 and BSA 

PCNA:  proliferating cell nuclear antigen 

S.D:  standard deviation 

S.E.M:  standard error of mean 

SA:  sympathetic-adrenomedullary  
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SGZ:  subgranular zone (of the dentate gyrus) 

SVZ:  subventricular zone of the lateral ventricle 
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Introduction 

1.0 Introduction 

 

1.1 Adult neurogenesis 

 

Adult neurogenesis, the formation and survival of new neurons in adult 

individuals, has for the last few years been the aim of numerous studies. Until recently, 

scientists believed that adult individuals did not have any neural regeneration, but in the 

early sixties, Altman (1962) reported the possibility that new neurons were formed in 

adult rats. Over the next few years, via the use of [H3]-thymidine, a proliferation marker, 

Altman and co-worker Das reported that there were indeed new neurons formed in a 

variety of brain structures from adult rat and cat (Altman, 1963; 1969a; 1969b; Altman 

and Das, 1965; 1966; Das and Altman, 1970; 1971). Their theories were later confirmed 

by Kaplan and Hinds (1977), but the subject received considerably more attention after 

Eriksson et al. (1998) showed that adult neurogenesis also occurs in humans. Today it is 

generally accepted that most animals have adult neurogenesis, with studies from animals 

as diverse as insects (Cayre et al., 1996; Malaterre et al., 2002; Scotto-Lomassese et al., 

2003; Dufour and Gadenne, 2006), crustaceans  (Schmidt and Demuth, 1998 ; Harzsch et 

al., 1999; Hansen and Schmidt, 2004; Sullivan and Beltz, 2005), fish (Meyer, 1978; 

Raymond and Easter, 1983; Zupanc and Zupanc, 1992; Zupanc and Horschke, 1995), 

amphibians (Bernocchi et al., 1990; Chetverukhin and Polenov, 1993; Polenov and 

Chetverukhin, 1993; Wullimann et al., 2005), reptiles (Lopez-Garcia et al., 1988;  Garcia-

Verdugo et al., 1989; Perez-Sanchez et al., 1989; Perez-Canellas and Garcia-Verdugo, 

1996; Font et al., 2001), birds (Goldman and Nottebohm, 1983; Paton and Nottebohm, 

1984; Burd and Nottebohm, 1985; Alvarez-Buylla, 1990; Alvarez-Buylla, 1992; Alvarez-

Buylla et al., 1992) and mammals (Altman and Das, 1966; 1967; Das and Altman, 1970; 

1971; Kaplan and Hinds, 1977; Eriksson et al., 1998; Coe et al., 2003; Guidi et al., 2005). 

However, neurogenesis does not occur in all brain tissues and structures of all animals. In 

mammals, the proliferation zones are restricted to the subventricular zone (SVZ) in the 

walls of the lateral ventricles, from where new neurons migrate to the olfactory bulbs, 

and the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus (Gould et 
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al., 2000; Brown et al., 2003b; Emsley et al., 2005). In teleost fish, on the other hand, 

proliferation zones have been described in all subdivisions along the rostocaudal axis 

(Grandel et al., 2006; Zupanc, 2006). 

 

 

1.2 Possible functions of adult neurogenesis  

 

 It is likely that the function of neurogenesis reflects the function of the specific 

brain structure in which it occurs. In the teleost fish, the brain grows in size throughout 

life, with brain size positively correlated to age, body weight and length (Birse et al., 

1980; Brandstatter and Kotrschal, 1990; Zupanc and Horschke, 1995). In this case it is 

plausible that at least some of the adult born neurons are a necessity for growth. 

Reduced neurogenesis has been shown to correlate with depression and impaired 

learning abilities (Jacobs et al., 2000; Shors et al., 2001; Shors et al., 2002; Kempermann 

and Kronenberg, 2003). Fuchs et al. (2006) suggest that the downregulation of neurons 

observed during stress can be explained by rearrangements in the brain network in order 

to cope with changes in the external or internal environment.  

There seems to be a common agreement that the hippocampus is involved in 

processes such as memory and learning (Eichenbaum et al., 1992; Gould et al., 2000; 

McEwen, 2000a; Kempermann, 2002). There have been several reports suggesting that 

the function of adult neurogenesis in the hippocampus is indeed related to learning and/or 

learning processes (Gould et al., 1999b; Kempermann, 2002; Kempermann et al., 2004; 

Prickaerts et al., 2004; Leuner et al., 2006). There seems to be a dual link between adult 

hippocampal neurogenesis and learning. Learning increases neurogenesis (Gould et al., 

1999a) and neurogenesis enhances the ability to learn (van Praag et al., 1999a). However, 

this notion is not without some ambiguity. It has been much discussed whether animals 

need new neurons to learn. Shors et al. (2001) showed that rats depleted of new 

hippocampal neurons, via the use of a toxin acting against proliferating cells, were 

impaired in their ability to learn the hippocampal-dependent task of trace eyeblink 

conditioning. Still, the rats were able to learn the hippocampal-independent task of delay 

conditioning (Shors et al., 2001). They also showed that, once the population of new 
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neurons were replaced in the rats, the ability to acquire hippocampal-dependent memories 

was restored. This suggests that new neurons somehow participate in the formation of 

these memories. Moreover, depletion of newly generated neurons did not affect 

subsequent acquisition of special memories in the Morris water maze, nor contextual fear 

conditioning, although both task are reportedly hippocampus-dependent (Shors et al., 

2002). This means that neurogenesis can not be a necessity for all types of learning, with 

or without hippocampus-dependence. This is further emphasized by the observation that 

older animals, with reduced neurogenesis, still learn quite well (Kempermann et al., 

1998b; Kempermann, 2002).   

Depression has been associated with reduced neurogenesis in the hippocampal 

area (Steckler and Prickaerts, 2004). Some studies have shown hippocampal volume loss 

in patients with untreated depression (Bremner et al., 2000; MacQueen et al., 2003), 

while a study by Sheline et al. (2003) showed that this loss was not observed in patients 

treated with anti-depressants. Low levels of the neurotransmitter serotonin, 5-

hydroxytryptamine, are often found in the hindbrain of depressed patients (Coppen and 

Doogan, 1988). Neurogenesis in the mammalian DG has been shown to increase by 

activation of serotonergic receptors, and treatment with the serotonin-releasing drug, d-

fen-fluramine gives similar results (Gould, 1999). In addition, treatment with serotonin 

reuptake inhibitors increases neurogenesis (Malberg et al., 2000; Malberg and Duman, 

2003). However, other brain areas than the hippocampus are thought to be involved in the 

pathogenesis of depression, so reduced neurogenesis is not likely the whole explanation 

for this disorder (Steckler and Prickaerts, 2004).  

Neurogenesis in different parts of the brain is not necessarily regulated by the 

same modulators, which further complicates the search for the function of the new cells. 

A study done by Brown et al. (2003b) on adult mice, showed that voluntary wheel 

running and environmental enrichment doubled the amount of new hippocampal granular 

cells, while it had no effect on the number of newly generated cells in the lateral ventricle 

walls. Rochefort et al. (2002) showed the opposite scenario, where an odour-enriched 

environment affected the neurogenesis in the olfactory bulb, but had no effect on the 

neurogenesis of the hippocampus.  

Kozorovitskiy and Gould (2003) suggest that neurogenesis might be a mechanism 

for brain repair. New granule cells that migrate to the olfactory bulb are thought to 
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replace old or damaged cells. This is supported by the observation that the volume of the 

olfactory bulbs does not increase in older mice despite neurogenesis, and that apoptosis is 

observed in the layers where the newly generated cells are incorporated (Petreanu and 

Alvarez-Buylla, 2002). Studies show that in the DG cell loss or brain lesions are 

associated with compensatory neurogenesis in mammals (Gould and Tanapat, 1997; 

Kernie et al., 2001). The new cells exhibit markers of granule cells, but they are not able 

to restore the granular cell layer to its previous undamaged state. In a study by Scharff et 

al. (2000), cell death of specific neuron types was induced in the high vocal centre of 

male zebra finches, which resulted in compensatory replacement by neurons of the same 

type. However, here the replacement was associated with some degree of functional 

recovery. The birds that exhibited song deterioration showed subsequent song 

improvement over the next three months (Scharff et al., 2000). Even more striking, some 

fish and reptiles have been shown to be able to regenerate whole brain parts after injury, 

revealing an enormous potential for neuronal regeneration in these animals (Font et al., 

2001; Zupanc, 2006).       

 It seems that during evolution the amount of adult neurogenesis has decreased 

with increasing brain complexity.  Could it be that higher vertebrates are in less need of 

new neurons than lower vertebrates? And why is it so? There is presently no answer for 

this, but the fact that many lower vertebrates continue to grow throughout life could 

provide a demand for neurogenesis. One thing that is known, is that the functional 

benefits of neurogenesis can not be acute, because it takes days for the new neuron to be 

functionally integrated (Hastings and Gould, 1999). Thus it is more likely that 

neurogenesis represents a long-term adjustment, allowing for a strategic increase in brain 

network complexity (Kempermann, 2002).   

 

 

1.3 Modulators of adult neurogenesis 

 

Several factors are known to have a positive influence on adult neurogenesis. 

There have been a number of reports showing the effect of voluntary exercise on brain 

cell proliferation, growth and survival in adult mammals (van Praag et al., 1999b; Rhodes 
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et al., 2003; Holmes et al., 2004; van Praag et al. 2005; Kronenberg et al., 2006; Olson et 

al., 2006; Redila and Christie, 2006; Redila et al., 2006; Stranahan et al., 2006). For 

instance, in a study done by van Praag et al. (2005), it was shown that in 19 months old 

mice, with the opportunity for voluntary wheel running, there was a significant increase 

in neurogenesis compared to the control group without such an opportunity. This study 

also reported that running had a positive influence on learning, tested in a Morris water 

maze, which is in agreement with many other studies (Fordyce and Farrar, 1991; van 

Praag et al., 1999a; Anderson et al., 2000). There are also studies that show no effect on 

learning from physical exercise (Barnes et al., 1991), although it should be noted that 

here forced treadmill training was used, while in the other studies the training was 

voluntary.  There are several reports postulating that learning itself, especially 

hippocampal-dependent learning, is a positive modulator of hippocampal neurogenesis 

(Gould et al., 1999a; Shors et al., 2001), but the results are not uniform, making it hard to 

draw any conclusions (Shors et al., 2002; Dobrossy et al., 2003; Rhodes et al., 2003; 

Prickaerts et al., 2004; Ehninger and Kempermann, 2006; Leuner et al., 2006).     

 Seasonal changes have been reported to play an important role in neurogenesis in 

several species, like the shore crab, Carcinus maenas (Hansen and Schmidt, 2004), the 

red-backed salamander, Plethon cinereus (Dawley et al., 2000), and in the wild meadow 

vole, Microtus pennsylvanicus (Galea and McEwen, 1999). However, this phenomenon 

has been most widely described in birds (Nottebohm et al., 1986; Nottebohm et al., 1987; 

Cynx and Nottebohm, 1992; Barnea and Nottebohm, 1994; Dawson et al., 2001). Barnea 

and Nottebohm (1994) did a whole-year study on neurogenesis in adult black-capped 

chickadees, Parus atricapillus. These authors determined the rate of newly born neurons 

by a single injection of [H3]-thymidine, followed by release of the birds and recapture 

approximately six weeks later. They observed new neurons in the hippocampal area all 

year, with a distinct peak in the autumn. The autumn is a season of many changes for the 

chickadees; the landscape changes in appearance, the birds change diet from insects to 

seeds, and they cease their territorial behaviour and form flocks. The addition of new 

neurons might reflect an adjustment to these changes (Barnea and Nottebohm, 1994). 

Several other factors are known to enhance neurogenesis. These are named in 

table 1. Finally, environmental enrichment has been shown in numerous reports to have a 
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positive effect on adult neurogenesis. This phenomenon is discussed in detail in chapter 

1.4.  

A number of negative influences on adult neurogenesis have also been 

demonstrated. Aging, for instance, is considered to be one of the biggest threats to 

plasticity and regeneration of the brain. Hattiangady and Shetty (2006) found that, during 

aging, it is not altered numbers of neural stem/progenitor cells that causes the decline in 

neurogenesis, but rather the environment surrounding these cells, and it seems like the 

cells enter a state of quiescence and lengthening of cell cycle time. When an animal ages 

the levels of several factors necessary for cell proliferation, like the brain-derived 

neurotrophic factor (BDNF) (Hattiangady et al., 2005), insulin–like growth factor (IGF) 

and vascular endothelial growth factor (VEGF) (Shetty et al., 2005) decline. 

Angiogenesis has also been shown to be delayed in aged animals, and a decrease in 

number of vessels per given area of tissue has been reported (Sadoun and Reed, 2003; 

Wang et al., 2004).  

In addition to age, stress is known to be one of the most potent inhibitors of adult 

neurogenesis. Stress can be defined as a state in which there is a perceived threat to an 

organism’s homeostasis, real or imagined. The factor causing this threat is the stressor, 

and the physiological and behavioural responses attempting to re-establish the 

homeostasis is the stress-response (McEwen, 2000b; Charmandari et al., 2005). 

Neurogenesis has been reported to decrease both under acute and chronic stress (Gould et 

al., 1997; Pham et al., 2003).  

The stress response is characterized by an activation of the hypothalamic-

pituitary-adrenal (HPA) axis and the sympathetic-adrenomedullary (SA) system (Habib et 

al., 2001; Charmandari et al., 2005; Herman et al., 2005).  These activations lead to 

enhanced levels of corticotrophin-releasing hormone (CRH), adrenocorticotropic 

hormone (ACTH), glucocorticoids (GC) (Habib et al., 2001; Charmandari et al., 2005), 

epinephrine (E) and norepinephrine (NE) (Stratakis and Chrousos, 1995; Navarro-

Oliveira et al., 2000). In fish, the HPA-axis of mammals has a homologous system called 

the hypothalamic-pituitary-interrenal (HPI)-axis (Bernier and Peter, 2001; Flik et al., 

2006).  

GCs have been shown to affect neurogenesis. In an initial study by Cameron and 

Gould (1994), treatment with corticosterone, the main GC in rodents, produced a 
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significant decrease in the number of new cells, whereas adrenalectomy resulted in a 

significant increase. Granule cell progenitors in the adult rat DG, however, show very 

few adrenal steroid receptors, suggesting that adrenal steroids do not act directly upon 

these progenitor cells (Cameron et al., 1993). Indeed, it has been shown that adrenal 

steroids and N-methyl-D-aspartate (NMDA) receptors influence granule cell production 

in the rat DG through a common pathway, and that NMDA receptors operate downstream 

of corticosterone in this pathway (Cameron et al., 1998).  

The direction of some of the effects of GCs is dose-dependent. Basal levels of 

GCs enhance hippocampus excitability, synaptic plasticity and are thought to play a role 

in memory formation, while stress levels of GCs have been reported to have the opposite 

effects in rodents (Diamond et al., 1992; McEwen, 1999). Furthermore, there are reports 

from mammals that show that despite elevated GC levels, there are no registered effects 

on cell proliferation (for review, see Mirescu and Gould, 2006). 

In fish social interactions, such as dominant/subordinate relationships have been 

shown to affect neurogenesis. In her master thesis performed at Oslo University in 2005, 

Sørensen studied pairs of juvenile rainbow trout, Oncorhynchus mykiss (Sørensen, 2005). 

The fish were allowed to interact for four days before they were sacrificed, and during 

this time dominant/subordinate relationships were formed. By the use of the thymidine 

analogue 5-bromo-2´-deoxyuridine (BrdU)-labelling it was shown that subordinate 

animals had a significant reduction in the number of labelled cells compared to the 

unstressed controls (Sørensen et al., 2006). This is, to date, the only study done on stress 

and how it affects neurogenesis in fish. 

 To be unable to control a situation is often a stressor in itself. Malberg and Duman 

(2003) reported that uncontrollable stress reduced neurogenesis in the hippocampus of  

adult rats, but that this was reversed by antidepressant treatment. Several reports suggest 

that controllability over a stressful situation seems to counter some of the negative effects 

on brain proliferation related to stress (Bland et al., 2006; Shors et al., 2007). Table 1 lists 

further factors shown to inhibit neurogenesis.
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Table 1 Summary of the main modulators of adult neurogenesis 

Factors Stimulating 

neurogenesis 

Inhibiting 

neurogenesis 

Animal 

group 

References 

Enriched environment Yes, see chapter 

1.4 

No M Altman and Das, 1964; Kempermann et al., 1997b; Kempermann et 

al., 1998a; Mohammed et al., 2002; Brown et al., 2003b 

Voluntary exercise  Yes No M Fordyce and Farrar, 1991; van Praag et al., 1999a; van Praag et al., 

1999b; Anderson et al., 2000; van Praag et al., 2005 

Hippocampal dependent 

learning 

Yes No M Gould et al., 1999a; Shors et al., 2001 

Growth factors as 

IGF and VEGF 

If in high levels No M Aberg et al., 2000; Anderson et al., 2002; Jin et al., 2002; Fabel et al., 

2003 

Neurotrophic factors as 

NGF and BDNF 

Yes, see chapter 

1.4 

No M Scharfman et al., 2005; Frielingsdorf et al., 2007 

Estrogen Transiently  No B, M Hidalgo et al., 1995; Tanapat et al., 1999; Tanapat et al., 2005; 

Suzuki et al., 2007 

Testosterone  In some animals No  B, M Nottebohm, 1980; Nottebohm, 1981; Absil et al., 2003; Galea et al., 

2006 

Serotonin Yes No M Gould, 1999; Malberg et al., 2000; Malberg and Duman, 2003 

Wnt proteins If in high levels No M Lie et al., 2005 

Seasonal changes In some animals No B, M Cynx and Nottebohm, 1992; Barnea and Nottebohm, 1994; Galea and 

McEwen, 1999 
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Genetic background Yes Yes M Kempermann et al., 1997a; Kempermann and Gage, 2002 

Thyroid hormones Yes No M Montero-Pedrazuela et al., 2006 

Age  No Yes M Shetty et al., 2005; Hattiangady and Shetty, 2006  

Stress No Yes M Gould et al., 1997; Malberg and Duman, 2003; Pham et al., 2003 

NMDA receptor 

activation 

No Yes M Cameron et al., 1995; Cameron et al., 1998 

Cortisol/Corticosterone No, but se chapter 

1.3 

Yes M Diamond et al., 1992; Cameron and Gould, 1994; McEwen, 1999 

Intoxicating substances 

as cocaine, alcohol, 

amphetamines, 

morphine and nicotine 

No, but some 

positive effects 

have been 

reported from 

nicotine 

Yes M Eisch et al., 2000; Teuchert-Noodt  et al., 2000; Abrous et al., 2002; 

Herrera et al., 2003; Dominguez-Escriba et al., 2006; Mudo et al., 

2006 

Subordinate social 

position 

No Yes F,  M Kozorovitskiy and Gould, 2004; Sørensen, 2005 

Nitric oxide No Yes M Packer et al., 2003 
 

 The table lists the main modulators of adult neurogenesis of which some are discussed in text. Abbreviations: BDNF = brain-derived neurotrophic factor, IGF = 

insulin-like growth factor, NMDA = N-methyl-D-aspartate, NGF = neurotrophic growth factor, VEGF = vascular endothelial growth factor, B = birds, F = fish, M = 

mammals 
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1.4 Environmental enrichment and adult neurogenesis 

  

 Environmental enrichment includes complex structures and new items, objects, 

experiences, odours, etc. in an animal’s milieu. Numerous studies have been done on how 

environmental enrichment influences neurogenesis, brain size and brain structural 

plasticity (Altman and Das, 1964; Kempermann et al., 1997b; 1998a; 1998b; Nilsson et 

al., 1999; Brown et al., 2003b; Komitova et al., 2005; Lema et al., 2005; Segovia et al., 

2006), for review, see Mohammed et al., 2002. One example is a study by Altman and 

Das (1964), where the effects of enriched environment on glia cell proliferation was 

investigated in rats. These authors used a “restricted” environment, represented by small 

isolation cages, and an “enriched” environment, represented by a large communal cage, 

with both males and females. In the communal cage food and water sources were shifted 

from different locations in the cage every second or third day, forcing the animals to 

follow new routes to forage. After approximately three months, rats from each group 

were injected with [H3]-thymidine. The animals lived in their respective environments for 

one week post injection before they were sacrificed. The authors reported a significant 

increase in the number of labelled glia cells in the neocortex of the rats from the enriched 

environment, compared to those from a restricted one. In addition, the mean brain weight 

of the individuals from the former group, were 9.7 % higher than that of the latter 

(Altman and Das, 1964). There have also been several reports on measurable differences 

in brain size, especially in the telencephalon, between domesticated and wild animals, for 

example fish (Marchetti and Nevitt, 2003) rats, pigs, turkeys, wolves and foxes (for 

review, see Kruska, 2005).  

Environmental enrichment has also been shown to influence the expression of 

several gene products, like neurotrophic factors, in the brain.  Neurotrophic factors are 

endogenous signalling proteins, which promote survival, growth and division, as well as 

differentiation and morphological plasticity, of neural cells. One well-known 

neurotrophic factor is the nerve growth factor (NGF). The NGF’s mRNA levels are 

highly expressed in the hippocampus, the cerebral cortex and the olfactory bulb 

(Korsching et al., 1985). NGF increases the levels of choline acetyltransferase, an 

essential enzyme in acetylcholine synthesis (Mobley et al., 1986). NGF is also necessary 
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in the development and maintenance of cholinergic neurons, which together with 

acetylcholine is crucial for cognitive function (Calamandrei and Alleva, 1995). 

Cholinergic neurons starved of NGF have been shown to atrophy and lose important 

phenotype characteristics (Williams et al., 2006). Pham et al. (1999a) showed that 

enriched environment significantly increased  NGF in the hippocampal, visual and 

entorhinal cortices of rats. Similar results were obtained by Torasdotter et al. (1998), even 

though the rats in this study had only lived in the enriched/impoverished environment for 

30 days. NGF has also been shown to improve the performance of aged rats in spatial and 

memory tasks (Calamandrei and Alleva, 1995; Chen and Gage, 1995; Chen et al., 1995). 

The expression of another neurotrophic factor, BDNF, is also found to increase in the 

hippocampus of rats reared in enriched environments (Falkenberg et al., 1992). Both 

NGF and BDNF have in behavioural studies been shown to play roles in mediating 

learning and memory (Henriksson et al., 1992; Mizuno et al., 2000; Woolf et al., 2001). 

Furthermore, animals from enriched environments perform better in tasks involving 

memory and learning (Nilsson et al., 1999; Pham et al., 1999b). 

Not much is known about how environmental stimuli affect the brain of fish. 

Lema et al. (2005) did a study on effects of environmental enrichment on telencephalic 

proliferation rate, but the control and enriched group differed in two aspects, namely 

spatial variation in water flow velocity (greater variation for the control group) and the 

presence of physical structures (absent for the control group). In addition, the number of 

fish in each group was low (n= 3), so any conclusion about the validity of this experiment 

is at best ambiguous.   
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1.5 Fish behaviour and stress 

 
In this thesis the zebrafish, Danio rerio, was used as the experimental animal. 

Zebrafish is a shoaling teleost fish, originally from the fresh water lakes in India. It is a 

widely used model organism due to its short generation time, easy handling and 

sequenced genome (Barinaga, 1990; Lele and Krone, 1996; Pickart et al., 2006). During 

this experiment the zebrafish were kept in isolation, and since the zebrafish are shoaling 

fish, the isolation might be a stressor. 

In addition to CRH, ACTH and GC levels, the turnover of the neurotransmitter 

serotonin is reported to increase during the stress-response in fish (Chaouloff, 1993; 

Winberg et al., 1997). In most vertebrates serotonin has been shown to affect different 

behavioural aspects associated with the stress response, such as decreased food-intake 

and appetite, and increased locomotor activity (Wedderburn and Sillar, 1994; De Pedro et 

al., 1998; Leibowitz and Alexander, 1998; Brocco et al., 2002; Lowry and Moore, 2006), 

although contrary results on locomotor activity have also been reported (Winberg and 

Nilsson, 1993; Winberg et al., 1997)  Like serotonin, CRH suppresses feeding behaviour 

(for review, see Bernier and Peter, 2001). De Pedro et al. (1993) tested the effects of 

intraperitoneal  and intracerebroventricular CRH administration on food-intake in 

goldfish, Carassius auratus. The intraperitoneal injections of CRH did not show any 

effect on food-intake. In contrast, the intracerebroventricular injections lead to an 

inhibition of food-intake for several hours after the injection. This indicates that CRH 

acts centrally to regulate feeding. Conversely, with higher doses of CRH, the food-intake 

was enhanced, implying a dose-dependent effect of CRH on appetite (De Pedro et al., 

1993). The same scenario has also been shown for GCs. With basal levels of GCs, 

appetite and feeding are stimulated, but during stress, with enhanced levels of GCs, 

appetite is suppressed. GCs induce insulin secretion from the pancreas, and high levels of 

insulin suppress appetite (Dallman et al., 1993). 

Both CRH and cortisol have been reported to regulate locomotor activity in fish. 

Clements et al. (2002) did a study on juvenile spring chinook salmon, Oncorhynchus 

tshawytscha. The fish were injected intracerebroventricularly with CRH, which resulted 

in an increased locomotor activity. Simultaneous injection of a CRH-antagonist prevented 

this activity increase, which strengthens the role of CRH as an enhancer of locomotor 
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activity in fish (Clements et al., 2002). In a study by Øverli et al. (2002a), cortisol-treated 

food was fed to isolated juvenile rainbow trout, and locomotor activity upon subsequent 

encounter with a conspecific intruder was measured. One group (short-term) was fed 

once with this food, while another group (long-term) was fed three times over a 48 hour 

period. The fish displayed no significant change in locomotor activity when left in 

isolation, regardless of the duration of the cortisol treatment. However, upon intruder 

encounter, the fish with short-term cortisol treatment showed enhanced locomotor 

activity, while the long-term treated fish showed an inhibition of locomotor activity 

(Øverli et al., 2002a). In addition to show that cortisol may affect locomotor activity, this 

study also shows that the action of cortisol may be time- and context- dependent.   

Since the brains of the experimental fish in the current study were used for 

analyses of cell proliferation, the fish were closely monitored for behavioural signs of 

stress. The behavioural analyses were locomotor activity and response time to presented 

feed. In addition, whole-body cortisol levels were measured. 

  

 

1.6 The teleost telencephalon – morphology and function 

 

In this section the names of different structures follow Wulliman et al. (1996).  

The telencephalon of actinopterygian fish undergoes a process of eversion of the 

hemispheres during development. This is in contrast to other vertebrates, whose 

hemispheres during development undergo an evagination process (Nieuwenhuys, 1962; 

Northcutt and Davis, 1983; Yamane et al., 1996; Butler, 2000; Rodriguez et al., 2002a).  

As a result, the hemispheres of actinopterygian fish are separated by a single ventricle, 

whereas other vertebrates have two internal ventricles. The pallial region of the 

actinoptergyian telencephalon is assumed to be homologous with pallial areas from other 

vertebrates, such as amniotes (Rodriguez et al., 2002a; Broglio et al., 2005). See figure 

1.1 for a schematic representation of the differences in telencephalic development 

between these two groups.  
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Figure 1.1 A schematic representation of the eversion and evagination processes occurring in 

actinopterygians and non-actinopterygians, respectively.  The ventricles are indicated with arrows.  

P1, P2, P3 are the three main subdivisions of the pallium. The figure is adapted from Rodriguez et al. 

(2002a). 

 

 

 

As in amniotes, the telencephalon of actinopterygians consist of a dorsally located 

pallial mantle, the area dorsalis (D), and supallial areas, the area ventralis (V) (Northcutt 

and Davis, 1983; Wullimann et al., 1996). There is much experimental evidence showing 

that roles assigned to the hippocampus in mammals, birds and reptiles have their 

counterpart in the teleost telencephalon (Lopez et al., 2000; Portavella et al., 2002; 

Rodriguez et al., 2002a; Rodriguez et al., 2002b; Salas et al., 2003; Vargas et al., 2006).  

More precisely, it is the lateral pallium (Dl) that is considered to be a homologue 

to the amniote hippocampus, while the medial pallium (Dm) is assumed to be 

homologous to the amniote amygdala (Northcutt and Davis, 1983; Broglio et al., 2005). 
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1.6.1 Proliferation zones in the zebrafish brain 
  

 As mentioned previously, proliferation zones have been reported all along the 

rostocaudal axis of the teleost brain (Zupanc and Horschke, 1995; Grandel et al., 2006; 

Zupanc, 2006). By the aid of BrdU-labelling, Zupanc et al. (2005) mapped the 

proliferation zones in the zebrafish. They found labelled cells in the olfactory bulb, 

telencephalon, preoptic area, hypothalamus, optic tectum, torus longitudinalis, vagal lobe, 

medulla oblongata and in the cerebellum. Interestingly, a similar study was performed by 

Grandel et al. (2006), and some of their observations diverged from the findings of 

Zupanc et al. (2005). One example is that Zupanc et al. found abundant proliferation in 

the mantle zone of the mesencephalon (optic tectum and torus longitudinalis), whereas 

Grandel et al. only observed proliferation in the ventricular zone of the mesencephalon 

(Zupanc et al., 2005; Grandel et al., 2006).  

In the telencephalon, proliferation zones have been described both in D and V, 

along the ventricular surfaces (Zupanc et al., 2005; Grandel et al., 2006), see figure 1.2. 

Due to the eversion process, some of the ventricular zone of D lies along the dorsal and 

lateral telencephalic surface, as shown in figure 1.1.    

 

 
Figure 1.2 A picture of a telencephalic section. The proliferation zones of D (Dm and Dl) and V are 

marked with arrows (TelV = Telenchephalic Ventricle). 
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1.7 Proliferating cell nuclear antigen (PCNA) 

 
PCNA is a ring-shaped, 29 kDa protein involved in various parts of DNA 

metabolism, such as replication, recombination,  repair and even apoptosis (Kelman, 

1997; Maga and Hubscher, 2003). It has also been shown to play roles in cell cycle 

control and check point processes (Kelman, 1997). Because of its functional diversity, it 

interacts with many different proteins and is present in most parts of the cell cycle (see 

figure 1.3), but it is seldom expressed in G0 (Bolton et al., 1994). Thus, the proliferating 

cells are characterized by the presence of PCNA. The level of PCNA expression is quite 

low in G1, but it rises rapidly in the S phase, with a two to three fold increase from G1. 

The level continues to rise through late S phase and early G2, though at a lower rate, 

before it starts to decline at late G2/M phase (Bolton et al., 1992; Bolton et al., 1994).  

 Through immunohistochemistry, using a specific antibody against PCNA, it is 

possible to detect the presence of this protein in the cell nucleus, and thereby obtain an 

indication of whether the cell in question is in a proliferating stage or not. 

 
Figure 1.3 A schematic representation of the cell cycle.  In G1-phase the cell grows and organelles are 

duplicated, in S-phase the DNA replicates, in G2-phase there is protein synthesis and in M-phase the cell 

divides. In G0-phase, the cell cycle is finished. The cell then carries out its specialized functions or re-enters 

the cell cycle. PCNA is present from G1 to M, with its highest levels in S. Chromosomes are represented by 

bold lines.   
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1.8 Aim of the study 

 

  Today, many animals are kept in captivity in zoos, hatcheries, research 

institutions, fur farms, etc. Hatchery rearing has been shown to affect the growth and 

development of brain structures in fish (Marchetti and Nevitt, 2003), and also the ability 

to forage and avoid predators (Brown et al., 2003a). In addition, not to live in its natural 

habitat or with its kin might be a stressful experience for an animal and reduce its 

welfare. In this study, the aim was to detect whether environmental enrichment had an 

effect on response time to presented food, locomotor activity, cortisol levels and 

neurogenesis of the zebrafish. These parameters were chosen because cortisol levels and 

behaviour are often used as indicators on an animal’s welfare, and neurogenesis has been 

reported in many animals to be modulated by environmental enrichment. 

In the present study zebrafish were held in isolation, either in an enriched or 

barren environment, and four different hypotheses were tested. Directionality of 

hypotheses is based on the background literature presented in previous sections. 

 

Hypotheses:  

1. After transfer to their new environment, zebrafish in an enriched environment will 

initiate feeding faster than those in a barren environment  

2. Zebrafish in a barren environment will have increased locomotor activity compared to 

those in an enriched environment 

3. Zebrafish in an enriched environment will have increased neurogenesis compared to 

those in a barren environment 

4. Zebrafish in an enriched environment will have a lower level of whole-body cortisol 

than those in a barren environment 
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Methods and materials 
 

2.0 Methods and materials 

 

2.1 Animals  

 

Approximately 100 zebrafish were purchased from a local zoo store. After 

transfer to the university, they were kept in a 40 litre tank, at 26ºC, for two weeks before 

the start of the experiment. The tank water was partly replaced with fresh dechlorinated 

tap water twice a week. The water was well aerated and the light/dark cycle was 14:10 

hours, with light from 0700 to 2100 hours, during both holding and experiments. The fish 

were fed daily with Hikari tropical micro pellet food (Kyorin co.).  

 

 

2.2. The experimental setup 

 

To avoid effects of social interactions, such as aggression, fish were kept isolated 

during the experimental period. The two groups each consisted of 12 fish. The enriched 

group was kept in an enriched environment, which consisted of stones and plastic plants, 

while the control group was kept in a barren environment, with empty aquaria. 

Individuals from both groups were kept in their respective aquaria for seven days.  

Water temperature and the light/dark cycle during the experiment were identical 

to those of the holding tank. Twelve 15 litre aquaria with dividing walls of opaque PVC 

plastic were used, giving 24 separate compartments. Each aquarium was covered in grey 

plastic on all sides, except the top and the front side to allow feeding, water exchange, 

and aeration from the top, and filming from the front. To keep the zebrafish from jumping 

out, all the aquaria were covered with a transparent lid, with small holes to allow feeding. 

The enriched aquaria, i.e. twelve compartments in six aquaria, were filled with English 

sea stones, size 4-9 mm, to a height of 3 cm. These compartments were also equipped 

with two, 20 cm tall, Acorus spp. plastic imitations. The remaining twelve compartments 

(six aquaria) were left empty. The experimental setup is shown in figure 2.1.  
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Each aquarium was supplied with water from a common tank at a rate of 24 

ml/min. Excess water was drained through small tubes in the aquaria walls at desired 

water height. The common tank was equipped with English sea stone and 11 Acorus spp. 

plastic imitation, so that any chemicals released from these items were distributed to all 

aquaria.  

 

 

a)   b)                  
Figure 2.1 Aquaria used in the experiment. a) shows a barren aquarium, while b) shows an enriched 

aquarium.   

 

 

2.3 The experiment 

 

Materials and protocols for making the solutions mentioned in the following text 

can be found in Appendix 1 and 2, respectively. The fish were randomly selected from 

the common aquaria. They were gently netted and anesthetized in a 5 % benzocaine 

solution. The fish were then individually weighed and measured (Figure 2.2), and 

subsequently placed in a small container filled with water, where they were allowed to 

recover before they were placed in their respective aquaria, where they were kept for 

seven days. The zebrafish were filmed for ten minutes at day 1 and 4, using a digital 

video camera. They were hand-fed each day between 3 and 4 p.m. except on day 7. The 

latency from when the food was distributed until the fish started eating, denoted as the 

response time from now on, was recorded each day.  
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On day 7 the fish were quickly netted out of the aquaria, anesthetized, weighed 

and measured before they were sacrificed. The heads were separated from the bodies 

immediately behind the operculi and placed in 4 % paraformaldehyde, while the bodies 

were quickly frozen in liquid nitrogen and stored at -80°C. 

 

 

 
Figure 2.2 A schematic representation of how the length of the zebrafish was measured, from the tip of the 

mouth to where the tail fin begins.   

 

 

 

2.4 Analysis of behavioural parameters   

 

The zebrafish have an intermittent swimming activity and spend much of their 

locomotor periods coasting passively (McHenry and Lauder, 2005). Thus, the zebrafish 

are essentially in some kind of movement almost constantly. Hence measuring the time 

spent moving as an indicator of behaviour, is meaningless. Instead, locomotor activity 

was measured as the number of turns per unit time. The time unit was three minutes, and 

one turn was defined as any direction change exceeding 90° (see figure 2.3). Using a 

counter, the data from each fish was registered. The analysis was carried out for eight fish 

from each group, sixteen fish in all. The registration included films from both day 1 and 

day 4. 
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Figure 2.3 A schematic representation of a zebrafish inside a coordinate system. In the behavioural 

analysis, movements of the zebrafish were imagined to be inside such a system. Any movement exceeding 

90°, in any direction, was recorded.  

 
 
 
 

2.5 Processing of the brains 
  

To fix the heads, they were kept in the paraformaldehyde solution at room temperature 

over night. They were then transferred to a 30% sucrose solution, where they were kept 

until the next day. The heads were then placed in small rubber moulds filled with Tissue 

– Tek (optimal cutting temperature medium) and frozen at -80°C 

After fixation, 25 µm transverse sections were made by the use of a cryostat (Cryo-star 

HM560 M). Four sections were mounted per slide (Superfrost®plus slides). The sections 

were allowed to dry for two days at room temperature, before storage at -80°C.   
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2.5.2 Immunohistochemistry  
 

Immunohistochemistry is a method used to detect specific antigens in cells or 

tissues, founded in the antigen-antibody binding. For this experiment, a specific 

polyclonal antibody against PCNA and a horseradish peroxidase (HRP) polymer 

conjugated to secondary antibodies were used. Subsequently, the chromogen 3, 3'-

diaminobenzidine (DAB) was added. DAB polymerizes to a dark brown residue upon 

encounter with peroxidase, thereby marking the spot of the antigen-antibody interaction, 

see figure 2.4. This spot can easily be observed trough the microscope. 

 

       DAB 
       DAB 

Secondary antibody conjugated with peroxidase 

Primary antibody 

PCNA 

 
 

 

Figure 2.4 A simple representation of the immunohistochemistry method.  
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The protocol used for PCNA staining is attached in Appendix 3. However, several 

options were examined before deciding on this protocol, including BrdU-staining. In all, 

21 different variations of the immunohistochemistry method were tested before the 

staining was successful. They are listed in Appendix 5.   

Before commencement of the staining procedure, the sections were thawed and 

allowed to dry. The area around each section was then outlined with a PAP – pen to keep 

liquid droplets in place. The slides were washed in phosphate buffered saline (PBS) for 

five minutes, repeated twice. Further, for epitope retrieval, the slides were placed in a 

10mM citric acid buffer, pH 6.0, and incubated for one hour at 70 °C. The citric acid 

solution was allowed to cool to room temperature before the slides were removed and 

washed three times in PBS.  To prevent unspecific binding of the antibody, 

approximately 50 µl of blocking solution containing 6 % milk powder, was added to each 

section. The slides were placed in a humidified chamber and incubated for one hour at 

room temperature. The blocking solution was removed and replaced with a PCNA 

primary antibody (Rabbit polyclonal IgG), diluted 1:50 in PBT. The slides were then 

incubated over night at room temperature, in a humidified chamber.  

On day two the slides were washed three times in PBS, five minutes per wash. To 

block endogenous peroxidase activity, the slides were placed for 15 minutes in a 3 % 

hydrogen peroxide solution, before they were washed three times in PBS. Approximately 

50 µl of secondary antibody (Labelled polymer HRP, Anti-rabbit) was added to each 

section before the slides were incubated in a humidified chamber for 30 minutes at room 

temperature, and then washed three times in PBS. 50 µl of active DAB solution was 

added to each section. The effect of this chromogen was observed through the 

microscope. When the staining was complete, normally after 10 – 15 minutes, the slides 

were washed twice for five minutes with dH20. They were then allowed to dry before 

being mounted with permanent mounting medium and coverslips. 

 

 

 

 

 30



Methods and materials 
 

2.5.3 Quantification of PCNA-positive nuclei 
 

The sections were investigated using a Zeiss Axioplan 2 Imaging microscope and 

photographed using an Axiocam HR camera (2600 x 2060 pixels resolution) and the 

computer program Axiovision 3.1. The pictures were taken at 200 x magnification. To 

ensure the best resolution of the final image, each section was photographed in smaller 

parts and then joined to create a complete image. The joining of the images was done 

with the photo stitching software called PTGui.  

The images were analyzed in Adobe Photoshop CS2. Four sections per 400 µm, 

giving a mean of twelve sections per telencephalon, were investigated. Since the size of 

the fish brain increases with body size (Zupanc and Horschke, 1995) it would be of little 

interest to detect the absolute number of new cells in the telencephalon. Therefore, the 

number of stained cell nuclei per investigated brain volume was calculated. The 

investigated volume of each telencephalon was calculated by multiplying the area of each 

section, as determined using Photoshop CS2, by its thickness, which was 25 µm.  The 

nuclei were counted in the proliferation zones described in chapter 1.6.1. Nuclei were 

occasionally observed outside these zones (which might have been migrating cells), but 

these were not counted. Sometimes a cell displayed two nuclei, i.e. the cell was in the 

telophase of mitosis, in which case each nucleus was counted. As this experiment focus 

on how environmental enrichment affects the proliferation rate in the telencephalon, and 

not how the specific areas within the telencephalon are affected, the proliferation zones 

were not counted separately. Figure 2.5 shows a typical section of the telencephalon after 

PCNA-immunohistochemistry.  
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        a)      b)  
Figure 2.5  a) One telencephalic section stained by immunohistochemistry. Scale bar is 100 µm.  b)  An 

enlargement of the frame from a) Here the scale bar is 50 µm. The arrow points to a typical nucleus.  

 

 

2.6 Cortisol assay  

 

Since the zebrafish are small (average 0.3g and 2.5 cm), plasma samples are very 

hard to obtain. A whole-body extraction was therefore carried out. (In this case, “whole-

body” refers to the body minus the head). The fish bodies were weighted and 

homogenized using a T25 homogenizer (IKA labor technik), in 1:3 (weight : volume) 

PBS. The samples were then stored at -80°C. 

 Lipophilic components of the specimen were extracted with diethyl ether (DE). 1 

ml of DE was added to each sample, followed by approximately 30 sec of vortexing. The 

samples were then centrifuged, at 4°C and 5000 rpm, for 10 min. After centrifugation, the 

samples were frozen at -80°C, whereupon the ether layer was decanted off and collected. 

The pellets were allowed to thaw on ice, before extraction was repeated twice. The 

supernatant from all three extractions were combined in one eppendorf tube, and the DE 

evaporated at room temperature in a fume hood over night. Subsequently, 250 µl of EIA 

Kit assay buffer and 250 µl of carbon tetrachloride (CCl4) were added to each tube. The 

remaining lipids dissolved in the CCl4. A pre-test, with known amounts of cortisol added 
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to samples (n = 5), was performed to determine the amount of cortisol lost in the 

extraction procedure. This test showed that an average of 77.6 % of the cortisol was 

extracted and this was corrected for in all samples. The assay buffer/ CCl4 mixture was 

vortexed well, and then centrifuged for 10 min at 5000 rpm at 4°C. The aqueous phases 

were subsequently transferred to new eppendorf tubes. Cortisol concentrations of the 

extracts were determined using a Cortisol Correlate-EIATM Kit (Assay Designs/USA).  

 
 

2.7 Statistical analysis  

 
Statistical analyses were performed using STATISTICA software (StatSoft, Inc., 

Tulsa, Oklahoma) for ANOVA procedures and Student’s t-tests. Graph Pad (Software 

Inc., San Diego, California) was used for descriptive statistics, Kolmogorov Smirnov test 

for normality, Levene’s test for variance homogeneity and Grubb’s test for outlier 

identification.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 
 

3.0 Results 

Of the 24 fish originally included in the experiment, three fish were lost before 

completion of the behavioural studies. Total number of fish was therefore 21, where 10 

fish were from the enriched group and 11 from the control group. The analyses were 

based on these numbers unless otherwise stated.   

 

3.1 Growth  

 
 Both length and weight of all the tested fish were recorded at day 1 and day 7 in 

the experiment. Growth rates were compared between the groups and the results are 

presented in figure 3.1 as percent increase in body weight and length per day. There were 

no significant difference in either weight or length increase (Student’s t-test: t(19)= 0.36, 

p=0.72 and t(19)=1.22, p= 0.24, for weight and length respectively).  

 

 

 
A B  

   

 

 

 

 

 

 

 

 
Figure 3.1 Growth presented as percentage length (A) and weight (B) gain per day, respectively.  There 

was no significance in length or weight between the groups, as tested by Student’s t-test (t(19)=1.22, p= 0.24 

and t(19)= 0.36, p=0.72, respectively).  
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3.2 Behaviour  
 

3.2.1 Response time 
 

Each fish was fed approximately 5 % of the body weight each day. It was not 

feasible to quantify the exact amount of food consumed by each individual, but the 

response time from when food was presented until the first food item was consumed was 

registered for each individual on each day, except on day 7. These data are graphed in 

figure 3.2. One individual in the barren environment showed response times (average 

57.6 s) that were over ten times longer than the mean group value (average 2.16 s). This 

fish was identified as an outlier (Grubb's test p<0.05) and removed from further analysis.  

 The data for response time were tested with repeated measures ANOVA. In both 

groups, the response time decreased significantly with time (p<0.001). The enriched 

group tended to have a higher mean response time than the control group each day, but 

the difference between the groups was not significant (p=0.12). 
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Figure 3.2 Response time to food in zebrafish kept in enriched and barren environments. The results are 

presented as mean ± S.E.M. Response times decreased significantly with time (p<0.001), while the 

difference between groups did not reach statistical significance (p=0.12) (repeated measures ANOVA). For 

detailed ANOVA results, see appendix 4. 
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3.2.2 Locomotor activity 
 

 The locomotor activity, in terms of numbers of turns per time unit (three minutes), 

was examined in eight fish from each group. This was measured from films obtained at 

day 1 and 4. The data obtained were analysed in a two-way ANOVA, with day of 

observation and environment as independent variables. The results are presented in figure 

3.3. Both time and treatment significantly affected locomotor activity (p<0.001 and  

p= 0.005, respectively). There was however no interaction effect (p = 0.78). In general, 

zebrafish from the barren environment showed higher locomotor activity on both days. 
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Figure 3.3 Locomotor activity in zebrafish kept in an enriched or barren environment, as indicated by the 

frequency of turns observed at day 1 and 4 after transfer from group rearing to rearing in isolation in 

experimental environments. Different letters (a, b) and numbers (1, 2) indicate statistically significant 

effects of the factors day (p<0.001) and environmental complexity (p=0.005). For detailed ANOVA 

statistics see appendix 4.  
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3.3 Brain cell proliferation 

 

Brain cell proliferation was visualised by PCNA immunohistochemistry in eight 

fish from each group. After the immunohistochemical procedure, six brains were found to 

be deviant in appearance due to freeze-damage, and were therefore excluded from the 

subsequent analysis. The total number of brains examined was thus 10, five from each 

group. Nuclei stained positively for PCNA were found in the proliferation zones 

described in chapter 1.6.1 (see figure 3.5).  

The number of stained nuclei per telencephalic volume is shown in figure 3.4. 

Levene’s test showed that the variance of the data was significantly larger in the enriched 

group than the barren (original data mean ± S.D.: 3239 ± 940 vs. 2892 ± 332, lack of 

homogeneity, p=0.03). Due to the lack of variance homogeneity, the data were log 

transformed before they were tested in a Student’s t-test. After log-transformation, data 

met the criteria for parametric statistics. There was no significant difference in stained 

nuclei between the group mean cell counts (t(8)=1.62, p=0.14).  
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Figure 3.4 Number of PCNA positive nuclei per telencephalic volume in zebrafish reared in enriched and 

barren environments. Data are presented as mean ± S.D. No significant difference was detected between the 

groups (Student’s t-test on log-transformed data, p= 0.14). 
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Figure 3.5 Proliferation zones as described in 
chapter 1.5.1. All sections are stained by PCNA 
immunohistochemistry. A is a rostal section 
from the zebrafish telencephalon, B is an 
enlargement of the marked area in A. C is a 
more caudal section of the telencephalon, and D 
and E are the marked areas from C. F is a 
typical freeze-damaged section. Examples of 
stained nuclei are marked with black arrows. 
Scale bars are 100µm for A, C and F, and 50 µm 
for B, D and E. Section A, C and F were taken 
75µm, 600µm and 800µm from the rostal tip of 
the telencephalon, respectively. Abbreviations: 
D = area dorsalis, Dm = medial pallium, Dl = 
lateral pallium, OB = olfactory bulb, TelV = 
telencephalic ventricle, V = area ventralis 
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3.4 Whole-body cortisol  

  

Cortisol were extracted from whole-body (minus head) samples, and 

concentrations calculated in relation to body weight. The data were analysed by Student’s 

t-test. Fish from the enriched group had significantly higher whole-body levels of cortisol 

than fish from the control group (t(19)=3.41, p=0.003). The results are presented in figure 

3.6. 
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Figure 3.6 Whole-body cortisol levels, presented as ng cortisol per g body weight (mean ± S.E.M), in 

zebrafish reared in enriched and barren environments. Testing by a Student’s t-test revealed that the 

enriched group had significantly higher levels of whole-body cortisol than the control group (p=0.003), 

indicated by different letters (a, b).  
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4.0 Discussion  

 

4.1 Neurogenesis in isolated zebrafish in enriched and barren 

environments  

 

In order to estimate neurogenesis in zebrafish a protocol for 

immunohistochemical PCNA staining was developed. Staining of a quality that allowed 

quantification of stained nuclei in the telencephalic tissue was obtained after a number of 

attempts (listed in Appendix 5). The results revealed no significant effect of 

environmental enrichment on average levels of neurogenesis in the zebrafish. There was 

however a strong tendency towards higher neurogenesis in the enriched group, which 

may have failed to reach statistical significance due to the small sample size. 

Furthermore, the inter-individual variability was significantly higher in the enriched 

group than in the control group. This latter observation is in agreement with several other 

studies (Mering et al., 2001; Tsai et al., 2002). Tsai et al. (2002) found that, compared to 

control group, mice reared in an enriched environment had higher coefficients of variance 

(defined as S.D/mean value) in most parameters tested, which were body weight, organ 

(heart, kidney, liver, adrenal, uterus and spleen) weight and haematology (red and white 

blood cells, haemoglobin and haematocrit). This indicates that a heterogeneous 

environment leads to greater heterogeneity in several physiological parameters within a 

population. An experimental consequence of this is that more animals are needed in order 

to reach statistical significance. However, high inter-individual variance is not always 

reported in animals from enriched environments and seems to be dependent on certain 

circumstances, such as animals strain, type of enrichment, duration of the experiment and 

type of statistical analysis (Tsai et al., 2002; Augustsson et al., 2003). 

Although neurogenesis was not significantly higher in the enriched zebrafish it is 

a possibility that, if the proliferation zones were compared separately, there would have 

been a significant difference between the groups. This was not investigated here due to 

time constraints. Nevertheless, since it has been reported that the proliferation zones in 
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mammals are affected differently by different stimuli (Rochefort et al., 2002; Brown et 

al., 2003b), it would be interesting to investigate this option further in the future.  

Not much work has been published on how environmental enrichment affects the 

brain of fish. However, Kihslinger and Nevitt (2006) showed that, by simply adding 

stones to the standard rearing tank, salmon alevins grew significantly larger cerebella 

than fish reared in conventional tanks. It has also been shown that the brain volume of 

wild fish is larger than that of fish reared in hatcheries (Kihslinger et al., 2006).  In 

rodents, on the other hand, a large number of studies confirm that environmental 

enrichment increases neurogenesis (Altman and Das, 1964; Kempermann et al., 1997b; 

Kempermann et al., 1998a; Nilsson et al., 1999; Kempermann et al., 2002; Brown et al., 

2003b; Komitova et al., 2005; Olson et al., 2006; Segovia et al., 2006).  

New neurons might be a necessity in fish, that grow in size throughout life, in 

order to provide central neurons to the increasing amount of peripheral sensory and motor 

elements (Zupanc, 2001). Consequently, an increase of neurogenesis might reflect an 

increase in growth. However, in this experiment, growth rates did not differ between the 

groups, and are thus not likely an explanation to why the enriched animals tended 

towards higher neurogenesis. 

There are at least three possible reasons why significant differences in 

neurogenesis were not detected in the present study: First, the fish were kept in their 

respective environments for only seven days, which might be too short a period to create 

detectible differences. Second, the individual variation was so large that more fish were 

needed in order to reach statistical significance. Third, environmental enrichment of this 

kind may simply not be sufficient to induce increased neurogenesis in the zebrafish 

telencephalon. 
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4.2 Behaviour of isolated zebrafish in enriched and barren 

environments 

 
This is the first study to demonstrate an effect of environmental enrichment on 

behavioural variables in zebrafish. Two such variables were measured; response time to 

food presentation and locomotor activity. 

  

4.2.1 Response time to food presentation  
 

In both groups the response time to presented food fell significantly over time, but 

there was no significant difference between the groups. In this study, only the response 

time was measured, and not the amount of food consumed. Previously it has been 

reported that transfer to a new environment may cause reduction or cessation of food-

intake in fish (Øverli et al., 2002b; Schjolden et al., 2005), but this was not seen in this 

experiment. All the fish observed showed food-intake each day. At day 1 the fish 

received food approximately three hours after their transfer to their new environment. It 

was essentially at this day that the fish showed long response time. Since no cortisol 

samples were taken at day 1, it is difficult to say whether the fish were stressed by the 

handling and the anaesthesia performed at that day. In a previous study by Lepage et al. 

(2000), it was found that transfer to a novel environment led to a significant increase in 

plasma cortisol levels in anadromous brown trout, Salmo trutta. High cortisol and CRH 

levels have been showed to decrease appetite in fish (Bernier and Peter, 2001; Volkoff et 

al., 2005; Bernier, 2006). If the zebrafish indeed were stressed at day 1, this might 

explain the slow response to food. The decrease in response time observed over the next 

few days was probably caused by a habituation to the new environment.  

It should be noted that great individual variations in response time were observed. 

Some fish started to eat immediately, even at day 1. Although not significant, the 

enriched group had an overall tendency towards a higher response time in the whole 

experimental period.  It might be that the plants that were present in the enriched aquaria 

served as a visual obstruction for the fish, leading to a longer response time.  
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In conclusion there was no significant difference in response time to food between 

the zebrafish from different experimental groups, and all fish seemed to acclimate rapidly 

to their new environment. For future experiments cortisol samples after handling and 

exposure to novelty at day 1 should be collected, to determine the stress level of the 

animals after these actions.  

 

4.2.2 Locomotor activity 

 

In the two- way ANOVA, the control group had significantly higher locomotor 

activity than the enriched group, while both groups of fish showed a significant decrease 

in locomotor activity with time. Hence, as with response time to food, habituation may 

have affected locomotion. A study on ratsnakes, Elaphe obsoleta, revealed that snakes 

reared in an enriched environment habituated more quickly to a novel environment than 

ratsnakes reared in standard conditions (Almli and Burghardt, 2006). Provided that the 

increased locomotor activity in the barren group can be taken as a sign of anxiety or 

stress (see below), this also seemed to be the case with the enriched zebrafish.  

Transfer to a novel environment is often associated with a high GC response 

(Hennessy, 1991). As with food-intake, locomotor activity can be affected by GCs and 

CRH (Lowry and Moore, 2006). Clements et al. (2002) showed that high CRH levels led 

to increased locomotor activity in spring chinook salmon. If the zebrafish were stressed at 

day 1 after the handling and transfer to a novel environment, the high locomotor activity 

might reflect this state. Stress has also been shown to elevate the serotonergic activity in 

fish (Winberg and Nilsson, 1993).  High levels of serotonin may lead to a decrease in 

locomotor activity, prominently in subordinate animals, and lowered aggression 

(Winberg and Nilsson, 1993). Since all fish lived in isolation during the experiment, this 

scenario might not be transferable to the present study. Increased locomotion as a result 

of high serotonin levels has also been reported (Green and Grahame-Smith, 1974; 

Wedderburn and Sillar, 1994; O'Neill and Sanger, 1999), making it hard to draw any 

conclusions about this monoamine’s effect on locomotion. However, in future 

 43



Discussion 
 

investigations of the present kind it would be interesting to measure brain serotonergic 

activity.  

 Animals reared in enriched environments have previously been shown to be less 

affected by stress and show reduced fearfulness in encounters with novelty, in addition to 

faster habituation and decreased locomotor activity (Larsson et al., 2002; Benaroya-

Milshtein et al., 2004; Hattori, 2007). Yet, different results in behavioural tasks from 

animals reared in enriched environments have been reported (Hattori, 2007). This is 

likely due to the period of time the animals have spent in their respective environments. It 

would be interesting to see if the behavioural differences between the groups in the 

present study would have been more pronounced if the experimental period was 

prolonged. It has previously been shown in mammals that environmental enrichment 

enhances memory and learning, and that animals reared under such conditions perform 

better at tasks such as the Morris water maze (Falkenberg et al., 1992; Nilsson et al., 

1999). For the future, it would be interesting to investigate if zebrafish reared in enriched 

environments show enhanced performance skills in tasks of memory and learning, such 

as active avoidance training (Laudien et al., 1986).   

 

 

4.3 Whole-body cortisol levels  

 

Whole-body cortisol levels were measured to determine whether the fish were 

stressed by the isolation and if the experimental environments led to different stress 

levels. The cortisol levels turned out to be significantly higher in the enriched zebrafish 

than in the control in this experiment. However, basal levels of GCs are often moderately 

higher in animals reared in enriched environments, compared to controls (Haemisch et 

al., 1994; Klont et al., 2001; Marashi et al., 2003; Moncek et al., 2004), although other 

studies report no increase in GC levels from environmental enrichment (Pham et al., 

1999a; Schrijver et al., 2002). Interestingly, studies have shown that animals reared in 

enriched environments have lower GC levels compared to controls during stress, which 

might indicate that these animals are less affected by stress (Larsson et al., 2002; 

Benaroya-Milshtein et al., 2004). Additionally, the moderately elevated basal levels of 
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GCs in animals from enriched environments do not seem to be accompanied by the 

negative health consequences such as decreased neurogenesis (Kempermann et al., 

1997b; Mohammed et al., 2002; Moncek et al., 2004) and lowered immune functions (de 

Groot et al., 2000) associated with high GC levels during stress.    

Whole-body cortisol levels vary between different fish species (Sakakura et al., 

1998; Pottinger et al., 2002). In a time-study on cortisol levels performed in our lab, the 

zebrafish whole-body cortisol levels was found to lie in between 0.07-3.95 ng/g tissue 

(unstressed fish, n=5) and 17.66- 48.83 ng/g tissue (30 minutes of stress, n=4) (Sørensen, 

Øverli and Nilsson: unpublished results). It was also found that the cortisol levels 

increased significantly to 1.03-12.49 ng/g tissue (n= 5) after only one minute of stress 

exposure.  

In the present study, cortisol levels in the zebrafish ranged from 0.34 to12.48 ng/g 

tissue (mean ± S.E.M; enriched: 7.49±1.75, barren: 1.95±0.59). These data are 

comparable with the levels found at 0 and 1 minute of stress in the study by Sørensen et 

al. (unpublished) as well as other studies (Ramsay et al., 2006), and do not indicate high 

levels of stress for neither experimental group of fish.     

There is some reason to suspect that the higher cortisol levels observed in the 

enriched zebrafish were at least partly caused by handling. Due to the plastic plants in the 

enriched aquaria, more time (approximately 30 sec) was spent to net the enriched fish 

than the control fish (approximately 5 sec). This time difference might have been 

sufficient to initiate activation of the HPI-axis, which would lead to increased cortisol 

levels in the enriched group. . There was also no correlation between plasma cortisol or 

any of the behavioural patterns analysed (data not shown).  In view of the known effects 

of cortisol on behaviour in teleost fish (Øverli et al., 2002, and references therein), it is 

therefore reason to suspect that cortisol levels were at least in part an effect of sampling 

stress, and not a chronic feature of the different environments.  

Isolation has been shown to be a stressor in many social species, such as pigs and 

rats (Brown and Grunberg, 1995; Ruis et al., 2001). Not much is known about how 

isolation affects fish, but Martins et al. (2006) performed a study on this topic on the 

social African catfish, Clarias gariepinus.  Isolated catfish showed lowered feed-intake 

and growth rate than the non-isolated fish, but the cortisol levels did not differ. This 

indicates that isolation for a short period (15 days) was not a stressor for the catfish 
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(Martins et al., 2006).  No such experiment has been performed on zebrafish, but the low 

cortisol values found in the control group and the relatively low values from the enriched 

group in this experiment do not indicate that isolation, at least not for seven days, was a 

stressor.  

 

4.4 Conclusions  

 

In the current study, environmental enrichment led to lowered locomotor activity 

and a tendency towards increased neurogenesis. Further, the enriched group showed 

significantly higher inter-individual variation in neurogenesis than the control group. 

Isolation was not a stressor to the zebrafish, as indicated by relatively low whole-body 

cortisol levels and short response time to distributed food.  

The tendency towards higher neurogenesis and the activity pattern observed in the 

enriched group, indicate that environmental enrichment has the potential to increase the 

welfare of zebrafish. However, further studies must be performed to examine this 

possibility.  
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Appendix 1 – Materials 

Material:    Provider:    Art. Nr:    Lot. Nr:  

5-Bromo-2' deoxyuridine (BrdU) Sigma -Aldrich  B-5002   023K1260  

Albumin from Bovine serum  Sigma -Aldrich  A2153    073K0654 

Benzocaine    Sigma    E-1501    58H0619 

BrdU Mouse Monoclonal IgG1 Santa Cruz Biotechonoly sc-32323   HO305 

Carbon tetrachloride    Fluka    87031    1229937 

Cortisol Correlate -EIATM Kit  Assay Designs   900-071   06020626 

DAB Chromogen   DakoCytomation  S3000    085070 

Deconex    Borer Chemic   123375   20569 

Diethyl ether    Merck    1.00921.1000   K25841221 

EnVision+® System Labelled  

Polymer - HRP Anti-Mouse  DakoCytomation  K4000    105273 

EnVision+® System Labelled  

Polymer - HRP Anti-Rabbit  DakoCytomation  K4002    115079 

Hydrogen peroxide, 30 wt. %   Sigma -Aldrich  H1009    104K1434 

KCl     Merck    1.04936.1000   TA104736 

KH2PO4     Merck    1.04873.1000   A118873 

Molico Instant Milkpowder  Nestle    04115-01   1792-2 

Na2HPO4    Merck    1.06580.1000   K22363880 

NaCl     AnalaR®   102415K   K36100833 

PAP, Mouse, Monoclonal  DakoCytomation  P0850    00017453 

PAP-pen    Daido Sangyo   

Paraformaldehyde   Sigma    P-6148    50K0916 

PCNA Mouse Monoclonal IgG2a Santa Cruz Biotechonoly sc-56    D0605 

PCNA Rabbit Polyclonal IgG  Santa Cruz Biotechonoly sc-7907   LO105 

Permanent Mounting Media   DakoCytomation  S3026    044311 

Sucrose     AnalaR®   102745C   K28157286 

Superfrost® Plus slides   Menzel-Glaser   J1800AMNZ   11796 

Tissue Tek    Sakura    4583    0000530-01 

Triton X     Sigma    T-9284    092K0171 
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Appendix 2 - Solutions 
 

 

10 X Phosphate buffered saline (PBS) 

 

80 g NaCl 

2 g KCl 

14.4 g Na2HPO4 

2.4 g KH2PO4 

0.8 l dH2O 

 

Adjust pH to 6.8, and then adjust volume to 1litre with additional dH2O. Sterilize by 

autoclaving. The solution can be stored at room temperature. Dilute the solution 1:10 

with dH2O before use. Adjust pH if necessary, pH should be 7.4 for 1 X PBS.  

 

 

6 % Milk-Powder solution  

 

5 ml PBS 

1.5 µl Triton X-100 

300 mg Milk powder  

 

Vortex until all the milk powder is dissolved. Solution should be freshly made before use. 

 

 

0.6 % PBS with Triton X-100 and BSA (PBT) 

 

10 ml 1 X PBS 

3 µl Triton X-100 

60 mg Bovine serum albumin (BSA) 

 

Vortex until all the BSA is dissolved. Solution can be stored at 4 ºC for one week. 
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3 % H2O2   

 

10 ml H2O2   

90 ml autoclaved dH2O  

 

This volume is adequate for an eight-slide cuvette. The solution should be made freshly 

before use.   

 

 

Diaminobenzidine (DAB) stock-solution 

 

10 ml autoclaved dH2O 

1 DAB tablet  

 

Vortex until the tablet is dissolved (will not always dissolve completely). The solution 

can be stored at 4 ºC for one week. DAB is very poisonous, but can be inactivated with 

commercial Klorin (hypoclorite).  

 

 

Activated DAB- solution  

 

4 ml DAB stock- solution 

30 µl 3 % H2O2   

 

Mix immediately before use. The solution can be inactivated with commercial Klorin.  

 

 

Rabbit anti- PCNA [1:50] 

 

4 ml 0.6% PBT 

80 µl anti-PCNA  
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Mix gently by turning the eppendorff tube up-side-down for a few times. This solution 

should be made freshly before use, and is an adequate amount for 16 slides with 4 

sections each. 

 

 

Benzocaine solution 

 

5 % benzocaine in 96 % ethanol  

 

To anesthetize zebrafish, 300 µl of 5 % benzocaine solution per 100 ml dH20 is adequate.  

 

 

30 % Sucrose solution 

 

30 g sucrose 

70 ml autoclaved dH20 

 

Stir until all sucrose is dissolved. The solution can be stored at room temperature.  

 

 

4 % paraformaldehyde solution 

 

96 ml 1 X PBS 

4 g paraformaldehyde 

 

All handling of paraformaldehyde should be done inside a fume hood. Place the mixed 

solution on a hotplate-stirrer, and allow the solution to warm. When the solution turns 

clear it is done. Turn off the hotplate, but allow the solution to stir until it is cool. The 

solution can be stored at 4°C for one week.  
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Methacarn 

 

60 % methanol 

30 % chloroform 

10 % glacial acetic acid 

 

Make fresh before the fixation 

 

 

10 mM Citric acid buffer 

 

2.1 g citric acid monohydrate  

0.9 l autoclaved dH20 

 

Adjust to pH 6.0 with NaOH, refill will dH20 until 1 litre of total volume. The solution 

can be stored for three months at room temperature.  
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Appendix 3 – PCNA protocol 
 
 
Day 1 
 

1. Thaw the frozen slides in room temperature until they are dry 

2. Draw around the sections with a PAP pen (in fume hood), allow to dry 

3. Wash slides in PBS, 3 x 5 min 

4. Epitope retrieval in 10 mM citrate buffer (pH 6.0) at 70 °C, incubate for 1 hour 

5. Allow solution, with slides, to cool to room temperature 

6. Wash slides in PBS, 3 x 5 min 

7. Block with 6 % milk powder for 1 hour at room temperature. The incubation should be 

done in a humidified chamber 

8. Add 50 µl anti – PCNA (1:50) in 0.6 % PBT and incubate over night at room 

temperature. The incubation should be done in a humidified chamber 

 

Day 2 
 

1. Wash slides in PBS, 3 x 5 min 

2. Block peroxidase activity with 3 % H2O2 for 15 min 

3. Wash slides in PBS, 3 x 5 min 

4. Add approximately 50 µl Dako EnVision+ to sections. Incubate at room temperature in a 

humidified chamber for 30 min   

5. Wash slides in PBS, 3 x 5 min 

6. Add 50 µl activated DAB solution to sections and incubate for 10-15 min. Observe 

through a microscope during the incubation time to determine when the reaction is 

completed 

7. Wash slides in H2O, 2 x 5 min 

 

To conserve the samples, allow sections to dry, add DAKO permanent mounting medium and 

cover the sections with glass cover slips. 
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Appendix 4 – Statistical analyses  

 

 
Table 1 Response time to food distribution  
 
 

 
Var1 = Environment, Var2 = Day of observation 
 
 
Table 2 Locomotor activity 
 
 

 
Var1 = Environment, Var2 = Day of observation 
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Appendix 5 – Method development  
 
The following tables show the tests tried for PCNA and BrdU, respectively.  The changes made from one test to another are marked 
with green colour. All sections were 25 µm thick transverse cuttings. For each concentration of antibody tested, there were at least two 
duplicates per test. 
 
PCNA: 
 

Primary 
antibody: 

Primary 
antibody 
concentration: 

Epitope 
retrieval 
method:  

Blocking: Secondary 
antibody: 

Tertiary 
antibody: 

Sections: Results and 
commentary: 

Anti –
PCNA 
(Sigma) 

a. 1:100 
b. 0 
incubated over 
night at 4°C 

10 % SDS  for  
30 min 

6% PBT 
for 60 min 

Rabbit anti 
mouse 
(1:50) in 0.6 
% PBT for 
60 min 

PAP (1:100) in 
0.6% PBT for 
45 min 

Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 24 
hours.  

A lot of background 
staining, but no nuclear 
staining. Several sections 
loosened from the slides.  

Anti –
PCNA 
(Santa 
Cruz) 

a. 1:100 
b. 0 
incubated over 
night at 4°C 

10 % SDS  for  
30 min 

6% PBT 
for 60 min 

Rabbit anti 
mouse 
(1:50) in 0.6 
% PBT for 
60 min 

PAP (1:100) in 
0.6% PBT for 
45 min 

Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 24 
hours. 

No nuclear staining, but 
less background staining, 
so will use the Santa 
Cruz primary antibody 
from now on. Several 
sections loosened from 
the slides.  
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Anti –
PCNA 
(Santa 
Cruz) 

a. 1:100 
b. 1:50 
c. 0 
incubated over 
night at 4°C 

1 % SDS for 15 
min 

6% PBT 
for 60 min 

Rabbit anti 
mouse 
(1:50) in 0.6 
% PBT for 
60 min 

PAP (1:100) in 
0.6% PBT for 
45 min 

Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 24 
hours. 

The SDS concentration 
was lowered to see 
whether it had an effect 
on the loosening of the 
sections. Here, no whole 
sections, but parts, 
loosened. No staining in 
the brain tissue. 

Anti –
PCNA 
(Santa 
Cruz) 

a. 1:25 
b. 1:10 
c. 0 
incubated over 
night at 4°C 

1 % SDS for 15 
min 

6% PBT 
for 60 min 

Rabbit anti 
mouse 
(1:50) in 0.6 
% PBT for 
60 min 

PAP (1:100) in 
0.6% PBT for 
45 min 

Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

The drying period were 
prolonged, to see whether 
this had an effect on the 
sections loosening from 
the slides. There were 
fewer sections that 
loosened, so the sections 
will be allowed to dry for 
48 hours from now on. 
No staining in the brain 
tissue. 

Anti –
PCNA 
(Santa 
Cruz) 

a. 1:50 
b. 1:25 
c. 0 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) for 20 
min at 70 °C. 

6% PBT 
for 60 min 

Rabbit anti 
mouse 
(1:50) in 0.6 
% PBT for 
60 min 
0.6% PBT 
for 60 min 

PAP (1:100) in 
0.6% PBT for 
45 min 

Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 
 
 

Another epitope retrieval 
method was tested to see 
whether this could 
enhance the staining. The 
results gave only 
background staining. No 
sections loosened. 
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Anti –
PCNA 
(Santa 
Cruz) 

a. 1:500 
b. 1:300 
c. 1:100 
d. 1:50 
e. 0 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) for 20 
min at 70 °C. 

x. 1% 
PBT for 
60 min 
y. 3 % 
PBT for 
60 min 
z. 6% 
PBT for 
60 min 

Dako 
EnVision++
for 30 min 

---- Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

Changed secondary 
antibody to Dako En 
Vision ++, which is a 
HRP labelled polymer 
conjugated to a 
secondary antibody, 
excluding the need for 
the tertiary antibody used 
until now. 
All combinations of a-e + 
x-z were tested. No 
nuclear staining, only 
background.  

Anti –
PCNA 
(Santa 
Cruz) 

a. 1:500 
b. 1:50 
c. 0 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

x. 1 % 
PBT for 
60 min 
y. 3 % 
PBT for 
60 min 
 

Dako 
EnVision++
for 30 min 

---- Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

All combinations of a-c + 
x-y were tested. No 
nuclear staining, only 
background. 

Anti –
PCNA 
(Santa 
Cruz) 

a. 1:500 
b. 1:50 
c. 0 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) boiled 
in microwave 
oven for 4 x 5 
min. Refilled, if 
the fluid 
evaporated, 
with dH20. 

x. 1 % 
PBT for 
60 min 
y. 3 % 
PBT for 
60 min 
 

Dako 
EnVision++
for 30 min 

---- Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

All combinations of a-c + 
x-y were tested. No 
nuclear staining, only 
background. 
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Anti –
PCNA 
(Santa 
Cruz) 

a. 1:500 
b. 1:50 
c. 0 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

x. 1 % 
PBT for 
60 min 
y. 3 % 
PBT for 
60 min 
 

Dako 
EnVision++
for 30 min 

---- The brain was not 
fixated. After 
cutting, the 
sections were 
dried for 48 
hours. 

All combinations of a-c + 
x-y were tested. Most 
sections were completely 
destroyed, since they 
where not fixated. A few 
cells were stained at 1:50 
concentration of primary 
antibody and 1 % BSA, 
but the results are unsure 
since the sections were so 
destroyed.  

Anti –
PCNA 
(Santa 
Cruz) 

a. 1:500 
b. 1:50 
c. 0 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

1 % PBT 
for 60 min 

Dako 
EnVision++
for 30 min 

---- Fixated in 4 % 
paraformaldehyde 
for 30 minutes, 
then over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

No nuclear staining, only 
background. 

Anti –
PCNA 
(Santa 
Cruz) 

1:50 
incubated over 
night at 4°C  

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

1 % PBT 
for 60 min 

Dako 
EnVision++
for 30 min 

---- Fixated in 4 % 
paraformaldehyde 
for 60 minutes, 
then over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

No nuclear staining, only 
background. Because of 
troubles with the 
cryostat, there were so 
few good sections that 
only the 1:50 primary 
antibody concentration 
was tested. 
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Anti –
PCNA 
(Santa 
Cruz) 

a. 1:500 
b. 1:50 
c. 0 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

1 % PBT 
for 60 min 

Dako 
EnVision++
for 30 min 

---- Fixated in 4 % 
paraformaldehyde 
for 120 minutes, 
then over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

No nuclear staining, only 
background and a few 
stained cells in the tissue 
surrounding the brain. 

Anti –
PCNA 
(Santa 
Cruz) 

a. 0 
b. 1:50 
c. 1:100 
incubated over 
night at 4°C 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

1 % PBT 
for 60 min 

Dako 
EnVision++
for 30 min 

----- 48 hours in 4% 
paraformaldehyde
, then 48 hours in 
sucrose solution. 
Dried for 12 
hours. 

The method was tested 
on rainbow trout, to see if 
the species varied in 
results. The test gave a 
lot of background 
staining, and some 
nuclear staining, but very 
weak, so it was difficult 
to quantify.  

Anti –
PCNA 
(Santa 
Cruz) 

a. 0 
b. 1:50 
c. 1:100  
d. 1:200 
incubated over 
night at room 
temperature 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

1 % Milk 
powder 
for 60 min 

Dako 
EnVision++
for 30 min 

----- Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

Some background 
staining. There was also 
some weak nuclear 
staining, but it was 
difficult to quantify.  
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Anti –
PCNA 
(Santa 
Cruz) 

a.    0 
b. 1:10 
c. 1:25  
d. 1:50 
incubated over 
night at room 
temperature 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

x. 3 % 
Milk 
powder 
for 60 min 
y. 6 % 
Milk 
powder 
for 60 min 

Dako 
EnVision++
for 30 min 

----- Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

All combinations of a-c + 
x-y were tested. Some 
background, but nice 
staining in several nuclei 
in the brain. The best 
results were from the 
sections with 1:50 
concentration of primary 
antibody and 6 % milk 
powder, and these 
parameters were set to be 
retested. 

Anti –
PCNA 
(Santa 
Cruz) 

1:50 
incubated over 
night at room 
temperature 

Citric acid 
buffer (10 mM, 
pH 6.0) for 60 
min at 70 °C. 

6 % Milk 
powder 
for 60 min 

Dako 
EnVision++
for 30 min 

----- Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

This method gave good 
results, with nice nuclear 
staining and low 
background staining. It 
was tested two additional 
times, with equally good 
results. This is the 
method used in the rest 
of this study.  
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BrdU: 
 
 
These methods were tested alongside the PCNA-testing, and even though PCNA was the antigen finally used in this study, the results 
for the few BrdU-tests are enclosed for information.   
 
 

Primary 
antibody: 

Primary 
antibody 
concentration: 

Epitope 
retrieval 
method:  

Blocking: Secondary 
antibody: 

Hours 
incubated in 
BrdU-solution 
(30 mg/l) : 

Sections: Results and 
commentary: 

Anti - 
BrdU  

a. 1:100 
b. 1:500 
incubated over 
night at 4°C 

2M HCl for 60 
min at 37 °C. 

6% PBT 
for 60 min 

Dako 
EnVision++  
for 30 min 

a. 1 
b. 2 
c. 4 

Fixated in 4 % 
paraformaldehyde 
for 4 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

A lot of background 
staining. A few nuclei 
stained, but difficult to 
quantify because of the 
background staining.  

Anti – 
BrdU 

a. 0 
b. 1:50 
c. 1:100 
incubated over 
night at 4°C 

2M HCl for 60 
min at 37 °C. 

6% PBT 
for 60 min 

Dako 
EnVision++  
for 30 min 

BrdU injected 
24 hours before 
sacrifice 

48 hours in 4% 
paraformaldehyde
, then 48 hours in 
sucrose solution. 
Dried for 12 
hours. 

The method was tested on 
rainbow trout to see if the 
species varied in results. 
The test gave a lot of 
background staining, even 
at the 0 control group. 
Some nuclear staining, but 
very weak compared to the 
background, so it was 
difficult to quantify.  
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Anti – 
BrdU 

a. 0 
b. 1:250 
c. 1:500 
incubated over 
night at 4°C 

2M HCl for 60 
min at 37 °C. 

6% PBT 
for 60 min 

Dako 
EnVision++  
for 30 min 

24  Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

Not much background 
staining, but also very little 
nuclear staining.  

Anti – 
BrdU 

a.  0 
b. 1:200 
c. 1:400 
d. 1:600  
incubated over 
night at room 
temperature 
 

2M HCl for 60 
min at 37 °C. 

6% PBT 
for 60 min 

Dako 
EnVision++  
for 30 min 

24 Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

Quite a lot of background 
staining in the sections 
with the 1:200 primary 
antibody concentrations, 
somewhat less at the other 
concentrations. Nuclear 
staining was weak, and 
difficult to quantify. 

Anti – 
BrdU 

a.  0 
b. 1:200 
c. 1:400 
d. 1:600 
incubated over 
night at room 
temperature 

2M HCl for 60 
min at 37 °C. 

6% Milk 
powder 
for 60 min 

Dako 
EnVision++  
for 30 min 

24 Fixated in 4 % 
paraformaldehyde 
for 24 hours, then 
over night in 
sucrose solution. 
After cutting, the 
sections were 
dried for 48 
hours. 

Some staining in nuclei 
and some background 
staining. Still not good 
enough for quantification.  

 
 

Fixation with methacarn was also tested, but the sections were completely destroyed during cutting, so no immunohistochemistry was attempted.  
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