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Chapter 1

Introduction

1.1 Motivation and Description

In 1980, three experimental physicists, K. von Klitzing, G. Dorda and M. Pepper
made the unexpected discovery[1] that conductivity in a two-dimensional system

sometimes is quantized, i.e. that it takes only discrete values. But while this was a
surprising discovery, it did not take long before a theoretical understanding of the

phenomenon was reached. It was therefore even more unexpected when three other
physicists, D. C. Tsui, H. L. Störmer and A. C. Gossard in 1982[2] found that the

conductivity was in fact quantized in fractional steps, a discovery that could not be
explained by the theory.

This example shows that even if one believes that one has a good understanding
of a phenomenon, it is not always correct. And there is another morale to the story

as well: It was later found that the latter discovery could be explained by using a
theoretical construction known as particles with intermediate statistics, which was

found by the theorists J. M. Leinaas and J. Myrheim in 1977[3]. Although this
construction at the time of discovery seemed to have no application, it was still

convenient to explain an actual physical phenomenon. In other words, a theoretical
construction might be useful in the future even though it does not seem so at the
moment.

The main focus of this thesis is the Chern-Simons-Ginzburg-Landau (CSGL) the-

ory. This theory is an attempt of a phenomenological description of the fractional
quantum Hall effect, which is the name given to the discovery by Tsui et. al. men-

tioned above. It is therefore natural to consider the application of the CSGL theory
to this phenomenon. However, in many parts of the thesis we will study the CSGL

theory without considering the direct applications of the results. In fact, the CSGL
theory might not be a very accurate description of this effect. Still, motivated by
the example of how Leinaas’ and Myrheim’s discovery in 1977 was found to be useful

several years later, we will study the theoretical aspects of the theory.

In the CSGL theory, a mathematical phenomenon called vortices also appears.
These vortices are believed to be the analogue to the particles with intermediate

1



2 Chapter 1. Introduction

statistics mentioned above. They are believed to be very important for the fractional
quantum Hall effect, and are therefore certainly interesting objects for study. Most of
this thesis will concentrate on the properties and effects of the vortices. The details

of the vortices are studied both analytically and numerically in chapter 3, and we
compare the analytical results to the numerical ones.

To give the reader the necessary theoretical background needed for the study of
the CSGL theory, chapter 2 gives a review of those subjects the reader is likely to

be unfamiliar with. We have not attempted to go into details of all the necessary
subjects, as this could easily fill several large books. However, references are provided
for the reader who wants more information on any subject.

In chapter 4, we study various extensions of the CSGL theory. These extensions
are made by adding terms to the CSGL Lagrangian. Their motivation is to create a

more accurate description of the fractional quantum Hall effect, but as with the pure
CSGL theory we will mainly study their mathematical properties without considering

physical implications. The extended theories are mainly studied numerically. An
interesting part of this study is to compare the results for the extended theories with
the pure CSGL theory results.

In chapter 5, we return to the vortices in pure CSGL theory. We show how
these vortices may be understood as particles in another theoretical construction,

the Maxwell-Chern-Simons theory. We also try to find out how these vortices will
alter some properties of the CSGL theory through the connection to Maxwell-Chern-

Simons theory.

1.2 Notation

This section gives a brief overview of the notation used in this thesis. We will here

restrict ourselves to explaining some general rules and concepts of notation. A com-
plete reference of symbols used in the thesis is provided in appendix A. The reader
is advised to consult that appendix for explanation of symbols encountered in the

thesis.

Although the CSGL theory is non-relativistic, relativistic notation is used every-

where in this thesis. This implies that we will differ between contravariant compo-
nents of a vector, written as vµ and covariant components, written as vµ. However,

it does not imply that quantities or equations will be Lorentz invariant in general.
A flat space-time is always assumed, and we may in fact define the covariant vector
components by vi ≡ −vi.

The quantum Hall effect occurs in the plane. Thus, in this thesis we will mainly
be considered with two-dimensional vectors. Such vectors are denoted in a bold

typeface, e.g. v. For unit vectors, we will use the notation

êx ≡ ê1 = (1, 0), (1.1)

êy ≡ ê2 = (0, 1). (1.2)



1.2 Notation 3

In two dimensions, the result of a cross product between two vectors is a pseudo-
scalar. The resulting vector of cross multiplying two three-dimensional vectors in the
plane would be a vector normal to the plane. In two dimensions, the z-component of

this three-dimensional vector will be the resulting pseudo-scalar. The definition is

v × w = εijviwj, (1.3)

where we have introduced the antisymmetric tensor εij , defined as ε12 = −ε21 = 1

and ε11 = ε22 = 2. We will also need the totally antisymmetric tensor in three
dimensions, εµνσ , which is defined such that εµνσ has the sign of the permutation of
the indices (µ, ν, σ), i.e. ε012 = 1, ε102 = −1 etc. The tensor component is zero if two

indices are equal.
Sometimes we will need to rotate a vector by 90 degrees. For this operation

we define the special vector ẑ, which may be understood as a unit vector in the z-
direction. It will be used only in cross products such that ẑ × v results the rotation

of v 90 degrees in the clockwise direction.
In most of the thesis we will work in natural units, where ~ = c = 1, however in

chapter 2, we will for clarity show factors of ~ and c explicitly. Occationally, we will
denote the differentiation with respect to time with a dot, i.e. v̇ ≡ dv

dt
.
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Chapter 2

Background

2.1 Phenomenology of the Hall Effect

2.1.1 The Hall Effect

The ordinary Hall effect is well known and completely explained by classical physics[4].

It was discovered in 1879 by E. C. Hall. The effect occurs when current carriers, usu-
ally electrons, in a conductor are subjected to a magnetic field perpendicular to the

electric field. In such a system one will observe an electrical potential difference be-
tween opposite points on the conductor perpendicular to the direction of the current.

VH

I

VL

B

Figure 2.1: Measuring con-

ductivity and resistivity

Let E be the electric field in the conductor, and j

the linear current density. One defines the conductivity

tensor σij and the resistivity tensor ρij as

Ei = σijjj, (2.1)

ji = ρijEj, (2.2)

so that ρij is the matrix inverse of σ ij. One finds that
in general, σij and ρij are quantities depending on the

material of the conductor. If there was no Hall effect
(e.g. if B = 0), one would have σ ij = σδi

j , where σ is
the (scalar) conductivity of the material. If the conduc-

tor is made from a homogeneous material, we must have
σxy = −σyx and σxx = σyy. It is thus natural to define

a longitudinal conductivity σL and a Hall conductivity
σH by

σH ≡ σxy, (2.3)

σL ≡ σxx. (2.4)

σH and σL are not measured directly. Rather, one measures the current I passing
through a sample, and the longitudinal and normal voltages VL and VH , as shown in

5



6 Chapter 2. Background

figure 2.1. We define the Hall resistance RH by

VH = RHI. (2.5)

The classical microscopic picture of the Hall effect is this: The current carriers are
affected by the Lorentz force, F = q(E+v×B), where q is the charge of the particles

and v is the velocity. The magnetic field will force current carriers to gather on one
side of the conductor until the electric field from these particles is strong enough to

negate the effect of the magnetic field. We then have EH = v × B, where EH is
the part of the electric field perpendicular to the current flow. Equation (2.5) then

implies RH = vBx
I = B

ρe , where ρ is the planar density of current carriers. Thus, the
Hall resistance is expected to be proportional to the applied magnetic field.

2.1.2 The Quantum Hall Effect

The Quantum Hall Effect (QHE) occurs at low temperatures (≤ 4K), in interfaces
between two semiconductors or between a semiconductor and an insulator.

The effect is seen when adding a large transverse magnetic field (≈ 1−30T ) to the
setup described above. What von Klitzing, Dorda and Pepper discovered in 1980[1],

was that the Hall conductivity σH is quantized as

σH = i
e2

h
i = 1, 2, 3, . . . (2.6)

Moreover, this conductivity was independent of the materials used, the temperature
(as long as it is low enough), and other variables that conductivity usually depends

on. Because of this independence the Hall effect is convenient for defining a standard
resistance, and it may also be applied as an unusually accurate measure of the fine
structure constant α = e2�

c
.

The most used experimental setup for measuring the QHE is a setup for a DC
transport experiment in an interface between two gallium-arsenic semiconductors

(GaAs heterojunction), schematically set up as shown in figure 2.1. A steady current
I transports electrons through the interface. The longitudinal voltage VL in the

figure and the Hall voltage VH are then measured as well as the length L and width
W of the sample. Assuming a uniform current density parallel to the y-axis in the

figure, and a uniform electric field (these are good approximations if L� W and the
connectors for the voltage measurements are far from the edges of the sample), the

current density j and the longitudinal component of the electric field EL are given by

j =
I

W
êy, EL =

VL

L
. (2.7)

The longitudinal and Hall resistances, RL and RH are given by

RL =
VL

I
= ρL

L

W
, RH =

VH

I
= ρH . (2.8)

So we see that for a 2D rectangular system, the Hall resistance and the Hall resistivity

are in fact equal. When the resistances are measured, results such as shown in figure
2.2 are found, contrary to the expected linear dependence of RH on B.
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Figure 2.2: Typical experimental results from a DC transport experiment as described

in the text. From [5].

Figure 2.3: Experimental results from [5] showing the fractional quantum Hall effect.
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2.1.3 The Fractional Quantum Hall Effect

While the quantum Hall effect was a surprising discovery in 1980, it was an even

greater surprise when Tsui, Störmer and Gossard in 1982[2] found that not only
was the Hall conductivity quantized in integer steps as in equation (2.6), but under

certain conditions it was also quantized in fractional steps,

σH =
p

q

e2

h
p, q = 1, 2, 3, . . . , (2.9)

as shown in figure 2.3. The surprise was great because while the Integer Quantum
Hall Effect (IQHE) was well described by the independent electron model (see section

2.2.5), the newly discovered Fractional Quantum Hall Effect (FQHE) did not fit into
this picture. The FQHE is only seen when the samples used in experiments are

exceptionally clean.

2.2 Microscopic Theory

2.2.1 Freezing out the z-dimension

The system where the quantum Hall effect occurs is the interface between a semi-
conductor and an insulator or between two semiconductors. The mobility of the
electrons in this system is much larger in the plane of the interface than in the trans-

verse direction. We might then expect the dynamics of the electrons to be effectively
2-dimensional (2D), so that we can approximate the electrons as moving in a 2D

world.
In fact, as a result of quantum mechanics, this approximation is almost exact.

Consider a free particle in a (3-dimensional) box. We can separate the wave function
in x, y and z-dependent parts:

ψ(r) = X(x)Y (y)Z(z). (2.10)

Each part will be an eigenstate of the one-dimensional Schrödinger equation for a
particle in a box; for the function Z(z) we get

{

− ~
2

2m

d2

dz2
+ Vz(z)

}

Z(z) = EzZ(z) (2.11)

where Ez is the contribution from Z(z) to the total energy E = Ex +Ey +Ez, and

Vz(z) =

{

0 0 < z < H
∞ otherwise,

(2.12)

where H is the height of the box.

The solution to this problem is

Zn(z) = sin(
2πnz

H
), n = 0, 1, 2, . . . , (2.13)
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and the energy is given by

En =
h2n2z2

2mH2
. (2.14)

From this equation we see that if H is very small, the spacing between energy levels
will be very large. If the temperature is low, the thermal energy in the system will

be too small to allow excitations in the z-direction. Therefore, what we study is
(effectively) a 2-dimensional electron gas (2DEG). Since the temperature has to be
small enough to disallow thermal excitations in the z-direction, this is known as

“freezing out” the z-dimension.

2.2.2 Electrons in a Magnetic Field

The fundamental image of the Hall effect is that of electrons moving in a magnetic
field. It is therefore essential to understand the basics of such a system before we

may start to describe the Hall effect.
The Schrödinger equation for an electron with charge −e moving in an electro-

magnetic field may be written as

1

2m

(

1

i
~∇ +

e

c
A

)2

ψ = Eψ. (2.15)

For a constant magnetic field B = ∇ × A, one possible choice of gauge (known as
Landau gauge) is

Ax = −yB Ay = 0. (2.16)

This gives the Schrödinger equation

1

2m

[

(

1

i
~∂x −

eB

c
y

)2

+

(

1

i
~∂y

)2
]

ψ(x, y) = Eψ(x, y). (2.17)

Substituting the ansatz ψ(x, y) = eikxφ(y), we arrive at
[

− ~2

2m
(∂y)

2 +
1

2
mω2

C

(

y − ~kc

eB

)2
]

φ(y) = Eφ(y), (2.18)

with the cyclotron frequency ωC = eB
mc , which we recognize as a harmonic oscillator

(HO) with frequency ωC centered at
�
kc

eB
. The solution to the HO problem is well

known to be

φn(y) ∝ e
1

2`2
(y−`2k)Hn(

y

`
− `k), (2.19)

where Hn are the Hermite polynomials and we have introduced the magnetic length

` =
√ �

c
eB

. The quantum number n denotes the Landau level. The energy depends

only on n, not on k:

En = (n+
1

2
)~ωC . (2.20)
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The wave functions (2.19) are localized to a band about y = `2k by the Gaussian
factor. Ignoring boundary effects and confining the 2DEG to 0 < y < W , we find
that k is constrained by 0 < k < W

`2
. Imposing periodic boundary conditions in the

x direction ψ(0, y) = ψ(L, y), we get the condition k = 2πp
L

, with p = 0,±1,±2, . . ..

Combining these, we see that 0 < p < LW
2π`2

, so that the number of states for one

Landau level is N = LW
2π`2

. Thus, the density of states in each Landau level is ρB =
N

LW
= 1

2π`2
. This allows us to define the filling factor ν for a magnetic system with

a density ρ of electrons as

ν =
ρ

ρB

=
2π~c

eB
ρ. (2.21)

The above situation is easily extended to include an electric field E = E êy.
This field may be incorporated in the Schrödinger equation by adding the poten-

tial V (x, y) = eEy. Substituting as before, equation (2.18) becomes

[

− ~
2

2m
(∂y)

2 +
1

2
mω2

C

(

y − ~kc

eB

)2

+ eEy
]

φ = Eφ, (2.22)

which we may transform into

[

− ~
2

2m
(∂y)

2 +
1

2
mω2

C

(

y + y0 −
~kc

eB

)2

− 1

2
mω2

Cy
2
0 +

~kcE
B

]

φ = Eφ, (2.23)

where y0 = 2mc2E
2eB2 , i.e. still a shifted HO with essentially the same solutions as

before, but with an energy varying with k so that the degeneracy of the Landau

levels is broken.

To extend the model to include the effects of spin, we may add an interaction

term

HZ =
gµB

2
Bσz, (2.24)

known as a Zeeman term. Here, µB is the Bohr magneton, µB = e
�

2mc
and g is the

gyromagnetic ratio, or the Landé g-factor for the electron. In practice, one would

use an effective g-factor different from the vacuum value of g = 2.0023 . . .. σ z is a
Pauli matrix,

σz =

(

1 0
0 −1

)

, (2.25)

and the wave function φ must be extended to a two component vector. We return to
the concept of particles with spin in chapter 4.
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Figure 2.4: Exchanging particles

2.2.3 Statistics in Two Dimensions—Anyons

It is well known that in our three dimensional world there exist two fundamentally

different kinds of particles, bosons and fermions, and that these are the only kinds of
particles that can exist. Whether a particle is a fermion or boson depends on what

happens to the wave function of two identical particles when they are exchanged.
Fermions gain a phase factor of −1, while the wave function for bosons is unchanged
under this operation. The reason why only these two types of particles are allowed,

is of geometrical nature: In general, the wave function might pick up a phase factor
eiθ, where 0 ≤ θ ≤ 2π when the particles are exchanged in, say, a clockwise fashion

as shown in figure 2.4a. However, in three dimensions this clockwise exchange is
equivalent to the counter-clockwise exchange of figure 2.4b, since the two are related

by a rotation of the plane containing the particles around the x- or y-axis. In effect,
any rotation will be observed as a clockwise rotation by an observer located on one

side of the rotation plane and as an anti-clockwise rotation by an observer on the
other side. Therefore, the phase factor eiθ must be the same as its inverse, and this

only allows θ to be 0 or π. θ is called the statistics parameter of the particles.

In two dimensions, the picture is different, as realized by Leinaas and Myrheim in
1977[3]. There is no possibility to rotate around the x- or y-axis, and therefore there
is no reason why the phase factor should be constrained to be 1 or −1. Observers who

are constrained to move in the plane of the rotation will always agree on whether the
rotation is clockwise or anti-clockwise. In fact, all possible values of θ are allowed.

Particles with arbitrary statistics have been named anyons by Wilczek[6].

Reality, of course, is three dimensional, and therefore this discovery of fractional
statistics might seem to have little application in real world physics. However, in

systems where particles are constrained to move effectively only in two dimensions,
such as the interfaces where the quantum Hall effect occurs, the particles might create

collective excitations known as quasiparticles, which might behave as anyons. In fact,
we will see that there indeed exist such particles in a quantum Hall system.
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2.2.4 The Aharonov-Bohm Phase Factor

B = 0

B = 0

Figure 2.5: The Aharonov-
Bohm Effect

Consider a magnetic field confined to a relatively small

area (e.g. the inside of an infinitely long solenoid) and
a charged particle free to move in the region outside,

where there is no magnetic field.
Classically, the particle would not be affected by the

field since B = 0 where the particle is and the particle
only feels the Lorentz force F = q(E + v × B). Quan-

tum mechanically, however, the particle will in fact be
affected by the field, since the vector field A is non-zero
also on the outside of the solenoid. (This is clear because

the flux
∫

Bd2r =
∮

A · dr is non-zero.) If the particle
moves one complete rotation around the solenoid (fig.

2.5), it will pick up a phase factor1 eiq � A·dr relative to
the phase it would pick up if the solenoid was not there. Since

∮

A ·dr =
∫

Bd2r = Φ,

the total flux, the phase factor will be eiqΦ. This is the Aharonov-Bohm effect[7].
The effect was first observed experimentally by Chambers[8], but although the effect

acquired the names of Aharonov and Bohm, Ehrenberg and Siday[9] were actually
the first to discuss the effect.

2.2.5 The Integer Effect

We will now give a short introduction to the microscopical picture of the quantum

Hall effect. This introduction is mainly based on Prange and Girvin[10] and Karlhede
et. al.[11]. We do not intend to give a full description, and refer the reader to e.g.

those references for complete reviews.
To understand the integer quantum Hall effect, it is useful first to consider a 2DEG

subjected to a transverse magnetic field B in a translatorially invariant geometry. To
find the conductivity tensor of this system, we subject it to an electric field E. A

Lorentz transformation of this system gives the value of the field in a frame moving
with a speed β relative to the laboratory frame,

E ′i = γE i − γ2

γ + 1
βiβjEj + γBεijβj , (2.26)

where γ = 1
1−β2 . In a frame moving with relative velocity β i

E = 1
B
εijEj there is no

electric field, and thus there is (by symmetry) no current. Therefore, the current in
the laboratory frame is

ji = −ρeβi
E = −ρe

B
εijEj, (2.27)

where ρ is the density of electrons, and the conductivity tensor is σ ij = −ρe
B
εij =

−ν e2

h ε
ij . One would expect this result to be a good approximation also for less than

1See appendix C for an explanation of how the particle picks up a phase factor
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ρ
H

µ
hωC

B

(a) Gaps in the spectrum cre-
ates the QHE

(b) Disorder creates localized
states. From [10].

Figure 2.6: Energy states and the quantum Hall effect

ideal systems. This would imply that the Hall resistivity is linear in the magnetic

field strength, which is not what is observed.

The explanation of the integer effect makes use of two more concepts[11]: A fixing
of the chemical potential and a gap in the excitation spectrum for the electrons. If it

was possible to fix the chemical potential for the electrons at a value µ, and if there
was a gap in the spectrum for some value ν of the filling factor, the filling factor
would be constant equal to ν for all values of B such that µ is in the gap. Thus,

according to equation (2.27), we would observe a quantized Hall effect for such values
of ν. This point is illustrated in figure 2.6a.

Fixing the chemical potential µ seems to be difficult since the number of particles

(electrons) in our system is given by the background charge, and thus is approximately
constant. However, if we include disorder in the model, there seems to be a solution.

In a system with localized disorder, we would expect there to be localized states that
do not contribute to the conductivity. These states would lie between the Landau

levels as shown in figure 2.6b and would in effect behave as an internal particle
reservoir allowing us to fix the chemical potential as desired[11].

From the discussion in section 2.2.2, we know that the ideal system has highly

degenerate energy levels where each energy level corresponds to a Landau level. In-
troducing disorder into the system, we expect that the degeneracy will break, but

the gaps in the spectrum for current-carrying excitations will still be at the bound-
aries between Landau levels, corresponding to ν = 1, 2, . . ., just where the IQHE is
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observed.
Thus, we have successfully obtained a microscopical description of the IQHE.

This description is called the independent electron model, since it does not include

interactions between the electrons.

2.2.6 The Fractional Effect

The microscopical workings of the fractional quantum Hall effect are complicated and

still not fully understood. We will in this section give a very brief summary of some
of the concepts involved in the microscopical theory. A more complete summary

of the microscopical theory may be found in the review by Karlhede, Kivelson and
Sondhi[11], while a detailed (but somewhat dated) review of the microscopical picture

is available in the book by Prange and Girvin[10].
It is clear that the FQHE can not be described without including the effect of

interaction between the electrons, since as we saw in the previous section, the in-
dependent electron model predicts that there will be no gaps in the spectrum other

than for completely filled Landau levels. The arguments for a gap at filling fractions
1
m

where m is an odd integer rely on the fact that the ground state of the interacting
electron system may be approximated very well by the multi-particle wave function

Ψ =
∏

j<k

(zj − zk)
me−

1

2 � j |zj |2 , (2.28)

where zj = 1√
2`

(x + iy) is the complex coordinate of particle number j. This wave

function was studied as a variational function by Laughlin[12], who found it to be an

exceptionally accurate approximation. The arguments for a gap are rather subtle,
and we will not enter the subject here.

From the microscopical theory, another important implication also follows. There
must exist quasiparticle excitations in the FQHE system that have fractional charge.

These fractionally charged quasiparticles have further been shown theoretically to
exhibit fractional statistics[13, 14], with statistics parameter

θ =
π

m
. (2.29)

Quantized Hall conductance at other fractions than the “Laughlin fillings” ν = 1
m

are produced by a hierarchy construction[13, 15]. The quantization of these filling
fractions appear when the quasiparticles of a related filling fraction condense into a
homogeneous fluid.

2.3 Ginzburg-Landau Theory

2.3.1 The Mean Field Method

When studying a system with many degrees of freedom (e.g. a large number of
particles), the equations of motion quickly get too complicated to be useful. It is
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necessary to use an approximation to be able to get useful results. One old and
simple approximation that often is accurate enough is the mean field method 2.

The main idea behind a mean field approximation is to approximate the detailed
structure of a system with a mean field. For example, in a gas of interacting particles,

it is impossible to keep track of the interactions between all particles. In a gas of
N particles, there will be N(N − 1) such interactions, and it is obvious that such a

system can not be treated in full detail when N is a macroscopic number. The mean
field method involves assuming that each particle feels a total force proportional to

the mean density of particles. It is this approximation that gives us the well known
van der Waals equation of state, which is known to be accurate enough for most

purposes in thermodynamics.

2.3.2 Landau Mean Field Theory

Several mean field approximations were used to study phase transitions in magnetic
systems. The fact that all these different models gave the same results, lead Landau

to propose a general theory of 2nd order phase transitions in magnetic systems. The
theory was also found to be useful for other types of systems.

Landau realized that most 2nd order phase transitions may be looked at as a

transition from a disordered to an ordered phase. One may therefore assign an order
parameter φ which is zero in the disordered phase an nonzero in the ordered phase.

If we assume that the free energy F is a regular function of the order parameter at
least near the critical point, since the order parameter will be small here, we may
expand F in orders of φ:

F = F0 + αφ2 +
1

2
βφ4. (2.30)

Odd powers of φmay usually be ignored by symmetry considerations. The parameters

α and β are in general temperature dependent.

2.3.3 The Ginzburg–Landau Equations

Extension of the Landau theory of 2nd order phase transitions to a superconductor or
a superfluid involves treating the wave function as an order parameter, as realized by

Ginzburg and Landau[18]. This is possible because in a superconductor, electrons will
pair up in so called Cooper pairs in the superconducting phase. The wave function
of such pairs will then be identically zero in the non-superconducting phase and may

then be used as an order parameter. Similarly, in a superfluid, the number of particles
in the superfluid state will be vanishingly small in the normal phase.

Treating the wave function as an order parameter implies that we have a complex

order parameter that will also be a function of position. We may then expand the

2This introduction to the mean field method, Landau mean field theory, and the Ginzburg-Landau
equations is based on Tilley and Tilley[16] and Ravndal[17]
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free energy density f(r) in the same way as in equation (2.30), but we will have to
include a term covering the variation with position:

f(r) = f0 + α|φ(r)|2 +
β

2
|φ(r)|4 +

~2

2m
|∇φ(r)|2. (2.31)

The coefficient
�
2

2m of the “kinetic energy” term is a conventional normalization of
the free energy.

Ginzburg and Pitaevskii[19] applied the Ginzburg–Landau (GL) theory to liquid
helium. Minimizing the total free energy F =

∫

f(r)dV with respect to the wave

function φ gives

− ~2

2m
∇

2φ+ αφ+ β|φ|2φ = 0. (2.32)

For the case of a superconductor, it is necessary to include the effect of an applied

field in the theory. This is done by the minimal coupling

−i~∇ → −i~D ≡ −i~∇ + 2eA. (2.33)

(Note that the Cooper pairs have charge −2e.) In addition, to study the system at a
constant applied magnetic field H0, one must minimize the Gibbs free energy instead

of the Helmholz free energy. The Gibbs free energy density becomes

g(r) = f0 + α|φ(r)|2 +
β

2
|φ(r)|4 +

1

2m
|(−i~∇ + 2eA)φ|2 +

B2

2µ0
−H0 ·B +

1

2
µ0H

2
0 .

(2.34)

Minimizing the total Gibbs energy G =
∫

g(r)dV with respect to φ and A gives

1

2m
(−i~∇ + 2eA)2φ + αφ + β|φ|2φ = 0, (2.35)

1

µ0
∇×B =

ie~

m
(φ∗∇φ − φ∇φ∗)− 4e2

m
φ∗φA. (2.36)

These are the Ginzburg-Landau equations.

2.3.4 The GPG Equation—Relation to Microscopic Theory

The derivation of the Ginzburg-Landau equations in the previous chapter had a
purely phenomenological approach. This is a powerful approach relying only on the

assumption that the free energy may be expanded in powers of φ. However, it leaves
something to be desired when it comes to the connection with microscopic theory,

and it is somewhat unclear when the mentioned assumption is actually valid.
A different approach to the construction of an effective theory starts with the

microscopical description. We will here follow Nozieres and Pines[20] in describ-
ing the derivation of an effective theory first made by Gross[21] and Pitaevskii[22].
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The derivation considers Helium-II only, but a similar derivation from a microscopic
theory might be possible for a superconductor as well.

A superfluid condensate is characterized by having a macroscopic number of par-

ticles in one quantum state (the ground state.) Such a system is denoted by |φ(N)〉.
We single out an off-diagonal matrix element of the destruction operator ψ(r) by

φ(r) = 〈φ(N − 1)|ψ(r) |φ(N)〉 , (2.37)

where the state |φ(N − 1)〉 is obtained by removing one particle from the condensate.
When applied to the state |φ(N)〉, the operator ψ(r) satisfies the Heisenberg equation

of motion

i
∂ψ(r)

∂t
= [ψ(r), H ] , (2.38)

where the Hamiltonian H is given by

H = −
∫

d2rψ†(r)
∇2

2m
ψ(r) +

1

2

∫

d2rd2r′V (r− r′)ψ†(r)ψ†(r′)ψ(r)ψ(r ′), (2.39)

where V (r− r′) is the interaction potential of the particles. We will assume that this
potential may be simplified as

V (r− r′) = λδ2(r− r′), (2.40)

an assumption that is expected to be valid as long as the typical spacing of the
particles is larger than the typical range of the interaction. Equation (2.38) now

becomes

i
∂ψ(r)

∂t
= −∇2

2m
ψ(r) + λψ†(r)ψ(r)ψ(r), (2.41)

and for the condensate wave function φ(r), we obtain

i
∂φ(r, t)

∂t
= −∇2

2m
φ(r, t) + λ〈ψ†(r)ψ(r)ψ(r)〉, (2.42)

by taking the “expectation value” 〈·〉 ≡ 〈φ(N − 1)| · |φ(N)〉 of equation (2.41). To

solve this equation, Gross[21] and Pitaevskii[22] proposed using the following factor-
ization approximation:

〈ψ†(r)ψ(r)ψ(r)〉 ≈ 〈ψ †(r)〉〈ψ(r)〉〈ψ(r)〉, (2.43)

which results in the equation

i
∂φ(r, t)

∂t
= −∇2

2m
φ(r, t) + λ|φ(r, t)|2φ(r, t) (2.44)

for the condensate wave function φ(r, t). This is the Ginzburg–Pitaevskii–Gross

(GPG) equation. This equation is also often called the non-linear Schrödinger equa-
tion, for its similarity with the (linear) Schrödinger equation.
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The wave function may be separated into a space independent and a time inde-
pendent part φ(r, t) = φ(r)e−iµt to produce the following eigenvalue equation for the
time independent field φ(r):

−∇2

2m
φ(r) + λ|φ(r)|2φ(r) = µφ(r), (2.45)

where the energy eigenvalue µ now corresponds to the chemical potential of the
particles in the condensate. It is easily seen from the definition of φ(r, t) that the

eigenvalue of the Hamiltonian in this case is the chemical potential. Taking the
expectation value on both sides of equation (2.38), we obtain

i
∂φ(r, t)

∂t
= 〈φ(N − 1)| [ψ(r), H] |φ(N)〉 = (EN − EN−1)φ(r, t), (2.46)

where EN is the energy of the system with N particles in the condensate, so that
µ is given by µ = EN − EN−1, which is the increase in energy when one particle is

added to the condensate. This is the definition of the chemical potential.
Inserting a constant ground state φ(r) =

√
ρ0 into (2.45) gives us that µ = λρ0.

This inspires us to write (2.45) on the form

−∇2

2m
φ(r) + λ(|φ(r)|2− ρ0)φ(r) = 0, (2.47)

where the constant ρ0 replaces the chemical potential µ as the eigenvalue. By com-
paring this equation to (2.32), we observe that these two equations are equal if we

let α = λρ0 and β = λ. In other words, we have derived the Ginzburg–Landau equa-
tion for liquid Helium from microscopical principles, and the GPG equation (2.44) is

nothing but the Ginzburg–Landau equation (2.32) extended to time dependent fields.
When we later refer to Ginzburg–Landau (GL) theory, we shall be meaning equation

(2.47), or the corresponding equations for a superconductor, obtained by inserting
α = λρ0 and β = λ into equations (2.35) and (2.36):

1

2m
(−i~∇ + 2eA)2φ+ λ(|φ|2− ρ0)φ = 0, (2.48)

1

µ0
∇×B =

ie~

m
(φ∗∇φ − φ∇φ∗)− 4e2

m
φ∗φA. (2.49)

It is customary to introduce the constant

ξ =
1√

2λmρ0
, (2.50)

called the coherence length[16]. The coherence length is the typical length scale of

variations in the solution of equation (2.47).
Equation (2.44) may conveniently be described in dimensionless quantities. Re-

scaling the parameters and fields according to

t =
t̂

λρ0
r =

r̂√
λmρ0

φ =
√
ρ0φ̂, (2.51)
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the dimensionless field φ̂(r̂, t̂) satisfies the equation

i
∂φ̂(r̂, t̂)

∂t̂
= −∇̂

2

2
φ̂(r̂, t̂) + |φ̂(r̂, t̂)|2φ̂(r̂, t̂). (2.52)

and the time independent field φ̂(r̂) satisfies

−∇̂
2

2
φ̂(r̂, t̂) + (|φ̂(r̂, t̂)|2 − 1)φ̂(r̂, t̂) = 0. (2.53)

Equations (2.48) and (2.49) may also be rescaled to dimensionless quantities, but
we will not get rid of all constants as in equations (2.52) and (2.53). Making the

same rescaling as above, and also rescaling the Maxwell field A according to

2eA =
√

λmρ0Â, (2.54)

we find

1

2
(−i∇̂ + 2eÂ)2φ̂+ (|φ̂|2 − 1)φ̂ = 0, (2.55)

κ2

2
∇̂× B̂ =

i

2
(φ̂∗∇̂φ̂− φ̂∇̂φ̂∗)− φ̂∗φ̂Â, (2.56)

where κ2 = m2λ
2µ0e2 .

That the GL theory of superconductors contains a dimensionless constant has an
important implication. It is found that there are two regions of values for κ which

lead to very different properties for a superconductor. If κ < 1√
2
, the superconductor

is said to be of type I, while if κ > 1√
2
, the superconductor is of type II. Type-II

superconductors allows the magnetic field to penetrate through the superconductor

in quantized vortices[23], while in a type-I superconductor the magnetic field cannot
penetrate the superconductor at all.

The Ginzburg-Landau theory may also be studied by means of a Lagrangian

density function. The form of a Lagrangian is justified only by its ability to reproduce
the equations of motion. There may thus be several possibilities for this function.

One possible form is

L = iφ∗D0φ +
1

2m
φ∗D2φ− λ

2
(|φ|2 − ρ0)

2 − 1

2µ0e2
(

B −Bext
)2
, (2.57)

where D0 = ∂0 − 2eA0, D = ∇ + 2eA, Bext is the externally imposed magnetic field

and µ0 is the magnetic permeability. This Lagrangian reproduces the equations

i
∂φ

∂t
=

1

2m
(−i~∇ + 2eA)2φ+ λ(|φ|2 − ρ0)φ, (2.58)

1

µ0
∇×B =

ie~

m
(φ∗∇φ − φ∇φ∗)− 4e2

m
φ∗φA, (2.59)

which are the time-dependent versions of the Ginzburg-Landau equations (2.48) and
(2.49).
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2.3.5 Hydrodynamical Analogy

We will review briefly the well known analogy between hydrodynamics and quantum

mechanics. The analogy, which shows that one may treat the condensate wave func-
tion of e.g. a superfluid as a function describing an ensemble of classical particles

subject to classical forces, was first made by Madelung[24] in 1927. The quantum
effects are introduced by a “quantum force” (or “quantum potential”), with some

uncommon effects. This brief review is mainly based on a review given in the thesis
by Myklebust[25].

In general, the Schrödinger equation (linear or non-linear) for particles in an

electromagnetic field may be written

i~ψ̇ = eA0ψ −
~2

2m
D2ψ + V ψ, (2.60)

where D = ∇ − i e� A and V = V (ψ, r) is some operator for a potential. The only

assumption about the potential is that it is only a function of ψ and r.

By defining

ψ =
√
ρeiS , (2.61)

where ρ and S are real functions of r and by inserting this expression into the

Schrödinger equation and separating in imaginary and real parts, one obtains the
following equations:

−Ṡ = eA0 −
~

2

2m

(

∇2√ρ
√
ρ

− (∇S − e

~
A)2

)

+ V (ρ, S, r) (2.62)

ρ̇ = − ~

m
∇ ·

[

ρ(∇S − e

~
A)
]

(2.63)

The hydrodynamical analogy is then given by identifying the gradient of the phase
of the wave function ∇S with the momentum3 p. Since we have a coupling to an

electromagnetic field, this means

mv = p− eA = ~∇S − eA. (2.64)

Substituting this into (2.63) gives a continuity equation:

ρ̇+ ∇ · (ρv) = 0, (2.65)

and by taking the gradient of equation (2.62), we get

mv̇ +
1

2
m∇(v2) + e

(

Ȧ + ∇A0

)

+ ∇(V +Q) = 0, (2.66)

3Note that the vector field p(r) gives the momentum of a particle at r, not the momentum density
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where we have introduced the “quantum potential” Q = −
�
2

2m

�
2√ρ√
ρ . We may rewrite

this using that ∇(v2) = 2(v ·∇)v + 2v× (∇× v) and using (2.64) again:

mv̇ +m(v ·∇)v + ∇(V + Q)− F = 0, (2.67)

where F is the Lorentz force: F = e(E+v× ẑB). This equation is identical to Euler’s

equation for a fluid influenced by a force −∇(V +Q) + F.

2.4 Vortices

2.4.1 Brief Background on Hydrodynamics

To better understand the properties of vortices in the Ginzburg-Landau theory and in
the Chern-Simons-Ginzburg-Landau theory which is the main topic of this thesis, it

is necessary to have some knowledge of the vortices found in classical hydrodynamics.
We will therefore give a very brief review of the needed concepts before we go on to

discuss quantum vortices. This review is based mainly on the review in the thesis of
Myklebust[25], who studied vortices in the Ginzburg-Landau theory of liquid Helium
in detail.

An ideal fluid is characterized by having no viscosity and an infinite thermal con-
ductivity, so that the temperature is constant throughout the fluid. The fundamental

equations of hydrodynamics for an ideal fluid are the equation of continuity,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.68)

and Euler’s equation4,

∂v

∂t
+ (v · ∇)v = −∇p

ρ
, (2.69)

where ρ is the density of the fluid, v is the velocity field (i.e. the velocity of the fluid

at each point) and p is the pressure.
If the fluid is not only ideal but also isentropic, i.e. the entropy is constant

throughout the fluid, the thermodynamical identity

dh = Tds+ V dp, (2.70)

where h is the enthalpy and V = 1
ρ

is the specific volume, reduces to

dh =
1

ρ
dp, (2.71)

so that Euler’s equation (2.69) becomes

∂v

∂t
+ (v · ∇)v = −∇h, (2.72)

4Obtained in 1755 by L. Euler
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and we obtain the identity

∂ω

∂t
−∇ · (ωv) = 0 (2.73)

by defining the vorticity of the fluid ω = ∇ × v and taking the curl of (2.72).
Equation (2.73) now has the form of a continuity equation and states that vorticity

is a conserved quantity, i.e. that the total vorticity in the fluid is constant in time.
If ω = 0 at all points of the fluid, the fluid is said to be irrotational. In this case

we may write

v = ∇φ (2.74)

since ∇×v = ω = 0, which defines (up to a constant) the velocity potential φ of the
fluid. An irrotational fluid is said to have potential flow since it allows this definition.

2.4.2 Definition of a Vortex in Classical Hydrodynamics

We now have the background to define what we mean by a vortex in a 2-dimensional

fluid. The definition relies on the observation that in physical fluids, the vorticity
is localized in small areas, and most of the fluid is irrotational. A vortex (or vortex
filament) is now defined as such an enclosed filament of the fluid. Outside of vortices,

the fluid is irrotational, and describes potential flow. In a 3-dimensional fluid, a vortex
is actually a tube. Defining the strength of the vortex κ as κ =

∫

ωdS, there are three

properties fundamental to vortex motion in an ideal, isentropic fluid[25]:

Theorem 2.1 a) The same fluid particles constitute a vortex at all times. b) The
strength κ =

∫

ωdS of a vortex is constant in time. c) The strength of a vortex is

constant throughout the tube.

Only the first two parts of the theorem make sense for a 2D fluid, of course. These

are known as Helmholtz’ theorems. However, the third part tells us that it may make
sense to consider a 3D fluid as effectively 2-dimensional.

An important idealization of a vortex is the point vortex, a vortex with zero area.
A velocity field generating one such vortex is

v =
κ

2πr
êθ. (2.75)

This field has the properties that ∇×v = 0 except at the origin, and
∫

∇×vd2r =

lim
r→∞

∫

κ
2πr rdθ = κ. A fluid containing only point vortices will have potential flow

almost everywhere.

2.4.3 Energy and Movement of Classical Vortices

For a classical system of (point) vortices in an incompressible liquid, it is possible to
show that the energy is given by[25]

E =
ρ

4π

(

N
∑

i=1

κi

)2

ln
R

a
− ρ

2π

∑

i<j

κiκj ln
|Ri −Rj|

a
, (2.76)
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where R is the length scale of the whole system and a is a cutoff of the order of
the vortex core radius. The first term in this expression is the kinetic energy from
the rotating fluid associated with each vortex, summed, while the second term may

be interpreted as the interaction of the vortices. Note that this interaction does not
come from an electrical charge of the vortices (which are neutral), but has the same

form as a Coloumb interaction in two dimensions.
Using this value as a Hamiltonian, one may deduce the equations of motion for a

system of vortices. For a pair of vortices it is useful to define the guiding center and
relative coordinates

Rgc = R1 + R2 Rrel = R1 −R2 (2.77)

For a pair of vortices with equal strength κ one then finds the following equations
of motion:

Ẋgc = 0 Ẏgc = 0 (2.78)

Ẋrel = −κ
π

Yrel

R2
rel

Ẏrel =
κ

π

Xrel

R2
rel

(2.79)

These equations describe circular motion around a fixed point (the stationary guiding
center) with an angular velocity of

Ω =
κ

πr2
, (2.80)

where r = |Rrel| is the constant separation of the vortices.
For a pair of vortices with opposite vorticity (a vortex–anti-vortex pair) the equa-

tions of motion will be

Ẋgc =
κ

π

Yrel

R2
rel

Ẏgc = −κ
π

Xrel

R2
rel

(2.81)

Ẋrel = 0 Ẏrel = 0 (2.82)

The vortices will not move relative to each other, but will follow a straight line
perpendicular to the line connecting the two vortices.

2.4.4 Vortices in Ginzburg-Landau Theory

In 1949, L. Onsager[26] proposed that circulation in (superfluid) Helium II was
quantized with the quantum of circulation being h

m
. Quantization of vorticity was

also proposed and discussed by Feynman[27] and a quantized line was observed by
Vinen[28, 29] in 1958.

The quantization of vorticity in He-II is easy to understand if we apply the
Ginzburg–Landau theory5. We know from section 2.3.5 that the velocity field of

5The introduction in this section is based on Nozières and Pines[20], Tilley and Tilley[16] and
Myklebust[25]
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a superfluid described by a GL wave function φ =
√
ρeiS can be written

v =
~

m
∇S, (2.83)

so that the circulation around a closed path C becomes

κ =

∮

C

v · dl =
~

m

∮

C

∇S · dl =
~

m
∆S, (2.84)

where ∆S is the change in the phase of the wave function as one moves around the
closed path C. The wave function φ must be single valued, so that ∆S must be an

integer multiply of 2π. We thus find

κ =
h

m
s, s = 0,±1,±2, . . . . (2.85)

For quantized vortices, the integer s is usually referred to as the vorticity. Note that

this definition of vorticity is not exactly the same as the vorticity used in classical
hydrodynamics, ω = ∇ × v.

The only rotationally invariant wave function having the property (2.85) is

φ(r) = f(r)eisθ, (2.86)

where f(r) is an undetermined function, and so we expect a basic quantized vortex
to have this form. This wave function produces the same velocity field as the classical

point vortex (equation (2.75)):

v =
κ

2πr
êθ. (2.87)

One can easily find the energy for a single vortex with this velocity field if ignoring
the energy associated with the interactions between fluid particles. The energy is

then given by the kinetic energy[20],

E =

∫

1

2
mv2d2r =

~
2π

m
s2 ln

R

ξ
, (2.88)

where we use the coherence length ξ as a cutoff to avoid the logarithmic divergence
near the vortex core, and R is the radius of the fluid system. The coherence length

is a natural cutoff since it describes the typical length of variations in the fluid.
Inserting the expected vortex form (2.86) into the dimensionless GPG equation

(2.53), we find the following equation for the function f(r):[25]

d2f

dr2
+

df

rdr
+

(

2− s2

r2

)

f − 2f3 = 0. (2.89)

This equation can only be solved numerically. A graphical presentation of the result

is given in figure 2.7. From equation (2.89) we note that in Ginzburg-Landau theory,
the form of the vortex depends only on s2, i.e. not on the sign of s.
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Figure 2.7: Density profile ρ = f 2 for a Ginzburg-Landau s = 1 vortex. From
Myklebust[25], based on data by Kawatra and Pathria[30]. a is the coherence length.

A related phenomenon is the occurrence of quantized flux lines in superconduc-
tors. Superconductors are described by a GL theory with nonzero electromagnetic

field A. Instead of equation (2.83) above, we therefore have

~∇S = mv + qA, (2.90)

giving the quantization condition

∮

mv · dl−
∮

qAdl = nh. (2.91)

By using the Maxwell equation (2.49), which we may write as

−ẑ × ∇B = µ0j = µ0q|ψ|2v, (2.92)

and by taking the curl of equation (2.90), we find the following equation for B:

λ21

r

d

dr

(

r
dB

dr

)

−B = 0, (2.93)

where λ =
√

m
µ0q2ρ

is the London penetration depth[16]6 (Note that this λ is not

related to the parameter λ defined previously.) This equation may be solved analyt-

6The London penetration depth is the typical length of variations in the magnetic field, as opposed
to the correlation length, which is the typical length of variations in the particle density
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ically, giving

B =
n~

λq
K0(

r

λ
), (2.94)

j = − n~

λ3qµ0
K1(

r

λ
), (2.95)

where K1 is a modified Bessel function of the second kind. The coefficient of B
has been determined by the boundary condition (2.91). Since the modified Bessel
functions decay exponentially7, K1(

r
λ
) ∝ e−

r
λ , equation (2.91) may be simplified for

a path with a large radius to

∮

A · dl =

∫

BdA =
nh

q
, (2.96)

giving that the magnetic flux through the vortex is quantized with the flux quantum

being φ0 = h
q
.

The realization that flux lines are quantized has been very important for the

understanding of type-II superconductivity. A. A. Abrikosov[23] showed that vortices
may arrange themselves in a regular lattice (Abrikosov considered a square lattice,

while W. H. Kleiner et. al.[31] considered the later observed triangular lattice), a
behavior that has been experimentally confirmed[32].

2.5 Maxwell-Chern-Simons Theory

Maxwell-Chern-Simons (MCS) theory is an extension to regular Maxwell theory (i.e.
electromagnetism) that is only possible in two dimensions. The theory describes

anyons as sources for a field somewhat similar to the regular electromagnetic field, in
the same way as charged particles are sources for the electromagnetic field in regular

Maxwell theory. The theory got its name from a paper by Chern and Simons[33]
from 1971. MCS theory has been extensively studied in the thesis by Løvvik[34], and

we will take the results we need from there.

The relation between MCS theory and Maxwell theory is very much the same as

the relation between Chern-Simons-Ginzburg-Landau theory and Ginzburg-Landau
theory. This will be further established in the following chapters. Since MCS theory
is considered useful for describing a system of anyons, and since the vortices in CSGL

theory are indeed anyons, it might be interesting and useful to have a look at the
relations between these two theories.

The theory is generated by adding a Chern Simons term µ
2 ε

µνσAµ∂νAσ to the
regular Maxwell Lagrangian. Thus the Lagrangian for MCS theory is[34]

LMCS = −1

4
FµνF

µν − jµAµ +
µ

2
εµνσAµ∂νAσ . (2.97)

7Properties of the modified Bessel functions are summarized in appendix B
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Here, jµ is an external current field and µ is a free parameter of dimension length.
The current jµ is the current of the anyons in the theory.

From this Lagrangian, one obtains the following field equations:

∂iE
i − µB = ρ (2.98)

εij∂jB − ∂0E
i − µεijEj = ji, (2.99)

where we have introduced the “physical” fields E i = −∂iA
0− ∂0A

i and B = εij∂iA
j.

These definitions also lead to a Faraday’s law,

εij∂iE
j = −∂0B. (2.100)

These equations are quite similar to the equations of electromagnetism, we see that
in the limit µ → 0, we regain Maxwell’s equations. However, for finite µ it is found
that the solutions of the equations are quite different from the solutions of Maxwell’s

equations.
The most important solutions for us will be the fields from point particles. It

is easy to find the fields from a static point particle by letting j 0 = qδ(r) in the
equations above. The solution is found[34] to be

B(r) = −µq
2π
K0(µr) (2.101)

E(r) =
µq

2π
K1(µr)êr, (2.102)

where K0 andK1 are modified Bessel functions and êr is a unit vector in the radial di-

rection. There are two major differences between this solution and the corresponding
solution to Maxwell’s equations, which in two dimensions is[34]

B(r) = 0 (2.103)

E(r) =
q

2πr
êr. (2.104)

First, we see that while the Maxwell B-field vanishes for a point particle, the MCS
solution has both fields B and E non-zero. Second, the MCS fields are exponentially
damped (some properties of the Bessel functions are given in appendix B), while the

electric Maxwell field goes as 1
r

as r→ ∞. The exponential damping means that two
MCS particles separated far from each other do not interact.

For particles in motion in regular electromagnetism, the solution to Maxwell’s
equations is the retarded potential well known from classical physics. An analogous

solution is MCS theory has been found by Løvvik[34]. This is the solution to the
above equations with jµ = qβµ(t)δ(2)((r) − R(t)), where R(t) is the path of the

particle and βµ is the 3-velocity given by βµ = (1, Ṙ(t)). The solution is found by
using the propagator of MCS theory, which is given by[34]

D
µν
MCS(k) =

gµν

−k2 + µ2
− kµkν

k2(−k2 + µ2)
+

iµεµνλkλ

k2(−k2 + µ2)
− αk2

(k2)2
, (2.105)
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where α is a gauge-fixing constant. The “retarded” potential is found[34] to be

Aν(r) = Iν(µ) +
1

µ
εµνλ∂

µ
(

I
λ(0)− I

λ(µ)
)

, (2.106)

where

I
λ(µ) =

∫ ∞

−∞

θ(t − t′ − |r−R(t′)|) cos
(

µ
√

(t − t′)2 − |r−R(t′)|2
)

2π
√

(t− t′)2 − |r−R(t′)|2
qβλ(t′)dt′.

(2.107)

The Maxwell-Chern-Simons theory may be rescaled to dimensionless variables,
and is found to contain no free dimensionless parameters. One possible rescaling is

xν =
x̂ν

µ
jν = µ2 ̂ν Aν = Âν . (2.108)

If we also rescale the Lagrangian according to L = µ2L̂, we find

L̂MCS = −1

4
F̂µν F̂

µν − ̂µÂµ +
1

2
εµνσÂµ∂̂νÂσ. (2.109)

We see that the rescaling is equivalent to setting µ = 1. The rescaled static point

particle fields become

B̂(r̂) = − q

2π
K0(r̂) (2.110)

Ê(r̂) =
q

2π
K1(r̂)êr̂. (2.111)



Chapter 3

Chern-Simons-Ginzburg-Landau

Theory

3.1 Background

3.1.1 The Need for an Effective Theory

The fractional quantum Hall effect is a remarkable example of quantum effects ob-

servable on a macroscopic level. Other examples include superfluidity and supercon-
ductivity. The latter phenomena have been successfully described by the Ginzburg–
Landau effective field theory, and there are many similarities between superfluidity/-

conductivity and the FQHE. All these systems have a ground state with a constant
non-zero density of particles, interaction between particles is important to describe

the full system, and there are quasiparticle excitations (vortices). If one could de-
scribe the FQHE by an effective field theory, one might hope to produce a better

understanding and description of the quantum Hall phenomenon.

There are also some very important aspects of the FQHE which are not present

in the GL theories. The most important ones[10] are these: There is a gap in the
spectrum which leads to the incompressibility of the FQHE system; vortices (quasi-

particles) have finite energy, as opposed to the vortices in He-II; and vortices have
fractional charge.

In 1988, Zhang, Hansson and Kivelson[35] and Read[36] proposed a Ginzburg–
Landau theory for the fractional quantum Hall effect based on the introduction of a
Chern–Simons term into the Lagrangian for GL theory. The theory has been quite

successful in describing various properties of the FQHE (for a review, see e.g. [37]).

3.1.2 Motivation

In this section we will make an attempt to motivate the form of the Lagrangian of
the Chern Simons Ginzburg Landau (CSGL) theory. It is not the purpose to show a

derivation from microscopical principles, but to aid the understanding of the theory
by giving a brief overview of the background.

29
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We will start this motivation by showing how one with a singular gauge trans-
formation can turn a fermionic (indeed, anyonic) wave function into a bosonic one:
Imagine a system of two particles, such that interchanging them multiplies the wave

function by a phase factor eiθ. Working in complex relative coordinates, where
z = x+ iy, this may be expressed as

ψ(eiπz) = eiθψ(z). (3.1)

(The notation does not imply that ψ is an analytical function of z. Indeed, for anyons,
the wave function will in general be multi-valued.) We want to describe the same

system with a bosonic wave function φ(z) = φ(eiπz). By assuming that the two wave
functions are related by a gauge transformation φ(z) = e iη(z)ψ(z), we get

eiη(z)ψ(z) = φ(z) = φ(eiπz) = eiη(eiπz)eiθψ(z), (3.2)

η(z)− η(eiπz) = θ. (3.3)

It may be easily verified that the solution to this equation is

η(z) = − θ
π

Arg(z). (3.4)

When we perform a gauge transformation of the wave function of the form ψ →
eiηψ, we must also transform the electromagnetic field according to eAµ → eAµ+∂µη.
The gauge field corresponding to this transformation is given by

a(rel)(r) = −1

e
∇η(r) =

θ

πe

ẑ × r

r2
, (3.5)

giving a “magnetic field”

b(rel)(r) = − θ

πe
∇ · r

r2
= −2θ

e
δ(2)(r). (3.6)

The label ‘(rel)’ is added here to show that these fields are given in relative coordi-
nates. We would, however, like to express the fields in absolute coordinates. For two

particles, we would then want the field from one particle at the position of the second
to equal a(rel)(r1 − r2), where r1 and r2 are the positions of the particles. The field
we want is given by

a(r) = a(rel)(r− r1) + a(rel)(r− r2), (3.7)

when we ignore “self-interaction” terms of the kind a(rel)(0). The magnetic field
becomes

b(r) = −2θ

e

(

δ(2)(r− r1) + δ(2)(r− r2)
)

. (3.8)

This formula may be generalized to any number of particles in the form

b(r) = −2θ

e

N
∑

i=1

δ(2)(r− ri) = −2θ

e
ρ(r), (3.9)

where ρ(r) is the density of the particles. In the following section, we will show that
the CSGL Lagrangian produces exactly this result.
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3.1.3 Field Equations

The CSGL Lagrangian density is given by[35]

L = iφ∗(∂0 + ieA0 + iea0)φ+
1

2m
φ∗(∂i + ieAi + ieai)

2φ− λ

2
(φ∗φ− ρ0)

2

+
µ

2
εµνσaµ∂νaσ , (3.10)

where Aµ = (A0,A). Aµ represents an external field, and aµ is a “statistical” gauge
field. From this expression we see that there are five parameters to the theory: e, m,

λ, ρ0 and µ. The first two of these are the effective charge and mass, respectively,
in the interface where the effect occurs. Not that in particular, the mass parameter

m is here to be understood as an effective mass not equal to the electron mass1

me. The effective electron charge e is not an important parameter, since it may be
“absorbed” by a redefinition of the electromagnetic field Aµ. The parameters λ and

ρ0 arise in the same fashion as the parameters with the same names in Ginzburg–
Landau theory, as discussed in sections 2.3.3 and 2.3.4. These parameters therefore

reflect that the CSGL theory is an effective theory, and they must be determined on
a phenomenological basis. One could imagine a more “realistic” model by replacing

the third term in 3.10 by a term including a potential V (r− r ′), but it is not obvious
what this potential should look like. The last parameter, µ will be shown below to

be connected to the fact that the electrons described by CSGL theory are fermions,
as opposed to the bosons described by GL theory.

Variation of (3.10) with respect to φ ∗ gives

−(i∂0 − eA0 − ea0)φ =
1

2m
(∂i + ieAi + ieai)

2φ − λ(φ∗φ− ρ0)φ. (3.11)

This is just the Ginzburg–Pitaevskii–Gross field equation, or the nonlinear Schrödinger
equation (see section 2.3.4), for a system of bosons in an electromagnetic field A µ+aµ.

Variation with respect to a0 gives

µεij∂iaj = eφ∗φ = eρ. (3.12)

As announced, this is exactly equation (3.9), which we wanted for a system of anyons,

when we define

µ =
e2

2θ
. (3.13)

Equation (3.12) together with (3.11) has an interesting interpretation: In two
dimensions we may look at anyons as bosons with an attached magnetic flux equal

to − e
µ
. For fermions, we have µ = e2

2π(1+2n) , n = 1, 2, 3, . . ., and the magnetic flux

attached to each particle becomes −(1 + 2n) 2π
e

.

1In fact, is has been argued[38, 35, 36] that the parameter m is not connected to the electron
mass at all, but depend only on the Coloumb interaction between the electrons.
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Finally, variation with respect to a i gives,

µεij(∂ja0 − ∂0aj) = eji, (3.14)

where ji = 1
2mi

{φ∗(∂i + ieai + ieAi)φ− [(∂i + ieai + ieAi)φ]∗φ}. This equation states

that the statistical “electric” field e i = −∂ia0+∂0ai may be identified with the particle
current density ji.

3.1.4 Energy

The energy density of a CSGL system may be derived in the standard fashion from

the Lagrangian density (3.10):

E = φ̃
dφ

dt
+ ãµ daµ

dt
− L. (3.15)

where the canonical conjugate fields φ̃ and ãµ are given by

φ̃ =
∂L
∂φ̇

= iφ∗, (3.16)

ãµ =
∂L
∂aµ,0

= −µ
2
εν0µaν. (3.17)

After some algebra, we end up with

E = φ∗(eA0 + ea0)φ−
1

2m
φ∗D2φ+ λ(ρ− ρ0)

2 + µεija0aj,i. (3.18)

where we have used that εµνσaµaσ,ν = εij (aia0,j − aiaj,0 + a0aj,i). By ignoring a

surface term, we may rewrite the above as

E =
1

2m
|Dφ|2 + a0(eρ+ µεijaj,i) + eA0ρ+

λ

2
(ρ− ρ0)

2. (3.19)

From (3.12) we see that the term proportional to a 0 vanishes and we are left with

E =
1

2m
|Dφ|2 + eA0ρ+

λ

2
(ρ− ρ0)

2. (3.20)

Note that this is just the energy from a Ginzburg-Landau system in an electromag-

netic field Aµ + aµ, but that a0 does not contribute to the energy. Also note that for
the QHE, A0 is normally 0 since the external field is purely magnetic and static.

3.2 Simple Solutions

3.2.1 Ground State

From (3.20) we see that if we could find a solution such that Dφ = 0 and ρ = ρ 0, then
this would surely be the ground state of the system. By letting φ(x) =

√
ρ0e

iS(x), we



3.2 Simple Solutions 33

find that this requirement gives ∂iS+ eAi + eai = 0. For constant solutions, we must
then have ai = −Ai. However, equation (3.12) tells us that ε ij∂iaj = e

µ
ρ0. Thus, a

constant ground state is only possible for external fields such that

Bext = −εij∂iAj =
e

µ
ρ0. (3.21)

This may be understood as follows: Each particle carries a magnetic flux of

strength e
µ
, according to (3.12). In this ground state, the density of particles is

constant and exactly the right size to cancel the external field Ai. Thus, the particles
feel no net magnetic field and behave as bosons interacting with each other via the

φ4-type interaction.

When (3.21) does not hold, it is still possible to find a constant solution

ρ =
µ

e
Bext. (3.22)

This solution must have ea0 = λ(ρ−ρ0), as can be readily seen from equation (3.11).

As noted by Curnoe and Weiss[39], a change in ρ0 (or equivalently Bext) can always
be cancelled by a constant change in a0, so that in this sense solutions of the field

equations are independent of Bext. The ground state, however, need not be the same
for different values of Bext. But in fact, there will be a “window” where B ext can

change around e
µρ0, where the ground state of the system is the constant solution

(3.22)[39, 40]. The width of this window is determined by the creation energy of a
vortex and an anti-vortex by[40]

∆ρ0 =
εv(ρ0) + εav(ρ0)

2πλ
, (3.23)

where εv(ρ0) and εav(ρ0) are the creation energies for a vortex and an anti-vortex,

respectively.

3.2.2 Plane Waves

By using the hydrodynamical analogy of section 2.3.5, it is possible to find a dispersion

relation for plane waves in a CSGL system. To find plane wave solutions, we proceed
by expanding around the ground state ρ = ρ0,v = 0, assuming the deviation from

the ground state is small:

ρ = ρ0 + δρ, (3.24)

v = δv. (3.25)
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We also insert the potential V = λ(ρ−ρ0) and equation (3.21) into (2.67) and linearize
(2.65) and (2.67) in δρ and δv, arriving at 2

∂

∂t
δρ+ ρ0∇δv = 0, (3.26)

m
∂

∂t
δv + λ∇δρ− 1

4mρ0
∇∇

2δρ− e2ρ0

µ
δv × ẑ = 0. (3.27)

We now make the assumption that δρ and δv describe plane waves,

δρ = δρ0e
i(kx−ωt), (3.28)

δv = δv0e
i(kx−ωt), (3.29)

where a phase difference between the components of δv and between δv and δρ

are allowed through δv0, which is assumed to be complex. We also introduce the
longitudinal and transverse components of δv,

k · δv ≡ kδv‖, (3.30)

k× δv ≡ kδv⊥. (3.31)

Inserting these relations into equation (3.27) and taking the transverse component,
we find the relation

−imωδv⊥ +
e2ρ0

µ
δv‖ = 0, (3.32)

which tells us that the longitudinal and transverse components of δv in general have
a phase difference of 90◦. In addition, as µ

me2ρ0
→∞, the transverse component δv⊥

disappears.

Inserting our plane waves into equation (3.26), we find a relation between the
density and velocity of the particles creating the waves:

ρ0kδv‖ = ωδρ. (3.33)

Inserting the two preceding relations into the longitudinal component of equation

(3.27), we find the dispersion relation,

ω2 =
λρ0

m
k2 +

1

4m2
k4 +

e4ρ0
2

m2µ2
. (3.34)

If we omit the k4-term (i.e. going to a long wavelength limit), this dispersion relation

tells us that the plane waves act like a field of particles with mass e2ρ0

mµ . Again
using equation (3.21), we see that the mass is identical to the cyclotron frequency

ωC = eBext

m defined in section 2.2.2.
This mass is associated with the gap in the spectrum that was discussed in the

introduction. The fact that the plane wave solutions have a mass, shows that there
is a gap, so that a finite energy is needed to create excitations to the system. This is

also the same as saying that the electrons describe an incompressible quantum liquid,
since the liquid can not be deformed by small perturbations.

2We have used equations (3.12) and (3.14) to write the Lorentz force as F = e( � + v � ẑ � ) ≈
e2ρ0

µ
δv � ẑ.
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3.3 Rescaling to Dimensionless Variables

The Lagrangian (3.10) allows one to perform a rescaling of the fields φ(x), A µ(x),
and aµ(x) together with x to produce a new Lagrangian only dependent on one

dimensionless parameter. Substituting

t = t̂
λρ0

A0 = λρ0

e
Â0

ri = r̂i√
λmρ0

Ai =
√

λmρ0

e
Âi

µ = e2

mλ µ̂ φ =
√
ρ0φ̂

(3.35)

into (3.10) and rescaling the Lagrangian according to L̂ = L
ρ2
0
λ
, gives us a new La-

grangian

L̂ = iφ̂∗(∂̂0 + iÂ0 + iâ0)φ̂+
1

2
φ̂∗(∂̂i + iÂi + iâi)

2φ̂− 1

2
(φ̂∗φ̂ − 1)2

+
µ̂

2
εµνσâµ∂̂νâσ , (3.36)

which will be used in the rest of this chapter. We will omit the marks on the fields

except when necessary to distinguish dimensional and dimensionless quantities. With
the Lagrangian (3.36), the field equations become

iD0φ+
1

2
D2

i φ− (φ∗φ− 1)φ = 0 (3.37)

µεij∂iaj = φ∗φ (3.38)

µεij(∂ja0 − ∂0aj) = ji. (3.39)

The dimensionless parameter µ̂ is given in terms of the statistics parameter θ as

µ̂ =
mλ

2θ
, (3.40)

by using equation (3.13). It can also be formulated in terms of the external magnetic

field by using equation (3.21),

µ̂ =
λmρ0

eBext
. (3.41)

The rescaling (3.35) is not unique in respect to creating dimensionless variables.
It is obvious that one could define another rescaling ∂̃0 = α∂̂0 etc., where α etc. are

dimensionless constants, that would be just as good. Furthermore, since we have
a dimensionless parameter (µ) in this system, the constants α etc. might depend

on this parameter. As an example, consider applying the following dimensionless
rescaling after (3.35):

t̂ = µ̂t̃ Â0 = Ã0

µ̂

r̂i =
√
µ̂r̃i Âi = Ãi√

µ̂

(3.42)
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If we also scale the Lagrangian, L̃ = µ̂L̂, we obtain

L̃ = iφ̃∗(∂̃0 + iÃ0 + iã0)φ̃+
1

2
φ̃∗(∂̃i + iÃi + iãi)

2φ̃− µ̂

2
(φ̃∗φ̃− 1)2

+
1

2
εµνσ ãµ∂̃ν ãσ, (3.43)

where we observe that the parameter µ̂ has now moved to another term in the La-

grangian. In the original units, the scaling (3.42) equals t = µm
e2ρ
t̃ and ri =

√

µ
e2ρ
r̃i.

Using (3.21), we see that this may be understood as measuring length in units of the

magnetic length ` = 1√
eBext

, while we see that the rescaling we will use, (3.35), is

equivalent to measuring length in units of
√

2ξ, where ξ = 1√
2λmρ0

is the coherence

length defined in section 2.3.4 for Ginzburg–Landau theory. The alternative rescaling

(3.42) was e.g. used by Tafelmayer[41].

3.4 Self-Dual Point

A mathematical model such as the one we are discussing here, may sometimes have

the property that the equations of motion may be reduced to a simpler set of equations
for special values of the parameters. In certain cases, the equations may be reduced to
a set of “self-dual” equations, e.g. equations on the form v i = iεijvj for some quantity

v. We will show that for one particular choice of the dimensionless parameter of CSGL
theory, equation (3.11) reduces to such an equation.

To find the self-dual point and the self-dual equations for CSGL theory, we will
look at the energy density (3.20). This quantity may be rewritten in the following

way[41, 42]:

E =
1

2
|Dφ|2 +

1

2
(|φ|2− 1)2

=
1

2
|(D1 + iD2)φ|2 +

1

2
iεij(Diφ)(Djφ)∗ +

1

2
(|φ|2− 1)2

=
1

2
|(D1 + iD2)φ|2 +

(

1

2
− 1

2µ

)

(|φ|2 − 1)2

+
1

2
εij∂i

(

1

2i
(φ∗∂jφ − φ∂jφ

∗)− Aj(|φ|2 − 1)

)

,

(3.44)

where we have used equation (3.12). Integrating to find the total energy, we may use
Green’s theorem on the last term and find

E =

∫

1

2
|(D1 + iD2)φ|2d2x+

Φ

2
+ lim

R→∞

∮

CR

1

2
jidli, (3.45)

where Φ is the total magnetic flux and CR is a circular path with radius R. Since we

may assume that the current vanishes at infinity, the last integral vanishes. Further-
more, since the total flux by equations (3.12) and (3.21) is given by the charge in the



3.5 Vortex Solutions in CSGL Theory 37

system,

Φ =

∫

d2xεij∂i(A
j + aj) =

1

µ

∫

d2x(1− |φ|2), (3.46)

we may assume that this is given, and so, for µ = 1 the energy is minimized for
solutions of the equation

(D1 + iD2)φ = 0, (3.47)

which is the self-duality equation for this system. This equation is also known as the
Bogomoln’yi equation.

3.5 Vortex Solutions in CSGL Theory

3.5.1 Single Vortex

We will look for time invariant solutions to (3.37) that have the form of a rotationally

invariant vortex located at the origin,

φ(r, θ) = f(r)eisθ, (3.48)

where f(r) is a real positive function and s is an integer, the vorticity of the vortex.
Furthermore, we will assume that the external field Aµ is a pure magnetic field as

discussed in section 3.2.1. We will choose gauge such that A0 = 0.
The energy of a vortex, given by equation (3.20), should be finite. In dimensionless

variables, the energy is given by

E =
1

2
|Dφ|2 +

1

2
(ρ− 1)2, (3.49)

where we have set A0 = 0. We would like the integral over all space of this expression

to be finite, so we must demand[41] that r2|Dφ|2 → 0 and r2[(f(r))2 − 1]2 → 0 as
r →∞. Hence, we get the condition that the total vector field must satisfy

A(r) + a(r) →
r→∞

s

r
eθ (3.50)

more quickly than 1
r
. Here, eθ is a unit vector in the θ direction.

In polar coordinates, equation (3.38) becomes, when adding the external field
B = 1

µ
,

µ

r

[

∂

∂r
(rAθ + raθ)− ∂(Ar + ar)

∂θ

]

= 1− [f(r)]2. (3.51)

It is obvious that we may choose ar(r, θ) = −Ar(r, θ) and Aθ(r, θ) + aθ(r, θ) = α(r)
r

.

We then have to solve the equation for α,

µα′(r) + r
[

(f(r))2 − 1
]

= 0. (3.52)
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The equation for a0, (3.39), contains the current j, which is defined by

j =
1

2i
[φ∗Dφ− (Dφ)∗φ] . (3.53)

In polar coordinates, we have Dr = ∂
∂r − iAr − iar = ∂

∂r and Dθ = 1
r

∂
∂θ − iAθ − iaθ.

The current becomes

jr = 0

jθ =
s− α

r
(f(r))2.

Using this and the expression for the curl in polar coordinates, (3.39) becomes

µ

r

∂a0

∂θ
= jr = 0 (3.54)

−µ∂a0

∂r
= jθ =

s − α(r)

r
[f(r)]2, (3.55)

so we see that a0 is a function of r only: a0(r, θ) = a0(r) Inserting (3.48) in (3.37),
we obtain

f ′′(r) +
1

r
f ′(r)−

(

s− α

r

)2

f(r)− 2a0(r)f(r) + 2
[

1− (f(r))2
]

f(r) = 0. (3.56)

Equations (3.52), (3.55) and (3.56) must be solved to solve the vortex problem (3.48).

3.5.2 Topological Invariants

From elementary quantum mechanics, we are aware of the fact that most quantum
numbers follow from the symmetry of a system. E.g. in a rotationally invariant

system one knows that angular momentum is quantized. From the rotation group
and its generators, one can also deduce the degeneracy of the energy levels in a
rotationally invariant system.

But in the case of a quantum vortex, the vorticity is not quantized because of
some symmetry but simply because we require that the wave function should be single

valued (see the discussion in section 2.4.4.) This requirement causes the vorticity
s to be an integer. Furthermore, total vorticity is a topological invariant, since

no continuous transformations on the wave function will alter the total vorticity.
Vorticity is therefore called a topological charge.

For a vortex, there are some quantities that depend only on the value of s. These
quantities are thus dictated by the topology of the vortex. We know from section

2.4.4 that in the Ginzburg Landau theory for superconductors, the magnetic flux
is quantized. By using equation (3.50), we find that the same is true for the total

magnetic flux in the CSGL theory:

Φ =

∫

d2xεij∂i(a
j +Aj) = 2πs. (3.57)
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In CSGL theory this equation has an implication not present in GL theory. Since
there is a simple relation between the statistical electromagnetic field a µ and the
electron density given by equation (3.38), and since the external magnetic field is

constant equal to εij∂iA
j = 1

µ
in the rescaled units, we find for the charge of the

CSGL vortex

Q =

∫

d2x(|φ|2 − 1) = µ

∫

d2xεij∂i(aj + Aj) = −2πsµ. (3.58)

Equations (3.58) and (3.57) are true for all vortices, i.e. no matter the detailed form
of the vortex, the charge is always the same, and determined by the vorticity s. In

dimensional units, the charge translates to3 Q = −µ
e 2πs = − e

1+2ns, when we use the

fact that the electrons are fermions with µ = e2

2π(1+2n) . Note that the charge of a

vortex (s > 0) is positive, since the electrons are pushed out to infinity. The charge

of an anti-vortex (s < 0) is negative, so for an anti-vortex there is an abundance
of electrons near the vortex. However, we know that the density of electrons must

vanish in the center of the anti-vortex as well.

There is also another important quantity that is topological invariant in the CSGL
theory. The angular momentum is given by[43, 44, 41]

J = 2π

∫ ∞

0
drr(s− α(r))(1− |φ|2) = −πs2 (3.59)

or, in the original dimensional units, J = πµ
e2 = 1

2(2n+1)s
2. Since the quasiparticles of

the quantum Hall effect are believed to have a statistics parameter of θ = π
2n+1 (see

section 2.2.6), this corresponds to the picture of the s = ±1 vortices in CSGL theory
as the Laughlin quasiparticles assuming that the generalized spin-statistics theorem

J = θ
2π holds for anyons[6].

3.5.3 Asymptotic Form of Vortex Outside the Core

The set (3.52), (3.55) and (3.56) of nonlinear differential equations can only be solved
numerically. However, in the limit r → ∞, we may approximate the solution by
expanding around the values of the fields in this limit. We define

f(r) = 1− χ(r) (3.60)

a0(r) = ψ(r) (3.61)

α = s− ω(r), (3.62)

where the new functions χ, ψ and ω are all assumed to be small far from the vortex

core Inserting these definitions into equations (3.52), (3.55) and (3.56) and linearizing,

3In dimensional units, Q = e � d2x(|φ|2− ρ0) = µ

e

Q̂

µ̂
, where Q̂ is the dimensionless quantity.



40 Chapter 3. Chern-Simons-Ginzburg-Landau Theory

we get a new set of equations,

χ′′ +
1

r
χ′ = 4χ− 2ψ (3.63)

µω′ + 2rχ = 0 (3.64)

µψ′ +
ω

r
= 0, (3.65)

which has the set of solutions[41]

χ = CK0(
r

ζ
) (3.66)

ω =
2ζCr

µ
K1(

r

ζ
) (3.67)

ψ =
2Cζ2

µ2
K0(

r

ζ
), (3.68)

where K0 and K1 are modified Bessel functions of the second kind, C is an unknown
constant, and ζ is a solution to the equation

4ζ2(1− ζ2

µ2
) = 1. (3.69)

In the limit r →∞, this gives χ(r) = 1− f(r) the asymptotic form of

χ(r) →
r→∞

C

√

ζπ

2r
e−

r
ζ . (3.70)

Equation (3.69) for the length scale ζ of the exponential decay of χ is of fourth

degree in ζ and therefore has four solutions given by

ζ2 =
µ2

2

(

1±
√

1− 1

µ2

)

. (3.71)

When |µ| > 1, ζ2 is positive, so ζ may take one of four real values, two of which are
positive and two of which are negative. From (3.70) we see that we can only allow

positive ζ, or else χ would blow up as r → ∞. We therefore have, for |µ| > 1, two
solutions for ζ given by

ζ1 = µ

√

1

2

(

1 +

√

1− 1

µ2

)

ζ2 = µ

√

1

2

(

1−
√

1− 1

µ2

)

. (3.72)

In the limit µ� 1, we find that these two solutions have quite different character:

ζ1 →
µ→∞

µ, ζ2 →
µ→∞

1

2
. (3.73)
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The total solution will be

f(r) = 1−
√

π

2r

(

C1

√

ζ1e
− r

ζ1 + C2

√

ζ2e
− r

ζ2

)

. (3.74)

For large µ, we see from (3.73) that the first exponential will be dominating, since

the second one will be small for r > 1
4 . In this limit, we can make an approximation

for the asymptotic form of f(r) by

f(r) →
r→∞

1− C

√

πµ

2r
e
− r

µ . (3.75)

3.5.4 Inner Core

In the inner core of the vortex, all the fields may be assumed to be small, and the
equations may be linearized. We are left with a decoupled set of equations:

f ′′ +
1

r
f ′ +

(

2−
(s

r

)2
)

f = 0 (3.76)

µα′ − r = 0 (3.77)

µa′0 = 0 (3.78)

which has the solution

f(r) = CJs(r) (3.79)

α(r) =
1

2µ
r2 (3.80)

a0(r) = a0. (3.81)

where Js(r) is the Bessel function of order s, and C and a0 are unknown constants.

3.5.5 Comparing CSGL and GL Theory

Equation (3.56) is the same as the corresponding equation in Ginzburg–Landau the-
ory, except for the fields a0 and α. From equations (3.55) and (3.52) one may write

down expressions for these fields,

α(r) = − 1

µ

∫ r

0
dr′r′(ρ(r′)− 1) (3.82)

a0(r) =
1

µ

∫ ∞

r

dr′
s − α(r′)

r′
ρ(r′). (3.83)

These functions are clearly seen to vanish as µ→∞, so we would expect the results
from GL theory to coincide with those of CSGL theory in this limit.

This correspondence is particularly visible inside the vortex core, where the solu-
tions are identical in CSGL and GL theory. For larger r, the correspondence is not
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so obvious. A feature of the vortices in the Ginzburg-Landau theory for Helium-II is
that the density is not decaying exponentially as r → ∞. This is a major difference
of CSGL and GL vortices, but we know from equation (3.75) that the exponential

decay of f(r) is given as e
− r

µ , so that when µ→∞, the exponential decay will vanish.

It is easy to see from equation (3.56) why we have this behavior: we know that

α → 0 for r → 0 and that α → s for r → ∞. Therefore, equation (3.56) will be
equal to the GL equation for a vortex with vorticity s for small r, while it will be
equal to that of no vortex for large r (i.e. the solution will be the constant ground

state). Ergo, we would assume that the wave functions of GL and CSGL vortices
were approximately equal as r→ 0, but that the CSGL vortex density approach the

asymptotic constant value more quickly than the GL vortex density.

This behavior allows us to make a simple estimate of the energy of a CSGL vortex
as a function of µ, since we know the energy for a GL vortex (equation (2.88).) If

we as a first approximation say that the energy density for a CSGL vortex is equal
to the energy density for a GL vortex for r < µ, and that it is equal to 0 for r > µ,

we get that the energy of a CSGL vortex is equal to that of a GL vortex of radius µ,
which when µ� ξ is

E ≈ ~
2π

m
κ2 ln

µ

ξ
. (3.84)

3.5.6 Comparing MCS and CSGL Theory

Maxwell-Chern-Simons theory, which was briefly reviewed in section 2.5, is a descrip-
tion of anyons. Therefore, it would be interesting to see if there was any connection

between this theory and the vortices in CSGL theory, which are believed to be anyons.
In this section we will compare the MCS B-field from a static point particle, for which

the dimensionless expression is given by equation (2.110), with the total magnetic
field from a CSGL vortex. The CSGL vortex has a finite core size, so we would not
expect the point particle approximation to be exact. We might however expect the

MCS and CSGL fields to be equal in the limit r→∞.

The dimensionless B-field of MCS theory for a point particle is given by equation
(2.110):

BMCS(r) = − q

2π
K0(r), (3.85)

where q is the MCS charge. The total magnetic field from a CSGL vortex may be

found in the limit r → ∞ by using equations (3.38) and the asymptotic form for
χ(r) = 1− f(r), which was found in equation (3.66):

B(r) =
1

µ

{

1− [f(r)]2
}

≈ 2

µ
χ(r) ≈ 2C

µ
K0(

r

µ
), (3.86)

where we have used that the length scale ζ may be approximated by ζ ≈ µ for large
µ, as we discussed in section 3.5.3.
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It is evident from these expressions that if we rescale the coordinate according to

rMCS =
r

µ
, (3.87)

and let r →∞ while keeping r
µ

constant4, the MCS magnetic field BMCS is connected

to the CSGL magnetic field B by

BMCS(rMCS) ≈ −
qµ

4πC
B(r). (3.88)

Unfortunately, the constant C is not determined. The value to use for the MCS
charge q is not obvious either at this point. However, it seems clear that the CSGL

theory is equivalent to the MCS theory (at least for the magnetic fields) in the limit
r, µ→∞, r

µ
constant.

In chapter 5 we will make a more thorough study of the connection between MCS
and CSGL theory.

3.5.7 Units and Length Scales5

In the dimensionless units we have been using, length is measured in terms of
√

2ξ,

where ξ is the coherence length. This quantity is the typical length scale for variations
in the electron density, so it may be taken as a measure of the core size of the vortices.

We will write this as Rcore ≈
√

2ξ. However, a vortex in CSGL theory also has a
second length scale associated with it—the length scale of the exponential damping

of the vortex “tail”. This is the size of the total vortex, R. In section 3.5.3, we found
two solutions for the length scale of the exponential damping, ζ 1 and ζ2, given in
equation (3.73). We also commented that ζ1 would be dominating, so we will assume

that this is the scale of the vortex size. When µ̂ is large, we may use equation (3.73)
and the vortex size is given in dimensional units by

R = ζ1 =
µ̂√
λmρ0

=
µ

e2

√

λm

ρ0
=

`2

ρcore
, (3.89)

where ` is the magnetic length, ` = 1√
eBext

.

Interestingly, demanding R = Rcore, is equivalent to setting ` =
√

2ξ, which

again is the same as saying that µ̂ = 1 in the dimensionless description. This is
exactly where we find the “self-dual” solutions! This is analogous to the case of a

superconductor, where the self-dual point is found when ξ =
√

2λ, where λ here is
the London penetration depth (cf. section 2.4.4.)

We have also seen that the CSGL theory is equivalent to the Ginzburg-Landau
theory of Helium-II in the limit µ̂ → ∞. In dimensional units, this limit becomes
mλµ
e2 →∞ , or in terms of the statistics parameter θ (using equation (3.40)),

mλ

2θ
→ ∞. (3.90)

4Or, equivalently let µ→∞ while keeping r
µ

constant
5In this section we will temporarily return to dimensional units
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We observe that when θ = 0, we return to the Ginzburg-Landau theory. This is not
surprising, since it means that the particles we are describing are bosons. Further-
more, when the interaction between the particles (which is given by λ) is strong, we

approach the Ginzburg-Landau limit.
In the limit r̂, µ̂ → ∞, r̂

µ̂
constant, we found that the CSGL theory approaches

the MCS theory. In terms of the dimensional parameters, we find that

r̂

µ̂
= 2θ

√

ρ0

λm
r, (3.91)

so the condition r̂
µ̂ constant becomes ρ0

λ constant.

3.6 Self-dual Vortices

As discussed in section 3.4, the CSGL system has a “self-dual point” at µ = 1. The

energy is then given by equation (3.45). When we insert that the current vanishes at
infinity this equation reduces to

E =

∫

1

2
|(D1 + iD2)φ|2d2x+

Φ

2
, (3.92)

where Φ is the total flux. Since we now know that the flux is quantized by equation
(3.57), we find that

E =

∫

1

2
|(D1 + iD2)φ|2d2x+ πs. (3.93)

When the Bogomol’nyi equation (3.47) is satisfied, the energy is simplified further to

E = πs, (3.94)

so that it is linear in the vorticity of the vortex. For a vortex (3.48), the Bogomol’nyi
equation becomes

df

dr
=
s− α

r
f. (3.95)

This gives a simple expression for the current,

jθ =
s− α

r
f2 = f

df

dr
, (3.96)

which may be inserted into (3.55), solving this equation:

−da0

dr
= f

df

dr
=

1

2

d

dr
f2,

a0(r) = C − 1

2
(f(r))2.
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By using this answer with (3.95), we find that

f ′′(r) +
1

r
f ′(r)−

(

s− α

r

)2

f(r)− 2a0(r)f(r) + 2
[

1− (f(r))2
]

f(r) = (1− 2C)f.

(3.97)

Comparing this to (3.56), we see that we must have C = 1
2 for consistency. This

means that a0 is completely solved in terms of f :

a0(r) =
1

2

(

1− (f(r))2
)

. (3.98)

From equation (3.95) we find

r
d lnf

dr
= s− α. (3.99)

Differentiating and inserting (3.52), we arrive at

d

dr
r
d ln f

dr
= r(f 2 − 1),

∇
2 ln f2 = 2(f2 − 1). (3.100)

Equation (3.100) has a strong resemblance to the Liouville equation,

∇
2 lnρ(r) = 2γρ(r), (3.101)

which has the general solution ρ(r) = 4
γ

|g′(z)|2
(1+|g(z)|2)2 , where g(z + iy) is an arbitrary

function. The most general radially symmetric and nonsingular solution to the Li-

ouville equation is ρ(r) = 4n2

γr2

[

( r0

r
)n + ( r

r0
)n
]−2

[45]. Unfortunately, no solution has

been found to equation (3.100).
As shown in section 3.4, the energy takes a particular simple form at the self dual

point. Tafelmayer[41] has shown that for vortices this point signifies an important
change in the properties of the system. For µ < 1, the energy of n vortices with unit

vorticity is larger than the energy of one vortex with vorticity n. For µ > 1, the
situation is reversed. The effect is shown in figure 3.1. This means that for µ < 1, a

system with several “small” vortices would be unstable, as the vortices would tend to
join into one “large” vortex. We consider this to imply that the physically significant

(for the sake of the QHE) region for µ is µ > 1.

3.7 Vortices in Motion

3.7.1 Adiabatically Moving Vortex

To find the wave function for a vortex moving in a “CSGL fluid” at rest at infinity,
we will make an approach similar to that used by Duan[46] to compute the mass of a
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Figure 3.1: The crossing point for s = 1 and s = 2 vortices. From [41]. Note that in
these units, λ = 2µ.

vortex in superfluid 4He. This approach was also used by Myklebust[25] to compute
the wave function for an adiabatically moving vortex in a superfluid. We will assume

that the time dependence of the problem only appears as

φ(r, t) = φ(r− vt), (3.102)

where φ(r) may be expressed as

φ(r, θ) = f(r)[1 + λ(r, θ)]e isθ, (3.103)

with f(r) the solution of the vortex equations for a static vortex (Equations 3.52—
3.56). We will also assume as a first approximation that the vector field is unchanged

apart from a Galilean transformation:

A0(r, t) = Ast
0 (r− vt) + v · Ast(r− vt), (3.104)

A(r, t) = Ast(r− vt), (3.105)

where Ast
0 and Ast are the fields from a static vortex. Inserting this into equation

3.11 and separating into real and imaginary parts gives the following equation from
the real part when we linearize in λ:

s

r
vθ = v · Ast + 2f2λ− ∇f

f
·∇λ− 1

2
∇

2λ. (3.106)

We have here used that the fields from the static vortex solves equation 3.11. v θ is
the θ component of the vortex velocity v. Assuming further that λ is slowly varying
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at least far from the vortex core, this equation simply gives

δρ = 2f2λ =
s− α(r)

r
vθ, (3.107)

where α(r) is given by equation (3.52). As opposed to the situation in a superfluid,
the deviation from the static wave function is exponentially damped6. However, the

density change is still linear in the vortex velocity and dipole like, with the greatest
deviation along a line perpendicular to the motion. We will come back to the problem

of vortices in motion in the chapter 5, where the connection between MCS theory
and CSGL vortices will be established.

3.7.2 Interaction Between Vortices

So far, the discussion has been for a single vortex in an infinitely large system.
However, this is not a situation likely to appear in the real world. In a quantum

Hall system, we indeed expect there to be so many vortices that they will condense
into a homogeneous “fluid” under certain conditions. One might then wonder how

these vortices will affect each other. We know that in a classical fluid, two vortices
with the same vorticity will circle around each other and two vortices with opposite
vorticity (i.e. one vortex and one anti-vortex) will be forced to move with a constant

speed along a line perpendicular to the line between the vortices. Will this be the
behavior of vortices in CSGL theory?

The answer is no. The reason for this is the exponential damping of the vortex
tail in CSGL theory: A vortex situated far from another vortex will not sense the

other vortex at all, except for the vector field a, which will give the vortices statistics
according to the Aharonov–Bohm effect. In a more realistic model which might be

made by including the (real) electric field caused by the fact that the vortices are
charged or the Coloumb interaction between vortices instead of the φ4-interaction in

the CSGL theory, one would also expect an interaction between the vortices.

3.8 Numerical Solutions

3.8.1 Vortex Form

We have obtained numerical solutions to the dimensionless vortex equations (3.52),
(3.55), and (3.56) by use of a relaxation method with a mesh spacing of 0.05. The

relaxing method is described in appendix D. Solutions have mainly been studied for
vortices with vorticity ±1, and only for µ ≥ 1. For completeness, the solution for

the Ginzburg–Pitavevskii–Gross equation without the electromagnetic fields has also
been found.

Figure 3.2 shows the electron charge density and the current density for two
vortices (fig. 3.2a,c) and two anti-vortices (fig. 3.2b,d) with the parameter choices

µ = 2 and µ = 16. The density is seen to quickly attain its asymptotic value of

6Since s− α = ω is exponentially damped by equation (3.67).
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Figure 3.2: Typical vortices and anti-vortices



3.8 Numerical Solutions 49

0.0 10.0 20.0 30.0
µ

0.0

50.0

100.0

150.0

200.0

R

Vortex size
R = 5.736 mu − 0.98

Figure 3.3: Vortex size as function of µ

1. Furthermore, one can see that the maximum of the current is at the edge of the

vortex. The vortex clearly has a positive charge, while the anti-vortex has a (negative)
charge surplus outside of the core. Based on the discussion in section 3.5.2, this is

what we would expect.

The most staggering difference of µ = 2 and µ = 16 (anti-)vortices on figure 3.2,
is for anti-vortices. Comparing the charge density on figures b and d, we see that the

charge density for a µ = 16 vortex is much less than that for a µ = 2 vortex, even
though we know that the total charge for a µ = 16 vortex is 8 times that of a µ = 2

vortex. This clearly shows how the size of a vortex grows when µ increases.

The size of a vortex was also calculated by defining it as the point where the
integrated charge had reached 99% of its total value. The size of a vortex and anti-

vortex was found to be equal within 1% for all values of µ, and was also found to be
almost perfectly linear in µ for µ > 1, as is shown in figure 3.3.

The size of the core was defined as the point with maximum current density, and
is plotted in figure 3.4 for both a vortex and an anti-vortex. The core size is seen
to be approximately constant for large values of µ, but to rapidly decrease for small

µ-values.

3.8.2 Comparing CSGL and GL Vortices

As discussed in section 3.5.5, one would assume that the solution of equation (3.56)
approaches that of the corresponding equation for GL theory as µ → ∞. In figure

3.5 the charge density for successive values of µ is plotted in the same graphs. Both
vortices and anti-vortices are plotted. In figures c and d is also the density for a
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Figure 3.4: Core size of vortex and anti-vortex as function of µ

GL (anti-)vortex plotted7. It is evident that the solutions for CSGL theory really

converge into that of GL theory for large µ, however µ must become quite large for
the different theories to be approximately equivalent.

As one would expect, the core size as shown in figure 3.4 also converges to that of

GL theory. The size of the whole vortex (figure 3.3) diverges. This is also to expect,
since the vortices in GL theory are not exponentially damped, and thus in a sense

has infinite size. The fact that the vortex size is linear in µ shows that there is not a
uniform convergence of the CSGL vortex into the GL vortex, but rather a pointwise

convergence. This is also expected since for all finite values of µ, the CSGL vortex is
exponentially damped.

3.8.3 Vortex Energy

The behavior of the energy as µ varies, is shown in figure 3.6, in both a regular and
semilogarithmic plot. This figure also shows a fit of the energy values for µ ≥ 8 to a

logarithmic formE = a lnµ+b. One clearly sees that the logarithmic form postulated
is a good approximation. The fit was made using linear regression on energy values
for µ ≥ 8. The result of the fit was a = 1.101± 0.002 and b = 0.212± 0.006.

3.8.4 Comparing CSGL Vortices with MCS Fields

The connection between Maxwell-Chern-Simons theory and CSGL theory was dis-
cussed in section 3.5.6. The conclusion was that there is a connection in the limit

7Recall that a vortex is identical to an anti-vortex with the same vorticity in GL theory
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Figure 3.5: Comparing CSGL and GL vortices and anti-vortices
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r, µ→ ∞, r
µ constant. In figure 3.7 we have plotted the dimensionless MCS B-field

given by equation (2.110) with the charge q arbitrarily set to q = 2π. The total
CSGL magnetic field as a function of r

µ
multiplied with −µ2 is also plotted. It is

evident from the figure, where the CSGL field is plotted for the two cases µ = 16 and
µ = 256, that the MCS and CSGL solutions agree in the limit µ→∞.
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Chapter 4

Extensions of the CSGL Theory

4.1 Maxwell Chern Simons Ginzburg Landau Theory

4.1.1 Dynamical Magnetic Field

For CSGL theory, we have treated the magnetic field purely as an external field, with

no dynamics. Since the externally imposed field is very strong, it is assumed that the
dynamics has little influence. The dynamics of the total electromagnetic field would
be given by adding a Maxwell term − 1

4FµνF
µν to the Lagrangian (3.10), giving a

“Maxwell Chern Simons Ginzburg Landau” (MCSGL) theory.
In this section, we will include only the dynamics of the magnetic field, but still

assume that the electric field is negligible. We will therefore not include the full
Maxwell term, but only the magnetic field part proportional to B 2. The motivation

for this is to find a connection between the CSGL theory and the Ginzburg–Landau
theory of superconductors, which was discussed in section 2.3.3. In the GL theory

the magnetic field is also the only field which is considered dynamical.
Adding the dynamical term for the magnetic field to the Lagrangian (3.10), we

get

L = iφ∗D0φ+
1

2m
φ∗D2φ− λ

2
(|φ|2 − ρ0)

2 +
µ

2
εµνσaµ∂νaσ −

1

2µ0

(

B − Bext
)2
,

(4.1)

where µ0 is the magnetic permeability. We have subtracted the external field B ext

in the dynamics term, since this field is assumed to be kept constant by external

devices.
Performing the rescaling (3.35) to go to dimensionless variables, we find

L̂ = iφ̂∗D̂0φ̂ +
1

2
φ̂∗D̂2φ̂− 1

2
(|φ̂|2 − 1)2 +

µ̂

2
εµνσ âµ∂̂ν âσ −

κ2

4

(

B − 1

µ

)2

, (4.2)

where κ2 = 2λm2

µ0e2 . We have used (3.21), Bext = e
µρ0, as the external field Bext. The

constant κ corresponds exactly to the κ used in the theory of superconductors[16].

55



56 Chapter 4. Extensions of the CSGL Theory

Note that the definitions of κ in this section and in section 2.3.4 differs. This is
because the Cooper-pairs in a superconductor consist of two electrons, and therefore
have twice the mass and twice the charge charge of the electrons described by CSGL

theory. For a superconductor, this parameter decides whether it is a type-I or type-II
superconductor. Vortices only appear in type-II superconductors, for which κ2 >
1
2 [42].

The introduction of κ into the Lagrangian shows that the CSGL theory with added
magnetical dynamics has one more dimensionless parameter than the CSGL theory

discussed in the previous chapter. This addition of one dimensionless parameter
signals that there is one more length scale included in this theory than in pure CSGL

theory. This length scale is associated with the electron charge e, which in the two-
dimensional world has the dimension1 of 1√

L
.

The Lagrangian (4.2) gives the same equation as our CSGL Lagrangian, equations

(3.37)–(3.39), with the addition of one of Maxwell’s equations. For easy reference,
we repeat all the equations here:

iD0φ+
1

2
D2

i φ− (φ∗φ− 1)φ = 0, (4.3)

µεij∂iaj = φ∗φ, (4.4)

µεij(∂ja0 − ∂0aj) = ji, (4.5)

εij∂jBB =
2

κ2
ji. (4.6)

From the last equation, it is evident that as κ→∞, B approaches a constant value,

which must be equal to the externally imposed field Bext = 1
µ . Thus, for large values

of κ, the B2-term has little influence and the MCSGL system reduces to the CSGL
system. It is also evident that in the µ → ∞ limit, we are left with GL theory as

the Chern Simons-term loses influence, parallel to the discussion in section 3.5.5. We
have thus established the connection between CSGL theory with magnetical dynamics

and the GL theory of superconductors. If we let both κ and µ approach infinity, it
is evident that both the real and the statistical field will vanish, and we are left with

the Ginzburg-Landau theory for Helium-II. If we call the Ginzburg-Landau theory
for superconductors “MGL theory” to distinguish it from that of He-II (which has

no Maxwell field), we can draw the following diagram to illustrate the connection
between the theories:

MCSGL
µ→∞−−−→ MGL

κ→∞




y





y

κ→∞

CSGL
µ→∞−−−→ GL

(4.7)

1The dimension of e may be seen by demanding that the action S = � Ld3x is dimensionless.
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4.1.2 Energy

We will return to dimensional variables in this section to compute the energy density

for the MCSGL theory. From the Lagrangian (4.2), it is evident that the only change
in the energy density from equation (3.20), will be the addition of an energy term for

the dynamical magnetic field. Thus the energy density is given by

E =
1

2m
|Dφ|2 + eA0ρ+

λ

2
(ρ− ρ0)

2 +
1

2µ0

(

B − Bext
)2
. (4.8)

From this expression one can see that if Bext = e
µρ0, as in section 3.2.1, the

ground state will be exactly the same as in the CSGL theory, i.e. a constant density
ρ = ρ0 and a constant magnetic field B = Bext.

4.1.3 Vortices

We proceed straight to the discussion of vortices in MCSGL theory. As in section

3.5 we will look at rotationally invariant vortices located at the origin,

φ(r, θ) = f(r)eisθ. (4.9)

From the energy expression (4.8), we see that we must have the same conditions on
the total electromagnetic field and on the density field as in section 3.5.1. Assuming

radial symmetry, we may choose Ar(r, θ) = 0, Aθ(r, θ) = Aθ(r), givingB = 1
r

∂
∂r

(rAθ).
Setting

α = raθ − r2

2µ
, (4.10)

β = rAθ +
r2

2µ
, (4.11)

we find the following set of equations:

f ′′(r) +
1

r
f ′(r)−

(

s− α− β

r

)2

f(r)− 2a0(r)f(r) + 2
[

1− (f(r))2
]

f(r) = 0,

(4.12)

−µa′0(r) =
s − α(r)− β(r)

r
(f(r))2, (4.13)

µα′(r)− r+ r(f(r))2 = 0, (4.14)

1

r2
β′(r)− 1

r
β′′(r) =

2

κ2r
(s− α(r)− β(r))(f(r))2. (4.15)

These equations are quite similar to the corresponding equations (3.52), (3.55) and

(3.56). The difference is the addition of the field β(r), which contains the dynamical
magnetic field. As we discussed in section 4.1.1, and as is evident from equation

(4.15), this field vanishes is the limit κ → ∞, where we regain the CSGL theory
discussed in chapter 3.
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To find the asymptotic form of the vortices in the MCSGL theory, we might use
the ansatz

f(r)− 1 = CK0

(

r

ζ

)

, (4.16)

where C is a constant and ζ is an unknown length scale, as we did in section 3.5.3 for
the vortices in CSGL theory. If we insert equation (4.16) into the above equations

for the MCSGL vortex, we find the following equation for the length scale ζ:

(8µ2 + 4κ2)ζ4 − (4κ2µ2 + 2µ2)ζ2 + κ2µ2 = 0. (4.17)

Dividing by κ2 and letting κ→∞, we get

4ζ4 − 4µ2ζ2 + µ2 = 0, (4.18)

which is excatly equivalent to equation (3.69) for the length scale of a CSGL vortex.

Thus, we see again that we find the pure CSGL theory in the κ→∞ limit.

The solutions to (4.17) are

ζ1
2 =

2µ2κ2 + µ2 + µ2
√

4κ4µ2 − 4κ2µ2 + µ2 − 4κ4

4κ2 + 8µ2
, (4.19)

ζ2
2 =

2µ2κ2 + µ2 − µ2
√

4κ4µ2 − 4κ2µ2 + µ2 − 4κ4

4κ2 + 8µ2
. (4.20)

4.1.4 Topological Invariants

As we commented in the previous section, equation (3.50) in section 3.5.1 for the

asymptotic behavior of the electromagnetic field still holds in MCSGL theory. Thus,
the total magnetic flux is still quantized according to

∫

d2xεij∂i(aj +Aj) = 2πs. (4.21)

However, this quantity is no longer equivalent to the charge as in equation (3.58).

This is because the “real” field Aµ now includes a dynamic part and is no longer
constant. Thus, the charge of the problem is no longer quantized. For the same

reason, the angular momentum is also no longer a topological quantity.

In the limit κ→∞, where the pure CSGL theory is found, the field Aµ approaches

the constant external field and equation (4.21) again describes that the charge is
quantized. In the limit µ→ ∞, the statistical field aµ vanishes, and equation (4.21)

becomes the dimensionless equivalent of equation (2.96), saying that the magnetic
flux is quantized.
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Figure 4.1: MCSGL vortices
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Figure 4.2: Size of MCSGL vortex with µ = 2 as a function of κ.

4.1.5 Numerical Studies of Vortices

The equations (4.12)–(4.15) have been solved numerically for a selection of values

for the constants κ and µ. In figure 4.1a we show how the value of κ modifies the
structure of a vortex. For small values of κ, the vortex becomes much more localized,

in the sense that the electron density more quickly approaches the constant value.
This is further established in figure 4.2, where we show how the size of the vortex

varies with κ. The size has been calculated by a procedure equivalent to that in figure
3.3, but since the charge is not quantized, we have used that the size if defined as

the point where the total integrated magnetic field has reached 99% of its quantized
value. From the figure it is evident that the size approaches a constant value as κ
increases, and from the previous discussion we know that this must be the size of a

corresponding CSGL vortex.

Figure 4.1b shows the magnetic field for the vortices shown in figure 4.1a. Figure
4.1c shows the energy density and figure 4.1d the current density for three different

choices of values for κ and µ.

In figure 4.3 we show that it is not only the size of the vortices that diminishes
as κ decreases. The same is true for the total energy, which is plotted in this figure

as a function of κ for µ = 2 and µ = 4.

The charge of a vortex with κ = 1, κ = 10 and the charge of a CSGL vortex is
plotted as a function of µ in figure 4.4. The figure shows that for small values of µ,

µ� κ, the charge is almost equal to that of a CSGL vortex, which is linear in µ. For
larger values of µ, the charge decreases and approaches a constant value as µ→∞.
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4.1.6 Self-Dual Line

In the GL theory of superconductors, the self-dual point occurs at κ2 = 1
2 , corre-

sponding to the boundary between type-I and type-II superconductivity. For CSGL

theory, we know from section 3.4 that there is a self-dual point at µ = 1. For the
combined MCSGL theory, we would then expect self-duality at a line in (µ, κ)-space.
We can find this line by examining the dimensionless energy density as we did in

section 3.4:

E =
κ2

4

(

B − 1

µ

)2

+
1

2
|Dφ|2 +

1

2
(|φ|2 − 1)2

=
κ2

4

[

B − 1

µ
− 1

κ2
(1− |φ|2)

]2

+
1

2
|(D1 + iD2)φ|2

+

(

1

2
− 1

2µ
− 1

4κ2

)

(

1− |φ|2
)2

+
1

2
εij∂i

[

1

2i
(φ∗∂jφ− φ∂jφ

∗)− (Aj + aj)|φ|2 +Aj + aj

]

.

(4.22)

The self-dual points are found when

1

2
− 1

2µ
− 1

4κ2
= 0, (4.23)
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Figure 4.5: “phase diagram” of
MCSGL theory

where the energy is minimized by

(D1 + iD2)φ = 0, (4.24)

B =
1

µ
+

1

κ2
(1− |φ|2). (4.25)

The line (4.23) marks the boundary between
“type-I” and “type-II” states of the MCSGL sys-

tem, as shown in figure 4.5.

On the self–dual line, the energy of the ground

state given by (4.24) and (4.25) is

E = πs (4.26)

just as in the CSGL case (see section 3.4).

As an additional note, we see that the two solutions for the length scale, equations
(4.19) and (4.20) are equal excactly at the self-dual line (4.23).
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4.2 Two-Component CSGL Theory

4.2.1 Spin Effects in the Fractional Quantum Hall Effect

The discussion in chapters 2 and 3 did not take into account the fact that electrons

have an intrinsic spin. We have, in effect, assumed that the electrons are fully polar-
ized, i.e. all spins point in the same direction. This was originally assumed to be the

case because one believed reversing spins was disallowed for energy reasons, since the
external magnetic field is very strong. However, B. I. Halperin[47] pointed out that

in GaAs the g-factor of the electron is in fact rather small, and thus gives a small
Zeeman energy.

There are also other effects that are comparable with intrinsic spin effects. In

multi-layered systems, electrons gain an additional quantum number that depend on
which layer the electrons are in. In a two-layer system, electrons in the upper and

lower layers would thus be analogous to electrons having spin up and down, respec-
tively (for a review of double-layer quantum Hall systems, see [48].) Additionally, in

certain systems (e.g. Silicon systems) there is an additional “valley” symmetry that
can be treated as spin[11]. We will here concentrate our discussion on the intrinsic

spin of electrons which couple to the magnetic field with a Zeeman term.

The effect of including electron spin in the microscopical model has been studied
in numerical finite system size studies where the g-factor may be varied (see e.g. [49]

for a review.) For large g, we know that the system is polarized, the question is
what happens when g → 0. The theoretical studies show that for even integer filling

fractions, nothing happens, while for odd integer and Laughlin ( 1
m) filling fractions

the ground state remains polarized, while the excitations change dramatically[11].

For odd or Laughlin fillings and small g, the näıve quasiparticles corresponding

to (polarized) CSGL vortices and anti-vortices are no longer the lowest lying charged
excitations in the quantum Hall system. As g is reduced, the lowest energy excitations

increase their spin and size while the charge stays the same. In the limit g → 0, the
quasiparticles have a divergent size and a macroscopic spin with non-trivial spin

order. These configurations are known as skyrmions.

4.2.2 The Non-Linear σ-Model2

To understand the structure of the non-polarized excitations in spin-extended CSGL
theory, it is educative first to consider a greatly simplified model for spin systems

known as the non-linear σ-model. Approximating the electron spin as a classical
vector field n(r), with n2 = 1, the Lagrangian for this (non-dynamical) model is

L = −1

2
ρs(∇ · n)2, (4.27)

where ρs is the spin stiffness. It is possible to deduce this Lagrangian as the leading
term of the CSGL Lagrangian extended with spin[51], when ignoring dynamics.

2This introduction is largely based on the review in the thesis by Lilliehöök[50].
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Figure 4.6: The spin configuration of a Z = 1 skyrmion. From [50].

The states of this system can be characterized by a topological invariant, the

winding number Z. This number, which may be any integer, comes from the fact
that the vector field n(r) is equivalent to the mapping of a sphere onto a sphere[50] 3.

The ground state with n = const has winding number Z = 0, but there may be
excitations with any winding number. By solving the equations of motion that follow

from the Lagrangian (4.27), one finds that simple solutions with winding number Z
may be described by

ω(z) =
( z

λ

)Z

, (4.28)

where z = x + iy and ω =
2(nx+iny)

1−nz
(see e.g. [52] for a review of the non-linear

sigma model.) A visualization of the state with Z = 1, taken from [50], may be seen
in figure 4.6. The state has spin down in the middle and spin up at infinity. On a

closed curve around the middle of the skyrmion, the spins will circle once around the
z-axis. It is impossible to continuously transform this configuration into the ground

state with all spins pointing up.

In the FQHE, g 6= 0 and this will give the excitations a finite size. We will use
the term skyrmion for all excitations with a non-trivial spin order even though they

have a finite size.

4.2.3 Adding Spin to CSGL Theory

To introduce a spin freedom into the CSGL system described by (3.10), it is necessary
to make two changes: Replace the scalar field φ by a two-component field (φ1, φ2), and

3The spin field n(r) must align with the external magnetic field as r → ∞, so the points at infinity
may be identified with the north pole of a sphere
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add a Zeeman term − 1
2gµBBφ

†σzφ for the interaction of the spin with the external
magnetic field B. µB is the Bohr magneton, g is the (effective) gyromagnetic ratio
for the electron, and σz is a Pauli matrix. The Zeeman term may also be interpreted

as a difference in chemical potential for the upper and lower component[40]. We then
end up with the following expression for the Lagrangian:

L =

2
∑

k=1

φ∗k(i∂0 − eA0 + µk)φk +
1

2m
φ†(∇− ieA)2φ− λ

2
(φ†φ)2 +

µ

2
εµνσaµ∂νaσ ,

(4.29)

where µk, k = 1, 2 is the chemical potential for the upper and lower component,
respectively.

4.2.4 Energy and Ground State

The energy density of a field configuration of the two-component system is

E =
1

2m
|Dφ|2 + eA0ρ+

λ

2
ρ2 − µ1ρ1 − µ2ρ2. (4.30)

For a constant solution, the energy is clearly lowest if all electrons are in the state
with highest chemical potential which implies that the ground state is fully polarized
and has a uniform density,

φ1 =

√

µ1

λ
≡ √ρ0,

φ2 = 0,

(4.31)

if µ1 > µ2, and if the magnetic field is at the plateau middle B = 1
µ
.

With the above definition of ρ0, the chemical potentials µ1 and µ2 may be written

µ1 = λρ0, (4.32)

µ2 = λρ0 − gµBB. (4.33)

That the ground state is polarized independently of g is in agreement with the
microscopical theory as discussed in section 4.2.1. If g = 0, the ground state is

degenerate, as all SU(2) transformations of (4.31) have the same energy. The system
would have to “choose” a specific ground state, which would lead to spontaneous

symmetry breaking. The g = 0 case is not physical for the case of intrinsic spin, where
there will always be a coupling between the spin and the magnetic field, however it

might be physical for the other cases mentioned in section 4.2.1.

4.2.5 Rescaling

We perform a rescaling according to (3.35), and introduce a rescaled effective gyro-

magnetic ratio in terms of

ĝ =
gµBB

λρ0
. (4.34)
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This rescaling produces the Lagrangian, again suppressing the marks on the rescaled
fields,

L = φ†(i∂0 −A0 + 1)φ+
1

2
φ†(∇− iA)2φ− 1

2
(φ†φ)2 − gφ∗2φ2 +

µ

2
εµνσaµ∂νaσ.

(4.35)

By extremizing this Lagrangian we find the following field equations:

−(i∂0 − A0 − a0)φ1 =
1

2
(∂i + iAi + iai)

2φ1 − (ρ− 1)φ1, (4.36)

−(i∂0 −A0 − a0)φ2 =
1

2
(∂i + iAi + iai)

2φ2 − (ρ− 1 + g)φ2, (4.37)

µεij∂iaj = ρ, (4.38)

µεij (∂ja0 − ∂0aj) = ji, (4.39)

where we now have the following expressions for the (rescaled) particle and current

densities:

ρ(r) = ρ1(r) + ρ2(r) = φ1(r)
∗φ1(r) + φ2(r)

∗φ2(r), (4.40)

ji(r) =
1

2i

{

φ†(∂i + iai + iAi)φ− [(∂i + ieai + ieAi)φ]†φ
}

. (4.41)

4.2.6 Self-Dual Point

Rewriting the energy as in equation (3.44), we find

E =
1

2
|(D1 + iD2)φ1|2 +

1

2
|(D1 + iD2)φ2|2 +

(

1

2
− 1

2µ

)

(|φ1|2 + |φ2|2− 1)2 + g|φ2|2,

+ εij∂i

(

2
∑

k=1

1

2i
(φ∗k∂jφk − φk∂jφ

∗
k)−Aj(|φ1|2 + |φ2|2 − 1)

)

− 1

2
. (4.42)

It is obvious that for µ = 1 and g > 0, the energy is minimized for φ2 = 0 and

(D1 + iD2)φ1 = 0, as in section 3.4. So at the self-dual point µ = 1, the skyrmion
solution that minimizes the energy is the fully polarized one.

4.2.7 Skyrmions

We will need an expression for the wave function of a skyrmion. As shown in figure
4.6, the spin should point up at infinity and down at the origin, and for s = 1, the

spins will describe one turn around the z-axis when moving on a closed loop around
the origin. In general, the spins will turn s times around the z axis on such a loop.

The simplest wave function describing this configuration is

φ1(r) = f1(r)e
isθ,

φ2(r) = f2(r),
(4.43)



4.2 Two-Component CSGL Theory 67

where we have made the gauge choice of keeping the phase of φ2 constant. Inserting
this form into the field equations for the two-component model, equations (4.36)–
(4.39), we arrive at the following equations for a static skyrmion with winding number

(topological charge) s:

f ′′1 (r) +
1

r
f ′1(r)−

(

s− α(r)

r

)2

f1(r)− 2a0(r)f1(r)− 2((f1(r))
2

+ (f2(r))
2 − 1)f1(r) = 0, (4.44)

f ′′2 (r) +
1

r
f ′2(r)−

(

α(r)

r

)2

f2(r)− 2a0(r)f2(r)− 2((f1(r))
2

+ (f2(r))
2 − 1 + g)f2(r) = 0, (4.45)

µa′0(r) +
s − α(r)

r
(f1(r))

2 − α(r)

r
(f2(r))

2 = 0, (4.46)

µα′(r) + r((f1(r))
2 + (f2(r))

2− 1) = 0. (4.47)

These equations reduce to the vortex case for φ2 = 0, so the polarized solution
studied in the previous chapter is also a solution of these equations.

The equations (4.44)–(4.47) have been studied by solving them numerically for a
range of the dimensionless parameters µ and g.
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Figure 4.7: Spin per
charge of skyrmion
with µ = 1.1

The qualitative behavior for skyrmions is shown in figure

4.8, where the electron density and spin density as well as the
energy density for three skyrmions with different parameters

are shown. When µ grows, the skyrmions are “smeared out”
to a larger area. With g decreasing, the skyrmions also grow,

but here it is mainly the spin density that is being spread
out over a larger area. Figure 4.9 shows how the size of the
skyrmion grows as g decreases. The size has been computed

with the same definition as in section 3.8.1, i.e. as the point
where the charge of the skyrmion has reached 99% of its total

(quantized) value.

When g increases, the spin of the skyrmions decreases until

finally, for large enough g, only fully polarized solutions are
found, as shown in figure 4.7.

The differences of skyrmions with different topological

charge are illuminated in figure 4.10. The figure shows that
while the charge density is extremal at the center of the

skyrmion for |s| = 1, the extremum of the charge density
occurs in a ring around the center for |s| > 1.
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Figure 4.8: Four skyrmions with different parameters.
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Figure 4.10: Charge and spin density for skyrmions with µ = 2 and g = 0.01 and
s = −2,−1, 1, 2.
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Figure 4.11: Crossing points for the energy of two charge one skyrmions and one
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4.2.8 Crossing of s = 1 and s = 2 Skyrmions

One important feature found by Lilliehöök et al.[53] is that a charge-2 skyrmion has

lower energy than two charge-1 skyrmions for low enough values of the parameter g.
The effective g-factor g̃ used by those authors is not exactly the same as the effective

g-factor used in this thesis. Lilliehöök et. al. considered a non-linear σ-model with a
Coloumb potential, with parameters adjusted to fit the microscopical theory for the

fractional quantum Hall effect. Their effective g-factor is defined as

g̃ =
gµBB

e2/ε`
, (4.48)

where ε is the electromagnetic permittivity. This is the ratio of the Zeeman energy
to the characteristic Coloumb energy. In contrast, our definition (4.34) is the ratio

of the Zeeman energy to the chemical potential. Lilliehöök et. al. found that when
g̃ . 8.9 · 10−5, the lowest lying charged excitations are charge-2 skyrmions.

This behavior has been qualitatively reproduced in our studies, as shown in figure
4.11. As is evident from this figure, the crossing point gC varies with µ, and this is

studied in figure 4.12. This figure shows a “phase diagram” for CSGL theory with
spin, the phases shown are described in table 4.1.

The line given by gC , which is the line separating the S1 and S2 phases, is seen to
reach a maximum around µ = 2, and approach zero as µ→ 1. As µ approaches 1, the

skyrmion solutions disappear. This displays the fact that the polarized solutions are
the ones with lowest energy at the self-dual point (or line as viewed in (µ, g)-space)
µ = 1.



4.2 Two-Component CSGL Theory 71

0.0 2.0 4.0 6.0 8.0 10.0
µ

0.00

0.02

0.04

0.06

0.08

0.10

g S

S

PP

1

2

1∞

Figure 4.12: Phase diagram. The phases are explained in table 4.1.

Phase Stable quasiparticles

P1 Spin polarized quasiparticles with charge 1

P∞ No stable quasiparticles

S1 Skyrmions with charge 1

S2 Skyrmions with charge 2

Table 4.1: Description of phases displayed in figure 4.12
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Chapter 5

Duality to

Maxwell-Chern-Simons Theory

5.1 MCS and CSGL Theory

In section 2.5 we gave a short review of the Maxwell-Chern-Simons (MCS) theory.

We stated there that it was a theory designed to model a system of anyons. We have
also stated that the quasiparticles in the fractional quantum Hall effect are anyons.

Thus, we might be able to describe them (possibly as an approximation) with the
MCS theory or an extension of it. In section 3.5.6, we showed how the total magnetic

field in CSGL theory approached that of MCS theory in the limit r, µ → ∞ when
r
µ

is held constant. However, the connection between MCS and CSGL theory is

stronger than that. We will show that the CSGL equations of motion and the CSGL
Lagrangian is indeed equivalent to an extension of the MCS equations and the MCS

Lagrangian.

In field theory, the word duality is used to describe the connection between the-
ories that equivalently describes the same phenomenon, but where topological exci-

tations or quasiparticles in one theory are replaced by fundamental particles in the
other. We will show that MCS theory can be derived as an approximation from

CSGL theory, where the vortices in the latter become charged particles in the former
theory. We can therefore say that there is an approximate duality between CSGL

theory and MCS theory. There has been a considerable study of this duality in the
literature (see e.g. [54, 55, 56]).

5.2 Simple Analogy

This section will be an introduction to the more rigorous treatment of the duality

between CSGL and MCS theory in the following sections. We will show that one can
find an analogy to MCS theory simply by making substitutions in the field equations

for CSGL theory. We will in this section assume that the external field Aµ is a
constant magnetic field such that equation (3.21), B ext = e

µ
ρ0, holds. In the context

73
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of the quantum Hall effect, this implies that the system is on the middle of a plateau.

The analogy to MCS theory starts with the hydrodynamical analogy of section

2.3.5; equations (2.65) and (2.67), and the CSGL equations (3.11) and (3.12). Written
in terms of the total (real and statistical) fields E = e + E ext and B = b+ Bext, the
latter two equations become

E × ẑ = − e
µ
ρv + Eext × ẑ, (5.1)

B = ∇×A = − e
µ
ρ+Bext, (5.2)

where ẑ is a unit vector in the z-direction. Bext and Eext are the external fields. In
addition to equation (3.21), we assume that there is no external electric field, i.e.

Eext = 0, as before. The above two equations then imply that equations (2.65) and
(2.67) and the Lorentz force F may be expressed with E and B only.

As in section 3.3, we make a transformation to dimensionless quantities, effec-
tively absorbing all parameters into the dimensionless constant µ. In these units, the

external field plateau middle value is Bext = 1
µ . The two equations above become

E × ẑ = −1

µ
ρv, (5.3)

B = −1

µ
ρ+

1

µ
, (5.4)

and by using these we end up with the following expression for the Lorentz force F:

F = q(E + Bv × ẑ) =
E

1− µB . (5.5)

In the following part of this section, we will be considering small deviations from
the ground state found in section 3.2.1, ρ = 1 + δρ, v = δv and assuming that the
variations in the fields are slow (low frequency limit). All equations will therefore be

linearized in δρ and δv, and in derivatives. In the dimensionless CSGL theory, the
potential in (2.67) is V = ρ− 1. Equation (2.67) becomes

∂δv

∂t
+ ∇δρ− F = 0. (5.6)

Combining this equation and equations (2.64) and (2.65) with equations (5.3) and
(5.4) we find the following equations:

Ḃ + ∇× E = 0, (5.7)

Ė −∇× ẑB − 1

µ
E × ẑ = 0, (5.8)

∇ · E +
1

µ
B = 0. (5.9)
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Equation (5.7) follows directly from (2.65), (5.8) follows from (5.6) by vector
multiplication with ẑ, while (5.9) follows from (2.64) and (5.4) by observing that
∇× v = −∇×A = −B.

Equations (5.7)–(5.9) are equivalent to the field equations in Maxwell Chern Si-
mons theory, equations (2.98)–(2.100), with a coupling constant µ→ − 1

µ
.

5.3 Lagrangian Approach

5.3.1 Introducing Vortices

In the hydrodynamical analogy of section 2.3.5, the assumption was made that the
phase of the wave function is an analytical function of the coordinates, and therefore
that there are no vortices in the system. Thus, we ended up with the source-less MCS

equations (5.7)–(5.9). We will now use a less transparent, but more rigorous method
to derive the approximate duality between CSGL and MCS theory, that also takes into

account the possibility of vortices. Following Arovas and Freire[57], who have done
a nice review of the corresponding duality between GL theory and regular Maxwell

dynamics, we would like to transform the Lagrangian of CSGL theory (3.10) into the
one for MCS theory (2.97). We start with the dimensionless CSGL Lagrangian

L = φ∗(i∂0 −A0 − a0)φ+
1

2
φ∗(∂i + iAi + iai)

2φ

− 1

2
(φ∗φ− 1)2 +

µ

2
εµνσaµ∂νaσ . (5.10)

The transformation starts by substituting φ =
√
ρeiSeiχ. This is analogous to the

hydrodynamical analogy of section 2.3.5, but since we will now also consider the

possibilities of vortices in the system, we introduce the field χ(x) as the part of the
wave function containing vortices. Therefore, this part need not be an analytical
function. After making this substitution, we arrive at

L′ = −ρ(∂0S + ∂0χ+ A0 + a0)−
ρ

2
(∂iS + ∂iχ+ Ai + ai)

2

− (∇ρ)2

8ρ
− 1

2
(ρ− 1)2 +

µ

2
εµνσaµ∂νaσ , (5.11)

where we have left out a total time derivative term 1
2∂0ρ.

5.3.2 The Hubbard-Stratanovich Method

The Lagrangian (5.11) contains a squared term − ρ
2 (∂iS + ∂iχ + Ai + ai)

2, which
we would like to simplify. This is possible with the introduction of a Hubbard-

Stratanovich field. The idea behind the Hubbard-Stratanovich method is that we
find a new Lagrangian such that integration over the new field gives us back the

original Lagrangian. We achieve this as follows: Imagine a Lagrangian L 1 = αφ2,
and that we would like the field φ to appear linearly only. The solution is to consider
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a Lagrangian of the form L2 = −βψ2 + 2γψφ, where ψ is a new dynamical field
introduced to linearize the Lagrangian in φ. It is easy to see that integrating L 2 over

ψ gives us L′2 = γ2

β
φ2, so that if γ2

β
= α, L2 is essentially equivalent to L1.

Introducing a Hubbard–Stratanovich field Qi(x) into equation (5.11), we find

L′′ = −ρ(∂0S + ∂0χ +A0 + a0)− Qi(∂iS + ∂iχ+ Ai + ai) +
1

2ρ
Q2 − (∇ρ)2

8ρ

− 1

2
(ρ− 1)2 +

µ

2
εµνσaµ∂νaσ . (5.12)

Note that integrating over Qi gets us right back to L′. We may now integrate over

S, which gives the constraint

∇ ·Q + ∂0ρ ≡ ∂µQ
µ = 0. (5.13)

This means that we may write

ρ− 1 = εij∂iZj, Qi = εij(∂jZ0 − ∂0Zj). (5.14)

To keep track of some constant terms when making the above substitutions, we also
introduce a non-dynamical gauge field zµ, satisfying εij∂izj = 1 and ∂0zi = 0 = z0.

We see that this makes us able to rewrite the coupling between the vortex field and
the Hubbard-Stratanovich field as

Qµ∂µχ = [εµνσ∂ν(Zσ + zσ)](∂µχ). (5.15)

5.3.3 Vortex current

The interaction term (5.15) may be rewritten, by leaving out a surface term, as
−(Zσ + zσ)εµνσ∂ν∂σχ. We now claim that the field Jµ ≡ εµνσ∂ν∂σχ is in fact equal

to the 3-current charge density of vortices. It is obvious that J µ will be non-zero at a
point x0 only if χ is not analytical at this point. Imagine then that there is a vortex

at x0 with charge s, so that χ will have the property that it changes by 2πs when
moving in a closed loop around x0. Integrating J 0 over a neighborhood S of x0 gives
us by the theorem of Stokes,

∫

S

J0dS =

∮

∂S

∇χ · dl = 2πs, (5.16)

so that integrating J 0 over a larger area simply gives the total topological charge of the
vortices in this area, multiplied by 2π. The analogous to the MCS charge of a CSGL

vortex is thus q ≡ 2πs. Since the definition of Jµ also guarantees that ∂µJ
µ = 0, we

must then have that Jµ is the 3-current density of vortices. By introducing J µ and

Zµ into (5.12), we end up with the Lagrangian

L′′′ = −(Zµ + zµ)Jµ − εµνσ(Aµ + aµ)∂ν(Zσ + zσ) +
E2

2(1−B)

− 1

2
B2 − (∇B)2

8(1−B)
+
µ

2
εµνσaµ∂νaσ . (5.17)
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Here we have introduced the fields E = −∇Z0−∂0Z and B = ∇×Z. Note that these
definitions are not equivalent to the previous definitions of E and B. Integrating over
the original field aµ, we finally arrive at

Lnew = −1

4
FµνF

µν + (εµνσ∂νAµ − Jσ)(Zσ + zσ)

− 1

2µ
εµνσ(Zµ + zµ)∂ν(Zσ + zσ) +

1

2

BE2

1−B
− (∇B)2

8(1−B)
. (5.18)

So far, we have made no approximations, and this new Lagrangian describes our
system just as well as the original (5.10). We see that linearizing (5.18) by leaving

out the two last terms, gives us a Lagrangian similar to the Maxwell-Chern-Simons
Lagrangian:

Llin = −1

4
FµνF

µν + (εµνσ∂νAµ − Jσ)(Zσ + zσ)

− 1

2µ
εµνσ(Zµ + zµ)∂ν(Zσ + zσ). (5.19)

This Lagrangian gives the following equations of motion:

∇ ·E + (
1

µ
B + Bext − 1

µ
) = J0, (5.20)

∇×Bẑ − Ė − ẑ × (
1

µ
E −Eext) = J. (5.21)

Here, Bext and Eext are the external fields related to Aµ. In addition, Faraday’s

equation (5.22) follows directly from the definitions of E and B,

Ḃ + ∇ × E = 0. (5.22)

On the middle of the plateau of the FQHE, we have Eext = 0 and Bext = 1
µ

in

our dimensionless units, and this gives the familiar MCS equations;

∇ ·E +
1

µ
B = J0, (5.23)

∇× Bẑ − Ė − 1

µ
ẑ ×E = J. (5.24)

Note that the only change from equations (5.8) and (5.9) to equations (5.23) and

(5.24) is the introduction of the vortex 3-current (J 0,J). This current could also be
introduced into (5.8) and (5.9) by realizing[25] that ∇∂ 0S = ∂0∇S − J × ẑ when

there are vortices present.
Another thing to note is that there is no dynamics in the field J µ. All the

dynamics of the vortices is hidden in the field Zµ in the same manner as the vortices
in the original model receive their dynamics from the fluid.

As a last note, if we are not on the middle of the plateau, we still haveB ext = 1
µρ in

the ground state, so that 1
µ
B+Bext− 1

µ
= 0. Thus, if we rename 1

µ
B+Bext− 1

µ
→ 1

µ
B,

then we will have exactly the same system as (5.23) and (5.24), where B = 0 and
E = 0 in the ground state.
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5.3.4 Units and Dimensions

Returning for a moment to dimensional units, we find that we must introduce a new

“speed of light” c to write the Lagrangian in a simple form such as (5.18). Defining

c ≡
√

λρ0

m
and ∂0 =

1

c
∂t (5.25)

makes it possible to express equation (5.18) in dimensional units:

Lnew = −mρ0

4
FµνF

µν +
mρ0

c
(
e

m
εµνσ∂νAµ − Jσ)(Zσ + zσ)

− mρ0

2µ
εµνσ(Zµ + zµ)∂ν(Zσ + zσ) +

mρ0

2c

BE2

1− B
c

− mρ0(ξ∇B)2

8(1− B
c
)
, (5.26)

where ξ = 1
mc

. In CSGL theory, c corresponds to the speed of sound, and ξ is in fact√
2 times the coherence length defined earlier.

In dimensional units, Zµ is defined by

ρ− ρ0 =
ρ0

c
εij∂iZj , Qi = ρ0ε

ij(∂jZ0 − ∂0Zj). (5.27)

5.4 Vortices in Motion

5.4.1 Lorentz Transformations

Before we go on to study the dynamics of vortices in detail, let us have a look at the

fields from a moving vortex as described in the MCS theory.

The fields from a static vortex at the origin, J 0 = 2πsδ(r), J = 0 have been given
in equations (2.101) and (2.102):

B(r) = − s
µ
K0(

r

µ
), (5.28)

E(r) =
s

µ
K1(

r

µ
)êr. (5.29)

The Lagrangian (5.19) is Lorentz invariant, thus to find the fields for a moving vor-
tex we only have to Lorentz transform the fields above. A Lorentz boost of the

electromagnetic fields in two dimensions is given by

B′ = γB − γβ × E, (5.30)

E′ = γE− γ2

γ + 1
β(β · E) + γβ ×B, (5.31)

where β is the velocity of the moving frame (i.e. the vortex), and γ = 1√
1−β2

. If

β is small, we may linearize the second equation by leaving out the second term
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and approximate γ by γ ≈ 1. Thus, the fields from a moving vortex, generated by
boosting the above fields, become

B′(r′) = − s
µ

(

K0(
r

µ
) + βθK1(

r

µ
)

)

, (5.32)

E′(r′) =
s

µ

(

K1(
r

µ
)êr + ẑ × βK0(

r

µ
)

)

, (5.33)

where βθ is the θ-component of the velocity.

In section 3.7.1 we discussed an adiabatically moving vortex in CSGL theory.
We found that the deviation in the charge density is given by equation (3.107).

Furthermore, equation (3.67) gives the asymptotic form of ω = s − α. Using this
equation, we see that equations (5.32) and (3.107) are in fact equivalent (up to a
constant, which stems from the definitions of E in the duality to MCS theory) in the

asymptotic limit.

5.4.2 Vortex Dynamics

The dynamics of vortices in CSGL theory is still not completely understood. Since

the vortices represent quasiparticles, we would expect them to behave more or less
like ordinary particles. In theory, it should be possible to find an effective Lagrangian

for the vortices by integrating out the MCS fields Z µ from equation (5.19).

In Coloumb gauge, equation (5.19) may be rewritten by leaving out surface terms

as

L = −1

2
Z0∇

2Z0 + [εij∂j(Ai +
1

µ
Zi +

1

µ
zi)− J0][Z0 + z0]

+
1

2
(∂0Zi)

2 +
1

2
(∇× Z)2 + [εij(∂0Aj − ∂jA0)− J i][Zi + zi]

− 1

2µ
εij(Zj + zj)∂0(Zi + zi). (5.34)

In this Lagrangian we may integrate out the Z0-field to produce

Leff = − 1

4π

∫

d2x′J̃0(r, t) ln(|r− r′|)J̃0(r′, t)

+
1

2
(∂0Zi)

2 +
1

2
(∇× Z)2 + [εij(∂0Aj − ∂jA0)− J i][Zi + zi]

− 1

2µ
εij(Zj + zj)∂0(Zi + zi), (5.35)

where

J̃0 = εij∂j(Ai +
1

µ
Zi +

1

µ
zi)− J0. (5.36)
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But from equation (5.20) we see that to zeroth order, J̃0 = 0, i.e.

εij∂jZi(x) = µJ0(x) = µ
∑

k

qkδ
(2)(r− rk), (5.37)

where we have inserted εij∂izj = 1 and used the (dimensionless) plateau middle value

Bext = 1
µ
. This equation may be solved, yielding

Zi(x) =
µ

2π

∑

k

qkε
ij x

j − xj
k

|r− rk|2
. (5.38)

Inserting this and J i =
∑

k qkẋ
i
kδ(r− rk) gives the effective Lagrangian[37]

Leff =
1

2

∑

k

qkε
ijẋi

kx
j
k + µ

∑

k

qkA0(rk)−
µ

2π
εij
∑

k,l

qkqlẋ
i
k

xj
k − xj

l

|rk − rl|2

+
µ2

2

∑

k,l

qkqlδ
2(rk − rl) +

∑

k

∆k, (5.39)

where the last term
∑

k ∆k comes from the second and last term of equation (5.35)
and contains the self-energy of the vortices[37].

For one single vortex, disregarding the last term of (5.39), we get the equation of
motion

εij
∂xj

∂t
= µ

∂A0(x)

∂xi
. (5.40)

This equation suggests that that the vortices are massless, since that would imply

that the Lorentz force q(E + Bv × ẑ) vanishes, and this is exactly what the above
equation is saying (remember that in our dimensionless units, B = 1

µ
.) However, we

must remember that we used a rather crude approximation to derive equation (5.38).

The third term in (5.39) describes the anyonic nature of the vortices. The contri-

bution to the action from this term on a path where one vortex is interchanged with
another is[37] ∆S = π

2n+1 .

The fourth term shows how the vortices “inherit” the delta function interaction
between the electrons. If we had used another form of the interaction, we would have

another term here.

5.5 Enhanced Vortex Dynamics

The effective Lagrangian for vortices in the previous section, equation (5.39) was
derived using a crude approximation, and contains self-energy terms ∆k which were

not calculated. Using a more accurate method, we would like to improve on this
situation.
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As in the previous section, we would like to transform the MCS field equation
(5.19) into an effective Lagrangian for the vortices, by treating these as point particles.
We will do this by integrating out the MCS fields Z µ using the MCS propagator,

which has been found by Løvvik, and which is given in equation (2.105). This is an
alternative to the approximation used to find equation (5.38), that hopefully will be

more exact. Our goal will be to find a Lagrangian similar to the Lagrangian for a
classical particle in an electromagnetic field,

L =
1

2
Mv2 +Qv · A +QA0(r), (5.41)

where M the mass and Q the charge of the particle, v is the velocity of the particle
and A and A0 describe the (external) electromagnetic field. We will here follow D.
P. Arovas and J. A. Freire[57], who have used a similar procedure for vortices in GL

theory. In parallel to Arovas’ and Freire’s results, we will find that an expression
like (5.41) may be found if we allow M and Q to be functions of the frequency, in a

manner that will be defined below.

5.5.1 Self Interaction

As noted at the end of section 5.3.3, all the dynamics of the vortices is hidden within
the MCS field Zµ. The vortex field Jµ appears in the effective Lagrangian (5.19)

only as an “external” current with no dynamics of its own. We would like to extract
the parts of the MCS fields that give dynamics to the vortices so as to have explicit

terms in the Lagrangian for this. We start with the parts of (5.19) that connect the
MCS field to itself and to the vortex current:

Lvortex = −1

4
FµνF

µν − 2πsJµZµ −
1

2µ
εµνσZµ∂vZσ. (5.42)

We expect these terms to contain all the dynamics of the CSGL vortices, within the

approximation used to obtain (5.19). From (5.42) we might integrate out the field
Zµ to produce

L′vortex = −JµD
µν
MCSJν, (5.43)

where D
µν
MCS is the MCS propagator.

The MCS propagator is given in equation (2.105), but we will not need this

expression. Instead we insert into (5.43) the current density for one single vortex
moving in a path R(t),

Jµ(x) = qβµδ(2)(r−R(t)), (5.44)

where q = 2πs is the MCS charge. βµ is the 3-velocity of the vortex, β 0 = 1,

β = Ṙ(t). The expression Dµν
MCSJν is then simply the “retarded” MCS potential

Aret
µ , given in equation (2.106). In that equation µ was defined as µ → − 1

µ
, so with

our definition of µ, the potential is

Aν(r) = Iν(µ)− µεµνλ∂
µ
(

I
λ(0)− I

λ(µ)
)

, (5.45)
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where

I
λ(µ) =

∫ ∞

−∞

θ(t − t′ − |r−R(t′)|) cos
(

1
µ

√

(t − t′)2 − |r−R(t′)|2
)

2π
√

(t− t′)2 − |r−R(t′)|2
qβλ(t′)dt′.

(5.46)

Inserting this expression into (5.43), we find

Svortex = −
∫

d3xJν(x)Aret
ν (x) = −

∫

d3xqβν(t)δ(2)(r−R(t))Aret
ν (x)

= S1 + µ (S2(0)− S2(µ)) ,

(5.47)

where

S1 = −q2
∫

d3xβν(t)δ(2)(r−R(t))

×
∫ ∞

−∞

θ(t − t′ − |r−R(t′)|) cos(∆x
µ )

2π∆x
βν(t

′)dt′, (5.48)

S2(µ) = −q2
∫

d3xβν(t)δ(2)(r−R(t))

× εµνλ∂
µ

∫ ∞

−∞

θ(t − t′ − |r−R(t′)|) cos(∆x
µ

)

2π∆x
βλ(t′)dt′, (5.49)

and ∆x is the Lorentz invariant interval between the events (t, r) and (t ′,R(t′)),
∆x =

√

(t − t′)2 − |r−R(t′)|2.

5.5.2 Frequency Dependent Mass

In equation (5.48) we can integrate out the delta function to get

S1 = −q2
∫ ∞

−∞
dt

∫ ∞

−∞
dt′(1− β(t)β(t′))

θ(t− t′ − |R(t)−R(t′)|) cos(∆x
µ )

2π∆x

= −q2
∫ ∞

−∞
du

∫ ∞

−∞
ds(1− β(u)β(u+ s))

θ(s− |R(u+ s) −R(u)|) cos(∆x
µ

)

2π∆x

(5.50)

where we have changed variables to u = t′ and s = t − t′, and where now ∆x =
√

(t− t′)2 − |R(t)−R(t′)|2 =
√

s2 − |R(u+ s) −R(s)|2. The theta function is zero
for |R(u+ s) −R(u)| > s, which corresponds to s < 0 as long as the vortices move

with sub-sonic speed. We therefore integrate s from 0 to ∞, where the theta function
is always unity.
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The Fourier transformation of the classical action S =
∫∞
−∞

1
2Mv2dt is easily

found to be S =
∫∞
−∞

1
2Mω2|r(ω)|2dω. With this in mind, we would like to express

the self-interaction in the form

Sself = Sstatic +

∫ ∞

−∞
dω

1

2
M(ω)ω2|R(ω)|2 + . . . (5.51)

i.e. as an approximation to a free particle, but with a “mass” M(ω) that may depend
on the frequency ω. To achieve this form, we need to approximate the cosine in S1;

cos(
∆x

µ
) = cos(

√

s2 − s2V
2
(u, s)

µ
) ≈ cos(

s

µ
) +

s

2µ
V

2
(u, s) sin(

s

µ
), (5.52)

where V (u, s) = |R(u+s)−R(u)|
s

, the average speed of the vortex between the times u
and u+ s, which is of order β. In this approximation we have assumed that s

µ
� 1

and V (u, s)� 1. The former may be justified since the cosine will fluctuate quickly
whenever this is not the case, and thus the contribution to the integral will vanish.

The latter is just the assumption that the vortex moves slowly.

Using the ‘slow-moving’-assumption, we also approximate the 1
∆x part as

1

∆x
≈ 1

s
(1 +

1

2
V

2
(u, s)), (5.53)

and end up with

S1 = −q2
∫ ∞

−∞
du

∫ ∞

0
ds(1− β(u)β(u+ s))

× 1

2πs

[(

1 +
1

2
V

2
(u, s)

)

cos(
s

µ
) +

s

2µ
V

2
(u, s) sin(

s

µ
)

]

. (5.54)

We will now Fourier transform this expression with respect to u. This will give a
contribution equal to that of a static vortex, which we will ignore for now, and a

contribution proportional to |R(ω)|2. We ignore higher powers of V (u, s) and β.
Some practical properties of the Fourier transform,

∫ ∞

−∞
duβ(u)β(u+ s) =

∫ ∞

−∞
dωeiωsβ(ω)β(−ω) =

∫ ∞

−∞
dω cos(ωs)ω2|R(ω)|2,

(5.55)
∫ ∞

−∞
du|R(u+ s)−R(u)|2 =

∫ ∞

−∞
du
(

|R(u+ s)|2 − 2R(u+ s) ·R(u) + |R(u)|2
)

= 2

∫ ∞

−∞
dω (1− cos(ωs)) |R(ω)|2, (5.56)
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give us

S1 = Sstatic
1 + q2

∫ ∞

−∞

dω

2π

∫ ∞

δ

ds

s

{

cos(ωs) cos(
s

µ
)−

(1− cos(ωs)) cos( s
µ
)

s2ω2

−
(1− cos(ωs)) sin( s

µ
)

µsω2

}

ω2|R(ω)|2

≡ Sstatic
1 + q2

∫ ∞

−∞

dω

2π
M(ω)ω2|R(ω)|2, (5.57)

where we have introduced an ultraviolet cutoff δ to accommodate for the fact that
the vortices are not really point particles. Without this cutoff, the integral for M(ω)

diverges. The cutoff is probably not necessary if we include terms with higher deriva-
tives in the Lagrangian[57].

The quantity M(ω), which is interpreted as a “frequency dependent mass”, can

be computed using the cosine integral function Ci(x) ≡ −
∫∞
x

cos(ξ)
ξ dξ (see appendix

B for properties of the cosine integral):

M(ω) = −ω
2µ2 + 1

4µ2ω2
Ci((ωµ+ 1)

δ

µ
)− ω2µ2 + 1

4µ2ω2
Ci((ωµ− 1)

δ

µ
) +

Ci( δ
µ)

2µ2ω2

+
cos(ωδ) sin( δ

µ
)

2µω2δ
−

sin(ωδ) cos( δ
µ
)

2ωδ
+

cos(ωδ) cos( δ
µ
)

2ω2δ2

−
cos( δ

µ)

2ω2δ2
−

sin( δ
µ)

2µω2δ
. (5.58)

Observe that if we let µ→∞, we end up with the same expression as Arovas and

Freire[57], as one would expect:

lim
µ→∞

M(ω) = −1

2

{

Ci(|ω|δ) +
1− cos(ωδ)

ω2δ2
+
sin(ωδ)

ωδ

}

. (5.59)

The interesting limit, however, is letting ω → 0, i.e. taking the low frequency

limit. To first order in ω, assuming ω � 1
µ
, we get

M →
ω→0

−1

2

(

cos(
δ

µ
) + Ci(

δ

µ
)

)

. (5.60)

This means that the frequency dependent mass of a vortex in CSGL theory has a well
defined low frequency limit, disregarding the cutoff parameter δ. This is in opposition

to the similar case for a superfluid. To calculate the value of M in this limit, one must
either find a value for the cutoff δ, or make a more thorough calculation retaining the
term proportional to (∇B)2 in the Lagrangian (5.18). A natural value for δ would

be the vortex radius, which in these units is

δ = 1. (5.61)
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5.5.3 Frequency Dependent Charge

To compute S2(µ), we need to differentiate the last integral in equation (5.49). One

part of the result will contain a delta function, which will be nonzero at ∆x = 0 only.
It is evident that in this case S2(µ) = S2(0) and so the two contributions from S2 to

S will cancel. Differentiating the rest of the expression is straightforward, using

∂µ∆x =
xµ − x′µ

∆x
, (5.62)

∂µ cos(
∆x

µ
) = − sin(

∆x

µ
)
xµ − x′µ

µ∆x
, (5.63)

we arrive at

S2(µ) = −
∫ ∞

−∞
dt

∫ ∞

−∞
dt′εµνλβ

ν(t)βλ(t′)
θ(t − t′ − |R(t)−R(t′)|)

2π(∆x)2

·
[

1

µ
sin(

∆x

µ
)−

cos(∆x
µ )

∆x

]

(xµ − x′µ). (5.64)

To compute this expression, it is useful to note that

εµνλβ
ν(t)βλ(t′)(xµ − x′µ) = (t− t′)β(t)× β(t′)

+ (β(t′)− β(t))× (R(t)−R(t′)). (5.65)

Inserting this, and doing the same change of variables as in the previous section, we

get

S2(µ) = −
∫ ∞

−∞
du

∫ ∞

0
ds

1

2π(∆x)2

[

1

µ
sin(

∆x

µ
)−

cos(∆x
µ

)

∆x

]

· {sβ(u+ s)× β(u) + [β(u)− β(u+ s)]× [R(u+ s) −R(u)]} . (5.66)

Now we approximate in the same fashion as in the previous section, using

cos(∆x
µ

)

∆x
≈ 1

s
cos(µs) +

V
2
(u, s)

2
[
1

s
cos(

s

µ
) +

1

µ
sin(

s

µ
)] (5.67)

1

µ
sin(

∆x

µ
) ≈ 1

µ
sin(

s

µ
) +

s

2µ2
sV

2
(u, s) cos(

s

µ
), (5.68)

and find

S2(µ) ≈ − 1

2π

∫ ∞

−∞
du

∫ ∞

0
ds

[

1

µ
sin(

s

µ
)− 1

s
cos(

s

µ
)

]

·
{

1

s
β(u+ s) × β(u) +

1

s2
[β(u)− β(u+ s)]× [R(u+ s)−R(u)]

}

. (5.69)
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Proceeding to Fourier transform this expression, we arrive at

S2(µ) ≈ −
∫ ∞

−∞

dω

2π

∫ ∞

0
ds [ωs sin(ωs) + 2(cos(ωs)− 1)]

·
[

sin( s
µ)

µs2
−

cos( s
µ)

s3

]

iωR(ω)×R(ω). (5.70)

It remains to make an interpretation of this term. The interaction term for
a classical particle in an electromagnetic field is L int = Qv · A, where A is the

electromagnetic vector field. If this field is a constant magnetic field, we can use
A = 1

2Bẑ × r, and so the interaction term becomes

LB =
1

2
QBr × v. (5.71)

If we now Fourier transform and let Λ ≡ 1
2QB be a function of the frequency, we find

LB = iωΛ(ω)R(ω) × R(−ω). (5.72)

The interpretation of the term µ[S2(0) − S2(µ)] thus is that the particle (i.e. the

vortex) has a frequency dependent charge, which is contained in the term Λ(ω). It
should be noted that this term appears in the Lagrangian even if we in equation

(5.42) left out the terms where the external field appears.
We now proceed to calculate Λ(ω):

Λ(ω) = µ[λ(ω, µ)− λ(ω, 0))], (5.73)

λ(ω, µ) =

∫ ∞

δ

ds [ωs sin(ωs) + 2(cos(ωs)− 1)]

[

sin( s
µ)

µs2
−

cos( s
µ)

s3

]

= (
2ω

µ
− 3

2µ2
)Ci(|ωµ− 1| δ

µ
)− (

2ω

µ
+

3

2µ2
)Ci(|ωµ+ 1| δ

µ
)

+
3

µ2
Ci(

δ

µ
) +

3

µδ
cos(ωδ) sin(

δ

µ
)− 3

µδ
sin(

δ

µ
)

− 1

δ2
cos(ωδ) cos(

δ

µ
) +

1

δ2
cos(

δ

µ
). (5.74)

The cutoff δ is not necessary when the full expression for Λ(ω) is calculated, because

Λ(ω) is finite as δ → 0:

lim
δ→0

Λ(ω) = 2ω ln

(
∣

∣

∣

∣

ωµ− 1

ωµ+ 1

∣

∣

∣

∣

)

− 3

2µ
ln |ω2µ2 − 1|. (5.75)

In the limit µ→∞, we find that Λ vanishes,

Λ(ω) ≈ −(4 +
3

2
ln(ω2µ2))

1

µ
+O(

1

µ3
), (5.76)
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just as we would expect, since this term does not appear in the Lagrangian when we
start with GL theory without the Chern–Simons term[57]. Expanding Λ(ω) for small
ω, we further arrive at

Λ(ω) = −5

2
µω2 + O(ω3), (5.77)

so the S2 term of the Lagrangian does not contribute in the low frequency limit.

5.5.4 Full Lagrangian

To summarize, we write down the full Lagrangian for a free point vortex which we
have found in this section:

L(ω) = Lstatic +
1

2
M(ω)ω2|R(ω)|2 + Λ(ω)iωR(ω)×R(−ω), (5.78)

M(ω) = −ω
2µ2 + 1

4µ2ω2
Ci((ωµ+ 1)

δ

µ
)− ω2µ2 + 1

4µ2ω2
Ci((ωµ− 1)

δ

µ
) +

Ci( δ
µ
)

2µ2ω2

+
cos(ωδ) sin( δ

µ)

2µω2δ
−

sin(ωδ) cos( δ
µ)

2ωδ
+

cos(ωδ) cos( δ
µ)

2ω2δ2

−
cos( δ

µ
)

2ω2δ2
−

sin( δ
µ
)

2µω2δ
, (5.79)

Λ(ω) = 2ω ln

(
∣

∣

∣

∣

ωµ− 1

ωµ+ 1

∣

∣

∣

∣

)

− 3

2µ
ln |ω2µ2 − 1|. (5.80)

The Lagrangian is written down as a function of the frequency ω rather than the
time t and is thus the Fourier transform of the regular Lagrangian L(t). δ is a cutoff

of the order of the vortex core size, with δ = 1 the natural choice in these units.
Both M(ω) and Λ(ω) have logarithmic singularities 1 at ω = 1

µ
. This behavior

is seen in figure 5.1. In addition, we see in this figure that the mass is occasionally
negative, and for certain values of µ it is even negative in the low frequency limit

ω → 0. It is difficult to interpret this behavior physically, and it might signify that
the approximations we have made is not valid, at least not for all ω.

5.6 Non-Lorentzian Corrections

The Lagrangian (5.18) contains a term proportional to (∇B) 2, which was left out

in the linearized low frequency approximation (5.19). Keeping this term, we end up
with the linearized Lagrangian

L = −1

4
FµνF

µν − JµZ
µ +

1

2µ
εµνσZµ∂νZσ −

1

8
(∇B)2. (5.81)

1note that Ci(x) is singular at x = 0, see appendix B.
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Figure 5.1: Plots of M(ω) and Λ(ω).

In the Ginzburg-Landau case, Arovas and Freire[57] have found that adding this

term makes the vortex propagator converge in the s → 0 limit, so that the cutoff δ
used in the previous section would not be needed. Furthermore, they found that the
frequency dependent mass is strictly positive when including this term. With (5.81),

the “photon” propagator becomes

Dµν =− 4− k2

k2(4− k2)− 4M2
gµν +

4M2

k4[k2(4− k2)− 4M2]
kµkν

+
1

k2(4− k2)− 4M2
εγµ0ελν0k

γkλ +
4M

k2[k2(4− k2)− 4M2]
εµνσik

σ,

(5.82)

where M = 1
µ
. We have not been able to use this propagator to integrate the fields

Zµ out of the Lagrangian.

In dimensional variables, the Lagrangian (5.81) is 2

L = −1

4
FµνF

µν − 1

c
JµZ

µ +
1

2µ
εµνσZµ∂νZσ −

1

8
(ξ∇B)2, (5.83)

where ξ = 1√
λmρ0

= 1
mc and c =

√

λρ0

m is the speed of sound. The field equations

become

∂iE
i − 1

µ
B = ρ, (5.84)

εij∂jB − Ėi − 1

µ
εijE

j − ξ2

µ
εij∂j∇

2B =
1

c
ji. (5.85)

2as can be seen by dividing equation (5.26) by mρ0
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For a point vortex, we have ρ = qδ (2)(r) and j = 0, and by solving the last
equation for E and inserting into the first, we arrive at

E(r) = µ∇B(r)− µξ2

4
∇∇

2B(r), (5.86)

µ2
∇

2B(r)− µ2ξ2

4
(∇2)2B(r)− B(r) = µqδ(2)(r). (5.87)

Using rotational symmetry, the equation for B(r) = B(r) becomes

µ2ξ2r3B′′′′(r) + 2µ2ξ2r2B′′′(r)− µ2(ξ2r+ 4r3)B′′(r)

+ µ2(ξ2 − 4r2)B′(r) + 4r3B(r) = −4µqr3δ(2)(r). (5.88)

Unfortunately, it does not seem to be easy to solve this equation to find the fields

B(r) and E(r). Worse, even if we could solve it, the Lagrangian is no longer Lorentz
invariant, so we could not find the fields for a moving vortex by Lorentz transforming

it. We will therefore leave the subject of non-Lorentzian corrections to the MCS
duality.

5.7 Plane Waves

We will again consider plane wave excitations of the FQHE system. This time we

will look at excitations from a CSGL state where j = 0 and ρ = ρ 0 (i.e. as in the
ground state of the system), but where we will also assume that there is a constant

density of vortices present in the system. In the dual representation, such excitations
of the electrons correspond to excitations from the ground state E = 0 and B = 0.
The plane waves of CSGL theory are represented by electromagnetic waves in MCS

theory, and the vortices by charged point particles, which act as sources for the fields.
Ole Martin Løvvik[34] has studied this system and found a dispersion relation for it.

To study this system we will need an equation for the influence of the electromag-
netic field on the vortices, in addition to the MCS equations (5.20)–(5.22). We will

here make use of the frequency dependent mass and the frequency dependent charge
found in section 5.5. We will initially assume that apart from the interactions with
the MCS fields, the vortices are free. The Lagrangian (5.78) is the Lagrangian for

free vortices. In addition, we may extract the interaction with the MCS fields from
the Lagrangian (5.19). Disregarding for a moment the frequency dependence of M

and Λ, the total Lagrangian becomes

L =
1

2
MV2 + Λr × v + qV · [Z(R) + z(R)]− qZ0(R). (5.89)
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The total set of equations of motion for the system may then be written

∂0B + εij∂iE
j = 0, (5.90)

∂iE
i +

1

µ
(B + µBext − 1) = J0, (5.91)

εij∂jB − ∂0E
i +

1

µ
εijEj = Ji, (5.92)

q[Ei + εijV j(B − 1)] + 2εijV jΛ = M∂0V
i. (5.93)

By looking at equation (5.91), we see that the ground state of the system must

be such that B + µBext − 1 = µJ0. We know that on the middle of a plateau in
the FQHE, Bext = 1

µ
and B = 0 in these units, and there are no vortices. This

corresponds to the relation

Bext =
e

µ
ρ (5.94)

for the original CSGL field. As Bext is increased, we expect the latter relation (5.94)

to continue to hold, so that the change in Bext is absorbed into B and there will still
not be any (free) vortices. However, at some point we expect B to reach a maximum,

and vortices will start to appear. We therefore expect B to be a small constant BC

in the ground state.

We will now assume that E and B oscillates around the ground state, analogous

to the treatment in section 3.2.2:

E = E0e
i(kx−ωt), B = B0e

i(kx−ωt) + BC . (5.95)

We also assume that the vortices in the system are brought into collective oscillations:

J = qJ0e
i(kx−ωt), J0 = qN0e

i(kx−ωt) + NC , (5.96)

where NC is the constant background density of vortices with charge q = 2πs. We
define longitudinal and transverse components of E0 and J0 as:

k · E0 ≡ kE0‖, k · J0 ≡ kJ0‖, (5.97)

k × E0 ≡ kE0⊥, k × J0 ≡ kJ0⊥. (5.98)

Inserting equation (5.90) into the oscillating part of equation (5.91) gives

iωE0‖ +
1

µ
E0⊥ =

ω

k
qN0, (5.99)

while the longitudinal component of equation (5.92) is

iωE0‖ +
1

µ
E0⊥ = qJ0‖. (5.100)
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This shows that

ωN0 = kJ0‖. (5.101)

Substituting B0 from equation (5.90) into the transverse component of equation
(5.92), we find

qJ0⊥ =
i

ω
(ω2 − k2)E0⊥ −

1

µ
E0‖. (5.102)

Since the only charges in this system are the vortices, we have J = NCV. We

insert this into equation (5.93) while assuming that the oscillatory part of B in this
equation may be omitted. This is a valid assumption provided that the following
holds[34]:

|ρ0| � qN, (5.103)
∣

∣

∣

∣

kE2
0⊥

qNω2

(

k2 +
1

µ2
− ω2

)

+
ρ0E0⊥
qNωµ

∣

∣

∣

∣

�
∣

∣

∣

∣

1

ωµ
E0⊥ +

ρ0

k

∣

∣

∣

∣

. (5.104)

We find the following for the longitudinal and transverse component, respectively:

−iωM(ω)J0‖ + bJ0‖ = qNCE0‖ + qJ0⊥(Bc − 1) + 2Λ(ω)J0⊥, (5.105)

−iωM(ω)J0⊥ + bJ0⊥ = qNCE0⊥ − qJ0‖(Bc − 1)− 2Λ(ω)J0‖, (5.106)

where we have now included the ω-dependence of M and Λ explicitly. We have also
included a damping factor bV (ω) on the left hand side of (5.93). Substituting J 0‖
and J0⊥ from equations (5.100) and (5.102) then gives a homogeneous set of linear

equations for E0‖ and E0⊥,

(

A B

C D

)(

E0‖
E0⊥

)

= 0, (5.107)

A = ω2M + ibω − q2NC +
q

µ
BEff , (5.108)

B = − i

µ
(ωM + ib)− iq

ω2 − k2

ω
BEff , (5.109)

C =
i

µ
(ωM + ib) + iqωBEff , (5.110)

D = M(ω2 − k2) + ib
ω2 − k2

ω
− q2NC +

q

µ
BEff , (5.111)

where BEff = BC − 1 + 2
q
Λ(ω).
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which can only be solved if the determinant AD−BC = 0. This gives the wanted
dispersion relation:

k2 = ω2 − 1

µ2

+
q2

µ2

µ2NC(Mω2 + ibω)ω2 +NC(Mω2 + ibω)− µ2q2N 2
Cω

2 + 2µqNCBEffω
2

−(Mω2 + ibω)2 + q2NC(Mω2 + ibω) + q2B2
Effω

2
.

(5.112)

We note about this relation is that if no vortices are present, we end up with the
simple dispersion relation

k2 = ω2 − 1

µ2
, (5.113)

showing that the excitations are massive, with a mass 1
µ
. This is the well known dis-

persion relation we have found before, but without the k4-term. This term is missing
since we have made a long wavelength approximation. This “vacuum” dispersion

relation is independent of the external magnetic field.
The dispersion relation is plotted in figure 5.2, where the density NC of vortices

is gradually increased. At some values of ω, the value of k is seen to grow or decay

very rapidly. These points correspond to divergences in the dispersion relation of
the damping factor b is set to zero. Near these points, there are regions where k

diminishes as ω grows. This phenomenon is called anomalous dispersion.
The points where the undamped system has a divergent dispersion relation may

be regarded as resonance frequencies for the system. From the dispersion relation
(5.112) we can find these points by setting b = 0. The divergent points are then

found where the denominator in (5.112) is zero, i.e. at ω = 0 and

ω =
q2(NCM +B2

Eff )

M2
. (5.114)

At this point, Løvvik found that the MCS theory has a narrow window of propagation.

However, since the mass M and effective magnetic field BEff are dependent on the
frequency, equation (5.114) may be fulfilled at several points. This is what we see in

figure 5.2, where there are two resonance points with an area where plane waves may
propagate between them.

The two separated areas where Re{k} > 0 in figure 5.2c,d may be interpreted

as two different kinds of excitations. One can see that the single type of excitation
for the “vacuum” system with no vortices, splits up into two modes, with the lower

energy one having a higher value of k
ω than the “regular” mode, which has a higher

energy.

In figure 5.3, we have plotted the dispersion relation for the same parameters as
in figure 5.2, except that µ = 25. We see that qualitatively the results are the same,

but one difference is evident: The mass of the lowest lying excitation increases when
the density of vortices is increased before the new type of excitation appears.
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Figure 5.2: Plots of dispersion relation (k(ω)) for µ = 2, b = 0.02 and B C = 0.1, and
a varying density of vortices.

It would be nice if these phenomena could be related to phenomena in the frac-
tional quantum Hall effect. However, there is a question of whether this model is a

good description of the FQHE, and if so which values of µ would be physically rele-
vant. There is also the mentioned problem with the frequency dependent mass M(ω)

being negative. As there seems to be several problems in interpreting our model as
a description of the FQHE, we have chosen to present the results without further

discussion.
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Figure 5.3: Plots of dispersion relation (k(ω)) for µ = 25, b = 0.02 and B C = 0.1,
and a varying density of vortices. Notice that the scale of the vertical axis is different

on the two last plots than on the others.



Chapter 6

Conclusion

In this thesis we have studied some aspects of vortices in the Chern-Simons-Ginzburg-
Landau (CSGL) theory for the fractional quantum Hall effect. The purpose has been

to give a self-contained, comprehensive presentation of the properties of vortices in
the CSGL theory, including results already obtained in the literature as well as our

own results. We have provided some analytical results of CSGL theory, including
how the charge and spin of vortices is given by their topological quantum number,

and the asymptotic shape of the vortices far from the core. We have also reviewed the
properties of the self-dual point of CSGL theory and its implication for the energy of

vortices.

One major goal of the thesis has been to show how the Ginzburg-Landau (GL)
theory for superconductors and superfluids and the Maxwell-Chern-Simons (MCS)

theory for anyons in an electromagnetic field are connected to the Chern-Simons-
Ginzburg-Landau theory. This has been studied both analytically and numerically.

We have shown how the equations for the CSGL theory reduce to those of the GL
theory in a certain limit, and how the MCS theory solution also may be obtained as

a limit of the CSGL theory.

The main focus of the thesis has been the numerical results. We have solved the

CSGL equations for a vortex numerically for a range of the dimensionless parameter,
and shown how the size and energy of a vortex depends on this parameter. We have

also studied the connection between the CSGL theory and the GL and MCS theories
numerically, and found support for our analytical results.

In addition to the pure CSGL theory, we have studied some natural extensions

of the CSGL theory. The first extension we have studied is the addition of a dy-
namical magnetic field. We have shown how the charge is no longer quantized when

the magnetic field is made dynamical. The main study of the extensions has been
numerical. We have shown how the inclusion of a dynamical magnetic field changes

the size, energy and charge of a vortex, and we have found that the self-dual point
of pure CSGL theory extends to a self-dual line.

The second extension we have studied is the extension of the CSGL wave function
to a two-component spinor. We have shown how this extension allows another kind of

95



96 Chapter 6. Conclusion

vortex solutions, known as skyrmions, and studied some properties of these objects.
Again, the main study has been numerical. We have shown how the size and spin of
the skyrmions depend on the effective gyromagnetic ratio, and we have reproduced

qualitatively results found by a different kind of study of a spin-dependent model
for the fractional quantum Hall effect: that the lowest lying excitations for some

parameter values is doubly charged skyrmions. Using our numerical results, we have
obtained a phase diagram for the spin dependent CSGL theory.

The last part of this thesis has been devoted to the duality between the CSGL
theory and the MCS theory. We have made a detailed derivation of the duality

starting from the Lagrangian of CSGL theory. We have also attempted to use this
duality to find a better description of the dynamics of vortices and a dispersion

relation for a system with a gas of free vortices. Unfortunately, the results we have
found have been difficult to interpret, so we have decided to present the results
without attempting to give a full interpretation. We can only conclude that in this

area there is still room for further study.



Appendix A

Notation

A.1 Abbreviations

2DEG Two-dimensional electron gas.

CSGL Chern-Simons-Ginzburg-Landau.

FQHE Fractional quantum Hall effect.

GL Ginzburg-Landau.

GPG Ginzburg-Pitaevskii-Gross.

IQHE Integer quantum Hall effect.

MCS Maxwell-Chern-Simons.

MCSGL Maxwell-Chern-Simons-Ginzburg-Landau.

QHE Quantum Hall effect.

A.2 Symbols

Greek indices (µ, ν, . . .) can have values 0, 1, or 2. Latin indices (i, j . . .) can have
values 1 or 2. Components of 3-vector quantities are written as v µ (contravariant) or

vµ (covariant), where vi = −vi. Components of 2-vectors are written as v i, while the
2-vector it self is written in bold face: v. Where indices are repeated, they are to be

summed.

Aµ(x) Electromagnetic (gauge) field.

aµ(x) Statistical gauge field.

Aµ(x) Total gauge field, Aµ = Aµ + aµ.
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B(x) Magnetic field (physical), B = εij∂iA
j.

b(x) Statistical magnetic field, b = ε ij∂ia
j.

B(x) Total magnetic field, B = B + b.

Dµ Covariant derivative, Dµ = ∂µ + ieAµ.

E Energy.

E(x) Electric field (physical), E i = −∂iA
0 − ∂0A

i.

e Electron charge (e = −|e|).

e(x) Statistical electric field, e i = −∂ia
0 − ∂0a

i.

E(x) Energy density.

E(x) Total electric field, E = E + e.

Fµν Electromagnetic field tensor, Fµν = ∂µAν − ∂νAµ.

f(r) Real part of wave function, f(r) = |φ(r)|.

j(x) Particle current density.

jµ(x) 3-current density.

L Lagrangian functional.

L(x) Lagrangian density, L =
∫

Ld2x.

m Effective electron mass.

p Momentum.

q, Q Charge.

r Coordinate vector.

r Radial coordinate, r = |r|.

t Time coordinate.

v Velocity.

vµ 3-velocity, vµ = (1,v).

xµ Space-time coordinate, xµ = (t, r).

Zµ(x) MCS electromagnetic field (used in chapter 5).

z Complex coordinate, z = x+ iy.
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α(r) α(r) = r[Aθ(r) + aθ(r)].

βµ 3-velocity, βµ = vµ.

γ γ = 1√
1−β2

.

δµ
ν Kronecker-delta: δµ

ν =

{

1 µ = ν
0 µ 6= ν

.

εµνσ Totally antisymmetric tensor: ε012 = 1, εµνσ = ενσµ = −ενµσ

ζ Length scale of exponential decay of vortex, see equation (3.75).

θ Polar coordinate.

κ Dimensionless parameter of MCSGL theory, κ2 = 2λm2

µ0e2 .

λ Parameter of CSGL theory. In section 2.4.4, London penetration depth,

λ =
√

m
µ0q2ρ

.

µ Parameter of CSGL theory and MCS theory.

µ̂ Dimensionless parameter of CSGL theory, µ̂ = mλ
e2 .

ρ Electron density, ρ = φ∗φ (In section 4.2, ρ = φ†φ).

ρij Resistivity tensor, j i = ρijEj.

ρH Hall resistivity, ρH = ρxy.

ρL Longitudinal resistivity, ρL = ρxx.

σij Conductivity tensor, E i = σijjj.

σH Hall conductivity, σH = σxy

σL Longitudinal conductivity, σH = σxx

φ(r) Wave function (bosonic).

χ(r) Asymptotic form of 1− f(r) as r →∞, see section 3.5.3.

ψ(r) Asymptotic form of a0(r), see section 3.5.3.

ψ(r) In section 2.3.4: Destruction operator for electrons

ω(r) Asymptotic form of s− α(r), see section 3.5.3.
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Appendix B

Special Functions

This appendix summarizes some properties of two kinds of special functions used in
the thesis, based on Butkov[58].

B.1 Modified Bessel Functions

The modified Bessel functions are solutions of the equation
[

d2

dx2
+

1

x

d

dx
−
(

1 +
m2

x2

)]

f(x) = 0, (B.1)

where m in general may be and real number, but we will only consider the case where

m is an integer. There are two kinds of modified bessel functions. The modified bessel
functions of the first kind, Im(x), are given by the power series

Im(x) =

∞
∑

k=0

xm+2k

k!(m+ k)!2m+2k
, m = 0,±1,±2, . . . . (B.2)

The functions Im obey the following equations:

Im−1 − Im+1 =
2m

x
Im(x), (B.3)

Im+1 = −m
x
Im(x) +

dIm(x)

dx
, (B.4)

Im−1 =
m

x
Im(x) +

dIm(x)

dx
, (B.5)

d

dx
[xmIm(x)] = xmIm−1(x), (B.6)

d

dx
[x−mIm(x)] = x−mIm+1(x). (B.7)

The asymptotic form of Im(x) as x→∞ is given by

Im(x) =
ex√
2πx

+O(x−
3

2 ). (B.8)
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The modified Bessel functions of the second kind, Km(x), are defined by

Km(x) =
(−1)m

2

[

∂I−µ(x)

∂µ
− ∂Iµ(x)

∂µ

]

µ

= m. (B.9)

These functions have a logarithmic divergence at the origin. They obey the following
equations:

Km−1(x)−Km+1(x) = −2m

x
Km(x), (B.10)

Km+1(x) =
m

x
Km(x)− dKm(x)

dx
, (B.11)

Km−1(x) = −m
x
Km(x)− dKm(x)

dx
, (B.12)

d

dx
[xmKm(x)] = −xmKm−1(x), (B.13)

d

dx
[x−mKm(x)] = −x−mKm+1(x). (B.14)

The asymptotic form is

Km(x) =

√

π

2x
e−x +O(x−

3

2 ). (B.15)

B.2 Sine and Cosine Integral Functions

The sine and cosine integral functions, Si(x) and Ci(x) respectively, are defined in

terms of integrals:

Si(x) ≡
∫ ∞

0

sin(ξ)

ξ
dξ, (B.16)

Ci(x) ≡ −
∫ ∞

x

cos(ξ)

ξ
dξ. (B.17)

While Si(x) vanishes at the origin, the function Ci(x) has a logarithmic singularity[59]:

Ci(x) = γ + ln(x) + O(x2), (B.18)

where γ is Euler’s constant,

γ ≡ lim
n→∞

(

n
∑

i=1

1

i
− ln(n)

)

≈ 0.5772156649 . . . . (B.19)



Appendix C

The Path Integral Method

This appendix provides a concise introduction to the path integral formulation of

quantum mechanics. It is based mainly on Peskin and Schroeder[60] and Shankar[61].

C.1 Path Integrals in Quantum Mechanics

In the 1940s, Richard Feynman invented a completely new formulation of quantum

mechanics. The path integral formulation does not use a wave function or state
vectors. Instead, it provides a way to directly calculate the amplitude for a process

where a particle moves from one position to another, using the classical Lagrange
function of the system. It produces the same results as and is equivalent to the more
well-known Schrödinger and Heisenberg formulations.

The path integral formulation states that to find the amplitude for a process,

calculate a phase factor eiS[x(t)] for each possible path x(t) of the particle, where
S[x(t)] is the classical action for the path. Then sum all these phase factors to get

the (total) amplitude. The amplitude for a process where a particle moves from x i

to xf during a time T may then be written

〈xf | e−iHT |xi〉 =
∑

x(t)

eiS[x(t)] ≡
∫

Dx(t)eiS[x(t)], (C.1)

where we have introduced the path integral measure Dx(t).
To use the above expression, it is necessary to find a way to calculate the functional

integral. The customary way is to discretize in time, reducing the continuous path
x(t) into a set of points x(tk), where tk = ti+kε, k = 0, 1, 2, . . . , N . Letting xk ≡ x(tk,

we then define the measure Dx(t) as

Dx(t) =
dx1dx2 · · ·dxN−1

CN
=

1

C

N−1
∏

k=1

dxk

C
. (C.2)
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The integral over all paths is then reduced to N − 1 integrals over R. The constant
C appearing in (C.2) may in general depend on the “mesh spacing” ε = T

N
. We must

also discretize the action. For a particle in a potential V (x), the discretized action

becomes

S =

∫ xf

xi

dt

(

1

2
mẋ2 − V (x)

)

→
N−1
∑

k=0

[

m

2

(xk+1 − xk)2

ε
− εV

(

xk+1 + xk

2

)]

. (C.3)

We may now calculate the value of the constant C by considering the contribution
to the total amplitude from the last time slice. By (C.1) and (C.2), we have

〈xf | e−iHT |xi〉

=

∫ ∞

−∞

dxN−1

C
exp

[

im
(xf − xN−1)

2

2ε
− iεV

(

xf + xN−1

2

)]

〈xN−1| e−iH(T−ε) |xi〉 .

(C.4)

We may then use the fact that the first term in this expression will tend to a delta

function as ε→ 0, so that we may expand in powers of (xN−1 − xf ):

〈xf | e−iHT |xi〉 =

∫ ∞

−∞

dxN−1

C
exp

[

im
(xf − xN−1)

2

2ε

]

[1− iεV (xf) + · · · ]

·
[

1 + (xN−1 − xf )
∂

∂xf
+

1

2
(xN−1 − xf)2

∂2

∂xf
2

+ · · ·
]

〈xf | e−iH(T−ε) |xi〉 . (C.5)

This integral may be easily evaluated, yielding

〈xf | e−iHT |xi〉 =

(

1

C

√

2πiε

m

)

[

1− iεV (xf ) +
iε

2m

∂2

∂xf
2

+O(ε2)

]

〈xf | e−iH(T−ε) |xi〉 .

(C.6)

In the limit ε → 0, we must then have C =
√

2πiε
m

. Comparing terms of order ε in

the above expression, we then have

i
∂

∂T
〈xf | e−iHT |xi〉 =

[

− 1

2m

∂2

∂xf
2

+ V (xf)

]

〈xf | e−iHT |xi〉 , (C.7)

which is simply the Schrödinger equation. Thus we have justified the claim that the

path integral formulation is equivalent to the Schrödinger formalism.
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C.2 Path Integrals and the Aharonov-Bohm Effect

B = 0

B = 0

Figure 2.5: The Aharonov-
Bohm Effect

In section 2.2.4 we explained the Aharonov-Bohm effect
by stating that particles pick up a phase factor when

moving around a string of flux. This statement is eas-
ily understood using the path integral formalism. For

a particle in an electromagnetic field, the classical La-
grangian is

L =
1

2
mṙ2 + qṙ · A(r)− qφ(r), (C.8)

where m is the mass and q is the charge of the particle.
For a purely magnetic field, the vector field A gives the
magnetic field B by ∇ × A = B, and the potential

φ vanishes. Thus, the contribution to the phase factor for a path r(t) going one
complete turn around the solenoid is

ei∆S = ei # L(r(t))dt = ei∆S0e

$
iq # tf

ti
ṙ % A(r)dt &

= ei∆S0e(iq # A % dr), (C.9)

where ei∆S0 is the contribution to the phase factor for the same path when there is
no magnetic field. The last integral may be evaluated using the theorem of Stokes,

giving

ei∆S = ei∆S0e(iq #
S

d2x
�('

A) = ei∆S0eiqΦ, (C.10)

where S is the area enclosed by the path r(t), and Φ is the flux penetrating this area.
For a setup like the one in figure 2.5, where all the flux is contained in a small area

inaccessible to the particles, all paths circling the flux string once will thus gain the
same additional phase factor eiqΦ relative to the phase they would gain if the flux

string was not there. This means that the total phase factor will have exactly the
same addition.
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Appendix D

Numerical Methods for

Ordinary Differential Equations

This appendix will provide a description of the relaxation method used for numerical

solution of the vortex equations in this thesis. The method used is based on the
method in the book Numerical Recipes in C by William H. Press et.al.[62] and this

introduction is based on that book.

D.1 Differential Equations and Boundary Values

Before we start the discussion about how to solve the differential equations (3.52),

(3.55), and (3.56) numerically, we will review some basic features of systems of dif-
ferential equations and their solutions. This discussion will be limited to ordinary

differential equations (ODEs), e.g. equations where all the unknown functions are
functions of the same variable, which we will call x.

First, we note that all systems of ODEs may be written on the form

F1(y1, . . . , yN ; y′1, . . . , y
′
N ; y′′1 , . . . , y

′′
N ; . . .) = 0

F2(y1, . . . , yN ; y′1, . . . , y
′
N ; y′′1 , . . . , y

′′
N ; . . .) = 0

...

FM (y1, . . . , yN ; y′1, . . . , y
′
N ; y′′1 , . . . , y

′′
N ; . . .) = 0,

(D.1)

where yk ≡ yk(x), y ′k ≡
dyk

dx , etc., and F1 . . .FM are given functions. We also note that
all such systems may be reduced to first-order systems only including a set ỹ1, . . . , ỹÑ

and their first derivatives ỹ ′1, . . . , ỹ
′
Ñ

, simply by defining new functions ỹi = y′j where
necessary. We will also assume that this set of equations may be brought onto the
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form

y′1 = f1(x, y1, y2, . . . , yN)

y′2 = f2(x, y1, y2, . . . , yN)

...

y′N = fN (x, y1, y2, . . . , yN ),

(D.2)

which may be conveniently written on vector form

y′ = f(x,y). (D.3)

In addition to the set of equations (D.3), we will need a set of initial conditions

g(y(xi)) = 0, (D.4)

or a set of boundary conditions

gi(y(xi)) = 0, gf(y(xf)) = 0. (D.5)

Note that the number of equations, the number of unknown functions and the number

of initial conditions or the total number of boundary conditions must be the same.
When the conditions on the solution is given as initial conditions (D.4), the problem

consisting of (D.3) and (D.4) is called an initial value problem. The goal will then
usually be to find a solution on the half-line [x0,∞) or (−∞, x0]. When the problem
is given as (D.3) and (D.5), it is called a two-point boundary value problem, and the

goal will (usually) be to find a solution on the interval between points x i and xf .
There are three questions of particular interest when it comes to differential equa-

tions representing physical systems:
1) Is there a solution to the problem?

2) Is the solution unique?
3) Is the solution stable with respect to the initial conditions?

We will not go into detail on these questions, but we will mention a general
theorem applicable to initial value problems:

Theorem D.1 Let the functions f and ∂f
∂y1

, ∂f
∂y2

, . . . , ∂f
∂yN

be continuous in a region R

defined by xi < x < xf , y
i
1 < y1 < yf

1 , . . . , y
i
N < yN < yf

N and let the point (x0,y(x0))
be in R. Then there is a neighborhood of x0 where there exists a unique solution

y = φ(x) of the system (D.3) with initial conditions (D.4).

Note that the neighborhood where the solution is valid might be very small.
However, if we can find a solution which is continuous in some interval of x, the

theorem guarantees that it is unique.
For two-point boundary value problems, the situation is more complicated, and

it is not possible to say anything in general about the existence and uniqueness of
solutions.
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D.2 Numerical Methods

The basic principle behind all numerical methods for solving differential equations
is to approximate the continuous interval x = [a, b] on which one wants to solve

the equations with a finite set of points (a mesh) {x i}i=0,1,2,... ,M , where x0 = a
and xM = b. The points xi are in the simplest methods equally spaced, so that

xi = a+ i∆x where ∆x = b−a
N−1 .

The very simplest method for integrating an initial value problem is Euler’s

method. It involves approximating derivation with dy
dx →

∆y
∆x , i.e.

dy

dx
= f(x,y) → y(xk+1) = y(xk) + ∆xf(xk) (D.6)

This method illustrates the general theory of most numerical methods for initial value
problems. One starts at one end of the interval, and then integrates towards the other
end. Such a method is not directly applicable to a two point boundary value problem,

where the solution depends on the boundary values in both ends of the interval.
One method for solving a two point boundary value problem is called the “shoot-

ing” method. The principle of this method is to use an iterative method like (D.6)
anyway, guessing the unknown function values at the first boundary point. One may

then compare the actual resulting values of the functions at the second boundary
with the boundary conditions at this point, correct1 the guessed boundary values at

the first point if necessary and repeat this process until sufficient accuracy is reached.
For problems which are very sensitive to the boundary values, “shooting” is not

practical. Such problems will require very accurate “guessing” of the unknown func-
tion values at the first boundary, and will at best result in very slow convergence
towards the solution. The limited precision of computer systems might also have the

result that a sufficiently accurate solution can not be found. We have found that for
the vortex problem of CSGL theory, another method is superior by far, the so-called

relaxation method.
To describe the idea of the relaxation method, we return to the problem of how

to apply Euler’s method (D.6) to a two point boundary value problem. If the set
of differential equations is linear, this is actually a solvable problem. Defining y k ≡
y(xk), (D.6) becomes

yk+1 = yk + ∆xf(xk,yk). (D.7)

Written out for the whole interval, this becomes

y1 = y0 + ∆xf(x0,y0)

y2 = y1 + ∆xf(x1,y1)

...

yM = yM−1 + ∆xf(xM−1,yM−1).

(D.8)

1In practice, a numerical method for finding the root of a function, such as Newton’s method,
would be used to find out how to correct the guessed values
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The boundary conditions are now in y0 and yM . The above set of equations then
consist of MN equations and MN unknowns. This system may be solved with a
matrix method, although if the number of points M is large, we quickly get very

large matrices! Unfortunately, for non-linear equations there is no general method to
obtain an exact solution.

The relaxation method overcomes this problem by considering small deviations
from a set of trial functions {yk} only. If we assume that we have a good approxi-

mation to the solution, {ȳk}, a better approximation yk = ȳk + δyk may be found
by linearizing equation (D.7) in δyk and solving it, which is now easy to do since the

system is linear.

D.3 The Relaxation Method

The relaxation method used to compute the results in this thesis uses a variant of

the Euler scheme (D.7). All function values are evaluated between grid points. This
results in the following scheme:

Ek ≡ yk − yk−1 − (xk − xk−1)f

(

1

2
(xk + xk−1),

1

2
(yk + yk−1

)

= 0,

k = 1, 2, . . . ,M − 1. (D.9)

These M − 1 equations together with the boundary conditions

E0 ≡ gi(y0) = 0 (D.10)

EM ≡ gf(YM) = 0 (D.11)

defines our numerical problem. The vectors E0 and EM have only ni and nf com-
ponents not identical to zero, respectively, where ni is the number of boundary con-

ditions at the first point and nf is the number of boundary conditions at the last
point.

As mentioned, we will attempt to find a solution to this problem by considering

small deviations from a trial function ȳk. If we assume that ȳk is a good approx-
imation to the solution of the problem, we may expand the functions Ek(yk,yk−1)

by

Ek(yk,yk−1) = Ek(ȳk + ∆yk, ȳk−1 + ∆yk−1)

≈ Ek(ȳk, ȳk−1) +

N
∑

n=1

∂Ek

∂yn,k−1
∆yn,k−1 +

N
∑

n=1

∂Ek

∂yn,k
∆yn,k, (D.12)

where ∆yk ≡ yk−ȳk, and yk is the true solution to the problem. Since Ek(yk,yk−1) =
0, for each interior point xk, k = 1, . . . ,M we thus have the equation

N
∑

n=1

Sj,n∆yn,k−1 +

2N
∑

n=N+1

Sj,n∆yn−N,k = −Ej,k, j = 1, 2, . . . , N, (D.13)
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where (Sj,n) is an N × 2N matrix for each k,

Sj,n ≡
{

∂Ej,k

∂yn,k−1
, n = 1, 2, . . . , N

∂Ej,k

∂yn−N,k−1
, n = N + 1, N + 2, . . . , 2N

. (D.14)

At the boundary points, similar equations may be found. At the first point, we have

N
∑

n=1

Sj,n∆yn,0 = −Ej,0, j = nf + 1, nf + 2, . . . , NSj,n ≡
∂Ej,0

∂yn,0
, (D.15)

and at the last point we have

N
∑

n=1

Sj,n∆yn,M = −Ej,M , j = 1, 2, . . . , nfSj,n ≡
∂Ej,M+1

∂yn,M+1
. (D.16)

Note that for technical reasons, the matrix (S j,n) at the first boundary is defined only

for the ni values of j from nf + 1 to N (recall that the total number of boundary
conditions, ni + nf equals the number of equations N .)

The matrices (Sj,n) at each mesh point k may now be put together in one huge
NM ×NM matrix S which obeys the equation

S∆y = −E, (D.17)

and where the vectors y and E are given by

y = (y0,y1, . . . ,yM) (D.18)

E = (E0,E1, . . . ,EM). (D.19)

Equation (D.17) may be solved by Gaussian elimination. Since the matrix has a

special structure where only elements close to the diagonal are non-zero, an optimized
Gaussian elimination procedure may be used, but we will not enter the technical

details here.
The procedure of solving equation (D.17) for ∆y is repeated until the accuracy

of the solution is adequate.
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