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Introduction 
 

 

In this paper we will prove Clifford chain theorem for general lines in the plane by using real 

cross ratio lemma. We will then discuss the Clifford chain theorem for degenerate lines and 

will obtain 6 types of Clifford figures with examples. We will also find that the Clifford chain 

theorem fails for some cases and we will show some examples. At the end we will obtain 

three similar chain theorems for circles and planes by applying Clifford chain theorem for 

general lines in the plane under the transformations of stereographic projection and circle 

inversion. These three chain theorems are  

(1):  chain theorem for general circles on the sphere, 

(2):  chain theorem for general circles in the plane and  

(3):  chain theorem for general planes in the space. 

We will also prove Miquel's pentagon theorem by applying Clifford chain theorem for four 

general lines. 

 

In 1871, W. K. Clifford announced a series of theorems which we call Clifford line chains. 

Two straight lines determine a point, which is the intersection point. Three straight lines 

determine a circle, which is the circumcircle of the triangle formed by the three lines. In a 4 

lines case, the four circumcircles, of the four triangles formed by the four lines taking three at 

each time, pass through a point, the Wallace or focal point of the 4 lines. In a 5 lines case, the 

five Wallace points obtained by omitting in turn each one of the five lines lie on a circle, 

which we call the Clifford circle of the 5 lines. In a 6 lines case, the six Clifford circles 

obtained by omitting in turn each one of the 6 lines pass through a point, which we call the 

Clifford point of the 6 lines. And so on, so that in a 2n lines case, the 2n Clifford circles 

obtained by omitting in turn each one of the 2n lines, pass through the Clifford point of the 2n 

lines; while in a 2n+1 lines case, the 2n+1 Clifford points obtained by omitting in turn each 

one of the 2n+1 lines, lie on the Clifford circle of the 2n+1 lines. 

 

We will classify sets of lines in the Euclidean plane into two groups, general lines and  

degenerate lines. A set of lines are general, if no two lines are parallel and no three lines go 

through a same point. A set of lines are degenerate, if at least two lines are parallel or three 

lines go through a same point. First we are going to discuss the number of intersection points 

for a set of general lines in the chapter 1.  We will give a very detailed proof of Clifford line-

chain theorem inductively by using the real cross ratio lemma in chapter 2. In chapter 3, we 
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are going to investigate the chain theorem for sets of degenerate lines and we will find that it 

holds for some cases and fails for some others. In chapter 4, we will find 6 types of Clifford 

figures with examples including some failures of the theorems. In chapter 5, we are going to 

prove the circle-chain theorem on the sphere by applying Clifford line-chain theorem under 

the stereographic projection. In chapter 6, we will obtain another two chain theorems and 

Miquel's pentagon theorem by using the previous two chain theorems under some 

transformations. The first chain theorem is about circles passing through a same point in the 

plane and the second chain theorem is about planes passing through a same point in the space. 

 

The circles in the chain theorems as Clifford figures may have different forms. Consider the 

equation of a circle in the Euclidean plane as 

 

 

 

 If    becomes  , which expresses a line. 

 

 If  then we may write  in the following form 

 

 

 

  If , then  expresses a point . 

 

          If , then  expresses an ordinary circle with centre at     

                        

                  and radius . 

 

Because of the reasons above, we may classify circles into three different kinds, line-circle 

denoted by , point-circle denoted by  ( when it is a point at infinity, denoted by ) and 

ordinary circle by . We may meet different circles when we deal with chain theorems in 

this paper. We will use these three symbols to refer to different forms of circles for simplicity. 
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Chapter 1  

 

 

Intersection points of general lines in the plane 

 

 

 

The intersection points of lines are playing important rules in the Clifford chain theorems. In 

order to investigate the chain theorem for general lines in the plane, we need to know how 

many intersection points the lines define. We may differentiate sets of lines in the plane into 

two kinds, general lines and degenerate lines. In this chapter we are going to make this more 

precise in terms of the number of intersection points. 

 

Lemma 1.1. Two general lines have an intersection point. 

  

Lemma 1.2. Three general lines have three intersection points. 

 

Proposition: Four general lines have six intersection points. 

 

Proof: 

Given four general lines  , ,  and . By Lemma 1.2.,  , ,  have 3 intersection 

points and    meets each one of   , ,  once. Therefore, four lines have   

intersection points. 
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In the same manner, we may formulate the number of intersection points for general lines in 

the following table. All the lines in the table are general lines. 

 

 

 

number 

of lines 

a line with the rest of 

the lines  

 sample graph  Number of intersection points 

              

1 

a line with 0 lines 

 

       0 

               

2 

a line with 1 line 

 

   

              

3 

a line with 2 lines 

 

   

               

4 

a line with 3 lines 

 

   

               

5 

a line with 4 lines 

 

   

         ... .

.. 

... ... ... ... 

 

... ... 

      n                 a line with n-1 lines  

 

 

 

 

 

 

Theorem: n general lines have   intersection points. 

 

Proof: 
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If  , then  . It is true. 

If  , then  . It is true. 

Assume that it is true for  , i.e., the number of intersection points is  . We 

need to show that it is true for  .  We take away one line from the set of   

lines and consider the rest  lines in the plane. Then from the assumption,   

intersection points are defined by the  lines. Now, we put the line we took away into 

consideration, and get  more intersection points, one intersection point for each line of the  

 lines with the line.  Hence, when  , the number of intersection points is  

,  and it is true. Therefore, by the mathematics induction, 

the theorem is true for all  . 

 

Remark: For  general lines in the plane, there are exactly   intersection points. 

                For  degenerate lines in the plane, there are fewer intersection points than 

                .   
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Chapter 2 

 

 

Clifford chain theorem for general lines in the plane 
 

 

We are going to state the Clifford chain theorem for general lines in the plane and prove it in 

detail in this chapter. All the lines we are going to consider in this chapter are general lines. 

We will use real cross ratio lemma to prove it in the manner of  mathematical induction. 

However, we may also use Simson's theorem to prove Clifford chain theorem for 4 general 

lines. 

 

Lemma 2.1. Two general lines determine a point, which is the intersection point of the two 

                      lines. 

 

 

 

 

 

 

 

 is the point defined by  ,  

 

Lemma 2.2.Three general lines determine a circle, which is the circumcircle of the triangle 

                     formed by the three lines ( which is the circle through the three intersection 

                     points defined by the three lines).  

 

 

 

 

 

 

 

 

 

 

 

 

 
circle  is defined by the three lines 
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We are going to use the Simson’s theorem to prove theorem 2.1.. 

 

Simson's Theorem
1
: Given   and a point , let    be the feet of the 

 

                                   perpendiculars from the point  to (the extensions of) the sides 

                                   ,  respectively. Then the points   are collinear if and  

                                   only if  is on the circumcircle of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 is on the circumcircle of  

 

 

Proof:   

 

Assume that  are collinear, need to prove that  are concyclic.  

 It is enough to show 

                                 . 

Since  and  are the feet on   and  , we have   and so  

                                                 
1
 See theorem 2.5.1. in page 77, Complex Numbers & Geometry, by Liang-shin Han. The 

proof we give in this paper is different from the one in this book. 
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   are concyclic and hence 

. 

From  and  we know that we only need to show 

. 

Since 

     

, 

We may only need to show . 

Since  are concyclic and   are collinear, we obtain that 

                                                       . 

Since  and  are the feet on   and  , we have  ,  and so  

   are concyclic and hence 

. 

From  and  we get  , hence   are concyclic.  

 

 

Suppose    are  concyclic, we need to prove that    are collinear.  

Since    and only need to show 

. 

Since  and  are the feet on   and  , we have   and so  

   are concyclic and hence 

. 

Since  and  are the feet on   and  , we have    and so  

   are concyclic and hence 

. 

From  ,  and  we know that we only need to show 

. 

Since                

 

and    ( since   are  concyclic), 

we obtain           . 

Where   , 

   , 
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i.e.,       . 

From  and  we know that we only need to show 

. 

,  since   are  concyclic and 

,  since   are  concyclic.  

So we obtain , and get that    are collinear. 

▄ 

 

 

 

 

Theorem 2.1. Four general lines determine a point, which is the common point of the four  

                        circles each defined by three lines. 

 

Now we are going to prove theorem 2.1. by using Simson's Theorem. 

Four lines determine a point, which means that each three of the lines determine a circle by 

lemma 2.2. and thus there are four such circles. These four circles intersect each other at two 

points, one of them is a common point of two lines and the other does not lie on any line, we 

will show that this point lies on all the four circles and thus is the required point. 

 

Proof: 

Let     be the four general lines. Let   and   the circle 

through  ,  ,  . Let  ,  ,  ,  ,  ,  . 

We consider two circles  and . They have two common points and one of them is 

 and we denote the other by . 

Let  X, Y, Z be the feet of perpendiculars from P to the sides BD, BF and DF. Since 

  ,  we get X, Y, and Z are collinear by Simson's Theorem. 

Let W be the perpendicular from  to the side AC. Since X, Y are the feet of 

perpendiculars form  to the sides CB and AB of the triangle ∆ABC, and 

  . We get X, Y and W are collinear by Simson's Theorem. Hence,  X, Y, Z 

and W are collinear. 
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Consider the triangle ∆AEF, since the feet W, Z, Y are collinear, we get   , by 

Simson's Theorem. Similarly, in  the triangle ∆CDE, the feet X, Z, W are collinear, we obtain 

that  by Simson's Theorem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 is the point determined by the four general lines 

 

 

Hence,  is the intersection point of the four circles, determined by the four triangles 

each formed by three lines of the four lines. Therefore,  is the point determined by the 

four general lines. We may state this as  
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. 

▄ 

 

 

Cross ratio
1
 

Let , ,  be three complex numbers. Then the complex number, in polar form  and 

defined as the quotient 

                                                     =  

has modulus     and argument  . 

Let , ,  be four complex numbers, no three of which are equal. Then their cross ratio is 

defined to be the quotient 

      

 

The argument of the cross ratio  is 

         

 

                                 

                                

 

Real cross ratio theorem
2
: The cross ratio  is a real number if and only if the four  

                                              points , ,  are concyclic or collinear. 

 

Proof: 

Let , , we have two cases when the points are not collinear.  

The first case is that where   lie on the same side of   and we have 

 

                                    

  

  

                                                 
1
 See 4.9 Cross Ratios, page 120, Geometry, Roger Fenn. 

2
 See The real cross ratio theorem, page 121, Geometry, Roger Fenn. This proof is different from the book, 

where might be some problem. 
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                                         lie on the same side of  

 

 

In the second case where   do not lie on the same side of  and we have 

 

                                    

  

 

 

 

 

 

 

 

 

 

 

 

  do not lie on the same side of  

 

 

The cross ratio  is a real number if and only if  is zero or . 

That is either , i.e.  or   when the points are not collinear and this is 

precisely the condition that they lie on a circle. 

▄ 
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Real Cross ratio Lemma
1
:  Consider four circles, . Let  meet in the 

                                              points  ; let  meet in ; let  meet in 

                                              and let   meet in . Then the points 

                                               are concyclic
2
 if and only if the points 

                                               are concyclic or collinear. 

 

Proof: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 are concyclic  

 

 

Consider the cross ratios 

                         ,  

       ,  

  

                                                 
1
 See the application of the real cross ratio theorem at the bottom of the page 121, Geometry, Roger Fenn. 

2
 In accordance with the introduction in the beginning of paper, by saying some points are concyclic we mean 

that they lie on an ordinary circle or  a line, since a line can be considered as a circle. 
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Using real cross ratio theorem we know that all four are real because the corresponding points 

all lie on circles.  

   lie on       lie on  ;  

   lie on  ;     lie on  . 

Let   and .  

The product 

 

 

 

 

 

 

 

 

 

 

  

 

is therefore real. It follows that  is real if and only if  is real. The result now follows by the 

real cross ratio theorem. 

▄ 

 

 

 

Another Proof of theorem 2.1.:  

 

Proof: 

Let     be four general lines. Let    be the intersection of the lines   and  . 

Let    be the circle through ,  and  . Take three lines each time and we get four  
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 is the point defined by the four general lines  

 

 

 

circles  , ,  and   by the lemma 2.2.. Only need to show that these four 

circles pass through a same point, . 

 

                               

                                   

                                

                        

 

Where    is the intersection point (other than ) of circles  and .  

We have  , 

 and thus    a circle by the real cross ratio lemma.  

Since    we get  , i.e.,   

. We only need to show . 
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We have  , 

and thus    a circle by the real cross ratio lemma. 

Since  , we get  .  

▄ 

 

Theorem 2.2. n general lines determine a circle if  is odd and a point if  is even. When   

                       is odd the circle goes through the  points each defined by  lines and 

                       when   is even the point is the common point of the  circels each defined by 

                        lines. 

 

Proof: 

 

We are going to use mathematical induction to prove this.  

It is true for  , which means that two lines define a point, three lines define a circle 

and four lines define a point, and on one hand the circle goes through the three points each 

defined by two lines and on the other hand it contains the point defined by the four lines. 

 

Suppose as inductive hypothesis that for odd number smaller than n the lines define a circle 

and for even number smaller than n the lines define a point. Assume that any such circle, 

defined by  lines, goes through  points each defined by  lines and 

contains the point defined by  lines, the original   lines with one 

added. Assume that any such point, defined by  lines, is a common point of   

circles each defined by  lines and lies on the circle defined by  lines, the 

original  lines with one added. 

 

(1): We need to show that   general lines determine a circle when  is odd, and this circle 

       passes through the  points each defined by  general lines. 
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Suppose we are given  general lines , we take  lines each time and we 

obtain  points by the hypothesis, 

 

                                                       . 

 

We claim that these  points are concyclic and we will finish the proof of (1) in  steps 

by using the cross ratio lemma in each step. In the first step, we prove four points lie on a 

circle,  , and then from the second step we prove each one of the remaining points lies 

on the same circle in each step. We may show  lies on  in the second step, 

 lies on  in the third step,   lies on  in the fourth step and so on 

 lies on  in the last step.  

 

Step 1: 

 

In order to use the lemma, we need to find four circles such that they intersect in pairs and one 

set of the intersections are from the given  points and the others are concyclic. 

Choose four points related to a circle, say, 

 

    

  

which are related to  (indices ).  
 

For , we have 

  

                      

 

by the assumption. We choose any two circles related to  , here we choose the first 

two circles   and from the hypothesis we get  

   

                             

 

Where  and  are the two intersections of  and  

. Take the second circle  , from the hypothesis there are 
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only two points  and   among those points the circle goes 

through and associated with indices ,   has already chosen, so 

 is the only choice. 

Now find a point from the given four points  

 , which lies on 

 and associated with indices ,  is the only 

choice, since  has already chosen. In the case of the next circle, the  indices 

must come from  and   of them must be , so 

it must be   , and we have 

 

                            

 

In the same manner we have 

 

                         

and  

                             

 

Where  

   

 

from the hypothesis, hence by the real cross ratio lemma, we have 

 

. 

 

Step 2: 

 

In order to show that    is on the defined circle    passing through  

  

 ,  
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we need to find four points from the given n points, which associated with indices differ from 

, say, , the only one choice is  

. 

 

From  

  , 

we choose the first two circles associated with  and in the same way we get 

 

                                              

                         

                                                      

                                                   

 

Where 

  ,  

from the hypothesis, hence by the real cross ratio lemma, we have 

       . 

Since  ,  so . 

 

 

all the indices related indices the rest four indices 

 

1 2 ...(n-4) (n-3)(n-2)(n-1)n 

   

  1 2 ... (n-4) 

 

(n-3) 

 

(n-2) 

 

(n-1) 

 

 n 

 

1 2 ... (n-3)(n-2)(n-1)n 

     

2 3 ... (n-3) 

    

1 

  

(n-2) 

 

(n-1) 

  

n 

1 2 3...(n-2)(n-1)n 3...(n-2)  1  2  n-1 n 

1 2 3 4...(n-1)n 4...(n-1)  1  2  3  n 
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1 2 3 4 5...n 5...n  1  2  3  4 

                   ... ...           ... ...    ...     ...    ...   ...  

step i 

12...(i-5)(i-4)(i-3)(i-2)(i-1)i(i+1)...n 

  

  12...(i-5)i(i+1)...n 

 

 (i-4)  

 

(i-3)    

 

(i-2)  

  

(i-1) 

                  ... ...           ... ...    ...   ...  ...     ...  

step n-3 

1...(n-8)(n-7)(n-6)(n-5)(n-4) (n-3)...n 

   

1...(n-8) (n-3)...n 

 

(n-7) 

 

(n-6) 

 

(n-5) 

 

(n-4) 

 

 

This table helps us to find the four circles and eight points in each step. For example, the 

second row is correspond to the second step, where the related indices are  and 

the rest are  , and we may get the four circles and eight points by 

substituting these two things into the first step with the correspondence between the two steps 

in the table and so on for the rest of the steps. 

 

Step i: 

 

                                        

                        

                   

                       

 

The four points on the right side are on the circle   , hence the four points on the 

left side are concyclic and we know that three of the points on the left come from the left side 

of the step above and so this circle is , and we have 

 . 

 

The last step, step n-3 
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Where the four points on the right side are on the circle   by the hypothesis, 

the four points on the left are concyclic by the cross ratio lemma, hence 

 since the remaining three points on the left come from the left side of the step above 

and we know that they lie on so .  

 

We conclude from all the n-3 steps above that all the n points   

                      , i.e., it is true for odd 

number n, therefore, by mathematical induction the statement is true for all odd number. 

 

(2): We need to show that   general lines determine a point when  is even, and this point is  

       the common point of  the  circles each defined by  general lines. 

 

Suppose we are given  lines , we take  lines each time and we obtain   

circles  by the hypothesis. 

We claim that these  circles meet at a point and we need  steps to finish the proof of (2) 

by using the cross ratio lemma in each step. In the first step, we prove the first three circles, 

 meet at a point, denote , and from the second 

step we prove each one of the remaining circles pass through   in each step. We may 

show  in the second step,  in the third step, 

  in the fourth step and so on  in the last step. We could get 

four circles and eight points for each step from step above by using the correspondence in 

following table, however, the last step has a different pattern. 
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all the index related indices the rest four indices 

 

1 2 3 4 ... (n-1) n 

   

  4 ... (n-1) 

 

  1 

 

  2 

 

  3 

 

 n 

 

1 2 3 4 5... (n-1) n 

     

  3 5 ... (n-1) 

 

  1 

 

  2 

 

  4 

 

 n 

                   

 1 2 3 4 5 6 ... (n-1) n 

 

        

   3 4 6 ... (n-1) 

 

    

   1 

 

    

  2 

 

   

  5 

 

  

 n 

 

... ... ... ... ...  ...  ...  ...  

  step i 

1 2  3 ...(i+1) (i+2) (i+3) ... (n-1)n 

  

3 ...(i+1)(i+3) ... 

 (n-1) 

 

    1  

 

  2    

 

i+2  

  

  n 

                  ... ...           ... ...    ...   ...  ...     ...  

  step (n-3) 

1 2 3 ... (n-2) (n-1) n 

 

   

3 ... (n-2) 

 

1 

 

2 

 

 (n-1) 

 

 n 

step (n-2), the last step 

1 2 3 ...  (n-3) (n-2) (n-1) n 

 

 

3 ... (n-3) (n-1) 

 

1 

 

2 

 

(n-2) 

 

n 

 

 

Step1: 

 

We have the following by the hypothesis 

 

                                                

                              

                                              

                                                        

 

 

The four points on the right side are on the circle   from the hypothesis, hence the 

four points on the left side are concyclic by the cross ratio theorem.  

Since                                       and  



25 

 

 25 

 

we get 

                                            . 

 

Step 2:  

 

We have the following by the hypothesis 

 

                                                   

                               

                                                 

                                                               

 

The four points on the right side are on the circle   from the hypothesis, hence the 

four points on the left side are concyclic by the cross ratio theorem.  

Since                                      

 

we get 

                                            . 

  

Step i: 

 

We have the following by the hypothesis 

 

                                           

         

                                       

                                                                                      

 

The four points on the right side are on the circle   from the hypothesis, hence the 

four points on the left side are concyclic by the cross ratio theorem.  
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Since                                      

 

we get 

                                            . 

 

Step n-3: 

 

We have the following by the hypothesis 

 

                                               

                                        

                                         

                                                            

 

The four points on the right side lie on the circle   from the hypothesis, hence the 

four points on the left side are concyclic by the cross ratio theorem.  

Since                                      

 

we get 

                                            . 

 

 

The last step, step n-2: 
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The four points on the right side lie on the circle   from the hypothesis, hence 

the four points on the left side are concyclic by the cross ratio theorem.  

Since                                      

 

we get 

                                            . 

We conclude from all the n-2 steps above that all the n circles   

                    ,  

i.e., it is true for even number n, therefore, by mathematical induction the statement is true for 

all even numbers. 

 

To summarize, this theorem is true for 2,3,4 general lines and we proved that it is true for odd 

number of general lines in (1) and even number of general lines in (2) based on the 

assumption, therefore, by mathematical induction, it is true for any number of general lines.  

▄ 
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Chapter 3.  

 

 

Clifford chain theorem for degenerate lines in the plane 

 
 

In this chapter, we are going to investigate Clifford chain theorem in terms of degenerate sets 

of lines. In section 1, we will obtain the chain theorem for n lines where 2 lines are parallel 

and the rest are general. However, the theorem fails when more than 2 lines are parallel in a 

set of lines in section 2. In section 3, we will also find that the chain theorem holds for n lines 

where at least 3 lines are concurrent and the rest are general. In order to examine whether the 

n lines determine a point or circle, we put them in the real projective plane for simplicity. The 

model we choose here for the real projective plane is the extended Euclidean plane with a line 

at infinity, .  

 

 

                               1. Two lines parallel and the rest in general position 

 

 

In this section, we will obtain the chain theorem for n lines where 2 lines are parallel and the 

rest are general. We will also notice that the result remains the same if we just take the 2 

parallel lines away from our consideration.  

 

Now we are going to extend the real plane into the real projective plane by adding a point at 

infinity to each real line and all the points at infinity lie on the line at infinity . In doing so 

we may consider a line in the real projective plane as a close curve, for example, if  is a 

line in the real plane then   is the corresponding line in projective plane, where  is 

the point at infinity on the direction of line  . Now we may say that parallel lines intersect 

at a point which lies on the line at infinity. The point at which the parallel lines intersect 

depends only on the slop of the lines, i.e. all parallel lines have a common point on . 

 

There is no intersection for two parallel lines in the real plane; however, they have an 

intersection point at infinity in the real projective plane. Consider two lines,  in general 
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position then they have one intersection point . If we pull  gradually into the distance 

in the plane, what we get is that when  goes to infinity the angle formed by  goes 

to zero and the lines tend to be parallel. We say that they have an intersection point 

 . We may say that two parallel lines determine a point, which is the point at infinity on 

the direction of the two lines. In an other word,   and  are those two 

corresponding projective lines, where  , since these two lines have the same slop and 

this point is the intersection point of these two projective lines and may be denoted by . 

We say two parallel lines determine a point, which is the point at infinity on the direction of 

the two lines. 

 

 
1.1.  one general line and two parallel lines 

 

Let    and  be a general line. Now we take two lines each time and we get three 

intersection points in the real projective plane, ,  and  , where  . We 

say that there is a degenerate circle, , passing through these three points.  is a 

circle of the form   . In the projective plane, we may say  goes along  and passes 

the infinity point  on the direction of  and . We denote this circle  

.   

 

Lemma 1.1.  Three lines, two parallel and one general, define a circle, this circle is the union 

                       of the general line and the line at infinity. 

 

1.2. Two general lines and two parallel lines 

 

Let   and  ,  be general. We take three lines each time and by doing so we can 

reduce the problem into situations we already discussed. 

 

              ,  define a circle form of   , , by the lemma 1.1. 

              ,  define a circle form of   ,  , by the lemma 1.1. 

  ,  define a circle form of   ,  , by chapter 2 
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  ,  define a circle form of   ,  , by chapter 2 

and  

 

 

this is the point defined by the four lines and we denote as . 

 

Lemma 1.2. Four lines, two parallel and two general, define a point, this point is the  

                     intersection point of the two general lines, i.e., the point defined by the two  

                     general lines. 

 

1.3. Three general lines and two parallel lines 

 

Lemma 1.3.  Five lines, two parallel and three general, define a circle which is the circle  

                      defined by the three general lines. 

 

Proof: 

Given   and ,  general. We take four lines each time  

 

               ,     define a point  , by the lemma 1.2. 

               ,     define a point  , by the lemma 1.2. 

               ,     define a point  , by the lemma 1.2. 

               ,     define a point  , by chapter 2 

               ,     define a point  , by chapter 2 

 

Since , ,  define a circle  and  ,  lie on  by chapter 2. All 

the five points each determined by four lines lie on the circle  ,  which is the circle 

determined by the three general. We may consider this circle is determined by the five lines 

and denote . 

▄ 

 

1.4. Four general lines and two parallel lines 
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Lemma 1.4.  Six lines, two parallel and four general, define a point which is the point  

                      determined by those four general lines. 

 

Proof: 

 

Given   and ,  general. We take five lines each time and use the 

lemma 1.3. we get 

 

 

               ,     define a circle    

               ,     define a circle   

               ,      define a circle   

               ,     define a circle   

 

And from chapter 2 we get 

 

                ,     define a circle   

                ,     define a circle   

 

Need to show these six circles intersect at a point.  

Since 

 

 

and      by chapter 2,  is the point we need and it is also 

the point defiend by the four general lines. We define  .   

▄ 

                               

In the same manner, we will get the same result for n lines where 2 lines are parallel.  

 

Theorem 3.1. n lines, where 2 lines are parallel and n-2 lines are general, determine a point 

                       when n is even and a circle when n is odd.  This point is the point defined by 

                       those general lines and this circle is the circle defined by those general lines. 
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Proof:  

 

We are going to prove this by using the mathematical induction. 

It is true for n=3,4,5,6 by previous lemmas. 

We assume that it is true for n=2m and n=2m+1, i.e., n=2m lines with  2 parallel lines and the 

rest are general define a point, which is the point defined by those general lines and n=2m+1 

lines with 2 parallel lines the rest general define a circle, which is the circle defined by those 

general lines.  

 

(1) Need to prove that it is true when n = 2(m+1) = 2m+2.  

 

Given   and ,  general. We take 2(m+1)-1=2m+1 lines each time 

and use the assumption and chapter 2, we obtain 2(m+1) circles 

 

                                                      

                                                    

                                                           ...             ... 

 

and 

                                                       

 

                                  

It is enough to show these 2(m+1) circles meet at a point.  

Since 

 

 

and       by chapter 2, 

 is the point we need and it is also the point defined by the 2m general lines. We 

define  .   
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 (2) Need to prove that it is true when n=2(m+1)+1=2m+3. 

 

Given   and ,  general. We take 2m+2 lines each time and use the 

assumption and chapter 2, we obtain 2m+3 points 

 

                                                      

                                                      

                                                           ...             ... 

 

and  

                                                       

 

                                  

It is enough to show these 2m+3 points lie on  a same circle.  

Since 

 

 

and      by chapter 2, 

 is the circle we need and it is also the circle defined by the 2m+1 general lines. 

We define  .   

By the mathematics induction, the statement is true. 

 

▄ 

                                

  

 

2. Three lines parallel and the rest in general position 

 

 

In this section, we will obtain that the chain theorem fails for any set of lines whith more than 

five lines where three lines are parallel and the rest are general.  

 

There is no intersection for two parallel lines in the real plane; however, they have an 

intersection point at infinity in the projective plane.  
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Let , from the two-parallel-line case in section 1 we get three intersection 

points  

.  

Hence,  define a point  at infinity, or may say that they defined a circle of the 

form    and write .  

 

2.1. One general line and three parallel lines 

 

Given    and   general. From the two-parallele-line case in section 1 we get  

      , , , 

and             , from the above discussion. 

These four circles intersect at  , which may be considered as the point determined by the 

four lines and we denote . 

 

Lemma 2.1. Four lines, three parallel and one general, determine a point which is the point at 

                     infinity on the direction of those parallel lines. 

 

2.2. Two general lines and three parallel lines 

 

Given  and two general lines , . We take four lines each time 

  

               ,     define a point  , by the lemma 2.1. 

               ,     define a point  , by the lemma 2.1. 

               ,     define a point  , by the lemma 1.2. 

               ,     define a point  , by the lemma 1.2. 

               ,     define a point  , by the lemma 1.2. 

 

Where  is a point in the plane and   is the point at infinity on the direction of . We 

need these five lines define a circle of some form in order to hold the chain theorem. Now we 

have two points, , defined by these five lines. There are two ways to define a circle 
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passing through , and these two circles are the form of   in the plane. The first one 

is the line passing through   and parallel to , and the second one could be the union of 

and any one of the three parallel lines. However, by doing so there is no point is defined 

by a set of six lines where three lines are parallel. For such six lines, we may have three line-

circles and one ordinary circle and they do not meet at a point. Therefore, the chain theorem 

fails for any set of lines with more than five lines and three lines parallel.  

 
3. m lines concurrent and the rest in general position 

 

 

In this section, we will obtain the chain theorem for  lines where  ( ) lines are 

concurrent and the rest are general. 

 

 

3.1. Three concurrent lines 

 

We know three general lines ,  define a circle . If we move  towards , 

we find that  shrinks into a point , which may be considered as the 

point defined by the three concurrent lines. We may say that these three lines also determine a 

circle of the form . In this section we are going to analyse the situation where there are m 

lines go through a same point  and the others are in general position. 

 

Lemma3.1.1. Three concurrent lines define a circle, which is the concurrency. 

 

3.2. Three concurrent lines and one general line  

 

Let ,  be concurrent,  is the concurrency and let   be general. We take three out 

of the four lines each time and get four circles 

                 , the concurrency of the three lines, 

                 ,   and   .  

We have 

 

Define , and we say that these four lines determine a point, which is the point of 

the concurrency of the three lines. 
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Lemma 3.2. Four lines, where three lines are concurrent and one line is general, define a 

                     point which is the concurrency. 

 

Lemma 3.3. Five lines, where three lines are concurrent and two lines are general, define a 

circle. 

 

Proof: 

Suppose we are given five lines, ,   concurrent and  ,  general. We take four 

lines each time and obtain five points  

 ,  where  by lemma 3.2. 

 

                                                  

                                                              

                                                           

                                                          

 

Where  , then   a circle, by 

the real cross ratio lemma. We define this circle is . 

▄ 

 

3.3. m lines concurrent and the rest in general position 

 

Remark: In terms of the proofs of lemma 3.2. and 3.3., we could still use the same proofs as 

                In chapter 2, where we just need to apply   for 

                the three concurrent lines. In the same manner, if m lines  ,   are 

                concurrent and the rest are general, we may still use the same proof as in chapter 2, 

                where we only need to apply  

 ,  if m is even and  

 ,  if m is odd. Where 

  are subsets of  . 
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                Here we just state the theorem for n lines with m lines concurrent and the rest 

                general without giving the proof. 

 

Theorem 3.2.   lines, where  ( )  lines are concurrent and   lines are 

                        general, define a point if n is even and a circle if n is odd. 
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Chapter 4 

 

 
Different types of Clifford figures and the failure of Clifford theorem  

  

In this chapter, we will present you 6 types of Clifford figures and the failure of the theorem 

with examples. However, it is difficult to find the certain condition for a set of lines such that 

we could know when a set of lines holds the theorem and when it fails. It is also difficult to 

know exactly what type of Clifford figures does a set of lines define when it holds the 

theorem. 

 

We already discussed the Clifford chain theorem for any number n of general lines in chapter 

2 and get that there is a Clifford point if n is even and a Clifford circle if n is odd. We also 

observed that for some special cases the Clifford figure has different forms and the theorem 

fails for some other cases in chapter 3. There are two main kinds of Clifford figures, namely, 

points and circles. However, we may have two kinds of points, ordinary points and points at 

infinity (nothing in the plane); three kinds of circles, ordinary circles, lines in the plane and 

points as we mentioned in the introduction for this paper.  

 

 

 

Type of lines Number of lines Clifford figure 

 odd circle 

 odd line 

 odd point 

 odd empty 

 even point 

 even empty 

 

 

Example of type : Three general lines define a circle in the plane. 
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                                  Clifford circle of three general lines 

 

 

Example of type : Three lines define a line in the plane, if two of them are parallel and 

                                     one is general.  

 

 

 

 

 

 is the Clifford figure of the three general lines 

 

We know from chapter 2 that 3 general lines have a circle as their Clifford figure. Now we 

move some lines of the set of 3 lines such that the set finally approaches to a set of 3 lines 

with two of them parallel and one general. By doing so we obtained that the ordinary circle 

approaches to its limit, a line, the general line of the 3 lines.  

 

Example of type : Three lines define a point in the plane, if they are concurrent. 

 

 

 

 

 

 

 

 

 
 

 

 

                                                  P is the Clifford point of the three lines 
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Three general lines define a Clifford circle, which is the circumcircle of the triangle formed 

by the lines. If we move some lines of the set of 3 lines such that the set approaches to a set of 

3 concurrent lines. By doing so the Clifford circle approaches to its limit, a point, the 

concurrency. 

 

Example of type : Three parallel lines define nothing  in the plane. The chain theorem 

                                     fails for a set of lines where 3 lines are parallel. 

 

 

 

 

no Clifford figure defined 

 

Example of type : Four general lines define a point in the plane, we see this from chapter 

                                     2. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

P is the Clifford point of the four lines 
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Example of type : Four general lines define nothing in the plane, if three of them are 

                                     parallel and one is general. Here, the three parallel lines as a subset of 

                                     the lines is the type  and define nothing, hence, these four lines also 

                                     define nothing. In another word, the chain theorem fails in this case. 

 

 

 

 

 

 

 

 

 
no Clifford figure defined 

 

 

 

 

Remark: In theorem 2.2. in chapter 2, the circle, determined by odd number of general lines, 

                may have different forms other than an ordinary circle. It is helpful to state the 

                following example from the article, The Failure of the Clifford Chain, by Walter B. 

                Carver. 

 

Example:  Five lines touching a deltoid define a line as the Clifford figure. 

 

Definition of a deltoid: In geometry, a hypocycloid is a special plane curve generated by the 

                                        trace of a fixed point on a smaller circle that rolls within a larger 

                                        circle. When the radius of the smaller circle is  and the radius of the 

                                        larger circle is , this plane curve is a deltoid.  

 

In this example, when all the five lines are in general position, we obtain a Clifford circle of 

the form  . However, in chapter 2 we just state that odd number of general lines define a 

circle without mentioning the forms of circles. 
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the black curve with three angles is a deltoid 
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Chapter 5 

 

 

Chain theorem for general circles on the sphere 

 

 
We are going to prove a chain theorem for general circles on the sphere. This chapter is an 

application of the Clifford chain theorem for general lines in the plane. We will prove this 

theorem by transforming Clifford chain theorem for general lines in the plane onto the sphere 

under stereographic projection. We will do this in detail in one chapter and will put some 

other applications together in chapter 6.  

 

Observing all circles on the sphere passing through the north pole , we may divide them 

into general circles and degenerate circles. Any two such circles have at least one intersection 

point, the north pole . We say two such circles are parallel if they do not have a further 

intersection point other than ; we say two such circles are intersect if they have a further 

intersection point other than ; we say three such circles are concurrent if they pass a same 

point other than ; we say some such circles are of general position if no two of them parallel 

nor three of them concurrent. 

 

The complex plane with  added is called the extended complex plane and we write  

. Another name for  is the Riemann sphere after B. Riemann. He was the 

first mathematician to identify the extended complex plane with a sphere under stereographic 

projection. We will fined that there is an one-to-one correspondence between the set of all 

general lines in the plane and the set of all general circles on the sphere under the 

stereographic projection. It is straight forward to consider the set of general circles on the 

sphere in terms of the chain theorem.  

 

The sphere and planes in space 

 

Suppose  is any plane in the space and   is the unit normal vector to the plane 

, i.e. . Now we may express  as  
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The distance between a point  and the plane  is 

given by the following formula 

                               . 

The distance between the plane  and the origin   is 

                                 

Let  be the unit sphere centred at the origin. There are three possible relations between the 

plane  and the sphere : 

(1): If  ,  then  . 

(2): If  ,  then  ,    is tangent to    at the point. 

(3): If  ,  then    is a circle on  ,  in particular, is a big circle when  . 

                                   

Lemma:  The section of a sphere made by any plane is a circle. 

 

Proof: 

For simplicity, we choose the sphere as the unit sphere  , centred at the origin . Let  be 

the curve of the section of the sphere made by any plane , then .  

Draw  perpendicular to the plane ; take any point  and join . Since  

is perpendicular to the plane , the angle  is a right angle; therefore,  

                       . 

Now  and  are fixed points, so  is constant; and , being the radius of the 

sphere; hence  is constant. Thus all the points in the curve  are equally distant from the 

fixed point ,  lies on the same plane  as  does. Therefore, the section  is a circle of 

which  is the centre. Here when the plane tangent to the sphere at , then  and 

the section  is the tangent point; and when the plane pass through the origin , then the 

section is a great circle, a circle on the sphere for which the centre is the origin.  

 

This lemma tells us that any plane intersects the sphere defines a circle on the sphere which is 

the section of the sphere made by the plane. Since a circle lies in a plane and we may say that 

for any circle on the sphere, there is a plane for which the circle is the intersection circle. 
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Therefore, it is true that there is a one-to-one correspondence between the set of all the planes 

that intersect the sphere and the set of all the circles on the sphere. 

 

Stereographic projection 

 

Definition: 

 

Let be the Euclidean plane, 

  the unit sphere with the centre at the origin, 

 the northe pole on . Stereographic projection is the projection of the unit 

sphere  from the North Pole   onto the plane  through the equator.  

The stereographic projection is a one-to-one correspondence between points in the set  

 and the points in the set . For any point , there is a unique line  

through  and , and this line intersects the plane  in exactly one point . Define the 

stereographic projection of  to be this point , and we denote this map by  

and its inverse map by . We may also extend this map onto the whole sphere 

by assuming that the projection of  is the point at infinity in the plane . 

 

Formulas of stereographic projection  

 

(1) Formula for stereographic projection from the sphere to the plane 

 

Given any point , then there is a unique line  passing through  

and . We may choose the director vector for  as  

         . 

Let  be any point on the line , then the line  can be expressed by the 

following equation 

         , 

          

                 

or                        
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stereographic projection of  from  onto , shown in cross section 

 

 

Since the line   intersects the plane   in a unique point 

. We may fined  by substituting  into the equation of   

            , and yields 

                 

                

So,  . 

Therefore the formula for the map  is  

 

           

(2) Formula for the inverse stereographic projection from the plane to the sphere 
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Given  or in the plane  , then there is a unique line  passing 

through  and . We may choose the director vector for  as  

         . 

Let  be any point on the line , then the line  can be expressed by the 

following equation 

         , 

          

                 

or                        

          

Since the line   intersects the sphere  in a unique 

point  other than . We may fined  by combining the two equations of   

and . 

 

 

 

 

 

 

If  we obtain  from the equation of the line and so we get one intersection of 

the sphere and the plane, which is the north pole, . 

If , we obtain that 
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And we get the other intersection of the sphere and the plane, which is 

 

                                  

 

Therefore the formula for the inverse map  is  

 

. 

 

 

 

Some properties of stereographic projection 

                       

(1) The image of a circle on the sphere is a circle( or a line) in the plane under the 

map 

 

Proof: 

Given a circle  on the sphere , then there is one and only one plane  such that  

. Let  be the normal vector to the plane  with 

   

We may express the plane  as  

                                         

The distance between the plane  and the origin   is 

                                

                                  . 

 

 For any point , let  be the projection point of the point , then 
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                                          . 

 

Where we temporarily denote ,  for simplicity. Since , 

substituting   into the equation  of the plane, we get 

 

 

 

                         

If , then equation  becomes 

                                                          , 

                                                           . 

Which is the equation of a line in terms of  .  

At this time the equation  of the plane  becomes 

                                                

for which  is satisfied and therefore, .  

Therefore, we may say that for any circle  passing through  on the sphere,  is a line 

in the plane. 

If , the equation  becomes 

 

 

 

This expresses a circle with the centre at  and radius . 
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At this time  , so  and we may say that for any circle  on the sphere not 

passing through ,  is a circle in the plane. 

▄ 

                   

 

(2) The image of a circle and a line in the plane is a circle on the sphere under the 

inverse map 

 

Proof: 

(a): We are going to show that the inverse map send a circle in the plane  to a circle on the 

sphere not passing through the north pole .  

Let  be a circle in the plane  and it has an equation  

 

Then                               

                                                      

Now we are going to investigate what kinds of elements we have in the set above. 

Since , we have . 

Since , we have obtained the following equation by substituting it into the 

equation  

 

 

And , we have 

 

 

hence 

 

or 

 

When ,  ,  then    and therefore  
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 and so  by the definition and this is not an 

ordinary circle and so we ignore this. 

Hance we have obtained that 

 

                                       

                                       

Where  is an equation of a plane  in the space 

which does not pass . In order to prove  is a circle on the sphere, it is 

enough to show that the distance  between  and  is less than 1. 

The equation  of the circle  may be written as 

 

Where the radius              

                                          

                                         

This yield 

 

                                            

                                          . 

                                            

(b): Now we are going to prove that the inverse map send a line in the plane  to a circle on 

the sphere passing through the north pole .  

Given a line  in the plane  and we may express  by the following euation 

                                                 

For any , let , then  and by 

subsitituting it into the equation of  we get an equation for the point  



52 

 

 52 

                                                , 

                                                   

This is an equation of a plane in the space passing through , which we denote by  , and  

we have  

                                                 ,  . 

The distance between the plane  and the origin   is 

                                          . 

That means the plane  and the sphere   intersect and the section is not a point, is an 

ordinary circle. Hance the projection of the line  in the plane  is a circle on the sphere . 

Let ,  we may write .  

From , we have   

 .  

Therefore the inverse projection of a line in the plane  is a circle on the sphere  passing 

through the north pole . 

 

In particular, when the line  passes through the origin,  and the distance between the 

plane  and the origin is . So  is a big circle on the sphere passing through 

the two poles. 

▄ 

 

It is obvious that we may obtain the following two lemmas directly from the two properties of 

stereographic projection. 

 

Lemma 5.1.  Stereographic projection induces a bijection between the set of all the circles in 

                      the plane and the set of all the circles on the sphere which do not pass through  

                      north pole. 

 

Lemma 5.2. Stereographic projection  induces a bijection between the set of all the lines in  

                     the plane and the set of all the circles on the sphere which do pass through the 

                    north pole. In particular, stereographic projection induces a bijection between the 



53 

 

 53 

                    set of all the general lines in the plane and the set of all the general circles on the 

                    sphere. 

 

 

Real Cross ratio theorem on the sphere 

 

Because of the properties (1) and (2) of the stereographic projection, the conditions and the 

results of the real cross ratio theorem remain unchanged under the map. Stereographic 

projection sends points on a circle or a line  in the plane to points on a circle on the sphere and 

sends circles or lines through a same point in the plane to circles through a same point on the 

sphere. Therefore, by the two lemmas above, the real cross ratio lemma applies on the sphere. 

In other words, if some circles and lines have some incidence relations in the plane, then the 

corresponding circles have the exact same incidence relations. Therefore, it is enough to 

transform the chain theorem for lines in the plane into the chain theorem for circles on the 

sphere. 

 

Real Cross ratio Lemma on the sphere: 

Consider four circles on the sphere, . Let  meet in the points ; 

let  meet in  ; let  meet in and let  meet in . Then 

the points  are concyclic if and only if the points   are 

concyclic. 

 

For the set of all the general lines in the plane, we obtained a chain theorem in chapter 2 and 

we proved it in detail. By lemma 5.2., we know that stereographic projection induces a 

bijection between the set of all the general lines in the plane and the set of all the general 

circles on the sphere. And also we have the properties of stereographic projection including 

lemma 5.1., 5.2. and the real cross ration lemma on the sphere. Therefore, it is enough to state 

the chain theorem for the set of all the general circles on the sphere.  

 

We then have a chain of theorems for general circles on the sphere: 

 

 Through a point  on the sphere pass a number of general circles  
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 Each two general circles meet in one further point:   denotes the point of meeting of  

       the circles  and . 

 Three general circles , give three such points ,  ,  . The circle 

through  

       these points is called the circle . 

 Four general circles  , give four circles like . It is found that these four 

       circles always meet in a point, called the point . 

 Five general circles , give five points like . It is found that these  

       points always lie on a circle, called the circle . 

 

And so on we may state this chain theorem as follows. 

 

Theorem: n general circles on the sphere, determine a point on the sphere if n is even and a 

                  circle on the sphere if n is odd. 
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Chapter 6 

 

Some applications of Clifford chain theorem 

 

 

In this chapter, it is going to prove another two chain theorems for circles passing through a 

same point in the plane and planes passing through a same point in the space by using our line 

chain theorem in the plane and circle chain theorem on the sphere. We will also prove 

Miquel's pentagon theorem by applying Clifford line-chain theorem. 

 

Application 1 

Chain theorem for general circles in the plane 

 

Circle Inversion 

 

Definition: In the plane, the inverse of a point  in respect to a reference circle of centre  

and radius  is a point  such that  and  are on the same ray going from , and whose 

distance from  satisfies the equation , we may say the inverse of  the 

point  is the point . Assume that there is only one point at infinity in the plane and its 

inverse point is the centre  of the reference circle, then the inversion is a one-to-one 

transformation of the whole inversive plane. 

 

 

 

 

 

 

 is the inverse of   

 

 

 

Some Facts of Circle Inversion 
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(a) A line not passing through  is inverted into a circle passing through , and vice 

versa; whereas a line passing through  is inverted into itself. 

(b) A circle not passing through  is inverted into a circle not passing through . The 

circle ( or line) after inversion stays as before if and only if it is orthogonal to the 

reference circle at their points of intersection. 

(c) Two circles have three types of relationship, intersecting, tangent and non-intersecting. 

A pair of circles of any one of these three types inverts into a pair of the same type 

(including, among pairs of “tangent circles”, one circle and a tangent line, as well as 

two parallel lines).  

 

Definition of general circles: Consider all circles passing through a common point  in the 

plane, we may divide them into general circles and degenerate circles. Any two such circles 

have at least one intersection point, . We say two such circles are parallel if they do not 

have a further intersection point other than ; we say two such circles are intersect if they 

have a further intersection point other than ; we say three such circles are concurrent if they 

pass a same point other than ; we say some such circles are of general position if no two of 

them parallel nor three of them concurrent. 

 

Circle chain theorem 

We already proved the chain theorem for general lines in the plane. We may transform the 

situation of n general circles in the plane into the situation of n general lines in the plane by a 

circle inversion. We apply the chain theorem for general lines and finally inverts back to the 

original situation and get the corresponding chain theorem. Let  the reference circle is a circle 

with radius  and centred at . 

 

Lemma 6.1. Two general circles in the plane determine a point. 

 

 

 

 

 

 

 is the point defined by  ,   through the point  
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It is obvious that the intersection point, , is the point determined by the two circles, ,  

passing through a same point . However, we may also invert this situation into the situation 

of  two general lines in the plane. Let   ,  be the inverses of  ,   and   the 

inverse of   . Since  is the point defined by  and , it is reasonable to take  as 

the point defined by  and . 

▄ 

 

Lemma 6.2. Three general circles in the plane determine a circle. 

 

  

 

 

 

 

 

 

 

 is the circle defined by  ,    through the point  

 

 

Three general circles intersect in three points, , , , and the circle, , passing 

through these three points, is the circle we need. We may get the same result by inversion. 

Let , ,  be the inverses of , ,  and , ,  the inverses of  , , 

 respectivelly. Let  is the circumcircle of the triangle formed by the three lines, 

which is the circle defined by the three lines. Hence,   the inverse of , passing 

through , , , is the circle we need. 

▄ 

 

Theorem 6.1. Four general circles in the plane determine a point. 

 

In order to understand the chain theorem for n general circles in the plane, we will describe 

theorem 6.1. in detail and also for getting a main idea about the proof of the theorem, we are 

going to give a very detailed proof for theorem 6.1. in particularly.  
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 is the point defined by  ,  ,   through the point  

 

 

Description of theorem 6.1.: 

Given four general circles , , , , all passing through a same point .  Let  and  

meet in ,   and   in ,   and  in ,   and  in ,   and  in , 

 and  in .  Let  be the circle through , , ;    the circle through 

, , ;     the circle through , ,  ;     the circle through , , 

. Then the four circles , , ,  have a common point .  

 

Proof: 

We will prove this by inverting the situation of the four general circles , , ,  into 

the corresponding situation of four general lines  , , , , and apply the line chain 

theorem for four lines from chapter 2 and get a point, and finally we obtain the corresponding 

point for the four circles by getting everything inverted back into the original situation. 
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Now we have obtained four general lines , , ,  in the plane.  Let  and  meet in 

,   and   in ,   and  in ,   and  in ,   and  in ,   

and  in .  Let  be the circle through , , ;   the circle through 

, , ;    the circle through , ,  ;    the circle through 

, , . Then the four circles , , ,  have a common point 

 by the line chain theorem form chapter 2. 

  

Now we get the situation of lines above inverted back into the four circles case: 

Applying the facts of circle inversion, we obtain that  gets inverted back into , the 

intersection point of  and ;  into , the intersection point of  and ;  into 

, the intersection point of  and ;  into , the intersection point of  and ; 

 into , the intersection point of  and ;  into , the intersection point of 

 and . Hence,  gets inverted back into ,  into ,  into  , 

 into  and gets the common point  of , , ,  into 

, the common point of , , , . Therefore,  is the point 

determined by the four general circles. 

▄ 

 

 

Circle chain theorem: n general circles in the plane determine a point if n is even and a 

                                      circle if n is odd. 

 

 

 

Application 2 

Chain theorem for general planes in the space 

 

Planes through a point in the space 

 

Let , 

 , 
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.  

 

Lemma 5.2. tells us that there is a one-to-one correspondence between  and . We know 

that for each fair of line and circle  under the correspondence, there is a 

unique plane  such that . Hence, there is a one-to-one 

correspondence between the three sets, . This inspired us to consider all the 

planes through a point in the space by using   and some results in chapter 5 in terms of the 

chain theorem.  

We may assume that  is the point that all the planes pass through in the space, where  is 

the north pole of the sphere .  

 

For any two planes , , there is an intersection line  through , 

there are two possible relations for the two planes: 

 

  is tangent to the sphere, i.e. , the two corresponding  

       circles are parallele on  in this case. 

       For  , , there are ,  such that .  

       Then            

                                    

                                    

                                    

    

  goes through the sphere and has a further intersection point  other 

       then  with the sphere, i.e.,  , the two corresponding circles 

       intersect in   on . 

       For  , , there are ,  such that .  

       Then            
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For three planes such that the intersection line of any two of them goes through the sphere.  

Let                  , ; 

                       ,  , ;  

 ,   , . 

Then there are two possible relations for the three planes: 

 

 , and so , the three corresponding circles 

      are concurrent and the concurrency is  on . 

  are different and so  are three different points on , the three 

       corresponding cirlces are not concurrent in this case. 

 

Definition: We define  is the set of all the general planes in  such that  and  are 

                   satisfied, in another world,  includes all the planes in  such that no 

                   two planes satisfy  and no three planes satisfy . We call all the planes in   

                   general planes. 

 

Theorem: n general planes determine a point on the sphere if n is even and a circle on the 

                  sphere if n is odd. 

 

Proof: 

 

. 

For any two general planes , , there are two general circles , , 

such that, . From chapter 5 we know that ,  determine a 

point on the sphere,  and , i.e.  is the only intersection point of 

the two planes which lies on the sphere but differ from . Define  is the point which is 

determined by , . 

 

. 

For any three general planes , , there are three general circles 
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 , , such that,  

.  

From chapter 5 we know that ,  determine a circle on the sphere, , the circle 

passing through the three intersection points  of the planes on the sphere differ 

from . We may define that  is the circle on the sphere which is determined by the three 

planes. 

 

. 

Let ,  be m general planes and ,  the corresponding general circles on the 

sphere. Assume that it is true for  general planes,i.e., they determine a point if n is even 

and a circle if n is odd. Only need to show that it remains true for m general planes. 

 

If m is even, we take  planes into consideration each time and get m circles, 

 , each one is determined by the corresponding 

 planes each time by the assumption. We know from chapter 5 that each one of these 

circles is determined by   circles from ,  and 

 pass through the same point  on the sphere 

defined by , . So, it is reasonble to define  is the point determind by the m 

general planes. 

 

If m is odd, we take  planes into consideration each time and get m points, 

 , each one is determined by the corresponding 

 planes each time by the assumption. We know from chapter 5 that each one of these 

points is determined by   circles from ,  and 

 lie on the same circle  on the sphere 

defined by , . So, it is reasonable to define  is the circle determind by the m 

general planes. 

Therefore, by the mathematical induction, the theorem is true for any number of general 

planes. 

▄ 
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Remarks: Here we take the sphere as a reference and transforms the chain theorem for planes 

passing through a same point in the space under the correspondence between the circles 

through a same point on the sphere and the planes through the same point in the space. 

However, we may also take any plane not passing through the common point of the planes as 

a reference plane and use the correspondence between planes in the space and lines in the 

plane. For any plane passing through the common point in the space, there is a line in the 

reference plane such that the line is cut by the plane. The same chain theorem may be 

achieved by transforming the line chain theorem in the plane under the correspondence. 

 

Application 3 

Miquel's pentagon theorem 

 

Miquel's pentagon theorem: If five general lines form a pentagon and the sides are extended 

                                                to form a pentagram, the five lines intersect to form triangles on 

                                                each side of the pentagon. Draw the circumcircles of each of  

                                                these triangles. Then the five new points formed by the 

                                                intersection of these five circles lie on another circle. 

 

 

 

 

 

 

 

 

 

 

 

 

the biggest circle is defined by the five lines 

 

 

 

 



64 

 

 64 

 

Proof:  

 

Let    be the five lines which forms the five sides of the pentagon 

successively.  Let    be the triangle formed by the three lines    and   be 

the circumcircle of the triangle  .  Then 

  

 

are the five vertices of the pentagon. 

 By applying the theorem 2.1., we get 

 

                                             ,   ,   

                                           ,     , 

                                           .  

 

Where the second intersection point of each pair circles is the Clifford point determined by 

the four related lines, for example,  is the Clifford point determined by . 

Then it is clear that these five points , , , ,  lie on the circle,  

,  by the theorem 2.2. and the proof is complete. 

 ▄ 

 

 

Remark: We are not going to prove Miquel’s triangle theorem by applying Clifford 

                Chain theorem. We will show that the chain theorem for four general lines in the 

                plane may apply for one special case of the Miquel’s triangle theorem. 

 

 

Miquel’s triangle theorem: If a point is picked at random on each side of a triangle, then the 

                                               three circles that are determined by each vertex and the two 

                                               points on the adjacent sides are concurrent. 

 

The point where the three circles intersect is called the Miquel point of the triangle.  
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P is the Miquel point of the triangle 

 

 

When the three points lie on a line, the Miquel point of the original triangle coincides with the 

Clifford point of the 4 general lines, 3 lines of the triangle and the line the three points lie on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P is the Clifford point of the four lines and also the Miquel point of the triangle formed by the three black lines  
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