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1 Introduction

It is a well-known fact that the railway industry and the nuclear industry, as well as

many other industries, are increasing the use of computerised systems for instrumen-

tation and control (I&C). However, before computerised systems can be used in any

kind of critical applications, evidences that these systems are dependable are required.

Considering that most computerised systems are built as a structure of several software

components, of which some might have been pre-developed and used in other contexts,

there is a need for methods for assessing reliability of compound software 1. The ob-

jective of this thesis is to report the work on developing a component-based approach

for assessing reliability of compound software. Special emphasis is put on addressing

failure dependencies between software components. The approach utilises a Bayesian

hypothesis testing principle [2, 20] for finding upper bounds for probabilities that pairs

of software components fail simultaneously. In the approach, both prior information

regarding software components and results from testing are taken into account.

The following papers are in included in the thesis:

I. Finding Upper Bounds for Software Failure Probabilities - Experiments and Re-

sults. Published in Computer Safety, Reliability and Security, Safecomp 2005.

II. Assessing Reliability of Compound Software. Published in Risk, Reliability and

Social Safety, ESREL 2007.

III. On the Modelling of Failure Dependencies between Software Components. Pub-

lished in Safety and Reliability for Managing Risk, ESREL 2006.

IV. On Component Dependencies in Compound Software. Published in International

Journal of Reliability, Quality and Safety Engineering, 2010.

V. The Use of Metrics to Assess Software Component Dependencies. Published in

Risk, Reliability and Safety, ESREL 2009.

VI. A Bayesian Hypothesis Testing Approach for Finding Upper Bounds for Prob-

abilities that Pairs of Software Components Fail Simultaneously. To appear in

International Journal of Reliability, Quality and Safety Engineering, 2011.

1Software systems consisting of multiple software components.
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2 Background

The use of computerised components in critical systems introduces a new challenge:

how to produce dependable software. In many application areas it is therefore necessary

to perform a thorough dependability assessment and to show evidences that the system,

including its software components, is dependable [33].

The problem of assessing software reliability has been a research topic for more than

30 years, and several successful methods for predicting the reliability of an individual

software component based on testing have been presented in Frankl et al. [7], Goel [8],

Hamlet [14], Lyu [33], Miller et al. [34], Musa [35], Ramamoorthy and Bastani [40], and

Voas and Miller [49]. However, there are still no methods proved fully successful for

predicting reliability of compound software based on reliability data on the system’s

individual software components [9, 11, 50].

For hardware, even in critical systems, it is accepted to base the reliability assess-

ment on failure statistics, i.e. to measure the failure probability of individual hardware

components and then compute system reliability on this basis. This is applied for ex-

ample in safety instrumented systems in petroleum [17]. However, the characteristics

of software make it difficult to carry out such a reliability assessment. Software is not

subject to ageing and any failure that occurs during operation is due to faults that

are inherent in the software from the beginning. Any randomness in software failure is

due to randomness in input data. It is also a fact that environments such as hardware,

operating system and user needs change over time and that software reliability may

change over time due to these activities [3].

Furthermore, having a system consisting of several software components explicitly

requires an assessment of the software components’ failure dependencies. This is dis-

cussed more thoroughly in, among others, Cortellessa and Grassi [1], Dai et al. [4],

Gokhale and Trivedi [10], Guo et al. [13], Littlewood et al. [31], Lyu [33], Nicola and

Goyal [37], Popic et al. [38], Popov et al. [39], and Tomek et al. [46]. In addition to

the fact that software reliability assessment is inherently difficult due to software com-

plexity and that software is sensitive to changes in usage, failure dependencies between

software components represent a substantial problem.

Although different approaches to construct component-based software reliability

models have been proposed in, among others, Cortellessa and Grassi [1], Gokhale and

Trivedi [9], Gokhale [10], Goseva-Popstojanova and Trivedi [11], Hamlet [15, 16], Krish-

namurthy and Mathur [19], Krka et al. [27], Kuball et al. [28], Popic et al. [38], Reussner

et al. [41], Singh et al. [44], Trung and Thang [47], Vieira and Richardson [48], and

Yacoub et al. [51], most of these approaches tend to ignore failure dependencies be-

tween software components [5, 18, 29]. In principle, the failure probability of a single

software component can be assessed through statistical testing [6, 42]. However, since
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critical software components usually have low failure probabilities [31], in practise the

number of tests required to obtain adequate confidence in such probabilities becomes

very large. An even more non-trivial situation arises when probabilities for simultane-

ous failures 2 of several software components need to be assessed, since they are likely

to be significantly smaller than single failure probabilities.

The focus of this research has been to develop a practicable component-based ap-

proach for assessing reliability of compound software in which failure dependencies

between software components are explicitly addressed.

3 The story behind the research

Based on the fact that software components rarely fail independently and that statis-

tical testing alone (for assessing the probability for software components failing simul-

taneously) is practically impossible, our research started by analysing two interesting

papers written by Cukic et al. [2] and Smidts et al. [45]. These papers present a

Bayesian hypothesis testing approach for finding upper bounds for failure probabilities

of single software components. The authors’ idea is to complement testing with avail-

able prior information regarding the software components so that adequate confidence

can be obtained with a feasible amount of testing.

In the approach, the null hypothesis (H0) and the alternative hypothesis (H1) are

specified as: H0 : θ ≤ θ0 and H1 : θ > θ0, where θ0 is a probability in the interval (0, 1)

representing the upper bound for the failure probability θ of a software component.

The upper bound θ0 is assumed to be context specific and predefined and is typically

derived from standards, regulation authorities, customers, etc. In this case, the null

hypothesis and alternative hypotheses state that the probability of software component

failure is lower and higher than the given upper bound θ0, respectively.

Furthermore, the authors describe the prior belief in the failure probability (π(θ))

of a single software component using two separate uniform probability distributions,

one under the null hypothesis and one under the alternative hypothesis (see Figure 1).

Based on this assumption, the authors show that the number of tests required to

obtain an adequate confidence level (C0) can be significantly reduced compared to the

situation where no prior belief regarding the software component is described. By

assuming that prior belief in the null hypothesis P (H0) is 0.01, the predefined upper

bound θ0 is 0.0001, and the confidence level C0 is 0.99, the authors show that it

requires 6831 fault-free tests to reach the confidence level by using Bayesian hypothesis

testing compared to 46050 fault-free tests by using classical statistical testing. It is

2Simultaneous failure is defined as the event that several software components fail on the same

system input. Component failures do not have to occur at the same instant; it is sufficient that they

are all in a failed state at some point in time.
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Figure 1: Prior probability distribution proposed by Cukic et al. [2] and Smidts et

al. [45].

also demonstrated that the higher the prior belief in the null hypothesis is, the fewer

tests are needed to obtain adequate confidence in the software component.

3.1 Paper I

Title: Finding Upper Bounds for Software Failure Probabilities - Experiments and

Results.

Author : Monica Kristiansen

Although we think that the principles of the Bayesian hypothesis testing approach

proposed in Cukic et al. [2] and Smidts [45] are usable, even for compound software,

our main concern is related to the use of two separate uniform probability distributions

to describe the prior belief in the failure probability of a single software component.

This concern is addressed in Paper 1 [20], in which an evaluation of the Bayesian

hypothesis testing approach is performed. In this paper, three different prior proba-

bility distributions for the failure probability of a software component are evaluated,

and their influence on the number of tests required to obtain adequate confidence in a

software component is presented. In this evaluation, the first case is based on earlier

work done by Cukic and Smidts et al. [2, 45] and assumes two separate uniform prior

probability distributions, one under the null hypothesis and one under the alternative

hypothesis (see Figure 1). In the second case, the effect of using a flat distribution

under the alternative hypothesis is mitigated by allowing an expert to set an upper

bound on the failure probability under H1, i.e. to state a value θ1 for which the proba-

bility of having a failure probability higher than θ1 is zero (see Figure 2). In the third

case, the effect of discontinuity in the prior probability distribution is mitigated by

using a continuous probability distribution for θ over the entire interval (0, 1). A beta
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Figure 2: Prior probability distribution where the upper bound of the failure probability

is set by expert judgement.

distribution is used to accurately reflect prior belief because this distribution is a rich

and tractable family that forms a conjugate family to the binomial distribution. Fig-

ure 3 illustrates three possible prior probability distributions for θ for different choices

of parameter values in the beta distribution.

The evaluation in Paper 1 clearly shows that using two separate uniform distribu-

tions to describe the failure probability of a software component does not represent a

conservative approach at all, even though the use of a uniform probability distribution

over the entire interval is usually seen as an ignorance prior. In fact, the number of

tests required to obtain adequate confidence in a software component increases signif-

icantly when other more realistic distributions for the failure probability of a software

component are used.

Moreover, it is shown that the total number of tests required by using this approach

can both result in fewer and in even more tests compared to classical statistical testing.

This means that in the Bayesian hypothesis testing approach, the number of required

tests is highly dependent on the choice of prior distribution. It should therefore be

emphasised that it is the underlying prior distribution for the failure probability of a

Figure 3: Beta distribution with (a) α and β < 1, (b) α < 1 and β > 1 and (c) α and

β > 1.
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Figure 4: A component-based approach for assessing the reliability of compound soft-

ware.

software component and underlying assumptions that lead to fewer tests rather than

the Bayesian hypothesis testing approach.

3.2 Paper II

Title: Assessing Reliability of Compound Software.

Author : Monica Kristiansen and Rune Winther

In Paper II [21], a component-based approach for assessing reliability of compound

software is proposed. In this approach, failure dependencies between software compo-

nents are addressed explicitly. The idea behind the approach is to assess and include

dependency aspects in software reliability models by finding upper bounds for probabil-

ities that pairs of software components fail simultaneously and then include these into

the reliability models. To find the upper bounds, the approach applies the principles

of Bayesian hypothesis testing [2, 20, 45] on simultaneous failure probabilities. It is

assumed that failure probabilities of individual software components are known. The

approach is illustrated in Figure 4 and consists of five basic steps:

1. Identify the most important component failure dependencies : based on the struc-

ture of the software components in the compound software and information re-

garding individual software components, identify those dependencies between

pairs of software components which are of greatest importance for the calcula-

tion of the system reliability [22]. Repeat steps 2-4 for all relevant component
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dependencies in the system.

2. Define the hypotheses : let q0,ij represent an accepted upper bound for the prob-

ability (qij) that a pair (i, j) of software components fails simultaneously. The

upper bound q0,ij is assumed to be context specific and predefined and is typi-

cally derived from standards, regulation authorities, customers, etc. Define the

following hypotheses:

H0 : aij ≤ qij ≤ q0,ij

H1 : q0,ij < qij ≤ bij

where qij is defined in the interval [aij, bij]. The interval limits aij and bij represent

the lower and upper limit for qij, respectively, and are decided by the restrictions

the components’ marginal failure probabilities put on the components’ simulta-

neous failure probabilities [22].

3. Describe prior belief regarding probability qij: establish a prior probability distri-

bution π(qij) for the probability that a pair of software components fails simul-

taneously [24]. Based on this probability distribution the prior belief in the null

hypothesis P (H0) must be quantified.

4. Update your belief in hypothesis H0: based on the prior belief in the null hypoth-

esis P (H0) from step 3 and a predefined confidence level C0,ij, the number of

tests required to obtain an adequate upper bound for the probability of simulta-

neous failure can be found for different numbers of failures encountered during

testing. The more failures that occur during testing, the more tests are required

to reach C0,ij. For further details on when to stop testing see Cukic et al. [2] or

Kristiansen et al. [22].

5. Calculate the complete system’s failure probability : information regarding fail-

ure probabilities of individual software components (which are assumed to be

known) and upper bounds for the most important simultaneous failure probabil-

ities (found in step 1-4) can finally be combined to obtain an upper bound for

the failure probability of the entire system. This can be performed by various

methods, e.g. by discrete event simulation when direct calculation becomes too

complicated. To calculate the failure probability of the complete system, a sim-

ulator that mimics the failure behaviour of dependent software components has

been developed [25].

In the component-based approach described above, there are two main challenges:

1. How to identify those dependencies between pairs of software components that

are of greatest importance for calculating the system reliability. This is necessary

since it is not realistic to handle all possible dependencies in compound software.

2. How to establish prior probability distributions for probabilities that pairs of
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software components fail simultaneously.

The first challenge is investigated in Paper IV, whereas the second challenge is inves-

tigated in Paper V and in Paper VI.

3.3 Paper III

Title: On the Modelling of Failure Dependencies between Software Components.

Author : Rune Winther and Monica Kristiansen

To handle the challenges identified in Subsection 3.2, an improved understanding of

the nature of software component dependencies is needed. For this reason, in Paper

III [50] we take a deeper look at the meaning of software component dependencies and

try to increase our understanding of the mechanisms that cause dependencies between

software components.

In Paper III, we begin by presenting different component-based approaches for

assessing compound software. Referring to Goseva-Popstojanova and Trivedi [12], three

different classes of approaches can be identified:

- State-based approaches which describe compound software by applying Markov

chains.

- Path-based approaches which compute reliability of compound software by con-

sidering all possible execution paths.

- Additive models which predict the time-dependent failure rate of compound soft-

ware based on the components’ failure data.

Within each class, only few methods make a serious attempt at treating dependencies

between software components. In fact, Goseva-Popstojanova and Trivedi [12] conclude

that all the models they reviewed assumed independence. However, some of the pub-

lished papers discuss the problem of component dependency although usually limited

to somewhat narrow problem definitions and consequently narrow solutions [50].

Paper III proceeds by reviewing research more explicitly related to understanding

and modelling dependencies between software components. This work has primarily

been done for parallel components typically related to diverse and redundant compo-

nents in fault tolerant design and N-version programming [5, 10, 18, 29, 30, 31, 39].

Although previous work on software component dependencies is valuable, our review

concludes that the scope of this work is too narrow. We argue that failure dependencies

must be viewed more generally and that possible causes of dependent failure behaviour

are more complex than any current method takes into account.

We conclude Paper III with a detailed discussion on the meaning of dependency

between software components. In addition, we make a clear distinction between the

degree of dependency between software components which can be expressed through
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conditional or simultaneous failure probabilities, and the mechanisms that either cause

or exclude events to occur together. We divide these mechanisms into two distinct

categories:

- Development-cultural aspects (DC-aspects):mechanisms which cause different peo-

ple, tools, methods, etc. to make the same mistakes.

- Structural aspects (S-aspects): mechanisms which allow a failure in one compo-

nent to affect the execution of another component.

The first category can typically be assessed using component specific information

sources, e.g. programming language, development team, specifications, etc. On the

other hand, the second category cannot be completely assessed using only component

specific information. Information sources on how components are used in a specific

context or in the compound software is also needed, e.g. sharing of resources, struc-

tural isolation, structural relation, etc. All these underlying information sources can

possibly indicate if two software components are likely to fail simultaneously or not

and can be used to find prior probability distributions for probabilities that pairs of

software components fail simultaneously [24].

3.4 Paper IV

Title: On Component Dependencies in Compound Software.

Author : Monica Kristiansen, Rune Winther and Bent Natvig

The first challenge of our component-based approach, i.e. how to identify the most

important component dependencies for calculating the system reliability, is discussed

in Paper IV [22]. In this paper, we introduce the following definitions:

Definition 1. Data-serial components: two components i and j are said to be

data-serial components if either i or j receives data (d), directly or indirectly through

other components, from the other.

i
d→ j or j

d→ i (1)

Definition 2. Data-parallel components: two components i and j are said to

be data-parallel components if neither i nor j receives data (d), directly or indirectly

through other components, from the other.

i
d
� j and j

d
� i (2)

These concepts contribute to a deeper understanding of how to include component

dependencies in reliability modelling and are essential for identification of possible

rules for selecting the most important component dependencies.
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Figure 5: Possible values for the conditional reliabilities in a two components system

when a) p1 = 0.999 and p2 = 0.999, b) p1 = 0.999 and p2 = 0.9999 and c) p1 = 0.9999

and p2 = 0.999.

Paper IV proceeds by illustrating how the components’ marginal reliabilities di-

rectly restrict the components’ conditional reliabilities in general systems consisting

of two and three components. Examples of how the marginal reliabilities p1 and p2

influence the conditional reliabilities p2|1 and p2|1̄ in a general two components system

are illustrated in Figure 5. The graphs clearly show that the restrictions on the condi-

tional reliabilities depend heavily on the values of the marginal reliabilities. In fact, in

some cases the conditional reliabilities are restricted into narrow intervals. In the same

way, it is shown how the marginal reliabilities p1, p2, and p3 influence the conditional

reliabilities p2|1, p2|1̄, p3|1, p3|1̄, p3|2, p3|2̄, p3|12 and p3|1̄2̄ in a general three components

system. It is also shown that the degrees of freedom are much fewer than first an-

ticipated when it comes to conditional probabilities. For example if the components’

marginal reliabilities and four of the components’ conditional probabilities are known

in a simple three components system, the remaining 44 conditional probabilities can

be expressed using general rules of probability theory.

At last, a test system consisting of five components is investigated to identify pos-

sible rules for selecting the most important component dependencies (those depen-

dencies that cannot be ignored without resulting in major changes in the predicted

reliability of the system). The test system is basically a redundant system with a hot

standby and forward recovery. The system switches to a “high-assurance” controller

if the normal “high-performance” controller causes the system to enter states outside

a predetermined boundary. This type of structure is often referred to as a simplex ar-

chitecture [43] and is used for instance on software controllers in Boeing 777 aircrafts.

To investigate the test system, three different techniques are applied:

1. Direct calculation: since the marginal and conditional reliabilities of all compo-

nents in the system are assumed to be known, it is possible to assess the system’s

“true” failure probability when all dependencies are taken into account. This
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“true” failure probability can then be compared to the failure probability predic-

tions one gets when various component dependencies are ignored.

2. Birnbaum’s importance measure: Birnbaum’s importance measure can be used to

check if the importance of the software components in the system changes when

various component dependencies are ignored. If this is the case, it may indicate

that some component dependencies are more important than others.

3. Principal Component Analysis (PCA): the predicted failure probabilities of the

system when various component dependencies are ignored represent the variables

in the PCA. By identifying the variables which explain the same type of variation

in data as the variable in which all component dependencies are included may

indicate which component dependencies are the most important ones.

Results from the analyses show that the three techniques identify the same compo-

nent dependencies as the most important component dependencies in the compound

software. The results can be summarised as follows:

- Including only partial dependency information may give a substantial improve-

ment in the reliability predictions compared to assuming independence between

all software components as long as the most important component dependencies

are included.

- It is also clear that dependencies between data-parallel components are far more

important than dependencies between data-serial components.

For a system consisting of both data-parallel and data-serial components, the results

indicate that:

- Including only dependencies between data-serial components may result in a ma-

jor underestimation of the system’s failure probability. In some cases, the results

are even worse than by assuming independence between all components.

- Including only dependencies between data-parallel components may give predic-

tions close to the system’s true failure probability as long as the dependency

between the most unreliable components is included.

- Including additional dependencies between data-parallel components may further

improve the predictions.

- Including additional dependencies between data-serial components may also give

better predictions as long as the dependency between the most reliable compo-

nents is included.

These rules are in accordance to the results achieved when other well-known software

structures were investigated (see test cases 1 and 3 in the Statistical Research Report

in Appendix A which presents the non-reduced version of Paper IV [22]).

11



3.5 Paper V

Title: The Use of Metrics to Assess Software Components Dependencies.

Author : Monica Kristiansen, Rune Winther, Meine van der Meulen and Miguel Revilla.

The second challenge of our component-based approach, i.e. how to establish prior

probability distributions for probabilities that pairs of software components fail simul-

taneously, is discussed in Paper V [26] and in Paper VI [24]. In Paper V, the results

from an experimental study which investigates the relations between a set of internal

software metrics (McCabe’s cyclomatic complexity, Halstead volume, program depth,

Source Lines Of Code, etc.) and stochastic failure dependency between software com-

ponents are presented. This experiment was performed by analysing a large collection

of program versions submitted to the same specification in a programming competi-

tion on the Internet: the Online Judge 3. For each program version, the following

information was available:

• The source code which makes it possible to calculate a set of relevant internal

software metrics for each program version.

• The performance of the program version (if it fails or succeeds) for a large set of

possible input values.

The experimental study was divided into two groups. In the first group, premature

program versions (where little debugging had been performed) were investigated. In

the second group, mature program versions (where extensive debugging had been per-

formed) were investigated. In both groups, pairs of program versions were investigated.

To measure the probability that a pair of program versions fails dependently the study

used the simultaneous failure probability of the program versions. If any relations be-

tween the probabilities that pairs of software components fail simultaneously and their

difference in software metrics can be identified, one possible step forward will be to use

this information as prior information in the Bayesian hypothesis testing approach for

finding upper bounds for simultaneous failures between pairs of software components.

Results from univariate analyses show that if the difference between metric values of

two program versions is small, it is impossible to decide the degree of failure dependency

between those two program versions. However, given that the metric values for a pair

of program versions differ significantly and the program versions are reasonable mature

(from the second group), results indicate that the probability for simultaneous failure is

less than the probability calculated if the metric values were similar. This is illustrated

for two different internal software metrics (Halstead program volume and vocabulary)

in Figures 6 and 7, respectively. We also observe that if the metric values for pairs of

program versions differ significantly, the probability for simultaneous failure is close to

3http://icpcres.ecs.baylor.edu/onlinejudge
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Figure 6: Relation between the probabilities that pairs of program versions fail simul-

taneously and their differences in metric values of the internal software metric Halstead

program vocabulary.
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Figure 7: Relation between the probabilities that pairs of program versions fail simul-

taneously and their differences in metric values of the internal software metric Halstead

program volume.

3.6 Paper VI

Title: A Bayesian Hypothesis Testing Approach for Finding Upper Bounds for Prob-

abilities that Pairs of Software Components Fail Simultaneously.

Author : Monica Kristiansen, Rune Winther and Bent Natvig.
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In Paper VI [24], the theory on how to apply Bayesian hypothesis testing [2, 20, 45] to

find upper bounds for probabilities that pairs of software components fail simultane-

ously is described in detail. This approach uses all relevant information sources which

are available prior to testing and consists of two main steps:

1. Establishing prior probability distributions for probabilities that pairs of software

components fail simultaneously.

2. Updating these prior probability distributions by performing statistical testing.

In Paper VI, the focus is on the first step of the Bayesian hypothesis testing approach.

The main motivation for establishing a prior probability distribution for qij is to

utilise all relevant information sources available prior to testing in order to compensate

for the enormous number of tests which is usually required to satisfy a predefined

confidence level C0,ij. In case reasonable prior information is available, the number of

tests which must be run to achieve C0,ij can be greatly reduced.

Paper VI proposes two procedures for establishing a prior probability distribution

for the simultaneous failure probability qij. Both procedures consist of two steps, the

first step being common for both of them.

1. Establish a starting point for qij based on a transformed beta distribution.

2. Adjust this starting point up or down by applying expert judgement on relevant

information sources available prior to testing.

In the first procedure, the prior probability distribution for qij is determined by letting

experts adjust the initial mean and variance of qij in the transformed beta distribution

based on relevant information sources. In the second procedure, the prior transformed

beta distribution for qij is adjusted numerically by letting experts express their belief

in the total number of tests and the number of simultaneous failures that all relevant

information sources correspond to.

Both procedures assume that relevant information sources can be assigned values

in the interval [0, 1]. A value close to 0 can for example indicate substantial differ-

ence in development methodologies, great diversity between development teams, or

low complexity of the interface between software components. On the other hand, a

value close to 1 can for example indicate use of identical development methodologies,

extreme complexity of the interface between software components, or that components

are developed by the same development team. The idea is that the larger (i.e. closer

to 1) the values of the relevant information sources Ii are, the larger is the mean for

simultaneous failure in the first procedure and the number of simultaneous failures in

the second procedure.

A critical question is if experts are able to express their belief about relevant in-

formation sources using a numerical scale from 0 to 1. One possible simplification is

to let experts express their beliefs on an ordinal scale first and then map this onto a

numerical scale. For example, for a five point ordinal scale {very low, low, medium,
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high, very high}, “very low” can be associated with the interval [0, 0.2), ”low” can be

associated with the interval [0.2, 0.4) and so on.

4 Summary, discussion and further work

The research presented in Section 3 has lead to the development of a component-based

approach for assessing reliability of compound software. This approach applies well-

based probabilistic models to explicitly handle failure dependencies between software

components and has been elaborated through several experimental studies.

The approach is based on the following assumptions:

• The states of the software components are positively correlated.

• All data-flow relations between the software components are known.

• The reliabilities of the individual software components are known.

• The system and its components have only two possible states (functioning and

failed).

• The system has a monotone structure [36].

Furthermore, the research is restricted to on-demand types of situations where the

compound software is given an input and execution is considered to be finished when

a corresponding output has been produced.

During development of the component-based approach, two major challenges have

been tackled:

1. How to identify those dependencies between pairs of software components that

are of greatest importance for calculating the system reliability.

2. How to establish prior probability distributions for probabilities that pairs of

software components fail simultaneously.

The first challenge has been discussed in detail in Paper IV [22]. The main contri-

bution of Paper IV has been to show that the difficult task of including component

dependencies in reliability calculations can be simplified in three ways by accounting

for the following facts:

1. The components’ marginal reliabilities put direct restrictions on the components’

conditional reliabilities in compound software.

2. The degrees of freedom are much fewer than first anticipated when it comes to

conditional probabilities. For example if the components’ marginal reliabilities

and four of the components’ conditional probabilities are known in a simple three

components system, the remaining 44 conditional probabilities can be expressed

using general rules of probability theory. This is proved mathematically in Paper

IV.

3. Including only partial dependency information may give substantial improve-
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ments in the reliability predictions compared to assuming independence between

all software components as long as the most important component dependencies

are included. In Paper IV, a set of rules for selecting the most important compo-

nent dependencies have been proposed. It should be emphasised that these rules

are based on an experimental study concerning different test cases [23] in which

the reliabilities of the individual components are assumed to be known.

Furthermore, the paper defines two new concepts: data-parallel and data-serial com-

ponents. These concepts contribute to a deeper understanding of how to include com-

ponent dependencies in reliability modelling and they are essential in the identification

of possible rules for selecting the most important component dependencies.

The second challenge has been discussed in detail in Paper VI [24]. The main con-

tribution of this paper amounts to two procedures for establishing a prior probability

distribution for the probability qij that a pair of software components fails simultane-

ously. In the first procedure, the prior probability distribution for qij is determined

by letting experts adjust the initial mean and variance of qij in the transformed beta

distribution based on relevant information sources. In the second procedure, the prior

transformed beta distribution for qij is adjusted numerically by letting experts express

their belief in the total number of tests and the number of simultaneous failures that

all relevant information sources correspond to.

Both procedures consist of two main steps, the first step being common for both of

them.

1. Establish a starting point for the probability of simultaneous failure between a

pair of software components based on a transformed beta distribution.

2. Adjust this starting point up or down by applying expert judgement on relevant

information sources available prior to testing.

By covering the second and last challenge of our approach in Paper VI, we finally come

to the definition of a complete component-based approach for assessing reliability of

compound software in which failure dependencies are explicitly addressed. However,

it should be emphasised that the procedures in Paper VI represent only proposals

on how to find prior probability distributions for probabilities that pairs of software

components fail simultaneously. The validation of these procedures has not yet been

performed and is one of the main tasks for further work. Furthermore, testing the

complete component-based approach on a realistic case will be prioritised.

It should also be emphasised that the goal of this research has been to include

dependency aspects in the reliability calculations of critical systems and not to handle

component dependencies in systems consisting of a very large amount of components.

With regard to the assumptions which forms the basis of the developed approach,

positive correlation between two software components is normally expected essentially

because some inputs are more difficult (more error-prone) than others. Even if two
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diverse software components are developed “independently”, failures are more likely

to happen on certain inputs than on others. Assuming positive correlation is therefore

rather realistic in many cases and far more conservative than assuming independence

between software components when it comes to predicting the system’s reliability. In

addition, recent calculations have shown that assuming positive correlation has only

minor influence on the restrictions that the marginal component reliabilities put on the

conditional reliabilities in a simple two components system. However, more research

on systems consisting of more than two components is needed and will be carried out

as further work.

It is natural to assume that some design documents defining the architecture, com-

ponent interfaces and other characteristics of the system are available when a compound

software is assessed. Structure charts which graphically show the flow of data and con-

trol information between components in a compound software are of special interest.

They give an overview of the software structure and are fundamental for identifying

the most important component dependencies in the system, i.e. those dependencies

that influence the system reliability the most.

Although the issue on how to predict reliability of individual software components is

by no means trivial, our approach assumes that these probabilities are already known.

How to assess these probabilities has been studied by several researchers over the years

and an overview of different techniques for predicting the reliability of a particular

software component based on testing can be found in, among others, Littlewood and

Strigini [32], Lyu [33] and Musa [35].

Assuming that the compound software is a monotone system and that the com-

pound software and its components have only two possible states represents a limita-

tion made to simplify our approach. Software components and compound software do

usually have a number of possible failure modes and more research on how to include

multiple failure modes is needed.
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Predicting the reliability of software systems based on a component approach is in-

herently difficult, in particular due to failure dependencies between the software compo-

nents. Since it is practically difficult to include all component dependencies in a system’s

reliability calculation, a more viable approach would be to include only those dependen-

cies that have a significant impact on the assessed system reliability. This paper starts

out by defining two new concepts: data-serial and data-parallel components. These con-

cepts are illustrated on a simple compound software, and it is shown how dependencies

between data-serial and data-parallel components, as well as combinations of these,

can be expressed using conditional probabilities. Secondly, this paper illustrates how the

components’ marginal reliabilities put direct restrictions on the components’ conditional

probabilities. It is also shown that the degrees of freedom are much fewer than first antic-

ipated when it comes to conditional probabilities. At last, this paper investigates three

test cases, each representing a well-known software structure, to identify possible rules

for selecting the most important component dependencies. To do this, three different

techniques are applied: 1) direct calculation, 2) Birnbaum’s measure and 3) Principal

Component Analysis (PCA). The results from the analyses clearly show that includ-

ing partial dependency information may give substantial improvements in the reliability

predictions, compared to assuming independence between all software components.

Keywords: Compound software; component dependencies; Birnbaum’s measure; Prin-

cipal Component Analysis (PCA); system reliability; probability of failure on demand

(pfd).
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2 Kristiansen, Winther and Natvig

1. Introduction

The problem of assessing reliability of software has been a research topic for more

than 30 years, and several successful methods for predicting the reliability of an in-

dividual software component based on testing have been presented 23,25. There are,

however, still no really successful methods for predicting the reliability of compound

software (software systems consisting of multiple software components) based on

reliability data on the system’s individual software components9,29,32.

1.1. Motivation

For hardware components, even in critical systems, it is accepted to base the relia-

bility assessment on failure statistics, i.e. to measure the failure probability of the

individual components and compute the system reliability on the basis of this. This

is for example applied for safety instrumented systems in petroleum 11.

The characteristics of software, however, make it difficult to carry out such

a reliability assessment. Software is not subject to ageing, and any failure that

occurs during operation is due to faults that are inherent in the software from the

beginning. Any randomness in software failure is due to randomness in the input

data. It is also a fact that environments, such as hardware, operating system and

user needs change over time, and that the software reliability may change over time

due to these activities 3.

Furthermore, having a system consisting of several software components, explic-

itly requires an assessment of the software components’ failure dependencies 22. So

in addition to the fact that assessing the reliability of software is inherently difficult

due to the complexity of software, and that software is sensitive to changes in its

usage, failure dependencies between software components is a substantial problem.

Although several approaches to construct component-based software reliability

models have been proposed 10,15,20, most of these approaches tend to ignore the

failure dependencies that usually exist between software components, in spite of

the fact that previous research shows that this is often unrealistic 5,14,21.

In principle, a single software component’s failure probability can be assessed

through statistical testing. However, since critical software components usually need

to have low failure probabilities 22, the number of tests required to obtain adequate

confidence in these failure probabilities often becomes practically very difficult to ex-

ecute. An even more difficult situation arises when the probability for simultaneous

failure of several software components need to be assessed, since these probabilities

are likely to be significantly smaller than single failure probabilities.

Based on the fact that:

• software components rarely fail independently, and that

• using statistical testing alone to assess the probability for software compo-

nents failing simultaneously is practically impossible in most situations

the main focus has been to develop a component-based approach for assessing

the reliability of compound software, which is practicable in real situations, and
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where failure dependencies between the software components are explicitly ad-

dressed 16,17,18,19.

This paper starts out by defining two new concepts: data-serial and data-parallel

components a. These concepts are illustrated on a simple compound software, and

it is shown how dependencies between data-serial and data-parallel components,

as well as combinations of these, can be expressed using conditional probabili-

ties. Secondly, this paper illustrates how the components’ marginal reliabilities put

direct restrictions on the components’ conditional probabilities. It is also shown

that the degrees of freedom are much fewer than first anticipated when it comes

to conditional probabilities. If the components’ marginal reliabilities and four of

the components’ conditional probabilities are known in a simple three components

system, the remaining 44 conditional probabilities can be expressed using general

rules of probability theory. At last, this paper investigates three test cases, each

representing a well-known software structure, to identify possible rules for selecting

the most important component dependencies b. To do this, three different tech-

niques are applied: 1) direct calculation, 2) Birnbaum’s measure and 3) Principal

Component Analysis (PCA).

The results from the analyses clearly show that including partial dependency

information may give substantial improvements in the reliability predictions, com-

pared to assuming independence between all software components. However, this

is only as long as the most important component dependencies are included in the

reliability calculations. It is also apparent that dependencies between data-parallel

components are far more important than dependencies between data-serial com-

ponents. Further the analyses indicate that including only dependencies between

data-parallel components may give predictions close to the system’s true failure

probability, as long as the dependency between the most unreliable components is

included. Including only dependencies between data-serial components may how-

ever result in predictions even worse than by assuming independence between all

software components.

1.2. Notation

In this paper, capital letters are used to denote random variables and lower case

letters are used for their realizations.

To indicate the state of the i th component, a binary value xi is assigned to

component i 1.

xi =

{
0 if component i is in the failed state
1 if component i is in the functioning state

(1)

Similarly, the binary variable φ denotes the state of the system.

aSee Definitions 3 and 4 in Section 1.3.
bSee Definition 1 in Section 1.3.
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φ =

{
0 if the system is in the failed state
1 if the system is in the functioning state

(2)

It is assumed that the state of the system is uniquely determined by the states of

the components, i.e. φ = φ(x), where x = (x1, x2, . . . , xn) and n is the number of

components in the system. φ is usually called the structure function of the system.

A serial structure functions if and only if all the components in the system function.

The structure function of a serial structure consisting of n components is given in

Equation 3.

φ(x) = x1 · x2 · · ·xn =

n∏
i=1

xi (3)

A parallel structure functions if and only if at least one of the components in the

system functions. The structure function of a parallel structure consisting of n

components is given in Equation 4.

φ(x) = 1−
n∏

i=1

(1− xi) (4)

The reliability of component i are given as follows:

pi = P (Xi = 1) (5)

In addition, a simplified notation is used to describe conditional reliabilities. An

example is given in Equation 6.

p3|12̄ = P (x3 = 1|x1 = 1, x2 = 0) (6)

The main task of this paper is to find the system reliability h(p), where p includes

both the component reliabilities as well as their conditional reliabilities.

1.3. Definitions

Definition 1. The most important component dependencies are those dependen-

cies that influence the system reliability the most, i.e. those dependencies that

cannot be ignored without resulting in major changes in the predicted reliability of

the system.

Definition 2. A dependency combination (DC) is a subset of the actual compo-

nent dependencies in a compound software.
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Fig. 1. An illustrative example.

Definition 3. Two components i and j are said to be data-serial components if

either: 1) i receives data, directly or indirectly through other components, from j,

or 2) j receives data, directly or indirectly through other components, from i.

i
d→ j or j

d→ i (7)

Definition 4. Two components i and j are said to be data-parallel components if

neither i or j receives data, directly or indirectly through other components, from

the other.

i
d
� j and j

d
� i (8)

To explain the concepts of data-serial and data-parallel components, the compound

software given in Figure 1 is used as an illustrative example. The system consists

of four components, and in Table 1 different pairs of data-serial and data-parallel

components are listed. In addition, possible conditional reliabilities which can be

used to express the dependency between these components are given.

Table 1. Different pairs of data-serial and data-parallel com-

ponents.

data-serial component pairs stochastic dependence

C1 and C2 p2|1 or p1|2
C1 and C4 p4|1 or p1|4
C2 and C4 p4|2 or p2|4
C3 and C4 p4|3 or p3|4

data-parallel component pairs stochastic dependence

C1 and C3 p3|1 or p1|3
C2 and C3 p3|2 or p2|3

To express dependencies for sets of data-serial and data-parallel components,

different conditional reliabilities can be used. For example, to express the depen-

dency between the data-serial components 1 and 4 and the data-serial components

2 and 4, the conditional reliability p4|12 can be used. In the same way, to express
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the dependency between the data-parallel components 1 and 3 and between the

data-serial components 1 and 4, the conditional reliability p1|34 can be used.

1.4. Assumptions

In this study, a software component is considered to be an entity that has a pre-

defined and specified boundary and which is atomic, in the sense that it can’t or

won’t be divided into sub-components. It is made no special assumptions whether

the component is available in binary format or as source code. The context is

essentially an Off-The-Shelf (OTS) situation, where custom developed and previ-

ously developed software (PDS) components are combined to achieve a larger piece

of software.

In this paper, only on-demand types of situations are considered, i.e. situations

where the system is given an input and execution is considered to be finished when

a corresponding output has been produced.

The following assumptions are made:

• All structural relations between the components are known.

• The individual component reliabilities are known.

• The components, as well as the system, only have two possible states, a

functioning state and a failure state.

• It is assumed positive correlation between the software components.

• The system has a monotone structure 27.

1.5. The structure of this paper

In Section 2, some of the work that has been done with regard to understanding

the nature of failure dependency between software components is reviewed. Section

3 illustrates how the software components’ marginal reliabilities put direct restric-

tions on the components’ conditional reliabilities and failure probabilities. It is also

shown that the degrees of freedom are much fewer than first anticipated when it

comes to conditional probabilities. Section 4 describes the methods and analysis

techniques used to identify possible rules for selecting the most important compo-

nent dependencies. Section 5 presents the selected test cases, and Section 6 presents

the results from the analyses. Section 7 summarizes the results and tries to come

up with possible rules for selecting the most important component dependencies.

Section 8 concludes and presents ideas for further work.

2. Earlier Work Related to the Problem of Component

Dependency

The dominating case for discussions on software component dependency is multi-

version designs, typically the N -version approach where output is decided by a

voter using the results from N components as input. The idea behind N -version

programming is that by forcing various aspects of the development process to be
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different, i.e. development team, methods, tools, programming languages etc. the

likelihood of having the same fault in several components would become negligible.

The hypothesis that independently developed components would fail indepen-

dently has been investigated from various perspectives. A direct test of this hy-

pothesis was done in 14 where a total of 27 components were developed by different

people. Although the results can be debated, this experiment indicated that as-

suming independence should be done with caution. The experiment showed that

the number of tests for which several components failed was much higher than an-

ticipated under the assumption of independence. While there are many different

mechanisms that might cause even independently developed components to fail on

the same inputs, it doesn’t seem implausible that the simple fact that programmers

are likely to approach a problem in much the same way would cause them to make

the same mistakes, and thus cause dependency between the components’ failure

behavior.

A more theoretical approach on the same issue was presented in Eckhardt and

Lee 5 and elaborated on a few years later in Littlewood and Miller 21. Although

Eckhardt and Lee present several interesting results, our primary interest is related

to the considerations regarding whether independent development processes pro-

duce software components that fail independently. Note that a more comprehensive

discussion is provided in 22.

The key variable in the Eckhardt and Lee model is the difficulty function θ(x),

defined to be the probability that a component version chosen at random will fail

on a particular input demand, x. The more difficult an input x is, the greater we

would believe the chance that an unknown program will fail.

The main result in the Eckhardt and Lee model is that independently developed

components do not imply independent components. The key point is that as long as

some inputs are more difficult to process than others, even independently developed

components will fail dependently. In fact, the more the difficulty varies between the

inputs, the greater is the dependence in failure behavior between the components.

Only in the special situation where all inputs are equally difficult, i.e. the difficulty

function θ(x) is constant for all x ∈ Ω, independently developed components will

fail independently.

The Littlewood and Miller model 21 is a generalization of the Eckhardt and

Lee model in which the different component versions are developed using diverse

methodologies. In this context, the different development methodologies might rep-

resent different development environments, different types of programmers, different

languages, different testing regimes etc.

The main result in the Littlewood and Miller model is that the use of diverse

methodologies decreases the probability of simultaneous failure of several compo-

nent versions. In fact, they show that it is theoretically possible to obtain component

versions which exhibit better than independent failure behavior. So while it is nat-

ural to try to justify an assumption of independence, it is worthwhile noting that

having independent components is not necessarily the optimal situation with regard
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to maximizing reliability.

Other relevant work on how to include component failure dependencies are sum-

marized below.

Gokhale and Trivedi 8 look into problems associated with assuming indepen-

dence in path-based approaches. The problem they address is that assuming in-

dependence of successively executing components is likely to produce pessimistic

results, especially considering that the same component may be executed several

times in a single path due to loop structures. The knowledge that a component did

not fail on the previous loop iteration is likely to be a good indication that it will

not fail on the next iteration either. This is an interesting observation and it indi-

cates that thinking in terms of reliability block diagrams when it comes to software

components is not straightforward. As a possible way to overcome the problem of

a pessimistic estimate, the authors propose to treat multiple executions as a single

execution. Their solution relies on 1) time-dependent notation of reliability and 2)

time-dependent failure intensities of the individual components.

Zavala and Huhns 33 present an initial empirical study on the correlation of

code complexity measures and coincident failures in multi-version systems (when

two or more program versions are identically incorrect). Their study is based on 28

Java implementations and clearly shows a correlation between software metrics and

coincident failures. At the current state the results cannot be generalized, however

the authors have shown that the use of software complexity metrics as indicators of

proneness to coincident failures in multi-version systems is worth exploring further.

In Popic et al. 28, the authors extend their previous work on Bayesian reliabil-

ity prediction of component based systems by introducing the error propagation

probability into the model. Like most other component-based reliability models,

their old model assumed that system components will fail independently. The au-

thors define the error propagation probability as the probability that an erroneous

state generated in one component propagates to other components instead of being

successfully detected and masked at its source. To describe error propagation, the

model of Nassar et al. 26 is applied. Based on a case study, the authors conclude that

error propagation may have significant impact on the system reliability prediction

and argue that future architecture-based models should not ignore it.

Fricks and Trivedi 7 study the effect of failure dependencies in reliability models

developed using stochastic Petri nets (SPN) and continuous-time Markov chains.

Based on a set of examples, the authors conclude that failure dependencies highly

influence the reliability models and that failure dependencies therefore never should

be ignored. Of special interest is the authors classification of different types of failure

dependencies that can arise in reliability modeling. The authors then illustrate how

several of these failure dependencies can be incorporated into stochastic Petri net

models.

Vieira and Richardson 31 argue that component dependencies should be treated

as a first class problem in component-based systems (CBSs). They discuss issues re-

lated to component-based system dependencies and present a conceptual model for
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describing and analyzing dependencies in a CBS. To describe component dependen-

cies, the authors use denotational semantics of partial-order multi-sets(pomsets).

In Huang et al. 12, the authors combine analytical models with simulation tech-

niques for software reliability measurement. The authors present two failure-rate

simulation techniques, which both take the functional dependency and error corre-

lation among the components in a software system into account. In the first tech-

nique, the authors use a dependency coefficient to include dependencies between

the components. This coefficient is based on test data from each component in the

system. In the second technique, the transition probabilities between the compo-

nents in the system are used. The authors do however not suggest any approaches

to find these probabilities. The main contribution of their work is demonstrating

an architecture-oriented simulation framework to analyze reliability measures for

software systems with dependent components.

Reliability block diagrams (RBDs), fault trees (FTs) and reliability graphs

(RGs) are all limited in their modelling capability, due to the assumption of stochas-

tic independence among the system’s units. Dynamic reliability block diagrams

(DRBDs), presented in 4, extend RBDs with elements specific for representing dy-

namic behaviors. Examples of dynamic-dependent behaviors that can be handled

in a DRBD include dependent, cascade, on-demand and/or common cause fail-

ures, as well as interferences between the system’s units such as load sharing and

inter/sequence-dependency. The DRBDs are based on the concept of dependency.

The authors consider a dependency as the simplest dynamic relationship between

two system units. A dependency is a unidirectional, one-way, dynamic relationship,

which represents and quantifies the influence of one unit on another unit. More

complex dynamic behaviors are than expressed as compositions of these simple de-

pendencies. In 4, the authors investigate the reliability in two case studies and show

that dynamic aspects and behaviors, usually not analyzable by other methodologies,

can be handled in DRBDs.

Although previous work on software component dependencies is valuable, it was

in 32 concluded that the scope of this work is too narrow. In 32, the authors take a

deeper look at the nature of software component dependencies and try to increase

the reader’s understanding of the mechanisms that cause dependencies between

software components. In the paper, the authors differ between degree of depen-

dence between software components, which can be expressed through conditional

or simultaneous failure probabilities, and the mechanisms that either cause or ex-

clude events to occur together. These mechanisms are divided into two distinct

categories:

• Development-cultural aspects (DC-aspects): Includes factors that cause dif-

ferent people, tools, methods, etc. to make the same mistakes, e.g. identical

programming language, compiler, etc.

• Structural aspects (S-aspects): Includes factors that allow a failure in one

component to affect the execution of another component, e.g. through

shared resources, structural relation, etc.
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Fig. 2. Possible values for the conditional reliabilities in a two components system when a)

p1 = 0.999 and p2 = 0.999, b) p1 = 0.999 and p2 = 0.9999 and c) p1 = 0.9999 and p2 = 0.999.

The main conclusions in 32 are that inter-dependencies between software compo-

nents are more complicated than any existing methods consider.

3. Prior Information from the Software Components’ Marginal

Reliabilities

In the following, it will be shown how single components’ marginal reliabilities,

as well as the assumption of positive correlation, put directly restrictions on the

components’ conditional reliabilities. These restrictions may be used as direct input

into a Bayesian belief net for establishing prior probability distributions for the

probabilities that sets of software components will fail simultaneously. It may also

be used as guidance for the experts as to which conditional reliabilities it is easiest

to make any decisions about.

3.1. Two components system

Consider a general system consisting of only two software components. Assume

further that the two components’ marginal reliabilities p1 and p2 are known. In

addition, positive correlation between component 1 and 2 is assumed (p2|1 ≥ p2).

This means that information that component 1 is functioning cannot reduce the

reliability of component 2. This is a reasonable assumption when the components

are in series with each other. However, when the components are in parallel, this

may not always be a natural assumption. If the components have been developed by

different development teams, using different development methods and languages,

it might in fact be natural to assume negative correlation. This means that if

one component fails, this increases the reliability of the other component and visa

versa. However, the consequences of assuming independence between all software

components in a compound software are far more severe than by assuming positive

correlation.

In a simple two components system, there are eight possible conditional proba-

bilities between component 1 and 2 (p2|1, p2|1̄, p1|2, p1|2̄ etc.). If one of these con-
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Table 2. Restrictions on the conditional reliabilities p2|1
and p2|1̄ in a simple two components system for different

combinations of the marginal reliabilities p1 and p2.

Marginal Conditional

reliabilities reliabilities

C1 C2

p1 = 0.9 p2 = 0.9999 p2|1 ∈ [0.9999, 1]

p2|1̄ ∈ [0.999, 0.9999]

p1 = 0.99 p2 = 0.9999 p2|1 ∈ [0.9999, 1]

p2|1̄ ∈ [0.99, 0.9999]

p1 = 0.999 p2 = 0.9999 p2|1 ∈ [0.9999, 1]

p2|1̄ ∈ [0.9, 0.9999]

p1 = 0.9 p2 = 0.999 p2|1 ∈ [0.999, 1]

p2|1̄ ∈ [0.99, 0.999]

p1 = 0.99 p2 = 0.999 p2|1 ∈ [0.999, 1]

p2|1̄ ∈ [0.9, 0.999]

p1 = 0.999 p2 = 0.999 p2|1 ∈ [0.999, 1]

p2|1̄ ∈ [0, 0.999]

p1 = 0.9999 p2 = 0.999 p2|1 ∈ [0.999, 0.9990999]

p2|1̄ ∈ [0, 0.999]

p1 = 0.99999 p2 = 0.999 p2|1 ∈ [0.999, 0.99900999]

p2|1̄ ∈ [0, 0.999]

p1 = 0.999 p2 = 0.99 p2|1 ∈ [0.99, 0.99099099]

p2|1̄ ∈ [0, 0.99]

p1 = 0.9999 p2 = 0.99 p2|1 ∈ [0.99, 0.990099]

p2|1̄ ∈ [0, 0.99]

p1 = 0.99999 p2 = 0.99 p2|1 ∈ [0.99, 0.9900099]

p2|1̄ ∈ [0, 0.99]

ditional probabilities is known, the others can easily be expressed by using general

rules in probability theory. See proof in Appendix A.

Based on the law of total probability, the linear relationship between p2|1 and

p2|1̄ is given in Equation 9.

p2|1 =
p2
p1

− (1− p1)

p1
p2|1̄ (9)

Equation 9 is used as basis for investigating the relation between the marginal

reliabilities p1 and p2 and the conditional reliabilities p2|1 and p2|1̄. In Table 2,

different sets of marginal reliabilities and their restrictions on the components’
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conditional reliabilities are given. Restrictions on the conditional reliabilities p2|1
and p2|1̄ for three different sets of marginal reliabilities p1 and p2 are also illustrated

graphically in Figure 2.

The results in Table 2 and Figure 2 clearly shows that the marginal reliabilities

p1 and p2 put direct restrictions on the conditional reliabilities p2|1 and p2|1̄. In
fact, in some cases the conditional reliabilities are restricted into small intervals.

The restrictions depend heavily on the values of the marginal reliabilities.

3.2. Three components system

Let’s move a step forward and look at a simple system consisting of three com-

ponents. As for the two components system, it is assumed that the components’

marginal reliabilities p1, p2 and p3 are known. In addition, positive correlations are

assumed.

In a simple three components system there are 48 possible conditional proba-

bilities between components 1, 2 and 3 (p3|1, p3|1̄, p3|2, p3|2̄, p3|12 etc.), including

the eight possible conditional probabilities between components 1 and 2. If four

of these conditional probabilities are known, the others can easily be expressed

by using general rules of probability theory (see proof in Appendix A). In a three

components system, one therefore for instance needs to know one conditional prob-

ability between components 1 and 2 and three conditional probabilities between

components 1, 2 and 3 to find all the remaining conditional probabilities. One pos-

sible set of conditional probabilities may for example be: p2|1, p3|1, p3|2 and p3|12.
However, this is only one possible selection of conditional probabilities that can

be chosen. Another set may for example be: p2|1̄, p3|1̄, p3|2̄ and p3|1̄2̄. Which set to

choose should be considered thoroughly, since some conditional probabilities may

be easier for an expert to determine than others.

The linear relationships between p3|1 and p3|1̄ and between p3|2 and p3|2̄ are

parallel to the linear relationship between components 1 and 2 in Equation 9. The

relations between the conditional reliabilities p3|12, p3|12̄, p3|1̄2 and p3|1̄2̄ are shown

in Appendix A to be:.

p3|12̄ =
p3|1 − p3|12p2|1

1− p2|1
(10)

p3|1̄2 =
p3|2p2 − p3|12p2|1p1

p2 − p2|1p1
(11)

p3|1̄2̄ =
p3 − p3|1p1 − p3|2p2 + p3|12p2|1p1

1− p2 + (p2|1 − 1)p1
(12)

Equation 9 and the corresponding ones for p3|1 and p3|2, and Equations 10 - 12

are used as basis for investigating the relation between the marginal reliabilities p1,

p2 and p3 and the conditional reliabilities p2|1, p3|1, p3|2 and p3|12. In Tables 3 - 5,
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Table 3. Restrictions on the conditional reliabilities p2|1,
p3|1, p3|2 and p3|12 in a simple three components system

when p1 = 0.9999, p2 = 0.999 and p3 = 0.99.

Example 1

First assumption:

p1 = 0.9999

p2 = 0.999

p3 = 0.99

Results in:

p2|1 ∈ [0.999, 0.9990999] p2|1̄ ∈ [0, 0.999]

p3|1 ∈ [0.99, 0.990099] p3|1̄ ∈ [0, 0.99]

p3|2 ∈ [0.99, 0.99099099] p3|2̄ ∈ [0, 0.99]

p3|12 ∈ [0.99, 0.99099999] p3|1̄2̄ ∈ [0, 0.99]

Second assumption:

p2|1 = 0.99905

p3|1 = 0.990085

Results in:

p3|2 ∈ [0.990043, 0.990964] p3|2̄ ∈ [0.026468, 0.947503]

p3|12 ∈ [0.990085, 0.990999] p3|1̄2̄ ∈ [0, 0.140085]

Third assumption:

p3|2 = 0.9903

Results in:

p3|12 ∈ [0.990336, 0.990342] p3|1̄2̄ ∈ [0, 0.140085]

three different sets of marginal reliabilities and their restrictions on the components’

conditional reliabilities are given. These tables should be read as follows:

• In the first assumption, it is assumed that the components’ marginal re-

liabilities are known. Knowing these reliabilities put direct restrictions on

all the remaining conditional reliabilities in the system. In some cases they

limit the conditional reliabilities into small intervals.

• In the second assumption, it is assumed that the conditional reliabilities

p2|1 and p3|1 are known, in addition to the marginal reliabilities. This put

more strict restrictions on the remaining conditional reliabilities p3|2 and

p3|12.
• In the third assumption, the conditional reliability p3|2 is also assumed

to be known and it can easily be seen that the more information that is

available, the more strict are the restrictions on the remaining reliabilities.

4. Methods and Analysis

In this section, the techniques used to identify possible rules for selecting the most

important component dependencies are described in detail. The techniques are ap-

plied on three test cases, each representing a well-known software structure. For

detailed descriptions of the test cases and the sets of marginal and conditional

reliabilities used see Section 5.
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Table 4. Restrictions on the conditional reliabilities

p2|1, p3|1, p3|2 and p3|12 in a simple three components

system when p1 = 0.99, p2 = 0.999 and p3 = 0.9999.

Example 2

First assumptions:

p1 = 0.99

p2 = 0.999

p3 = 0.9999

Results in:

p2|1 ∈ [0.999, 1] p2|1̄ ∈ [0.9, 0.999]

p3|1 ∈ [0.9999, 1] p3|1̄ ∈ [0.99, 0.9999]

p3|2 ∈ [0.9999, 1] p3|2̄ ∈ [0.9, 0.9999]

p3|12 ∈ [0.9999, 1] p3|1̄2̄ ∈ [0, 0.9999]

Second assumptions:

p2|1 = 0.9999

p3|1 = 0.99999

Results in:

p3|2 ∈ [0.9999081, 1] p3|2̄ ∈ [0.9, 0.9918081]

p3|12 ∈ [0.99999, 1] p3|1̄2̄ ∈ [0.9, 0.99099]

Third assumptions:

p3|2 = 0.99995

Results in:

p3|12 ∈ [0.99999, 0.999995] p3|1̄2̄ ∈ [0.94446, 0.94995]

4.1. Direct calculation

In the “direct calculation”, the effects of including only a subset of the actual com-

ponent dependencies when assessing the failure probability of compound software

are examined. In this analysis, all marginal and conditional reliabilities are assumed

to be known. This makes it possible to assess the system’s “true” failure probability

when all dependencies are taken into account. The system’s “true” failure proba-

bility can then be compared to the failure probability predictions one gets when

various component dependencies are ignored.

4.2. Birnbaum’s reliability importance measure

Birnbaum’s measure 2 for the reliability importance of component i, IBi , is defined

by:

IBi =
δh

δpi
(13)

Hence, Birnbaum’s measure is found by partial differentiation of the system reli-

ability with respect to pi. This approach is well known from classical sensitivity

analysis and assumes independence between the components. If IBi is large, a small

change in the reliability of component i will give a relatively large change in system

reliability.
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Table 5. Restrictions on the conditional reliabilities p2|1,
p3|1, p3|2 and p3|12 in a simple three components system

when p1 = 0.99, p2 = 0.9999 and p3 = 0.999.

Example 3

First assumptions:

p1 = 0.99

p2 = 0.9999

p3 = 0.999

Results in:

p2|1 ∈ [0.9999, 1] p2|1̄ ∈ [0.99, 0.9999]

p3|1 ∈ [0.999, 1] p3|1̄ ∈ [0.9, 0.999]

p3|2 ∈ [0.999, 0.9990999] p3|2̄ ∈ [0, 0.999]

p3|12 ∈ [0.999, 1] p3|1̄2̄ ∈ [0, 0.999]

Second assumptions:

p2|1 = 0.99999

p3|1 = 0.9999

Results in:

p3|2 ∈ [0.9990802, 0.9990999] p3|2̄ ∈ [0, 0.918808]

p3|12 ∈ [0.9999, 0.99990999] p3|1̄2̄ ∈ [0, 0.9099]

Third assumptions:

p3|2 = 0.999085

Results in:

p3|12 ∈ [0.9999, 0.9999085] p3|1̄2̄ ∈ [0.0556, 0.149085]

Pivotal decomposition gives that:

h(p) = pih(1i,p) + (1− pi)h(0i,p)

= pi(h(1i,p− h(0i,p)) + h(0i,p) (14)

Birnbaum’s measure can therefore be written as:

IBi =
δh

δpi
= h(1i,p)− h(0i,p) (15)

Since h(·i,p) = E[φ(·i,X)], the Birnbaum’s measure can be written as:

IBi = E[φ(1i,X)]− E[φ(0i,X)]

= E[φ(1i,X)− φ(0i,X)] (16)

When φ(X) is monotone, it can only take the values 0 and 1. IBi can therefore be

given by:

IBi = P (φ(1i,X)− φ(0i,X) = 1)

= P (φ(1i,X) = 1)− P (φ(0i,X) = 1) (17)
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Birnbaum’s measure is therefore the probability that the system is in such a state

that component i is critical for the system. If the components are dependent, which

often is the case for software systems, the probability in Equation 17 can be used

as the definition of the Birnbaum’s measure.

In the experimental study, the idea is to use Birnbaum’ measure to check if

the importance of the software components changes when various component de-

pendencies are ignored. If this is the case, it may indicate that some component

dependencies are more important than others.

In Section 6, the results from using Birnbaum’s measure are presented as one

or more of the following measures:

• Original Birnbaum’s measures.

• Standardized Birnbaum’s measures.

• Squared difference between the true Birnbaum’s measures and the measures

one gets when various component dependencies are ignored.

• Squared difference between the true standardized Birnbaum’s measures and

the standardized measures one gets when various component dependencies

are ignored.

4.3. Principal Component Analysis (PCA)

A principal component analysis is concerned with explaining the covariance struc-

ture or the correlation structure of a set of variables through a few linear com-

binations of these variables 13. These linear combinations are called the principal

components (PC).

The objective of a principal component analysis is usually data reduction. Al-

though p variables are required to reproduce the total system’s variability, often

much of this variability can be explained by a small number of k uncorrelated prin-

cipal components (k ≤ p). If this is the case, the k principal components can replace

the p variables, and the data set can be reduced.

Let’s assume that the system’s predicted failure probabilities under different

dependency combinationsc represent the variables in a PCA. For example; variable 1

can be the system’s failure probability when all dependencies are included, variable

2 can be the system’s failure probability when all components are independent and

so on. All these variables are than calculated for n unique observation vectors.

These observation vectors represent different variations in the values for each of the

test cases’ conditional reliabilities and are identified using a “factorial design” 24.

One of the main results from a PCA analysis is a graphical representation of the

data. These graphs should be studied in detail. Score plots express graphically the

variation in data and loading plots express the original variables contribution to

describe this variation. To get a better understanding of the variation in data, score

plots and loading plots should be examined simultaneously. Especially, points that

cSee Definition 2 in Section 1.3.
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Fig. 3. Minimal path set representation of test case 1.

fall close together in the loading plots are of special interest. This indicates that

the variables are highly correlated and therefore explain the same type of variation

in data.

A good starting point would therefore be to try to identify the variables that

load equally to the variable where all component dependencies are included. In this

way the most important component dependencies may be identified.

5. Test Cases

To identify possible rules for selecting the most important component dependencies,

this paper investigates three test cases, each representing a well-known software

structure. In all test cases, the components are assumed to execute sequentially

according to their numbers.

5.1. Test case 1

Test case 1 is a typical recovery block structure and consists of two independently

developed, functionally identical software components that receive the same input

data (see Figure 3). The first component is a super component consisting of sub

components 1 and 2. Both the super component and component 3 receive the same

input data, but they are not run in parallel like in N-version programming. First,

the super component is run and its output is checked using an acceptance test. An

acceptance test is a program specific fault detecting mechanism, which checks the

results from a program execution. If the super component passes the acceptance

test, its outcome is regarded as successful and the recovery block can be exited.

If the test fails or if any errors are detected by other means during execution,

an exception is raised and backward recovery is invoked. This restores the state

of the system to what it was at entry, and component 3 is executed. Then the

acceptance test is applied again. If both the super component and component 3 fail

the acceptance test, the system fails.

Figure 3 only illustrates the redundant and diverse software components in the

system. This is done to simplify the analysis. It should, however, be emphasized that

the system is not complete without an additional component giving the redundant

components inputs and an acceptance test validating the operation of the software

components.
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Table 6. The selected marginal and conditional

reliabilities for test combinations 1.1 and 1.2.

Test combination 1.1 Test combination 1.2

p1 = 0.999 p1 = 0.9999

p2 = 0.999 p2 = 0.999

p3 = 0.9999 p3 = 0.99

p2|1 = 0.9999 p2|1 = 0.99905

p3|1 = 0.99999 p3|1 = 0.990085

p3|2 = 0.999985 p3|2 = 0.9903

p3|12 = 0.999992 p3|12 = 0.99034

The system in Figure 3 is evaluated in two different ways, representing test com-

bination 1.1 and test combination 1.2. In test combination 1.1, it is assumed that

component 3 is the “high-assurance” component, whereas the super component con-

stitutes the “high-performance” component. In test combination 1.2, it is assumed

that the super component is the “high-assurance” component, whereas component

3 is the “high-performance” component. In both combinations, it is assumed that

the “high-assurance” component is more reliable than the “high-performance” com-

ponent.

Based on the system’s minimal path sets, the system reliability of test case 1 is

given in Equation 18.

P (φ(x) = 1) = p2|1p1 + p3 − p3|12p2|1p1 (18)

Since the main point of this paper is to investigate and evaluate the effect of in-

cluding only partial dependency information when assessing a system’s reliability,

all the essential marginal and conditional reliabilities must be defined. Based on

the assumptions made for test case 1 and the restrictions from the marginal relia-

bilities (see Section 3), a valid set of marginal and conditional reliabilities for test

combination 1.1 and test combination 1.2 are given in Table 6.

The system’s failure probability was assessed for the following dependency com-

binationsd:

1. Including all software component dependencies.

2. Assuming independence between all software components.

3. Including only the dependency between data-serial components 1 and 2.

4. Including the dependencies between data-parallel components 1 and 3, and

between data-parallel components 2 and 3.

5. Including only the dependency between data-parallel components 1 and 3.

6. Including only the dependency between data-parallel components 2 and 3.

7. Including the dependencies between data-parallel components 1 and 3, and

between data-serial components 1 and 2.

dSee Definition 2 in Section 1.3.



On Component Dependencies in Compound Software 19

Fig. 4. System drawing of test case 2 and test case 3.

8. Including the dependencies between data-parallel components 2 and 3, and

between data-serial components 1 and 2.

5.2. Test case 2

The second test case represents a more complex fault tolerant system capable of

switching between two redundant components in case of failure. This type of struc-

ture is referred to as a simplex architecture 30, and are for instance used on software

controllers in Boeing 777. The system consists of five components and includes both

data-serial and data-parallel components (see Figure 4).

The test system is basically a redundant system with a hot standby and forward

recovery. This means that the system switches to a “high-assurance” controller

(component 4) if the normal “high-performance” controller (component 3) causes

the system to enter states outside a predetermined boundary.

In this system, the sensor manager (component 1) receives data from the sen-

sors that are monitoring the equipment under control (EUC). This information

is collected by the manager and sent to the monitor (component 2) and the two

controllers (components 3 and 4). Based on the information sent from the sensor

manager, the monitor selects which controller to be used. The switch (component

5) will receive input from the monitor as to which controller to take its input from.

Notice that both controllers continuously receive data and send output. It is only

up to the monitor to decide which of the controllers that actually will be allowed to

control the system. Data from the selected controller will be sent to the actuators

which in turn control the EUC.

For simplicity, two assumptions are made. First of all, it is assumed that the

switch does not fail. Secondly, it is assumed that the controllers are independent

of the monitor. The system will function as long as the sensor manager functions

in combination with either both controllers or with at least one controller and the

monitor.

A minimal path set representation of the simplified system is illustrated in

Figure 5. Based on the system’s minimal path sets and the assumptions that are

made, the system’s reliability is given in Equation 19.
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Fig. 5. Minimal path set representation of test case 2.

P (φ(x) = 1) = p3|1p2|1p1 + p4|1p2|1p1 + p4|13p3|1p1
− 2p4|13p3|1p2|1p1 (19)

Based on the assumptions made for test case 2 and the restrictions from the

marginal reliabilities (see Section 3), a valid set of marginal and conditional re-

liabilities for test case 2 is given in Table 7.

The system’s failure probability was assessed for the following dependency com-

binations:

1. Including all software component dependencies.

2. Assuming independence between all software components.

3. Including only the dependency between data-parallel components 3 and 4.

4. Including only the dependency between data-serial components 1 and 2.

5. Including the dependencies between data-serial components 1 and 2, and

between data-parallel components 3 and 4.

6. Including the dependencies between data-serial components 1 and 3, and

between data-parallel components 3 and 4.

7. Including the dependencies between data-serial components 1 and 4, and

between data-parallel components 3 and 4.

8. Including the dependencies between data-serial components 1 and 3, be-

tween data-serial components 1 and 4, and between data-parallel compo-

nents 3 and 4.

9. Including only the dependency between data-serial components 1 and 3.

10. Including only the dependencies between data-serial components 1 and 4.

11. Including the dependencies between data-serial components 1 and 3, and

between data-serial components 1 and 4.

12. Including the dependencies between data-serial components 1 and 2, be-

tween data-serial components 1 and 3 and between data-serial components

1 and 4.

13. Including the dependencies between data-serial components 1 and 2 and

between data-serial components 1 and 3.

14. Including the dependencies between data-serial components 1 and 2 and

between data-serial components 1 and 4.

Note that we somewhat imprecisely use the characterizations data-serial and data-
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Table 7. The selected marginal

and conditional reliabilities for

test cases 2 and 3.

Test case 2 and 3

p1 = 0.99999

p2 = 0.999

p3 = 0.99

p4 = 0.9999

p2|1 = 0.999005

p3|1 = 0.990005

p4|1 = 0.999905

p4|3 = 0.999995

p4|13 = 0.9999965

parallel also in the simplified system. The same is done in test case 3.

5.3. Test case 3

Test case 3 is equal to test case 2, except that a failure of component 1 does not

necessarily cause system failure. This is counterintuitive since component 1 is in

series with the rest of the system, i.e. all other components are downstream of this

component. To see that failure in component 1 doesn’t necessarily cause the system

to fail, what is meant by failure in component 1 must be defined.

It must be remembered that the context is a system consisting of multiple

software components. For each of these components it is assumed that reliability

data are available. This means that the reliability assessment of these components

must have been done with reference to a given specification. It will in many cases,

however, be uncertain whether this specification is completely in accordance with

the requirements of the system the component is put into. Thus, what constitutes

a failure, according to the component’s specification, is not necessarily a failure in

the context of the system. Limited accuracy of outputs is one example of “failures”

that might not constitute a failure in a given context. As can be seen from the

reliabilities in Table 7, failures in component 1 are considered to be serious. E.g.,

the reliability of component 3 is 0.990005 when component 1 is OK and 0.490005

when component 1 fails.

By assuming that a failure of component 1 does not necessary cause system

failure, the assumption in Section 1.4 on binary component states is violated. If

the system is robust to a failure in component 1, the component has two possible

failure modes instead of one: 1) component 1 fails and leads to system failure and

2) component 1 fails but does not lead to system failure.

Birnbaum’s measure assumes binary component states and can therefore not

be calculated for components having multiple failure modes. One possible way to

overcome the problem of multiple failure modes in component 1, is to treat compo-

nent 1 as an environmental factor and not as a regular component in the system.



22 Kristiansen, Winther and Natvig

Another way is to redefine what is meant by a failure of component 1, and say that

component 1 only fails if it leads to system failure as well. In test case 3, component

1 is treated as an environmental factor and Birnbaum measures are only calculated

for components 2, 3 and 4.

The system in test case 3 will function as long as either both controllers function,

or if at least one controller and the monitor function. Based on the simplified

system’s minimal path sets, the assumptions that are made and the law of total

probability, the system reliability is given in Equation 20.

P (φ(x) = 1) = (p3|1p2|1 + p4|1p2|1 + p4|13p3|1
− 2p4|13p3|1p2|1)p1
+ (p3|1̄p2|1̄ + p4|1̄p2|1̄ + p4|1̄3p3|1̄
− 2p4|1̄3p3|1̄p2|1̄)q1 (20)

The system’s failure probability was assessed for same dependency combinations as

in test case 2.

6. Results

For each test case described in Section 5, the following procedure was applied:

1. Direct calculation was performed using a selected set of marginal and con-

ditional reliabilities.

2. Birnbaum’s measures were studied assuming the same marginal and con-

ditional reliabilities.

3. PCA was performed by varying the values of the test case’s conditional

reliabilities.

The results from the analyses are summarized below.

6.1. Test case 1.1

6.1.1. Direct calculation

Using the marginal and conditional reliabilities in Table 6, the system’s failure prob-

ability in test case 1.1 was calculated assuming the eight dependency combinations

listed in Section 5.1. The results are summarized in the line plot in Figure 6 and

clearly show that the system’s failure probability divides into four different groups

depending on the dependency combination used. The groups are summarized below.

• Group 1 consists of dependency combinations 1 and 4. Both these de-

pendency combinations result in the system’s exact failure probability

(0.000092). This indicates that dependency combination 4, which includes

the dependencies between data-parallel components 1 and 3 and between

data-parallel components 2 and 3, can replace the true dependency combi-

nation in test case 1.1 without significantly underestimating the system’s

failure probability.
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Fig. 6. Results from direct calculation in test case 1.1.

• Group 2 consists of dependency combinations 5 and 7, which both include

the dependency between data-parallel components 1 and 3. Using one of

these dependency combinations results in a minor underestimation of the

system’s failure probability (0.00009).

• Group 3 consists of dependency combinations 6 and 8, which both include

the dependency between data-parallel components 2 and 3. Using one of

these dependency combinations results in a minor to average underestima-

tion of the system’s failure probability (0.000085).

• Group 4 consists of dependency combinations 2 and 3. Common for these

two dependency combinations is that none of them include any dependen-

cies between data-parallel components. Dependency combination 2 assumes

independence between all software components whereas dependency com-

bination 3 only includes the dependency between data-serial components

1 and 2. Using one of these dependency combinations results in a major

underestimation of the system’s failure probability (0.0000001).

6.1.2. Birnbaum’s measure

Based on the original Birnbaum measures in Table 8, it can easily be seen that de-

pendency combination 4 is the dependency combination that alters the Birnbaum

measures the least. This is especially apparent for the Birnbaum measures of compo-

nents 1 and 2. While dependency combination 4 has the same Birnbaum measures

for components 1 and 2 as the correct dependency combination, the remaining

dependency combinations significantly overestimate these measures. Dependency

Table 8. Original Birnbaum measures and standardized

squared difference for components 1, 2 and 3 in test case 1.1.

DC IB1 IB2 IB3 st. sqrd. diff.

1 8.0× 10−6 8.0× 10−6 1.1× 10−3 0

2 1.0× 10−4 1.0× 10−4 2.0× 10−3 8.8× 10−3

3 1.0× 10−4 1.0× 10−4 1.1× 10−3 2.9× 10−2

4 8.0× 10−6 8.0× 10−6 2.0× 10−3 6.1× 10−5

5 1.0× 10−5 1.0× 10−5 2.0× 10−3 2.9× 10−5

6 1.5× 10−5 1.5× 10−5 2.0× 10−3 2.9× 10−7

7 1.0× 10−5 1.0× 10−5 1.1× 10−3 1.9× 10−5

8 1.5× 10−5 1.5× 10−5 1.1× 10−3 2.2× 10−4
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Fig. 7. Loading plot for test case 1.1.

combinations 2 and 3, which are the combinations that overestimates the Birnbaum

measures the most, are also the dependency combinations that underestimates the

system’s failure probability the most.

6.1.3. PCA

Variables that fall close together in a PCA loading plot indicate that the variables

are highly correlated and that they explain the same type of variation in data. The

loading plot in Figure 7 shows that the different dependency combinations in test

case 1.1 divide into four different groups based on their PCA loadings. The groups

are summarized below.

• Group 1 consists of dependency combinations 1 and 4, since these depen-

dency combinations fall close together in the loading plot. The results from

the PCA analysis show that using dependency combination 4 results in the

exact or a minor overestimation of the system’s failure probability. Using

all other dependency combinations will in almost all cases underestimate

the system’s failure probability, however to varies degrees.

• Group 2 consists of dependency combinations 5 and 7. The results from

the PCA analysis show that using one of these dependency combinations

mainly results in a minor underestimation of the system’s failure proba-

bility. However, in some special cases these dependency combinations may

result in a major underestimation of the system’s failure probability.

• Group 3 consists of dependency combinations 6 and 8. The results from

the PCA analysis show that using one of these dependency combinations

mainly will result in a minor underestimation of the system’s failure proba-

bility. However, in some special cases these dependency combinations may

result in a major underestimation of the system’s failure probability.

• Group 4 consists of dependency combinations 2 and 3, which constantly
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Fig. 8. Results from direct calculation in test case 1.2.

result in a major underestimation of the system’s failure probability. Re-

sults from the PCA analysis show that these dependency combinations

may underestimate the failure probability by a factor of 1000 compared

to the system’s true failure probability. In addition, the results show that

by only including the dependency between data-serial components 1 and 2

may result in even worse results than by assuming independence between

all components.

6.1.4. Results test case 1.1

The results from the analyses performed on test case 1.1 show that:

• Since the data-parallel components 1 and 3 and the data-parallel compo-

nents 2 and 3 have equal reliabilities, both dependencies should be included

in the reliability prediction. In fact, including only one of the dependencies

may result in a major underestimation of the system’s failure probability.

• Including only the dependency between the data-serial components 1 and

2 results in a major underestimation of the system’s failure probability.

In some cases, the results are even worse than by assuming independence

between all components.

6.2. Test case 1.2

6.2.1. Direct calculation

Using the marginal and conditional reliabilities in Table 6, the system’s failure prob-

ability in test case 1.2 was calculated assuming the same dependency combinations

as in test case 1.1. The results are summarized in the line plot in Figure 8 and

clearly show that the system’s failure probability divides into four different groups

depending on the dependency combination used. The groups are summarized below.

• Group 1 consists of dependency combinations 1 and 4. Both these de-

pendency combinations result in the system’s exact failure probability

(0.00035). This indicates that dependency combination 4 can replace the

true dependency combination in test case 1.2 without significantly under-

estimating the system’s failure probability.

• Group 2 consists of dependency combinations 6 and 8. Using one of these

dependency combinations results in a minor underestimation of the sys-



26 Kristiansen, Winther and Natvig

Table 9. Original Birnbaum measures and

squared difference for components 1, 2 and 3

in test case 1.2.

DC IB1 IB2 IB3 sqrd. diff.

1 0.0097 0.0097 0.001 0

2 0.01 0.01 0.0011 2.3× 10−7

3 0.01 0.01 0.001 2.3× 10−7

4 0.0097 0.0097 0.0011 2.5× 10−9

5 0.0099 0.0099 0.0011 1.3× 10−7

6 0.0097 0.0097 0.0011 5.7× 10−9

7 0.0099 0.0099 0.001 1.4× 10−7

8 0.0097 0.0097 0.001 3.2× 10−9

tem’s failure probability (0.00031).

• Group 3 consists of dependency combinations 5 and 7. Using one of these

dependency combinations results in an average underestimation of the sys-

tem’s failure probability (0.0001).

• Group 4 consists of dependency combinations 2 and 3. Using one of these

dependency combinations results in a major underestimation of the sys-

tem’s failure probability (0.00001).

6.2.2. Birnbaum’s measure

Based on the original Birnbaum measures and the squared differences in Table 9,

it can easily be seen that dependency combinations 4, 6 and 8 are the depen-

dency combinations that alter the Birnbaum measures the least. This is especially

apparent for the Birnbaum measures of components 1 and 2. While dependency

combinations 4, 6 and 8 have the same Birnbaum measures for components 1 and

2 as the correct dependency combination, the remaining dependency combinations

overestimate these measures. Dependency combinations 2 and 3, which are the

combinations that overestimates the Birnbaum measures the most, are also the

dependency combinations that underestimates the system’s failure probability the

most. In addition, it can easily be seen that dependency combinations 2 and 3 have

the highest squared difference between their Birnbaum measures and the Birnbaum

measures calculated including all component dependencies.

6.2.3. PCA

The loading plot in Figure 9 shows that the different dependency combinations in

test case 1.2 can be divided into four different groups based on their PCA loadings.

The groups are summarized below.

• Group 1 consists of dependency combinations 1 and 4, since these depen-

dency combinations fall close together in the loading plot. This indicates

that dependency combination 4 can replace dependency combination 1 in

test case 1.1 without any serious consequences. In fact, the results from

the PCA analysis show that using dependency combination 4 results in the
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Fig. 9. Loading plot for test case 1.2.

exact or a minor overestimation of the system’s failure probability. Using

all other dependency combinations will in almost all cases underestimate

the system’s failure probability, however to varies degrees.

• Group 2 consists of dependency combinations 6 and 8. Since, principal com-

ponent 1 explains 99.2% of the variation in data in test case 1.2, dependency

combinations 6 and 8 also load closely to dependency combinations 1 and

4. The results from the PCA analysis show that using one of these de-

pendency combinations mainly results in a minor underestimation of the

system’s failure probability. In fact, the results show that using dependency

combinations 6 or 8 may underestimate the failure probability by a factor

of 9 compared to the system’s true failure probability.

• Group 3 consists of dependency combinations 5 and 7. The results from the

PCA analysis show that using one of these dependency combinations may

underestimate the system’s failure probability by a factor of 78 compared

to the system’s true failure probability.

• Group 4 consists of the dependency combinations that constantly result in

a major underestimation of the system’s failure probability. Results from

the PCA analysis show that these dependency combinations may underes-

timate the failure probability by a factor of 86 compared to the system’s

true failure probability. In addition, the results show that by only including

the dependency between data-serial components 1 and 2 may result in even

worse results than by assuming independence between all components.

6.2.4. Results test case 1.2

The results from the analyses performed on test case 1.2 show that:

• Including the dependency between the most unreliable data-parallel compo-

nents 2 and 3 gives predictions close to the system’s true failure probability.
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Fig. 10. Results from direct calculation in test case 2.

Ignoring this dependency may, however, result in a major underestimation

of the system’s failure probability.

• Including the additional dependency between data-parallel components 1

and 3 may improve the predictions even more.

• Including only the dependency between data-serial components 1 and 2

results in a major underestimation of the system’s failure probability. In

some cases, the results are even worse than by assuming independence

between all components.

6.3. Test case 2

6.3.1. Direct calculation

Using the marginal and conditional reliabilities in Table 7, the system’s failure prob-

ability in test case 2 was calculated assuming the fourteen dependency combinations

listed in Section 5.2. The results are summarized in the line plot in Figure 10 and

clearly show that the system’s failure probability divides into three different groups

depending on the dependency combination used. The groups are summarized below:

• Group 1 consists of dependency combinations 1, 7 and 8. All these de-

pendency combinations result in the system’s exact failure probability

(0.000111). This indicates that dependency combinations 7 and 8, which

both include the dependencies between data-parallel components 3 and 4

and between data-serial components 1 and 4, can replace the true depen-

dency combination in the system, without significantly underestimating the

system’s failure probability.

• Group 2 consists of dependency combinations 3, 5 and 6, which all include

the dependency between data-parallel components 3 and 4. Using one of

these dependency combinations results in a minor overestimation of the

system’s failure probability (0.000115).).

• Group 3 consists of dependency combinations 2, 4, 9, 10, 11, 12, 13 and 14.

Using one of these dependency combinations results in a major underes-

timation of the system’s failure probability (0.000021). Common for these

dependency combinations is that none of them include the dependency

between data-parallel components 3 and 4. Dependency combination 2 as-

sumes independence between all software components, whereas the other

combinations only include dependencies between data-serial components.



On Component Dependencies in Compound Software 29

Table 10. Standardized Birnbaum measures and squared

difference for components 1, 2, 3 and 4 in test case 2.

DC IB1 IB2 IB3 IB4 st. sqrd. diff.

1 0.9786 0.0097 0.001 0.0107 0

2 0.9783 0.0099 0.0011 0.0107 1.3× 10−7

3 0.9786 0.0097 0.001 0.0107 5.0× 10−10

4 0.9783 0.0099 0.0011 0.0107 1.2× 10−7

5 0.9786 0.0097 0.001 0.0107 1.0× 10−10

6 0.9786 0.0097 0.001 0.0107 1.0× 10−10

7 0.9786 0.0097 0.001 0.0107 5.0× 10−10

8 0.9786 0.0097 0.001 0.0107 1.0× 10−10

9 0.9783 0.0099 0.0011 0.0107 1.2× 10−7

10 0.9783 0.0099 0.0011 0.0107 1.2× 10−7

11 0.9783 0.0099 0.0011 0.0107 1.2× 10−7

12 0.9783 0.0099 0.0011 0.0107 1.1× 10−7

13 0.9783 0.0099 0.0011 0.0107 1.1× 10−7

14 0.9783 0.0099 0.0011 0.0107 1.2× 10−7

6.3.2. Birnbaum’s measure

Based on the standardized Birnbaum measures and squared differences in Table 10,

it can easily be seen that dependency combinations 3, 5, 6, 7 and 8 are the depen-

dency combinations that alter the standardized Birnbaum measures the least. In

addition, it can easily be seen that dependency combinations 2, 4, 9, 10, 11, 12,

13 and 14 have the highest squared difference between their standardized Birn-

baum measures and the standardized Birnbaum measures calculated including all

component dependencies.

6.3.3. PCA

The loading plot in Figure 11 shows that the different dependency combinations in

test case 2 can be divided into three different groups based on their PCA loadings.

The groups are summarized below.

• Group 1 consists of dependency combinations 1, 7 and 8, since these depen-

dency combinations fall close together in the loading plot. This indicates

that dependency combinations 7 and 8 can replace dependency combination

1 in test case 2 without any serious consequences. In fact, the results from

the PCA analysis show that using dependency combination 7 or 8 results

in the exact or a minor overestimation of the system’s failure probability.

• Group 2 consists of dependency combinations 3, 5 and 6, which all fall close

together in the loading plot. Since, principal component 1 explains 99.9%

of the variation in data in test case 2, dependency combinations 3, 5 and 6

also load closely to dependency combinations 1, 7 and 8 .The results from

the PCA analysis show that using one of these dependency combinations

mainly results in a minor overestimation of the system’s failure probability.

• Group 3 consists of the dependency combinations that constantly under-

estimate the system’s failure probability, and includes dependency combi-
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Fig. 11. Loading plot for test case 2.

nations 2, 4, 9, 10, 11, 12, 13 and 14. Results from the PCA analysis show

that these dependency combinations may underestimate the failure prob-

ability by a factor of 5 compared to the system’s true failure probability.

In addition, the results show that by only including dependencies between

data-serial components may result in even worse results than by assuming

independence between all components.

6.3.4. Results test case 2

The results from the analyses performed on test case 2 show that:

• Including the dependency between data-parallel components 3 and 4 gives

predictions close to the system’s true failure probability. Ignoring this de-

pendency will have major consequences on the system’s failure probability.

• Including the additional dependency between the most reliable data-serial

components 1 and 4 results in even better predictions.

• Including only dependencies between data-serial components results in a

major underestimation of the system’s failure probability. In some cases,

the results are even worse than by assuming independence between all

components.

6.4. Test case 3

6.4.1. Direct calculation

Using the marginal and conditional reliabilities in Table 7, the system’s failure prob-

ability in test case 3 was calculated assuming the same dependency combinations as

in test case 2. The results are summarized in the line plot in Figure 12 and clearly

show that the system’s failure probability divides into two major groups depending

on the dependency combination used. The groups are summarized below.
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Fig. 12. Results from direct calculation in test case 3.

• Group 1 consists of dependency combinations 1, 3, 5, 6, 7, and 8. Using

one of these dependency combinations only results in a minor underestima-

tion of the system’s failure probability (0.000103, 0.000105). This indicates

that all these dependency combinations can replace the correct dependency

combination in test case 3 without any major consequences on the system’s

failure probability.

• Group 2 consists of dependency combinations 2, 4, 9, 10, 11, 12, 13 and 14.

Using one of these dependency combinations results in a major underesti-

mation of the system’s failure probability (0.000011).

6.4.2. Birnbaum’s measure

Based on the standardized Birnbaum measures and squared differences in Table 11,

it can easily be seen that dependency combinations 3, 5, 6, 7 and 8 are the depen-

dency combinations that alter the standardized Birnbaum measures the least. In

addition, it can easily be seen that dependency combinations 2, 4, 9, 10, 11, 12,

13 and 14 have the highest squared difference between their standardized Birn-

baum measures and the standardized Birnbaum measures calculated including all

component dependencies.

Table 11. Standardized Birnbaum measures and

squared difference for components 2, 3 and 4 in

test case 3.

DC. IB2 IB3 IB4 st. sqrd. diff.

1 0.4527 0.0458 0.5014 0

2 0.4553 0.0496 0.4951 6.1× 10−5

3 0.4526 0.0459 0.5015 2.7× 10−8

4 0.4553 0.0496 0.4951 6.1× 10−5

5 0.4526 0.0459 0.5015 2.7× 10−8

6 0.4526 0.0459 0.5015 2.7× 10−8

7 0.4527 0.046 0.5014 2.2× 10−8

8 0.4526 0.046 0.5016 4.4× 10−8

9 0.4553 0.0496 0.4951 6.1× 10−5

10 0.4553 0.0496 0.4951 6.1× 10−5

11 0.4552 0.0496 0.4952 5.9× 10−5

12 0.4554 0.0494 0.4952 5.7× 10−5

13 0.4554 0.0496 0.4950 6.3× 10−5

14 0.4554 0.0494 0.4952 5.8× 10−5
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Fig. 13. Loading plot for test case 3.

6.4.3. PCA

The loading plot in Figure 13 shows that the different dependency combinations in

test case 3 can be divided into four different groups based on their PCA loadings.

The groups are summarized below:

• Group 1 consists of dependency combinations 1, 3, 5, 6 and 8, since these

dependency combinations fall close together in the loading plot. This indi-

cates that these dependency combinations can replace dependency combi-

nation 1 in test case 3 without any serious consequences. The results from

the PCA analysis show that using one of the dependency combinations in

group 1 may result in the exact or a minor underestimation of the system’s

failure probability.

• Group 2 consists of dependency combination 7. Since, principal component

1 explains 99.7% of the variation in data in test case 3, dependency combi-

nation 7 also load closely to the dependency combinations in group 1. The

results from the PCA analysis show that using dependency combination 7

may result in the exact or a minor underestimation of the system’s failure

probability.

• Group 3 consists of dependency combinations 11, 12, 13 and 14. The results

from the PCA analysis show that using one of the dependency combinations

in group 2 may underestimate the system’s failure probability by a factor

of 9.

• Group 4 consists of the dependency combinations 2, 4, 9 and 10. Since,

principal component 1 explains 99.7% of the variation in data in test case 3,

dependency combinations 2, 4, 9 and 10 also load closely to the dependency

combinations in group 3. The results from the PCA analysis show that

using one of the dependency combinations in group 4 may underestimate

the system’s failure probability by a factor of 10.
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6.4.4. Results test case 3

The results from the analyses performed on test case 3 show that:

• Including the dependency between data-parallel components 3 and 4 gives

predictions close to the system’s true failure probability. Ignoring this de-

pendency will have major consequences on the system’s failure probability.

• Including only dependencies between data-serial components results in a

major underestimation of the system’s failure probability. In some cases,

the results are even worse than by assuming independence between all

components.

7. Summary of the Results and Discussion

The results from the analyses performed in Section 6 show that the three techniques

“direct calculation”, Birnbaum’s measure and PCA in most cases identify the same

dependency combinations as the “best” dependency combinations. The results can

be summarized as follows:

• Including only partial dependency information may give a substantial im-

provement in the reliability predictions, compared to assuming indepen-

dence between all software components. However, this is only as long as

the most important component dependencies are included.

• It is also apparent that dependencies between data-parallel components are

far more important than dependencies between data-serial components.

For a system consisting of both data-parallel and data-serial components, the results

indicate that:

• Including only dependencies between data-serial components may result

in a major underestimation of the system’s failure probability. In some

cases, the results are even worse than by assuming independence between

all components.

• Including only dependencies between data-parallel components may give

predictions close to the system’s true failure probability, as long as the

dependency between the most unreliable components is included.

• Including additional dependencies between data-parallel components may

improve the predictions further.

• Including additional dependencies between data-serial components may

also give better predictions, as long as the dependency between the most

reliable components is included.

One of the key results in 6 is the following theorem:

Theorem 1.

Let X1 . . . Xn be associated random variables such that 0 ≤ Xi ≤ 1 for i =

1 . . . n. Then
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E

n∏
i=1

Xi ≥
n∏

i=1

EXi (21)

E
n∐

i=1

Xi ≤
n∐

i=1

EXi (22)

By using this theorem on components having binary states, the theorem says that

falsely assuming independence between components in a series structure will overes-

timate the system’s failure probability. The theorem also says that falsely assuming

independence between components in a parallel structure will underestimate the

system’s failure probability. The author of 27 therefore concludes that for an ar-

bitrary component structure, the consequence of assuming independence will be

impossible to predict.

The results in Section 6 do, however, indicate that it may in fact be possible

to say something about the consequences of assuming independence between some

components in an arbitrary system structure. For a system where there are de-

pendencies between both data-serial and data-parallel components, it is quite clear

that the effect of falsely assuming independence between data-serial components is

greatly diminished as long as the dependencies between data-parallel components

are included. In the opposite case, when wrongly assuming independence between

data-parallel components and including the dependencies between data-serial com-

ponents, the system’s failure probability may however be underestimated even more

than by assuming independence between all software components in the system.

8. Conclusions and Further Work

In this paper, it is shown that the difficult task of including component dependencies

in the reliability calculations can be simplified in three ways:

1. The components’ marginal reliabilities put direct restrictions on the com-

ponents’ conditional reliabilities in a compound software.

2. The degrees of freedom are much fewer than first anticipated when it comes

to conditional probabilities. If the components’ marginal reliabilities and

four of the components’ conditional probabilities are known in a simple

three components system, the remaining 44 conditional probabilities can

be expressed using general rules of probability theory. This is shown math-

ematically in Appendix A.

3. Including only partial dependency information may give substantial im-

provements in the reliability predictions, compared to assuming indepen-

dence between all software components. However, this is only as long as

the most important component dependencies are included.

It should be emphasized that the rules for selecting the most important component

dependencies are based on case studies, where the individual component reliabilities
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are assumed to be known. It is also assumed that all components in the test cases,

as well as the system, only have two possible states. In addition, the research is

restricted to on-demand types of situations.

It should also be emphasized that the objective of this research is to include de-

pendency aspects in the reliability calculations of critical systems, and not to handle

component dependencies in systems consisting of a huge amount of components.

To follow up on these results, a more analytical approach should be consid-

ered. In addition, an evaluation of the proposed rules by studying other well-known

software structures is essential.
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Appendix A. Theorems and Proofs

Theorem 1. Consider a general system consisting of two components. Assume

further that the components’ marginal reliabilities p1 and p2 are known. In such a

system there are eight possible conditional probabilities between components 1 and 2:

p2|1, p2̄|1, p2|1̄, p2̄|1̄, p1|2, p1̄|2, p1|2̄ and p1̄|2̄. If one of these conditional probabilities

is known, the remaining seven can be found using general rules in probability theory.

Proof. This proof uses Bayes theorem, the rule of complementation and the fol-

lowing rule of total probability:

p2 = p2|1p1 + p2|1̄p1̄ (A.1)

Assume that the conditional probability p2|1 is known. As shown in Equations A.2-

A.8, the seven remaining conditional probabilities can be expressed as functions of

p1, p2 and p2|1.

p2̄|1 = 1− p2|1 (A.2)

p2|1̄ =
p2 − p2|1p1

1− p1
(A.3)

p2̄|1̄ = 1− p2 − p2|1p1
1− p1

(A.4)

p1|2 =
p2|1p1
p2

(A.5)
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p1̄|2 = 1− p2|1p1
p2

(A.6)

p1|2̄ =
(1− p2|1)p1

1− p2
(A.7)

p1̄|2̄ = 1− (1− p2|1)p1
1− p2

(A.8)

Theorem 2. Consider a general system consisting of three components. Assume

further that the components’ marginal reliabilities p1, p2 and p3 are known. In such

a system there are 48 possible conditional probabilities between components 1, 2 and

3: p2|1, p2̄|1, p2|1̄, p2̄|1̄, p1|2, p1̄|2, p1|2̄, p1̄|2̄, p3|1, p3̄|1, p3|1̄, p3̄|1̄, p1|3, p1̄|3, p1|3̄, p1̄|3̄,
p3|2, p3̄|2, p3|2̄, p3̄|2̄, p2|3, p2̄|3, p2|3̄, p2̄|3̄, p3|12, p3̄|12, p3|1̄2, p3̄|1̄2, p3|12̄, p3̄|12̄, p3|1̄2̄,
p3̄|1̄2̄, p2|13, p2̄|13, p2|1̄3, p2̄|1̄3, p2|13̄, p2̄|13̄, p2|1̄3̄, p2̄|1̄3̄, p1|23, p1̄|23, p1|2̄3, p1̄|2̄3, p1|23̄,
p1̄|23̄, p1|2̄3̄, p1̄|2̄3̄. If four of these conditional probabilities are known, the remaining

44 can be found using general rules in probability theory.

Proof. This proof uses Bayes theorem, the rule of complementation and the fol-

lowing rules of total probability:

p3 = p3|12p2|1p1 + p3|12̄p2̄|1p1
+ p3|1̄2p2|1̄p1̄ + p3|1̄2̄p2̄|1̄p1̄ (A.9)

p3|1 = p3|12p2|1 + p3|12̄p2̄|1 (A.10)

p3|2 = p3|12p1|2 + p3|1̄2p1̄|2 (A.11)

Assume that the conditional probabilities p2|1, p3|1, p3|2 and p3|12 are known. As

shown in Theorem 1, p2̄|1, p2|1̄, p2̄|1̄, p1|2, p1̄|2, p1|2̄, p1̄|2̄ can be expressed as functions

of p1, p2 and p2|1. In the same way p3̄|1, p3|1̄, p3̄|1̄, p1|3, p1̄|3, p1|3̄, p1̄|3̄ can be

expressed as functions of p1, p3 and p3|1, and p3̄|2, p3|2̄, p3̄|2̄, p2|3, p2̄|3, p2|3̄, p2̄|3̄ can

be expressed as functions of p2, p3 and p3|2.
The conditional probabilities p3̄|12, p3|1̄2, p3̄|1̄2, p3|12̄, p3̄|12̄, p3|1̄2̄ and p3̄|1̄2̄ can

further be expressed as functions of p1, p2, p3, p2|1, p3|1, p3|2 and p3|12. This is

shown in Equations A.12 - A.18. Especially, to express p3|1̄2̄ in Equation A.17,

Equations A.9, A.13, A.15, A.3 and A.4 are used as basis (the equations are listed

in the sequence of their usage).

p3̄|12 = 1− p3|12 (A.12)
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p3|12̄ =
p3|1 − p3|12p2|1

1− p2|1
(A.13)

p3̄|12̄ = 1− p3|1 − p3|12p2|1
1− p2|1

(A.14)

p3|1̄2 =
p3|2p2 − p3|12p2|1p1

p2 − p2|1p1
(A.15)

p3̄|1̄2 = 1− p3|2p2 − p3|12p2|1p1
p2 − p2|1p1

(A.16)

p3|1̄2̄ =
p3 − p3|1p1 − p3|2p2 + p3|12p2|1p1

1− p2 + (p2|1 − 1)p1
(A.17)

p3̄|1̄2̄ = 1− p3 − p3|1p1 − p3|2p2 + p3|12p2|1p1
1− p2 + (p2|1 − 1)p1

(A.18)

In the same way as shown above,

p2|13 =
p3|12p2|1p1
p3|1p1

(A.19)

gives p2̄|13, p2|1̄3, p2̄|1̄3, p2|13̄, p2̄|13̄, p2|1̄3̄ and p2̄|1̄3̄.
Furthermore,

p1|23 =
p3|12p2|1p1
p3|2p2

(A.20)

is leading to p1̄|23, p1|2̄3, p1̄|2̄3, p1|23̄, p1̄|23̄, p1|2̄3̄ and p1̄|2̄3̄.
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