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Abstract

Marginal indirect tax reform analysis evaluates for each commodity (group)

the marginal welfare cost (MC) of increasing government revenue by one

Euro by raising the indirect tax rate on that commodity. In this paper, I

propose an adjustment to the MC expressions to allow for (de)merit good

arguments and show how this adjustment can easily be parameterized on the

basis of econometric demand analysis.
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1 Introduction

Marginal indirect tax reform (MITR) analysis is probably one of the most

practical applications of public economics. It o¤ers clear-cut guidelines

for policy reform and allows empirical implementation using household ex-

penditure data, e¤ective indirect tax rates, estimates of aggregate demand

elasticities and a set of welfare weights.1

The standard MITR model assumes that the government endorses the

sovereignty of households in the economy, fully respecting their decisions

regarding the consumption of goods and services. In reality though, through

both statements and policy measures, governments reveal a desire to deviate

from consumer preferences for commodities like alcohol and tobacco. Not

only do governments try to better inform their citizens about the health

risks involved, they also attempt to discourage consumption through excise

taxes and marketing restrictions. Recently, the World Health Organization

has recommended that national governments impose a tax on sugar as an

instrument in their battle against obesity. Such arguments are called merit

good arguments, and economists have traced out the implications for optimal

commodity tax rules. I refer here to Besley (1988), Schroyen (2005) and

Blomquist and Micheletto (2006).

In this paper, I investigate how such merit arguments can be incorporated

in MITR analysis. In particular, I show how the central expressions for that

analysis � the marginal welfare cost of raising an extra Euro by means of

the indirect tax rate on good i �need to be amended to allow for merit
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good arguments and how these expressions can be parameterized in terms of

demand elasticities.

At the margin, a merit good argument can be interpreted as the existence

of a wedge between the household�s willingness to pay for an extra unit of

a commodity and that of a planner or government in an otherwise �rst-best

setting. There exist several ways to measure the marginal willingness to pay

(MWP) for a commodity. One way is to ask how much of a numéraire the

household is willing to give up. In a two-good consumption diagram, suppose

that F (x1; u) is the amount of the numéraire required by a household con-

suming x1 units of the �rst good to yield utility level u. With the numéraire

measured on the vertical axis, the graph of F (�; u) is the indi¤erence curve

and its slope measures the MWP for good 1. Up to a constant of integra-

tion, the total willingness to pay is F (x1; u). Schroyen (2005) proposed a

transformation of this function to construct the planner�s preferences, and

then used it to characterize the optimal commodity tax rules.2

However, for empirical purposes, and especially for MITR analysis, the

numéraire function is less convenient because neither the tax code nor empiri-

cal demand analysis singles out a particular commodity category as numéraire.

A more appropriate alternative is then the distance function. This function,

which was introduced by Deaton (1979) in the taxation literature, determines

the factor by which all quantities have to be scaled down in order to bring

the consumer to a certain utility level. As shown by Deaton, the derivative

of this function with respect to the quantity of a good gives the demand price

for that good (as a fraction of total income). Hence, the function itself can
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again be considered the total willingness to pay and can be transformed to

account for the merit concerns of a planner. That is precisely what I do

in the next section of the paper. In section 3, I work out the expression

for the marginal welfare cost of indirect taxation, making use of the govern-

ment�s evaluation. This results in equation (21), the central expression of

this paper. This equation shows that the merit good argument a¤ects the

marginal cost of taxation rules through the consumer�s scale elasticities. In

section 4, I provide an algorithm to compute such elasticities from informa-

tion about budget shares, income and Marshallian price elasticities. Section

5 concludes.

2 The model

Households

A representative household has preferences that can be represented by

a strongly quasi-concave utility function on n commodities: u(x1; :::; xn).

Facing a vector of consumer prices q0 = (q1; :::; qn) and having a disposable

income m, it solves the problem

max
x
u(x) s.t. q0x = m (�): (1)

Denoting � def
= q

m
as the vector of normalized prices, the solution may be

written as x(�) yielding a utility level v(�). Letting subscripts with u denote
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partial derivatives, the �rst order conditions for (1) may be written as

ui(x(�))Pn
j=1 uj(x(�))xj(�)

= �i (i = 1; :::; n): (2)

For future reference, note that the marginal utility of income, �, is given byPn
j=1 ujxj

m
.

A household�s preferences may also be represented by the distance func-

tion d(x; u). This function is implicitly de�ned as

u(
x

d(x; u)
) = u (all x; u): (3)

The �distance�d(x; u) is the factor by which the commodity bundle x needs

to be scaled down to generate a utility level u. It can be shown that

@d(x(�);v(�))
@xi

= �i and hence the derivative provides a measure of the house-

hold�s marginal willingness to pay for commodity i �see Deaton (1979) on

other properties of the distance function. Note that, by de�nition, the de-

mand prices �i satisfy the adding-up property

nX
i=1

�ixi = 1: (4)

Government

Suppose now that the government considers commodity n as a (de)merit

good. Convinced of the (de)merit properties of this commodity, it believes

that in order for the consumer to reach utility level u, all commodities should
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be scaled down by more (less) than d(x; u), for instance by the amount

D(x; u) = d(x; u) +

Z xn

0

�(�)d�: (5)

In terms of the MWP, we have

@D(x; u)

@xi
=

@d(x; u)

@xi
(i 6= n); and (6)

@D(x; u)

@xn
=

@d(x; u)

@xn
+ �(xn); (7)

so that the government believes that the household should be willing to

pay �(xn) extra for an additional unit of good n when consuming a bundle

(x�n; xn) yielding utility level u. It can be shown that the utility function

to which the government subscribes is then given by3 ;4

U(x) = u

�
x

1�
R xn
0
�(�)d�

�
(all x). (8)

Two examples will illustrate. Let n be red wine. Small quantities of wine

are tolerated, but quantities in excess of x�n are considered harmful: �(�) < 0

if � � x�n, zero otherwise. Suppose n is dental care. A regular dental check

is regarded as desirable; on any extra dental care the government respects

consumer sovereignty: �(�) > 0 if � � x�n, zero otherwise.

From now on I assume that �(�) is zero for � � x�n and takes the constant

value � on the interval [x�n; xn] so that the denominator in (8) becomes 1 �

�(xn � x�n). If x�n = 0 and � > 0, we have an instance of the dental

care example; the red wine example has � < 0, x�n > 0. Letting exi be a
5



shorthand for xi
1��(xn�x�n)

, the government�s interpretation of the marginal

utilities is then

Ui(x) =
ui(ex)

1� �(xn � x�n)
+ �in

nX
j=1

uj(ex)xj�
[1� �(xn � x�n)]2

(all i); (9)

where �in = 1 if i = n and 0 otherwise. Normalizing these by dividing

through by
Pn

k=1 Uk(x)xk (=
Pn

k=1 uk(ex)exk 1+�x�n
1��(xn�x�n)

) then gives

�i(ex(�); �) def= ui(ex)Pn
k=1 uk(ex)exk 1

1 + �x�n
+ �in

�

1 + �x�n
(all i): (10)

Clearly, if �! 0, the government�s normalized �demand prices�coincide with

those of the household.

I now propose to approximate �i(ex(�); �) by a �rst order Taylor expan-
sion around �i(ex(0); 0) = �i. This gives
�i(ex(�); �) ' �i(1� �xn) + �in�+ " nX

k=1

@�i
@xk

xk

!
+ �i

#
(xn � x�n)� (all i):

(11)

The big round bracket term denotes a pure scale e¤ect, i.e., the e¤ect of an

equi-proportional increase in all quantities on the normalized demand price

for a commodity (viz. @�i(�x)
@�

j�=1). I denote this e¤ect as gi (i = 1; :::; n)

and write (11) as

�i(ex(�); �) ' �i(1� �xn) + �in�+ (gi + �i)(xn � x�n)� (all i): (12)

Because scale e¤ects satisfy the condition
Pn

i=1 gixi = �1 (see Barten and
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Bettendorf, 1989, p 1512), it may be checked that the �i (i = 1; :::; n) also

satisfy the adding-up requirement (4):
Pn

i=1�ixi = 1.

Suppose �rst that xn = x�n, meaning that the government�s evaluation

coincides with that of the household for all but the last unit consumed of

good n. Then (12) reduces to �i(ex(�); �) ' �in�+ �i(1� �xn). Merit con-
siderations thus a¤ect MWP in two ways. First, the government corrects the

household�s MWP for the merit good (n) with factor �. Second, all demand

prices are scaled down by factor �xn to restore adding-up. Consequently,

the demand price for commodity n becomes �n + �(1� �nxn).

Consider next the opposite extreme where the government disapproves

of the consumption of good n from the �rst unit onwards: x�n = 0; � < 0.

Now (12) reduces to �i(ex(�); �) ' �in� + �i(1 � �xn) + (gi + �i)xn�. The

last term is the correction for the consumption of all the infra-marginal units

of the demerit good. Demerit considerations make the government regard

the household as worse o¤ than it is aware of itself, because of all the infra-

marginal units of good n consumed. This has a scale e¤ect that, for all

normal goods (gi < 0), increases the MWP. Again, to secure adding-up, the

MWPs are scaled down in proportion to the �i. The government�s MWP

thus becomes

�i(ex(�); �) ' �i + �in�+ gixn�: (13)

In the remainder of the paper, I will derive the marginal cost expressions for

this last case (x�n = 0; � < 0).
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3 Marginal cost expressions

MITR asks about the marginal cost in terms of social welfare, W , of raising

government revenue, R, by one Euro when using the tax on commodity

i (i = 1; :::; n):

MCi = �
@W=@ti
@R=@ti

(i = 1; :::; n): (14)

If MCi > MCj, welfare can be increased by lowering the indirect tax

rate on commodity i and raising that on commodity j in a budgetary neutral

fashion.

Expressions of this kind have been discussed in detail by Ahmad and

Stern (1984), who show that a neat parameterization is obtained by multi-

plying numerator and denominator by the respective after-tax price qi. The

denominator is then given by

qi
@R

@ti
= qixi +

Pn
j=1 tj

@xj
@qi
qi

= qixi +
Pn

j=1 t
�
jqjxj"ji; (15)

where "ji is the (aggregate) Marshallian elasticity of the demand for good

j with respect to the price of good i, and t�j is the tax on commodity j

expressed as a fraction of the consumer price ( tj
qj
).

Turning now to the numerator, the obvious measure of social welfare is

U(x(�)). The e¤ect of a marginal change in the excise tax rate on commodity
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i (i = 1; :::; n) on social welfare is then

�@W
@ti

= �
nX
j=1

Uj
@xj
@�i

1

m
= �

�Pn
k=1 Ukxk
m

� nX
j=1

UjPn
k=1 Ukxk

@xj
@�i

: (16)

The round bracket term can be interpreted as the government�s evaluation

of the consumer�s marginal utility of income. This can be seen as follows.

Since
nX
k=1

Ukxk =

nX
k=1

uk(ex)exk 1

1� �xn
; (17)

approximating the rhs with a �rst order Taylor expansion around � = 0,

yields

Pn
k=1 Ukxk
m

'
Pn

k=1 uk(x)xk
m

�
1 + (2� (�x

0uxxx

x0ux
)�xn

�
: (18)

In (18), the term
Pn
k=1 uk(x)xk

m
is the household�s marginal utility of income,

�, to which
Pn
k=1 Ukxk
m

converges as �! 0. The expression �x0uxxx
x0ux

is a scalar

measure of the curvature of the household�s utility function.5

Denoting
Pn
k=1 Ukxk
m

by �, the rhs of (16) may then be written as��
Pn

j=1�j(ex(�); �)@xj@�i

and upon using the approximating expression (13) we get6

�@W
@ti

' �
"
xi �

nX
j=1

gj
@xj
@�i

�xn � �
@xn
@�i

#
: (19)
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Multiplying through by the consumer price qi then gives

�qi
@W

@ti
' �

"
qixi �m�xn

 
nX
j=1

�jwj"ji + "ni

!#
; (20)

where �j
def
=

gj
�j
is the scale elasticity of good j, and wj

def
= �jxj is the budget

share of good j. In section 4, I explain the algorithm to retrieve the scale

elasticities �j from the more standard ones.

The term in front of the big round brackets may be written as m�
qn
qnxn.

Since � has the dimension of a normalized price, m� has the dimension of a

price and m�
qn
is the wedge between the government�s MWP and that of the

consumer, expressed as a fraction of the latter. Denoting this relative wedge

as � def
= m�

qn
, the reduction of the consumer�s welfare �as perceived by the

government and measured in Euro �is then

�qi
@W

@ti
' �

"
(qixi)� � (qnxn)

 
nX
j=1

�jwj "ji + "ni

!#
: (21)

Household welfare goes down to the extent that it spends disposable in-

come on commodity i. However, the increase in the consumer price qi has

the additional e¤ect of changing the consumption pattern for all goods and,

to the extent (�) that merit good considerations drive a wedge between the

consumer�s and the government�s MWP, this needs to be accounted for �

hence the big round bracket term.

Expression (21) is for a representative household economy. To account

for heterogeneous households, I add household superscripts h (h = 1; :::; H)
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and attach a social weight 
h to household h. This gives

�qi
@W

@ti
'

HX
h=1

[
h�h]

"
(qixi)

h � � (qnxn)h
 

nX
j=1

�hj w
h
j "

h
ji + "

h
ni

!#
: (22)

The small round bracket terms denote expenditure levels, and are available

from household survey data, while the scale and price elasticities can in

principle be estimated using a household expenditure panel data. A second-

best solution is to use estimates based on aggregate expenditure time series

data. For a given set of welfare weights (
h�h) and merit parameter (�), it

is then possible to calculate the expressions for (14) and rank them.

A �nal issue is the choice of welfare weights 
h�h. From (18), we have

�h ' �h
�
1 + �

�
2� (�x

0uxxx

x0ux
)h
�
(qnxn)

h

�
: (23)

As a �rst approximation, one could just ignore the square bracket term and

choose the Stern (1977) speci�cation for 
h�h, viz. (m
h

m0 )
�� where �(>

0) is an inequality aversion parameter and m0 is the income of the lowest

household income group. Alternatively, one could approximate (�x0uxxx
x0ux

) by

an estimate of the coe¢ cient of relative risk aversion, �, and use as welfare

weights


h�h =

 
mh
�
1 + � (2� �) (qnxn)h

��1
m0 [1 + � (2� �) (qnxn)0]�1

!��
: (24)
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4 Retrieving scale elasticities from regular es-

timation results

In this section, I brie�y show how estimates for Marshallian price elasticities

("ji) and Engel income elasticities (�i) together with average budget shares

(wi) can be used to construct the corresponding scale elasticities (�i).

Let w = (wi); E = ("ij); � = (�i) and denote the diagonal matrix of

budget shares as ŵ. The matrix of compensated price elasticities is then

given by Ec = E+�w0. Now de�ne S def
= ŵEc and b def= ŵ�. This matrix and

vector are the Rotterdam parameterization of the regular demand system in

di¤erential form, i.e.

ŵd log x = b[�w0d log �] + Sd log �: (25)

If � denotes the vector of units, then �0b = 1; S = S 0; S� = 0, and y0Sy < 0 (all

y 6= ��, � real scalar) (see Theil, 1976).

Following Salvas-Bronsard et al. (1977), consider, next, the bordered

matrix
�
S w
w0 0

�
. This matrix has rank n+1, and is invertible into

�
T �
�0 0

�
. The

matrix T has the properties (i) TS = I � �w0, (ii) Tw = 0, (iii) T = T 0, and

(iv) y0Ty < 0 (all y 6= �w, � real scalar). Pre-multiplying (25) through by

T , making use of (i) and rearranging then gives

d log � = Tŵd log x� (Tb+ �)w0d log x; (26)

where I used the fact that �w0dlog � = w0dlog x. The vector of scale elas-
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ticities � is therefore given by �(Tb+ �) with the property w0� = �1.

5 Conclusion

Marginal indirect tax reform (MITR) exercises have been performed for

many countries, both developed and developing. However, the computation

of high marginal costs for commodities such as tobacco and alcohol, and

the ensuing policy recommendations that these goods should be taxed more

leniently, has often made researchers make qualifying statements about the

usefulness of such exercises for this type of goods.

In this paper, I have developed a methodology to account for (de)merit

good arguments in MITR. It consists in constructing government marginal

willingness to pay functions and linearizing these around the MWPs of the

household. The MWP wedges turn out to depend on the scale elasticities

of the di¤erent commodities. I have also shown how these elasticities can

be retrieved from the standard Marshallian price and income elasticities. In

Schroyen and Aasness (2006), this methodology is applied to a vector of 14

indirect e¤ective tax rates prevailing in Norway.
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Notes

1See Ahmad and Stern (1984, 1991) for India and Pakistan, Decoster and Schokkaert

(1989) for Belgium, Madden (1995) for Ireland, Kaplanoglou and Newbery (2003) for

Greece, Schroyen and Aasness (2006) for Norway. A broader perspective on these reform

rules is provided in Drèze and Stern (1990) and Coady and Drèze (2002).

2Besley (1988) considers good i a (de)merit good by de�ning the government�s utility

function as U(x) def= u(x�i; �xi) where u(�) is the household�s utility function and � is

a constant above (below) unity. Schroyen (2005) showed that this formulation leads to

counter-intuitive policy recommendations for goods with a price elasticity below unity.

Blomquist and Micheletto (2006) say a (de)merit good argument for commodity i exists

when the planner would like to compensate a household more (less) for a marginal increase

in the price of good i than the household itself requires. It can be shown that a merit good

argument for good i de�ned in terms of the willingness to pay (as in this paper) implies a

merit good argument in the Blomquist�Micheletto sense, not only for commodity i but for

any Hicksian complement to good i (and any Hicksian substitute to i is a demerit good).

3De�ne U(�) as U( x
D(x;u) ) = u (all x; u), then U(x) = u if D(x; u) = 1. From (3) and

(5)

u

 
x

D(x; u)�
R xn
0
�(�)d�

!
= u (all x; u);

so that

U(
x

D(x; u)
) = u

 
x

D(x; u)�
R xn
0
�(�)d�

!
(all x; u):

Evaluating this at D(x; u) = 1 �nally gives (8). Notice that
R xn
0
�(�)d� = �(e�)xn (somee� 2 [0; xn]) and therefore that it has the dimension of a budget share (since � has the

dimension of a normalized price).

4Extending this framework to more than one (de)merit good is straightforward. If,

e.g., n � 1 is also a (de)merit good, one can add
R xn�1
0

�n�1(�)d� to the rhs of (5) and

subtract it from the denominator in (8).

5With a single commodity, it is clear that �x0uxxx
x0ux

coincides with the coe¢ cient of

relative risk aversion. In the multicommodity case, the relative risk aversion coe¢ cient

14



for the indirect utility function v(q;m) is given by �vmm

vm
m, which can be shown to equal

�x0muxxxm
x0ux

m. This equals �x0uxxx
x0ux

with homothetic preferences.

6Use is also made of
Pn

j=1 �j
@xj
@�i

= �xi (which follows from di¤erentiating the budget

constraint by �i).
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