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plitudes contributes to the ground state energy of the homogeneous electron gas. We

present and derive the formalism and equations needed, and describe in detail how two

independent and conceptually differing computational schemes may be implemented ef-

ficiently for the system under study. We finally perform numerous calculations for the

infinite electron gas, investigate how the gradual inclusion of more diagrams leading up

to the full coupled cluster doubles triples (CCDT) method affects the energy, and we es-

timate the energy in the thermodynamical limit by extrapolating results from large scale

computations. In order to check all equations, we have also developed a software which

produces all equations needed at a given level of truncation of coupled cluster theory.

This allows for efficient benchmarking of equations as well as codes for implementing

various conributions to the theory.
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Chapter 1

Introduction

In this thesis we will use the coupled cluster method, also called coupled cluster theory,

to investigate the homogeneous electron gas. More specifically, we will investigate how

the inclusion of triple excitations in the coupled cluster equations will affect calculations

of the ground state energy. Numerous (see for example Refs. [1, 4, 6]) calculations of the

system in question have been made using the coupled cluster doubles (CCD) method,

doubles with perturbative triples (CCD(T)), and various other many-body methods, but

to the author’s best knowledge this thesis presents for the first time results containing

triple excitations for the electron gas.

We shall systematically investigate how each diagram present in the equation contributes

to the ground state energy for smaller basis sets, incrementally leading up the the full

inclusion of triple excitations (CCDT), and we will estimate the energy in the thermo-

dynamical limit using a CCDT-1 [7] approach and compare these results with existing

results from full configuration interaction quantum monte carlo (FCIQMC) present in

the literature. Furthermore, we have also derived a software which allows for the au-

tomatical derivation of various coupled cluster truncations, with the derivation of the

corresponding analytical expressions, their pertinent diagrams and code.

In order to convey these results, this thesis is structured as follows: In the second chapter

of this thesis, we review the context from which the many-body problem arises, and we

motivate the need for the formalism developed in Chapters 3 and 4. In Chapter 5, we

give a broad overview of the methodology involved, and we give some special attention

to the methods that closely relate to the coupled cluster method, such as Hartree-Fock

theory, configuration interaction theory and many-body perturbation theory.

In Chapter 6, we derive the coupled cluster method, and we introduce both the perti-

nent diagrammatic techniques and the computational implementations that we use to

1



Introduction 2

derive the actual equations for various truncations of the coupled cluster method. Fur-

thermore, we discuss also our software for deriving automatically various coupled cluster

truncations. This software allows for a consistent check of all derived equations.

The homogeneous electron gas (HEG) is reviewed in Chapter 7, where we derive and

present the expressions needed to evaluate the coupled cluster equations, such as the the

plane wave basis, Fock matrix elements [8], the two-body interaction [7] and the general

structure of the model.

In Chapter 8 we present implementational details, and we describe two conceptually

different schemes for solving the coupled cluster equations for our system. We also

discuss topics such as performance and memory usage.

In Chapter 9, we validate the implementations by comparing with results published

in other studies and by comparing results from the two independent solvers. We then

perform a series of calculations for smaller basis sets, ending up with the full inclusion of

triple amplitudes. Estimates in the thermodynamical limit is performed by extrapolation

from a data set obtained by running our CCDT-1 code on the Abel cluster (see Ref. [2]).

We discuss these findings in light of calculations performed by others, and finally, in the

last chapter, we present our concluding remarks, recommendations and perspectives for

future work.



Chapter 2

Many Body Quantum Theory

A brief review The aim of this chapter is to introduce some of the fundamental con-

cepts relevant to this thesis, with an emphasis on many-body theory and the formalism

of second quantization.

2.1 Many-body Theory

Many-body theory is the framework which to date best describes and predicts phenom-

ena relating to interacting quantum systems. The main body of the theory was developed

by physicists such as Fermi, Pauli and Dirac in the late 1920s. As the Davisson-Germer

electron diffraction experiment confirmed the particle wave duality of matter in 1927 [9]

and the discovery of half integer spin was made by Goudsmit and Uhlenbeck in 1925 [9],

these results found their rationale in the theoretical work of Pauli, Fermi and Dirac [9].

Dirac introduced the Second Quantization Formalism in 1927 [7].

Important contributions have been made continuously over the years. Feynman in-

troduced the diagrammatic formalism in 1949 [7], prior to the advent of many-body

perturbation theory, introduced by Brueckner and Levinson in 1955 [7]. The subsequent

decades have seen an explosion in the development of various so-called first principle

methods1, including several Monte Carlo methods, Green’s function methods, full con-

figuration interaction theory and many other many-body approaches. In this thesis, we

will in particular pay attention to coupled cluster theory. This method was originally

introduced in order to solve the nuclear many-body problem by Coester and Kümmel

[10]. Coupled cluster theory, with its various approximations, has during the last five

1With first principle or ab initio methods, we mean methods that allow, with a given Hamiltonian,
for either exact solutions of the many-body problem or approximative solutions which can be improved
upon systematically

3
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decades provided highly accurate predictions for a wide range of interacting quantum

systems and has become one of the standard many-body methods in quantum chem-

istry and nuclear physics, providing precise benchmarks for systems up to hundreds of

interacting electrons or nucleons.

Coupled cluster theory offers a range of methods for approximating energies and prop-

erties of systems. When choosing which method to utilize, one has to consider the trade

off between performance and accuracy. While some approximations may in principle

provide us with very precise results, they may have computational requirements beyond

what is currently achievable. With these considerations, the so-called CCSD(T) (Cou-

pled Cluster Singles and Doubles with Perturbative Triples) is considered to be the ”gold

standard” of coupled cluster theory, as it is both efficient and highly accurate.2

In the following sections we will briefly review some of the essential elements of quantum

many-body theory and introduce notations used in the rest of this thesis. Since a great

number of in-depth and excellent modern textbooks are written on these topics, the aim

here is merely to introduce concepts and theory that will be utilized in later parts of

this thesis. For an extensive introduction to the basic elements of many-body theory,

the reader is referred to some of the many books on the subject. [7, 8, 11–13].

2.2 The Postulates of Quantum Mechanics

The mathematical framework of quantum mechanics is rooted in several fundamental

postulates. We will here briefly state these.

(1) The Wave Function The state of a quantum mechanical system is fully specified

in time and space by a wave function |Ψ(x, t)〉. Born’s Statistical Interpretation [14]

suggests that the probability of finding the system in the volume element dx at time t

is defined by Ψ(x, t)∗Ψ(x, t)dx. Another important property is that the wave function

should be normalized to one in the full occupied space Ω [14], that is

∫
Ω

Ψ(x, t)∗Ψ(x, t)dΩ = 1.

Here the variable x can represent one or more-dimensional systems and include for

example spin degrees of freedom.

2The author was not able to pinpoint exactly where this concept of ”gold-standard” originated, but
a search on Google Scholar with the keywords ”coupled cluster gold standard” clearly shows that this
terminology is commonly used within the quantum chemistry community.
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(2) Observables For any measurable quantity, such as energy, momentum, or spin,

there exists a corresponding linear, Hermitean operator. Such operators are commonly

denoted with a hat; Â

(3) Measurement A measurement of any observables linked with the operator Â

acting on a given system, will result in a value a, corresponding to the eigenvalues of

the equation

Â|Ψ〉 = a|Ψ〉.

(4) Average measurement For a system in the state |Ψ〉, we define the average

measurement of Â by

∫
Ω

Ψ(x, t)∗ÂΨ(x, t)dΩ ≡ 〈Ψ|Â|Ψ〉 = 〈A〉.

Here we have assumed that the wave function is normalized. The average measurement

is not the most likely result, merely the average of a multitude of measurements on

identical systems.

(5) Time evolution The system will evolve in time in accordance with the time

independent Schrödinger equation

Ĥ|Ψ(x, t)〉 = i~
∂

∂t
|Ψ(x, t)〉. (2.1)

While the more general requirement of a wave function is that it fulfills the time depen-

dent Schrödinger equation, we may also seek stationary solutions to the time independent

Schrödinger equation

Ĥ|Ψ(x)〉 = ε|Ψ(x)〉, (2.2)

where Ψ no longer has any dependence on t, and ε is considered the eigevalues of Ĥ.

Such a state may describe for example the ground state, in which case ε represents the

ground state energy.
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(6) The Pauli Exclusion Principle For systems composed of half-integer particles

(fermions), the total wave function has to be antisymmetric. As a consequence of the

this principle, when using a single-particle basis to build a many-body state, no two

indistinguishable fermions can occupy the same quantum state.

While not all textbooks list the Pauli principle as a separate postulate, many experiments

have been conducted in order to test the validity of the postulate, with at present no

deviations, within experimental uncertainties, from the postulate3. Most of this thesis

does rely on the Pauli Principle being true, so for all intents and purposes we may as

well take it to be a fundamental postulate.

2.3 The Many Body Wave Function

A single particle may in isolation be completely described by a wave function in Hilbert

space. We will refer to this single particle state by

φi(x),

where x now contains all the relevant spacial quantum numbers as well as spin degrees

of freedom. Additional quantum numbers needed to specify a given state are included

in the subscript i.

In the presence of other particles it will make sense to define a wave function that

describes the system as a whole Φ, and it is reasonable to assume that this function

relies on each constituent single particle state. For a system of N particles, we then

have an N -body wave function of the form

Φ ≡ Φ(ψ0(x0), φ1(x1), φ2(x2)...φN (xN )). (2.3)

Since every single particle state has an associated Hilbert space, the system’s state space

will be a tensor product of each single particle state space

H0 ⊗H1 ⊗H2 ⊗ ...⊗HN . (2.4)

It is however possible for a subspace of the above to be sufficient. We may also refer to

the totality of these spaces as the Fock space [7].

3In ”Foundations of Physics” (1957) by Lindsay and Margenau [15] it is even claimed that ”There is
no way of deducing Pauli’s principle; its validity has to be inferred from its results [...]”
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This may lead us to guess that the system’s wave function is a product of single particle

states

Φh = φ0 ⊗ φ1 ⊗ ...⊗ φN = φ0(x0)φ1(x1)...φN (xN ). (2.5)

The subscript h denotes that the above product is the so called Hartree product or

Hartree function. It may also be written as

∏
i

φj(xi.) (2.6)

2.4 Antisymmetry

The Hartree product lacks one important feature that is needed to properly describe

fermionic systems, namely the antisymmetrization described in postulate six in the pre-

vious subsection. The Hartree product is completely uncorrelated, meaning that the

probability of finding fermions simultaneously at locations x0, x1, ... is given by

|φi(x0)φj(x1)...|2dx0dx1... = |φi(x0)|2dx0|φj(x1)|2dx2...

.

This is just the product of each constituent particle wave function squared. The motion

of these particles is in effect independent of each other.

In this thesis we will focus on electronic many-body systems, with an emphasis on the

infinite electron gas in three dimensions. Electrons are thus our constituent particles.

Electrons are identical and indistinguishable spin 1/2 fermions [14].

Although it does not immediately solve the antisymmetrization issue, we may assume

that each way of permuting the Hartree function is an equally valid representation of

the system, implying that also a linear combination of such permuted Hartree products

is a valid representation of the system, that is

Φp =
1√
N !

N !∑
π

P̂πΨh. (2.7)

The subscript p refers to a given set of permutations and N ! serves as a normalizing

constant. The operator P̂π is the permutation operator, performing all N ! possible

permutations of the Hartree product.

The Pauli Exclusion Principle is an interpretation of experimental facts, such as the

pairing tendency of electrons, and the relation between stability and particle count in
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a variety of systems. It is commonly stated as no two indistinguishable fermions may

occupy the same quantum state. When applied on the permuted Hartree function, we

see that this principle does not apply in its current form.

To mend this shortcoming of the permuted Hartree function we require that interchang-

ing two particles should also change the sign of the resulting function. Thus, an odd

number of permutations should result in a sign change, while an even number of per-

mutations should not. We may express this by

ΦSD =
1√
N !

N !∑
π

P̂π(−)n(π)Ψh ≡
√
N !AΨh. (2.8)

The subscript SD now denotes the so-called Slater determinant. The antisymmetrizer

A is introduced to ease upcoming manipulations. One important property of the anti-

symmetrizer is that it commutes with the Hamiltonian [16]

[
A, Ĥ

]
= AĤ − ĤA = 0. (2.9)

Another one is that its square is simply itself [16], that is

A2 = A. (2.10)

Furthermore, conjugation results in

A† = A. (2.11)

Another common representation of the Slater determinant is [7]

ΦSD(x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)
...

...
. . .

...

ψ1(xN) ψ2(xN) · · · ψN (xN)

∣∣∣∣∣∣∣∣∣∣∣
. (2.12)

2.5 The Hamiltonian

In classical mechanics, the total energy of a particle is called the Hamiltonian, and is

written as [14]

H(x, p) =
p2

2m
+ V (x), (2.13)
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where p is the momentum, x is the position, m is the mass and V (x) is the potential

acting on a given particle. By substituting p → ~
i
∂
∂x , we find the corresponding single-

particle quantum mechanical Hamiltonian to be [14]

Ĥ = − ~2

2m

∂2

∂x2
+ V (x). (2.14)

2.6 Operators and matrix elements

The form of the potential V (x) in (2.14) will be of special interest to us when working

with many-body systems. For interacting systems, it is not sufficient for this operator

to have a dependency on the coordinates of one particle at the time, since some parts of

the potential energy are attributed to forces between the particles. Such forces normally

depend on the distance between the particles, in other words two sets of coordinates

at a time. In this context, it makes sense to separate terms that relate to a common

potential from the terms that relate to multiple particles that interact. For a particle

present in the system we may therefore write

V̂ (xi) = v̂(xi) +
∑
j

v̂(xi, xj) +
∑

j<k,jk 6=i
v̂(xi, xj , xk) + ... ≡ v̂i + v̂ij + v̂ijk + ... (2.15)

The first term now relates to the common potential or external potential felt by all

particles, the second term relates to forces that act on two particles at a time, and the

third relates to forces that involves three particles at a time. We could extend this

to include four-body forces or more complicated ones, but in this thesis we will limit

ourselves to at most two-body interactions. We will define these interactions in more

detail in chapter 3.

It is convenient to include the kinetic energy in the one-body force, allowing us to thereby

define a one-body part of the full many-body Hamiltonian as

ĥ0(xi) = − ~2

2m

∂2

∂x2
i

+ v(xi). (2.16)

We will assume that our system consists of identical particles such as electrons. There is

then no need to assign any index to the mass, since it will be the same for all particles.

The reason why we define such a one-body operator is that it is common to define single-

particle eigenbases which are eigenstates (and thereby eigenvalues) of ĥ0. With such a

basis, we can in turn construct a (in principle infinite) set of orthogonal and normalized

many-body Slater determinants. This basis of Slater determinants will in turn allows to

define the exact many-body state function.
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We may now write our general many-body Hamiltonian

Ĥ =
∑
i

ĥ0(xi) +
∑
i<j

v(xi, xj). (2.17)

For our Slater determinants to be a reasonable representation of our system, each Slater

determinant must have an associated eigenenergy εSD, so that the Schrödinger equation

(see Eq. 2.2)is fulfilled. The general expressions for these eigenvalues may be found by

multiplying both sides of the Schrödinger equation by 〈ΦSD|, to find

〈ΦSD|Ĥ|ΦSD〉 = 〈ΦSD|εSD|ΦSD〉 = εSD〈ΦSD|ΦSD〉 = ε, (2.18)

since we have assumed that the Slater determinant is normalized so that 〈ΦSD|ΦSD〉 = 1.

This procedure allows us to find an expression for the eigenenergy associated with the

Slater determinant, by evaluating the expectation value

〈ΦSD|[
∑
i

ĥ0(xi) +
∑
i<j

v(xi, xj)]|ΦSD〉 =

〈ΦSD|
∑
i

ĥ0(xi)|ΦSD〉+ 〈ΦSD|
∑
i<j

v(xi, xj)|ΦSD〉. (2.19)

If the above Slater determinant is an ansatz for the ground state, the last equation

defines what is normally called the reference energy. We will discuss this quantity in

greater detail in later chapters. If we consider the form of the SD defined in (2.8) and

the properties of the antisymmetrizer, we find that

εSD = 〈
√
N !Aφh|Ĥ|

√
N !Aφh〉 =

N !〈φh|A†ĤAφh〉 = N !〈φh|ĤAφh〉 =

N !〈φh|ĤΨ0〉 = N !〈φh|Ĥ|ΦSD〉, (2.20)

where εSD will later define our so-called reference energy, and be assigned the label εref .

Inserting our Hamiltonian we find that

εSD = 〈φh|
N∑
i

ĥ0(xi)|Φ0〉+
N !

2
〈φh|

N∑
i,j 6=i

v̂(xi,xj)|ΦSD〉, (2.21)

and the problem is naturally separated in terms relating to the one-body part and the

two-body part.
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2.6.1 The one body problem

Since the one body operator only acts on one particle at a time, we find that

ĥ0(xi)
N∏
j=1

φj(xj) =

(
N−1∏
j=1

φj(xj)

)
ĥ0(xi)φi(xi). (2.22)

We may write out the inner product as an integral over all quantum numbers for every

particle dτ =
∏
i dxi

N !

∫
dτ

(
N∏
j=1

φ∗i (xi)

)
ĥ0(xj)

(
N∏
k=1

φk(xk)

)
=

N−1∏
i 6=j

(∫
dxi|φi(xi)|2

)∫
dxj

(
φ∗j (xj)ĥ0(xj)φj(xj)

)
. (2.23)

In the case of an orthonormal basis, it is apparent that the outcome of this integral is

depends only on how the one-body operator acts on the targeted state since

N−1∏
i 6=j

(∫
dxi|φi(xi)|2

)
= 1. (2.24)

For the terms beyond the unpermuted Hartree product we will either find that∫
dxj

(
φ∗j (xj)ĥ0(xj)φi(xj)

)
= 0, (2.25)

or that ∫
dxj

(
φ∗j (xj)φi(xj)

)
= 0. (2.26)

This means that the one-body contribution to the energy εh becomes

εh =
∑
i

〈φi|ĥ0|φi〉. (2.27)

2.6.2 The two-body problem

For the two body problem, we now seek a solution to

εv =
N !

2

N∑
i,j 6=i
〈φh|vij |Aφh〉. (2.28)
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If we first consider only the unpermuted hartree product to the right we will find that

〈φh|vij |φh〉 =

N∏
k 6=(i,j)

(∫
dxk|φk(xk)|2

)∫
dxidxj

(
φ∗i (xi)φ

∗
j (xj)v̂(xi,xj)φi(xi)φj(xj)

)
.

(2.29)

The factor in front will vanish if our basis is properly normalized. For the singly per-

muted Hartree products we find instead

〈φh|vij |P̂ijφh〉 = ∫
dxidxj

(
φ∗i (xi)φ

∗
j (xj)v̂(xi,xj)φi(xj)φj(xi)

)
.

(2.30)

The two-body operator’s ability to bring the permuted states into alignment with the

unpermuted states results in the above not necessarily being zero, so we will need to

include it in the final energy evaluation. We may rewrite it as

εv =
1

2

∑
i,j 6=i
〈φh|v̂ij |(1− P̂ij)φh〉 =

1

2

N∑
i,j 6=i

(
〈ij|v̂|ij〉 − 〈ij|v̂|ji〉

)
. (2.31)

Summarizing, the expectation value of our single Slater determinant is then

εSD = εh + εv =
∑
i

〈i|ĥ0(xi)|i〉+
1

2

N∑
i,j 6=i

(
〈ij|v̂|ij〉 − 〈ij|v̂|ji〉

)
. (2.32)

2.7 The Aim of Many Body Quantum Theory

At this point, we should note that while the Slater determinant fulfills the criterions laid

out so far, we have still not defined the single-particle states.

Depending on the form of the Hamiltonian in the Schrödinger equation, we may or may

not have some idea of the form of the single-particle states. In many systems, it is

possible to separate the Hamiltonian into terms describing the interaction between the

particles and terms associated with the constituent particles.

Ĥ = Ĥonebody + Ĥinteraction (2.33)
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By ignoring the interaction terms, we may then try to solve the Schrödinger equation

for the one-body problem.

Consider for example a number of interacting fermions in a common potential. When

solving the corresponding one body problem, one typically obtains a set of wave functions

that fulfill the Schrödinger equation, where each constituent function corresponds to a

given energy state with an associated eigenenergy. The number of states may be infinite.

By letting this set of states populate the Slater determinant in different ways we may

construct an infinite number of Slater determinants, in effect spanning the Fock space

defined in 2.4.

While the Fock space completely spans the space for the system’s wave function, it is also

possible for a subset of Slater determinants to do the same. Another possibility is that

most of the system’s wave function is contained in such a subset, so that a truncation

of the Fock space may be made while retaining a decent approximation to the systems

wave function.

For example, in cases where

Ĥonebody � Ĥinteraction, (2.34)

we may expect to be able to represent most of the system’s ground state wave function

with a small subset of all Slater determinants.

This is in essence the aim of many-body theory: we seek the set of Slater determinants

that gives the most accurate representation of the system’s wave function.

To obtain such a set we may choose a variety of paths, but common to all is the fact that

the mathematical framework used so far would prove very tedious in deriving the upcom-

ing expressions. We will therefore need to utilize the formalism commonly called second

quantization or the occupation number representation, and for even more simplicity we

will extend this to a diagrammatic formalism.

In the next chapters we present some of the basic elements of second quantization.



Chapter 3

Second Quantization

A brief review In this chapter we introduce the Second Quantization (or Number

Representation) formalism, and we use it to derive the Hamiltonian for many-body

problems with at most two-body interactions.

3.1 Second Quantization

When choosing the single-particle states to populate the Slater determinants, as dis-

cussed in the previous chapter, we will normally choose from a set of states that solves

the corresponding one-body problem. Each of these states will have an energy eigen-

value in the one-body problem. Because of the Pauli Exclusions Principle, any state

may only occur once in the Hartree product, since multiple identical functions will cause

the Slater determinant to be zero.

When setting up the Slater determinant in this way, we create a model for our system

that is commonly referred to as an independent particle model, since it is constructed

from what we are referring to as uncorrelated states.

For a collection of N completely non-interacting identical fermions in a common poten-

tial, it then makes sense to define an energy level corresponding to the distribution of

states where the N lowest energy states are occupied. The energy of the last occupied

single-particle state (normally defined in terms of the energy of the single-particle states)

is called the Fermi energy. The Slater determinant which is defined by filling all states

below the Fermi energy is called the Fermi vacuum. This particular many-body state

defines normally the ansatz for the ground state of the system and is often dubbed ’the

reference state’. The expectation value of this state defines the so-called reference energy

14
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mentioned in the previous chapter, leaving it to various many-body methods like cou-

pled cluster theory to produce reliable estimates for the so-called correlation energy. The

latter is defined as the difference between the exact energy and the reference energy. It

is normal to use single-particle states obtained from a Hartree-Fock calculation in order

to construct the ansatz for the ground state and all other possible Slater determinants.

In a Dirac notation, we write the ansatz for the ground state (or the new vacuum

reference state) as [7]

|Φ0〉. (3.1)

In the same way, we may consider the ”true” vacuum, where no states are occupied as

|0〉. (3.2)

It is in this context that second quantization will come in handy. We will first define the

framework for the true vacuum, and thereafter for the Fermi vacuum. This is similar

to the order in which these topics are introduced in most text on many-body methods,

see for example Shavitt and Bartlett’s Many-body methods in chemistry and physics [7].

In the following sections we will basically just restate the formalism as it appears in the

latter reference.

3.2 Creation and annihilation operators

In the following, we will for the sake of simplicity assume all Slater determinants to

form an orthogonal and normalized many-body basis. This follows from the fact that

the constituent single-particle states are orthogonal and normalized.

To be occupied, means that the single-particle state occurs in the Slater determinant, and

to be unoccupied then naturally means the opposite. Beginning with the true vacuum

state, we may then define operators that create or annihilate (remove) occupied states

in the Slater determinant. We call these operators creation- and annihilation operators,

respectively.

In the second quantization formalism, we denote creation operators as â†p, where the

subscript denotes the a particular state and its relevant quantum numbers. When acting

on the true vacuum state, we have

â†p|0〉 = |p〉, (3.3)
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indicating that we have a single-particle state labeled by the index p. The annihilation

operator is defined as

âp|p〉 = |0〉, (3.4)

meaning that a particle is removed from the state identified by the label p, bringing

us back to the true vacuum state. When a creation operator acts on a state which is

already occupied, the Pauli exclusion principle requires that

â†p|pqr〉 = 0, (3.5)

where we here have defined a three-body state identified by labels pqr. Attempting to

add a new particle with the quantum numbers given by the label p, must give zero in

order to obey the Pauli principle. Annihilating states that are not present in the SD

should also yield zero, that is

âp|qrs〉 = 0. (3.6)

Again, we have here defined a three-body state identified by the labels qrs. We may

combine these operators to define the so called number operator n̂ that lets us evaluate

if a given state is occupied or not, as well as count all occupied states with the operator

N̂ :

N̂ =
∑
p

â†pâp ≡
∑
p

n̂p. (3.7)

Its action on a given Slater determinant results in the number of particles present as

eigenvalue.

3.3 Strings of operators

Constructing a slater determinant from a set of orbitals may now be performed by

â†i â
†
j ...â

†
qâ
†
r|0〉 = |ij...qr〉. (3.8)
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While the subcripts refer to the states present in the Slater determinant, the order

in which these appear tells us which particles are occupying each state. If we need

to explicitly express which particle occupies which state, we may give each particle a

number and write

â†i,1â
†
j,2...â

†
q,N−1â

†
r,N |0〉 = |i(1)j(2)...q(N − 1)r(N)〉. (3.9)

Since the permutation of occupied states changes the sign of the Slater determinant (2.8),

so should the permutation of operators. Permuting operators acting on a Slater deter-

minant is basically the same operation as permuting particles in the Slater determinant.

We have

P̂ |Φ〉 = (−1)σ(P )|Φ〉, (3.10)

which is equivalent to

â†i â
†
j ...â

†
mâ
†
n...â

†
qâ
†
r|0〉 = −â†i â

†
j ...â

†
nâ
†
m...â

†
qâ
†
r|0〉. (3.11)

Because of orthonormality, we will find that the the expectation value of an annihilation

operator is

〈Φ′|âp|Φ〉 =

±1, n̂p(Φ) = 1, n̂p(Φ
′) = 0, n̂i(φ) = n̂iΦ

′(i 6= p)

0, else.
(3.12)

This means that the expectation value will be nonzero if Φ′ and Φ have the same occupied

states, except when the state p occurs in Φ but not in Φ′. From this, we may deduce

that

〈Φ′|âp|Φ〉 = 〈â†pΦ′|Φ〉, (3.13)

which shows that âp is the adjoint to â†p.

3.4 Anticommutation relations

To enable us to evaluate expectation values for strings of operators, we will need to

be able to manipulate these strings. Such manipulations will at some abstract level be

involved at a later stage in this thesis, for example when deriving the coupled cluster

equations.
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While we have already defined the interchange or permutations of two or more opera-

tors in strings of exclusively creation or annihilation operators (3.10), we will run into

complications when the strings contain a mix of these operators. To this end, we will

utilize the anticommutator, defined as

[Â, B̂]+ ≡ ÂB̂ + B̂Â. (3.14)

From what we already have discussed (see Eq. (3.11)), it is follows that

[âp, âq]+ = âpâq + âqâp = âpâq − âpâq = 0, (3.15)

and

[â†p, â
†
q]+ = â†pâ

†
q + â†qâ

†
p = â†pâ

†
q − â†pâ†q = 0. (3.16)

By evaluating how the anticommutator for mixed operators acts on certain Slater de-

terminants, we find that

[â†p, âq]+ = [âp, â
†
q]+ = δp,q. (3.17)

This results allows us to rewrite certain strings of operators, since it means that for

example

â†pâq = δp,q − âqâ†p. (3.18)

3.5 Inner products and operators

The vacuum state is assumed to be normalized, that is

〈0|0〉 = 1 (3.19)

With the framework laid out so far, we are now able to evaluate inner products of

multiple Slater determinants. Consider the following two Slater determinants

â†pâ
†
q...â

†
N |0〉 (3.20)

and

â†râ
†
s...â

†
M |0〉. (3.21)
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Using the fact that the creation operator is the adjoint of the annihilation operator, we

have

〈0|âM ...âsârâ†pâ†q...â
†
N |0〉. (3.22)

For Eq. (3.22), we may find that the operators line up perfectly, meaning that

(r = p), (s = q), ..., (M = N)→ 〈0|âM ...âsârâ†pâ†q...â
†
N |0〉 = 1. (3.23)

In other cases, the calculation of this inner product (also commonly called matrix product

in the literature [7]), becomes a matter of reorganizing the creation and annihilation

operators in such a manner that we end up with something we are able to evaluate. As

will become apparent, a good strategy is to move all creation operators to the left of the

annihilation operators, since this inner product will be zero.

One very important aim is to be able to evaluate the expectation value of the Hamilto-

nian, and as such we will also need to extend the formalism to include operators. We

define the relevant operators in the following, focusing only on one-body and two-body

operators since our Hamiltonian will contain at most two-body interactions.

The One-body Operator A one-body operator is defined as [7]

F̂ ≡
∑
k,l

fk,lâ
†
kâl =

∑
k,l

〈k|f̂ l〉â†k, âl. (3.24)

where f̂ may for example be identical to ĥ0 which we used in Chapter 2. s It is useful

to calculate the expectation value of this operator. We consider here the inner product

∑
k,l

fk,l〈0|âM ...âsâr(â†kâl)â
†
pâ
†
q...â

†
N |0〉. (3.25)

Depending on the Slater determinants present, we have four different outcomes of the

above:

1. If we have perfect line up as in Eq. (3.23), we find that 〈F̂ 〉 =
∑N

i fi,i

2. If all single-particle states involved occur in both Slater determinants but in no

particular order, we find that 〈F̂ 〉 = (−1)σ(P̂ )
∑N

i fi,i

3. If all except one single-particle state (one non-coincidence [7]) occurs in both Slater

determinants, the one body operator may act on the Slater determinants in such
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a way that when encountering the non-coincidence it brings it to coincide

(r = p), (s = q), ..., (m 6= n), ..., (M = N)→∑
k,l

fk,l〈0|âM ...âm...âsâr(â†kâl)â
†
pâ
†
q...ân...â

†
N |0〉 = (−1)σ(P̂ )fm,n (3.26)

4. If there is more than one non-coincidence, the resulting Slater determinants will

be orthogonal so that 〈F̂ 〉 = 0.

The Two-body Operator We define the two-body operator within the second quan-

tization formalism [7] as

Ĝ =
1

2

∑
i,j,k,l

〈i(1)j(2)|g12|k(1)l(2)〉â†i â
†
j , âlâk. (3.27)

Where we used the definition in Eq. (3.9) so that in the bra side of the inner product,

particle one is in state i and particle two is in state j, while in the ket side we have

particle one in state k and particle two in state l.

Similar to the case of the one-body operator, we need to know the expectation value of

this operator in a general Fock space. We consider thus the inner product

1

2

∑
i,j,k,l

〈i(1)j(2)|g12|k(1)l(2)〉〈0|âM ...âsâr(â†i â
†
j âlâk)â

†
pâ
†
q...â

†
N |0〉. (3.28)

If we have perfectly aligned states in the two Slater determinants, we obtain

〈Φ|Ĝ|Φ〉 =
∑

i<j,ij∈Φ

(〈ij|ĝ|ij〉 − 〈ij|ĝ|ij〉) ≡
∑

i<j,ij∈Φ

〈ij||ij〉. (3.29)

This is the so-called antisymmetric matrix element, and the two terms appearing in this

element are by convention named the direct- and exhange term, respectively.

For the case where the two Slater determinants differ by one single-particle state only,

we find that

〈Φ′|Ĝ|Φ〉 =
∑
j∈Φ

〈i′(p)j||i(p)j〉, (3.30)

meaning that particle p in this case does not occupy identical single particle states in

the bra- and ket side of the inner product since i′ 6= i.
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If instead two single-particle states differ, we obtain

〈Φ′|Ĝ|Φ〉 = 〈i′(p)j′(q)||i(p)j(q)〉. (3.31)

With more than two differing single-particle states, the above matrix elements are zero

since our interaction acts at most on two particles at the time.

The Hamiltonian We have now the means to write down a Hamiltonian in a second

quantized form containing both one-body and two-body operators. This is the form of

the Hamiltonian that will be the studied in this thesis. We will define later the explicit

form of the Hamiltonian. For now, we will utilize the fact that

〈ij||kl〉 = −〈ij||lk〉 = 〈ji||lk〉 = 〈ji||kl〉

to rewrite the Hamiltonian into the following form

Ĥ =
∑
ij

hij â
†
i âj +

1

4

∑
i,j,k,l

〈ij||kl〉â†i â
†
j âlâk. (3.32)

3.6 Normal ordering

As previously mentioned, reorganizing strings of operators so that all annihilation oper-

ators are to the right of the creation operators will be a good strategy when evaluating

inner products. The reason for this is that this sequence of operators must yield zero

when evaluated as the expectation value in the vacuum state, and in the process of

this reorganization we will produce all nonzero contributions as Kronecker deltas in

accordance with Eq. (3.17).

For this reason, the process of reorganizing strings of operators into this so called normal

ordered sequence is of special interest when doing calculations on many-body wave func-

tions. While the diagrammatic approach introduced by Feynman [7] will be our main

weapon of choice when dealing with such problems at a later stage in this thesis, we

will first treat this using Wick’s Theorem [17]. This straightforward approach has the

advantage of being easily translated into computer algebra, as utilized in for example the

Secondquant package included in the SymPy package of Python [18]. Although we have

already introduced the basic operations needed in this process, we will in this section

see that it may be greatly simplified.
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The normal ordered product (or simply normal product) is commonly denoted by either

an ”n” followed by square brackets, or curly brackets [7]

n[ÂB̂...] = {ÂB̂...}. (3.33)

3.7 Contractions

We define the process of contracting two (creation or annihilation) operators by

AB ≡ AB − n[AB]. (3.34)

For the operators discussed so far, we will only encounter four different situations when

performing such contractions. Either we have the three cases where the contracted

operators are already basically normal ordered

â†pâ
†
q = âpâq = â†pâq = 0, (3.35)

or we have the singular nonzero case, where

âpâ
†
q = [âp, â

†
q]+ = δp,q. (3.36)

3.8 Wick’s theorem

Wick’s theorem was introduced by Gian-Carlo Wick in 1950 [17], and states that

Theorem 3.1 (The time independent Wick’s theorem). A product of a string of creation

and annihilation operators is equal to their normal product plus the sum of all possible

normal products with contractions.

We have already seen that the expectation value of any normal product on the vacuum

state will be zero, so this basically means that only the possible fully contracted normal

products will contribute to the expectation value. As stated in Eq. (3.35), many of

these contractions will also be zero, so we need only to consider the possible non-zero

contractions.

This is a great simplification of the tedious reorganization of operators we have previously

encountered, and it is an important tool when working with many-body wave states.
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3.9 Particles and holes

We have previously briefly mentioned the Fermi vacuum (also commonly called the ref-

erence state) (3.1), although we up to this point have mainly considered operators acting

on the true vacuum state (3.2). When we at a later stage will perform actual calcula-

tions, we will typically have a fixed number (N) of particles that may be represented by a

number of fixed sized Slater determinants. In this context, it will make much more sense

to define the second quantization formalism with respect to the Fermi vacuum, namely

the Slater determinant where the N particles occupy the N lowest energy eigenstates of

the single-particle basis.

We will then need to redefine normal ordering, creation and annihilation operators, and

Wick’s theorem with respect to this new reference state.

We will define the Fermi level to be the N’th lowest energy level where N is the number

f particles in our system.

By convention, we will now refer to unoccupied states up to the Fermi level as holes (or

hole states), and label them with the letters i, j, k, .... Occupied states above the Fermi

level will be referred to as particles (or particle states), and will be labeled by a, b, c, ....

Creation and annihilation operators will now behave differently depending on whether

they target states above or below the Fermi level.

A pseudo particle creation operator may act on the reference state to either remove an

occupied state below the Fermi level, thus creating a hole, or it may create a particle

in an unoccupied particle state above the Fermi level. Operators acting on particle

states will then behave the same as before, while operators acting on holes will have the

opposite effect as previously discussed.

For example, we may excite the reference state by annihilating a state i below the Fermi

level (thus creating a hole), and thereafter create a particle state above the Fermi level.

By convention, such a process may be written

â†aâ
†
i |Φ0〉 = |Φa

i 〉, (3.37)

Note that both operators above are given in terms of creation operators, denoting that

they are pseudo-particle creation operators [7]. This inversion in notation for operators

acting on states below the Fermi level is motivated by the fact that the way we previously

defined the normal product no longer will yield zero when evaluated on the reference

state. If we instead define our normal product to have all pseudo-creation operators to
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the left of all pseudo-annihilation operators, we achieve the same behavior as for the

true vacuum.

In this new context, Wick’s theorem will remain basically unchanged, apart from that

the only possible nonzero contractions will be

âaâ
†
b = δa,b, (3.38)

and

â†i âj = δi,j . (3.39)

3.10 The normal-ordered Hamiltionian and Wick’s gener-

alized theorem

By normal ordering the Hamiltonian we will achieve two things; we will derive expres-

sions that are especially suitable for dealing with states in Fock space (post Hartree Fock

calculations), and we will be able to utilize the so-called generalized Wick’s theorem,

that is1

Theorem 3.2 (The generalized time independent Wick’s theorem). When considering

products of strings of normal ordered creation and/or annihilation operators, we need

only consider fully contracted contributions between the normal ordered strings. Internal

contractions in the products will yield zero.

To this end, we will benefit from rewriting the Hamiltonian into normal ordered form.

3.10.1 Normal-ordered one-body operator

Acting on all states (particles and holes), the one-body operator is rewritten as

F̂ =
∑
p,q

fp,qâ
†
pâq. (3.40)

Using Wick’s theorem, we find that

F̂ =
∑
p,q

fp,q({â†pâq}+ δp,q≤Fermilevel) ≡ F̂N +
∑
i

fi,i. (3.41)

1Note that this is not the actual formulation, see [7, p.86] for the full theorem. For our purpose this
formulation is sufficient, since it means that when we encounter expectation values involving normal
ordered strings, it will efficiently reduce the number of evaluations needed.
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If we treat particle and hole states separately in the normal-ordered one-body operator,

we find

F̂N =
∑
i,j

fi,j âj â
†
i +

∑
a,b

fa,bâ
†
aâb +

∑
a,i

fi,aâ
†
i âa +

∑
a,i

fa,iâiâ
†
a. (3.42)

The remaining term is now simply the expectation value associated with each single-

particle state below the Fermi level.

3.10.2 Two-body operator

For the two-body operator we find that

Ĝ =
1

2

∑
p,q,r,s

〈pq|g|rs〉â†pâ†qâsâr. (3.43)

Again, by Wick’s theorem, we find [7, p.82]

Ĝ = ĜN +
1

2

∑
p,q

(
∑
i

〈pi|ĝ|qi〉AS{â†pâq}) +
1

2

∑
ij

〉ij|ĝ|ij〉AS . (3.44)

The middle term is a one-body term associated with a two-body operator [7].

The normal-ordered term above may also be written in a way that specifies particles

and holes, that is

ĜN =
∑
abcd

〈ab|ĝ|cd〉{â†aâ
†
bâdâc}+

∑
ijkl

〈ij|ĝ|kl〉{â†i â
†
j âlâk}+

∑
aibj

〈ij|ĝ|bj〉{â†aâ
†
i âj âb}

+
∑
abci

〈ab|ĝ|ci〉{â†aâ
†
bâiâc}+

∑
iajk

〈ia|ĝ|jk〉{â†i â
†
aâkâj}+

∑
aibc

〈ai|ĝ|bc〉{â†aâ
†
i âbâc}

+
∑
ijka

〈ij|ĝ|ka〉{â†i â
†
j âaâk}+

∑
abij

〈ab|ĝ|ij〉{â†aâ
†
bâj âi}+

∑
ijab

〈ij|ĝ|ab〉{â†i â
†
j âbâa}. (3.45)

3.10.3 The normal-ordered Hamiltonian

From the above derivations, we may now express the full Hamiltonian as

Ĥ = F̂N +
1

2

∑
p,q

∑
i

〈pi|v̂|qi〉AS{â†pâq} + V̂N +
1

2

∑
ij

〉ij|v̂|ij〉AS +
∑
i

fi,i, (3.46)

where we conventionally renamed Ĝ→ V̂ to identify the interaction. We have previously

derived the expectation value of one- and two-body operators for the reference state in
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Eqns. (3.29) and (3.25), where we found that

〈Φ0|Ĥ|Φ0〉 =
∑
i∈Φ

fii +
∑

i<j,ij∈Φ

〈ij||ij〉. (3.47)

Comparing Eq. (3.46) to Eq. (3.47), we see that the full Hamiltonian may be rewritten

Ĥ = (F̂N + V̂N ) + 〈Φ0|Ĥ|Φ0〉 ≡ ĤN + 〈Φ0|Ĥ|Φ0〉. (3.48)

The normal ordered Hamiltonian is defined as

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉. (3.49)

3.11 The correlation energy

We may interpret the result in Eq. (3.49) as follows: if we seek the expectation value of

the normal ordered Hamiltonian on the true ground state wave function, we find that

〈Ψ|ĤN |Ψ〉 = 〈Ψ|Ĥ|Ψ〉 − 〈Φ0|Ĥ|Φ0〉 ≡ 〈Ψ|Ĥ|Ψ〉 − Eref , (3.50)

meaning that the energy found from calculating the above equals the true ground state

energy of the system minus the part of the energy associated with the ground state ansatz

Slater determinant Φ0 (the reference state or the Fermi vacuum). We may express this

as

〈Ψ|ĤN |Ψ〉 ≡ ∆E = E − Eref . (3.51)

In cases where fpq is diagonal, we will refer to the energy associated with the normal

ordered Hamiltonian as the correlation energy2, while the energy associated with the

reference state will be referred to as the reference energy. The rationale of this ordering

is, as well as the way they naturally occur in the equations, that the reference energy is

normally found by seeking a decent reference state for the system, while the correlation

energy may be sought in a variety of ways building upon this first approximation. Our

aim is to obtain a as precise possible expression for the correlation energy using advanced

first principle methods like coupled cluster theory.

In cases where we may justly treat the interaction as a small perturbation in our system

(Eq. (2.34)), we may expect the reference energy to good approximation to the true

ground state energy.

2See also Figure 5.1.
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Diagrammatic notation

4.1 Diagrammatic notation - background

While second quantization provides us with the foundation for working out expressions

within the various many-body methods, it may prove cumbersome to derive compre-

hensive equations such as the coupled cluster equations using only second quantized

operators and Wick’s generalized theorem. To this end, the diagrammatic notation,

originally introduced in the context of quantum electrodynamics by Richard Feynman

in 1959 [7, p.1], will simplify calculations considerably. In addition, diagrams allow us

to easily identify features of terms in the equations such as which terms vanish or should

be naturally grouped together [7].

4.2 The Slater Determinant

Due to their origin in quantum field theory, diagrams normally express a time-ordered

sequence of operators where time evolves in the upwards direction. This might seem

strange when applied to the time-independent Schrödinger equation, but we shall only

interpret the time axis as the sequence in which the different operators are applied.

A starting point for the calculations will be the Fermi vacuum, expressed simply by a

blank space. As we have already shown (see for example Eqn. (3.49)), normal ordering of

the Hamiltonian with respect to the Fermi vacuum will allow us mainly focus on excited

states (represented by Slater determinants in our representation). These states, or Slater

determinants, may be expressed simply by vertical lines, assigned either upwards- or

downwards arrows to indicate particle or holes, respectively, as in Figs. 4.1 or 4.2.

27



Chapter 4. Diagrammatic notation 28

Figure 4.1: A Slater determinant with one hole state and one particle state.

Figure 4.2: A Slater determinant with two hole states and two particle states.

4.3 Operators

We will use horizontal dashed lines to represent operators such as terms in the normal-

ordered hamiltonian. While the one-body operator will have two lines entering and/or

leaving, the two-body operator will have four lines entering and/or leaving. The lines

entering from below represent the annihilation of pseudo particles, while lines exiting

above represent creation of pseudo particles. Following this logic, we list the normal

ordered one-body operator of Eq. (3.42) and the normal ordered two-body operator of

Eq. (4.3) diagrammatically, as shown in Figs. 4.3, 4.4 and 4.5.



Chapter 4. Diagrammatic notation 29

Figure 4.3: A normal ordered one-body operator with its mathematical expressions.
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Figure 4.4: A normal ordered two-body operator with its mathematical expressions.
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Figure 4.5: A normal ordered two-body operator with its mathematical expressions
(continued).
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4.4 Contractions

Diagrams allow us to represent contractions in a straight forward manner, by connecting

lines from Slater determinants to operators or between operators. For example, we may

consider the contraction of a singly excited Slater determinants with a term in the normal

ordered one-body operator, given by

(
∑
bc

fbc{â†bâc})|Φ
a
i 〉 = (

∑
bc

fbc{â†bâc}){â
†
aâi}|Φ0〉 =

∑
bc

fbcδac|Φb
i〉, (4.1)

where the contraction occurs between the indices in the Kronecker delta, in terms of the

diagrammatic contraction performed in Fig. 4.6.

Figure 4.6: A contraction of a one-body operator and a singly excited Slater deter-
minant.

The diagrams resulting from this process may in turn be interpreted back into math-

ematical expressions that we may use in implementations of the various many-body

methods.

4.5 Interpreting diagrams

The various many body methods which will be introduced in the upcoming chapters rely

on operator expressions and contractions. The basic idea of using diagrams to derive
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such expressions may be outlined as follows. For a given method we shall see that the

contracted expressions that are included in the evaluation of say the correlation energy,

may be visually represented by a set of diagrams. The situation before these contractions

may also be visually represented by combinations of such uncontracted vertices as shown

in Figs. 4.4, 4.5, 4.3 (and so on).

By defining consistent rules for how the contracted diagrams are obtained from the

uncontracted vertices, we may skip the mathematical contraction altogether, derive the

various resulting terms, and interpret them back into mathematical expressions by rules

that ensure that all factors and distinct features of the expressions are preserved.

Luckily, such consistent rules are present in the literature (For example in Ref. [7, p.296])

for many of the methods we discuss in the upcoming chapter.
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Methodology

5.1 Many-body Methods

As previously discussed in Chapter 2, the aim of many-body quantum mechanics is to

find either the exact, or a reliable approximation to a given many-body system’s wave

function Ψ. In methods like coupled cluster theory, this wave function resides in Fock

space, a space spanned by all possible Slater determinants constructed by the single-

particle states from the corresponding one-body problem. This wave function may be

written (for N particles)

|Ψ〉 = c0|Φ0〉+
∑
ai

cai|Φa
i 〉+

∑
abij

cabij |Φab
ij 〉+ ...+

∑
ab...Naij...Ni

cab...Naij...Ni |Φ
ab...Na
ij...Ni

〉. (5.1)

To determine the full wave function we therefore need a complete single-particle basis as

well as the means to project it onto Fock space, determining its coefficients. In general,

we may consider the process of generating the full wave function from the reference state

to be given by an operator Ω̂ acting on the reference state

|Ψ〉 = Ω̂|Φ0〉. (5.2)

The explicit form of Ω̂ is to be determined by the various many-body methods.

5.2 The Hartree-Fock Method

A complete basis often means an infinite number of single-particle states, which in turn

means an infinite number of Slater determinants. Such a system is not possible to

34
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implement computationally, so we may instead seek ways of truncating our basis. As

previously discussed in chapters 1 and 2, the precision of our solution will now depend

on how much of the exact wave function is present in the retained basis. To this end,

we will seek a single-particle basis that ensures that most, or as much as possible, of the

system’s wave function is present in one single Slater determinant.

The Hartree-Fock method is a way of optimizing the single-particle states so that a

single Slater determinant gives a good representation of the system. The resulting Slater

determinant may serve as a starting point for several so called post Hartree-Fock methods,

such as MBPT (many body perturbation theory), CI (Configuration Interaction) or CC

(Coupled Cluster) method [7].

The first development of the method is attributed to Douglas Rayner Hartree who in

1927 introduced a procedure he called the self consistent field method [8] but which was

later named the Hartree-Fock-Rothaan method. Some of the original differences between

various Hartree-Fock approaches are nowadays seldomly mentioned or have simply been

forgotten [7], and the more generic name Hartree-Fock normally refers to the method

that will be discussed in the following sections.

5.2.1 The variational principle

The Hartree-Fock method is based on the variational principle, which states that when

we evaluate the inner product of the Hamiltonian on any normalized wave function, the

resulting energy will be an upper bound to the ground state energy [14], that is

E0 ≤ 〈Ψtrial|Ĥ|Ψtrial〉. (5.3)

Such wave functions are commonly called trial wave functions.

The variational principle provides us with an approximate scheme, and by parameteriz-

ing the trial wave function we may improve upon this solution.

5.2.2 Expanding the single-particle states

The parametrization of the Slater determinant may be performed by letting each single-

particle state be represented by a linear combination of the eigenstates to the corre-

sponding one-body problem. If we refer to the linear combinations by ψ with Latin
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indices and the basis states as φ with Greek indices, we may write this as

|ψi〉 =
A∑
α

cα,i|φα〉. (5.4)

Note that we truncate the basis at the A’th function to make computations possible.

More functions generally means a better representation. In principle, our chosen basis

set spans an infinity of states, but due to obvious computational limits we have to

truncate the above sum.

In accordance with the variational principle, we now want to determine the coefficients

cα,i in such a way that we minimize the energy. We should therefore insert the expanded

single-particle states into the energy equation (2.32) that we derived in chapter 1. We

will assume that the system’s Hamiltonian has the form

Ĥ = Ĥ0 + ĤI =

N∑
i=1

ĥ0(xi) +

N∑
i<j=1

v̂(xi,xj), (5.5)

where N is the number of particles in our system, ĥ0(xi) is the one-body operator acting

on particle i, and ĤI is the interaction. For simplicity, we will avoid defining these in

more detail, and we will use the following shorthand notation for the two-body integrals

〈αβ|V |αβ〉 ≡
∫
ψ∗α(ri)ψ

∗
β(rj)V (rij)ψα(ri)ψβ(rj)drirj , (5.6)

and

〈αβ|V βα〉 ≡
∫
ψ∗α(ri)ψ

∗
β(rj)V (rij)ψα(rj)ψβ(ri)drirj , (5.7)

where the quantity rij = |ri−rj | indicates that the interaction depends upon the distance

between the particles. We may even express this as a so-called antisymmetric matrix

element:

〈αβ|V |αβ〉AS ≡ 〈αβ|V |αβ〉 − 〈αβ|V |αβ〉. (5.8)

By inserting the expanded states in Eq. (2.32), we will find the expecation value of the

Hamiltonian in terms of one single Slater determinant expressed as a function of the set

of coefficients {c}

ε({c}) =
N∑
i

A∑
α,β

c∗α,icβ,i

N∑
i

〈φα|ĥ0|φβ〉+

1

2

N∑
ij

A∑
α,β,γ,δ

c∗α,ic
∗
β,jcγ,icδ,j〈φαφβ|v̂|φγφδ〉AS . (5.9)
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The way in which we now have set up the system, we may consider the coefficients to

be a matrix with A rows (Greek letters) and N columns, where N is the number of

particles. In the special case where diagonal elements are one and all others zero, we

find the same system as we have discussed up to this point.

5.2.3 Ensuring orthonormality

The trial wave function is now parameterized by the introduction of coefficients. When

varying or optimizing these coefficients to minimize the energy, we must be careful

to constrain the orthonormality of the states (remember, failing to do so will cause a

violation of the Pauli principle). Mathematically this constraint may be written

〈ψi|ψj〉 =
A∑
α

c∗α,icα,j = δij . (5.10)

To this end, we may use Lagrange’s method of undetermined multipliers [11, p.116] (or

simply Lagrange multipliers), and set up a functional to be minimized with the constraint

described above, namely

F
(
ε
(
{c}
)
, λ
)

= ε
(
{c}
)
−

N∑
i

λi

A∑
α

c∗α,icα,i. (5.11)

To find a minimum for this functional we must solve

∂

∂c∗α,i
F
(
ε
(
{c}
)
, λ
)

= 0. (5.12)

For a step by step solution, the reader is referred to Thijssen’s Computational Physics

[8] or Szabo’s ”Modern Quantum Chemistry” [11]. In the following we will just state

the solution consistent with how it is given in these sources.

5.2.4 The Hartree-Fock Equations

By solving Eq. (5.12), we obtain a set of coupled one particle eigenvalue problems given

by

λkcα,k =
A∑
γ

N∑
i

cγ,k〈α|ĥ0|γ〉 +
A∑

β,γ,δ

N∑
i

c∗β,icγ,icδ,k〈αβ|v̂|γδ〉AS . (5.13)
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These are known as the Hartree-Fock equations, and by identifying λ as energy associated

with single-particle state k [16] we may write them as

εHFk cα,k =
∑
γ

(
〈α|ĥ0|γ〉+

N∑
j

∑
βδ

cjβcjδ〈αβ|v̂|γδ〉AS
)
cγ,k, (5.14)

or simply ∑
γ

fHFαγ cγ,k = εHFk ck,α, (5.15)

where we have defined

fHFαγ ≡ 〈α|ĥ0|γ〉+
N∑
j

∑
βδ

cjβcjδ〈αβ|V |γδ〉AS (5.16)

The matrix f̂HF is commonly known as the Fock matrix, and has dependence upon all

the spin orbitals [7]. As a consequence, a first guess for the coefficients is likely to be

inconsistent when evaluating the left hand side and right hand side of Eq. (5.15), so they

are normally solved in an iterative manner. This is why the method was initially named

the self-consistent field method; the field produced by the particles should be consistent

with the field ”felt” by each particle.

A set of single particle states that fulfills Eq. (5.15) is called the canonical Hartree-Fock

wave function, while the constituent states are called the canonical spin orbitals.

5.2.5 Koopman’s theorem

The Hartree Fock energy for any single-particle state p may be compactly written

εHFp = 〈p|ĥ0|p〉+
1

2

∑
j

〈pj||pj〉. (5.17)

This is the energy associated with each orbital expanded as a linear combination of

single-particle states. Each fermion in the system will then have an associated Hartree-

Fock energy.

Koopman’s theorem states that for closed-shell Hartree-Fock calculations, the ionization

energy of the system is equal to the negative of the outermost hole state in the refer-

ence state. [8] The ionization energy may then be computed by performing a Hartree-

Fock procedure, whereby we calculate only the outermost occupied orbital in equation

Eq. (5.17).
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5.2.6 Restricted and unrestricted Hartree-Fock

There are multiple ways of implementing the Hartree-Fock equations. For closed shell

systems, such as He, H2 and Be, the electrons (we consider only electronic degrees of

freedom in this thesis), may be assumed to be paired with opposite spin electrons. In

the restricted Hartree-Fock method (RHF), we consider only systems where all fermions

(electrons in our case) are paired with opposite spin particles. This lets us scale down

the computation, but it will naturally give poor results for systems where no such pairing

occurs, for example in the case where two H atoms are interacting over large distances.

For systems with singly occupied states (unpaired fermions, typically odd numbered

systems) the restriction of spin-pairing is no longer valid.

To take this into account, we set up two Fock matrices; one for each spin orientation.

The resulting system is

F̂α(Cα, Cβ)Cα = ŜCαεα, (5.18)

and

F̂β(Cα, Cβ)Cβ = ŜCβεβ. (5.19)

The subindices α and β represent the distinction between the two possible spin-orientations

in our system, for example α for spin up and β for spin down. For each orientation we

have a separate coefficient matrix C.

The ground state energy will be a function of the eigenvectors of these two matrices.

The dependency of opposite spin coefficients in the Fock matrices is due to the direct- or

coulomb term from the two particle integrals [11, p.241]. This latter approach is called

the unrestricted Hartree-Fock (UHF) method.

5.3 Post Hartree-Fock Methods

While the Hartree-Fock reference state may account for important correlations such

as the Pauli exclusion principle and interactions with the mean field, it will lack the

more complicated correlations. For this reason, certain correlations may never be fully

accounted for with the Hartree-Fock method alone. Figure 5.1 illustrates what is often

defined as the correlation energy; the energy attributed to correlations beyond the mean

field.

A Hartree-Fock calculation may also provide us with energy minimized orbitals above

the Fermi level that may be used to construct excited Slater determinants in so-called

post Hatree-Fock methods.
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Figure 5.1: Correlations beyond the Hartree-Fock energy. At the so called Hartree-
Fock limit, we have achieved the best possible description of our system using the
mean field approach. The energy unaccounted for by the reference state is commonly
referred to as the correlation energy. The so called post Hartree-Fock methods, such as
the Coupled Cluster method, will help us include even more correlations and bring us

closer to the exact energy.

By including excited Slater determinants, these methods may account for the correlations

beyond the mean field. One such approach is the Coupled Cluster (CC) method, which

is a central subject in this thesis. Alongside CC, we have several other methods such as

Configuration Interaction (CI) or Many Body Perturbation Theory (MBPT).

Important insight into various physical systems may be gained by comparing results

amongst these methods, as they all have their strengths and weaknesses. Prior to the

treatment of the CC method in the next two chapters, we shall therefore just briefly

discuss some of these alternative post Hartree-Fock methods, allowing us to make a

meaningful comparison of results in the final chapter of this thesis.

5.3.1 Configuration Interaction theory

The Configuration Interaction (CI) method, sometimes referred to as the method of su-

perposition of configurations [12] is based on the expansion of the system’s wave function

into a linear combination consisting of the reference Slater determinant and a (possi-

bly infinite) set of excited versions of this Slater determinant, as briefly noted in the
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introduction to this chapter,

|Ψ〉 = c0|Φ0〉+
∑
ai

cai vertΦ
a
i 〉+

∑
abij

cabij |Φab
ij 〉+ ...+

∑
ab...Naij...Ni

cab...Naij...Ni
|Φab...Na
ij...Ni

〉. (5.20)

The CI method is considered to be the mathematically simplest technique for inclusion

of correlations beyond the mean field [12]. The operator that brings us from the reference

Slater determinant to the true system wave function may be written

|Ψ〉 = Ω|Φ0〉 = (c0 + Ĉ)|Φ0〉, (5.21)

where

Ĉ =
∑
ai

cai â
†
aâi +

∑
abij

cabij â
†
aâ
†
bâj âi + ...+

∑
ab...Naij...Ni

cab...Naij...Ni
â†aâ
†
b...â

†
Na
âNi ...âj âi. (5.22)

The coefficients c are then obtained by diagonalization, which corresponds to minimizing

E = 〈Ψ|Ĥ|Ψ〉. (5.23)

We shall not go into more details concerning this. The reader is referred to for example

[12, p.177] for a more complete treatment.

We will however make some general observations concerning the CI method.

5.3.2 Full Configuration Interaction theory

Equation (5.23) is solvable, but at great computational cost. The number of excited

Slater determinants, and thereby the number of coefficients, scales factorially with the

number of particle states and hole states.

The practical consequence is that the inclusion of all Slater determinants is only possible

for smaller systems unless some truncation in the basis set is introduced. From a physical

point of view, we may have systems where no single excitation is allowed, and for this

reason the singly excited coefficients may be excluded with no loss of precision.

The various truncations are commonly referred to as CIS for inclusion of single exci-

tations, CISD for single and double excitations, CISDT for single, double and triple

excitations and so forth.
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5.3.3 Configuration Interaction Quantum Monte Carlo

We will later in this thesis compare our results with those from a so-called FCIQMC (Full

Configuration Interaction Quantum Monte Carlo) calculation. This approach determines

the FCI coefficients by stochastic processes [19, 20]. Such results are very valuable for

our purpose since they basically provide us with the exact ground state energy for

smaller systems, which will allow us to evaluate to which degree the method accounts

for correlations in the system.

5.3.4 Many-body Perturbation Theory

As opposed to the Hartree-Fock, Configuration Interaction and Coupled Cluster meth-

ods, Many-body Perturbation Theory (MBPT) offers a non-iterative approach to approx-

imating the systems wave function. The following derivation is based on the one in Refs.

[7] and [16].

The basic idea is to arrange the Hamiltonian into two parts

Ĥ = Ĥ0 + V̂ . (5.24)

This is very similar to what we have done so far, as we seek an operator Ĥ0 which is

exactly solvable (which yields the single-particle basis) and an operator V̂ that will be

treated as a perturbation. The solution to the unperturbed problem is given

Ĥ0|Φ0〉 = W0|Φ0〉. (5.25)

As for Configuration Interaction theory, we have the exact ground state wave function

for our system represented by a linear combination of Slater determinants, where we

assume the first term (reference state) to be the dominating term

|Ψ0〉 = |Φ0〉+
∞∑
m

cm|Φm〉. (5.26)

We then assume intermediate normalization 〈Φ0|Ψ0〉 = 1 and project our Schödinger

equation onto 〈Φ0| :

〈Φ0|Ĥ|Ψ0〉 = 〈Φ0|Ĥ0 + V̂ |Ψ0〉 = E. (5.27)
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The true ground state energy is still unknown, but we may subtract the unperturbed

energy to find an expression for the correlation energy

〈Φ0|V̂ |Ψ0〉 = E −W0 = ∆E. (5.28)

We may add and subtract a term ω|Ψ0〉 to the expression above and regroup it to find

|Ψ0〉 =
1

(ω − Ĥ0)
(V̂ + ω − E)|Ψ0〉. (5.29)

By interpreting the term ω in different ways, we will arrive at the various many-body

perturbation schemes.

The system’s true wave function is still unknown, but it is fully possible to expand it in

a known basis {φn}, so that

|Ψ〉 = (P̂ + Q̂)|φ0〉, (5.30)

where we have the projection operator P̂ = |φ0〉〈φ0|, P̂ = P̂ † = P̂ P̂ and Q̂ =
∑

m |φm〉〈φm|
[7]. We insert this into Eq. (5.29) to find

|Ψ0〉 = φ0〉+
∞∑
i

( 1

(ω − Ĥ0)
(V̂ + ω − E)

)i
|φ0〉, (5.31)

and the correlation energy takes the form

∆e =
∞∑
i

V̂
( 1

(ω − Ĥ0)
(V̂ + ω − E)

)i
|φ0〉. (5.32)

By letting ω = E, we obtain the so called Brillouin-Wigner Perturbation Theory, or we

may let ω = W0 to obtain Rayleigh-Schrödinger Perturbation Theory (RSPT). In the

Brillouin-Wigner case, a possible solution would involve iterations and self consistence as

in the Hartree-Fock-, Configuration Interaction- and Coupled Cluster cases, while in the

RSPT case we end up with terms that correspond to different orders of the correlation

energy. For RSPT, we obtain

∆e = ∆E(1) + ∆E(2) + ∆E(3) + ..., (5.33)

where

∆E1 = 〈φ0|V̂ |φ0〉, (5.34)

∆E2 = 〈φ0|V̂
Q̂

(W0 − Ĥ0)
(V̂ −∆E)|φ0〉, (5.35)
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∆E3 = 〈φ0|V̂
Q̂

(W0 − Ĥ0)
(V̂ −∆E)

Q̂

(W0 − Ĥ0)
(V̂ −∆E)|φ0〉, (5.36)

represent the correlation energy to first, second and third order, respectively. Higher

orders are obtained along similar lines. Every order in RSPT introduces different types of

correlations. With a two-body force only, to second order we can obtain contributions

from at most two-particle-two-hole excitations. At for example fourth order, we can

also obtain contributions which represent four-particle-four-hole excitations. Whereas

methods like Configuration Interaction or Coupled Cluster include such correlations to

infinite order in the interaction, RSPT contains such correlations only up to the given

order in the expansion.

5.3.5 The linked diagram theorem

We will not go into any further detail on the many-body perturbation methods, but we

should note an important theorem introduced by Goldstone [21], see also Ref. [7, p.152].

Computations of the different orders in Rayleigh-Schrödinger Perturbation Theory may

be performed diagrammatically. Based on a set of rules (see for example [7]), we may

generate diagrams corresponding to the possible contractions operators present in each

order of the perturbation. Actually, the diagrammatic rules will produce a lot more

diagrams then what is actually needed in order to calculate the correlation energy.

The linked diagram theorem is a simple way of getting rid of a lot of these excess

diagrams.

A diagram may be called linked if all parts of the diagram is linked with each other

by contractions. Unlinked diagrams will be easily identified as it is possible to split

them into smaller parts by drawing lines through them without crossing any lines in the

diagram.

The linked diagram theorem states that unlinked diagrams do not contribute to the

correlation energy.

In Eq. (5.32) for Rayleigh-Schrödinger Perturbation Theory, we will therefore only have

to consider terms where contractions occur for diagrams where every vertex is linked to

another vertex by at least one particle or hole line.
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5.4 Other many-body methods

The methods we have discussed so far are relevant to this thesis, but the full range

of methods for dealing with many body problems extends even further. Some notable

methods apart from the ones discussed so far is the wide range of Quantum Monte Carlo

(QMC) methods, that build upon the same formalism as us, but use instead stochastic

methods to approximate the system’s wavefunction (see for example [8, Chapter 12]).

Other methods such as Density Functional Theory (DFT) may even depart from the

Hartree-Fock formalism to offer more suitable equations for solids, while at the same

time represent alternatives to Hartree-Fock calculations for atoms and molecules [8,

Chapter 5].



Chapter 6

The Coupled Cluster Method

6.1 Historical Account

As is the case with many contributions to science, it is hard to pinpoint the origin of the

Coupled Cluster methods to one single scientific work. It is however commonly accepted

that the groundbreaking work was made by the nuclear physicists Fritz Coester and

Hermann Kümmel in the mid and late 50s. At this time the computational aspects of

many body theory was still in its early infancy, although some variational Hartree-Fock

calculations had been performed in the quantum chemistry community. [10]

One important discovery that may have motivated work on the Coupled Cluster method

was made by J. Hubbard, who laboriously inspected the time independent perturbation

series to all orders and found that only linked terms contribute to the energy, as well as

that the energy associated with these terms was extensive [22].

Coester was then shortly after the work of Hubbard able to derive basically the same

results using the exponential ansatz and the Hausdorff expansion [10]. In the following

years, Kümmel and Coester published a number of papers describing the method [23, 24],

and by the late 1950s the method was well understood [10].

Together with Haag, Coester was also able to show that the exponential ansatz was a

natural choice for the system’s wave function [25], meaning that the choice was not as

arbitrary as one may get the impression of when reading modern books on the subject

[7].

Despite this, it was not until 1966 that the first real applications of the method were

made, and these were made by the quantum chemist Jiri Cizek [26]. Coupled Cluster

calculations for nuclear matter were performed in the late 1970s and early 1980s [27, 28].

46
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Today, the so called Hartree-Fock + CCSD(T) (Coupled Cluster Singles Doubles and

Perturbative Triples) calculation is considered the ”gold standard” of quantum chem-

istry, due to its relatively low computational cost compared to its ability to account for

important correlations in many systems.

6.2 The exponential ansatz

The derivation of the coupled cluster method begins with assuming that the operator

that brings the reference state into the true system state can be represented by the

exponetial operator

eT̂ , (6.1)

where the cluster operator is defined as

T̂ ≡ T̂1 + T̂2 + ... = 1 +
∑
ai

tai a
†
aai +

∑
ai

tabij a
†
aa
†
bajai + ... (6.2)

As may be seen from the second quantized form of the cluster operator, its terms will

cause an excitation of the reference state. For example, the excitation operator T̂1

generates a singly excited reference state

T̂1|Φ0〉 =
∑
ai

tai a
†
aai|Φ0〉 =

∑
ai

tai |Φa
i 〉, (6.3)

while the T̂2 operator creates a doubly excited reference state

T̂2|Φ0〉 =
∑
abij

tabij a
†
aa
†
bajai|Φ0〉 =

∑
abij

tabij |Φab
ij 〉, (6.4)

and so on.

For reasons that will become clear shortly, there is no need to include excitation operators

beyond T̂4 for systems containing at most two-body interactions. Truncations in the

cluster operator are commonly made to give rise to the different types of coupled cluster

methods.

The coefficients tab..ij... are commonly referred to as amplitudes, and they are the quantities

whose solution we will seek in an iterative way.

As for any exponential function, we may expand it as

eT̂ = 1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + ..., (6.5)
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meaning that the exponential ansatz may be written

eT̂ |Ψ0〉 = (1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + ...)|Ψ0〉. (6.6)

6.3 Size consistency

The concept of size consistency was introduced by Pople et al. in 1978 [29] to de-

scribe methods that properly represent systems in the noninteracting limit. A system

of electrons interacting through the Coulomb force has a noninteracting limit when the

distance between the electrons is so large that the energy of this configuration should

correspond to the energy of an equal number of noninteracting electrons.

In other words, a size consistent method should for the interacting systems A and B

produce energy calculations in the noninteracting limit where [7, p.12]

E(AB) = E(A) + E(B) (6.7)

Because of the fundamental assumption of pairing of electrons in the restricted Hartree-

Fock (RHF) method, this method is not size consistent for systems such as the H2

molecule. This shortcoming may however be mended by performing a coupled cluster

calculation on top of the RHF, producing size consistent energies when gradually sep-

arating the hydrogen nucleis (and their electrons). This is illustrated by a comparison

of RHF, unrestricted Hartree-Fock (UHF) and RHF+CCSD (coupled cluster theory at

the level of singles and doubles excitations only) for the H2 molecule in Fig. 6.1. It is

clear that since the RHF method forces the electrons of each hydrogen atom to pair, the

energy is wrongly estimated compared to the exact energy as we separate the hydrogen

nuclei.

By performing a CCSD calculation employing the RHF basis, this restriction is lifted,

allowing the electrons to fall into their natural orbits. An unrestricted Hartree-Fock

calculation on the other hand does not assume the electrons to be paired, allowing

thereby for a natural behavior as the separation in distance between the two hydrogen

nuclei increases.

When comparing CC with CI, we will find that the Ĉ2 operator has a corresponding

combination of cluster operators

Ĉ2 = T̂2 +
1

2
(T̂1)2. (6.8)
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Figure 6.1: Comparison of UHF, RHF and RHF+CCSD for a H2 molecule. These re-
sults were produced by the author using a self-developed solver [3] that utilizes gaussian
basis sets to enable RHF, UHF, CCD and CCSD calculation on atoms and molecules.
These results illustrate the size consistency of the CCSD equations, and the lack of
size consistency in the RHF case. The vertical jumps in the curves are regions where
the solver failed to converge due to improperly chosen relaxation parameters. Central
parts of the code [3] that was used to produce these calculations was developed by the

author as part of another course.

The last quadratic term above is commonly referred to as a disconnected cluster, and

such terms are responsible for ensuring the consistency of the CC method.

6.4 Extensivity

A related concept to consistency is size extensivity, as introduced by Bartlett [30]. A

quantum mechanical model may be called extensive if the energy of this model scales

correctly with the size of the system [7, p.11]. This is analogous to extensive properties

in statistical mechancial systems, that scales linearly with the size of the system, see for

example Ref. [31, p.9].

When performing calculations on periodic systems such as gases or solids, extensivity is

a feature that allows us to extrapolate results beyond the limits of the simulation cell.

For the coupled cluster method, extensivity is an inherent property of the exponential

ansatz (see Eq. (6.1)). This may be shown by considering that the reference state is

separable, implying that

φ0(A,B) = φ0(A)φ0(B). (6.9)



Chapter 6. The Coupled Cluster Method 50

Furthermore, the cluster operators are additive and we have

T̂ (A,B) = T̂ (A) + T̂ (B). (6.10)

It then follows that the total wave function is multiplicatively separable

Ψ(A,B) = eT (A)+T (B)φ0(A,B) = eT (A)φ0(A)eT (B)φ0(B). (6.11)

Thus, the energy is additive:

Ĥ(A,B)Ψ(A,B) = [E(A) + E(B)]Ψ(A,B). (6.12)

6.5 Deriving the coupled cluster equations

We will derive the coupled cluster equations in four steps. First we shall do some more

work on the exponential ansatz to derive a form that is more easily translated to actual

calculations, secondly we will introduce diagrammatic rules that will simplify derivations

considerably, and then we shall briefly comment upon how to translate these rules into

a code that makes the process of deriving coupled cluster equations (and code) of any

order remarkably simple.

Since the actual equations that are worked into a high-performance code will depend

upon how we truncate the ansatz, we will then finally derive the full equations using the

above mentioned code in increasing order of complexity.

6.6 Unwrapping the exponential ansatz

6.6.1 The CC effective Hamiltonian

The actual quantity we seek is the correlation energy ∆e as found by solving the

Schrödinger equation for the exponential ansatz and the normal ordered Hamiltonian

Eq. (3.49)

ĤNe
T̂ |Φ0〉 = ∆eeT̂ |Φ0〉. (6.13)

We may reorganize this into

(ĤN −∆e)eT̂ |Φ0〉 = 0. (6.14)
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By multiplying with the inverse exponential, we find

(e−̂T ĤNe
T̂ −∆e)|Ψ0〉 = 0, (6.15)

where the non-Hermitean operator

e−̂T ĤNe
T̂ ≡ H, (6.16)

is a similarity transformed Hamiltonian, often called the CC effective Hamiltonian.

By projecting Eq. (6.15) onto the reference state, we may then solve for the correlation

energy

〈Φ0|e−̂T ĤNe
T̂ |Ψ0〉 = ∆e. (6.17)

It also follows that

〈Φ∗|e−̂T ĤNe
T̂ |Ψ0〉 = 0, (6.18)

where Φ∗ represents any excited state. This last equation will aid us in solving the

amplitudes.

6.6.2 Non-variational coupled cluster theory

At this point we should note that the CC effective Hamiltonian is no longer Hermitean,

since

H† = (e−̂T ĤNe
T̂ )† = (e−̂T )†ĤN (eT̂ )† = (e

ˆ−T †)ĤN (eT̂
†
) 6= H (6.19)

A consequence is that truncations in the cluster operator will cause the energy expression

in Eq. (6.18) to no longer be variational, and thus the energy does no longer represent an

upper bound to the ground state energy [32]. In practice, however, solving the resulting

equations obtained from the projection technique in Eq. (6.18) will still provide us with

an energy close to the real expectation value even for truncated cluster operators [32].

6.6.3 The Hausdorff Expansion

The Hausforff expansion (or Baker-Campbell-Hausdorff formula) provides us with the

means of rewriting the CC effective Hamiltonian in terms of nested commutators [7,

p.293]:

H = ĤN + [ĤN , T̂ ] +
1

2
[[ĤN , T̂ ], T̂ ] +

1

3!
[[[ĤN , T̂ ], T̂ ], T̂ ] +

1

4!
[[[[ĤN , T̂ ], T̂ ], T̂ ], T̂ ]. (6.20)
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The reason that this sum of nested operators truncates at the four-fold commutator,

will become apparent if we use Wicks generalized theorem to evaluate the expansion.

For two strings of evenly numbered creation- and annihilation operators, we will find

the commutator

[A,B] = AB −BA = np[A,B] +AB − np[B,A]−BA, (6.21)

where the contraction represents the sum of all normal ordered products with one or

more contractions present.

This is simplified further since both A and B (in our case H and T ) contain an even

number of creation and annihilation operators

np[A,B] = np[B,A], (6.22)

meaning that the uncontracted normal ordered products cancel

[A,B] = AB −BA. (6.23)

Since the cluster operators Tm commute, the nested operators will only have surviving

terms where ĤN contracts with one or more cluster operators.

The reason for the truncation of the Hausdorff expansion is then apparent; ĤN is a

sum of operators which at most contains four creation or annihilation operators. It is

therefore not possible to contract any term in ĤN to more than 4 cluster operators as

long as the Hamiltonian contains at most two-body interactions.

6.6.4 Rewriting the Hausdorff expansion

We also have to take into account that particle creation operators can only produce a

nonzero contraction with a particle annihilation operator to its left, and a hole annihila-

tion operator may only produce a nonzero contraction with a hole creation operator to

its left, meaning that the only contributing terms when computing the nested operator

are terms that begin with the normal ordered Hamiltonian

H = e−̂T ĤNe
T̂ = ĤN+ĤN T̂+

1

2
ĤN T̂ T̂+

1

3!
ĤN T̂ T̂ T̂+

1

4!
ĤN T̂ T̂ T̂ T̂ ≡ (ĤNe

T̂ )C (6.24)

The contractions indicate a sum over all terms in which the Hamiltonian connects by

at least one contraction to each of the cluster operators to its right. The subscript C

indicates connected terms only. For further details, see Ref. [7, p.294].
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6.6.5 The CC equations

We are finally in a position to derive explicit expressions for the energy and amplitudes.

We have the general equation

(ĤNe
T̂ )C |Φ0〉 = ∆e|Φ0〉. (6.25)

Finding the energy is now simple, we have

〈Φ0|(ĤNe
T̂ )C |Φ0〉 = ∆e. (6.26)

The amplitudes may be found from the equations

〈Φa
i |(ĤNe

T̂ )C |Φ0〉 = 0, (6.27)

and

〈Φab
ij |(ĤNe

T̂ )C |Φ0〉 = 0, (6.28)

and so on, depending on how we truncate the cluster operator. We will refer to the first

equation (6.26) as the energy equation, while the following ones will be referred to as the

amplitude equations. Each excitation operator present in the cluster operator will have

an associated amplitude equation, so it is reasonable to refer to these equations as the

T̂1 amplitude equation, the T̂2 amplitude equation, and so on. This convention is also

used in Ref. [7].

6.6.6 Truncating the ansatz

The connection requirements of the CC effective Hamiltonian in Eq. (6.24) will also

impact on truncations in the cluster operator. Since our Hamiltonian at most contains

four pairs of creation- and annihilation operators (that is we at most a two-body inter-

action), it will not be able to fully contract with cluster operators beyond the four-fold

excitation.

The explicit form of the equations will depend on how we truncate the cluster operator,

and this is what defines the different types of coupled cluster methods.

While it may seem reasonable to have the first truncation only including T̂1, we know

from Thouless’ theorem [7, p.257]that this approach would only transform a single de-

terminant into another single determinant, so this truncation does not occur. This is in

analogy to Brillouin’s theorem in configuration interaction theory [7].
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Table 6.1: Common CC truncations

Truncation Name

T̂ = T̂2 CCD

T̂ = T̂1 + T̂2 CCSD

T̂ = T̂1 + T̂2 + T̂3 CCSDT

T̂ = T̂2 + T̂3 CCDT

T̂ = T̂1 + T̂2 + T̂3 + T̂4 CCSDTQ

The simplest coupled cluster truncation is therefore to include only double excitations

in the T̂2 excitation operator, so that T̂ = T̂2. Solving the CC equations 6.26 and 6.28

for this truncation is called the Coupled Cluster Doubles (CCD) method.

To include more correlations, we may also include T̂1, implying that T̂ = T̂1 + T̂2. This

truncation defines the Coupled Cluster Singles Doubles (CCSD) method.

Some common truncations are stated in table 6.1.

Even more variations in the CC methods may be achieved by making subselections of

contributing terms (or diagrams, or channels) within the various truncations [33].

6.7 Diagrammatic rules

It is of course possible to derive the explicit coupled cluster equations for any truncation

from Eqs. (6.26) - (6.28) using Wick’s theorem. Such derivations may be found for

example in Shavitt and Bartlett’s ”Many Body Methods in Chemistry and Physics” [7,

Chapter 9].

This process is very cumbersome and prone to human errors, especially when higher

excitations are included. Consider for example the multitude of terms arising from the

CCSDT method with the terms from T̂ 4 = (T̂1 + T̂2 + T̂3)4, and their contractions with

the normal ordered Hamiltonian.

Instead of using Wick’s theorem to derive the explicit expressions for this term, we

may manipulate diagrammatic equivalents to the operators, subject to rules that ensure

consistency with the algebraic approach. This way, the derivations of the terms in

question become more easy to perform by hand.

The basic framework for this was introduced in Chapter 4, and we shall now build upon

this to present rules that allow us derive the coupled cluster equations. The rules we

follow for diagram generation are identical to those found in the work of Shavitt and

Bartlett [7, p.297].
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6.7.1 The cluster operators

We have previously introduced the various terms of the normal ordered Hamiltonian

in Figs. 4.3, 4.4 and 4.5, in chapter 3. The excitation operators are represented by

contiguous horizontal lines with an even number of particle- and hole lines above, as

shown in Figs. 6.2, 6.3, 6.4 and 6.5.

Figure 6.2 Figure 6.3

Figure 6.4 Figure 6.5

6.7.2 Contractions of operators

Analogous to Wicks’s theorem, we need to find all possible ways to contract the nor-

mal ordered Hamiltonian with strings of excitation operators. Our objective is thus to

combine excitation operators, possibly strings of excitation operators, with the various

terms in the normal ordered Hamiltonian, so they form topologically distinct diagrams.

In Figs. 6.2, 6.3, 6.4 and 6.5, lines exiting the excitation operators are assigned a

number of plus and minus signs depending on the number of particle- and hole lines in

the operator. In the same way, we may assign plus or minus signs to lines below the

interaction in the terms in the normal ordered Hamiltonian. For strings of excitation

operators, we shall denote separations between the operators by a vertical line, so that

for example the product

T̂1T̂2 → +− |+−+− (6.29)

Contractions will be represented diagrammatically as connecting corresponding lines

exiting the excitation operator and entering the interaction vertex in the normal ordered

Hamiltonian. The purpose of the signs are to derive all topologically distinct connections

between these operators.
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The plus and minus signs representing lines in the Hamiltonian term must then all

connect to a corresponding sign in the string of excitation operators, so that no lines

entering or exiting below the interaction is unconnected. At the same time, we seek only

combinations where at least one connection is made between the Hamiltonian term and

each of the excitation operators.

The practicalities of this procedure may be outlined in three steps. First we must create

any sequence containing the plus and minus signs that occur in the Hamiltonian and

the vertical bars from the string of excitation operators. No vertical bars in this string

of excitation operators means that we have only one operator, and that no such vertical

bars should occur in the created sequence.

The next step is to consider all possible permutations of this sequence. For each permu-

tation we should first ensure that the diagram is linked (see 5).

Contractions between the interaction and each of the excitation operators will be sep-

arated by the vertical bars, so that unconnected operators may be identified by either

repeated vertical bars in the sequence as in

+ +|| − |− (6.30)

or by vertical bars at the start or end of the sequence as in

+ +| − | − | (6.31)

These connection patterns will correspond to unconnected diagrams and thus not con-

tribute to the equations. Next, we need to ensure that the connection pattern is com-

patible to the operators, in the sense that the number of connections of particle and

holes (+ and −) to each excitation operator must not exceed the corresponding plus

and minus signs present in the excitation operator.

As an example, we may consider the Hamiltonian term in Fig. 6.6 connecting to the

string of operators in Eq. (6.29). These will together produce the sequence

ˆHN,9T̂1T̂2 → +−+− | (6.32)

Now, in the order above this is obviously not a contributing term or even a possible

connection pattern, since there are no connections between ĤN and T̂2, and the number

of connections to T̂1 exceeds the possible number of connections to this operator.
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Figure 6.6: Term in the normal ordered hamiltonian

Figure 6.7: Diagrams produced by ĤN,9T̂1T̂2. The diagrams are generated by our
code and because of this the lines connect in a somewhat arbitrary fashion. Still, the

diagrams are correct and non-ambiguous.

However, considering the possible permutations of this sequence will enable us to identify

three distinct connection patterns which are

+−|+− − |+ +− +|+−− (6.33)

From these three connection patterns we may draw three different diagrams, shown in

Fig. 6.7. These diagrams will in turn be translated back into algebraic expressions that

we work into our code.

A special case is when multiple occurrences of the same excitation operators occur in

the sequence. In this case the operators should be treated as indistinguishable, so that

only distinct connections occur.

For example we may consider the case of

ˆHN,9T̂2T̂2 → +−+− | (6.34)
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The possible connection patterns from these operators are

+−|+− − |+ +− +|+−− + + | − − (6.35)

The last three terms could just as well be written

+ +− | − +−−|+ −− |+ + (6.36)

but would not produce a diagram topologically distinct from the connections in Eq.

(6.35), and is thereby excluded.

6.7.3 Excitation level

As may be seen from the diagrams in Fig. 6.7, it is fully possible for particles or holes

in the excitation operator to remain unconnected. In this case, we have three diagrams

where all have unconnected particle and hole lines. Such a diagram will produce an

excited Slater determinant, in this case creating a 1p1h (one particle, one hole) state

corresponding to the excitation level +1.

In other cases, we may have diagrams with no unconnected lines, corresponding to

excitation level 0.

We will also have cases were particle and/or hole lines above the interaction cause

excitations.

In general, we will find either zero or an even number of both particle- and hole lines

unconnected in the diagram, and dividing the number of these by two will yield the

excitation level.

The significance of the excitation level is that it quickly allows us to evaluate in which of

the coupled cluster equations a diagram will contribute. Because of the orthonormality of

the Slater determinants, only diagrams of excitation level 0 will contribute to the energy.

Only diagrams of excitation level 2 will contribute to the t2-amplitude equation, and so

on.

6.7.4 Interpretation rules for diagrams

Once all possible diagrams for a given sequence of operators are drawn, we will inter-

pret them back into algebraic expressions that can be worked into code. The rules for
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interpreting diagrams are here just stated, pretty much as they appear in Shavitt and

Bartlett’s ”Many Body Methods in Chemistry and Physics” [7, Chapter 9].

6.7.5 Label all lines

Internal and external particle and hole lines are assigned labels. For consistency and

readability one should use the conventional naming with letters ”abcd...” reserved for

particles, and ”ijkl...” for holes. Since the diagrams represents sum over (internal) lines,

it is preferable to reserve certain labels for summation indices and other for ”static”

indices. This will be helpful when writing the actual code.

6.7.6 Identify the one-body operator

Every one-body vertex should be interpreted as the one-body operator of the states

exciting and entering the vertex, so that it produces an expression of the form f̂(p, q).

6.7.7 Identify the two-body operator

The two-body operator is identified as the two-body vertex with a dotted horizontal

line, and the labels entering and/or leaving the vertex produce the following interaction:

〈leftout, rightout||leftin, rightin〉 (6.37)

6.7.8 Identify the amplitudes

Each amplitude will occur as solid horizontal lines with particles and holes above it.

Depending on the labeling, they are denoted algebraically as t̂ai , t̂
ab
ij , t̂abcijk and t̂abcdijkl , for

T̂1,T̂2,T̂3 and T̂4 respectively.

6.7.9 Summation indices

We then sum over all so-called internal indices that connect the amplitudes to the

interaction. These are easily identified as the only connected lines in the diagram.
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6.7.10 Identify equivalent internal lines

Equivalent lines are pairs of lines that connect at the same amplitude and interaction,

in the same direction (particle-particle or hole-hole). For each such pair, we multiply

the expression by a factor of 1
2 .

6.7.11 Identify equivalent T -vertices

T -vertices are considered equivalent if they connect to the same interaction vertex in

the same configurational pattern. For each such pair, multiply by a factor of 1
2 .

6.7.12 The phase factor

Count the number of hole lines and loops, and multiply the expression with a phase

factor given by (−)nholes−nloops . The number of holes is the number of lines pointing

downwards, and a loop is easily identified as a pair of particle and hole lines connecting

to the same two vertices1.

6.7.13 External permutations

A pair of external lines (unconnected lines) are considered equivalent if they connect to

the same vertex. We must sum over all inequivalent external lines, and include a parity

factor of (−)σ(P ) where σ(P ) is the number of permutations.

6.7.14 Cancel factors caused by external permutations

For each pair of external lines connected to equivalent vertices, cancel one factor of 1
2

caused by equivalent T -vertices.

6.7.15 The correlation energy

As may be seen from the energy equation (see Eq. (6.26)), the diagrams that occur

in this equation should have excitation level 0. When considering possible diagrams,

this obviously means that the Hamiltonian term should not have any unconnected lines

1Actually it is possible to draw diagrams in a manner that makes these loops hard to spot, but we
shall not concern ourselves about this here.
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above the interaction, while all lines from the amplitudes should be connected to the

interaction. In other words, we seek diagrams composed of only internal lines.

The only terms in the Hamiltonian that fulfill these criterions are the ones where all

lines occur below the interaction, shown in Figs. 6.8 and 6.9. Considering the excitation

level of these interactions, we find that they cause an excitation level of -1 for Fig. 6.8

and -2 for Fig. 6.9.

Figure 6.8 Figure 6.9

It is then quite clear that only very few combinations are possible. For example, no

excitation beyond doubles will enter the energy expression, since they will excite the

reference state beyond the +2 level. Only the single excitation operator T̂1 (see Fig.

6.2) will be able to produce an excitation level of +1, and thus connect with the one-

body operator in Fig. 6.8.

We will find a total of three different diagrams that contribute to the energy, shown in

Figs. 6.10, 6.11 and 6.12.

Figure 6.10 Figure 6.11 Figure 6.12

To translate these diagrams into algebraic expressions, we apply the rules for diagram

interpretation. We find

∆e =
∑
ck

〈k||c〉tck +
1

4

∑
cdkl

〈kl||cd〉tcdkl +
1

2

∑
ckdl

〈kl||cd〉tcktdl . (6.38)

6.8 Diagrams as code

Although the diagrammatic rules greatly simplify the process of deriving the equations,

there is still a high probability for errors due to human inaccuracy. The CCSD T̂1

amplitude equations have for example 14 terms, making even the diagrammatic process

quite tedious. This is reflected even in authoritative works on the subjects such as Shavitt
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and Bartlett’s ”Many Body Methods in Chemistry and Physics” [7], where errors in the

equations have been found2.

Hermann Kümmel noted in his ”Biography of the Coupled Cluster Method” [10], that

”Because of the often large number of terms in all versions of the CCM it is rather hard

work to obtain the explicit equations by hand. And after this is done one has to write a

program to put them into the computer.”

Is it really necessary to derive equations by hand and thereafter write code manually?

Probably not, and for this reason it makes sense to ensure consistency in the derivation

process by use of computers. If equations are derived by the computer, we may also

task the computer to actually generate the code needed for numerical computation.

A number of symbolic frameworks that can handle such operations exists such as Second

Quantization for SymPy (Python) [18], but these are based on the algebraic approach

with Wick’s theorem. As a part of the work on this thesis, a python script was developed

aimed at deriving the CC equations at any level of truncation using the diagrammatic

approach.

In this section, we shall briefly discuss how to translate the diagrammatic rules into

code, and then proceed to derive the explicit equations for various truncations by use of

this code.

6.8.1 Implementation

We will need to define operators in terms of unconnected lines above and below the

interaction. It is natural to define a class for these operators, and define functions such

as contractions that takes operator classes as parameters. A function for contractions

of operators should return all distinct diagrams for the operators.

An operator is sufficiently described by its number of hole- and particle lines above and

below the vertex. This is easily translated into two arrays for each operator, with a

binary representation of particle or holes (for example 0 and 1).

To perform contractions of such operators, we will first need to set up the sequence of

vertical bars and plus- and minus signs as previously described. This is basically just

a new array, created by joining the array of particles and holes below the interaction

vertex with a number of vertical bars equal to the number of excitation operators minus

one.

2See as well Chapter 8 concerning the CCDT-1 validation.
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The code then needs to seek through all possible permutations of this sequence and

identify the valid sequences. Such valid sequences may be identified by connections

between the Hamiltonian and all excitation operators to its right, and by the number of

connections occurring in each excitation operator not exceeding the possible number of

connections.

Next we need to avoid over counting connection patterns due to equivalent excitation

operators, so we identify identical excitation operators and keep only one of each such

equivalent connection pattern.

Finally we end up with a number of unique connection patterns that gives us a non-

ambiguous recipe for constructing the diagrams.

On top of this functionality we may want a framework for plotting the diagrams or inter-

pret them as algebraic expressions or code. IPython Notebook [34] provides an excellent

environment for these kinds of operations. In the following sections we will explore such

functionalities by discussing the software CCAlgebra developed in connection with the

work with this thesis. The software CCAlgebra allows one to derive automatically all

possible approximations in coupled cluster theory, providing thereby a benchmark to

equations derived by paper and pencil. This provides an invaluable to benchmark the

equations that enter our codes. Furthermore, the software CCAlgebra allows also for

automatic generation of code, as well as mathematical expressions and figures.

6.8.2 CCAlgebra

CCAlgebra is a python software developed by the present author that may be imported

into any IPython notebook. It has no dependencies outside those libraries that are

normally included in extended python distributions such as Entougth Canopy [? ] or

Continuum Analytics Anaconda [35].

To start a session one just starts IPython Notebook and imports the CCAlgebra.py file

into the notebook. It is then possible to define operators in the following manner

Above we defined three operators; the Hamiltonian term from Fig. 6.8, and the single

and double excitation operators T̂1 and T̂2. Each operator is fully described by two

lists; the first representing the pseudo particle annihilation operators, while the second

represents pseudo particle creation operators.
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To contract these operators we use a function that takes the Hamiltonian operator and

a list of excitation operators as parameters.

This will return an object that contains all possible diagrams generated from the con-

traction of these operators. The reason for that excitation operators should be brace-

enclosed in a list is that this list contains all excitation operators to the right of the

Hamiltonian, consistent with the prior derivation from the Hausdorff expansion.

Some simple information may be obtained from the resulting contraction, such as the

excitation level and the number of resulting distinct diagrams

The resulting diagrams are numbered from 0 and up, so as we only have one diagram

resulting from this contraction we may display it as latex formatted text by the .latex()

method

We may also display it as a diagram by using the .diagram() method.

The first parameter here specifies the number of the diagram (beginning with 0), coor-

dinates on the screen if we would like to display multiple diagrams in the same frame,

and finally an on/off option for using built in formatting (turning of axis and scaling)

or letting the outside script adjust these parameters (”false”).

With the computer’s understanding of the diagram it is now very easy to translate it

directly into code:
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In this case, the code is a naive C++ implementation (naive in the sense that it is

the most direct translation of the diagram, using for-loops where sums occur), but in

principle it is possible to generate any kind of code. Quite possibly also highly optimized

code if we supply the CCAlgebra script with some more information about the system

we want to calculate.

Terms in the CC equations may now be represented as code, diagrams or mathematical

expressions depending on how we prefer to view them. It does make sense to refer to

these terms simply as ”diagrams”.

We may of course now easily derive more complex diagrams, simply by defining the

operators we seek:

Many physicists find diagrams helpful to quickly gain insight into the nature of a given

contribution. We have thus added to our software the functionality to quickly render

diagrams on screen.

In this case we used a two-body term from the Hamiltonian, and we sum over three

internal lines. This results in a more computationally intensive code with three nested

for-loops:
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In our equations the cluster operator occurs in a power series, resulting in a multitude

of products of excitation operators. To handle this more easily and avoid the need to

precalculate these, some complementary functions to quickly evaluate such expanded

power series of the cluster operator is included:

It is also convenient to predefine some operators that occur often. A normal ordered

Hamiltonian will come in handy:

6.8.3 Deriving amplitude equations using CCAlgebra

Another convenient tool is a function that produces all possible diagrams with a given ex-

citation level from a normal ordered Hamiltonian and the expanded exponential ansatz,

in effect generating the full energy- and amplitude equations. In the following exam-

ple we find all contributions to the T̂1 amplitude equation in the CCSD truncation

(T̂ = T̂1 + T̂2)

The diagram are still a bit awkwardly formatted, but they are correct:
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6.8.4 Deriving the energy using CCalgebra

We have already noted how only a very few terms enter the energy equations. Using

CCAlgebra we may confirm that this is the indeed the case
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By using CCAlgebra we may now go on to derive the explicit equations for the various

CC methods.

6.8.5 Validation of CCAlgebra

The developement of the CCAlgebra framework was mainly intended as an educational

tool for better understanding of the CC equations and their derivation. As such, the

code is written mainly as a proof of concept.

Although the generated code from CCAlgebra is not optimized to such an extent that

it will be usable for the system we explore in this thesis, it is fully capable to generate

code that reproduces accurate results for well-known systems such as CCSD dissociation

energies for the hydrogen molecule using a Gaussian basis set, as briefly described in the

section on size consistency. The code generated by CC algebra was in exact agreement

with the code written by the present author for the CCSD case with only minor manual

edits in the C++ code.

To a certain extent this validates the results obtained by the use of CCAlgebra, but it is

still highly recommended to compare the equations and diagrams with the ones present

in the literature before implementation.

6.9 The CCD equations

If we include only the double excitation operator in our cluster operator we get the CCD

(Coupled Cluster Doubles) equations. This means that we let

T̂ = T̂2. (6.39)

We then perform the contractions with CCAlgebra. Since no single excitations is in-

cluded, we get an even simpler expression for the energy than what we had earlier

∆e =
1

4

∑
cdkl

〈kl||cd〉tcdkl . (6.40)
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The only amplitude equation in this truncation is for T̂2:

0 = 〈ab||ij〉+ P (ij)
∑
k

fkjt
ab
ki + P (ab)

∑
c

fbct
ac
ij +

1

2

∑
cd

〈ab||cd〉tcdij

+
1

2

∑
kl

〈kl||ij〉tabkl − P (ba)P (ij)
∑
ck

〈ak||cj〉tcbik − P (ij)
1

2

∑
cdkl

〈kl||cd〉tcdik tabjl

+
1

4

∑
cdkl

〈kl||cd〉tcdij tabkl − P (ab)
1

2

∑
ckld

〈kl||cd〉tcakl tdbij + P (ab)P (ij)
1

2

∑
ckdl

〈kl||cd〉tcaik tdbjl .

(6.41)

There are a lot of different diagrams occurring in the CC equations and it will make

sense to classify them in ways that make them more easily distinguishable. What is

common to all diagrams is that they contain only one Hamiltonian term contracted to

possibly more than one excitation operator. For this reason we may classify them into

orders of the various excitation operators occurring in them, and in this simple case with

only one excitation operator we may assign a letter L to diagrams linear in T̂2 and the

letter Q to diagrams quadratic in T̂2. Since there are multiple diagrams corresponding

to each letter, we also assign a subscript letter in their order of appearance.

The naming of each diagram is listed in table 6.2, but for now we just group together

the terms accordingly and define

L(tabij ) ≡ 1

2

∑
cd

〈ab||cd〉tcdij +
1

2

∑
kl

〈kl||ij〉tabkl − P (ba)P (ij)
∑
ck

〈ak||cj〉tcbik.

(6.42)

Q(tabij t
ab
ij ) ≡ P (ij)

1

2

∑
cdkl

〈kl||cd〉tcdik tabjl +
1

4

∑
cdkl

〈kl||cd〉tcdij tabkl

− P (ab)
1

2

∑
ckld

〈kl||cd〉tcakl tdbij + P (ab)P (ij)
1

2

∑
ckdl

〈kl||cd〉tcaik tdbjl , (6.43)

and write the CCD equation

0 = 〈ab||ij〉+ P (ij)
∑
k

fkjt
ab
ki + P (ab)

∑
c

fbct
ac
ij + L(tabij ) +Q(tabij t

ab
ij ). (6.44)

It is not immediately clear how we are supposed to solve this equation, but it is possible

to rearrange the terms so that a self-consistency criteria is found. This may be done by

factoring out the diagonal elements in the diagrams containing the one-body operator,
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so that

P (ij)
∑
k

fkjt
ab
ki =

∑
k 6=j

fkjt
ab
ki+fjjt

ab
ji−
∑
k 6=i

fkit
ab
kj−fiitabij = −(fjj+fii)t

ab
ij +
∑
k 6=j

fkjt
ab
ki−
∑
k 6=i

fkit
ab
kj ,

(6.45)

and

P (ab)
∑
c

fact
cb
ij =

∑
c 6=a

fact
cb
ij+faat

ab
ij−
∑
c 6=b

fbct
ca
ij−fbbtbaij = (faa+fbb)t

ab
ij +
∑
c 6=a

fact
cb
ij−
∑
c 6=b

fbct
ca
ij .

(6.46)

In a canonical Hartree-Fock basis the one-body operator will only contain diagonal

elements, and since we will do all upcoming calculations in such a basis we might as well

ignore these non-diagonal sums. The full CCD amplitude equation then becomes

0 = 〈ab||ij〉 − (fjj + fii)t
ab
ij + (faa + fbb)t

ab
ij + L(tabij ) +Q(tabij t

ab
ij ). (6.47)

We may rewrite this expression to

tabij =
〈ab||ij〉+ L(tabij ) +Q(tabij t

ab
ij )

fjj + fii − faa − fbb
. (6.48)

With this expression we will be able to iteratively obtain self consistence of the ampli-

tudes. A reasonable guess for initial value for the amplitudes is found by letting the L

and Q term be zero, so we have

tabij =
〈ab||ij〉

fjj + fii − faa − fbb
. (6.49)

These amplitudes actually correspond to second order in many-body perturbation en-

ergy, since the evaluation of the energy expression for the CCD upon initialization yields

∆e(2) =
〈ij||ab〉〈ab||ij〉

fjj + fii − faa − fbb
. (6.50)
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Table 6.2: Diagrams CCD amplitude equation

Name Factor Permutation Interpretation Diagram

−1 P (ba)
∑

c fa,ct
cb
ij

P (ij)
∑

k fk,jt
ab
ik

La
1
2

∑
cd〈ab||cd〉tcdij

Lb
1
2

∑
kl〈kl||ij〉tabkl

Lc −1 P (ba)P (ij)
∑

ck〈ak||cj〉tcbik

Qa(D3a)
1
4

∑
cdkl〈kl||cd〉tcdij tabkl

Qb(D3b)
1
2 P (ab)P (ij)

∑
ckdl〈kl||cd〉tcaik tdbjl

Qc(D3c) −1
2 P (ab)

∑
ckld〈kl||cd〉tcakl tdbij

Qd(D3d) −1
2 P (ij)

∑
cdkl〈kl||cd〉tcdik tabjl

6.10 The CCSD equations

To improve upon the results from the CCD truncation the next step is to include single

excitations from the T̂1 excitation operator. Although no such excitations occur on the

system subject to this thesis, we review this contributions here for completeness.

By inclusion of the single excitations, we have the cluster operator

T̂ = T̂1 + T̂2. (6.51)

The diagrams contributing to the amplitude equations for T̂1 and T̂2 are given in tables

6.3 and 6.4 6.4.

In the same way as for the T̂2 amplitude, we may factor out terms from diagrams S3a

and S3b to initialize the T̂1 amplitude, resulting in

tai =
fa,i

f(i, i)− f(a, a)
. (6.52)

The next amplitude is found in the same manner as for the T̂2 amplitude for the CCD

approximation, and we iterate until some convergence criteria is fulfilled.
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Table 6.3: Contributions to the CCSD T̂1 amplitude equation

Name Factor Permutation Interpretation Diagram

S3a
∑

c fa,ct
c
i

S3b −1
∑

k fk,it
a
k

S5a
∑

ck fk,ct
c
i t
a
k

S2a
∑

ck fk,ct
ca
ik

S3c −1
∑

ck〈ak||ci〉tck

S5b
∑

ckd〈ak||cd〉tcktdi

S2b
1
2

∑
cdk〈ak||cd〉tcdik

S5c −1
∑

ckl〈kl||ci〉tcktal

S2c −1
2

∑
ckl〈kl||ci〉tcakl

S6
∑

ckdl〈kl||cd〉tci taktdl

S4c
∑

ckdl〈kl||cd〉tcktdail

S4a
1
2

∑
cdkl〈kl||cd〉tci tdakl

S4b
1
2

∑
kcdl〈kl||cd〉taktcdil
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Table 6.4: Contributions to the CCSD T̂2 amplitude equation (1)

Name Factor Permutation Interpretation Diagram

−1 P (ba)
∑

c fa,ct
cb
ij

P (ij)
∑

k fk,jt
ab
ik

La
1
2

∑
cd〈ab||cd〉tcdij

Lb
1
2

∑
kl〈kl||ij〉tabkl

Lc −1 P (ba)P (ij)
∑

ck〈ak||cj〉tcbik

D3a
1
4

∑
cdkl〈kl||cd〉tcdij tabkl

D3b
1
2 P (ab)P (ij)

∑
ckdl〈kl||cd〉tcaik tdbjl

D3c −1
2 P (ab)

∑
ckld〈kl||cd〉tcakl tdbij

D3d −1
2 P (ij)

∑
cdkl〈kl||cd〉tcdik tabjl

D5a −1 P (ij)
∑

ck fk,ct
c
i t
ab
jk

D5b −1 P (ab)
∑

kc fk,ct
a
kt
cb
ij

D6a −1
2 P (ij)

∑
cd〈ab||cd〉tci tdj

D6b −1
2 P (ab)

∑
kl〈kl||ij〉taktbl

D6c −1 P (ij)P (ba)
∑

ck〈ak||cj〉tci tbk

D4a P (ij)
∑

c〈ab||cj〉tci

D8a
1
2 P (ij)P (ba)

∑
cdk〈ak||cd〉tci tdj tbk

D8b
1
2 P (ij)P (ba)

∑
cdk〈ak||cd〉tci tdj tbk

D5g −1 P (ba)
∑

ckd〈ak||cd〉tcktdbij

D5c P (ij)P (ba)
∑

cdk〈ak||cd〉tci tdbjk

D5e −1
2 P (ab)

∑
kcd〈kb||cd〉taktcdij

D4b −1 P (ab)
∑

k〈kb||ij〉tak
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Table 6.5: Contributions to the CCSD T̂2 amplitude equation (2)

Name Factor Permutation Interpretation Diagram

D8b −1
2 P (ij)P (ab)

∑
ckl〈kl||cj〉tci taktbl

D5h P (ji)
∑

ckl〈kl||ci〉tcktabjl

D5f
1
2 P (ij)

∑
ckl〈kl||cj〉tci tabkl

D5d −1 P (ab)P (ji)
∑

kcl〈kl||ic〉taktcbjl

D9
1
4 P (ij)P (ab)

∑
cdkl〈kl||cd〉tci tdj taktbl

D7d −1 P (ij)
∑

ckdl〈kl||cd〉tcktdi tabjl

D7e −1 P (ab)
∑

ckld〈kl||cd〉tcktal tdbij

D7a −1
4 P (ij)

∑
cdkl〈kl||cd〉tci tdj tabkl

D7c P (ij)P (ab)
∑

ckdl〈kl||cd〉tci taktdbjl

D7b −1
4 P (ab)

∑
klcd〈kl||cd〉taktbl tcdij
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6.11 The CCSDT equations

In this section we present the full CCSDT equations as they are generated by our software

CCAlgebra for completeness. A thorough (and authorative) derivation and treatment of

these equations may be found in [7]. It should be noted that inconsistencies were found

between these equations and the ones derived in [7] concerning the signs in diagrams T1a,

T1b, and that the signs as they appear in table 6.10 produced results more in agreement

with expectations. While the signs in [7] produced CCD(T) energies above the CCD

energy, the ones from CCAlgebra produced energies lower than the CCD results (for the

three-dimensional homogeneous electron gas), as one would expect for our system.

For the CCSDT equations, we have the cluster operator

T̂ = T̂1 + T̂2 + T̂3. (6.53)

In table 6.6, all contributions to the CCSDT T̂1 equation are listed, and we find only

one extra diagram compared to the CCSD truncation (S7). The solution procedure for

this equation will be the same as for the CCSD and T̂1 amplitudes.

In the CCSDT T̂2 amplitude, we find six additional diagrams when comparing to the

CCSD T̂2 amplitudes. The additional diagrams are listed in table 6.7. The solution pro-

cedure for this equation shall also be the same as for the CCSD and CCD T̂2 amplitudes,

by factoring out terms and using a self consistency procedure.

All contributions to the T̂3 amplitudes are listed in tables 6.8 - 6.9. Following a similar

factorization procedure as for the previous equations, we may factor out terms from

diagrams T2a and T2b so we find

εabcijkt
abc
ijk = T1a + T1b + T2c + ...+ T10a, (6.54)

where we have defined

εabcijk = f(i, i) + f(j, j) + f(k, k)− f(a, a)− f(b, b)− f(c, c). (6.55)

6.11.1 Computational cost

The computational cost of the full CCSDT equation scales as n3
hn

5
p per iteration, where

np is the number of particle states and nh is the number of hole states [7, p.316]. This,

as well as the fact that such amplitudes actually have to be stored using n3
hn

3
p preferably

double precision floats, makes implementation of the full CCSDT a formidable challenge.
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Table 6.6: Contributions to the CCSDT T̂1 amplitude equation

S3a
∑

c fa,ct
c
i

S3b −1
∑

k fk,it
a
k

S5a
∑

ck fk,ct
c
i t
a
k

S2a
∑

ck fk,ct
ca
ik

S3c −1
∑

ck〈ak||ci〉tck

S5b
∑

ckd〈ak||cd〉tcktdi

S2b
1
2

∑
cdk〈ak||cd〉tcdik

S5c −1
∑

ckl〈kl||ci〉tcktal

S2c −1
2

∑
ckl〈kl||ci〉tcakl

S6
∑

ckdl〈kl||cd〉tci taktdl

S4c
∑

ckdl〈kl||cd〉tcktdail

S4a
1
2

∑
cdkl〈kl||cd〉tci tdakl

S4b
1
2

∑
kcdl〈kl||cd〉taktcdil

S7
1
4

∑
cdkl〈kl||cd〉tcdaikl
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Table 6.7: Additional diagrams in the CCSDT T̂2 amplitude equation (1)

Name Factor Permutation Interpretation Diagram

D10a
∑

ck fk,ct
cab
ijk

D10b −1
2 P (ba)

∑
cdk〈ak||cd〉tcdbijk

D10c
1
2 P (ij)

∑
ckl〈kl||cj〉tcabikl

D11a
∑

ckdl〈kl||cd〉tcktdabijl

D11c −1
2 P (ij)

∑
cdkl〈kl||cd〉tci tdabjkl

D11b −1
2 P (ab)

∑
kcdl〈kl||cd〉taktcdbijl
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Table 6.8: Contributions to the CCSDT T̂3 amplitude equation (1)

Name Factor Permutation Interpretation Diagram

T1a −1 P (ba)P (bz)P (iw)P (jw)
∑

c〈ab||ck〉tcbij

T1b P (az)P (bz)P (ij)P (iw)
∑

k〈kz||j〉tabik

T2a P (ba)P (za)
∑

c fa,ct
cbz
ijw

T2b −1 P (iw)P (jw)
∑

k fk,wt
abz
ijk

T6a P (ij)P (iw)
∑

ck fk,ct
c
i t
abz
jwk

T6b P (ab)P (az)
∑

kc fk,ct
a
kt
cbz
ijw

T2c
1
2 P (za)P (zb)

∑
cd〈ab||cd〉tcdzijw

T2d
1
2 P (iw)P (ij)

∑
kl〈kl||jw〉tabzikl

T2e −1 P (ba)P (za)P (iw)P (jw)
∑

ck〈ak||cw〉tcbzijk

T3a P (ab)P (az)P (iw)P (jw)
∑

ck fk,ct
ca
ij t

bz
wk

T3d
1
2 P (iw)P (jw)P (ba)P (za)

∑
cdk〈ak||cd〉tcdij tbzwk

T3b −1 P (bz)P (ba)P (ij)P (iw)P (za)
∑

ckd〈ak||cd〉tcbiktdzjw

T3c P (ab)P (az)P (iw)P (ij)P (wj)
∑

ckl〈kl||cj〉tcaik tbzwl

T3e −1
2 P (ab)P (az)P (iw)P (jw)

∑
ckl〈kl||cw〉tcaij tbzkl

T4a P (ij)P (iw)P (za)P (zb)
∑

cd〈ab||cd〉tci tdzjw

T4b P (ab)P (az)P (ji)P (jw)
∑

kl〈kl||iw〉taktbzjl

T4c P (ij)P (iw)P (ba)P (za)P (jw)
∑

ck〈ak||cw〉tci tbzjk

T4d P (az)P (ab)P (zb)P (ji)P (wi)
∑

kc〈kb||ic〉taktczjw
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Table 6.9: Contributions to the CCSDT T̂3 amplitude equation (2)

T6e P (ba)P (za)
∑

ckd〈ak||cd〉tcktdbzijw

T6c P (ij)P (iw)P (ba)P (za)
∑

cdk〈ak||cd〉tci tdbzjwk

T6g −1
2 P (az)P (ab)P (zb)

∑
kcd〈kb||cd〉taktcdzijw

T6f −1 P (ji)P (wi)
∑

ckl〈kl||ci〉tcktabzjwl

T6h
1
2 P (ij)P (iw)P (jw)

∑
ckl〈kl||cw〉tci tabzjkl

T6d −1 P (ab)P (az)P (ji)P (wi)
∑

kcl〈kl||ic〉taktcbzjwl

T5b
1
2 P (ij)P (iw)

∑
cdkl〈kl||cd〉tcdik tabzjwl

T5f
1
4 P (iw)P (jw)

∑
cdkl〈kl||cd〉tcdij tabzwkl

T5c
1
2 P (ab)P (az)

∑
ckld〈kl||cd〉tcakl tdbzijw

T5a P (ab)P (az)P (ij)P (iw)
∑

ckdl〈kl||cd〉tcaik tdbzjwl

T5d
1
2 P (ab)P (az)P (iw)P (jw)

∑
cdkl〈kl||cd〉tcaij tdbzwkl

T5g
1
4 P (az)P (bz)

∑
klcd〈kl||cd〉tabkl tcdzijw

T5e
1
2 P (az)P (bz)P (ij)P (iw)

∑
kcdl〈kl||cd〉tabik tcdzjwl

T7c −1
2 P (ij)P (iw)P (jw)P (ba)P (za)

∑
cdk〈ak||cd〉tci tdj tbzwk

T7a −1 P (ij)P (iw)P (bz)P (ba)P (za)
∑

ckd〈ak||cd〉tci tbktdzjw

T7b P (iw)P (ij)P (ab)P (az)P (wj)
∑

ckl〈kl||cj〉tci taktbzwl

T7d
1
2 P (ab)P (az)P (bz)P (ji)P (wi)

∑
klc〈kl||ic〉taktbl tczjw

T10b −1
2 P (ij)P (iw)P (jw)P (ab)P (az)

∑
cdkl〈kl||cd〉tci tdj taktbzwl

T10a −1
2 P (ij)P (iw)P (ab)P (az)P (bz)

∑
ckld〈kl||cd〉tci taktbl tdzjw
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Table 6.10: Contributions to the CCSDT T̂3 amplitude equation (3)

T9a P (ij)P (iw)
∑

ckdl〈kl||cd〉tcktdi tabzjwl

T9b P (ab)P (az)
∑

ckld〈kl||cd〉tcktal tdbzijw

T9c −1
4 P (ij)P (iw)P (jw)

∑
cdkl〈kl||cd〉tci tdj tabzwkl

T9e P (ij)P (iw)P (ab)P (az)
∑

ckdl〈kl||cd〉tci taktdbzjwl

T9d −1
4 P (ab)P (az)P (bz)

∑
klcd〈kl||cd〉taktbl tcdzijw

T8a P (ab)P (az)P (iw)P (jw)
∑

ckdl〈kl||cd〉tcktdaij tbzwl

T8b −1 P (ij)P (iw)P (ab)P (az)P (jw)
∑

cdkl〈kl||cd〉tci tdajktbzwl

T8d
1
2 P (ij)P (iw)P (ab)P (az)

∑
cdkl〈kl||cd〉tci tdajwtbzkl

T8e
1
2 P (ab)P (az)P (iw)P (jw)

∑
kcdl〈kl||cd〉taktcdij tbzwl

T8c −1 P (ab)P (az)P (bz)P (ij)P (iw)
∑

kcld〈kl||cd〉taktcbil tdzjw
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6.12 The CCDT equations

The main aim of this thesis is to explore triple contributions in coupled cluster theory

for the homogeneous electron gas. For homogeneous matter such as the electron gas,

the singles contribution vanish due to symmetry and momentum conservation [1, 36].

For this reason we will only need to include diagrams from the CCDT (doubles - triples)

truncation. Furthermore, esome of the diagrams in the CCDT equations will vanish due

to the fact that we employ a canonical Hartree-Fock basis [7, p.314]. We may therefore

omit the term D10a from the T̂2 amplitude equation, and all diagrams containing single

excitations are omitted from the T̂3 amplitude equation (as compared to the full CCSDT

T̂3 equation.)

Table 6.11: Contributions to the CCDT T̂2 amplitude equation.

Name Factor Permutation Interpretation Diagram

−1 P (ba)
∑

c fa,ct
cb
ij

P (ij)
∑

k fk,jt
ab
ik

La
1
2

∑
cd〈ab||cd〉tcdij

Lb
1
2

∑
kl〈kl||ij〉tabkl

Lc −1 P (ba)P (ij)
∑

ck〈ak||cj〉tcbik

D3a
1
4

∑
cdkl〈kl||cd〉tcdij tabkl

D3b
1
2 P (ab)P (ij)

∑
ckdl〈kl||cd〉tcaik tdbjl

D3c −1
2 P (ab)

∑
ckld〈kl||cd〉tcakl tdbij

D3d −1
2 P (ij)

∑
cdkl〈kl||cd〉tcdik tabjl

D10b −1
2 P (ba)

∑
cdk〈ak||cd〉tcdbijk

D10c
1
2 P (ij)

∑
ckl〈kl||cj〉tcabikl
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Table 6.12: Contributions to the CCDT T̂3 amplitude equation.

Name Factor Permutation Interpretation Diagram

T1a −1 P (ba)P (bz)P (iw)P (jw)
∑

c〈ab||ck〉tcbij

T1b P (az)P (bz)P (ij)P (iw)
∑

k〈kz||j〉tabik

T2a P (ba)P (za)
∑

c fa,ct
cbz
ijw

T2b −1 P (iw)P (jw)
∑

k fk,wt
abz
ijk

T2c
1
2 P (za)P (zb)

∑
cd〈ab||cd〉tcdzijw

T2d
1
2 P (iw)P (ij)

∑
kl〈kl||jw〉tabzikl

T2e −1 P (ba)P (za)P (iw)P (jw)
∑

ck〈ak||cw〉tcbzijk

T3d
1
2 P (iw)P (jw)P (ba)P (za)

∑
cdk〈ak||cd〉tcdij tbzwk

T3b −1 P (bz)P (ba)P (ij)P (iw)P (za)
∑

ckd〈ak||cd〉tcbiktdzjw

T3c P (ab)P (az)P (iw)P (ij)P (wj)
∑

ckl〈kl||cj〉tcaik tbzwl

T3e −1
2 P (ab)P (az)P (iw)P (jw)

∑
ckl〈kl||cw〉tcaij tbzkl

T5b
1
2 P (ij)P (iw)

∑
cdkl〈kl||cd〉tcdik tabzjwl

T5f
1
4 P (iw)P (jw)

∑
cdkl〈kl||cd〉tcdij tabzwkl

T5c
1
2 P (ab)P (az)

∑
ckld〈kl||cd〉tcakl tdbzijw

T5a P (ab)P (az)P (ij)P (iw)
∑

ckdl〈kl||cd〉tcaik tdbzjwl

T5d
1
2 P (ab)P (az)P (iw)P (jw)

∑
cdkl〈kl||cd〉tcaij tdbzwkl

T5g
1
4 P (az)P (bz)

∑
klcd〈kl||cd〉tabkl tcdzijw

T5e
1
2 P (az)P (bz)P (ij)P (iw)

∑
kcdl〈kl||cd〉tabik tcdzjwl
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6.13 CCDT-1

A common approach to include triple excitations is to include only the leading order

terms T1a and T1b in the T̂3 amplitude equation, which then takes the form

εabcijkt
abc
ijk = P̂ (a/bc|k/ij)

∑
d

〈bc||dk〉tadij − P̂ (c/ab|i/jk)
∑
l

〈lc||jk〉tabil (6.56)

We then proceed by using these amplitudes to calculate diagrams D10b and D10c in the

T̂2 amplitudes.

This method is called the CCSDT-1 (in our case with no single excitations: CCDT-1)

method [7], and scales as O(n3
hn

4
p) per iteration, where nh is the number of hole states

and np the number of particle states..

This is the actual approach we shall use in subsequent calculations. An alternative to

this implementation is to first let the CCD amplitudes converge, whereby a perturbative

third-order energy calculation is performed using the diagrams T1a and T1b above. This

non-iterative approach is commonly referred to as the CCD(T) or perturbative triples

approach. While CCSDT-1 normally yields better energy approximations [7, p.342], it is

also known to overestimate the energy due to the fact that it only includes linear terms

for the T̂3 amplitude. This problem is not present in the CCSD(T) since the method

doesn’t allow T̂3 amplitudes to affect the T̂2 amplitudes.

6.14 Intermediates

Because of the relatively great computational cost of the CC method, scientists have been

searching for ways of reducing the number of floating point operations (flops) needed. On

the one hand, one might attempt to rewrite the equations so that overlapping quantities

are only computed once, and exploit symmetries in ways that reduce the computational

cost, while on the other hand one might try out different schemes for the implementation

that improves the efficiency of the code.

A popular approach to avoid computing overlapping quantities is the use of so-called

intermediates [32], where we refactor the equations so that certain terms appear in mul-

tiple diagrams. The implications are that an intermediate calculation may be performed

first, and thereafter multiple diagrams may be calculated by this intermediate. The use

of intermediates may reduce the computational cost significantly [1].
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As will become apparent in the upcoming chapters, the most computationally intense

parts in the implementation of CCSD(T) for our purpose is not part of the CCD equa-

tion, but rather related to computation and storage of the T̂3 amplitudes. For this

reason, intermediates were successfully implemented for educational purposes in one of

the secondary solvers, rather than to reduce the computational cost in the main solver.

We shall just briefly state these intermediates for the CCD method in this section.

6.14.1 CCD intermediates

It is possible to rewrite the CCD equation as [1]

(fi,i + fj,j − fa,a − fb,b)tabij = 〈ab||ij〉+
1

2

∑
cd

〈ab||cd〉tcdij +

1

2

∑
kl

tabkl
(
〈kl||ij〉+

1

2

∑
cd

〈kl||dc〉tdcij
)

+ P (ba)P (ij)
∑
ck

tacik
(
〈kb||cj〉+

1

2

∑
ld

〈kl||cd〉tdblj
)
−

1

2
P (ij)

∑
k

tabik
(∑
kcd

〈kl||cd〉tcdjl
)
− 1

2
P (ab)

∑
c

tacij
(∑
kld

〈kl||cd〉tbdkl
)
. (6.57)

By then defining (and precomputing)

I1 ≡ 〈kl||ij〉+
1

2

∑
cd

〈kl||dc〉tdcij , (6.58)

I2 ≡ 〈kb||cj〉+
1

2

∑
ld

〈kl||cd〉tdblj , (6.59)

I3 ≡
∑
kcd

〈kl||cd〉tcdjl , (6.60)

I4 ≡
∑
kld

〈kl||cd〉tbdkl , (6.61)

We may solve the CCD equation simply as

(fi,i+fj,j−fa,a−fb,b)tabij = 〈ab||ij〉+1

2

∑
cd

〈ab||cd〉tcdij +
1

2

∑
kl

tabkl I1+P (ba)P (ij)
∑
ck

tacikI2−

1

2
P (ij)

∑
k

tabikI3 −
1

2
P (ab)

∑
c

tacij I4. (6.62)
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This provides a significant reduction of the computational cost, since some terms may

even be reduced from an order of O(n4
hn

4
p) to O(n4

hn
2
p) [1]. These intermediates were

successfully implemented in the upcoming sparse approach.

6.14.2 Intermediates for CCSD

Numerous schemes for factorization of diagrams into intermediates exists for the CCSD

equation. Commonly used such factorizations are for example those of J. F. Stanton

and J. Gauss [37], possibly referred to as simply the Stanton-Gauss intermediates, or

the ones proposed by Scuseria, Scheiner, Lee, Rice and Schaefer [38].

In working on this thesis, a simple implementation of the Stanton-Gauss intermediates

was written and tested on the H2 molecule as well as the electron gas, and it was con-

firmed to exactly reproduce the results using no such intermediates. This implementation

is found on the author’s GitHub page [39].



Chapter 7

The Homogenous Electron Gas

7.1 The Homogenous Electron Gas

The homogenous electron gas (HEG) is a system where free electrons interact with each

other and a uniformly distributed background charge [13]. The model is also known as

the Jellium Model or the Free Electron Gas [13], and is currently a frequently studied

system within many-body physics [1, 4, 6, 40].

Since the background charge is uniformly distributed, the model mainly focuses on effects

due to interactions between the electrons. The model will in some sense be valid for

systems where the electrons are weakly bound to the nuclei, such as periodic lattices

with closed shells and weakly bound valence electrons [13].

A very similar treatment as we apply to the HEG system by expanding it in a plane

wave basis will also be applicable to infinite, homogenous nuclear matter with minor

alterations [1], and may provide insights into properties of supernova explosions [41] and

neutron stars [42, 43].

Some of the earliest treatments of the HEG using CC were performed in the 1970’s by

Singal and Das [44], Freeman [45] and Bishop together with Luhrmann [46, 47].

7.2 The Hamiltonian

The Hamiltonian for the HEG is, see for example Ref. [13],

Ĥ = Ĥe + Ĥeb + Ĥbb, (7.1)

86
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where Ĥe relates to electron part only, Ĥeb is the interaction with the positive background

and Ĥbb is the interaction between the background charges. This last term is analogous

to the term that would be ”frozen out” by the Born-Oppenheimer approximation if we

were working with molecules or atoms, but in our case it will simply turn out to be a

constant due to the uniformity of the density ρ [13], that is

Ĥbb =
e2

2

∫
Ω
d3R

∫
Ω
d3R′

ρi(R)ρi(R
′)

|R−R′|
= Ĥbb =

e2

2

∫
Ω
d3R

∫
Ω
d3R′

( Ω
N )2

|R−R′|
, (7.2)

where e is the charge of the electron, ω is the volume and N is the number of charged

ions in the background.

The Hamiltonian associated with the electrons consists of the kinetic energy of the

electrons and their interactions is given as

Ĥe =
∑
i

p̂i
2n

+
1

2

∑
i 6=j

e2

|ri − rj |
. (7.3)

The interaction between the electrons and the background charge may be written as

Ĥeb = −
∑
i

∫
Ω
d3R

N

Ω

e2

|ri −R|
. (7.4)

7.3 Ewald’s summation technique

The electrons repel each other through the coulomb force, which has the general form

1

2

∑
i 6=j

1

|ri − rj |
, (7.5)

where we have employed atomic units, that is ~ = c = e = 1.

This expression is not convergent for an infinite number of particles, but in cases where

the net charge of the system is neutral we may use Ewald’s summation technique to

make this energy convergent.

The error function is defined [48]

erf(x) ≡ 2√
π

∫ x

0
dte−t

2
, (7.6)

while the complementary error function is defined [48] as

erfc(x) ≡ 1− erf(x) =
2√
π

∫ ∞
x

dte−t
2
. (7.7)
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Ewald [49] found that

1

r
=
erf(1

2

√
ηr)

r
+
erfc(1

2

√
ηr)

r
, (7.8)

which allows us to rewrite the electronic repulsion as

1

2

∑
i 6=j

(
erf(1

2

√
ηrij)

rij
+
erfc(1

2

√
ηrij)

rij
), (7.9)

where we have defined

rij ≡ |ri − rj |. (7.10)

7.4 The Ewald interaction

It may be shown that the interaction between the electrons and the background, as well

as interactions among the background charges vanish when using Ewald’s summation

technique [50], and we will end up with the interaction energy for the three dimensional

HEG [51] as

vE(r) =
∑
k 6=0

4π

L3k2
eik•re

−η2k2
4 +

∑
R

1

r−R
erfc(

|r−R|
η

)− πη2

L3
, (7.11)

where L is the length of one side in the simulation cell and the vector

R = L(nzuz + nyuy + nzuz), (7.12)

is used to refer to all simulation cells in real space. The quantity k represents the

momentum vector, while r is the position vector for each electron [1].

The parameter η allows us to gradually vary the amount of the different terms. We

shall take it to be infinitesimally small and positive, as in [1, p.97], computing thereby

the interaction in momentum space. This results in the following expression for the

interaction

vE(r) =
∑
k 6=0

4π

L3k2
eik•r. (7.13)
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7.5 The antisymmetric matrix elements

The antisymmetric matrix elements for the three dimensional HEG are [1]

〈pq||rs〉 =
4π

L3
δkp+kq ,kr+ks

(
δmsp ,msr δmsq ,mss (1− δkp,kr)

1

|kr − kp|2

− δmsp ,mss δmsq ,msr (1− δkp,ks)
1

|ks − kp|2
)
. (7.14)

The antisymmetric matrix elements may also be defined for the two dimensional case

[1], but the focus of this thesis is on the three-dimensional electron gas.

7.6 The Hartree-Fock energy

For the electron gas the reference energy is [1]

Eref =
∑
i

〈i|ĥ0|i〉+
1

2

∑
ij

〈ij||ij〉+
1

2
Av0. (7.15)

The number A is the number of particles, and the quantity v0 is the so called Madelung

constant. This term describes so-called finite size effects [1] that are stronger for small

systems. As we increase the number of particle states towards the thermodynamical

limit, it will vanish.

7.7 The Fock Matrix

The Fock matrix elements are [1]

〈p|f |q〉 =
k2
p

2m
δkpkqδmspmsq +

∑
i

〈pi||qi〉 (7.16)

7.8 The Wigner Seitz radius

We will not directly use the volume Ω = L3 in the implementation. We will instead follow

the same procedure as [1, p.105], and calculate it using the dimensionless quantity rs,

implying that

Ω(rs) =
4π

3
r3
Br

3
s , (7.17)
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where

rs =
r1

rB
, (7.18)

and
Ω

N
=

4π

3
r3

1, (7.19)

where N is the number of electrons. The quantity rs is called the Wigner Seitz radius,

and is interpreted as an effective or mean distance between the electrons. The density

increases as rs becomes smaller, and rs ≤ 1.5 is sometimes referred to as the high-density

regime (see for example Ref. [33]).

7.9 The plane wave basis

We will expand the system in a plane wave basis1 for the finite volume Ω = L3, with

single-particle basis functions defined as

ψkms(r) =
1√
Ω

exp (ikr)ξms . (7.20)

The spin orientation is either up or down, and represented by ξ. Each such basis function

has an associated single particle energy

ε(x, y, z) =
1

2m
(
2π

L
)2(n2

x + n2
y + n2

z). (7.21)

The quantum numbers nx, ny and nz allow us to define so-called magic numbers, as

evidenced in table 7.1. The first three shells (resulting in 38 states) of the three dimen-

sional plane wave basis are shown in table 7.1. We see that we have magic numbers

corresponding to 2, 14, 38, 54, 66, 114, 162, 186 and so on.

1We assume the reader to be familiar with the notion of a plane wave basis as this forms the basis
for the simplest possible quantum mechanical system taught in introductory quantum physics courses.
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Table 7.1: The first three shells in the plane wave basis for the three-dimensional
homogeneous electron gas

Shell nx ny nz ms

0 0 0 0 1
0 0 0 -1

1 -1 0 0 1
-1 0 0 -1
0 -1 0 1
0 -1 0 -1
0 0 -1 1
0 0 -1 -1
0 0 1 1
0 0 1 -1
0 1 0 1
0 1 0 -1
1 0 0 1
1 0 0 -1

2 -1 -1 0 1
-1 -1 0 -1
-1 0 -1 1
-1 0 -1 -1
-1 0 1 1
-1 0 1 -1
-1 1 0 1
-1 1 0 -1
0 -1 -1 1
0 -1 -1 -1
0 -1 1 1
0 -1 1 -1
0 1 -1 1
0 1 -1 -1
0 1 1 1
0 1 1 -1
1 -1 0 1
1 -1 0 -1
1 0 -1 1
1 0 -1 -1
1 0 1 1
1 0 1 -1
1 1 0 1
1 1 0 -1
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7.10 Recent progress on the Electron gas

A number of recent publications has sparked an interest in the homogeneous electron gas.

Calculations using Coupled Cluster theory at the level of doubles excitations (CCD) have

been performed by Roggero et al. [6] and Shepherd et al. [4], and to very high precision

by Gustav Baardsen in his PhD thesis [1]. Shepherd et al. have frequently published

on this topic since 2012, see for example Refs. [4, 33, 40, 52, 53], and in Ref. [40], the

authors suggest a formal connection between the random phase approximation and the

CCD approach.

Highly accurate calculations using Variational Monte Carlo (VMC) have also been per-

formed as early as 1980 by Ceperley and Alder [54], but also in the recent years by

Drummond et al. [55], Shepherd et al. [4] and Gurtubay et al. [56].

The system has also been a ”hot topic” in the Computational Physics group at the

University of Oslo, and several master theses have touched upon this subject. From this

group, Sarah Reimann has produced IM-SRG(2) results [57], while Karl Leikanger has

produced FCIQMC [20] results for the tree-dimensional HEG. Similar results as those

from Leikanger are available also from Shepherd et al. [4].

Comparisons between CCD and FCIQMC have shown that CCD fails to account for

important correlations in the system [1].

Shepherd and Grüneis have also preformed CCD(T) calculations on the system [33], but

they found that the perturbative treatment of the triples (using Möller-Plesset pertur-

bation theory) resulted in divergent energies for the HEG. They propose in the same

article a modification that lifts the divergent behavior.

To the present author’s knowledge, we have not been able to find any results beyond

the CCD(T) results of Ref. [33]. This defines the rationale for this thesis, since a proper

treatment of triples correlations are expected to have a non-negligible effect on the

results for the ground state energy and the equation of state for the electron gas. The

results to be presented here are thus the first ever studies of triples correlations for the

homogeneous electron gas. Although we will focus on the three-dimensional electron

gas, our codes can easily be applied to the two-dimensional electron gas. Furthermore, a

proper assessment of such correlations has important consequences for studies of dense

nuclear matter, expected to form the bulk matter of compact objects like neutron stars

and proto-neutron stars. Since the theoretical description of infinite nuclear matter

and/or neutron matter is similar to the electron gas, the developed formalism can be

extended to such studies as well. Our codes are fully object oriented, allowing thereby

for an easy extension to systems like dense nuclear matter.



Chapter 8

Implementation

8.1 Overview

This chapter deals with practical programming issues and conceptual perspectives on

the implementation of the CCDT-1 equation for the system described in chapter 7.

As was clear from the derivation of the equations in chapter 6, the CCDT-1 consists of a

CCD with an addition just four diagrams from the CCDT T̂2 and T̂3 equation. A natural

stepping stone in the implementation is therefore the CCD equations, as they will also

serve as means of benchmarking and validating the solver against existing results.

No CCM results beyond the CCD (with CCD(T) performed by Shepherd and Gruneis

[53]) are known to the author at the time of writing this thesis, meaning that no direct

benchmarking and validation of the CCDT-1 equations and the corresponding results

is possible. To mend this shortcoming, we will develop two independent solvers for the

CCDT-1 set of equations, allowing to corroborate our results. This approach will also

be of great aid in the debugging process, as it will allow for extensive comparison and

testing of subprocesses.

We will refer to the two solvers as the block implementation and the sparse implementa-

tion, and the reason for the naming will become clear in the upcoming discussion. While

both solvers have similar aims, they are based on two conceptually different perspectives

on the equations involved.

The sparse implementation approaches the problem in such a way the code very closely

resembles the actual equations. One advantage of this is that it to an extent ensures the

validity of the results, although bugs and misinterpretations are bound to occur. While

memory usage of this approach is optimal, it has turned out that the actual iterative

steps performs sub optimal.
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The block implementation is built for the purpose of highly efficient computations and

minimal memory usage. It is much more abstract in its comparison with the actual

equations than the sparse solver, and it is to a large extent based on physical symmetries

and restrictions present in the system.

Our strategy in this thesis is therefore to implement both solvers, whereby we validate

both against the CCD results present in the literature (see Refs. [1, 4, 6, 33, 52, 53]).

We then corroborate the CCDT-1 results by ensuring consistency between the solvers.

We are then finally able to perform the calculations presented in the final chapter of this

thesis.

8.1.1 The problem

While a lot of computational results are present in the literature, the author has not

been able to find any descriptions of the actual algorithms used. In the literature, we

find that corresponding CCD calculations for the HEG normally extrapolates results

from basis sets of up to around 2000 particle states [6, 40], while some may even go as

high as 20000 particle states [1].

Most descriptions of the actual algorithms for the coupled cluster method very closely

resemble the code generated from CCAlgebra (see Ref. [58]) as presented in chapter 6.

Such implementations may be called naive, as they have a one to one correspondence

with the equations; each sum is translated into a nested for-loop, each diagram is added

term by term, and at the bottom of each cluster of nested for-loops lies a couple of

function calls and a multiplication. In the same way, we may refer to the storage of

amplitudes and interactions as naive, if it has a one to one correspondence with the

tensor representation in the equations. This would mean that we also store all elements

equal to zero, neglecting any sparsity in the system.

Even with the inclusion of intermediates, such a naive approach to our system would be

futile. The T̂3 amplitude is a tensor of rank 6, and if we were to naively store it for 14

particles using arrays it would scale roughly as shown in Fig. 8.1. This results in some

serious limitations to the size of the basis, so we clearly need to move beyond any naive

storage implementation.

Since the interaction that occurs in this system is defined by a product of Kronecker

deltas over quantum numbers, we may expect most of the terms that occur in the

diagrams to be zero. This fact actually reflects the conservation of momentum and spin

in the system. The excitations due to the cluster operator should conserve spin and
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total momentum for the system. This is a strong indication that our system will be very

sparse, and that alternative data structures to the naive one should be explored.

Figure 8.1: Size of the T̂3 amplitudes as a function of the number of particle states
for a naive implementation, where the sparsity of the system is ignored.

To investigate the physical system properly with this method we will therefore need to

write our code in a way that limits the use of memory and at the same time achieves

optimal performance.

8.2 Contractions as matrix multiplications

We will need to generate diagrams, which are contractions between tensors of varying

rank (at most 6). Common to both implementational approaches is that we shall con-

ceptually consider diagrams as matrix multiplications. Bluntly speaking, and probably

not in full accordance with linear algebra formalism, matrix multiplication is already a

special case of contraction between two or more tensors of rank 2. Consider for example

the matrix-matrix product

(MN)αγ =
∑
β

Mα
βN

β
γ . (8.1)

If we allow ourselves a more liberal approach, we may as well define

(MN)αγ =
∑
β

Mβ
αN

β
γ →MTN. (8.2)
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In 6, we interpreted contractions as sums over internal lines in the diagrams. The same

may be done for the matrix multiplication above. We still need to define tensors of rank

≥ 2 as matrices for this to make full sense.

The motivation for introducing this concept, is twofold. Firstly it will - perhaps sur-

prisingly - give a significant speedup of the solvers, while secondly it provides a suitable

simplification of the actual coding process. A lot of nested for loops over varying indices

may be subject to a number of mis-spellings/labelings or other kind of errors.

For optimal performance, we need to utilize BLAS (Basic Linear Algebra Subprograms)

(see Ref. [59]) where possible. BLAS has three levels of operation depending on the

order of the computational complexity. The optimization of operations is achieved by

carefully utilizing the Level 1 and Level 2 cache, to reduce the cost assosciated with

memory access [60]. The most efficient level of operation is BLAS Level 3, or operations

of O(n3), such as matrix-matrix multiplication [60]

To most efficiently perform all the floating point operations involved in this implementa-

tion, we therefore want to perform contractions as matrix-matrix multiplications. This

basically means that we need to set up matrices for the interaction and the amplitudes,

and align the elements in these matrices so that each resulting element contains the

same sums as defined in the diagram.

8.2.1 Mapping diagrams onto matrices

In the same way that a Picasso painting preserves details beyond the line of sight, we

will need to unambiguously map tensors of rank ≥ 2 onto matrices in such a ways that

all elements are present and consistent amongst the matrices. One possibility for the

interaction and the T̂2 amplitude, is

〈pq|v̂|rs〉 = Vα(p,q),β(r,s). (8.3)

Where

α(p, q) = p+ qNp, β(r, s) = r + sNr. (8.4)

Note that the ”steplength” of the second index equals the number of unique states in

front of it. The above is easily extended to the T̂3 amplitude:

tabcijk = tα(a,b,c),β(i,j,k), (8.5)
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where

α(a, b, c) = a+ bNa + cNaNb, β(i, j, k) = i+ j ∗Ni + k ∗Ni ∗Nj . (8.6)

The corresponding indices α, β will now correspond to the row and column in the ma-

trices, respectively.

8.2.2 Subdividing the interaction matrix

Figure 8.2: The interaction matrix with regions. The subdivision into regions is made
so that each submatrix may be loaded when calculating the different diagrams. The
difference in size is meant to illustrate that we will normally consider more particle

states than hole states.

Diagrams naturally include terms summing over particle- or hole states. In no case do

we sum over all the states (particles and holes) meaning that we generally find matrix

elements of the form 〈pp||pp〉, 〈pp||hh〉, 〈hp||ph〉 and so on. There is a lot of symmetries

that occur in the interaction matrix, so it will make sense to divide it into smaller regions.

We will refer to these regions by their configuration in terms of particle- and hole states,

as this is the way they occur in the diagrams. This subdivison is illustrated in 8.2. For

example, when we consider diagrams where the interaction has the form 〈ij||ab〉, we will

refer to the submatrix as the hh-pp matrix (hole-hole, particle-particle).
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The off-diagonal submatrices in the interaction matrix have their transposed counter-

parts mirrored across the diagonal, and of course the usual symmetries due to the nature

of spin in the two body interaction in Eq. (3.27) apply shown in table 8.1.

Table 8.1: Spin symmetries in the two body interaction matrix

〈p↑q↑||r↑s↑〉 = 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉
〈p↓q↓||r↓s↓〉 = 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉
〈p↑q↓||r↑s↓〉 = 〈pq|v̂|rs〉
〈p↓q↑||r↓s↑〉 = 〈pq|v̂|rs〉
〈p↓q↑||r↑s↓〉 = −〈pq|v̂|rs〉
〈p↑q↓||r↓s↑〉 = −〈pq|v̂|rs〉
〈p↑q↑||r↓s↓〉 = 0
〈p↑q↑||r↓s↑〉 = 0
〈p↑q↑||r↑s↓〉 = 0
〈p↓q↓||r↑s↑〉 = 0
〈p↓q↓||r↓s↑〉 = 0
〈p↓q↓||r↑s↓〉 = 0
〈p↓q↑||r↑s↑〉 = 0
〈p↑q↓||r↑s↑〉 = 0
〈p↑q↓||r↓s↓〉 = 0
〈p↓q↑||r↓s↓〉 = 0

8.2.3 Aligning matrices

In lack of a better word, we shall refer to the different ways in which higher dimensional

tensors are mapped onto matrices as their alignment. Each element in the tensor will

need to be assigned an index in the matrix, and these should be chosen such that the

resulting matrix-matrix multiplications corresponds to the contractions specified in the

diagrams.

Some diagrams align perfectly in the row and columns ”out of the box”. Consider for

example the La ”ladder” term [7] (see table 6.2), where

La =
∑
cd

〈ab|v̂|cd〉tcdij . (8.7)

Here, we see that the columns in the interaction matrix aligns, since the mapping in

Eq. (8.3) will result in

〈ab|v̂|cd〉 ≡ vabcd → v
α(a,b)
β(c,d) , (8.8)

and

tcdij → t
β(c,d)
γ(i,j) . (8.9)
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By definition we have

β(c, d) = β(c, d), (8.10)

implying that

(La)
α
γ =

∑
β

vαβ t
β
γ → La = vt. (8.11)

In other cases we are not that lucky. We may for example consider the Lc term, where

Lc = −P (ba)P (ij)
∑
ck

〈ak||cj〉tcbik. (8.12)

Just naively mapping onto the matrices will result in

〈ak|v̂|cj〉 ≡ vakcj → v
α(a,k)
β(c,j) , (8.13)

tikcb → t
β(i,k)
γ(c,b) . (8.14)

The matrix multiplication is ”misaligned”:

Lc 6= −P (ba)P (ij)v
α(a,k)
β(c,j) t

β(i,k)
γ(c,b) . (8.15)

This will not work, and doesn’t even provide us with compatible matrix sizes that allow

for such a multiplication to be performed. What we instead want, is to find a mapping

so that

vakcj → ṽ
α(a,j)
β(c,k) , (8.16)

tikcb → t̃
α(c,k)
β(b,i) . (8.17)

This will allow us to calculate

L̃c = −P (ba)P (ij)ṽ
α(a,j)
β(c,k) t̃

α(c,k)
β(b,i) . (8.18)

This will provide us with an ”unaligned” Lc denoted L̃c that may be ”realigned” so it

fits into the diagram summation in the T̂2 amplitude:
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˜(Lc)
α(a,j)

β(b,i) → (Lc)
ab
ij . (8.19)

We will also have situations where contractions occur in more or less than two indices, so

that our mapping cannot be directly applied. In these situations we introduce a general

mapping rule, which states that a mapped index of elements na..nN in the order given

by their numeric subindices and with the number of elements in each place Na, Nb...NN

may be expressed as

α(a, b, c, ..., N) ≡ abc..N = na + nbNa + ncNaNb + ndNaNbNc + ...+ nN

N−1∏
i

Ni. (8.20)

As long as this rule is consistently applied to each mapping of multiple particle or hole

states onto rows or columns of the matrix, it will allow us to perform contractions over

any number of states as matrix-matrix multiplications.

To demonstrate this, we consider finally the D3d diagram 6.2, where

D3d = −1

2
P (ij)

∑
cdkl

〈kl||cd〉tcdik tabjl . (8.21)

Here we have both a quadratic contribution from the T̂2 amplitudes and contractions of

three lines between the interaction and the first, and only one contraction between the

interaction and the last. We need to align the following matrices

vklcd → ṽlkcd, (8.22)

tcdik → t̃kcdi , (8.23)

tabjl → t̃jabl , (8.24)

so we may compute the unaligned diagram

(D̃3d)
jab
i = t̃jabl ṽlkcdt̃

kcd
i , (8.25)
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and then realign the diagram so it will be possible to sum it into the equation

(D̃3d)
jab
i → (D3d)

ab
ij . (8.26)

8.2.4 Use of non standard terminology

By referring to this processes of alignment we have probably introduced some non stan-

dard terminology. There may exist corresponding and better expressions in use, but

the author has not been able to find them in the literature due to the lack of imple-

mentational descriptions. From a theoretical point of view, it may be argued that the

process of alignment is just a generalization of matrix transposition for tensors of any

rank.We shall however use this terminology throughout this thesis with the reservation

that better expressions may exist.

8.3 The sparse matrix approach

We have already mentioned the sparsity of our system, and we have explored how in-

teractions and amplitudes may be represented by matrices. It is then only natural to

consider whether a sparse matrix-matrix multiplicaton scheme may be beneficial and

efficient for the system. At least, as we shall see, it is in principle simple to implement

such a scheme and extend it to any order of the CC equations.

A matrix is generally considered sparse if most of its elements are zero [61, p.122]. As a

rough estimate of the sparsity of our system, we may consider all interactions between

particle states for a given number of basis states. These interactions is involved in the

calculation of the La ladder term in the CCD approximation [7], and it is the most time

consuming diagram in the calculation due to the number of states involved. By defining

the density as the fraction of terms in the La sum that is nonzero, we see from Fig. 8.3

that the density seems to converge to somewhere below 0.01 percent as the number of

particle states increases.

In such systems as ours, we will benefit from the implementation of a sparse matrix-

matrix multiplication solver given that the arrangement of the elements in the matrix

is completely random. As we shall see when considering the block implementation, this

last part is not the case in our system.
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Figure 8.3: Density of the 〈pp||pp〉 interaction matrix. The density seems to converge
towards somewhere below 0.1 percent, providing a reasonable argument for the use of

sparse matrices.

8.4 Sparse matrix storage

Sparse matrices represent a commonly used data structure in computations where ma-

trix elements are mostly zero. There are a number of different formats, such as the

COOrdinate format, CRS and CCS [62], with well defined and efficient algorithms for

matrix-vector or matrix-matrix multiplication.

The general idea is to store only three arrays; one containing the actual elements, and

two others containing their corresponding indices in the full matrix. This is basically

the COO format shown in table 8.2 with its dense interpretation in table 8.3. By

sorting and compressing either the row or column arrays, one get the CRS or CCS

formats respectively. These both reduce the spaces needed for storage, as well as sorts

the elements in such a way that matrix-matrix multiplications may be performed more

efficiently. The backside is the fact that the sorting procedure may be relatively costly

for large arrays.

Table 8.2: Sparse matrix storage (COOrdinate format)

Elements a b c d e f

row 1 1 2 3 5 5

column 0 3 1 2 1 3
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Table 8.3: Sparse matrix storage (COOrdinate format) as dense matrix

0 0 0 0
a 0 0 0
0 c 0 0
b 0 d 0
0 0 0 0
0 e 0 f

8.5 Sparse tensor storage

Matrices are tensors of rank = 2. Generalizing the ideas used in the COO format, we

may define a sparse tensor storage that works for tensors of any rank. This does really

not involve anything else than having an optional number of element index arrays (rows

and columns) available for the sparse tensor. For example, we may store the tabij tensor

as in table 8.4.

8.6 Sparse matrix alignment

When considering how these sparse tensor elements are stored in conjunction with the

alignment principles discussed previously, it is clear that the process of aligning sparse

tensors will become remarkably simple. For example, we may perform the process in

Eq. (8.23) simply by calculating

rows = k + cNk + dNkNc = k + cNh + dNhNp, (8.27)

and

cols = i. (8.28)

And then initialize a sparse matrix with the elements in the same order as they appear

in the sparse tensor data structure, but with columns and rows as produced by the

alignment process.
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Table 8.4: Sparse tensor storage (COOrdinate format)

Elements e0 e1 e2 e3 e4 e5

c 1 1 2 3 5 5

d 0 3 1 2 1 3

i 6 7 7 3 13 13

k 11 3 1 1 4 6

8.7 The sparse matrix implementation

The sparse matrix approach was implemented both in python and C++, but we will here

only focus on the C++ implementation. To handle linear algebra operations, for vec-

tors, matrices and sparse matrices, the linear algebra library Armadillo was extensively

used (see Ref. [63]). Armadlillo also utilize all levels of BLAS, so it ensures optimal

performance given a well written implementation. The implementation has no other

dependencies aside from OpenMP (see Ref.[66]) and Armadillo.

The implementation is made in an object oriented manner, utilizing multiple classes for

solvers, basis initialization, and tensor initialization. We will briefly discuss each class

and how they fit in with the full picture.

8.7.1 Amplitude storage

Two different classes were implemented to store and align the T̂2 and T̂3 amplitudes,

namely the flexmat and flexmat6 classes respectively. The number 6 refers to the rank

of the tensor.

These classes utilize the COO storage as specified for tensors of rank ≥ 2 (see table 8.4),

and allow for a relatively efficient alignment of elements in the different diagrams. The

inverse process of realigning incoming unaligned diagrams is also possible.

Although it is good coding practice to avoid repeating oneself (see Ref. [64]), a great deal

of the functionality of this code was autogenerated with our python software, resulting

in many similar functions. The motivation for this approach is twofold; it allows for a

syntax that is very easily understood in terms of the different diagrams that occur in

the CC equations, allowing for the actual implementation of the equations to be written

very compactly and easily interpreted by humans. Secondly, this is an easy way to write

highly specialized code for generating all possible alignments of elements needed for an

implementation where this is not known in advance.

An alternative to this could be to write one single function that aligned the elements

according to the parameters specified in the function call, but this implementation is
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Table 8.5: Sparse tensor storage (COOrdinate format)

Expression Flexmat function call

tabcijk t.pqr stu()

t̃ijkabc t.stu pqr()

tabij v
ij
kl t.pq rs()*v.pq rs()

t̃abij t.p qrs()

t̃aikbjc t.psu qtr()

not as straightforward as the first one. Actually, large parts of the block implementation

utilize such functionalities.

The flexmat syntax is aimed at high level usage for matrix contraction. Aside from

initialization and various internal functions, the flexmat objects communicate with the

solver class through two different operations. If we define any rank four tensor in its

aligned form to be

tpqrs, (8.29)

we will be able to call its equivalent flexmat sparse representation in C++ by

t.pq_rs();

The above function will return an Armadillo sparse matrix with the alignment specified

by the order of letters and underscore. Some different alignments and their representa-

tion in previously used formalism in shown in table 8.5

We will also need to be able to realign elements by taking unaligned sparse matrices as

parameters in the function calls. For each possible alignment, there is a function

update_as_pq_rs( ... );

This procedure unpacks the elements and indices from the incoming sparse matrix and

makes them its own. For example we may again consider the misaligned diagram result-

ing from the D3d matrix-matrix multiplication

(D̃3d)
jab
i → (D3d)

ab
ij . (8.30)

This would be properly aligned by calling

D3d.update_as_p_qrs(T.rpq_s()*vhhpp.q_prs()*T.spq_r(), Np, Nq, Nr, Ns);

The function call



Chapter 8. Implementation 106

D3d.pq_rs();

will now return the aligned tensor that may be added in with the other contributions to

the T̂2 amplitude.

8.8 The sparse solver

The flexmat classes provide a very intuitive and simplistic environment in which to

implement the actual equations. What remains is to translate each diagram into flexmat

multiplications and realignments, so the full equation may be solved. In this section

we tabulate each diagram, its flexmat representation and its realignment procedure if

needed. Tables 8.6 and 8.8 list contributions to the T̂2 amplitudes, while tables 8.9, 8.10,

8.7 and 8.11 list diagrams occuring in the CCDT T̂3 amplitude equation.1

Table 8.6: Sparse alignment schemes for CCD equations

Expression Alignment Interaction t2(1) t2(2) Realignment

L1
∑

cd〈ab||cd〉tcdij 〈ab||cd〉tcdij
L2

∑
kl〈kl||ij〉tabkl tabkl 〈kl||ij〉

L3
∑

kc〈kb||cj〉tacik 〈jb||ck〉tckai vpqrs → ṽsqrp tpqrs → t̃qspr (L3)pqrs → ˜(L3)
sq

pr

Qa
∑

klcd〈kl||cd〉tcdij tabkl tabkl 〈kl||cd〉tcdij
Qb

∑
klcd〈kl||cd〉tacik tbdjl taick〈kc||ld〉tldbj vpqrs → ṽprqs tpqrs → t̃prsq tpqrs → t̃rqps (Qd)

pq
rs ← ˜(Qb)

pr

qs

Qc
∑

klcd〈kl||cd〉tdcik tablj tabjl 〈l||kcd〉t
kcd
i vpqrs → ṽqprs tpqrs → t̃pqsr tpqrs → t̃sqpr (Qc)

pq
rs ← ˜(Qc)

pqs

r

Qd
∑

klcd〈kl||cd〉taclk tdbij taklc〈klc||d〉tdbij vpqrs → ṽpqrs tpqrs → t̃psrq tpqrs → T̃ pqrs (Qd)
pq
rs ← ˜(Qd)

p

qrs

1It should be noted that we have made a switch from the naming convention concerning the diagrams
used in chapter 6. The reason for this inconvenience is that large parts of code were written before we
adopted the naming convention used in Ref. [7] and chapter 6.
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The flexmat syntax is shown in table 8.12, while a printout of the code for the actual

CCD T̂2 amplitude equation is provided below.

void ccd::advance(){

//advance the solution one step

int Np = iSetup.iNp;

int Nq = iSetup.iNp;

int Nr = iSetup.iNh;

int Ns = iSetup.iNh;

L1_dense_multiplication();

L2 = T.pq_rs()*vhhhh.pq_rs();

fmL3.update(vhpph.sq_rp()*T.qs_pr(), Ns, Nq, Np, Nr);

L3 = fmL3.rq_sp() - fmL3.qr_sp() -fmL3.rq_ps() +fmL3.qr_ps();

fmQ1.update(T.rs_pq()*vhhpp.rs_pq()*T.rs_pq(), Nr, Ns, Np,Nq);

Q1 = fmQ1.rs_pq();

fmQ2.update(T.pr_qs()*vhhpp.rp_qs()*T.sq_pr(), Np, Nr, Nq, Ns);

Q2 = fmQ2.pr_qs()-fmQ2.pr_sq(); //permuting elements

fmQ3.update_as_r_pqs((T.r_sqp()*vhhpp.prs_q())*T.r_pqs(), Np, Nq, Nr, Ns);

Q3 = fmQ3.pq_rs() - fmQ3.pq_sr(); //permuting elements

fmQ4.update_as_p_qrs(T.p_srq()*vhhpp.pqr_s()*T.p_qrs(), Np, Nq, Nr, Ns);

Q4 = fmQ4.pq_rs() - fmQ4.qp_rs(); //permuting elements

Tprev.update(T.pq_rs(), Np,Nq,Nr,Ns);

T.update(vpphh.pq_rs()+.5*(L1+L2)+L3+.25*Q1+Q2-.5*Q3-.5*Q4,Np,Nq,Nr,Ns);

T.set_amplitudes(ebs.vHFEnergy); //energy denominator

T.update(alpha*Tprev.pq_rs() + (1.0-alpha)*T.pq_rs(), Np, Nq,Nr,Ns);

energy();

T.shed_zeros();

T.map_indices();

}
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Table 8.7: Sparse alignment scheme for t2 diagrams

Diagram Factor Permutation Alignment

(t2)a +1 P̂ (k/ij|a/bc)
∑

d〈bc||dk〉tadij →
∑

d〈bck||d〉tdaij
(t2)b −1 P̂ (i/jk|c/ab)

∑
l〈lc||jk〉tabil →

∑
l t
abi
l 〈l||cjk〉

Table 8.8: Sparse alignment scheme for t3 contribution to t2

Diagram Factor Permutation Alignment

D10b +1
2 P̂ (ab)

∑
mef 〈bm||ef〉t

aef
ijm → (

∑
mef 〈b||mef〉t

mef
ija )abij

D10c −1
2 P̂ (ij)

∑
mne〈mn||je〉tabeimn → (

∑
mne t

abi
mne〈mne||j〉)abij

Table 8.9: Sparse alignment scheme for t2t3 diagrams

Diagram Factor Permutation Alignment

(t2t3)a +1 P̂ (i/jk|a/bc)
∑

ldme〈lm||de〉tadil tebcmjk →
∑

me

∑
ld t

bjck
me 〈me||ld〉tldai

(t2t3)b −1
2 P̂ (i/jk)

∑
ldme〈lm||de〉tdeli tabcmjk →

∑
m

∑
lde t

abjck
m 〈m||lde〉tldei

(t2t3)c −1
2 P̂ (a/bc)

∑
ldme〈lm||de〉tdalmtebcijk →

∑
e

∑
lmd t

ibjck
e 〈e||lmd〉tlmda

(t2t3)d −1
2 P̂ (k/ij|a/bc)

∑
ldme〈lm||de〉tadij tbeclmk →

∑
lme

∑
d t
bck
lme〈lme||d〉tdaij

(t2t3)e −1
2 P̂ (i/jk|c/ab)

∑
ldme〈lm||de〉tabil tdecjmk →

∑
mde

∑
l t
jck
mde〈mde||l〉t

l
abi

(t2t3)f +1
4 P̂ (k/ij)

∑
ldme〈lm||de〉tdeij tabclmk →

∑
lm

∑
de t

abck
lm 〈lm||de〉tdeij

(t2t3)q +1
4 P̂ (c/ab)

∑
ldme〈lm||de〉tablmtdecijk →

∑
de

∑
lm t

ijck
de 〈de||lm〉t

lm
ab

Table 8.10: Sparse alignment scheme for t2t2 diagrams

Diagram Factor Permutation Alignment

(t2t2)a −1 P̂ (k/ij|a/bc)
∑

ld〈l|f |d〉tadij tbclk →
∑

l

∑
d t
bck
l 〈l|f |d〉tdaij = 0

(t2t2)b +1 P̂ (i/jk|abc)
∑

lde〈lb||de〉tadil tecjk →
∑

ld

∑
e(t

ai
ld〈ld||be〉)aibe tecjk

(t2t2)c −1
2 P̂ (i/jk|c/ab)

∑
ldce〈lc||de〉tabil tdejk →

∑
de

∑
l(t

jk
de〈de||lc〉)

jkc
l tlabi

(t2t2)d +1
2 P̂ (k/ij|a/bc)

∑
ldmk〈lm||dk〉tadij tbclm →

∑
lm

∑
d(t

bc
lm〈lm||dk〉)bckd tdaij

Table 8.11: Sparse alignment scheme for t3 diagrams

Diagram Factor Permutation Alignment

(t3)a +1
2 P̂ (c/ab)

∑
de〈ab||de〉tdecijk →

∑
de〈ab||de〉tdecijk

(t3)b +1
2 P̂ (k/ij)

∑
lm〈lm||ij〉tabclmk →

∑
lm t

abck
lm 〈lm||ij〉

(t3)c +1 P̂ (i/jk|a/bc)
∑

ld〈al||id〉tdbcljk →
∑

ld〈ai||ld〉tldbcjk
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Table 8.12: Sparse alignment schemes for CCDT equations

Diagram name Code interpretation

La update as pq rs(vpppp.pq rs()*t2.pq rs())
Lb update as pq rs(t2.pq rs()*vhhhh.pq rs())
Lc update as pq rs(vhpph.sq rp()*t2.qs pr())
Qa update as pq rs( T.rs pq()*vhhpp.rs pq()*T.rs pq())
Qb update as pr qs( T.pr qs()*vhhpp.rp qs()*T.sq pr())
Qc update as r pqs( (T.r sqp()*vhhpp.prs q())*T.r pqs() )
Qd update as p qrs( T.p srq()*vhhpp.pqr s()*T.p qrs() )
(t2t3)a update as qtru ps(t3.qtru sp() ∗ vhhpp.qs pr() ∗ t2.sq pr())
(t2t3)b update as pqtru s(t3.pqtru s()∗vhhpp.q prs()∗t2.rpq s())
(t2t3)c update as sqtru p(t3.sqtru p()∗vhhpp.s pqr()∗t2.rsp q())
(t2t3)d update as qru pst(t3.pru stq()∗vhhpp.pqs r()∗t2.q prs())
(t2t3)e update as tru pqs(t3.sru tpq()∗vhhpp.qrs p()∗t2.s pqr())
(t2t3)f update as pqru st(t3.pqru st()∗vhhpp.pq rs()∗t2.pq rs())
(t2t3)q update as stru pq(t3.stru pq()∗vhhpp.rs pq()∗t2.rs pq())

(t2t2)a (canonical HF basis) → no contribution
(t2t2)b update as psq rtu(t2.pr sq()∗vhppp.pr qs()∗t2.p qrs())
(t2t2)c update as tur pqs(t2.rs pq()∗vhppp.rs pq()∗t2.s pqr())
(t2t2)d update as qru pst(t2.pq rs()∗vhhph.pq rs()∗t2.q prs())

(t3)a update as pq rstu(vpppp.pq rs() ∗ t3.pq rstu())
(t3)b update as pqru st(t3.pqrs tu()∗ vphhp.pq rs())
(t3)c update as ps qrtu(vphhp.pr qs() ∗ t3.sp qrtu())

(t2)a update as qru pst(vppph.pqs r() ∗ t2.q prs())
(t2)b update as pqs rtu(t2.pqr s() ∗ vhphh.p qrs() )

D10b update as q rsp(vphpp.p qrs() ∗ t3.uqr stp() )
D10c update as pqr s(t3.pqs tur() ∗ vhhhp.pqs r())

8.9 A crossover scheme

While the sparse implementation is able to both reproduce CCD results from the lit-

erature and produce new CCDT-1 and full CCDT results not seen before, it has some

strong limitations that restricts calculations to no more than approximately 186 basis

states for the CCDT-1 and CCDT on a typical home computer.

The sparse implementation is naive in the sense that no symmetries or physical restric-

tions is used to improve performance during the iterations. While it is fully possible to

calculate the interaction matrix ”on the fly”, it would slow down performance signifi-

cantly unless we were to somehow store blocks of the interaction matrix where nonzero

elements occur. This naive approach actually makes the implementation use a lot more

memory than what is strictly needed, and whats more each call to a specific alignment

of the flexmat objects actually creates a new sparse matrix which needs both sorting

and memory space.
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The sparse matrix-matrix multiplication performance relies strongly on the elements

being sorted, and such sorting schemes also require computational resources. And even

the multiplication itself will not benefit from BLAS3, since it actually no longer is a

matrix-matrix multiplication [60].

To reduce memory usage of this algorithm a crossover scheme into the upcoming block

implementation was introduced. The main bottle-neck in at least the CCD case is the

calculation of the La ladder diagrams. The reason for this is that it involves the pp-pp

interaction matrix, which scales with as O(N4
p ) elements in the naive implementation. It

is therefore a reasonable strategy to find a more efficient calculation of the ladder term.

Sparse matrices may easily be split into terms that when added up yield the original

matrix. If we consider the COO format, we see that any subdivision of the element,

column and row arrays will give us new and smaller arrays that may be cast onto sparse

matrices with the same size as the original. Mathematically, we may consider the process

Ŝ = ŝ1 + ŝ2 + ŝ3 + ... (8.31)

All these matrices have the same size, but the number of elements of the ŝn added up is

the same as the number of elements in Ŝ. In the case of the ladder term, we may write

it as

La = v̂ppppt̂2 = (v̂1 + v̂2 + v̂3 + ...)((t̂2)1 + (t̂2)2 + (t̂2)3 + ...) =
∑
αβ

v̂α(t̂2)β. (8.32)

If the elements in v̂pppp appeared at completely random locations in the matrix, we would

have to calculate all products and add them together. As previously mentioned, this is

not the case in our system. We actually do have some valuable insight into the structure

of the pp-pp interaction matrix, namely the conservation of spin and momentum. We

will shortly discuss this in detail, but just to conclude our discussion of the sparse scheme

we note that this insight will allow us to subdivide the matrices in such a way we end

up with

La = v̂pppp(t̂)2 =
∑
αβ

v̂α(t̂2)βδαβ =
∑
α

= v̂α(t̂2)α. (8.33)

This is implemented and working in the current version of the sparse implementation. It

still does not improve performance or memory usage to such an extent that the scheme

may produce results for larger basis sets, but it may function as a great motivation for

the upcoming block implementation for the following reason: Equation (8.33) no longer

describes sparse matrices.
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By subdividing our matrices into regions with nonzero elements, we have reduced the

full matrix-matrix multiplication of the large sparse matrices into a number of smaller

dense matrix-matrix multiplications. Sparse matrix-matrix multiplication will outper-

form dense matrix-matrix multiplication only in the case where the density is below a

certain threshold. In the case described in Eq. (8.33) this is no longer the case. Actually,

by performing this multiplications with dense matrices, we will be able to benefit from

BLAS3 and get a significant speedup (see Ref. [60]). It is this approach we will use in

our block implementation.

8.10 The block implementation

While both implementations of the CCM discussed in this thesis is based on the concept

of contractions as matrix multiplications, only the block implementation is able to fully

benefit from this approach. Where the sparse implementation was written mainly to

gain knowledge and function as verification, the block implementation is intended as

a high performance solver, especially optimized for the HEG system. In addition to

the aligned matrix approach, we shall take into account more of the symmetries and

restrictions in our system. This will allow us to reduce basically all computations of

diagrams into sums over multiplications of blocks within the full matrices, as described

in Eq. (8.33).

It will also reduce the need for memory storage, as we for all diagrams simply will store

the rows and columns present in each block, and calculate the actual elements when

needed.

Regrettably there exists no implementational guide to these kinds of algorithms, at least

not to the authors knowledge. For this reason, we will run into even more non-standard

terminology, and a lot of the algorithmic approaches used in this implementation could

most probably be greatly improved over time and in collaboration with others. However,

as we shall see, the block implementation performs relatively well and utilizes memory

in a reasonable way, making computations of significantly larger system than what we

had for the sparse implementation possible.

8.11 Channels in the diagrams

As discussed above, most of the matrix elements will be zero due to the structure of

the interaction. Most notably, we find that the first Kronecker delta appearing in the
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interaction enforces a conservation of total momentum, since

δkp+kq ,kr+ks → kp + kq = kr + ks. (8.34)

The interaction will also conserve the total spin. We need thus to include the conserva-

tion of spin when evaluating interaction elements, namely

msp +msq = msr +mss . (8.35)

The amplitude will have the same requirements as the interaction, which may be seen

upon initialization of the amplitude as corresponding to the second order many-body

perturbation energy

(tabij )t=0 =
〈ab||ij〉

εi + εj − εa − εb
. (8.36)

These conservation requirements have a direct impact on which amplitudes and inter-

actions may occur. Let us again consider the La ladder diagram given by

La =
∑
cd

〈ab|v̂|cd〉tcdij . (8.37)

We then impose the conservation requirements on La

ka + kb = kc + kd = ki + kj , (8.38)

and

msa +msb = msc +msd = msi +msj . (8.39)

The contracted indices occur in the middle of the expressions above since they are

common to both tensors, showing that in effect each diagram should conserve both

momentum and total spin for the system. We will for example have no contributions to

the diagram where

ka + kb = kc + kd 6= ki + kj . (8.40)

This means that only a subset of the internal line elements in each tensor needs to be

contracted (summed over) when evaluating the diagrams. In principle, this is what gives

us the simplification described in Eq. (8.33).

When we also take into account the concept of tensors as matrices, it is straightforward

to see that these subsets of elements correspond to regions or blocks in the matrix

representation of the tensor. z
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We will find that for each diagram, the full matrix-matrix multiplication may now be

reduced to a series of multiplications of the corresponding blocks in each tensor present

in the diagram. We will refer to such corresponding blocks as a channels.

8.12 Mapping channels in the diagrams

Upon initialization, we will need to identify channels in each diagram and sort each tensor

into corresponding blocks. To this end, it makes sense to define a unique quantity for

each possible combination of quantum numbers in the states. One possible such unique

identifier is

kunique(k,ms) = kx + ky∆k + kz∆k
2 +ms∆k

3, (8.41)

where we have defined a steplength

∆k ≡ 2max(k) + 1, (8.42)

to ensure that each combination of quantum numbers is assigned a unique value.

It should be clear that

kunique(kp + kq,msp +msq) = kunique(kp,msp) + kunique(kq,msq). (8.43)

Each index in the row or column of the matrix may now be assigned a unique identifier.

Indices which share a common identifier belong to the same block, and we may therefore

also associate this unique identifier with each block. All tensors in the diagram may now

be reduced to such blocks, and the channels are defined by the intersection of unique

identifiers from each of the tensors.

8.13 Channels and alignment of tensors

While the reasoning so far works fine for the ”out of the box” aligned La ladder diagram,

we run into some minor complications when we encounter differently aligned diagrams.

It turns out, however, that the solution is simple. For example, we need to perform

index transformations to the tensors in the D3d diagram before it is possible to perform

the matrix-matrix multiplication.
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D3d = −1

2
P (ij)

∑
cdkl

〈kl||cd〉tcdik tabjl → (D̃3d)
jab
i = −1

2
P (ij)t̃jabl ṽlkcdt̃

kcd
i . (8.44)

Our conservation requirements still apply, but need to be expressed differently to make

sense in this case. We may just reorganize the terms to obtain

− kj + ka + kb = kl = −kk + kc + kd = −ki, (8.45)

and the same for the spin:

−msj +msa +msb = msl = −msk +msc +msd = −msi . (8.46)

This will then define another set of channels, corresponding to the aligned diagram D3d.

We may use the same procedure for any diagram present in our equations.

8.14 Implementing the channels

The number of channels in each diagram mainly depends on the number of orbitals and

the alignment of the involved tensors. Mapping them by hand would be very tedious and

inefficient, so we should let the program itself perform this mapping upon initialization

of the system. With the introduction of the T̂3 amplitudes in our equations we have

created yet another bottleneck in our code, since the number of rows in this matrix

scales as O(Np3).

Luckily for us, we will not need to evaluate every single row (and column) index in the

tensors. On the downside, to avoid doing this we have to write a more complicated code

than what we would in a ”naive” approach.

To illustrate this approach, we may consider an unrealistic low number of particle states

Np = 3 (This number does not correspond to any of the ”magic” numbers found in the

3D HEG system). The full row indices are shown (truncated) in table 8.13. In this case,

we search for blocks defined by the unique quantity

kunique(ka + kb + kc,msa +msb +msc). (8.47)
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Table 8.13: The full row for Np = 3

a 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 ... 2
b 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 ... 2
c 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 ... 2

It is easy to see that we have six occurences per state of the unique quantity for any

index where three different states ka 6= kb 6= kc 6= ka (3 unequal indices) occur but in

varying order:

ka+kb+kc = kb+ka+kc = kc+kb+ka = ka+kc+kb = kb+kc+ka = kc+ka+kb (8.48)

In the case where we have only one inequality in the indices, for example ka 6= kb = kc,

we find three rows per state corresponding to this configuration

ka + kb + kc = kb + ka + kc = kc + kb + ka = (8.49)

And finally, the case where all indices are the same ka = kb = kc correspond to only one

row per particle state in our system. This is a very nice feature, since we may both use

it to initialize the blocks and at the same time map the permutations that are applied

in many of the diagrams.

It is important to note that although these states are constructed from the single ”re-

duced” row (or column) in the tensor we are mapping, they still have their unambigu-

ously defined placement in the matrix. This index is given as

row = a+ bNp + cN2
p . (8.50)

For consistency, we must ensure that the elements generated from the reduced row

appear in the correct and increasing order. Failing to do so will make the element in

the blocks misaligned, while the blocks remain correctly sized. It may therefore result

in incorrect or even unstable results in the equations.

The practical implications for the initialization, is that we now need only initialize the

single occurence of each combination of states whereby we simply express the associated

states by permuting the indices in this state. The reduced row will scale as O(Np(Np+

1)(Np + 2)/6), and by comparison with table 8.13 it will look as in table 8.14, and we

may derive all other quantities from this one.
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Table 8.14: The reduced row for Np = 3

a 0 1 1 1 2 2 2 2 2 2
b 0 0 1 1 0 1 1 2 2 2
c 0 0 0 1 0 0 1 0 1 2

8.15 Permutations

The discussion in the previous section is very closely related to how permutations may

be efficiently performed on our diagrams. The reason for this is that any permutation of

two or more elements will only occur within the blocks, and the result of the permutation

will rely on the relationship between the indices at each row- or column index. In Fig.

8.4 an illustration of what these permutations may look like when applied to matrices.

Figure 8.4: Permuting a continuous image as a T̂3 amplitude stored as block matrices.
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Table 8.15: Permutation of lines

a 0 1 2 0 1 2 b 0 0 0 1 1 1
b 0 0 0 1 1 1 → a 0 1 2 0 1 2
c 0 0 0 0 0 0 c 0 0 0 0 0 0

What the permutations actually do may be described in terms of the following pseudo

algorithm for permuting elements a and b in a matrix representation of the T̂3 amplitude:

for a in 0 ... Np:

for b in 0 ... Np:

for c in 0 ... Np:

for i in 0 ... Nh:

for j in 0 ... Nh:

for k in 0 ... Nh:

P(ab)t3(a,b,c,i,j,k) = t3(b,a,c,i,j,k)

By considering table 8.13, we may view such a permutation as just the interchanging of

line indices as in table 8.15, but we should then also be very careful about the ordering

of the elements. By our definition for rows and columns, the table 8.15 is unsorted.

When comparing with our previous consideration on element initialization, we now see

that these two processes are interlinked. It is therefore reasonable to map out permu-

tations at the same time as we map the blocks in the ”natural” alignment of the T̂3

tensor.

The process may be described as follows: we begin by setting up the reduced rows and

columns for the tensor. We then scan through all unique combinations of total quantum

numbers. We then check each row- and column element for inequalities. This testing

may have basically three outcomes as shown in Fig. 8.5. For each possible outcome, we

map the permutations accordingly.

One way of storing the permutations is to simply store an array with the permuted order

of rows for each block. For example, we could store the permutation

a, b, c, d→ c, d, b, a, (8.51)

simply as

2, 3, 1, 0. (8.52)

Using Armadillo, we may then simply rearrange any rows in the matrix by calling

t2.rows(Pab(n));
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Figure 8.5: Flowchart for the permutation and block identification algorithm.

The equivalent command exists also for column ordering.

8.16 Element storage

As opposed to the sparse implementation, we now only need to store rows and columns

for the blocks in the interaction. All matrix elements are then calculated on the fly,

since our interaction is not that computationally intensive.

In the case of the amplitudes, we also need to store the actual elements. In this case

we must also store the full blocks. While the T̂3 elements are stored in a large, one-

dimensional contiguous array of doubles, the different alignments are stored as blocks

where each element corresponds to a position in the T̂3 element array. This setup is

illustrated in Fig. 8.6. A closeup of the blocks is shown in Fig. 8.7.

The procedure of generating these blocks may be outlined as follows: To make sure each

alignment refers to the same elements in the T̂3 element array, we begin by storing a

unique unsigned integer (unsigned long long) for each nonzero index from the full tensor

matrix in a array associated with the T̂3 elements. These elements may be be assigned

values as

tabcijk = a+ bNp + cN2
p + iN3

p + jN3
pNh + kN3

pN
2
h . (8.53)

This number may unambiguously point us back to all the indices of the element in the

full tensor matrix when needed.
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Figure 8.6: The relation between the contiguous array containing amplitudes and the
partitioned blocks.

Figure 8.7: Closeup of some block matrices in the amplitude.
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When all nonzero elements are found in the channels needed for the diagram, we consol-

idate the elements stored in this array with the existing elements present in the tensor.

If none are previously initialized, we may simply start assigning the indices from the

T̂3 element array to the elements in the blocks starting with element 0. If elements

are already present, we must update our blocks to point to the correct address in the

element array. New elements may be added to the end of the element array.

Elements already present are found simply by identifying equal elements in the two

unique unsigned integer arrays.

Figure 8.8: Closeup of some block matrices in the pppp interaction.

8.17 A sparse crossower scheme

Upon mapping the aligned blocks needed for the various CCDT-1 diagrams, we find that

the number of channels appearing in each diagram is lower than the number of unique

configurations in a diagram’s constituent tensors. This makes it possible to reduce

memory usage, since we for any alignment need only store those blocks that appears in

this intersection.

All contributions to the T̂3 amplitude in the CCDT-1 method comes from contractions

between the interaction and a linear T̂2 amplitude in diagrams T1a and T1b. When adding
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Figure 8.9: All blocks for the pppp interaction for 66 basis states.

in this contributions in the T̂2 equations through diagram D10b and D10c, we will find

that the alignment used for the T̂3 amplitude in D10c is actually the same as the one

used to realign diagram T1b.

The only time we actually need the ”naturally” aligned blocks from tabcijk is when we

perform the permutations.

Although the conservation arguments that define our blocks ensure that a given align-

ment corresponds to certain channels in the diagrams, they do not guarantee that the

”naturally” aligned elements will belong to the same block. In fact, we will find that

when we first set up the alignments needed before mapping the ”natural” alignment, all

the blocks in the ”natural” alignment will have nonzero elements.

This means that we must map and perform permutations of all the channels in the

”natural” alignment. Such a process will consume a lot of memory and computing

power to store and process a great deal of elements containing zeros. In the actual

implementation, these difficulties are avoided by using a scheme inspired by parts of the

sparse algorithm.

We first map the three alignments needed for the four different diagrams. When all these

elements are consolidated with the element array in the tensor, we map the ”natural”

alignment needed for permutations in a similar way as before. The only two differences

will be that when we encounter elements not already present in the T̂3 amplitude, we let

them vanish, and when we encounter values present in the T̂3 tensor we store them in

an unsorted COO format together with the number of rows and columns of the matrix.

It is then very easy to reconstruct the dense matrix when needed, and it reduces the

memory consumption significantly.

Permutations are stored and performed exactly as described in the previous section.
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Results

9.1 Validation of the CCD

The first step in the validation of the solvers is to ensure that our results are consistent

with those present in the literature. While most published results are shown as figures,

we have been given extensive tabulated results from Baardsen’s thesis work, see Refs. [1,

5]. Roggero et al. also tabulate some CCD results in their article [6] that we may

compare with our own. Comparisons between these results and the ones produced by

our implementations are shown in table 9.1.

First we may note that the results are consistent within numerical precision for the

sparse and block implementation, as one should expect. Minor deviations in the 15th

digit is attributed to round-off errors or minor differences in the implementation (such

as the sparse implementation actually not storing any zeros, where ”zeros” are defined

to be values below a certain threshold).1

Next, we find that the results agree up to the 8th digit for rs = 1 with the results from

Baardsen [5].

The results for the various Wigner-Seitz radii are in perfect agreement with Ref. [1],

while there is still a deviation in the 3rd digit compared to Ref. [6]. Some of the results

from the latter reference have later been shown to carry a small error, explaining thereby

the differences between our results and Baardsen’s calculations.

When plotted, the author was not able to visually distinguish between the results from

Refs. [4] and [5], and the ones produced by the sparse- and block implementations.

In summary, there is excellent agreement between [4], [5] and our calculations and we

1The author suspects that the cause for this is the ”.shed zeros()” method in the flexmat objects,
responsible for ensuring that round-off errors do not cause growth in the size of sparse storage vectors.
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can thus conclude that our CCD results are valid within a tolerance needed to perform

accurate calculations. They are in agreement with the literature, except when compared

to those published by [6].

Table 9.1: CCD Validation

rs Ns ECCD [6] ECCD [1, 5] ECCD (block) ECCD (sparse)

1.0 54 -0.317822843688933 -0.317822843688934
1.0 66 -0.392696592145699 -0.3926965898061966 -0.3926965898061968
1.0 114 -0.447910594079769 -0.4479105961757175 -0.4479105961757175
1.0 162 -0.480557256148887 -0.4805572589306416 -0.4805572589306415
1.0 186 -0.485522928800019 -0.4855229317521318 -0.4855229317521321
1.0 246 -0.492924570774712 -0.4929245740023975 -0.4929245740023973
1.0 294 -0.498490911103782 -0.4984909094066818 -0.4984909094066817
1.0 342 -0.506701 -0.501952677927664 -0.5019526761547779 -0.5019526761547777
1.0 358 -0.502519675395361 -0.502519673607641 -0.50251967360764

0.5 114 -0.512015 -0.5120153541478306 -0.5120153541478306
0.5 342 -0.572682 -0.572964549890367 -0.5729645498903665

2.0 114 -0.357798 -0.3577968843144996 -0.3577968843144999
2.0 342 -0.417946 -0.4014136184665555 -0.4014136184665558

Validation of CCD implementations by comparing the correlation energy with results from
Baardsen [1, table 5.2] and [5]. All results are given in Hartrees (atomic units). Variations in
the Wigner Seitz radius is included for a more extensive validation.

9.1.1 The reference energy

Although the basis may already be assumed to function as it should since we have valid

results for the CCD, it is possible to validate the reference energy as a stepping stone

in the implementation.2 From our implementation of the basis, we find for 14 electrons

a reference energy of 1.94336533365203 Ry. per particle, whereas Baardsen [5] reports

only five leading digits, with 1.9434 Ry as result. T

9.2 Validation of the CCDT-1 code

Since the author has not been able to find any results beyond the modified CCD(T)

calculations from Shepherd et al. [33], the validation of our CCDT-1 implementation will

be somewhat circular in nature. Our two solvers will provide independent confirmation

of each other given that they produce the same numbers.

2For anyone trying to reproduce the results from this thesis, this validation may serve as a first test
when implementing the code.
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A comparison of the CCDT-1 results are shown in table 9.2. As for the CCD results,

we have alternating signs in the error and the deviation occurs in the 16th digit, which

represents essentially expected round-off errors. We can then state that the two methods

are in perfect agreement numerically. A comparison of the convergence in the iteration-

wise energy also shows highly corresponding behavior for the algorithms, see table 9.3.

Table 9.2: Validation of the CCDT-1 results.

rs Ns ECCDT−1 (block) ECCDT−1 (sparse) ∆ε

1.0 54 -0.3247616709272834 -0.3247616709272829 -4.99600361081e-16
1.0 66 -0.4014439489508850 -0.4014439489508858 8.32667268469e-16
1.0 114 -0.4642919485466862 -0.4642919485466857 -4.99600361081e-16

2.0 114 -0.3985520447482135 -0.3985520447482140 4.99600361081e-16

0.5 114 -0.5175412726087226 -0.5175412726087228 1.11022302463e-16

A comparison of the CCDT-1 energy results. All values given in Hartrees. The
last column shows the difference.

It would be a stretch to say that our results are validated, but we may at least conclude

that the comparison between the two algorithms corroborates our approach. Erroneous

results could possibly arise simultaneously in both implementations due to theoretical

misconceptions, or - highly unlikely - similar bugs in the two independent implementa-

tions. The author is therefore relatively confident that the CCDT-1 results are valid.3

3Relatively with respect to the CCD results, that is. While the discrepancy with Baardsens results
are within our tolerance, one would expect such implementations to be more in agreement.
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Table 9.3: Convergence comparison for the CCDT-1 implementations.

n En,CCDT−1 (block) En,CCDT−1 (sparse) Ratio (block/sparse)

0 -0.5965687989792419 -0.5965687989792402 1.0000000000000029
1 -0.5297752822607126 -0.5297752822607129 0.9999999999999993
2 -0.5194857887853007 -0.5194857824022109 1.0000000122873234
3 -0.5178605713063522 -0.5178605700120056 1.0000000024994113
4 -0.5175960498600901 -0.5175960496868687 1.0000000003346654
5 -0.5175511889076089 -0.5175511888974993 1.0000000000195335
6 -0.5175431736069834 -0.5175431736109477 0.9999999999923402
7 -0.5175416559828336 -0.5175416559851100 0.9999999999956015
8 -0.5175413525580813 -0.5175413525589245 0.9999999999983707
9 -0.5175412894018753 -0.5175412894021506 0.9999999999994680
10 -0.5175412760304082 -0.5175412760304935 0.9999999999998352
11 -0.5175412732416370 -0.5175412732416628 0.9999999999999503
12 -0.5175412726966006 -0.5175412726966085 0.9999999999999846
13 -0.5175412726074502 -0.5175412726074521 0.9999999999999963
14 -0.5175412726006164 -0.5175412726006166 0.9999999999999998
15 -0.5175412726040832 -0.5175412726040834 0.9999999999999996
16 -0.5175412726066893 -0.5175412726066895 0.9999999999999996
17 -0.5175412726079237 -0.5175412726079236 1.0000000000000002
18 -0.5175412726084266 -0.5175412726084268 0.9999999999999998
19 -0.5175412726086172 -0.5175412726086169 1.0000000000000004
20 -0.5175412726086855 -0.5175412726086858 0.9999999999999996
21 -0.5175412726087104 -0.5175412726087101 1.0000000000000007
22 -0.5175412726087186 -0.5175412726087184 1.0000000000000004
23 -0.5175412726087215 -0.5175412726087211 1.0000000000000009
24 -0.5175412726087222 -0.5175412726087221 1.0000000000000002
25 -0.5175412726087227 -0.5175412726087223 1.0000000000000009
26 -0.5175412726087227 -0.5175412726087226 1.0000000000000002
27 -0.5175412726087227 -0.5175412726087227 1.0000000000000000
28 -0.5175412726087227 -0.5175412726087228 0.9999999999999998
29 -0.5175412726087227 -0.5175412726087228 0.9999999999999998
30 -0.5175412726087226 -0.5175412726087227 0.9999999999999998
31 -0.5175412726087226 -0.5175412726087228 0.9999999999999996
32 -0.5175412726087226 -0.5175412726087228 0.9999999999999996
33 -0.5175412726087226 -0.5175412726087228 0.9999999999999996
34 -0.5175412726087226 -0.5175412726087228 0.9999999999999996

An iteration-wise comparison of the block and sparse methods show very
similar behavior. The calculation is done for rs = 0.5, Ns = 114 and relax-
ation parameter α = 0.3. These results may also provide valuable debug-
ging measures for anyone trying to reproduce the CCDT-1 results for the
HEG presented in this thesis.
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9.3 No validations beyond the CCDT-1

Since the CCDT-1 approach treats the T̂3 amplitudes as a linear function of the T̂2

amplitudes, it has a tendency of overestimating the energies, see the discussions in

Ref. [7, p.320]. We may try to compensate for this by including the quadratic T̂2 terms,

often referred to as the CCSDT-2 approach [7, p.320], but with the optimized block

implementation it is a very tedious process introducing new diagrams into the equations.

In the syntax developed for the sparse approach this is a reasonably simple process, but

at the same time the sparse implementation limits us to rather small basis sets.

The use of what Shepherd refers to as judicious subsets of diagrams [40] is commonly

utilized in many-body perturbation theory. Although the author may lack the ”good

judgement” when it comes to deciding which diagrams to include, we shall try the same

approach. We will therefore systematically try to map how the different diagrams, or

families of diagrams, contribute to the energy for a range of radii rs and thereby densities.

Because of the lack of validation of such calculations beyond the CCDT-1 approach,

these results should be used carefully. While the author has gone to great lengths to

ensure the validity of these, there is no guarantee that all included diagrams behave as

they should.

Still, this approach will allow us to arrive at the inclusion of all diagrams in the CCDT

level of truncation for coupled cluster theory for the HEG system.

9.4 A comparison of methods

In table 9.4, we compare the CCDT-1 results with Baardsen’s [1] CCD-results, Reimann’s

in-medium similarity renormalization group (IM-SRG(2)) results [57] and Leikanger’s

[20] and Shepherd’s [4] full configuration interaction quantum Monte Carlo (FCIQMC)

results. This table is basically the same as in Ref. [1, p.104], but with our results for

the CCDT-1 approach inserted in the middle.

For simplicity, and motivated by the fact that the FCIQMC results in principle should

give the best possible result for our basis, we may compare the results from the various

methods by their ratio to the FCIQMC results from Ref. [4]. This is done in table 9.5.

We see that the CCDT-1 slightly overestimates the energy (as expected) by a factor

of roughly 0.1 − 0.2% for rs = 0.5, roughly 0.7% for rs = 1.0 and approx 3.7% in the

rs = 2.0 case . The CCD generally underestimates the energy by a factor of roughly 1%

for rs = 0.5, roughly 3% for rs = 1.0 and approx. 7% for rs = 2.0.
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It is clear that the CCDT-1 accounts for more correlations than what we had in the

CCD case, which gives energies well above the benchmarks provided by for example

FCIQMC.

Table 9.4: Comparisons of different first principle methods.

rs ns ECCD ECCDT−1 EIM−SRG(2) ELFCIQMC ESFCIQMC

0.5 114 -0.073145 -0.0739344675155 -0.073638 -0.073842 -0.07384
0.5 186 -0.079047 -0.0799666850332 -0.079582 -0.07986 -0.07984
0.5 358 -0.081954 -0.0829461773725 -0.082504 -0.08284 -0.08281

1.0 114 -0.063987 -0.066327421221 -0.065290 -0.06583 -0.06587
1.0 186 -0.069360 -0.0720817173139 -0.070779 -0.07152 -0.07156
1.0 358 -0.071789 -0.0747195934729 -0.073235 -0.07413 -0.07412

2.0 114 -0.051114 -0.0569360063926 -0.053746 -0.05487 -0.05489

A comparison of the CCDT-1 results with various similar calculations for the HEG.
We compare with Baardsen’s [1] CCD-results, Reimann’s IM-SRG(2) results [57]
and Leikanger’s [20] and Shepherd’s [4] FCIQMC results respectively in the two last
columns. All energies are given in Rydbergs.

Table 9.5: Scaling different methods with the FCIQMC results.

rs ns ECCD ECCDT−1 EIM−SRG(2)

0.5 114 0.990587757313 1.00127935422 0.997264355363
0.5 186 0.990067635271 1.00158673639 0.996768537074
0.5 358 0.989663084169 1.00164445565 0.996304794107

1.0 114 0.971413390011 1.00694430273 0.991194777592
1.0 186 0.969256567915 1.00729062764 0.98908608161
1.0 358 0.968550998381 1.0080894964 0.98805990286

2.0 114 0.931207870286 1.03727466556 0.979158316633

Results are given as ratios to the FCIQMC results from Ref. [4].

9.5 Comparisons beyond the CCDT-1 approach

The results for the CCDT-1 approach calls for the inclusion of more diagrams. For a fixed

number of basis states Ns = 114, we therefore calculate the CCDT-2 contribution by

including the quadratic T̂2 terms, and finally the full CCDT approach with all diagrams

present. These results are shown in table 9.6, together with results presented so far in

table 9.4.
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Again, we are mainly interested in to which extent the methods account for correlations

beyond the mean field for homogeneous electron gas. As in our previous case, we cal-

culate the ratios to the FCIQMC results of Ref.[4]. These results are shown in table

9.7.

From these results it is obvious that for all values of rs, the gradual inclusion of diagrams

improves upon the approximation. For example in the case rs = 1, the CCD is off

by less thanw 3%, while the CCDT deviates from the FCIQMC by only about 0.3%.

For all methods the ratios shows a tendency to increase with rs, indicating that more

complicated correlations are missing with increasing rs.

Plotting these values, as in Fig.9.1 shows that even the full CCDT tends to differ from

the FCIQMC results as we increase rs.

Figure 9.1: A comparison of the correlation energies per particle in Rydbergs from
CCDT-1, CCDT-2 and CCDT calculations with the FCIQMC from Ref. [4].
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Table 9.6: Beyond the CCDT-1 approach for Ns = 114.

rs .5 1.0 2.0

ECCD -0.073145 -0.063987 -0.051114
ECCDT−1 -0.0739344675155 -0.066327421221 -0.0569360063926
ECCDT−2 -0.07392170125916613 -0.06625038155163217 -0.05653233124188183
ECCDT -0.07389270791372174 -0.06608125094071378 -0.055720738752582745

EIM−SRG(2) -0.073638 -0.065290 -0.053746

ELFCIQMC -0.073842 -0.06583 -0.05487

ESFCIQMC -0.07384 -0.06587 -0.05489

Comparison of results beyond the CCDT-1 approach. We use Baardsen’s [1] CCD-results,
Reimann’s IM-SRG(2) results [57] and Leikanger’s [20] and Shepherd’s [4] FCIQMC re-
sults respectively in the bottom two rows.

Table 9.7: Ratios beyond the CCDT-1 approach for Ns = 114.

rs .5 1.0 2.0

ECCD 0.990587757313 0.971413390011 0.931207870286
ECCDT−1 1.00127935422 1.00694430273 1.03727466556
ECCDT−2 1.00110646342 1.00577473131 1.02992040885
ECCDT 1.00071381248 1.00320708882 1.01513461018

The table shows ratios of the various CC approximations to the
FCIQMC values from Ref. [4].

9.6 Thermodynamical limit estimates

In the thermodynamical limit the space spanned by the plane wave basis is almost

complete, and our model space gives the best possible approximation of the system’s

true wave function. Comparing the estimates of our ground state energy at this limit

with corresponding calculations from methods such as FCIQMC will therefore enable us

to evaluate how well our method approximates the system’s wave function.

In the literature (see for example Refs. [1, 4, 6, 33, 40]), such estimates are usually

performed by first considering the ground state energy as a function of N−1
s , and ex-

trapolating the resulting function to the limit N−1
s = 0.

This setup is shown in Fig. 9.3, where we have compared our results for the CCDT-1

truncation with similar results from the literature.
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9.6.1 Finite-size effects

As may be seen from the plot in Fig. 9.3, the line showing the CCDT-1 energy becomes

increasingly smooth as the number of basis functions is increased. Certain irregularities

are clearly visible for small basis sets. Such irregularities arise mainly since we have

used an incomplete basis, and because we have a limited number of particles. These

effects are commonly called finite-size effects and incomplete basis error, and they will

introduce errors in the estimates. The finite size error falls off as O(N−1) for the error

associated to the kinetic energy in the three-dimensional electron gas. [65]

While Shepherd uses a technique to carefully treat the finite size effects, see Ref. [33] for

more details, we shall ignore these in our extrapolation. We will simply use a polynomial

fitting technique, and estimate the ground state energy in the thermodynamical limit by

gradually including more of the data points, starting with the smallest basis. This will

allow us to perform an extrapolation, but the results should be treated cautiously since

they obviously will contain errors that may be accounted for by some of the methods

discussed in Ref. [65]. Because of the visible sloping of the line it seems reasonable to

fit a second degree polynomial to the energy.

For each inclusion of new data points in our interpolation, the thermodynamic limit

estimate will change, hopefully closer to the value we seek. In this context, it will make

sense to plot the projected thermodynamical limit estimate as a function of the included

data points so far. This setup is shown in Fig. 9.2. For each new point of data added

in our set, starting with the rightmost calculation, we plot the estimated value - that is,

the value of our interpolated polynomial in N−1
s = 0.

The extrapolated energy is also plotted in the same diagram, beginning with only the

two leftmost data points resulting in the leftmost thermodynamical limit estimate. As

we move to the right, we also accumulate more of the smaller basis sets, thereby also

introducing more finite-size effects.

9.6.2 A note on obtaining the data

While our CCSDT-1 implementation easily handles smaller basis sets on a typical home

computer, it quickly runs out of resources when we scale up towards the basis set sizes

usually presented in the literature.

To obtain the data presented in Fig. 9.3, we have run calculations on the Abel Cluster

of the university of Oslo, (see Ref. [2]). This cluster has nodes which offer up to one

terabyte of memory. These are the so-called hugemem nodes.
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Figure 9.2: Gradual inclusion of more interpolation points (black dots) is assumed to
bring us closer to the true thermodynamical limit estimate. The vertical lines indicates

the estimated value for each interpolation point.

To perform these calculations as efficiently as possible, we have parallelized crucial parts

of the code, such as the initialization of the T̂3 amplitudes, as well as the iterative pro-

cedure. This was achieved by the use of open MP [66]. We also eased the convergence

criteria for these calculations, since the iterations for systems of this size is time con-

suming. Given more time, it is fully possible to obtain results with the same precision

as we had for the smaller basis sets.

9.6.3 Results from the large basis extrapolation

The results from these calculations are shown in Fig. 9.3, while the actual energies are

given in table 9.8. The number of basis functions in our data set allows for a meaningful
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Figure 9.3: Our CCDT-1 results compared to FCIQMC from Ref. [4] and CCD from
Ref. [5]. The thermodynamical limit results are extrapolated using a polynomial fitting
in (N−1

s )2, and the inclusion of all data points results in the dotted horizontal line at
ECCDT−1(Ns →∞) ≈ −0.53589205 Hartrees.

comparison with CCD and FCIQMC results in the literature. Our calculations run up

to Ns = 1598. Larger runs are needed for greater Ns values. Such calculations will be

performed in connection with our publication of the results.

In table II of Ref. [4], we find a comparable estimate from FCIQMC caclulations using

a single-point extrapolation technique described in the same text. For Ns = 14 and up

to 1850 orbitals, Shepherd et al. found a thermodynamical limit estimate of −0.5316(4)

Hartrees, where the number in the parenthesis represents the stochastic error. From

table 9.9, we see that the CCDT-1 approach gives an estimate approximately at just
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above −0.536 Hartrees. By comparison, using the same technique on the CCD results

from Ref. [5], we obtain an estimate just above −0.515 Hartrees. (By correcting for

finite-size effects and incomplete basis error, Shepherd et al. obtained approximately

−0.546 Hartrees from corresponding CCSD calculations in Ref. [33].)

In Ref. [33], the authors were able to perform calculations using CCD(T) for HEG sys-

tems of up to 200 particles. To overcome the computational costs, they approximated

these contributions in a way that did not alter its qualitative behavior. This approxima-

tion is referred to as CCSD(scT). By using 700 to 1600 orbitals, they then estimated the

ground state energy to be approximately −0.56 Hartrees4 for 14 electrons at rs = 1.0

4Number obtained by visual inspection of Fig. 4 in Ref. [33]
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Table 9.8: Ground state energies from the CCDT-1 approach for rs = 1.0

Ns ECCDT−1 ∆ef.i.
54 -0.3247616709272834
66 -0.4014439489508850
114 -0.4642919485466862
168 -0.4992170228805105
186 -0.5045720211973277
246 -0.5127494951081482
294 -0.5186916762333957
342 -0.5224209034109932
358 -0.5230371543102510

406 -0.52477086 4.83611717e-09
502 -0.52738302 5.08323494e-09
514 -0.52759733 5.0938509e-09
610 -0.52890112 5.18983734e-09
682 -0.52973516 -9.0516229e-09
730 -0.53016462 5.27640609e-09
778 -0.53055221 5.29870681e-09
874 -0.53121663 5.33532052e-09
922 -0.53145774 5.34856293e-09
970 -0.53165927 5.35778177e-09
1030 -0.53186170 5.36616518e-09
1174 -0.53231755 5.38305334e-09
1238 -0.53249388 5.3889998e-09
1382 -0.53280698 5.3976934e-09
1478 -0.53300407 5.40233591e-09
1502 -0.533038 5.40305467e-09
1598 -0.53317370 5.40562695e-09

Results from computations on the so-called
”hugemem” nodes on the Abel cluster in the
lower part of the table is separated by a horizon-
tal line from those obtained at an ordinary office
computer. The precision is decreased for these
calculations to reduce the computation time, but
it given enough time (at most a couple of days)
the precision may be easily improved. The right-
most column shows deviation between the two
final iterations in the CCDT-1 and reflect our
convergence criteria.
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Table 9.9: Convergence in the thermodynamical limit estimate.

Ns Estimated energy

114 -0.500074170875
168 -0.37448232
186 -0.50261060
246 -0.51739203
394 -0.52495653
342 -0.53004505
358 -0.53303659
406 -0.53430978
502 -0.53501392
514 -0.53551920
610 -0.53579986
682 -0.53590259
730 -0.53596398
778 -0.53599564
874 -0.53601389
922 -0.53602668
970 -0.53602951
1030 -0.53602389
1174 -0.53600828
1238 -0.53598359
1382 -0.53596086
1478 -0.53593480
1502 -0.53591225
1598 -0.53589205

Estimates of the thermody-
namical limit ground state
energy from CCDT-1 re-
sults on the homogeneous
electron gas in 3D . We ig-
nore finite-size effects and
use the method visualized
in Fig.9.2.

9.7 Contributions from diagrams

Introducing more diagrams in our calculations may have an effect on the energy. Some

diagrams may add to the energy, others may subtract, and yet some may have no visible

effect at all. Complicated couplings of the diagrams may make it hard to unambiguously

decide their proper role before having run the calculations.

A qualitative study of how each diagram contributes to the calculation may yield some

insights into which kind of excitations are important in the system and which are not.
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We begin by investigating how the gradual inclusion of the linear T̂3 diagrams as well

as the two extra diagrams in the T̂2 amplitude due to the triple excitations affects the

energy up to the CCDT-1 equations. The results of this gradual inclusion is shown for

a range of rs values and Ns = 54 in Fig. 9.4, while the deviation of these results with

the corresponding CCDT calculation is shown in Fig. 9.5. Obviously, Fig.9.4 is not that

informative, since contributions are tightly packed and hard to distinguish. Since we are

only after the contributions from each diagrams, we may therefore omit such plots for

the rest of the diagrams, as these will be even more tightly packed. The full numerical

results are provided in tables 9.10 to 9.18.5

Figure 9.4: Correlation energies in Hartrees for various inclusions of diagrams leading
up to the CCDT-1 equation.

In Fig. 9.7 we proceed by including even more diagrams in the CCDT1 equation, until

we have the CCDT2 equations with contributions from all diagrams quadratic in T̂2.

We then finally inspect individually contributions from each of the ”mixed” t2t3 terms

in Fig. 9.8. Note the notation for the mixed terms.

It is clear from all these results that most of the differences in the various approximations

diverge from the CCDT correlation energy as we leave the high density regime where

rs ≤ 1.5. One exception is the combinations containing both T2a and D10b in Fig. 9.5.

The calculations with these contributions overlaps almost perfectly above the CCDT

calculation in a quadratic shape, and indicate that it will cross the CCDT correlation

energy at some point. For rs = 2.0, these calculations are even closer to the CCDT

energy than the complete CCDT-1.

Generally, the deviations from the CCDT calculation decrease with roughly a factor of

10−1 between CCD, CCDT1. CCDT2 and CCDT, as may be seen by reading off the

y-axes of the figures in question.

5These results may come in handy for those who wish to reproduce our results or in debug processes for
similar codes. Please remember that these results have not been benchmarked against other calculations.
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Figure 9.5: Deviations in Hartrees
for the correlation energies from var-
ious truncations leading up to the

CCDT-1 equation.

Figure 9.6: Deviations in Hartrees
for the correlation energies from var-
ious truncations leading up to the

CCDT-2 equation.

In the stage beginning with CCDT-1 and ending with CCDT-2 in Fig. 9.6, we may

clearly see the role of the (t2t2)b term that adds in most of the CCDT-2 correlations.

From CCDT-2 to the inclusion of terms linear in T̂3, we see that all diagrams contribute

significantly, but that (t3)a is responsible for most of additional correlation energy, while

(t3)b has the least impact.

Figure 9.7: Deviations in Hartrees
for the correlation energies from var-
ious truncations beyond the CCDT-2

equation.

Figure 9.8: Deviations in Hartrees
for the correlation energies from includ-
ing ”mixed” terms in the T̂3 amplitude

leading up to the CCDT equation.

In the final stage, from CCDT-2 with linear T̂3 terms, ending with CCDT, it is clear

that the diagrams with the largest contributions are (t2t3)b and (t2t3)c, while these two

are also the only ones increasing the energy towards the full CCDT results. Is is also

worth noting that the diagram (t2t3)b also brings us above the CCSDT energy, and thus
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closer to the true correlation energy given that these results are comparable to the ones

for Ns = 114.

The significance - if any - of these results are unclear to the author, but the clear

improvement from including only the diagrams T2a and d10b does suggest that more

numerical experiments with this truncation are needed. Including only these diagrams

could provide the means of reducing the computational cost, as well as an improvement

upon the CCDT-1 truncation outside the high density domain.

Table 9.10: From CCD to CCDT1 (a)

rs CCDT (all) CCD (sparse) CCD+all t2t2 , d10b, d10c CCD+t2a, d10b, d10c

0.5 -0.361182136242 -0.358965573995 -0.358937799509 -0.360848662897
0.6 -0.35289477153 -0.349913298941 -0.349869014363 -0.352467423986
0.7 -0.345095172951 -0.34129880764 -0.341233775603 -0.344578165852
0.8 -0.337741036665 -0.33309549971 -0.333005531117 -0.337141804947
0.9 -0.330794429481 -0.325278123609 -0.325159145375 -0.330122838461
1.0 -0.324221302444 -0.317822843689 -0.317670940833 -0.323489024517
1.1 -0.317991054686 -0.310707258113 -0.310518697541 -0.317211078584
1.2 -0.312076145029 -0.30391038201 -0.303681623395 -0.311262390387
1.3 -0.306451747765 -0.297412606757 -0.297140304484 -0.305618763253
1.4 -0.301095448541 -0.291195643538 -0.290876642595 -0.300258176233
1.5 -0.295986976242 -0.285242457229 -0.28487378513 -0.295160568459
1.6 -0.291107966848 -0.279537195014 -0.279116051241 -0.290307644542
1.7 -0.286441755584 -0.27406511291 -0.273588856927 -0.285682699556
1.8 -0.281973193938 -0.268812502441 -0.268278641007 -0.281270462005
1.9 -0.277688488513 -0.263766619014 -0.263172793299 -0.277056953128
2.0 -0.273575059003 -0.258915613005 -0.258259585841 -0.273029360975
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Table 9.11: From CCD to CCDT1 (b)

rs CCD+t2b, d10b, d10c CCD+t2a, t2b, d10b CCD+t2a, t2b, d10c CCDT-1

0.5 -0.359382812741 -0.360848610871 -0.35938286414 -0.361271280331
0.6 -0.350475868693 -0.352467326244 -0.350475964803 -0.353040097402
0.7 -0.342016839697 -0.344578001572 -0.342017000386 -0.345313192843
0.8 -0.333976230676 -0.337141550367 -0.333976478267 -0.338048918278
0.9 -0.326326455022 -0.330122467573 -0.326326813525 -0.331209710045
1.0 -0.319041801529 -0.323488509766 -0.319042295892 -0.324761670927
1.1 -0.312098369047 -0.317210391538 -0.312099024469 -0.318674187521
1.2 -0.30547398076 -0.31126150236 -0.305474822082 -0.312919583715
1.3 -0.299148086706 -0.30561764586 -0.2991491379 -0.307472809107
1.4 -0.29310166071 -0.30025680189 -0.293102944449 -0.302311160242
1.5 -0.287317096026 -0.295158910812 -0.287318633349 -0.29741403209
1.6 -0.281778102658 -0.290305678835 -0.281779912717 -0.292762696991
1.7 -0.276469608293 -0.285680402945 -0.276471708165 -0.288340108337
1.8 -0.27137766407 -0.281267813814 -0.27138006864 -0.284130726343
1.9 -0.266489355882 -0.277053935064 -0.266492077776 -0.280120363495
2.0 -0.261792721537 -0.273025957299 -0.261795771106 -0.276296047416

Table 9.12: From CCDT1 to CCDT2 (a)

rs CCDT(all) CCDT-1 CCDT-1+(t2t2)b
0.5 -0.361182136242 -0.361271280331 -0.361241081392
0.6 -0.35289477153 -0.353040097402 -0.352991511388
0.7 -0.345095172951 -0.345313192843 -0.345241188004
0.8 -0.337741036665 -0.338048918278 -0.33794837969
0.9 -0.330794429481 -0.331209710045 -0.331075519112
1.0 -0.324221302444 -0.324761670927 -0.324588760945
1.1 -0.317991054686 -0.318674187521 -0.318457581714
1.2 -0.312076145029 -0.312919583715 -0.312654420478
1.3 -0.306451747765 -0.307472809107 -0.307154357932
1.4 -0.301095448541 -0.302311160242 -0.301934830914
1.5 -0.295986976242 -0.29741403209 -0.296975379025
1.6 -0.291107966848 -0.292762696991 -0.292257420127
1.7 -0.286441755584 -0.288340108337 -0.287764051589
1.8 -0.281973193938 -0.284130726343 -0.283479874385
1.9 -0.277688488513 -0.280120363495 -0.279390837409
2.0 -0.273575059003 -0.276296047416 -0.275484099609
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Table 9.13: From CCDT1 to CCDT2 (b)

rs CCDT-1+(t2t2)c CCDT-1 + (t2t2)d CCDT-2

0.5 -0.361272932544 -0.361270990289 -0.361242443
0.6 -0.353042798434 -0.353039597895 -0.352993711412
0.7 -0.345317255471 -0.345312404144 -0.345244458542
0.8 -0.338054668921 -0.338047749984 -0.337952955242
0.9 -0.33121748294 -0.331208062146 -0.331081631683
1.0 -0.324771803463 -0.324759434901 -0.324596636327
1.1 -0.318687016504 -0.318671247419 -0.318467436695
1.2 -0.312935442374 -0.31291581723 -0.312666460793
1.3 -0.307492024708 -0.30746808862 -0.307168776809
1.4 -0.302334052183 -0.302305353836 -0.301951808081
1.5 -0.297440910392 -0.29740700453 -0.296995080102
1.6 -0.292793861102 -0.29275431068 -0.292279996315
1.7 -0.2883758462 -0.288330224228 -0.2877896396
1.8 -0.28417131367 -0.284119204837 -0.283508596572
1.9 -0.280166063215 -0.2801070653 -0.279422802045
2.0 -0.276347109259 -0.276280834387 -0.275519401298

Table 9.14: From CCDT2 to CCDT2 + linear t3 (a)

rs CCDT CCDT-2 CCDT-2 +(t3)a
0.5 -0.361182136242 -0.361242443 -0.361218738719
0.6 -0.35289477153 -0.352993711412 -0.352955389336
0.7 -0.345095172951 -0.345244458542 -0.345187410081
0.8 -0.337741036665 -0.337952955242 -0.337872969247
0.9 -0.330794429481 -0.331081631683 -0.330974462634
1.0 -0.324221302444 -0.324596636327 -0.324458053866
1.1 -0.317991054686 -0.318467436695 -0.318293261114
1.2 -0.312076145029 -0.312666460793 -0.312452587945
1.3 -0.306451747765 -0.307168776809 -0.306911195085
1.4 -0.301095448541 -0.301951808081 -0.301646609441
1.5 -0.295986976242 -0.296995080102 -0.296638466677
1.6 -0.291107966848 -0.292279996315 -0.291868283709
1.7 -0.286441755584 -0.2877896396 -0.287319257769
1.8 -0.281973193938 -0.283508596572 -0.282976088915
1.9 -0.277688488513 -0.279422802045 -0.278824823213
2.0 -0.273575059003 -0.275519401298 -0.274852714074
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Table 9.15: From CCDT2 to CCDT2 + linear t3 (b)

rs CCDT-2 + t3b CCDT-2 + (t3)c CCDT-2 + t3(all)

0.5 -0.361240074436 -0.361212496588 -0.361186968791
0.6 -0.352989680206 -0.352945032659 -0.352903754956
0.7 -0.345238159145 -0.345171587896 -0.345110139593
0.8 -0.337943708706 -0.337850204441 -0.337764065954
0.9 -0.331068693447 -0.33094316437 -0.330827795998
1.0 -0.324579203596 -0.324416526415 -0.324267427027
1.1 -0.318444655364 -0.318239709672 -0.318052460081
1.2 -0.312637431899 -0.312385121921 -0.312155416584
1.3 -0.307132562511 -0.306827829204 -0.306551499031
1.4 -0.301907437187 -0.30154526299 -0.301218291375
1.5 -0.296941553166 -0.296516961116 -0.296135494817
1.6 -0.292216290327 -0.291724338872 -0.291284694974
1.7 -0.287714712303 -0.2871504868 -0.286649156719
1.8 -0.283421390437 -0.282779992098 -0.282213643357
1.9 -0.279322247926 -0.278598780801 -0.277964257128
2.0 -0.27540442181 -0.274593978214 -0.27388829842

Table 9.16: From CCDT2 + linear t3 to CCDT (a)

rs CCDT CCDT-2 + t3(all) CCDT-2 + t3(all) + (t2t3)a
0.5 -0.361182136242 -0.361186968791 -0.361189161494
0.6 -0.35289477153 -0.352903754956 -0.352907932372
0.7 -0.345095172951 -0.345110139593 -0.345117267621
0.8 -0.337741036665 -0.337764065954 -0.337775292461
0.9 -0.330794429481 -0.330827795998 -0.33084443613
1.0 -0.324221302444 -0.324267427027 -0.324290947458
1.1 -0.317991054686 -0.318052460081 -0.318084463335
1.2 -0.312076145029 -0.312155416584 -0.31219762608
1.3 -0.306451747765 -0.306551499031 -0.306605745257
1.4 -0.301095448541 -0.301218291375 -0.301286499351
1.5 -0.295986976242 -0.296135494817 -0.296219672924
1.6 -0.291107966848 -0.291284694974 -0.291386925122
1.7 -0.286441755584 -0.286649156719 -0.286771585795
1.8 -0.281973193938 -0.282213643357 -0.282358475852
1.9 -0.277688488513 -0.277964257128 -0.278133748843
2.0 -0.273575059003 -0.27388829842 -0.27408475114
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Table 9.17: From CCDT2 + linear t3 to CCDT (b)

rs CCDT-2 + t3(all)+(t2t3)b CCDT-2 + t3(all)+(t3t2)c CCDT-2 +t3(all)+(t3t2)d
0.5 -0.361181173957 -0.361184340036 -0.361187127038
0.6 -0.352892878689 -0.352898818243 -0.352904091207
0.7 -0.345091851048 -0.345101835074 -0.345110770555
0.8 -0.337735673415 -0.337751170412 -0.337765146693
0.9 -0.330786303973 -0.330808950068 -0.330829522494
1.0 -0.324209592489 -0.324241162451 -0.324270037743
1.1 -0.317974845376 -0.318017225821 -0.318056236736
1.2 -0.312054437757 -0.312109603165 -0.312160684269
1.3 -0.306423469119 -0.306493460869 -0.306558625822
1.4 -0.30105945867 -0.301146367031 -0.301227687558
1.5 -0.295942076381 -0.296048025283 -0.296147611826
1.6 -0.291052905834 -0.291180040147 -0.291300024139
1.7 -0.286375235231 -0.286525710259 -0.286668227882
1.8 -0.281893873224 -0.282069846146 -0.282237023418
1.9 -0.277594986573 -0.27779860954 -0.277992548569
2.0 -0.273465956943 -0.273699371593 -0.273922137838

Table 9.18: From CCDT2 + linear t3 to CCDT (c)

rs CCDT-2 + t3(all)+(t3t2)e CCDT-2 + t3(all)+(t2t3)f CCDT-2 + t3(all)+(t2t3)g
0.5 -0.361187132882 -0.361187901826 -0.361187148223
0.6 -0.352904063306 -0.352905522504 -0.352904092948
0.7 -0.345110658791 -0.345113140129 -0.345110710161
0.8 -0.337764873187 -0.337768769556 -0.337764955452
0.9 -0.330828977512 -0.330834737646 -0.330829101587
1.0 -0.324269076573 -0.324277199626 -0.324269255115
1.1 -0.318054677444 -0.318065707615 -0.318054924807
1.2 -0.312158306205 -0.312172827611 -0.312158638377
1.3 -0.306555168756 -0.306573800645 -0.306555603257
1.4 -0.30122285132 -0.301246243665 -0.301223407072
1.5 -0.296141056346 -0.296169885828 -0.296141753505
1.6 -0.291291369789 -0.291326336145 -0.291292229537
1.7 -0.286657056042 -0.286698878762 -0.286658100338
1.8 -0.282222877189 -0.282272292533 -0.282224128479
1.9 -0.277974933588 -0.278032691874 -0.277976414461
2.0 -0.273900523131 -0.273967386287 -0.273902255934
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9.8 Benchmarking

Performance benchmarks are provided for both our implementations in Figs. 9.9, 9.11,

9.10, 9.12 and 9.13. Note that not all parts of our two algorithms have implemented

OpenMP [66] in a consisted way, essentially due to lack of time. We have obtained

some performance benchmarks from Baardsen (in Ref. [5]) that clearly indicate that his

CCD implementation outperforms our own. For the largest basis set benchmarked in

Figs. 9.9 and 9.10, Baardsen measured only 5 seconds CPU time in total, whereas the

initialization time in our implementation is approximately 6 second and each iteration

is performed in approximately 0.4 seconds.

Figure 9.9: Elapsed real time and CPU time for the CCD iterations.

Figure 9.10: Elapsed real time and CPU time for the CCD iterations.

Some of this discrepancy may be explained by the fact that the compiler provided by

Intel used by Baardsen is known to give better performance than the GNU compiler

used by us (see Ref. [67]), but since our main focus has been to efficiently optimize

the bottlenecks in our CCDT implementations, we have neglected such bottlenecks in

the plain CCD implementation. The performance issues that arise from inclusion of the
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triple amplitudes overshadows the CCD challenges by far, so any improvement in the

CCD implementation would probably not give any significant boost in performance to

our CCDT implementation. Other explanations could be related to differences between

Fortran and C++, such as the many compiler challenges posed by the object orientation

in C++.

When comparing the CCDT-1 imlementations in Figs.9.11, 9.12 and 9.13, it is interesting

to note the very large deviation in the initialization time between the two. The reason for

this is that the sparse solver does not require any mapping of channels in the diagrams.

As we discussed in detail in chapter 8, we may then avoid any sorting of large arrays

in the initialization, although initializing the sparse matrices will require some sorting

at a later stage. Still, the block implementation outperforms the sparse by far in the

CCD iterations, since these actually requires both sorting and traversing of lists, while

the block implementation benefits greatly from the BLAS3 optimization of the dense

matrix-matrix multiplication.

Figure 9.11: Elapsed real time and CPU time for the CCD-1 iterations.

Table 9.19 indicates the relation between the basis set size and the memory requirements

for the T̂3 amplitude. The right column shows the number of nonzero elements in the

T̂3 amplitude. For each such nonzero element, several associated values are stored,

providing us with a rough estimate of the memory usage of our CCDT-1 implementation.

Multiplying this number with 8 for each such associated data container and multiplying

this number with the number of bytes used for each stored value, gives us a rough

estimate of the memory needed. All these data types in our implementation use 64 bits

by default. This indicates a memory usage of approximately 2 GB for the largest basis

set in table 9.19, which agrees with observations made during runtime.6

6The author did not perform extensive studies of the memory usage, although we used Valgrind
extensively in the debugging process. The qualitative observations mentioned here were obtained using
the ”top” command during runtime in Ubuntu.
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Figure 9.12: Elapsed real time and CPU time for the CCD-1 initializations.

Figure 9.13: Elapsed real time and CPU time for the CCD-1 initializations. (Zoomed)

9.9 Brief summary

In summary, we have validated our CCD results against existing ones from the scienfitic

literature. Furthermore, two different algorithms for computing triples correlations give

to numerical precision the same results.

Our results for triples correlations applied to the homogenoeus electron gas show clearly

that these correlations play an important role, bringing our coupled cluster calcula-

tions close to the benchmark results obtained with other ab initio methods like full

configuration interaction quantum Monte Carlo. We note that for larger radii rs, more

complicated correlations may be needed. Our results are however very encouraging,
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Table 9.19: Number of nonzero entries in the T̂3 amplitude

Ns Nnonzeros

54 247777
66 503209
114 2745529
162 7813177
186 11025937
246 21651901
294 34037605

The table shows
the length of the
element vector in
the T̂3 amplitude,
indicating mem-
ory requirements
as a function of
basis size.

and applications of our codes and software to systems like infinite nuclear matter may

provide ab initio benchmarks calculations for the nuclear equation of state.

In the next and final chapter, we summarize our results and present perspectives for

future studies as well.



Chapter 10

Conclusions and future prospects

10.1 Conclusions

The electron gas has been studied with various ab initio techniques, and in recent

years these techniques also include coupled cluster theory at the level of doubles excita-

tions (CCD), see Refs. [1, 4], many-body perturbation theory [33], stochastic methods

[4, 6, 20], and even CCD with perturbative treatment of triples, see for example Ref. [33].

From these studies, it has been clear that the CCD aproach fails to account for impor-

tant correlations in the homogeneous electron gas in two and three dimensions. In the

concluding remarks of his doctoral thesis (see Ref. [1]), Baardsen suggests that inclusion

of triple correlations may be necessary to obtain accurate results for the two-dimensional

electron gas, and he also proposes doing CCDT calculations on the three dimensional

case for small basis sets to explore how these correlations play in.

The aim of this thesis was to study the role of triples correlations. These correlations

have never been explored properly before this work, mainly due to large computational

obstacles. This thesis is thus likely to be the first time such results are presented for the

three-dimensional homogeneous electron gas. With our results, we have demonstrated

that it is computationally feasible to do large-scale coupled cluster calculations on this

system even with the inclusion of triples. The formalism and techniques discussed are

intended to be general, so that the same procedure may easily be extended to similar

systems for infinite matter, like the electron gas in two dimensions or infinite nuclear

matter and neutron star matter.

With our results, we have been able to demonstrate that the triple amplitudes indeed do

account for significant correlations in the homogeneous electron gas in three dimensions.

While the correlation energy is generally overestimated by the various CCDT trunca-

tions, it tends to reduce the deviation with the FCIQMC results (see Refs. [4, 20]) by

147
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a factor of roughly 10 compared to the CCD energies, although this ratio depends on

the density (and thereby Fermi momentum) under study. The FCIQMC provides most

likely the best possible ab initio benchmark for such systems.

In the same way as for the CCD results, the correlation energy associated with most

diagrams in the T̂3 amplitude equation tend to diverge as we increase the Wigner-Zeiss

radius rs. This suggests that more complicated correlations become important in when

we increase rs. These features have also been noted for systems like quantum dots in

two or three dimensions. For larger values of rs, most likely approaches like FCIQMC

will provide more reliable estimates for various observables.

We have also performed qualitative studies of how the various diagrams contributes to

the correlation energy, and we have identified some few diagrams that contribute more

than others. These results could possibly be utilized to do truncations in the CCDT

approach for the sake of performance and memory usage, and still retain accurate results.

Some reservation in these conclusions may arise due to the fact that we have neglected

both finite size effects and incomplete basis errors. From the comparison with Shepherd

et al. in Ref. [33], it is clear that the single point extrapolation technique will impact

the thermodynamic limit estimates considerably. It would also be interesting to obtain

third-party CCDT results in order to better validate our results.

Finally, the software CCAlgebra that we have developed, allows one to produce auto-

matically all relevant equations for a given level of truncation of coupled cluster theory.

This is an extremely useful tool which provides important theory benchmarks when de-

veloping complicated many-body methods like coupled cluster theory. The software can

easily be extended to accomodate other many-body methods.

10.2 Perspectives and recommendations

With the code we have developed, we expect to be able to produce a lot more results

than what is presented in this thesis.

First, the main results produced in this thesis is in the authors opinion the data set

used in the estimations for the thermodynamical limit. This set could be extended by

correcting a minor coding issue in the amplitude initialization function. We suspect that

basis sets above 1598 states resulted in a segmentation fault due to a static allocation

of memory. At this point, we set up Abel’s ”hugemem” nodes to prepare 320GB of

memory to our calculation, while the maximum limit on these nodes is 1TB. It should

be possible to do CCDT-1 calculations beyond 2000 basis states.
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Another way of improving our data set is to make it more accurate by lowering the

convergence threshold. This will lead to prolonged iteration time, but since we have not

implemented any methods for convergence optimization, such as DIIS (see Ref. [68]),

we may be able to compensate for this easily.

Another issue with these results is the insufficient treatment of finite-size effects and

incomplete basis error. The single point extrapolation technique described in Refs. [4]

and methods discussed in [69] should be used on our results to obtain a more comparable

estimate to those of Ref. [33].

While the sparse implementation is mainly used for smaller basis sets, it could be

optimized considerably by choosing a more suitable algorithm and container for the

sparse tensors. Sparse matrix-matrix multiplication is basically performed by sorting

and traversing two lists only once. While our algorithm relies on the Armadillo library

for this operation, it does not utilize any parallelization. Functionality such as that

provided by CUDA [70] or OpenMP [66] could possibly improve performance to such

a degree that also larger basis calculations could be feasible. The syntax used in the

sparse implementation allows for fast prototyping, so this could possibly provide us with

means to include even more correlations from the CCDTQ equations for smaller basis

sets.

Further, it seems to be great potential for optimizations of both implementations. Com-

parison of our performance with the CCD performance benchmarks form Baardsen, see

Ref. [5], suggests that our CCD code could be improved considerably, and in doing this

we could as well get some ideas as to how the CCDT implementation may be optimized

using similar techniques. It would be wise to write such an implementation using the

Intel MKL library and either Fortran or plain C to achieve the best performance pos-

sible. Avoiding libraries such as Armadillo will also simplify compilation on computing

clusters as they are not always supported, while the Intel compiler generally is.

The simplicity of the sparse implementation syntax is also easy to interface with the

software CCAlgebra developed here, see for example the description of [58]) discussed

in Chapter 6. This process would allow the user to perform complicated calculations of

any coupled cluster truncation, even with complicated many-body forces like three-body

forces central in nuclear physics using directly IPython notebook. IPython supports

compilation of C++ code directly from the cells, and it would even be possible to set up

the basis class externally, thus, changing the system would only be a matter of rewriting

a few lines in Python. This could be a powerful tool, especially in obtaining preliminary

results or fast prototyping of code.
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It is at the present unknown to the author exactly how the inclusion of more diagrams

(or even the full CCDT) in the block implementation would affect the memory usage.

Each diagrams may have values that add into the full element vector, and we have

observed quite a large intersection between these elements. It could very well be that a

full CCDT implementation is not that much more computationally expensive than the

CCDT-1. As pointed out in Ref [7, p.351], one of the advantages of conventional CCDT-

1 implementations is that they avoid the need for storing any T̂3 amplitudes. This is not

possible in our implementation, since we actually need to know in advance how the T̂3

amplitudes align, so it may very well be that our implementation already accommodates

efficient implementation of the full CCDT. This should be explored further.

With the formalism, implementations and results presented in this thesis, it should be

possible to carry out extensive experiments on the system in question1. It is the author’s

hope that the work presented in this thesis may enable future numerical experiments to

focus more on the physical aspects of the system in question, since a great deal of our

work has been to develop a working and efficient implementation of the triple amplitudes

for the homogeneous electron gas.

1Other similar systems could also be studied with these means.



Appendix A

Diagram names

Because of the way we generated the diagrams in the CCDT equations, there are some

inconsistencies concerning how the diagrams are named between chapters 6 and 8. While

we use the same naming convention as Shavitt and Bartlett in Ref. [7] for chapter 6, we

move to our own naming in chapter 8.

All codes written for this thesis use the latter naming convention, as these codes at an

early stage inherited such names from the calculation with CCAlgebra. It should also be

noted that even in Ref. [7], breach of naming convention occurs when the diagrammatic

approach is introduced for the CCD equation.1

For this reason we provide this table A.1, that will make it easier to translate between

the two naming conventions.

1They change from L1a → D2a for all linear terms, as well as Qn → Dxn for the quadratic contribu-
tions to the CCD equation.
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Table A.1: Translation of diagram names

Name in Ref.[7] Names used in chapter 8

T1a (t2)a
T1b (t2)b
T2c (t3)a
T2d (t3)b
T2e (t3)c
T3b (t2t2)b
T3c (t2t2)c
T3d (t2t2)d
T5a (t2t3)a
T5b (t2t3)b
T5c (t2t3)c
T5d (t2t3)d
T5e (t2t3)e
T5f (t2t3)f
T5g (t2t3)g
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