
Dept. of Math. University of Oslo
Statistical Research Report No. 11
ISSN 0806–3842 December 2005

A robust conflict measure of internal
inconsistencies in Bayesian hierarchical models

FREDRIK A. DAHL, Health Services Research Unit, Akershus University Hospital,
Norway, and Department of Mathematics, University of Oslo, Norway
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Abstract. O’Hagan (2003) introduces some tools for criticism of Bayesian hierarchi-
cal models that can be applied at each node of the model, with a view to diagnosing
problems of model fit at any point in the model structure. His method relies on comput-
ing the posterior median of a conflict index, typically through MCMC simulations. We
investigate a Gaussian model of two-way analysis of variance, and show that O’Hagan’s
approach gives unreliable false warning probabilities. We extend and refine the method,
especially avoiding double use of data by a data splitting approach, accompanied by
theoretical justifications from a non trivial special case. Through extensive numerical
experiments we show that our method detects model misspecification about as well
as O’Hagan’s method does, while retaining the desired false warning probability for
data generated from the assumed model. This also holds for a Student-t version of the
model.

Keywords: Bayesian hierarchical models, conflict measure, double use of data, Markov
chain Monte Carlo simulations, model evaluation, two-way analysis of variance.

1 Introduction

Modern computer technology combined with MCMC algorithms has made it possible
to analyze complex Bayesian hierarchical models. The resulting popularity of complex
models has also increased the need for ways of evaluating such models. In a frequen-
tist setting, this is often done by way of p-values, which quantify how surprising the
given data set is, under the assumed model. By construction, a frequentist p-value
is pre-experimantally uniformly distributed on the unit interval, where low values are
interpreted as surprising.

Several Bayesian p-values have been suggested over the last few decades. The so-called
prior predictive p-value of Box (1980), measures the degree of surprise of the data,
according to some metric of choice, under a probability measure defined by the product
of the prior and the likelihood given the model. It therefore differs from a frequentist
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p-value through the introduction of the prior distribution. The prior predictive p-value
is a natural choice in cases where the prior of a Bayesian model represents our true
beliefs about the distribution of our parameters prior to seeing data. Usually, however,
we apply quite vague priors that represent general uncertainty about parameters that
could in principle be arbitrarily precisely estimated with enough data.

In these cases, sampling under the prior makes little sense, and is not even defined
for improper priors. Rubin (1984) therefore introduced posterior predictive p-values
that relies on sampling hypothetical future replications from the posterior distribution.
This construction also allows metrics that evaluate discrepancies between data and
parameter values, see Gelman et al. (1996). However, posterior predictive p-values use
data twice; both directly through the discrepancy function, and indirectly by sampling
from the posterior distribution.

This has been criticized by Dey et al. (1998) and Bayarri and Berger (2000), both
coming up with alternative approaches. The former paper introduces a simulation
based approach where the posterior distribution given the observed data is compared
to a medley of posterior distributions given replicated data sets generated from the prior
distribution. Hence, the approach is essentially in accordance with the prior predictive
approach. The latter paper suggests two variants; the conditional predictive p-value
and the partial posterior predictive p-value, both designed to avoid the double use of
data by eliminating the influence of a chosen test statistic on the posterior distribution.

Robins et al (2000) proves that the pre-experimental asymptotic distribution of the
posterior predictive p-value is more concentrated around 1/2 than a uniform, as op-
posed to the two variants of Bayarri and Berger (2000). Hence, as also pointed out by
Meng (1994) and Dahl (2005), the posterior predictive p-values tend to be conservative
in the sense that extreme values get too low probability. Hjort et al. (2006) analyzes
this in depth, and designs a double simulation scheme that alleviates the problem. This
scheme can be thought of as essentially treating the posterior predictive p-value as a
test statistic in itself, and using it in an extensive prior predictive p-value computation.

In model choice problems the task is to choose the best model from a given set of
candidates. For Bayesian model choice problems, Bayes factors, see Kass and Raftery
(1995) provide a useful methodology. Information criteria give a different approach
to model choice based on weighing model fit against the number of free parameters.
The Bayesian information criterion (BIC) was defined by Schwartz (1978) and more
recently analyzed by Clyde and George (2004). A different information criterion that
is used for Bayesian models is the so-called divergence information criteron (DIC), see
Spiegelhalter et al. (2002). Although model evaluation and model choice are related,
these tasks are different, and model choice methods cannot readily be applied for the
purpose of model evaluation.

The variants of Berger and Bayarri (2000) work well in some simple cases, but it
seems difficult to use this method to criticize arbitrary aspects of Bayesian hierarchical
models. Dey et al (1998) introduces tools for evaluating different parts of such models.
In the same spirit, we extend and refine in this paper a tool suggested by O’Hagan
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(2003) for evaluating internal inconsistencies of a model, through analysis of what he
calls information contributions. This is a flexible tool that can be used at any node
in the model network. However, in the present paper, we restrict our attention to
location parameters. Under suitable conditions, our conflict evaluation for a given
node will pre-experimentally be a squared normal variable. Our main hypothesis is
that this is close to be true for a larger class of models. This gives a surprise index
which is similar to a frequentist p-value. This does not mean that we advocate basing
the model building process on a formal hypothesis testing scheme, which would also
involve the problem of simultaneous testing of several dependent hypothesis. Rather,
we envisage an informal procedure, where the conflict analysis suggests points in the
model structure that might be problematic. However, without reasonable control over
the pre-experimental distribution of the conflicts in the model, it would be difficult to
use this tool in practice without a computationally demanding empirical normalization.

The paper is layed out as follows: In Section 2 we explain the original idea of O’Hagan
(2003) in the setting of a Gaussian hierarchical model, followed by our modifications of
the method. Our modifications include the splitting of data, in order to avoid double
use of it, and this is discussed further in Section 3. Section 4 gives some theoretical
results in a special case of our model. In Section 5 we give results from our massive
simulation experiments, and Section 6 concludes the article. In the appendix we give
the proofs of the theoretical results in Section 4.

2 Measuring conflict

O’Hagan (2003) introduces some tools for model criticism that can be applied at each
node of a complex hierarchical or graphical model, with a view to diagnosing prob-
lems of model fit at any point in the model structure. In general, the model can be
supposed to be expressed as a directed acyclic graph. To compare two unimodal den-
sities/likelihoods he suggests the following procedure. First normalize both densities
to have unit maximum height. The height of both curves at their point of intersection
is denoted by z. Then the suggested conflict measure is c1 = −2 ln z. In the present
paper we consider, as O’Hagan (2003), the simple hierarchical model for several normal
samples (one-way analysis of variance) to clarify what we see as problematic aspects
of his approach. Observations yij for i = 1, ..., k and j = 1, ..., ni are available. The
model has the form:

yij|λ, σ2 ∼ind N(λi, σ
2), i = 1, ..., k; j = 1, ..., ni

λi|µ, τ 2 ∼ind N(µ, τ 2), i = 1, ..., k, (1)

and is completed by a prior distribution for σ2, τ 2 and µ.

In the model (1), consider the node for parameter λi. In addition to its parents µ and
τ 2, it is linked to its child nodes yi1, ..., yini

. The full conditional distribution of λi is
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given by:

p(λi|y, λ−i, σ
2, τ 2, µ) ∝ p(λi|µ, τ 2)

ni∏
j=1

p(yij|λi, σ
2) (2)

This shows how each of the ni + 1 distributions can be considered as a source of
information about λi. When we are considering the possibility of conflict at the λi

node, we must consider each of these contributing distributions as functions of λi. In
the present model, contrasting the information about λi from the parent nodes with
that from the child nodes, the conflict measure simplifies to:

c1
λi

= (µ− ȳi)
2/(τ + σ/

√
ni)

2, (3)

where ȳi = 1
ni

∑ni

j=1 yij, noting that the last ni factors of (2) can be written as

p(ȳi|λi, σ
2).

When the parameters σ2, τ 2 and µ are given by prior distributions, O’Hagan (2003)
suggests using MCMC to estimate the quantity

c1,y,med
λi

= Mσ2,τ2,µ|y(c1
λi

), (4)

where M denotes the median under the posterior distribution of σ2, τ 2 and µ. He claims
that a value less than 1 should be thought of as indicative of no conflict, whereas values
of 4 or more would certainly indicate a conflict to be taken seriously.

A first problem with (3) is the somewhat odd looking denominator. A more natural
choice of normalization seems to be

c2
λi

= (µ− ȳi)
2/(τ 2 + σ2/ni) (5)

In a simplified situation where σ2, τ 2 and µ are given numbers, c2
λi

is χ2
1 distributed

pre-experimentally. Hence, in this case we can argue that values of c2
λi

exceeding 4 do
indicate a serious conflict. A second problem with the O’Hagan (2003) approach is
that data are used twice, first in the computation of the posterior distribution in (4),
and then in the evaluation of the conflict measure. One way to avoid this is to split
the data in one part y1 used to obtain a posterior distribution for the parameters τ 2, µ
of the parent nodes information contribution, and another part y2 used to obtain a
posterior distribution for the parameter σ2 of the child nodes information contribution.
In the evaluation of the conflict, we use a data vector y2

i , defined as the components
of yi present in y2.

A third problem concerns the way in which the use of the posterior distributions of
the nuisance parameters σ2, τ 2 and µ affect the level of conflict. It is not at all obvious
that the median construction (4) normalizes the conflict in a stable and sensible way.
We suggest as an alternative to construct two distributions g1 and g2 representing the
two different information sources for λi, N(µ, τ 2) and N(ȳ2

i , σ
2/ni), integrated over the

posterior distributions of τ 2, µ given y1 respectively σ2 given y2. This explains the
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abbreviation ipd (integrated posterior distributions) in the following conflict measure,
analogous to (5), between g1 and g2:

c
2,y1,y2,ipd
λi

= (Eg1(λi)− Eg2(λi))
2/(varg1(λi) + varg2(λi)) (6)

By a conditional expectation and variance argument, this simplifies to

c
2,y1,y2,ipd
λi

=
(E(µ|y1)− ȳ2

i )
2

E(τ 2|y1) + var(µ|y1) + E(σ2|y2)/ni

(7)

Note the additional denominator term var(µ|y1) of (7) as opposed to (5).

The ipd construction can be generalized to conflicts concerning arbitrary nodes in the
hierarchical network. When σ2, τ 2 and µ are fixed, the posterior distributions are de-
generate. Then (7) coincides with (5) and is hence suitably normalized. However,

when these parameters are random, the variance terms in the denominator of c
2,y,med
λi

capture only part of the pre-experimental variability of the numerator, while the inte-
gration over the posterior distributions ensures that the variance terms in the denom-
inator of (7) approximately reflect the different sources of pre-experimental variability
of the numerator.

The two basic conflict measures (3) and (5), the various data splittings, and the pos-
sibility to choose between the median and the ipd approach, give a large number
of possibilities for assessing conflict. In this paper we investigate these possibilities
through MCMC simulations, both with respect to a false warning probability or signif-
icance level, and with respect to calibrated detection probabilities. We consider those
methods that hit reasonably close to an intended false warning probability as greatly
preferable, since these methods may make a computationally costly empirical normal-
ization step unnecessary. Among these methods, we prefer those that have the highest
detection probability.

3 Data splitting approaches

The consequences of double use of data can be impossible to assess. This motivates
the introduction of different data splitting approaches, designed to avoid this.

Visualize the model (1) with the nodes of the parameters σ2, τ 2 and µ in the first
row, the nodes of λi, i = 1, ..., k, in the second row, and the nodes of the transposed of
yi, i = 1, ..., k as columns in the third row. A horizontal splitting of the data y would
be achieved by letting

y1 = (y11, ..., y1m1 , ..., yk1, ..., ykmk
)

y2 = (y1m1+1, ..., y1n1 , ..., ykmk+1, ..., yknk
)

, (8)

where 1 ≤ mi < ni for i = 1, ..., k. Let y2
i = (yimi+1, ..., yini

), i = 1, ...k. Furthermore,
let cλi

((τ 2, µ); (σ2, yi)) be any of the two conflict measures c1
λi

and c2
λi

given by (3) and
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(5). To avoid the double use of data the approach of (4) could be replaced by

c
y1,y2,med
λi

= M (τ2,µ|y1)×(σ2|y2)(cλi
((τ 2, µ); (σ2, y2

i ))) (9)

By running a suitable MCMC algorithm twice, to obtain posterior samples of the
parameters σ2, τ 2, and µ given y1 and y2, respectively, we could estimate all k conflicts

c
y1,y2,med
λi

, i = 1, ..., k. Note also that when using (8), y1 and y2 can be interchanged,
and the corresponding quantity be estimated from the same two posterior samples of
σ2, τ 2, and µ. If, for ni even, mi = ni/2, i = 1, ..., k, equal weights should be allocated
to these two parallel estimates.

A vertical splitting avoiding the double use of data would be achieved by letting, for
1 ≤ l < k

y1 = (y11, ..., y1n1 , ..., yl1, ..., ylnl
)

y2 = (yl+11, ..., yl+1nl+1
, ..., yk1, ..., yknk

)
(10)

Let y2
i = (yi1, ..., yini

), i = l+1, ..., k. By applying this splitting in (9), we can estimate

from two posterior samples the conflicts c
y1,y2,med
λi

, i = l + 1, ..., k. The remaining

conflicts c
y1,y2,med
λi

, i = 1, ..., l are estimated by interchanging y1 and y2. Assume we
are especially interested in a possible conflict at a specific λ node, and that we want
maximum data to arrive at the posterior distribution of the parameters µ and τ 2. We
then denote this node by λk, and choose l = k − 1.

4 Theoretical comparisons

We start this section by giving some needed notation. In our simulation experiments,
which we will return to in Section 5, we will compare the O’Hagan (2003) conflict
measure c1

λk
given by (3), in the following denoted by A1, with c2

λk
given by (5) (A2).

Secondly, we will compare his approach of evaluating the median posterior conflict, as
in (4) (B1), with the ipd approach presented in (7) (B2). We will also compare the non
data splitting approach of O’Hagan (2003) (C1) with two horizontal splitting schemes.
The first one (C2) is based on (8), while the second (C3) is also based on interchanging
y1 and y2. These are also compared with two vertical splitting approaches, based on
(10), with l = k/2 (C4), and l = k − 1 (C5), respectively. Note that C4 is only defined
for even k. Altogether we have 2 · 2 · 5 = 20 combinations.

What we call the null model is the model (1) with the nuisance parameters set at their
prior expected values, σ2 = σ2

0, τ 2 = τ 2
0 , and µ = µ0. Denote the actual significance

level by α, using a nominal warning level of χ2
1,0.95 ≈ 3.85 (χ2

2,0.95/2 ≈ 3.00 for C3). β
is the detection probability of an alternative fixed λk, substantially different from µ0,
when the conflict measure has been calibrated to give a significance level of 0.05.

We now compare some of the approaches theoretically.
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First note that since a sum of variances is less than the corresponding square of the
summed standard deviations, we obviously have

Proposition 1 For any splitting

c
1,y1,y2,med
λk

< c
2,y1,y2,med
λk

and c
1,y1,y2,ipd
λk

< c
2,y1,y2,ipd
λk

(11)

Consequently

αA1,Bi,Cj
< αA2,Bi,Cj

for i = 1, 2; j = 1, ..., 5. (12)

In the following we focus mainly on the case A2 of the first factor, and compare the
cases B1 and B2 of the second factor, and the cases C1, C2, C4 and C5 of the third
factor, leaving out the more complex case C3. In order to make a theoretical analysis
tractable, we choose the improper prior 1 for µ, whereas we start out with arbitrary
prior distributions for σ2 and τ 2. In the comparison of the different splittings and in
the comparison of the median and the ipd approaches we make the further simplifying
assumption that σ2 and τ 2 are fixed. We fix ni = n, for n even, and, in the case of the
splitting (8), mi = n/2 for each i = 1, . . . , k. Proofs of the main results are given in
the appendix.

Our first aim is to analyse how close the ipd conflict c
2,y1,y2,ipd
λk

given by (7) is to
being χ2

1-distributed pre-experimentally under the null model. In order to handle this
problem we denote by Y a random replicate of y. Also, we denote by E0 respectively
var0 the expectation and variance under the null model distribution.

Theorem 1 Based on the splitting (10) we have

c
2,Y 1

,Y 2
,ipd

λk
= (Ȳ 1 − Ȳ 2

k )2/ ˆvar(Ȳ 1 − Ȳ 2
k ), (13)

where, for given data y1, y2, ˆvar(ȳ1 − ȳ2
k) is the estimate

(1/n)[E(σ2|y2) + (1/l)E(σ2|y1)] + ((l + 1)/l)E(τ 2|y1) (14)

of

var0(Ȳ
1 − Ȳ 2

k ) = ((l + 1)/l)((1/n)σ2
0 + τ 2

0 ). (15)

The denominator of (13) is independent of Ȳ 1 − Ȳ 2
k .

This theorem justifies our assertion in Section 2 that with the ipd approach, the vari-
ance terms in the denominator of (7) approximately reflect the different sources of
variability of the numerator.

However, the uncertainty in the posterior distributions of the variance parameters σ2

and τ 2 may give a slight exaggeration of the conflict. To see this, note that it follows
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from Theorem 1 that under the null model we may write c
2,Y 1

,Y 2
,ipd

λk
= XZ, where

X and Z are independent, and

X = (Ȳ 1 − Ȳ 2
k )/var0(Ȳ

1 − Ȳ 2
k ) is χ2

1-distributed, and

Z = var0(Ȳ
1 − Ȳ 2

k )/v̂ar(Ȳ 1 − Ȳ 2
k ).

Due to Theorem 1 we assume E0(Z) ≈ 1. Hence, we obtain

var0(c
2,Y 1

,Y 2
,ipd

λk
) = var0(XZ) = (E0(Z))2var0(X) + E0(X

2)var0(Z) ≈ var0(X) +
E0(X

2)var0(Z) ≥ var0(X) = var(χ2
1).

This makes it reasonable to believe that the distribution of c
2,Y 1

,Y 2
,ipd

λk
has a heavier

tail than the χ2
1-distribution, and hence that

αA2,B2,Cj
> or ≈ 0.05 for j = 4, 5.

When the variance parameters are fixed, but still with an improper prior for µ, the de-
nominator of (13) reduces to (15). Hence, the following corollary is a direct consequence
of Theorem 1.

Corollary 1 Let σ2 = σ2
0 and τ 2 = τ 2

0 be fixed and known. Then, with the splitting

(10), the conflict c
2,Y 1

,Y 2
,ipd

λk
is χ2

1- distributed under the null model, and αA2,B2,Cj
=

0.05 for j = 4, 5.

Equations (13) and (14) hold for the splitting (8) as well, with n replaced by n/2 and l
replaced by k. With k in place of l, these equalities are true also without any splitting,
using (Ȳ − Ȳk)

2 in the numerator. However, the variance expression (15) is not valid
in these cases, and consequently the conflicts are not χ2

1- distributed. Instead, we have
the following proposition:

Proposition 2 Suppose σ2 = σ2
0 and τ 2 = τ 2

0 are fixed and known. With no splitting
we have

c
2,Y ,ipd
λk

∼ ((k − 1)/(k + 1))χ2
1.

With the splitting (8) we have

c
2,Y 1

,Y 2
,ipd

λk
∼ [(k − 1)τ 2

0 + ((k + 1)/(n/2))σ2
0]/[(k + 1)(τ 2

0 + (1/(n/2))σ2
0)]χ

2
1.

Consequently, αA2,B2,C1 < αA2,B2,C2 < 0.05. These upper and lower bounds for αA2,B2,C2

are approached as limits when τ 2
0 /σ2

0 respectively σ2
0/τ

2
0 approaches 0.

In the calculations leading to this proposition, we used the fact that the numerator in
the conflict based on no splitting is

(Ȳ − Ȳk)
2 = ((k − 1)/k)2(((1/(k − 1))(Ȳ1 + . . . + Ȳk−1)− Ȳk)

2.

8



The right hand side of this equality is ((k− 1)/k)2 times the numerator in the conflict
based on the splitting (10) with l = k − 1. Since the variance parameters are fixed,
it follows that the conflict based on this splitting is proportional to the conflict based
on no splitting, and consequently these two conflict measures have identical calibrated
detection probabilities, i.e. βA2,B2,C1 = βA2,B2,C5 .

We now turn to the comparison of the median and the ipd approaches. We have the
following proposition

Proposition 3 Suppose σ2 = σ2
0 and τ 2 = τ 2

0 are fixed and known. We then have for
any of the splittings (including no splitting)

c
2,y1,y2,med
λk

> (ȳ2
k − ȳ1)2/((1/mk)σ

2
0 + τ 2

0 ) >

(ȳ2
k − ȳ1)2/(((l + 1)/l))((1/mk)σ

2
0 + τ 2

0 )) = c
2,y1,y2,ipd
λk

,

where l = k in cases C1 and C2, and mk = n/2 in case C2, whereas mk = n otherwise.
Also, αA2,B1,Cj

> αA2,B2,Cj
for j = 1, 2, 4, 5. Finally, for any of the splittings, any

combination of A and B give identical calibrated detection probabilities, i.e. βA1,B1,Cj
=

βA1,B2,Cj
= βA2,B1,Cj

= βA2,B2,Cj
for j = 1, 2, 4, 5.

The first of these inequalities shows that the conflict is exaggerated because taking the
median exaggerates the numerator, whereas the second inequality demonstrates an ad-
ditional exaggeration effect arising from a too small variance term in the denominator.
This justifies our assertion in Section 2 that for the median conflict, the variance terms
in the denominator of (5) capture only part of the variability of the numerator.

5 Simulation experiments

In this section we present the results of some simulation experiments, designed to
evaluate false alarm probabilities (α’s) and calibrated detection probabilities (β’s) for
the given model.

We assume that the prior distributions for σ2, τ 2, and µ are independent. The parame-
ters σ2 and τ 2 are inverse gamma distributed, both with shape parameter 4, and scale
parameters 12 and 3, respectively. The prior distribution for µ is normal with mean 0
and variance ω2 = 9. Furthermore, we choose k = 6, and ni = n, i = 1, ..., k. We run
identical experiments with n = 10 and n = 100.

In the following subsection we present results for the model, with normally distributed
λ. In the next subsection, we analyze a modified version with Student-t distributed λ,
in order to illustrate how departure from normality affects the results.
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5.1 Normally distributed λ

From (1) we arrive at the following likelihood for σ2, τ 2, and µ

L(σ2, τ 2, µ|yij, i = 1, ..., k; j = 1, ...n)

=

∞∫
−∞

...

∫ ∞

−∞
(

1√
2πσ

)nke−
1

2σ2

P
i,j(yij−λi)

2

(
1√
2πτ

)ke−
1

2τ2

P
i(λi−µ)2dλ1...dλk

= (
1√
2πσ

)(n−1)ke−
1

2σ2

P
i,j(yij−ȳi)

2

n−k/2

k∏
i=1

∞∫
−∞

1√
2πσ/

√
n

e
− 1

2σ2/n
(ȳi−λi)

2 1√
2πτ

e−
1

2τ2 (λi−µ)2dλi

=
k∏

i=1

(
1√
2πσ

)n−1 1√
n

e−
1

2σ2

Pn
j=1(yij−ȳi)

2 1√
2π(σ2/n + τ 2)

e
− 1

2(σ2/n+τ2)
(ȳi−µ)2

(16)

From the prior distributions and (16) we generated posterior samples of (σ2, τ 2, µ) by
the Metropolis-Hastings algorithm. We used a random walk version of the algorithm,
with simultaneous steps in each direction. The steps are constructed as mixtures of
centered uniform variables with varying size. After a burn-in of 106 steps, we generated
a sample of 10.000 parameter vectors, sampled 1000 simulation steps apart. This gives
close to no serial correlation in the sampled points. We do not claim that this is optimal
in any sense, but it runs sufficiently fast for the present application.

Also a total of 10.000 independent data sets were generated in separate files, each
containing kn = 60 and kn = 600 observations. In the null model, the prior expected
values are σ2

0 = 4, τ 2
0 = 1 and µ0 = 0. The corresponding 10.000 alternative data sets

have λk = 3, i.e., λk is located in the tail of its null model distribution N(0, 1).

The C1 approach requires only one MCMC run, whereas C2, C4, C5 require two MCMC
runs each, for a total of seven MCMC runs. These runs must be carried through for
10.000 data sets both from the null model and the alternative model. The total number
of MCMC runs is therefore 7 ·2 ·10.000 = 140.000. In order to test our different conflict
measures, we have stored the 140.000 posterior distributions in separate files, each
contaning 10.000 parameter triplets (µ, τ 2, σ2). Due to our elimination of the λ’s in the
likelihood, the MCMC simulations run very efficiently. Therefore, the main challenge
of the process has been the management of the posterior distribution files, rather than
computing power.

In Table 1 we give the α and β values estimated from the experiments with n = 10. In
each cell, the upper number is the estimated value, whereas the lower number is the
estimated standard error. Table 2 gives the corresponding results for n = 100.
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C1 C2 C3 C4 C5

A1 B1 α 0 0.007 0.003 0.026 0.024
0.0001 0.0003 0.0002 0.0010 0.0013

β 0.70 0.41 0.65 0.64 0.69
0.0065 0.0038 0.0058 0.0063 0.0152

B2 α 0 0.006 0.003 0.023 0.021
0.0001 0.0003 0.0002 0.0008 0.0014

β 0.71 0.40 0.65 0.64 0.69
0.0065 0.0039 0.0058 0.0064 0.0149

A2 B1 α 0.026 0.053 0.057 0.104 0.091
0.0006 0.0006 0.0009 0.0018 0.0033

β 0.70 0.40 0.65 0.64 0.69
0.0066 0.0041 0.0057 0.0064 0.0148

B2 α 0.008 0.031 0.029 0.051 0.055
0.0004 0.0004 0.0020 0.0013 0.0028

β 0.70 0.45 0.64 0.65 0.69
0.0067 0.0040 0.0056 0.0063 0.0141

Table 1: Simulation results for α and β with n=10. The upper number in a cell is the
estimated value, whereas the lower number is the estimated standard error.

C1 C2 C3 C4 C5

A1 B1 α 0.003 0.004 0.010 0.065 0.053
0.0002 0.0003 0.0005 0.0012 0.0024

β 0.93 0.86 0.93 0.86 0.92
0.0038 0.0045 0.0032 0.0062 0.0069

B2 α 0.002 0.003 0.007 0.054 0.045
0.0002 0.0002 0.0004 0.0011 0.0021

β 0.93 0.82 0.93 0.86 0.92
0.0037 0.0058 0.0032 0.0062 0.0067

A2 B1 α 0.021 0.031 0.054 0.121 0.102
0.0008 0.0005 0.0009 0.0018 0.0028

β 0.91 0.79 0.91 0.85 0.91
0.0043 0.0061 0.0043 0.0064 0.0077

B2 α 0.004 0.010 0.020 0.056 0.060
0.0002 0.0004 0.0007 0.0011 0.0024

β 0.91 0.84 0.92 0.85 0.91
0.0041 0.0052 0.0045 0.0059 0.0076

Table 2: Simulation results for α and β with n=100. The upper number in a cell is the
estimated value, whereas the lower number is the estimated standard error.

We observe from Table 1 and Table 2 that, in accordance with Theorem 1 and Corol-
lary 1, we obtain significance levels quite close to 0.05 when combining our suggested
modifications of the approach of O’Hagan (2003), provided we use the vertical split-
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tings (10). In fact, we have αA2,B2,Cj
∈ [0.051, 0.060] for j = 4, 5. The significance

levels exceed 0.05 slightly, as suggested by the discussion following Theorem 1. We
also note that replacing A2 by A1 results in a substantial drop in significance level
for all combinations of the factors B and C, confirming Proposition 1. For any given
combination of the factors A and B, such a drop is also observed when replacing C4, C5

with the no splitting option C1, and to a somewhat smaller extent with the horizontal
splittings (8), represented by C2 and C3. For the combinations A2, B2, Cj, j = 1, 2,
this is in accordance with Corollary 1 and Proposition 2. On the other hand, for any
combination of A and C we observe that replacing B2 with B1 results in an increase
in significance level. This is to be expected from Proposition 3 for the combinations
A2, Cj, j = 1, 2, 4, 5. The net effect of combining the conflict reducing factors A1, C1

with the conflict increasing factor B1, which constitutes the original suggestion by
O’Hagan (2003), is a significance level dramatically smaller than 0.05. However, for
some combinations the downward and upward acting factors cancel, resulting in sig-
nificance levels fairly close to 0.05. This is the case for the combinations A2, B1, Cj

with j = 2, 3 when n = 10, and A1, B1, Cj with j = 4, 5, as well as A2, B1, C3, when
n = 100. The combinations A1, B2, Cj, j = 4, 5, also give acceptable significance levels
when n = 100, despite the conflict reducing effect of the factor A1. This is probably
due to the fact that this effect is relatively small when n = 100, since then σ2/n is
much smaller than τ 2.

Turning to calibrated detection probabilities, we observe that, in accordance with
Proposition 3, for any given splitting the detection probabilities are almost the same
for all combinations of A and B. The splitting C2 appears to be somewhat exceptional
in this respect. The most important feature influencing the calibrated detection proba-
bility seems to be the amount of data used in the estimation of the nuisance parameters
for the different splittings. Comparing these gives the ordering C1, C5, C4, C2, with C5

almost at the level of C1, and with C3 at the level of C4 for n = 10 respectively C1 and
C5 when n = 100.

The combinations (A2, B2, Cj), j = 4, 5 give false warning probabilities close to the
0.05 significance level. No other combination does this both for n = 10 and n = 100.
Among the vertical splittings, C5 obtains a calibrated detection probability practically
at the level of the no splitting alternative C1. The symmetric vertical splitting C4,
which uses less data in the estimation of the nuisance parameters, has a somewhat
lower detection probability. The relative difference is smaller in the case of abundant
data (n = 100 compared to n = 10). However, the C4 splitting has the advantage of
being able to handle all the 6 possible conflicts at the λi-nodes with only 2 MCMC
runs. The splitting C5 needs 2 · 6 = 12 MCMC runs to evaluate all these conflicts.

5.2 Student-t distributed λ

The practical usefulness of our method will be limited, if it only applies to normal
models. We have therefore made an experiment with a non-normal version of our
model. There are of course infinitely many ways for a model to be non normal, and
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there is no obvious canonical choice. However, the normal distribution has very light
tails, and ”real data” tend to have a higher probability for extreme values. We have
therefore made our experiment with a heavier tailed distribution. A natural choice was
the Student-t distribution. We set the degrees of freedom to 3, in order to make the
tails as heavy as possible, while still having a finite variance.

Our original model has normal distributions both for λs and for data given λi. There
is little point in changing the distribution of the data to t-distributions, because the
average of these data will be close to normal anyway, due to the central limit theorem.
We have therefore chosen to modify the distribution of the λs only, setting λi|µ, τ 2 ∼ T3

scaled and located so that E[λi|µ, τ 2] = µ and V ar[λi|µ, τ 2] = τ 2. We somewhat
arbitrarily chose n = 10 for the experiment. This is not likely to be important, as it
made little difference in the normal case.

In our MCMC simulations, we again use the total likelihood directly, and simulate the
λi parameters together with µ, τ 2, σ2, using the same Metropolis Hastings algorithm as
before. This is rather less efficient than our simulations for the normal model, where
we were able to eliminate the λs from the likelihood expression, but still sufficiently
fast for our purpose.

Our main hypothesis is that the α level, the false warning probability, is close to
0.05, for our vertical splitting schemes. We have focused on the central splitting (C4),
because this makes it possible to gather data for all k = 6 λi nodes from the same
experiment, due to symmetry of the model.

Following the procedure of our original experiment, we generated 10.000 data sets
from the model. The estimated α-level was 0.042, with a standard error of 0.0008.
This supports our hypothesis that our method is robust with respect to deviations
from normality.

6 Conclusions

We have shown that although the original procedure of O’Hagan (2003) for evaluat-
ing conflict is unreliable even in a Gaussian setting, our improvements give a method
that can detect problems with a proposed model. Our method is backed up by theo-
retical computations in a non trivial special case. It is particularly encouraging that
our experiments show a false warning probability close to the pre set value of 0.05
for our Gaussian model, and that this appears robust with respect to the normality
assumption.

This work has been based on theoretical analysis and experiments with computer gen-
erated data sets. A computational approach is in most cases the only way of testing a
method’s ability to detect deviations from an assumed model, and to evaluate its false
warning probability when data is in fact generated from the assumed model. However,
the obvious line for future work is to test our method on real data.
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Appendix

Proof of Theorem 1:

Due to the improper prior for µ we have π(µ|y1, σ2, τ 2) = N(ȳ1, (1/l)((σ2/n) + τ 2)),
leading to the following simplifications in (7) E(µ|y1) = ȳ1,

E(τ 2|y1) + var(µ|y1) = E(τ 2|y1) + E(var(µ|σ2, τ 2, y1)) + var(E(µ|σ2, τ 2, y1)) =

E(τ 2|y1) + (1/l)(E(τ 2|y1) + (1/n)E(σ2|y1)) = ((l + 1)/l)E(τ 2|y1) + (1/ln)E(σ2|y1).

This proves (14). Moreover, using (16) it can be shown that the posterior distributions
of (σ2, τ 2) given y1 respectively y2 depend on y1, y2 only through sums of squared
differences to the mean, proving the independence assertion. Finally, the variance
expression (15) follows from the fact that with the splitting (10), Y 1 and Y 2 are
independent under the null model.

Proof of Proposition 2:

With no splitting we get

var0(Ȳ − Ȳk) = var0[((k − 1)/k)((Ȳ1 + . . . + Ȳk−1)/(k − 1))− Ȳk)] =

((k − 1)/k)2((σ2
0/n) + τ 2

0 )((1/(k − 1)) + 1) = ((k − 1)/k)((σ2
0/n) + τ 2

0 ).

On the other hand, for l = k (15) takes the form ((k + 1)/k)(σ2
0/n + τ 2

0 ), and it follows

that under no splitting, c
2,Y ,ipd
λk

∼ ((k − 1)/(k + 1))χ2
1.

To analyse the splitting (8) we express the data in the form

Yk,j = λk + ηk,j, j = n/2 + 1, . . . , n, Yi,j = λi + εi,j, i = 1, . . . , k, j = 1, . . . , n/2,

where the variables εi,j and ηi,j are independent ∼ N(0, σ2
0). With this decomposition,

remembering that n is replaced by n/2 and l is replaced by k, using (15), we can write
the conflict as

[(λk− λ̄)+(η̄− ε̄)]2/[((k+1)/k)(τ 2
0 +(1/(n/2))σ2

0)] = [((k−1)/k))(λk−(1/(k−1))(λ1 +
. . . + λk−1) + (η̄ − ε̄)]2/[((k + 1)/k)(τ 2

0 + (1/(n/2))σ2
0)] =

[[((k − 1)/k))(λk − (1/(k − 1))(λ1 + . . . + λk−1) + (η̄ − ε̄)]2/[((k − 1)/k)τ 2
0 + (2(k +

1)/nk)σ2
0]]× [((k − 1)/k)τ 2

0 + (2(k + 1)/nk)σ2
0]/[((k + 1)/k)(τ 2

0 + (1/(n/2))σ2
0)] ∼

[(k−1)τ 2
0 +((k+1)/(n/2))σ2

0]/[(k+1)(τ 2
0 +(1/(n/2))σ2

0)]χ
2
1. From this the proposition

follows.

15



Proof of Proposition 3:

When σ2 = σ2
0 and τ 2 = τ 2

0 are fixed, the median conflict is Mµ|y1
((µ−ȳ2

k)
2/((1/mk)σ

2
0+

τ 2
0 )), where, as before, mk is either n (no splitting or (10)) or n/2 (the splitting (8)).

Since µ is the only random quantity in the conflict, and since E(µ|y1) = ȳ1, the median
of (µ− ȳ2

k)
2/((1/mk)σ

2
0 + τ 2

0 ) can be found by solving the equation

P (µ > ȳ2
k + v|y1) + P (µ < ȳ2

k − v|y1) = 1/2,

or equivalently, assuming without loss of generality that ȳ1 ≥ ȳ2
k and letting v =

(ȳ1 − ȳ2
k) + z,

P (µ > ȳ1 + z|y1) + P (µ < ȳ2
k − (ȳ1 − ȳ2

k)− z|y1) = 1/2,

Clearly, since P (µ > ȳ1|y1) = 1/2, z must be positive, and the resulting median conflict
is

(ȳ1 + z − ȳ2
k)

2/((1/mk)σ
2
0 + τ 2

0 ).

Hence,

c
2,y1,y2,med
λk

> (ȳ1 − ȳ2
k)

2/((1/mk)σ
2
0 + τ 2

0 ) >

(ȳ1 − ȳ2
k)

2/(((l + 1)/l))((1/mk)σ
2
0 + τ 2

0 )) = c
2,y1,y2,ipd
λk

.

This covers (10). In the case of (8) or no splitting, (l + 1)/l) must be replaced by
(k + 1)/k. This proves the first part, and the corresponding inequalities between the
significance levels are immediate. It is seen that z is a deterministic, monotonically
decreasing function of ȳ1 − ȳ2

k. This implies a deterministic, monotonic relationship

between the median and the ipd conflicts c
i,y1,y2,med
λk

and c
i,y1,y2,ipd
λk

for i = 2 and
also for i = 1. It follows that the calibrated detection probabilities are identical for
a given splitting, i.e. βA1,B1,Cj

= βA1,B2,Cj
= βA2,B1,Cj

= βA2,B2,Cj
for j = 1, ..., 5, as

asserted.
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