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Abstract

The analysis of the Multi point flux approximation (MPFA) method
has so far relied on the possibility of seeing it as a mixed finite element
method for which the convergence is then established. This type of anal-
ysis has been successfully applied to triangles and quadrilaterals, lately
also in the case of rough meshes.

Another well known conservative method, the mimetic finite difference
method, has also traditionally relied on the analogy with a mixed finite
element method to establish convergence. Recently however a new type
of analysis proposed by Brezzi, Lipnikov and Shashkov (2005), permits to
show convergence of the mimetic method on a general polyhedral mesh.

We propose to formulate the MPFA O-method in a mimetic finite
difference framework, in order to extend the proof of convergence to poly-
hedral meshes. The formulation is useful to see the close relationship
between the two different methods and to see how the differences lead to
different strenghts. We pay special attention to the assumption needed for
proving convergence by examining various cases in the section dedicated
to numerical tests.

1 Introduction

Control volume methods are frequently used in reservoir simulation in order to
solve the elliptic pressure equation derived from Darcy’s law. This family of
methods conserve mass locally, which is important since the elliptic equation
is coupled with a hyperbolic conservation law describing the saturation in mul-
tiphase flow. The layers and fractures in the geological domain as well as the
interaction between different phases lead to anisotropies and heterogeneities in
the permeability tensor K, which can be challenging for the method. Another
factor to consider is the complex geometry and its coupling with wells which
lead to the use of grids that can be rough also upon refinement. Finally, if
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the method provides local explicit fluxes we have the possibility of solving the
coupled saturation equation implicitly.

When examining control volume methods it is useful to classify them into
and K−1- and K-methods as is done by Klausen and Russell[18]. In the former
category we find methods that calculate the pressure gradients in terms of the
fluxes, that is ∇p = K−1u, like the mixed finite element method and the mimetic
finite difference method. The K-methods calculate the fluxes in terms of the
pressure gradients, that is u = K∇p, and amongst these methods we find the
multi-point flux approximation (MPFA) methods and the more traditional two-
point flux approximation (TPFA) method.

The MPFA methods are a generalization of the TPFA method which is often
used by the oil industry to discretize the pressure equation. While the MPFA
methods are more costly in terms of computations, they are designed to be exact
for linear pressure fields also when the principal axes of the permeability are not
aligned with the grid. This is not the case for the TPFA method, as shown by
Aavastmark [4]. As the TPFA method, the MPFA methods provide local explicit
fluxes with respect to the pressure. Additionally then, the MPFA methods
perform well even on rough grids and on grids that are not K-orthogonal. The
formulation of the MPFA method usually leads to a non-symmetric method.

The first MPFA methods were presented in 1994 by Aavatsmark, Barkve,
Bøe and Mannseth [5] and by Edwards and Rogers [9]. Subsequent develope-
ments include amongst others [1], [2], [15]. Several different stencils have been
proposed, most notably the generalization of the original O-method, the θ meth-
ods (see for instance [26] and [17]), and the L-method [12]. Numerical tests have
examined convergence and robustness on various types of grids and with a dis-
continuous and/or anisotropic permeability tensor, see for instance the work by
Eigestad og Klausen [10].

Considering the theoretical convergence analysis, initial attempts sought how
to reconstru’ct an interior vector field compatible with the fluxes which would
recast the MPFA method as a mixed finite element method. An example of how
the standard MPFA O-method is recast as a MFE method on triangulations
can be found in [22]. In [19, 23], examining quadrilaterals, an MPFA method
which is derived from a mapping onto an orthogonal reference cell is analyzed.
However, the analysis requires asymptotic h2–parallelogram meshes, or so called
smooth meshes. In a successive paper convergence is proved for the O-method
on rough grids [20]. In both of these papers the analysis is confined to the
2D case. On triangulations symmetric MPFA methods are available without
similar asymptotic mesh-restrictions, and convergence can be showed, cf. [17].
A limitation in the convergence study based on the analogy with mixed finite
elements is thus its limitation to triangles and quadrilaterals and the difficulty
of extending the proof to three dimensional space.

A new proof of convergence of the MPFA O-method on general grids has been
presented recently by Agelas and Masson [14]. Here they show weak convergence
of the gradient, but do not provide rate of convergence of the fluxes. Their
proof is however valid on heterogeneous permeability fields and is not based on
similarities with the MFE methods.
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While the mixed FE method defines a continuous vector velocity field, the
mimetic finite difference method uses a velocity field which is only defined on el-
ement interfaces. Another property in common with the MPFA methods is that
the MFD method is designed to be exact for linear pressure fields. The mimetic
finite difference method has been successfully applied to diffusion problems with
strong heterogeneities, see for instance [25] and [24], but does not in general
allow for the definition of an explicit flux as a function of local pressure values.
The symmetry of the method makes it particularly robust when dealing with
anisotropies. While earlier proves of convergence relied on a comparison with
the MFE method, the paper of Brezzi, Lipnikov and Shashkov [7] provides a
rigorous proof of convergence for the MFD method for general polyhedra, where
the need for element interpolation is eliminated. In their following paper [8] the
proof is also extended to curved interfaces.

In this paper we show that the MPFA O-method in 2D and 3D can be written
as a MFD method by using the quadrature rule presented in [20]. The 2D case
was earlier presented in [11]. This formulation also coincides with the Local
Flux Mimetic Finite difference method as presented by Lipnikov, Shashkov and
Yotov [13], with the exception that the MPFA method uses fluxes and not a
discrete normal velocity field as the unknown. When the interface is plane this
is just a difference in scale. We do not propose to solve the MPFA method in
this manner, but rather use the reformulation to prove convergence and better
understand the working of the method. The non-symmetry of the method means
that the convergence proof presented by Brezzi, Lipnikov and Shashkov for the
MFD method [7] must be slightly modified.

An important aspect is however on what grids and with what anisotropies
the convergence proof is valid, and whether the proof is sharp. We therefore
examine the convergence of the pressure and of the flux using a comparable norm
on a grid where the assumption necessary for the convergence proof is no longer
satisfied. Other numerical tests showing the convergence of the method have not
been carried out as these can be found in other papers (see previous references
and the references therein). We do not consider heterogeneous permeability
fields.

The paper is organized as follows: Paragraf 2 presents the model prob-
lem and setting. Paragraf 3 provides the convergence proof, while paragraf 4
presents numerical tests which provide the basis for discussing the validity of
the convergence proof.

2 Model problem and setting

2.1 Continuous problem

For simplicity of exposition we will limit our discussion to Dirichlet boundary
conditions. Let Ω be a domain in R

d, d ∈ {2, 3}, with polygonal boundary
∂Ω. We consider the following elliptic equation with homogeneous Dirichlet
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boundary conditions:

{

−∇·(K∇p) = f in Ω,

p = 0 on ∂Ω.
(1)

Viewing (1) as the prototype for the pressure equation in porous medium flow,
we can identify p as the pressure, K as the permeability tensor and f as a source
term.

The mixed formulation of (1) is obtained by introducing the unknown Darcy
velocity u = −K∇p as a new variable. We seek (u, p) ∈ H(div,Ω)×L2(Ω) such
that

{

(K−1
u,v)0,Ω − (p,∇·v)0,Ω = 0, ∀v ∈ H(div,Ω),

(∇·u, q)0,Ω = (f, q)0,Ω ∀q ∈ L2(Ω),
(2)

supplied by boundary conditions, where f ∈ L2(Ω) and K is a symmetric,
positive definite field in [W 1

∞(Ω)]2,2 whose smallest eigenvalue is bounded from
below by a positive constant. The subscript 0,Ω denotes the L2-scalar product
on Ω. Similarly, the subscript 0, R indicates the the L2-scalar product and its
associated norm on a subset R ⊂ Ω. For s ≥ 1, a norm (semi-norm) with the
subscript s,R designates the usual norm (semi-norm) in Hs(R).

2.2 Discrete setting and interpolation

Regarding notation, a tilde will indicate an integrated quantity, such as fluxes
or a normal integrated over the corresponding (partial) face. The subscript h
indicates a member of the discrete space, while bolds will indicate a vector. Let
{Ph}h>0 be a shape-regular family of affine polyhedral meshes of the domain
Ω. Let each polyhedron be such that a maximum of d faces meet in a vertex
(node). This is always the case in 2D. A generic element in Ph is denoted
by E, hE denotes the diameter of E and n

E its outward unit normal. Set
h = maxE∈Ph

hE . Let k be the index of the nodes of the polyhedron E, while i
is the index of the polygons which constitute the faces of the polyhedron. The
nodes of the element form the set NE , while the nodes of the face Fi form the
set NE

i . Let x̄
E
i identify the barycenter of the face Fi, x̄

E
e the midpoint of

an edge e, while x̄
E
0 designates the barycenter of the polyhedral element. The

barycenter of the element will also be used as the local origin. We partition the
polyhedron into sub-cells Ek, one for each vertex k of the element, by using the
barycenters x̄

E
i , x̄

E
e , x̄

E
0 and the vertexes k. An external face of a sub-cell will

be a subset of an element face and delimited by: the vertex k, the barycenter
of the face x̄

E
i and the midpoints x̄

E
e1 and x̄

E
e2 where e1 and e2 are the edges of

i that meet in vertex k. We will denote these partial faces by Fik. In 3D, Fik

are quadrilaterals and Ek are hexahedra. In 2D, Fik are line-segments, while
Ek are quadrilaterals. For each couple of faces i1, i2 that share an edge e we
construct a (bilinear) internal face by connecting x̄

E
e , x̄

E
i1, x̄

E
i2 and x̄

E
0 . To each

of the faces Fik (subsets of Fi) we associate the normal ñik which is n
E
i (the

4



Ek

k
ñ
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ñ
k

i+1

x̄
E
0

x̄
E

i

x̄
E

i+1

Nomenclature in 2D

normal of Fi) integrated over the external partial face Fik. An illustration for
the 2D case is found in Figure 2.2, where ñik has the dimension of a length.

We consider the space Xh of discrete pressures that are constant on each
element E, that is,

Xh = {qh ∈ L2(Ω); ∀E ∈ Ph, qh|E ∈ P0}.

where P0 indicates polynomials of degree 0. Our velocity space Vh consists of
discrete velocity vectors defined only on the partial faces Fik (edges in 2D) of
the element and are aligned with the average normal of the partial face. To each
face Fi of the element E we thus associate mi = #NE

i unknowns, where #NE
i

is the number of vertexes of the face i. These unknowns are the (scalar) partial
fluxes ṽE

ik, k∈NE
i . The discrete velocity field is thus defined by its components

that are piecewise constant on a face and equal to

v
E
ik =

1

|Fik|
ṽE

ikn̂
E
ik (3)

where

n̂
E
ik =

ñ
E
ik

|ñE
ik|

=
ñ

E
ik

|Fik|

is the unit average normal vector on the partial face Fik. In addition, conserva-
tion of flux is imposed directly on the partial fluxes. This imposes continuity of
the normal component of the velocity field. As fluxes aligned with the outward
normal are defined as positive, on a partial side shared by two elements the sum
of the corresponding partial fluxes must be equal to zero. We also define the
flux ṽi over the face Fi equal to the sum of the corresponding partial fluxes, i.e.

ṽE
i =

∑

k∈NE
i

ṽE
ik. (4)
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The superscript E will henceforward be omitted if there is no ambiguity in order
to facilitate reading. The partial side fluxes are regrouped into the vector ṽ,
while the restriction of ṽ to the d partial fluxes on the faces Fik that share a
vertex k is indicated by ṽk.

To comply with the mimetic finite difference setting, we define the discrete
divergence of vh ∈ Vh as an operator ∇h : Vh 7→ Xh such that on each E ∈ Ph

∇h·vh|E ≡
1

|E|

∑

Fi∈∂E

ṽE
i =

1

|E|

∑

Fi∈∂E

∑

k∈NE
i

ṽE
ik. (5)

Finally we define the interpolation operator I of any vector-valued function
v ∈ H(div,Ω) so that v

I ∈ Vh and

(vI)ik =
1

|Fik|
(v·nE

i , 1)0,Fik
n̂ik ∀E ∈ Ph, ∀Fik ∈ Fi. (6)

The interpolation thus gives a piece-wise constant velocity vector directed in the
average normal direction of the sub-face Fik, given by the average flux divided
by the area. An important property of this interpolation is that the flux over
each sub-face Fik (and thus over each face Fi ∈ ∂E) is preserved, i.e.

((vI)ik·n
E
i , 1)0,Fik

= (vI)ik·ñik =
1

|Fik|
(v · nE

i , 1)0,Fik
n̂ik·ñik

= (v · nE
i , 1)0,Fik

(7)

It immediately follows that the discrete divergence (defined in (5)) of the inter-
polation function is equal to the L2 projection on E of the divergence of the
continuous function. That is, using (7),

∇h·v
I |E =

1

|E|

∑

Fi∈∂E

∑

k∈NE
i

((vI)ik·n
E
i , 1)0,Fik

=
1

|E|

∑

Fi∈∂E

(v·nE
i , 1)Fi

=
1

|E|
(∇·v, 1)0,E . (8)

In particular, by setting u = −K∇p we see that

∇h·u
I
h =

1

|E|
(∇·(−K∇p), 1)0,E =

1

|E|
(f, 1)0,E , (9)

a result which will be used in the convergence proof.

2.3 Reformulation of MPFA

The mimetic method defines a quadrature for each element with a quadrature
matrix that is in general full, though symmetric. Only one unknown is specified
for each face. The MPFA method is designed to give explicit local fluxes, a
property that requires that the number of unknowns be expanded. However,
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the resulting quadrature Λ matrix is sparse, with non-zero elements only if the
partial fluxes share a vertex. The quadrature over the element E can therefore
be decomposed into the sum of local quadratures with matrices that are of size
d× d, i.e, for uh,vh ∈ Vh:

[uh,vh]E = ṽ
t
hΛE

ũh =
∑

k

ṽ
t
h,kΛkũh,k (10)

where the quadrature matrix ΛE depends on the permeability and the mesh
geometry. We set KE

0 equal to the constant permeability tensor on E such that

‖K −KE
0 ‖L∞(E) . hE ∀E ∈ Ph. (11)

The MPFA quadrature matrix Λk for the O-method is then defined for each
partial volume Ek as

Λk = Rk(KE
0 )−1Q−t

k . (12)

Indicating by i1, i2, i3 the three partial sides that share the vertex k (in 2D any
reference to i3 is simply eliminated), the two matrices Rk and Qk are defined,
as

Rk =
(

x̄
E
i1 − x̄

E
0 , x̄

E
i2 − x̄

E
0 , x̄

E
i3 − x̄

E
0

)t
and Qk =

(

ñ
E
i1, ñ

E
i2, ñ

E
i3

)

. (13)

We define the scalar product on Xh as

(ph, qh)Xh
=

∑

E∈Ph

(ph, qh)0,E ∀ph, qh ∈ Xh

The discrete version of (2) using the MPFA quadrature is then: find (uh, ph) ∈
(Vh, Xh) such that

{

∑

E∈Ph
[uh,vh]E − (ph,∇h·vh)Xh

= 0 ∀vh ∈ Vh,

(∇h·uh, qh)Xh
= (f, qh)0,Ω ∀qh ∈ Xh.

(14)

This formulation coincides with the MPFA formulation presented for instance in
[3, 1, 20]. It is important to note that the most efficient way to solve a problem
using the MPFA method is to use the standard formulation on the dual grid,
which is also how one obtains the local explicit fluxes. By using the quadrature
formulation (14) on the (original) grid one obtains a K−1 method (that is, the
gradient is expressed in terms of the fluxes) with a higher number of unknowns
with respect to a standard mimetic finite difference method. The quadrature
formulation is however useful to analyse the convergence of the method, as we
shall see.

2.4 Energy norm and assumption

We note that while the term [uh,vh]E is a scalar product when the mimetic finite
difference method is used, this is in general not the case for the MPFA method,
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as Λk can be non-symmetric. However, the matrix ΛE can be decomposed into
its symmetric and skew-symmetric parts

ΛE = 1
2 (Λ + Λt) + 1

2 (Λ − Λt) = ΛS + ΛA (15)

and similarly Λk = (ΛS)k + (ΛA)k. We define the following scalar product on
Vh:

(uh,vh)Vh
=

∑

E∈Ph

(uh,vh)ΛS(E); (uh,vh)ΛS(E) = ṽ
t
hΛSũh.

For this scalar product to be valid, Λs must be positive definite. We make
the following assumptions on ΛS : there exist two positive constants c and c̄

independent of hE and E such that ∀vh ∈ Vh and ∀E ∈ Ph

cΛ(E)h
2−d
E

∑

Fi∈∂E

∑

k∈NE
i

ṽ2
ik ≤ (vh,vh)ΛS(E) ≤ c̄Λ(E)h

2−d
E

∑

Fi∈∂E

∑

k∈NE
i

ṽ2
ik. (16)

The validation and implication of this assumption is discussed in the last section.
We also assume that

cΛ(E) = max
k

(

‖(ΛA)‖L∞(Ek)

min(λk)

)

, (17)

is finite, where λk denotes the eigenvalues of (ΛS)k.
We can now define the following norms based on the scalar products:

‖vh‖
2
Vh

= (vh,vh)Vh
, ‖vh‖

2
Vh(E) = (vh,vh)ΛS(E) ∀vh ∈ Vh (18)

‖qh‖
2
Xh

= (qh, qh)Xh
, ‖qh‖

2
Xh(E) = (qh, qh)0,E ∀qh ∈ Xh. (19)

3 Theoretical results

The MPFA quadrature [·, ·]E can be seen as an approximation of the integral
(K−1·, ·)0,E , which, using the divergence theorem on the element E for q ∈
H1(Ω) and v ∈ H(div,Ω) is equal to

(K−1K∇q,v)0,E = −(q,∇·v)0,E + (q,v · nE)0,∂E

= −(q,∇·v)0,E +
∑

Fi∈∂E

|Fi|
−1(q,v · nE

i |Fi|)0,Fi

where we have rewritten the border integral to more easily see the analogy with
the discrete fluxes. A similar relation is thus sought for the MPFA method,
indication that the MPFA quadrature is exact on linear fields.

Lemma 1. For any linear field q the MPFA method satisfies the following

discrete divergence theorem:

[KE
0 ∇q,vh]E = −(q,∇h·vh)0,E +

∑

Fi∈∂E

|Fi|
−1(q, ṽE

i )0,Fi
∀vh ∈ Vh. (20)
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Proof. Observe that the integral (q,∇h·vh)0,E is zero since the divergence is
constant on the element E and the barycenter of the element is the local origin.
Set q = xj with 1 ≤ j ≤ d. The partial fluxes of KE

0 ∇q on the external faces
of Ek are equal to Qt

kK
E
0 ∇q, as KE

0 ∇q is constant and each column of the
matrix Qk corresponds to the integral of the normal vector on Fik. Using the
quadrature of the MPFA method (see (10) and (12)), the left-hand side of (20)
is

[KE
0 ∇q,vh]E =

∑

k

ṽ
t
kΛkQ

t
kK

E
0 ∇xj =

∑

k

ṽ
t
kRk(KE

0 )−1Q−t
k Qt

kK
E
0 ∇xj

=
∑

k

ṽ
t
kRk∇xj . (21)

Regarding the right-hand side of (20) we first note that

|Fi|
−1(q, 1)0,Fi

= (x̄i − x̄
E
0 )|xj

.

We rewrite the border integral as
∑

Fi∈∂E

|Fi|
−1(q, ṽi)0,Fi

=
∑

Fi∈∂E

(
∑

k∈NE
i

ṽE
ik)(x̄i − x̄

E
0 )|xj

=
∑

k

ṽ
t
kRk∇xj (22)

which proves that (22) is equal to (21) for all ṽk, and thus (20) is satisfied for
all vh ∈ Vh.

3.1 Well-posedness of the problem

To show the well-posedness of the problem, we will use the mesh dependent
norms

‖vh‖
2
divh =

∑

E∈Ph

‖vh‖
2
divh,E ‖vh‖

2
divh,E = ‖vh‖

2
Vh(E) + h2

E‖∇h·vh‖
2
0,E

(23)

‖v‖2
1,h =

∑

E∈Ph

‖v‖2
1,h,E ‖v‖2

1,h,E = ‖v‖2
0,E + h2

E |v|
2
1,E (24)

in addition to the norms defined by means of the scalar products, (18) and (19).
The saddle-point problem (14) is well defined when the bilinear form a(vh,wh) =

∑

E∈Ph
[vh,wh]E is continuous and also coercive on the divergence-free sub-

space, while the inf-sup condition

β‖qh‖Xh
≤ sup

vh∈Vh

(∇h·vh, qh)Xh

‖vh‖divh
∀qh ∈ Xh, (25)

must be satisfied with β > 0.
The assumption (17) ensures the continuity of the bilinear form, since ∀E ∈

Ph

[uh,vh]E = (uh,vh)ΛS(E) + ṽ
t
hΛAũh ≤ (1 + cΛ(E))‖uh‖Vh(E)‖vh‖Vh(E) (26)
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with cΛ(E) finite and thus

a(vh,wh) =
∑

E∈Ph

[uh,vh]E ≤ (1 + max
E

cΛ(E))‖uh‖Vh
‖vh‖Vh

.

The coercivity at the subspace

Zh = {vh ∈ Vh : (∇h·vh, qh)Xh
= 0, ∀qh ∈ Xh} (27)

is evident since for any vh ∈ Zh

‖vh‖
2
divh = ‖vh‖

2
Vh

= a(vh,vh). (28)

The inf-sup condition can be proved as in [7] by first showing that for any
qh ∈ Xh there exists vh ∈ Vh such that ∇h·vh = qh. By solving the Laplace
equation with homogeneous Dirichlet boundary conditions and qh as the source
term, that is ∆ψ = qh, and setting v ∈ H(div,Ω) = ∇ψ, the stability of the
solution ensures that

‖v‖1,h . (1 + h)‖q‖Xh
. (29)

Setting vh = v
I using the interpolation operator defined in (6) gives the sought

for solution since

∇h·vh|E = ∇h·v
I |E =

1

|E|
(∇·v, 1)0,E =

1

|E|
(qh, 1)0,E = qh|E

Then the inf-sup condition (25) reads

sup
(∇h·vh, qh)Xh

‖vh‖divh
= sup

‖qh‖2
Xh

‖vh‖divh
≥ β‖qh‖Xh

∀qh ∈ Xh,

that is

‖qh‖Xh
≥ β‖vh‖divh ∀qh ∈ Xh. (30)

In Lemma 2 we prove that

‖vh‖divh . ‖v‖1,h

which together with (29) gives

‖vh‖divh . (1 + h)‖q‖Xh
(31)

which is the necessary inf-sup condition (30).
In the following Lemma needed to prove the inf-sup condition we will make

use of the trace inequality valid on sufficiently shape regular domains:

‖vE‖
2
0,Fi

≤ cF (h−1
E ‖vE‖

2
0,E) + hE |vE |21,E (32)

and the following hypothesis on mesh conformity:

cf1h
d−1
E ≤ |F | ≤ cf2h

d−1
E . (33)
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Lemma 2. There exists a positive constant β such that ∀v ∈ [H1(E)]d we have

β‖vI‖divh ≤ ‖v‖1,h (34)

Proof. The assumption (16) applied to the interpolation of v states that

(vI ,vI)ΛS(E) ≤ c̄Λ(E)h
2−d
E

∑

Fi∈∂E

∑

k∈NE
i

(ṽI
ik)2. (35)

Using the interpolation property (7), and the assumption on the mesh (33),
gives

∑

k∈NE
i

(ṽI
ik)2 =

∑

k∈NE
i

(v·nEi, 1)20,Fik
≤

∑

k∈NE
i

‖v‖2
0,Fik

|Fik|

≤
∑

k∈NE
i

‖v‖2
0,Fik

∑

k∈NE
i

|Fik| ≤ (‖v‖2
0,Fi

)2|Fi|

≤ cf2h
d−1
E ‖v‖2

0,Fi

Inserting this result into (35) and using the interpolation result (32) we obtain

(vI ,vI)ΛS(E) ≤ c̄Λ(E)hE

∑

Fi∈∂E

cf2‖v‖
2
0,Fi

≤ c̄Λ(E)hE

∑

Fi∈∂E

cf2cF (h−1
E ‖v‖2

0,E + hE |v|
2
1,E)

≤ c̄Λ(E)

∑

Fi∈∂E

cf2cF (‖v‖2
0,E + h2

E |v|
2
1,E)

≤ β̃E‖v‖
2
1,h,E (36)

with

β̃E = c̄Λ(E)(
∑

Fi∈∂E

cf2cF )

Furthermore, since

(∇h·v
I , 1)0,E = (∇·v, 1)0,E = (Π0(∇·v), 1)0,E

we have

‖∇h·v
I‖2

0,E = ‖Π0(∇·v)‖2
0,E ≤ ‖∇·v‖2

0,E ≤ d|v|21,E (37)

Combining (36) and (37) we obtain

‖vI‖2
divh,E ≤ (β̃E + d)‖v‖2

1,h,E

and thus (34), with

β = (
∑

E∈Ph

(β̃E + d))−
1
2
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3.2 Convergence

Before presenting the convergence result, we look at some approximation prop-
erties and results for the Π1 projection on E, i.e. the L2-projection of degree 1
on E. We will make use of the poincaré type inequalities

‖p− Π1p‖0,E ≤ cph
2
E‖p‖2,E. (38)

‖∇(p− Π1p)‖0,E ≤ cphE‖p‖2,E. (39)

and apply the trace inequality (32) so that

‖p− Π1p‖
2
0,Fi

≤ cF (h−1
E ‖p− Π1p‖

2
0,E + hE |p− Π1p|

2
1,E)

≤ cF cph
3
E‖p‖

2
2,E. (40)

We will also use

‖∇(Π1p)‖
2
0,E ≤ cph

2
E‖Π1p‖

2
2,E (41)

balid on shape regular domains. From (39) and the definition of the mesh-
dependent norms (23) and (24), we then obtain

‖∇(p− Π1p)‖1,h,E ≤ (‖∇(p− Π1p)‖
2
0,E + h2

E |∇(p− Π1p)|
2
1,E)

1
2

≤ (1 + c2p)
1
2hE‖p‖2,E. (42)

Theorem 3. Let (p,U) be the solution of the continuous problem (2), and

let (ph,uh) be the solution of the discrete problem (14). Let u
I ∈ Vh be the

interpolant of U defined by (6). Then, if p ∈ H2(Ω),

‖uI − uh‖Vh
. h‖p‖H2(Ω).

Proof. We note that ∀uh ∈ Vh,

‖uh‖
2
Vh

=
∑

E∈Ph

(uh,uh)ΛS(E) =
∑

E∈Ph

[uh,uh]E .

Then, using the discrete problem (14),

‖uI − uh‖
2
Vh

=
∑

E∈Ph

[uI − uh,u
I − uh]E =

∑

E∈Ph

[uI ,uI − uh]E −
∑

E∈Ph

[uh,u
I − uh]E

=
∑

E∈Ph

[uI ,uI − uh]E − (ph,∇h·(u
I − uh))Xh

where the second term on the right-hand side is zero due to (9) and (14). Adding
and subtracting equal terms we obtain

12



‖uI − uh‖
2
Vh

=
∑

E∈Ph

[uI ,uI − uh]E

=
∑

E∈Ph

[(−K∇p)I + (K∇Π1p)
I
,uI − uh]E

+
∑

E∈Ph

[(−K∇Π1p)
I

+ (KE
0 ∇Π1p)

I
,uI − uh]E +

∑

E∈Ph

[(−KE
0 ∇Π1p)

I
,uI − uh]E

= I1 + I2 + I3 (43)

For the first term we use (26) to obtain

I1 =
∑

E∈Ph

[(−K∇p)I + (K∇Π1p)
I
,uI − uh]E

≤
∑

E∈Ph

(1 + cΛ(E))‖(K∇(p− Π1p))
I‖Vh(E)‖u

I − uh‖Vh(E).

From (36) we have

‖(K∇(p− Π1p))
I‖Vh(E) ≤ β̃

1
2
E ‖K∇(p− Π1p)‖1,h,E

Using the approximation result (42) we then obtain

‖(K∇(p− Π1p))
I‖Vh(E) ≤ β̃

1
2
E‖K‖L∞(E)(1 + c2p)

1
2hE‖p‖2,E

and thus

I1 .
∑

E∈Ph

hE‖p‖2,E‖u
I − uh‖Vh(E). (44)

For the second term we first use (26) and the assumption on the permeability
tensor (11) to obtain

I2 =
∑

E∈Ph

[((−K +KE
0 )∇Π1p)

I
,uI − uh]E

≤
∑

E∈Ph

‖K −KE
0 ‖L∞(E)(1 + cΛ(E))‖(∇Π1p)

I‖Vh(E)‖u
I − uh‖Vh(E)

.
∑

E∈Ph

hE‖(∇Π1p)
I‖Vh(E)‖u

I − uh‖Vh(E).

From (36) and adding and subtracting the function p we have

‖(∇Π1p)
I‖Vh(E) ≤ β̃

1
2
E ‖∇Π1p‖1,h,E ≤ β̃

1
2
E (‖∇p‖1,h,E + ‖∇(p− Π1p)‖1,h,E)

≤ β̃
1
2
E (1 + cphE)‖∇p‖0,E (45)
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Applying (42), the second term of (43) is controlled by

I2 .
∑

E∈Ph

hE(1 + cphE)‖p‖2,E‖u
I − uh‖Vh(E). (46)

For the third term we note that (KE
0 ∇Π1p)

I
= (KE

0 ∇Π1p) and apply the
discrete divergence theorem (20) to obtain

I3 =
∑

E∈Ph

[(−KE
0 ∇Π1p)

I ,uI − uh]E = −
∑

E∈Ph

[KE
0 ∇Π1p,u

I − uh]E

= −
∑

E∈Ph

∑

Fi∈∂E

|Fi|
−1

(

Π1p,
∑

k∈NE
i

(ũIik − ũh,ik)
)

0,Fi

= −
∑

E∈Ph

∑

Fi∈∂E

|Fi|
−1(Π1p, 1)0,Fi

∑

k∈NE
i

(ũIik − ũh,ik)

where ũIik and ũh,ik indicate the partial side fluxes of respectively the interpo-
lated exact solution and the approximated solution. Note that on a partial side
shared by two elements the sum of the corresponding partial fluxes is equal to
zero. Since we are applying homogeneous boundary conditions and the exact
pressure solution p is continuous over an interface we obtain

I3 =
∑

E∈Ph

∑

Fi∈∂E

|Fi|
−1(p− Π1p, 1)0,Fi

∑

k∈NE
i

(ũIik − ũh,ik)

≤
∑

E∈Ph

∑

Fi∈∂E

|Fi|
−

1
2 ‖p− Π1p‖0,Fi

∑

k∈NE
i

|ũIik − ũh,ik|

Noting that

∑

k∈NE
i

|ũIik − ũh,ik| ≤ m
1
2
i





∑

k∈NE
i

|ũIik − ũh,ik|
2





1
2

we then apply the trace inequality (40), the mesh conformity (33) and assump-
tion (16) to obtain

.
∑

E∈Ph

hE‖p‖2,E‖u
I − uh‖Vh(E).

Summing I1, I2 and I3 and simplifying we obtain Theorem 3.

Theorem 4. Let (p,U) be the solution of the continuous problem (2), and let

(ph,uh) be the solution of the discrete problem (14). Let Π0p indicate the L2

projection of p on each element E. Then, if p ∈ H2(Ω),

‖ph − Π0p‖Xh
. h(‖p‖2,Ω + ‖f‖1,Ω)

14



Proof. The proof is based on the well-posedness of the dual problem

{

−∇·(K∇ψ) = Π0p− ph in Ω

ψ = 0 on ∂Ω.
(47)

which for convex domains implies the stability result

‖ψ‖2,Ω . ‖Π0p− ph‖Xh
. (48)

We first observe that ∇·(K∇ψ) is a constant on each element E, so that

(p− Π0p,∇·(K∇ψ))0,E = 0. (49)

Using the dual problem (47) in its weak form and subtracting the zero term
(49), we obtain

‖ph − Π0p‖
2
Xh

= (ph − Π0p,∇·(K∇ψ))Xh
−

∑

E∈Ph

(p− Π0p,∇·(K∇ψ))0,E

= (ph,∇h·(K∇ψ)
I
)Xh

− (p,∇·(K∇ψ))0,Ω (50)

where we may use property (8) of the interpolation operator since ph is constant
over each element.

We now use the MPFA formulation (14) of the problem, and integrate by
parts the second term on the right hand side of (50)

‖ph − Π0p‖
2
Xh

=
∑

E∈Ph

[uh, (K∇ψ)
I
]E + (K∇p,∇ψ)0,Ω

=
∑

E∈Ph

[uh, (K∇ψ)I ]E + (f, ψ)0,Ω.

Adding and subtracting equal terms, we split the equation into four terms

‖ph − Π0p‖
2
Xh

=
∑

E∈Ph

[uh, (K∇(ψ − Π1ψ))I ]E +
∑

E∈Ph

[uh, ((K −KE
0 )∇(Π1ψ))

I
]E

+
∑

E∈Ph

[uh,K
E
0 ∇(Π1ψ)

I
]E + (f, ψ)0,Ω = I1 + I2 + I3 + I4 (51)

which we examine separately, as in the proof of Theorem 3.
For the first term on the right-hand side of (51) we use (26), (36) and (42)

to obtain

I1 =
∑

E∈Ph

[uh, (K∇(ψ − Π1ψ))I ]E ≤
∑

E∈Ph

(1 + cΛ(E))‖K‖L∞(E)‖∇(ψ − Π1ψ)I‖Vh(E)‖uh‖Vh(E)

.
∑

E∈Ph

hE‖ψ‖2,E‖uh‖Vh(E)

15



Proceeding as in the proof of Theorem 3, using (26), (11) and (45), the second
term is controlled by

I2 =
∑

E∈Ph

[uh, ((K −KE
0 )∇(Π1ψ))

I
]E .

∑

E∈Ph

hE‖∇(Π1ψ)
I‖VhE‖uh‖Vh(E)

.
∑

E∈Ph

hE(1 + cPhE)‖ψ‖2,E‖uh‖Vh(E)

For the third term we can no longer use the discrete divergence theorem as
the quadrature is not symmetric. However, we can use (26) to obtain

I3 =
∑

E∈Ph

[uh, (K
E
0 ∇(Π1(ψ)))

I
]E =

∑

E∈Ph

[uh,K
E
0 ∇(Π1(ψ)]E

≤
∑

E∈Ph

(1 + cΛ(E))‖K
E
0 ‖L∞(E)‖uh‖Vh(E)‖∇(Π1(ψ))‖Vh(E).

Applying the assumption (16) and the trace inequality (32) leads to

‖∇(Π1(ψ))‖2
Vh(E) ≤ c̄Λ(E)

∑

Fi∈∂E

cf2cF ‖∇(Π1(ψ))‖2
0,E

We will now make use of (41). We also note that

‖Π1ψ‖
2
0,E = (p,Π1ψ)0,E ≤ ‖ψ‖0,E‖Π1ψ‖0,E.

since by definition for all q linear on E we have (Π1ψ, q)0,E = (ψ, q)0,E . We
may therefore conclude that

‖∇(Π1(ψ))‖2
Vh(E) ≤ c̄Λ(E)(

∑

Fi∈∂E

cf2cF )cPh
2‖ψ‖2

0,E

and thus

I3 .
∑

E∈Ph

hE‖ψ‖2,E‖uh‖Vh(E).

For the last term, noting that (1,Π1ψ)0,E = 0 and using (38), we obtain

I4 = (f, ψ)0,Ω = (f, ψ − Π1ψ)0,Ω + (f − Π0f,Π1ψ)

≤
∑

E∈Ph

h2
E‖f‖0,E‖ψ‖2,E +

∑

E∈Ph

cphE‖f‖1,E‖ψ‖2,E.

From the triangle inequality, Theorem 3 and (36)

‖uh‖Vh
≤ ‖uI − uh‖Vh

+ ‖uI‖Vh
. h‖p‖H2(Ω) + ‖K∇p‖1,h

. h‖p‖H2(Ω) + ‖K∇p‖0,Ω + hE |K∇p|1,Ω . ‖p‖H2(Ω)

Summing the various terms and simplifying (51) we then obtain the final result.
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4 Numerical examples

This section contains some numerical examples and a discussion of the conver-
gence behavior with particular emphasis on the influence of the limitation given
in the analysis. A fundamental part of the convergence analysis in the previous
section is the assumption regarding the symmetric matrix ΛS , namely (16), re-
quired to establish coercivity and convergence of the method. This condition is
linked to the definition of the MPFA dual mesh and the permeability tensor K.
To fulfill the lower bound of (16), the eigenvalues of (Λs)k, cf. eq (12), for all k
of E and all E ∈ Ph have to be strictly positive. To ensure this, the determinant
of ΛS must be positive, that is det(ΛS) > λ0 > 0.

4.1 Polyhedral 2D mesh

In 2D it can easily be shown by dividing ΛE into a symmetric and a skew-
symmetric part, cf. (15), that

detΛE = det(ΛS) + det(ΛA).

Furthermore we note that

detΛk = detRk det(KE
0 )−1 detQ−t

k =
detRk

detQk

det(KE
0 )−1.

The determinant of detRk can be visualised as the area spanned by the two
vectors x̄

E
i1 − x̄

E
0 and x̄

E
i2 − x̄

E
0 . Similarly, detQk is the area spanned by ñi1 and

ñi2. We denote the respective areas AR and AQ. On sub-cell k we then have

det((Λs)k) =
1

detKE
0

AR

AQ

−
1

4A2
Q

((x̄E
i1 − x̄

E
0 )t(KE

0 )−1(xE
k − x̄

E
i1) − (x̄E

i2 − x̄
E
0 )t(KE

0 )−1(xE
k − x̄

E
i2))

2

where xk indicates the coordinate of the node k, and xk− x̄ij is a vector perpen-
dicular to ñij . For K-orthogonal meshes the last term vanishes, the method is
symmetric and the lower bound is always fulfilled. For other quadrilateral and
general polyhedral meshes the criteria in equation (16) will be the dominant
mesh restrictions. For triangulations this restriction can be avoided, since there
exists a symmetric MPFA with satisfactory qualities, as shown by Klausen in
[17].

In our first test we look at a uniform pentagram with edge length equal to h.
The pentagram is deformed by pulling two vertices uniformly out to the right,
as indicated in Figure 1. The two vertices marked with a cross are fixed, while
the last vertex is kept at the the axis of symmetry. For K = I the criteria (16)
breaks down for at least one subcell when we have pulled the vertices out by
2.6h. Here h denotes the original edge length. This indicates that the allowed
deformation is unfortunately quite small.
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Figure 1: The cell is fixed in vertices marked with a cross, while the vertices

marked with full circles are pulled out until the criteria (16) is violated.

1 2

4 3

Figure 2: The vertex marked with a full circle are pulled out in all direction of

the adjacent plane.

For our next test regarding the limitation of criteria (16) we look at a unit
square with the upper right vertex placed at the origin of the plane. This
vertex is then displaced in the directions contained in a half plane, as indicated
in Figure 2. We set the permeability K = I, and number the subcells from 1
through 4 as shown. For each subcell we investigate the deformation needed
for one of the eigenvalues of (ΛS)k to approach zero. The result is presented
in Figure 3. Each line indicates the deformation allowed in the horizontal and
vertical directions before the criteria (16) breaks down. To the left of the line
the criteria holds. Note that for subcell 3, the criteria (16) is satisfied for the
displacements shown.

Finally we repeat the previous test, but now we use an anisotropic perme-
ability tensor whose principal axes are aligned with the x- and the y-direction,
namely K = diag(β, 1) with β ∈ {1, 10, 100, 500}. For each value of β the line
in the half-plane for which the criteria (16) breaks down for at least one sub-
cell is drawn. The result is shown in Figure 4, where the area containing the
origin indicates the deformations permitted. We see that as the diffusion in the
x-direction is increased (increasing β), the deformation permitted in the same
direction is increased as well, while the deformation in the y-direction becomes
more limited. This indicates the reason why the MPFA method is more sensi-
tive regarding strong anisotropies compared with the mimetic finite difference
method.

4.2 Hexahedral 3D mesh

We have tested different deformations of hexahedral 3D cells, starting from
a uniform h-sized cube and pulling out one, two, or more vertices. We note
limitations similar to the 2D situation, and the criteria mainly holds until we
have stretched the edges by a factor between 2 and 4 with K = I. One specific
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Figure 3: Limitations of the criteria (16) regarding the deformation of a square

when the upper right vertex, originally placed in the origin of a plane, is displaced

in directions as illustrated in Figure 2.

example is the saddle-roof box, shown in Figure 5. Starting with the uniform
box of size h×h×h we deform the upper face. Two vertices situated opposite
each other on the same face are pulled upwards creating a bilinear saddle surface
on top of the box. The criteria (16) breaks down for at least one of the sub-cells
when the original h-sized edge are stretched to 3.45h. Another example is the
truncated pyramid, where the upper square is of size h× h while the bottom is
stretch out to an αh × αh - square, cf. Figure 5. In this case the criteria (16)
breaks down for at least one of the sub-cells when α reach 2.75.

4.3 Convergence examples

Since ΛE depends on both the cell shape and K (see (12)), the criteria (16) is
put to the test both by deforming the mesh and by varying the permeability.
In Table 4.3 and 4.3 we show a numerical example in 2D with K = diag(β, 1)
where β is increased from 1 to 1000. The mesh is shown in Figure 6, where
refinement is a replication of the shown 4×4 mesh. The data is chosen so that
p(x, y) = cos(2πx) cos(2πy) is the exact solution on the domain which is the
unit square. To test the behaviour of the flux calculated by the MPFA-method
when ΛS has negative eigenvalues we must modify the norm. In Table 4.3 the
convergence of the flux is measured in the following norm:

‖vh‖
2
Vh∗

=
∑

E∈Ph

(vh,vh)Vh∗(E), (vh,vh)Vh∗(E) = β−1(vh,vh)0,E ∀vh ∈ Vh.
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Figure 4: Limitation of the criteria (16) regarding the deformation of a square
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Figure 5: The cells are stretched from a uniform box, to a saddle roof box and

a truncated pyramid, until the criteria (16) is no longer fulfilled.

For the error in the pressure we use the Xh-norm as previously defined. The
convergence results and the percentage of sub-cells for which criteria (16) breaks
down are found in Table 4.3 for the pressure and Table 4.3 for the flux. In the
chosen norms the flux converges with optimal first order, while the pressure
converges with second order. It seems then that the criteria (16) is not sharp
in the sense that convergence can be obtained in comparable norms when the
criteria is not fulfilled.
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