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Abstract

In this paper we develop a model for electricity spot price dynamics. The
spot price is assumed to follow an exponential Ornstein-Uhlenbeck (OU) pro-
cess with an added compound Poisson process, therefore the model allows for
mean-reversion and possible jumps. A sinusoidal factor is also introduced to
capture the seasonality component of prices. The mean-reverting level, speed
of adjustment and volatility of the OU process as well as the mean and variance
of the normally distributed jump sizes of the compound Poisson process are
all modulated by a hidden Markov chain in discrete time. The parameters are
able to switch between different economic regimes representing various levels
of supply and demand. Through the application of reference probability tech-
nique, adaptive filters are derived, which in turn, provide optimal estimates
for the state of the Markov chain and related quantities of the observation
process. The EM algorithm is applied to find optimal estimates of the model
parameters in terms of the recursive filters. Since the parameters are updated
everytime a new information is available, the model is self-calibrating. We
implement the model on a deseasonalized series of daily spot electricity prices
from the Nordic exchange Nord Pool. On the basis of one-step ahead fore-
casts, we found that the model is able to capture the stylised features of Nord
Pool spot prices.

Keywords: spot electricity prices, hidden Markov model, optimal parameter
estimation, EM-algorithm, Ornstein-Uhlenbeck process, jump process

∗CARISMA, School of Information Systems, Computing and Mathematics, Brunel University,
Uxbridge, United Kingdom

†CMA, Centre of Mathematics for Applications, University of Oslo, Oslo, Norway
‡Department of Statistical and Actuarial Sciences, 2nd Floor Western Science Centre, University

of Western Ontario, London, Canada

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30796941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Over the last two decades, electricity markets in many countries have become dereg-

ulated where spot and futures contracts are open for trade. Compared to standard

financial products, electricity spot prices show distinctive stochastic properties which

call for new models.

Electricity is a non-storable commodity, which leads to a strong dependency on

supply and demand and therefore to high seasonal differences in prices. This sea-

sonality shows daily, weekly and annual patterns. Additional stylised features of

electricity prices include mean-reversion and frequently occurring spikes. These

stochastic properties have led to different approaches for modeling electricity prices.

Lucia and Schwartz [16] proposed a two-factor mean-reverting model for spot prices

with a deterministic component for the seasonal pattern. Another approach was

taken by Deng [8], Benth et al. [1] and Cartea and Figueroa [3], where the charac-

teristics of spot prices are captured with mean-reversion dynamics driven by Lévy

(jump) processes. A jump-diffusion model for hourly spot prices was proposed by

Culot et al. [5]. The calibration and parameter estimation in these models, however,

can be problematic due to limited historical data and a large number of parame-

ters. One of the main motivations in many of these studies is to derive the futures

price dynamics. Instead of modeling the spot prices for this purpose, Clewlow and

Strickland [4], Benth and Koekebakker [2], and Kiesel, Schindlmayer and Börger

[15] choose to model the entire forward curve directly to price forward and futures

contracts.

A study by de Jong [6] found that spikes in spot electricity prices can be better cap-

tured by regime-switching models than by a Poisson jump model. Regime-switching

models for electricity prices were developed by Deng [8] and De Jong and Huisman

[7]. Most regime-switching models distinguish between two regimes, one ‘normal’

and one ‘jump’ regime. Huisman and Mahieu [14] introduced a third regime for

the change from ‘jump’ to ‘normal’ regime. Elliott, Sick and Stein [11] introduced

a Markov model to electricity spot prices. Here, the number of generators on-line

are represented by a Markov process in discrete time and parameters are estimated
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with the EM-algorithm. A more general version of regime-switching models are hid-

den Markov models (HMM). Generally, an HMM is a double-embedded stochastic

process with one observation and one underlying process defined by its number of

states and transition probabilities. The concept of HMM’s was applied to electricity

markets by Yu and Sheblé [19] describing the structure of the electricity market

with an HMM, and by González, San Roque and Garćıa-González [12], who use an

Input/Output HMM for analyzing electricity prices. In this paper we develop an

HMM for forecasting electricity spot prices. We assume that the electricity spot

price is only a partial observation. The underlying economic state, which represents

the current state of supply and demand, is hidden in this observation process. The

economic state is modeled by a Markov chain in discrete time, which governs the

parameters of our model.

One main problem in forecasting prices on the electricity market is the estimation

of parameters since daily prices can be very volatile and jumps can occur through-

out the year. We develop a mean-reverting model with jumps, where the parame-

ters evolve according to the underlying discrete time Markov chain. Following the

method by Elliott [9] for estimating parameters in an HMM discrete time setting,

we are able to derive recursive parameter estimates. The contribution of this paper

is two-fold: the proposed model is able to capture the main features that charac-

terize electricity spot prices (seasonality, mean-reversion and jumps) and recursive

estimates for the model parameters are derived through adaptive filters for the state

of the Markov chain and related processes. One step-ahead spot price forecasts are

generated, which follow the actual data closely.

The paper is organized as follows: in Section 2 we describe the model framework and

the underlying stochastic process. Section 3 details the derivation of the filters for

the state of the Markov chain and related quantities through a change of probability

measure. In section 4 these adaptive filters are used to find optimal estimates for

the model parameters. These recursive formulas are derived by employing the EM

algorithm and relating the parameters in the model to the processes of the Markov

chain. The implementation of this model is shown in section 5. The data set con-

sists of daily spot prices from the Nordic power exchange Nord Pool. Before the
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filters are applied, the actual data set is deseasonalized. We found that a 3-state

Markov chain produces one-step ahead forecasts with small mean square prediction

errors. Our model therefore is capable of capturing the salient features of electricity

spot price dynamics in the market. The last section presents some conclusions and

remarks.

2 Model description

The spot price model for electricity is composed of two components: one determin-

istic function D(k) to capture seasonal trends, and an Ornstein-Uhlenbeck process

X with Markov-modulated parameters to model the mean-reversion of electricity

prices observed in the market. The random price fluctuations are modeled by a

Brownian motion W to include the ‘normal’ variations when the market is quiet

and a jump process Y for the spikes. The observation process is defined on the

underlying probability space (Ω,F , P ). Throughout the entire discussion we denote

all vectors by bold small letters and all matrices by bold capitalised letters.

Let zk be a homogeneous Markov chain with finite state in discrete time (k = 0, 1, ...)

and state space {e1, e2, ..., en}, the canonical basis of Rn. The different states of

the Markov chain represent regimes with higher and lower electricity demand. Let

F0
k = σ{z0, . . . , zk} be the σ−field generated by z0, . . . , zk, and F z be the complete

filtration generated by F 0
k . Under the probability measure P the Markov chain z has

the dynamics zk+1 = Πzk+vk+1, where Π denotes the transition probability matrix

of the Markov chain and vk+1 is a martingale increment with E[vk+1 | Fk] = 0. The

spot price dynamics is given by

S(k) = D(k) exp(Xk) (1)

We model the seasonal component D(k) with a sinusoidal function with positive

trend. The sinusoidal function includes a yearly and a weekly component, since the

electricity demand shows seasonal patterns for colder and warmer times of the year

4



as well as for weekend- and weekday-demand. The seasonal component is given by

D(k) = ak + s1 sin
( 2π

365
k
)

+ s2 cos
( 2π

365
k
)

+s3 sin
(2π

7
k
)

+ s4 cos
(2π

7
k
)

+ c (2)

for some constants a, si and c to be determined. The stochastic processes Xt has

the following dynamics

dXt = α(zt)(β(zt)−Xt)dt+ σ(zt) dWt + dYt (3)

where the level β and speed of mean-reversion α and the volatility σ are governed

by the Markov chain zt. The usual Euclidean scalar product is denoted by 〈·, ·〉 with
α(zt) = 〈α, zt〉, β(zt) = 〈β, zt〉 and σ(zt) = 〈σ, zt〉. The jump process Yt is given by

dYt = JdNt, (4)

where Nt is a Poisson process with constant intensity λ and jump sizes Ji. The

jump sizes Ji are dependent on the Markov chain zt meaning that different demand

regimes have different jump size distributions. The conditional distribution of the

jump sizes is Ji|zt ∼ N(µJ(zt), σ
2
J(zt)). The intensity λ does not change when a

switching of regimes occurs. The seasonality of jump intensity is still taken into

account, since the jump size is evolving according to the state of the Markov chain.

The filtration generated by the observation process is defined by FX = σ(X1, X2, ...)

and includes the filtration generated by the Brownian motion FW and the filtration

generated by the jump process component FY . The global filtration is defined by

F = FX ∨ Fz .

3 Filtering

In this section we derive adaptive filters for processes of the Markov chain z. We use

a change of measure technique, so we are able to derive recursive filters under a new

ideal measure, where the calculations are easier.
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3.1 Change of measure

We define our observation process as the logarithm of the deseasonalized electricity

spot prices, which is therefore given by

Xt = ln
S(t)

D(t)

= Xse
−α(zs)(t−s) + β(zs)(1− e−α(zs)(t−s))

+σ(zs)e
−α(zs)t

∫ t

s

eα(zs)u dWu +
Nt∑

m=Ns+1

e−α(zs)(t−τm)Jm(zt). (5)

The parameters α, β, σ and the jump-size Jt of the compound Poisson process com-

ponent are governed by a Markov chain zt in discrete time. The random time of

occurrence of the m−th jump is denoted by τm. For deriving filters of related pro-

cesses of the Markov chain z and for finding optimal parameter estimates we work

under a reference probability measure P̄ . To do this we need a discrete version of

our observation process. Discretizing equation (5) leads to

Xk+1 = Xke
−α(zk)∆k + β(zk)(1− e−α(zk)∆k) + σ(zk)

√

1− e−2α(zk)∆k

2α(zk)
hk+1

+

N∆k∑

m=1

e−α(zk)(∆k−τm)Jm(zk) (6)

where zk is a discrete time Markov chain and {hk+1} is a sequence of IID standard

normal random variables. Note the following connection for the discretization of the

jump-term:

∫ k

l

e−α(zk)(k−u)dYu =

Nk+1∑

m=Nk+1

e−α(zk)(k−τm)Jm(zk) =
︸︷︷︸

in distr.

e−α(zk)(k−l)

Nk−l∑

m=1

eα(zk)τmJm(zk),

where τm are the jumping times in the interval (0, k − l].

We calculate our filters under a reference probability measure P̄ . Under this measure

z is still a Markov chain with dynamics zk+1 = Πzk + vk+1 and Xk are independent

observations. To perform a change of measure we examine the discretized obser-

vation process. Note that we assume that the change of measure does not affect
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the compound Poisson process component of the observation process. As in Mer-

ton [17] the jump size and intensity have the same dynamics under the new measure.

We construct a reference probability measure P̄ by applying a discrete time ver-

sion of Girsanov’s theorem. Setting the Radon-Nikodym derivative to dP̄
dP
|Fk= Λk =

∏k

l=1 λl we define

λl : = exp
[1

d

[
Xle

−α(zl)∆l + β(zl)(1− e−α(zl)∆l) +

N∆l∑

m=1

e−α(zl)(∆l−τm)Jm(zl)
]
hl+1

− 1

2d2
[
Xle

−α(zl)∆l + β(zl)(1− e−α(zl)∆l) +

N∆l∑

m=1

e−α(zl)(∆l−τm)Jm(zl)
]2
]

(7)

with d = σ(zl)
√

1−e−2α(zl)∆l

2α(zl)
. The process {Λl} is a P -almost surely positive mar-

tingale with filtration F , EP [Λ] = 1. Under P, z is a Markov chain with the

same transition matrix Π. Following Elliott, Aggoun and Moore (1995) we back

out the real world measure from the reference probability measure by defining
dP
dP̄

∣
∣
Fk
= Λ̄k =

∏k

l=1 λ̄l with

λ̄l : = exp
[

−1

d

[
Xle

−α(zl)∆l + β(zl)(1− e−α(zl)∆l) +

N∆l∑

m=1

e−α(zl)(∆l−τm)Jm(zl)
]Xl+1

d

− 1

2d2
[
Xle

−α(zl)∆l + β(zl)(1− e−α(zl)∆l) +

N∆l∑

m=1

e−α(zl)τmJm(zl)
]2
]

(8)

where Λ̄0 = 1, {λ̄l : λ̄ ∈ N+} and {Λ̄l : l ∈ N}. The process {Λ̄l} is a F -martingale

under P and Λ̄Λ = 1.

Therefore we found an equivalent probability measure which is used in the following

to calculate adaptive filters for Markov chain processes. With Bayes theorem, a filter

for any adapted process H is given by

E
[
Hk | FX

k

]
=

E
[
HkΛ̄k | FX

k

]

E
[
Λ̄k | FX

k

] .

Write η(Hk) := E
[
HkΛ̄k | FX

k

]
, so that E

[
Hk | FX

k

]
= η(Hk)

η(1)
. We can derive

recursive filters for the term η(Hk−1zk−1). This conditional expectation is related to
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the desired term η(Hk−1) through
〈
1, η(Hkzk)

〉
= η(Hk). Therefore

E
[
Hk | FX

k

]
=

〈
1, η(Hkzk)

〉

〈
1, η(zk)

〉 .

We derive filters for the state space process of the Markov chain, the jump process

G, the occupation time process O and for auxiliary processes T. These filters are

calculated according to Elliott (1994). To calculate recursive estimates we define Γi

according to the new measure

Γi = exp
[
− 1

d2i
[Xle

−αi∆l + βi(1− e−αi)∆l) +

N∆l∑

m=1

e−αi(∆l−τm)J i
m]Xl+1

− 1

2d2i
[Xle

−αi∆l + βi(1− e−αi∆l) +

N∆l∑

m=1

e−αi(∆l−τm)J i
m]

2
]
. (9)

Following Elliott (1994) we find recursive filters for the Markov chain processes. The

state estimator is then given by

ηk(zk) =
N∑

i=1

Γi(zk)
〈
ei, ηk−1(zk−1)

〉
Πei . (10)

The jump process G from state r to state s of the Markov process, defined as

G
(sr)
k =

∑k

l=1

〈
zl−1, er

〉〈
zl, es

〉
has the recursive filter

ηk(G
sr
k zk) =

N∑

i=1

Γi(zk)
〈
ηk−1(G

sr
k−1zk−1), ei

〉
Πei

+Γr(zk)ηk−1(
〈
zk−1, er

〉
)πsres . (11)

Now we calculate a filter for the occupation time process Or
k =

∑k

l=1

〈
zl−1, er

〉
,

denoting the occupation time of the process at state r up to time k. We get

ηk(O
r
kzk) =

N∑

i=1

Γi(zk)
〈
ηk−1(O

r
k−1zk−1), ei

〉
Πei

+Γr(zk)
〈
ηk−1(zk−1), er

〉
Πer . (12)

For the calculation of the optimal parameter estimates we need an auxiliary process

T, which is given by T
(r)
k (f) =

∑k

l=1

〈
zl−1, er

〉
f(Xl) where f is a function of the form
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f(X) = Xl, f(X) = X2
l , f(X) = Xl+1Xl or f(X) = X2

l+1, , 1 ≤ l ≤ k. The recursive

filter for this process is

ηk(T
r
k (f)zk) =

N∑

i=1

Γi(zk){
〈
ηk−1(T

r
k−1(f)zk−1), ei

〉
Πei

+Γr(zk)〈ηk−1(zk−1), er〉f(Xk)Πer. (13)

4 Optimal parameter estimates

In this section we want to derive a maximum likelihood estimation for the param-

eters of the observation process Xt (see equation 5), and a jump diffusion process

where the parameters are governed by a Markov chain zt.

First we derive the probability density function (pdf) for the process Xt

Xt = Xse
−α(zs)(t−s) + β(zs)(1− e−α(zs)(t−s))

+σ(zs)e
−α(zs)t

∫ t

s

eα(zs)u dWu +
Nt∑

m=Ns+1

e−α(zs)(t−τm)Jm(zt). (14)

The parameters are said to be constant over every interval [s, t], 0 ≤ s ≤ t. The

observation process without jumps is normally distributed with mean µx = β+(Xs−
β)e−α(t−s) and variance σ2

x = σ2

2α
(1− e−2α(t−s)). Now we examine the distribution of

the part given by the compound Poisson process Yt. As described in the previous

section J1, J2, ... are independent, identically distributed normal random variables

and (Nt)t≥0 is a standard Poisson process with jump intensity λ > 0. Let N and J

be jointly independent. We denote the mean and the variance of the process J by µJ

and σ2
J respectively. The probability distribution of the Poisson process N is given

by the usual Poisson distribution. To derive the density of the jump component we

can do the following approximation of the jump integral
∫ t

s

e−α(t−u)dYu ≈ e−α(t−s)(Yt − Ys).

By the stationarity of the compound Poisson process, we find that the increment

Yt − Ys has the same distribution as Yt−s, and thus we have the following density of
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the contribution from the jump term

ΦYt−s(x) =
∞∑

h=0

(λ(t− s))h

h!
e−λ(t−s)φ(x;µJe

−α(t−s)h, σ2
Je
−2α(t−s)h) (15)

where φ denotes the pdf of the normal distribution.

Following the arguments by Hanson and Westman (2001) the pdf of our obser-

vation process can be calculated as the convolution of densities of the OU process

without jumps and the jump part distribution. We therefore have the density of Xt

conditioned on Xs as

ΦX(x) =
∞∑

h=0

(λ(t− s))h

h!
e−λ(t−s) φ

(

x; β + (Xs − β)e−α(t−s) + µJe
−α(t−s)h,

σ2

2α
(1− e−2α(t−s)) + σ2

Je
−2α(t−s)h

)

. (16)

The density in equation (16) can be further expressed as an expectation of the

normal density under the Poisson counter N∆t. The density (16) can be written as

ΦX(x) = EN∆k

[

φ(x; β + (Xs − β)e−α(t−s) + µJe
−α(t−s)N∆t,

σ2

2α
(1− e−2α(t−s)) + σ2

Je
−2α(t−s)N∆t)

]

. (17)

We wish to find the optimal parameters of the observation process Xt specified in

equation (5) using the EM algorithm. For this purpose we make the simplifying

assumption, that the intensity of the Poisson process λ is independent from the

other parameters. To find optimal estimates, we evaluate the parameters of the

normal distributed part of the observation process independent of the process Nt.

Therefore we first derive the maximum likelihood estimates (MLE) for the set of

parameters ξ = {αi, βi, σ
2
i , µJi , σ

2
Ji
, πji}. Our aim is to find a new set of parameters

ξ̂, which maximises the conditional expectation of the log-likelihoods. In the fol-

lowing we denote the jump counter N∆k with p and the mean and variance of the

OU-process with µx and σx respectively. We derive MLE’s for the normal distribu-

tion φ̃(x;µx + µJpe
−α(t−s), σ2

x + σ2
Jpe

−α(t−s)). We note that both mean and variance

are dependent on the Markov chain z, they are therefore regime-switching. The

discretized version of the observation process (see equation 6) is used for deriving
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the recursive parameter updates.

We derive an explicit recursive formula for the parameter β with the processes of the

Markov chain z. However, since the mean-reversion level α is included in the mean

and variance part, the calculation of the MLE for α is less straightforward and a

recursive formula cannot be found. We therefore derive an explicit recursive formula

for the mean µx and the mean of the jump process µJ and calculate a value for α

based on the optimal value of β by solving the equation µxi = βi + (Xl − βi)e
−αi∆.

Consequently

αi = − ln
(µxi − βi

Xl − βi

) 1

∆
. (18)

With the value of α from (18) together with the MLE estimate of σx the estimated

value of σi is given by

σ2
i =

2αiσxi

1− e−2αi∆
. (19)

Therefore, calculating MLE’s for µx and σx gives us the desired parameter estimates

for α and σ2.

Applying the EM algorithm we derive the following optimal recursive parameter

estimates:

µ̂xi =
T̃ i
k(Xk+1)− Õi

kµJipe
−αi∆

Õi
k

(20)

µ̂Ji =
T̃ i
k(Xk+1)− Õi

kµxi

Õi
kpe

−αi∆
(21)

β̂i =
T̃ i
k(Xl)(e

−2αi∆ + e−αi∆) + T̃ i
k(Xl+1)(1− e−αi∆)

Õi
k(1 + 2e−αi∆ + e−2αi∆)

−Õ
i
k(−e−2αi∆µJip+ µJipe

−αi∆)

Õi
k(1 + 2e−αi∆ + e−2αi∆)

(22)
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σ̂2
xi

=
T̃ i
k(X

2
k+1) + Õi

k(µ
2
xi
+ µ2

Ji
p2e−2αi∆ + 2µxiµJipe

−αi∆ − σ2
Ji
e−2αi∆p)

Õi
k

− 2T̃ i
k(Xk+1)(µxi + µJipe

−αi∆)

Õi
k

(23)

σ̂2
Ji

=
T̃ i
k(X

2
k+1) + Õi

k(µ
2
xi
+ µ2

Ji
p2e−2αi∆ + 2µxiµJipe

−αi∆ − σ2
xi
)

Õi
kpe

−2αi∆

− 2T̃ i
k(Xk+1)(µxi + µJipe

−αi∆)

Õi
kpe

−2αi∆
(24)

and

π̂ji =
G̃

ji
k

Õi
k

. (25)

The proofs for equation (20)− (25) can be found in the Appendix.

5 Implementation

The model is implemented on daily spot prices compiled by Nordpool. The data set

SP contains daily spot prices from 1998-2002.

5.1 Fitting the deterministic function

First we deseasonalize the data. The deterministic function is fitted to the actual

data. The parameters for the deterministic function are calibrated with a least-

square algorithm in Matlab. In particular, 1
2

∑

t(D(x, k) − SP (k))2 is minimized

with respect to x, where x denotes a set of parameters. Here x = {a, s1, s2, s3, s4, c},
it includes all parameters from equation (2). The resulting deterministic function for

the seasonal components is

D(k) = 0.0569k + 14.1033 sin
( 2π

365
k
)

+ 20.6332 cos
( 2π

365
k
)

+8.5458 sin
(2π

7
k
)

− 0.5251 cos
(2π

7
k
)

+ 97.2454 (26)
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In Figure 1 the spot prices in NOK/MWh are depicted together with the seasonal

function. Frequent jumps in the electricity prices are visible, the descriptive statis-

tics show a high variance of the price data.

Figure 1: Actual data and seasonal function

The remaining stochastic part is the log of the deseasonalized spot price S. We

consider this as our observation process for the empirical work presented in the next

subsection.

5.2 Filtering and parameter estimation

The filters for updating the parameters are applied to the data set. We calculate

a series of one-step ahead forecasts for the spot prices. The expected value of the

observation process at time k + 1 is calculated with

E[Xk+1 | Gk] = Xke
−〈α,Πzk〉∆k + 〈β,Πzk〉(1− e−〈α,Πzk〉∆k)

+λke−〈α,Πzk〉∆k〈µJ ,Πzk〉 (27)
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We use 1200 data points between December 1998 and March 2002 to obtain one-

step ahead forecasts. The model parameters are updated after processing the data

in batches of 60 data points. The algorithm is run twenty times within this data set.

The implementation is performed under the set-up of a 2-state and 3-state Markov

chain. The Markov chain represents therefore either a ‘high’ and ‘low’ or a ‘high’,

‘medium’ and ‘low’ economic state of electricity supply and demand. Figure 2 de-

picts the dynamic movement of the optimal parameter estimates. The parameters

α and σ are calculated through the updated optimal parameters β, µx and σx; all

other parameters are calculated via the recursive filter estimates.

In Figure 3 the evolution of parameters in a 3-state markov chain setting is dis-

played. Here, the evolution of parameters exhibits similar pattern to that of the

two-state Markov chain setting. The convergence of parameter estimates is slightly

faster than that in the 2-state set-up.

The one-step ahead forecasts for electricity spot prices in a 3-state HMM is depicted

in Figure 4. Here we can see that the one-step ahead forecast follows the actual

values very closely. The self-tuning algorithm is able to capture the dynamics of the

electricity spot prices and the occurrence of jumps is picked up by the filter. In one

time period the forecasted values are slightly overestimating the actual values. This

might be due to the fact, that after the occurrence of a significant jump downwards,

the filters for the parameters first have to receive new information in order to allow

for a close one-step ahead forecast once again. A comparison of the 2- and 3-state

forecast shows, that the mean-square error in a 2-state setting is 0.0457. The mean-

square error between the actual data and the one-step ahead forecast in a 3-state

setting is 0.0421 and therefore slightly lower than in the two-state setting. It is ap-

parent that the 3-state HMM yields better fit than the 2-state HMM. We extended

the implementation to a 4-state HMM but no significant further improvement was

found.
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Figure 2: Parameter evolution in a 2-state HMM

15



Figure 3: Parameter evolution in a 3-state HMM
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Figure 4: One-step ahead forecasts of electricity spot prices

6 Concluding remarks

We developed an HMM-driven model to forecast electricity spot prices. The spot

price is assumed to evolve in accordance with the exponential of an OU process plus

a jump term and this exponential is scaled by a determinstic sinusoidal function to

take into account the seasonal component of electricity prices. The added compound

Poisson process has normally distributed jumps, where the mean and variance are

governed by a discrete-time HMM. This offers the model greater flexibility to switch

between economic regimes reflected by the dynamic changes in electricity supply and

demand, which is easily seen in the sudden jumps of spot prices. Employing the EM

algorithm, the optimal estimates for the model parameters are derived in terms of

the recursive filters for the state of the Markov chain, the number of jumps between

two states, occupation time of the Markov chain and an auxiliary process. Since

the parameters are updated whenever a new dataset arrives, we have created a self-

tuning model. The empirical work on the implementation of filters and parameter

estimation of the model using deseasonalized electricity spot prices illustrates that

the proposed model is well-equipped to capture the spikes present in the data for

both the 2-state and 3-state setting. The important stylized characteristics of the

17



electricity markets are captured by the model as evidenced by low forecast errors

and similar trends portrayed by the forecasts relative to dynamics of the actual data

series.
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A Appendix

A.1 Optimal parameter estimate for µx

We define a new measure P̂ by

dP̂

dP

∣
∣
∣
Fk

= Λ∗k =
k∏

l=1

λ∗l

where

λ∗l =
exp
[
− 1

2σ2x
[Xl+1 − µ̂x − µJpe

−α∆]2
]

exp
[
− 1

2σ2x
[Xl+1 − µx − µJpe−α∆]2

]

= exp
[ 1

2σ2
x

(−(Xl+1 − µ̂x − µJpe
−α∆)2 + (Xl+1 − µx − µJpe

−α∆)2)
]
. (28)

The log-likelihood for Λ∗k is

log Λ∗k =
k∑

l=1

[

− 1

2σ2
x

(
−µ̂2

x + 2Xl+1µ̂x − 2µ̂xµJpe
−α∆ + µ2

x

−2Xl+1µx + 2µxµJpe
−α∆

)]

. (29)
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We substitute the processes of the Markov chain z into this log-likelihood and get

log Λk =
n∑

i=1

[

− 1

2σ2
xi
Oi

k

[
µ̂2
xi
Oi

k − 2T i
k(Xk+1)µ̂xi + 2Oi

kµ̂xiµJipe
−αi∆ +R(µx)

]]

(30)

where R(µx) is a remainder without µ̂. Now, the conditional expectation of the

log-likelihood L(µ̂Xi
) = E

[
log Λk |FX

k

]
is considered. For any process H write H̃l =

E[Hl | FX
k ].

L(µ̂xi) =
n∑

i=1

[

− 1

2σ2
xi
Õi

k

[
Õi

kµ
2
xi
− 2T̃ i

k(Xk+1)µ̂xi + 2Õi
kµ̂xiµJipe

−αi∆ +R(µx)
]]

(31)

We differentiate L(µ̂xi) in µ̂xi and equate the result to 0. That gives

2Õi
kµ̂xi − 2T̃ i

k(Xk+1) + 2Õi
kµJipe

−αi∆ = 0 (32)

or µ̂xi =
T̃ i
k(Xk+1)− Õi

kµJipe
−αi∆

Õi
k

. (33)

A.2 Optimal parameter estimate for µJ

The new measure is defined by the Radon-Nikodym derivative as above with

λ∗l =
exp
[
− 1

2σ2x
(Xl+1 − µx − µ̂Jpe

−α∆)2
]

exp
[
− 1

2σ2x
(Xl+1 − µx − µJpe−α∆)2

] (34)

= exp
[
− 1

2σ2
x

(µ̂2
Jp

2e−2α∆ − 2Xl+1µ̂Jpe
−α∆ + 2µxµ̂Jpe

−α∆ +R(µJ))
]

(35)

where R(µJ) is a remainder without µ̂J . We calculate the log-likelihood and include

the processes of the Markov chain z :

log Λ∗k =
n∑

i=1

[

− 1

2σ2
xi
Oi

k

[
Oi

kµ̂
2
Ji
p2e−2αi∆ − 2T i

k(Xk+1)µ̂Jipe
−αi∆ + 2Oi

kµxiµ̂Jipe
−αi∆

+R(µJ)
]]

. (36)

Write H̃l = E[Hl | FX
k ]. Now, differentiate the log-likelihood in µ̂Ji and equate the

differential to 0

2Õi
kµ̂Jip

2e−2αi∆ − 2T̃ i
k(Xk+1)pe

−αi∆ + 2Õi
kµxipe

−αi∆ = 0 (37)

or µ̂Ji =
T̃ i
k(Xk+1)− Õi

kµxi

Õi
kpe

−αi∆
. (38)
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A.3 Optimal parameter estimate for β

We define the new measure P̂ by

dP̂

dP

∣
∣
∣
Fk

= Λ∗k =
k∏

l=1

λ∗l (39)

where

λ∗l =
exp
[

− 1
2σ2x

[
Xl+1 − β̂ − [Xl − β̂]e−α∆ − µJpe

−α∆
]2
]

exp
[

− 1
2σ2x

[
Xl+1 − β − [Xl − β]e−α∆ − µJpe−α∆

]2
]

= exp

[

− 1

2σ2
x

[(
X2

l+1 + β̂2 + ([Xl − β̂]e−α∆)2 + (µJpe
−α∆)2 − 2Xl+1β̂

−2Xl+1[Xl − β̂]e−α∆ − 2Xl+1µJpe
−α∆ − 2β̂[Xl − β̂]e−α∆

+2β̂µJpe
−α∆ + 2[Xl − β̂]e−α∆µJpe

−α∆
)
−
(
X2

l+1 + β2 + ([Xl − β]e−α∆)2

+(µJpe
−α∆)2 − 2Xl+1β − 2Xl+1[Xl − β]e−α∆ − 2Xl+1µJpe

−α∆

−2β[Xl − β]e−α∆ + 2βµJpe
−α∆ + 2[Xl − β]e−α∆µJpe

−α∆
)]
]

. (40)

For the log-likelihood we have

log Λ∗k =
k∑

l=1

[

− 1

2σ2
x

[
β̂2(1 + e−2α∆ + 2e−α∆) + 2β̂(−e−2α∆Xl −Xl+1

+Xl+1e
−α∆ −Xle

−α∆ + µJpe
−α∆ − e−2α∆µJp) +R(β)

]]

(41)

where R(β) is a remainder which does not include β̂ terms. We substitute the

expressions including the Markov chain with the defined processes Oi
k =

∑k

l=1〈zl, ei〉
and T i

k(f) =
∑k

l=1〈zl, ei〉f(Xl). Therefore

log Λ∗k =
n∑

i=1

[

− 1

2σ2
xi
Oi

k

[

β̂2
i

(
Oi

k(1 + e−2αi∆ + 2e−αi∆
)
+ 2β̂i

(
−T i

k(Xl)e
−2αi∆

−T i
k(Xl+1) + T i

k(Xl+1)e
−αi∆ − T i

k(Xl)e
−α∆

+Oi
k(−e−2αi∆µJip+ µJipe

−αi∆)
)]

+R(β)

]

. (42)
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To calculate the expectation of the log-likelihood conditional on FX
k we set H̃l =

E[Hl | FX
k ] for any process H. We differentiate L(β̂) in β̂i and equate the result to

0. This gives

2β̂iÕ
i
k(1 + 2e−αi∆ + e−2αi∆)− 2(T̃ i

k(Xl)(e
−2α∆ + e−αi∆)− 2T̃ i

k(Xl+1)(1− e−αi∆)

+2Õi
k(−e−2αi∆µJip+ µJipe

−αi∆) = 0 .

Henceforth

β̂i =
T̃ i
k(Xl)(e

−2αi∆ + e−αi∆) + T̃ i
k(Xl+1)(1− e−αi∆)

Õi
k(1 + 2e−αi∆ + e−2αi∆l)

−Õ
i
k(−e−2αi∆µJip+ µJipe

−αi∆)

Õi
k(1 + 2e−αi∆ + e−2αi∆l)

. (43)

A.4 Optimal parameter estimate for σx

For the MLE of the variance of the Ornstein-Uhlenbeck component in the observation

process, we define the Radon-Nikodym derivative dP̂
dP

with following λ∗

λ∗l =

1√
σ̂2x+σ2Je

−2α∆p
exp
[

1
2(σ̂2x+σ2Je

−2α∆p)
(Xl+1 − µx − µJpe

−α∆)2
]

1√
σ2x+σ2Je

−2α∆p
exp
[

1
2(σ2x+σ2Je

−2α∆p)
(Xl+1 − µx − µJpe−α∆)2

]

=

√

σ2
x + σ2

Je
−2α∆p

√

σ̂2
x + σ2

Je
−2α∆p

exp
[
− 1

2(σ̂2
x + σ2

Je
−2α∆p)

(Xl+1 − µx − µJpe
−α∆)2

+
1

2(σ2
x + σ2

Je
−2α∆p)

(Xl+1 − µx − µJpe
−α∆)2)

]
.

The log-likelihood of Λk is therefore

log Λ∗k =
l∑

k=1

(
1

2
log

σ2
x + σ2

Je
−2α∆p

σ̂2
x + σ2

Je
−2α∆p

− 1

2(σ̂2
x + σ2

Je
−2α∆p)

(Xl+1 − µx − µJpe
−α∆)2

+R(σ2
x)) . (44)
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Since σx is regime-switching, we have the following conditional expectation of the

log-likelihood including the Markov chain z :

L(σ̂2
x) =

k∑

l=1

n∑

i=1

(
−1

2
〈zl, ei〉 log(σ̂2

xi
+ σ2

Ji
e−2αi∆p)

−〈zl, ei〉
1

2(σ2
xi
+ σ2

Ji
e−2αi∆p)

(Xl+1 − µxi − µJipe
−αi∆)2

)
+R(σ2

x)

=
n∑

i=1

(
−1

2
Õi

k log(σ̂
2
xi
+ σ2

Ji
e−2αi∆p)

− 1

2(σ̂2
xi
+ σ2

Ji
e−2αi∆p)

(T̃ i
k(X

2
k+1) + Õi

kµ
2
xi
+ Õi

kµ
2
Ji
p2e−2αi∆ − 2T̃ i

k(Xk+1)µxi

−2T̃ i
k(Xk+1)µJipe

−αi∆ + 2Õi
kµxiµJipe

−αi∆)
)
+R(σ2

x). (45)

To find the maximum we differentiate L(σ̂2
x) in each σ̂2

xi
and equate the resulting

derivative to 0.

T̃ i
k(X

2
k+1) + Õi

k(µ
2
xi
+ µ2

Ji
p2e−2αi∆ + 2µxiµJipe

−αi∆)− 2T̃ i
k(Xk+1)(µxi + µJipe

−αi∆)

= Õi
k(σ̂

2
xi
+ σ2

Ji
e−2αi∆p) . (46)

We find the following optimal parameter estimate for σ̂2
xi

σ̂2
xi

=
T̃ i
k(X

2
k+1) + Õi

k(µ
2
xi
+ µ2

Ji
p2e−2αi∆ + 2µxiµJipe

−αi∆ − σ2
Ji
pe−2αi∆)

Õi
k

−2T̃ i
k(Xk+1)(µxi + µJie

−αi∆p)

Õi
k

. (47)

A.5 Optimal parameter estimate for σ2
J

The Radon-Nikodym derivative dP̂
dP

is defined with

λ∗l =

√

σ2
x + σ2

Jpe
−2α∆

σ2
x + σ̂2

Je
−2α∆p

exp
[
− 1

2(σ2
x + σ̂2

Je
−2α∆p)

(Xl+1 − µx − µJpe
−α∆)2

+
1

2(σ2
x + σ2

Je
−2α∆p)

(Xl+1 − µx − µJpe
−α∆)2

]
. (48)
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Therefore the log-likelihood of Λ∗k is given by

log Λ∗k =
k∑

l=1

(
−1

2
log(σ2

x + σ̂2
Je
−2α∆p)

− 1

2(σ2
x + σ̂2

Je
−2α∆p)

(Xl+1 − µx − µJpe
−α∆)2 +R(σ2

Jp)
)
. (49)

With that the conditional expectation is

L(σ̂2
J) =

n∑

i=1

(

−1

2
Õi

k log(σ
2
xi
+ σ̂2

Ji
e−2αi∆p)− 1

2(σ2
xi
+ σ̂2

Ji
e−2αi∆p)

(
T̃ i
k(X

2
k+1)

+Õi
k(µ

2
xi
+ µ2

Ji
p2e−2αi∆ + 2µxiµJipe

−αi∆)

−2T̃ i
k(Xk+1)(µxi + µJipe

−αi∆)
))

+R(σ2
Jp) (50)

Differentiating (50) with respect to σ̂2
Ji

gives

σ̂2
Ji

=
T̃ i
k(X

2
k+1) + Õi

k(µ
2
xi
+ µ2

Ji
p2e−2αi∆ + 2µxiµJipe

−αi∆ − σ2
xi
)

Õi
kpe

−2αi∆

−2T̃ i
k(Xk+1)(µxi + µJipe

−αi∆)

Õi
kpe

−2αi∆
(51)

A.6 Optimal parameter estimate for the transition proba-

bilities πij

The optimal estimate for the transition probabilities is calculated by considering the

Radon-Nikodym derivative

dP̂

dP

∣
∣
∣
∣
∣
Fk

= Λ∗k =
k∏

l=1

(
n∑

r,s=1

(
π̂sr

πsr

)〈Xl,es〉〈Xl−1,er〉
)

with Λ∗0 = 1 .

We obtain the log-likelihood

log Λ∗k =
n∑

s,r

Jsr
k log π̂sr +R(π)
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where the remainder does not involve π̂sr. We maximise the log-likelihood subject to

the constraint
∑n

i π̂sr = 1. Consequently, the optimal estimates for the parameter

Π is

π̂sr =
G̃

ji
k

Õi
k

.
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