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Abstract

This paper describes a technique for realizing a high-rank channel matrix in a line-of-sight
(LOS) multiple-input multiple-output (MIMO) transmission scenario. This is beneficial for systems
which are unable to make use of the originally derived MIMO gain given by independent and
identically distributed (i.i.d.) flat Rayleigh fading channels. Typical applications are fixed wireless
access (FWA) and radio relay systems. The technique is based on optimization of antenna placement
in uniform linear arrays with respect to mutual information (MI) for pure LOS channels. Both the
case where the channel is only known at the receiver and the case where the channel is known at
the transmitter and receiver are treated. By introducing a new and more general 3-D geometrical
model than that applied in earlier works, additional insight into the optimal design parameters is
gained. We also perform a novel analysis of the sensitivity of the optimal design parameters, and
derive analytical expressions for the eigenvalues in the pure LOS channel case, which are valid also
when allowing for non-optimal design. Furthermore, we investigate the approximations introduced
in the derivations, in order to reveal when the results are applicable, which turns out to be for most
practical situations. The LOS transmission matrix is used in a Ricean fading channel model which
incorporates spatial correlation between the non-LOS components, and performance is evaluated
with respect to the average MI and the MI cumulative distribution function. Our results show that
even with some deviation from the optimal design, the LOS MIMO scenario outperforms the i.i.d.

Rayleigh scenario in terms of MI.

I. INTRODUCTION

Since the pioneering work of Foschini and Gans [1] and Telatar [2], multiple-input multiple-
output (MIMO) systems have evolved into one of the most promising enabling technologies
for resolving the problem of continued demand for increased bandwidth in wireless commu-

nications, and the technology is already hitting the market [3], [4]. The wireless frequency



spectrum is a very limited resource which must be utilized efficiently. MIMO systems can
facilitate efficient frequency utilization by, among other things, smart signal processing at
the transmitter (Tx) and receiver (Rx). An excellent tutorial report on progress in the area
of wireless MIMO systems is presented in [5].

Most research efforts in the field of MIMO communications exploit the fading given by a
multipath environment. Best performance for such a transmission scenario is assumed to be
achieved for channels exhibiting independent and identically distributed (i.i.d.) frequency-flat
Rayleigh fading between all Tx and Rx antennas [2]. In this paper we present a transmission
scheme resulting in high MIMO gain also for channels which are not subject to severe
multipath. Some work on this topic has also been performed by other authors. In [6] the
possibility of enhancing performance by considering the array geometry when a strong LOS
component is present is discussed. Furthermore, expressions for optimal placement of the
antennas in parallel uniform linear arrays (ULAs) are introduced in [7], [8], [9], while some
numerical investigations are presented in [10] and [11].

In this paper we give a more comprehensive presentation of the results we first presented
in [12] and [13], where we propose a 3-D geometrical model for the line-of-sight (LOS)
component to be employed when applying ULAs at Tx and Rx. This model is used to find
the optimal antenna separation with regard to mutual information (MI) for LOS channels,
valid both when the channel is only known at the Rx, and when it is known at the Tx and Rx.
The present paper extends work done by other authors on the topic by 1) allowing the arrays
to have arbitrary orientation in space', ii) characterizing how non-optimal design effects the
system parameters, iii) giving analytical expressions for the eigenvalues of the pure LOS
matrix, and iv) giving an analysis of the approximation required to get the analytical results.
In contrast to the models used earlier ([7], [8], [9]), our model does not require the Tx and
Rx arrays to be parallel. This results in additional insight into the optimal design parameters.
As in [6], we will show that our scheme actually performs better for pure LOS channels
than for i.i.d. Rayleigh channels. The theoretical results derived in this paper are supported

by real world measurements reported in [11], [14], [15], [16], [17]. The solution will apply

! After we first presented our results on ULAs with arbitrary orientation in March 2005 [13], the same results have been
reported by another research group in August 2006 [14].



nicely to fixed wireless access (FWA) (studied in [18]) and radio relay systems, as the optimal
antenna spacing turns out to be a simple function of the Tx—Rx separation (which is fixed for
such schemes), and since these systems often require a strong LOS component to function
properly.

Furthermore, we introduce a deviation factor to perform an analysis of the sensitivity to
non-optimal design, and derive analytical expressions for the eigenvalues for the pure LOS
channel case as a function of this deviation factor. Moreover, we investigate the approxima-
tions introduced in the derivations, in order to reveal the scenarios to which the results are
applicable. The performance of the transmission scheme is analyzed with respect to both the
average MI and the MI cumulative distribution function (CDF), for different Ricean fading
channels.

The remainder of the paper is organized as follows. Section II presents the MIMO system to
be analysed, and discusses MI for MIMO channels. In Section III, MIMO channel models for
the LOS and non-LOS (NLOS) cases are presented. Simulation and results for the presented

scheme are given in Section IV, while conclusions are drawn in Section V.

II. THE MIMO SYSTEM

A wireless MIMO transmission system employs several Tx and Rx antennas when trans-
mitting data over a channel. We denote the number of Tx antennas by N, while the number
of Rx antennas is denoted M. Assuming slowly varying and frequency-flat fading channels,

it is common to model the MIMO transmission in complex baseband as [5]

r=./x-Hs+n, (1)

where r € CM*! is the received signal vector, s € CV*! is the transmitted signal vector,
H € CM*V is the channel matrix, ) is the common power attenuation over the subchannels,
and n € CM*! is the additive white Gaussian noise (AWGN) vector. The elements of
the channel matrix link the Rx antennas (m € {0,1,...,M — 1}) with the Tx antennas

(n € {0,1,..., N—1}). The additive noise vector contains i.i.d. circularly symmetric complex



Gaussian elements with zero mean and variance 02, i.e. n ~ CN'(0yx1, 02 - Ip/)?, where I,
is the M x M identity matrix.

We assume that all the Rx antennas receive the same total average power from the desired
signals, and that H is the normalized channel matrix, which implies that each element in H
has unit average power. By introducing this normalization we make the average signal-to-
noise ratio (SNR) independent of H. We denote the total average received SNR at one Rx
antenna vy = i—'?f‘, where P is the total Tx power. For such a system, the MI of the MIMO

transmission described by (1) can be expressed as [2]3

U
T =Y log,(1+ %) bit/s/Hz, 2)

=1

where U = min(M, N) and p; is the ith eigenvalue of W defined as

HHY, M<N
W = 3)
HPH, M > N,
where (-)# is the Hermitian transpose operator. 7; can be viewed as a power allocation factor

which also contains the path loss and noise (‘SNR allocation factor’), and is subject to the

constraint
N
¥=> )
i=1

The transmission scheme employed is dependent on the available channel information. If
the channel is only known at the Rx, we employ equal power (EP) transmission at Tx, i.e.
Y = % In the case where the channel is known at both the Tx and the Rx, we employ the
optimal power allocation scheme (capacity achieving) which follows the waterfilling (WF)

principle [2], leading to the SNR expression

Mi )

where () 2 max (0, z), and & is chosen to satisfy the constraint in (4).

2CN(x,Y) denotes a circularly symmetric complex Gaussian distributed random vector, with mean vector x and
covariance matrix Y.

3Even though the derivation is different for the two transmission schemes investigated, i.e. EP allocation and WF power
allocation, the MI for both cases can be expressed as in (2).



From (2) we see that the MI of a MIMO system can be viewed as the MI of U parallel
single-input single-output (SISO) channels, where each channel has gain p; (given by the

characteristics of H) compared to a traditional SISO system with average SNR #;.

III. MIMO CHANNEL MODEL

One way to model the channel matrix is as a sum of two components, a LOS component
and a NLOS component. The ratio between the power of the two components gives the
Ricean K-factor [19, p.52]. As discussed in Section II we want H to be normalized, and we

can express the normalized channel matrix in terms of K as

K 1
H=y/—— H \J—— -H 6
T+ K es T\ T Hoss ©)

with the requirement (cov(vec(Hyos))):; = (cov(vec(Hnros)))is =1V i e {1,..., MN}.
Here vec(-) and cov(-) are the matrix vectorization (stacking the columns on top of each
other) and covariance operator respectively, while (-);; is used to specify the element in
row ¢ and column j in the matrix. The entries in the matrices are discussed in detail in the

following two subsections.

A. LOS channel: Ray tracing

Here we concentrate on the pure LOS channel, and only the direct components between the
Tx and Rx antennas. In [6], [7], [8], [9], [10], [11] it was shown that by placing the antennas
in a MIMO system in a certain way, the pure LOS channel matrix actually becomes high
rank*, which corresponds to many non-zero eigenvalues f;, and thus high MI (cf. (2)). In
this work we describe the geometry of the transmission scenario in a new and more general
way, using two ULAs with arbitrary spatial orientation (not restricted to be parallel).

1) Optimal inter-antenna distance: Figure 1 illustrates the system to be analyzed. Due to
the ULA assumption, the inter-antenna distances d; and d,., at the Tx and the Rx respectively,
are constant over the arrays. d; and d, can however of course take different values. In the

figure, the x-axis is taken to be in the direction from the lower end of the Tx array, which is

*The rank of a matrix is equal to the number of linearly independent rows (or columns) of the matrix, or equivalently
the number of non-zero eigenvalues.
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Fig. 1. A general MIMO system with ULAs at both the Tx and Rx. The Tx array is in the zz-plane with origo at the
lower end, and the z-axis is from the lower end of the Tx array to the lower end of the Rx array.

origo, to the lower end of the Rx array. The Tx array is placed in the xz-plane. Furthermore,
R represents the distance between the lower end of the arrays, (N —1)-d; and (M —1) - d,
denote the total array lengths, and 6;, 6,., and ¢, are the angles of the local spherical coordinate
system at the Tx and Rx. The figure can describe any MIMO system employing ULAs with
arbitrary orientation.

The technique employed to model Hy og is referred to as ray-tracing [6]. In this context,
ray-tracing is based on finding the path length from each of the Tx antennas to each of the
Rx antennas, and employing these path lengths to find the corresponding received phases.
Consequently, the LOS channel is modeled by taking the true spherical nature of the wave
propagation into account, i.e. no plane wave approximation. Only the direct component is
considered (no reflections). We shall see later how these path lengths characterize H; o, and
thus its rank and MI.

First we need to define the vector a’, from origo to Tx antenna n, and the vector a’, from
origo to Rx antenna m (the elements are ordered from element zero at the lower end of the
arrays). Based on the parameters in Figure 1, we calculate the Euclidean norm of the vector

difference between a!, and a’,, to reveal the path length r,,, between Tx antenna n and Rx



antenna m:

T
— [(R + md, sin 0, cos ¢, — nd, sin 6;)* + (md, sin 0, sin ¢, )*
+(md, cos 6, — nd, cos Gt)2] 1/2 7

~ R+ md,sin#, cos ¢, — nd; sin b,

N (md, sin 6, sin ¢,.)? + (md, cos 0, — nd; cos 0;)*
2R

®)

In the last step above we made a Maclaurin series expansion [20, p.189] to the first order
of the square root expression, i.e. (1 +A)Y2 ~ 1+ %. This is a good approximation when
A < 1. We also approximated the denominator of the fraction in (8) by removing the terms
representing the array lengths in the x-direction, which is valid when R is much larger than
these lengths. Both approximations are thus valid simultaneously if the Tx—Rx distance R is
much larger than the array dimensions at both the Tx and Rx.

We discuss the approximations, and their effect on the evaluation of the system performance
in more detail in Appendix I. The main conclusion is that the approximations have little impact
on the predicted MI as long as the angles #; and 6, are small enough compared to the ratio
between the array sizes and the Tx—Rx distance.

The symbols transmitted from Tx antenna n will be received at M different Rx antennas.
The different path lengths over the Rx array corresponds to an inter-antenna phase difference.

The channel response vector from Tx antenna n on the M Rx antennas can be written as

jor jor ’
b= o (5 ) o (o) | v

where ) is the wavelength, each element is normalized as discussed earlier, and ()T de-
notes the vector transpose operator. The LOS channel matrix is thus given by H;os =
[ho,hy, ..., hy_4].

We will now derive the optimal antenna separation, with regard to MI, for a pure LOS
channel. In Appendix II we show that optimal values for y;, for both transmission scenarios,

are obtained when all eigenvalues are equal, i.e. u; = V' V i, where V = max(M, N). One



realization of W which fulfills this requirement of equal eigenvalues is
W=V.Iy. (10)

From the definition of W in (3), we see that (10) is fulfilled when Hjog has orthogonal
columns for M > N, or orthogonal rows for N > M.

We will start by investigating the case where M > N, and generalizations to any combi-
nation of M and N will be made based on this result. Orthogonality between the different
columns in Hj g is obtained if the inner product between two channel response vectors from
two different Tx antennas is equal to zero, i.e. (h, , h,,) = 0V n; # ny. Employing the

expression for h,, from (9) and r,,, found in (8), the inner product can be expressed as

hnl: hn2 Z exXp ( 7ﬂmn2 o 7annl))

— kW — 9 dyd,. cos 6, cos 0, "
nlnz'zoexp J&m AR (nl_n2)m ) ( )
where
12
Kéll),m = exp (jTW (dt sin 6y(ny — ny) + d: cos® 0(n3 — n%))) . (12)

To simplify (11), we employ the expression for a finite geometric series [20, p.192] and

trigonometric relations [20, p.127], and obtain the following orthogonality equation

sin( dedr 050, cos Oy (ng — nz)M)

h, h,,)=KY - K? AR =0, 13
(Bs B ) nen2s TERLn2 g (Wd)tj%' cos 0, cos 0y (ny — ng)) (13)
where
. dud, cos B, cosO
Kfi ny = EXD <j7T L R L (ng —ng) (M — 1)> ) (14)
Since \K,(Lll)m . Kffl)nz\ = 1, it does not contribute to the solution of (13). The solution is

found when the sin(-) in the numerator is zero without the sin(-) in the denominator being

zero, which can be expressed mathematically as

AR AR Vg
d.d S — . 1
v {MCOSQTCOSQt Ul}\{COSQTCOSQt nl—ng}’ (13)




where v1,v9 € Z, and “\” is the set difference operators. In (15), we have chosen the
key design parameter to be the product between d; and d,., from now on referred to as the
antenna separation product (ASP). The optimal ASP in (15) depends on the wavelength,
Tx—Rx distance, the number of Rx antennas, #; and 6,. Furthermore, we see that optimal
design is achieved when v, is chosen to satisfy the relation w ¢ 7.

The above result can easily be generalized to any combination of M and N, by realizing
that a similar result can be obtained for N > M. In this case the rows of H;pg must be
orthogonal to fulfill (10). The derivation follows a similar procedure, and the only difference
in the result is that M becomes N in (15), i.e., the general solution is found by swapping
M with V in (15). The solution corresponding to the smallest ASP is probably the most
interesting from a practical design point of view, because it requires the shortest antenna
arrays. This solution is given by choosing v; = 1, which always is optimal because V' > 1
and thus M ¢ Z (remember that (ny —ng) € {£1,...,£(V —1)}). The optimal ASP
with respect to MI for ULAs therefore becomes

AR

dyd, = —————.
! V cos 0, cos 6,

(16)

In practical scenarios, A, V, and R may be given, whereas the system designer may jointly
optimize values of d;, d,., 6, and 6,. Comparing (16) to what was found in [7, Eq. (4)]
and [8, Eq. (5)], which are valid only for parallel antenna arrays, we see that if we have 6,
= (0° and 6, = 0° (parallel arrays) the same result is obtained. Equation (16) is thus a more
general result which supports any orientation of the Tx and Rx arrays. Another important
new insight from the general model is that the optimal ASP is independent of the rotation
angle, ¢,, from Figure 1.

An interesting observation is that if we project the antenna arrays along the local z-axes
at the Tx and Rx sides in Figure 1, and use the new antenna separation distances d; cos 6,
and d,. cos 0, for the parallel array solutions in [7] and [8], we actually get the same result
as in (16)°. It is easy to verify that this projection model is not exact. However, from (16) it

is clear that the result is the same, and thus this equivalence must simply be a consequence

S¢ € A\ B is defined as { € A and = ¢ B}

% Actually, this was the procedure we employed to derive (16) in [12].
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of the approximations performed in our derivations.

By inspection of (16) it can be observed that LOS MIMO systems are best suited for
applications where the transmission distance is constant, such as for example FWA and radio
relay systems. Further, we see that the optimal ASP is proportional to AR, thus to prevent
too large antenna arrays, the scheme is best suited for short range communications and/or
high frequency applications. As an example, a 2x2 MIMO system, operating at 40 GHz with
Tx-Rx distance 500 m and parallel arrays, achieves optimal design if d;d, = 1.875 m?, e.g.
if both arrays have length 1.37 m. However, for FWA systems it would probably be more
practical to have a larger antenna separation at the base station than the subscriber unit, i.e.
d; # d,.

2) Sensitivity to non-optimal design: A natural question to ask is, what happens if the
parameters deviate from the optimal relation given in (16)? In the analysis to follow we
investigate how sensitive the performance of ULA based LOS MIMO is to such deviations.
For this purpose we introduce a deviation factor, denoted 7, defined as the ratio between the
optimal ASP, i.e. RHS of (16), and the actual ASP,

A ASPy, AR
T=7ASP d.d,V cos 0, cos 0,

7)

From this definition we see that if 7 is larger than unity, the actual ASP is too small compared
to the optimal, while an 7 smaller than one indicates that the actual ASP is too large.

The influence of non-optimal design on W, is that the eigenvalues start to deviate from
optimal. In Appendix III we describe a procedure to find these eigenvalues. The procedure
is based on the approximate path length from (8). The eigenvalues for U = 2 as a function

of n, are given by

sin (E> B sin <1>
sin (;ﬁ) -V sin (;ﬂ) , 1o

where £ denotes the eigenvalues found by applying the approximate path length. For U = 3,

py=V+ and 15
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Fig. 2. {p:} for a 3x3 MIMO system as a function of 7 in dB when H = Hjos.

we get the eigenvalues

ui=V+ , (19)
2 sin (5—{;)
o
()
pe=v - ——"7 and (20)
sin <2—’r)
n
sin <%’r> — 2sin (%) \/c032 (%) + 8 cos? (%)
pe =V + . Q1)

2sin (22
By inspection we see, in both cases, that all eigenvalues are equal to V' when 1 = 1 for
these MIMO systems. This agrees well with what is stated in Appendix II: Y. 1, = U-V/, and
optimal performance is achieved when {y;}_, = V. The optimal power allocation scheme
with respect to MI is EP in this case, and from (2) we observe that the MI becomes greater
than or equal to U times the SISO MI with the same P.
As an example of the eigenvalue spread, we have plotted the eigenvalues {u¢}?_, as a

function of 7 for a 3x3 pure LOS channel in Figure 2, i.e. (19)—(21) with V' = 3. The figure
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shows that the optimum (i.e., p; = 3) is obtained for n = 0 dB, and periodically for smaller
7. The explanation for this periodic behavior is that (15) has more than one solution, as
discussed earlier. As already stated we concentrate on the solution corresponding to 1 = 0
dB because this gives the smallest ASP, implying smallest array sizes. By examining Figure 2
together with (2) we get an intuitive picture on how the deviation from optimal design values
influences the MI for a pure LOS 3x3 MIMO system. This relation will be studied in more
detail in Section IV.

3) Some comments on the deviation factor: There can be several reasons for 7 to deviate
from O dB. For example, the optimal ASP may be too large for practical systems so that a
compromise is needed, or the parameters in (16) may be difficult to determine with sufficient
accuracy. A third reason might be wavelength dependency. A communication system always
occupies a non-zero bandwidth, while the antenna distance can only be optimal for one
single frequency. As an example consider the 10.5 GHz licensed band (10.000 - 10.680 GHz
[21]). If we design a system for the center frequency, the deviation for the lower frequency
yields Aiow/Adesign = fdesign/ fiow = 10.340/10.000 = 1.034 = 0.145 dB. Thus for the 3x3
system, this has only a small contribution to 7, and thus little impact on the performance

(see Figure 2).

B. NLOS channel

The NLOS channel matrix in the Rice model from (6) is a result of reflections, diffraction,
and scattering from the transmission environment. This component is stochastic, and can
be described by statistical models. In the analysis we want to include the effect of spatial
correlation between the antenna elements, which often is due to insufficient antenna spacing,
existence of a few dominant scatterers and small angle-of-arrival spreading. Spatial corre-
lation usually results in rank deficiency, and thus reduces the MI. We model Hyios by the

Kronecker model as [5]

Hyios = (R,)Y?H, (R,)Y?, (22)

where vec(H,) ~ CN(0pnx1,Iyn), and R, € C**M and R, € CV*V are the lo-
cal correlation matrices at the Rx and Tx respectively. For the model in (22) we have

cov(vec(Hnros)) = R, ® Ry, where ® is the Kronecker product [5].
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We further model the correlation as exponential [22], i.e. the correlation decays exponen-
tially with the antenna separation, which is a physically realistic model for ULAs [23]. The
elements of the Rx correlation matrix is then given by

i .
®)y={ " e e, E8
(00 i >
where x* is the complex conjugate of z, and p, is the correlation coefficient between two
neighboring Rx antennas (R; is given in a similar way).

We can identify some connections between the optimal design parameters in (16) for
LOS channels and the severity of the spatial NLOS correlation quantified by p. First of all
an increase in the antenna separation d; or d,. is usually beneficial with regards to spatial
correlation, because the correlation function is typically a decreasing function with distance
[19, p.67]. Further, when the transmission frequency increases (i.e. decreasing \) the multipath
usually decreases, resulting in increased spatial correlation. This is due to the fact that the
path loss increases, which reduces the number of significant multipath components received.
Of course there are also other parameters that influence the correlation which is not part
of (16), as e.g. the number of scatterers in the transmission environment and the properties
of the antennas employed. We observe that if p = 0 (no correlation), we get R, = Iy and

R, = 1I,;, thus Hypos becomes an i.i.d. Rayleigh channel in this case.

IV. SIMULATIONS AND RESULTS

When the channel is stochastic, as in the case of K # oo dB, the MI given by (2) in Section
IT becomes a random variable. We employ the average MI and the MI CDF to characterize
this random behavior. Average MI is the mean MI over all channel realizations for a specific
average SNR, i.e. Z = E[Z(7)], where E[ - ] is the expectation operator. Further, the MI
CDF is given by Fr(v) = Pr[Z < v].

The example system analyzed in this section is a 3 x 3 MIMO system. When investigating
the performance of this system it may be convenient to look at the extremal points, since in
practice we will lie somewhere in between these points. For instance, from (6) we see that
K = —oo dB gives a NLOS channel matrix, while X' = oo dB gives a pure LOS channel.

Likewise, n = 0 dB gives optimal ASP, while = 30 dB approximates a total antenna
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Fig. 3. Fr(v) for a 3x3 EP allocation MIMO system with 5 = 20 dB, different deviation factors 17, no NLOS correlation,

and different values of the Ricean K -factor.

separation mismatch (rank(Hjog) = 1, cf. Figure 2). It is important to note that when we
use the term optimal design in this paper it is the relation given in (16), which is optimal
for the pure LOS channel and not necessarily the general Ricean channel. If nothing else is
mentioned, no NLOS correlation is assumed, i.e. p; = p, = 0.

Figure 3 shows Fr(v) for the system when employing EP transmission. Two different
scenarios are illustrated, optimal design and total design mismatch. We observe how Fr(v)
for the two situations become equal when the Ricean K -factor decrease and the channel
matrix approaches a pure Rayleigh matrix. This is as expected because when K = —oo
dB, the channel is independent of H;ps. When K increases, the MI increases towards its
maximum, U - log,(1 + %V), for n = 0 dB. However, it decreases for n = 30 dB towards
log,(1 + M#). This shows that LOS channels with optimal ASP is superior in terms of
Fr(v) compared to MIMO systems based on i.i.d. Rayleigh channels. From the figure we
see that the MI has some remaining stochastic behavior for K = 20 dB (Fz(v) is not a

perfect step function). This figure is similar to one of the figures given in [6], where only
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Fig. 4. Z for a 3x3 MIMO system both for EP allocation and WF power allocation as a function of 7, with 5 = 10 dB,
no NLOS correlation, and different Ricean K -factors.

the extreme cases were investigated (rank(Hpos) = 1 and rank(Hjog) = 3). In what follows
we will investigate how sensitive the MI for this system is to deviations from optimal ASP,
by allowing 7 to have values between its extremal values.

In Figure 4 we have plotted Z for the system for both EP allocation and WF power
allocation as a function of 7. This is done for different values of the Ricean K -factor to see
how T is influenced by these variables. In both cases the figure shows that as K increases
the system becomes increasingly dependent on 7. When K = —oo dB, T is independent
of 1 as expected. It is also interesting to note that for EP transmission, at n ~ 3 dB, T is
almost independent of K, while for WF power allocation the same situation occurs for n ~ 4
dB. Additional investigation shows that this point seems to be relatively fixed for different
values of 7. For higher channel matrix dimensions however, the point will not be as well
defined (the crossings of K = —oo dB are more spread). The figure also illustrates nicely
the difference between the EP allocation and the WF power allocation scheme. In the case

of equal eigenvalues, i.e. n = 0 dB and K = oo dB, the performance is equal for the two
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Fig. 5. 7 for a 3x3 EP transmission MIMO system. Solid lines are for K = oo dB with different values of 7 in dB. The
dotted line is for K = —oo dB with no NLOS correlation.

schemes and EP allocation is optimal, but as the eigenvalues spread we get increasing benefit
from utilizing the WF scheme.

Figure 5 shows Z for the system under investigation with EP transmission as a function of
7. The figure illustrates how Z decreases as 7 increases for pure LOS channels. This figure
also confirms that these channels perform better than i.i.d. Rayleigh channels with respect to
MI when doing optimal antenna spacing. We can also verify that when 1 ~ 3 dB for K = oo
dB, we get almost the same performance as for i.i.d. Rayleigh channels.

The effect of spatial correlation between the NLOS components on Z is illustrated in
Figure 6. The main contribution of the correlation is that it reduces the average MI for strong
NLOS channels. For strong LOS channels, i.e. large K -factors, the MI is independent of the
NLOS correlation. Consequently, the MI gap between optimal design pure LOS channels and
pure NLOS channels increases when the correlation increases. For the optimal design case,
we see that it is first when the ' < 0 dB that the correlation has any noticeable influence

on the MI, while for = 30 dB this occurs for much larger K -factors.
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Fig. 6. 7 for a 3x3 EP transmission MIMO system for different array design and correlation situations, with 4 = 20 dB.

In Figure 7 we have illustrated the MI gain by employing WF power allocation (instead of
EP allocation), for the system transmitting over a pure LOS channel. From the figure we see
that the gain increases as 7 increases as expected, because it results in a larger eigenvalue
spread. The stepwise increase in relative MI gain is due to the fact that in the WF case Z
decreases with 7 in a stepwise manner, each step starts when the number of active channels
is reduced by one. Since we are investigating a 3x3 system we get two such steps. Further,
in accordance with [5], WF power allocation gives the highest MI gain when 7 is small. The
extra complexity introduced by employing WF power allocation results in insignificant MI
gain when 7 is below 0.5 dB, 1 dB, 4 dB, and 6 dB, for 4 equal to 5 dB, 10 dB, 20 dB,

and 30 dB respectively.

V. CONCLUSIONS

We have presented and optimized performance results for a general 3-D geometrical model
for LOS MIMO channels, allowing for arbitrary orientation of the Tx and Rx arrays. The

new model is utilized to derive the optimal antenna separation product (ASP) for uniform
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Fig. 7. Relative MI gain due to employing WF power allocation compared to EP transmission as a function of 7 in dB,
for a 3x3 MIMO system with K = oo dB, and different 7.

linear arrays (ULAs) with respect to MI for this pure LOS channel. Both the case where
the channel is only known at the Rx, and when it is known both at the Tx and the Rx are
treated. The ASP becomes a simple function of Tx—Rx separation, wavelength, dimension
of the MIMO system, and the spherical angles at the local coordinate systems at the Tx and
Rx. Another important result of the optimal design is the independence with respect to the
rotation angle. The result is useful both for system designers when designing MIMO systems
that are subject to strong LOS components, and when investigating the performance of such
systems.

When we use optimal ASP, the MIMO transmission system performs better in terms of
MI for pure LOS channels than for i.i.d. Rayleigh channels. When including spatial NLOS
correlation, this MI gap between pure LOS and pure NLOS channels increases further. For
the 3x3 system investigated in Section IV, we can tolerate an ASP of half the optimal
value before the average MI degrades to that of the i.i.d. Rayleigh case. Investigating the

approximations performed, we found that the results presented in this paper are applicable
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when the spherical angels #; and 6, are small enough compared to the ratio between the

antenna array sizes and the distance between the Tx and Rx.

APPENDIX |

EVALUATION OF THE APPROXIMATION ERROR

Introducing the distance approximations in (8) makes it possible to derive an expression
for the optimal ASP in Section III-A.1, and analytical expressions for the eigenvalues in the
pure LOS case in Appendix III. In itself, this distance approximation is good if the distance
between the lower end of the arrays is much larger than the array dimensions at both sides of
the radio link. But, the distance approximation error will carry over to the later expressions,
and eventually affect the LOS channel matrix characteristics. A framework for analyzing the
MI error introduced by this approximations is presented here.

Both for the exact and the approximate path length in (7) and (8) respectively, it is
straightforward to reformulate the phase expressions in (9) (the arguments of the exponential
functions) as functions of the parameters A d—é, %, 0, 6., and ¢,.. By using these parameters in
the following inspection we make the results more general. Since 7 is an important parameter
in this work we also want to include it in this investigation. This is achieved by rewriting
(17) as

A di d,

B nvﬁﬁ cos B, cos b, (24)

which is employed in (7) and (8) to exchange % with 7.

The error measure used is the relative MI error, which we define as the absolute value of
the difference between the MI given by employing exact eigenvalues (found numerically),
7¢, and the MI predicted with the approximations, Z¢, divided by Z°, i.e.

e -1
_’Z'e

(25)

E =

_ |1 _ Zijzl log, (1 + i)
Sy logy (1+3ipf) |
where ¢ is the exact eigenvalues. For U = 2 and U = 3, {u¢}Y, are given in Section
11-A.2.
The framework for analyzing the approximation error described here includes many free

variables, and a simple answer to when the approximation is valid is difficult to find.
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Nevertheless, some general tendencies are possible to identify, and they will be explained

o o _ (N=Dd: _ (M—1)d, .
through an example. For simplicity we define the quantities o = =7~ = ===, which

is the total array lengths relative to the Tx—Rx distance, and 3 = 6, = 0,.

In Figure 8, ¢ is plotted for a 3x3 MIMO system with 7 = 10 dB, as a function of « for
different $ and with = 0 dB. ¢ is maximized over all values of ¢,. The figure indicates that
an increase in « increases . This can be attributed to the fact that it increases the array sizes
relative to the distance between them, which is negative with respect to the approximation
accuracy as described earlier. Furthermore, an increase in /3 also increases . The explanation
for this lies in the fact that when [ increases, it decreases % in (24), which increases the
sensitivity to distance errors with respect to phase errors in (9).

In Figure 9 we have plotted £ maximized with respect to ¢, as a function of v for optimal
design (n = 0 dB), both for the EP transmission case and the WF power allocation case. An
intuitive explanation for the smaller € in the WF case, is that the MI becomes less sensitive

to the eigenvalues when we can adapt {%;}. For large 7, the ¢ for the two cases approach

each other because the WF case approaches the EP transmission case.
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APPENDIX II

OPTIMAL EIGENVALUES WITH RESPECT TO MI

From linear algebra theory we know that trace(W) = Z?:l ;i [20, p.92]. Because of the
normalization of the channel matrix, the trace of W for the pure LOS case can easily be

shown to be N - M =V - U, consequently

U
Y mu=UV. (26)

When employing EP transmission, we need to maximize (2) using 7; = % with respect
to {u;}, fulfilling the constraint given in (26). To do this we apply the method of Lagrange

multipliers [20, p.228], and form the Lagrangian

U _ U
L=S"In(1+ L)+ ( i—UV). 27)
1 ;n< NU) K ;M

From e 0 and (26), we have U + 1 equations with U + 1 unknowns. It can be shown
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that g—ﬁ? = 0 gives

w=-=, 8)
Using this in (26) we get

K= —ﬁm, (29)
which we re-insert into (28) to obtain pu; = V. Thus, optimality is achieved when all

eigenvalues are equal to V.

Next we investigate the case where the channel is known at the Tx as well, thus both y;
and 7; can be optimized. In this situation we maximize the MI from (2), both over {y;} and
{%:}, with the constraints given in (4) and (26). By looking at (2) it is obvious that when
N > U, {%}X 1 = 0, thus we can write the constraint in (4) as a sum from 1 to U. The
Lagrangian then becomes

U U U
EQ:ZIn(l—l—’_ymi)—l—/ﬁ (ZIM—UV>+/€2 (Z’_ﬁ—’?)- (30)

i=1 i=1 i=1
The 2U + 2 equations with the 2U + 2 unknowns are thus % =0, % = 0, (4) and (26).

Following a similar procedure as in the previous case we start with

oL i oL Yi
72:O:>ﬁi:—ﬁ2+'u and 2:0:>pi:—/ﬁ+:y.
i K [ a,ui K17

Combining these two equations we obtain

-1+ \/1 — 4/431/12

Vi = and 3D
2%2
-1+ V 1-— 4/‘%)2/'{1
i = 5 . (32)
R1
Using these expressions in the constraints in (4) and (26), gives ko = —V (Vk; + 1) and
k1 = —2 (Zk2 + 1), which we can combine to get
V
Ky = — = and (33)
1+VZE
o
= — _ 34
R1 11V % (34

By investigating (31) and (32) together with the constraints, we find that the “+” sign in front
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(1321

of the square root in these expressions gives a valid solution when V5 /N < 1, while the
sign gives a valid solution when V4 /N > 1. Utilizing this fact and (33) and (34) in (31)
and (32), we reveal the result 7, = % and p; = V. Thus, as for the case of EP transmission,

optimality with respect to the MI is achieved when all eigenvalues are equal to V.

APPENDIX III

CALCULATION OF LOS EIGENVALUES

The eigenvalues of the W matrix, in the pure LOS case, can be found based on the
geometrical model presented in the beginning of Section III-A. We use H = H; o5 (/{ — 00)

in (3), and the relation [20, p.99]
det (W =1y - u) =0, (35)

where det(-) is the matrix determinant operator, to find the eigenvalues {s;}%_,. The authors
have not been able to find analytical expressions for the eigenvalues in the case of exact path
length from (7), therefore the approximate path length from (8) is used. The elements of W,
denoted (W), ;, are inner products between the rows (A/ < N) or columns (M > N) of H,

taking the form (cf. (13))

sin (g(k - 1))
sin (Vln(k — l))

(W) = exp [jGi(k — D] exp [j¢((k — 1)* = (I = 1)%)]

kle{l,..., U} (36)

where (; and (, are different constants in the two cases (M < N and M > N). The relation

in (35) can be simplified by realizing that it can be written as
det <BWBH . u) —0, 37)
where B is a unitary diagonal matrix with diagonal elements

(B = exp (jCik) exp (jGao(k — 1)%) ke{l,...,U}.
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By multiplying (37) from the left with B¥, and from the right with B, we obtain an equivalent
expression for the same eigenvalues, det (W —Iy- u) = 0. Thus, the eigenvalues of the

Hermitian matrix W are the same as for the symmetric Toeplitz matrix W, with elements

—_— sin (g(k —1))
v sin (Vln(k — l))

The eigenvalues can be calculated by a mathematical application such as e.g. Mathematica,

kle{l,... U} (38)

but the expressions becomes long for large values of U. The eigenvalues for U = 2 and U = 3
are given in (18) and (19)-(21) respectively, calculated by using the Eigenvalues command

in Mathematica, and simplified by trigonometric relations [20, pp.127-128].
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