View metadata, citation and similar papers at core.ac.uk

-
brought to you by i CORE

provided by NORA - Norwegian Open Research Archives

University of Oslo
Department of Informatics

Design,
Implementation,
and Evaluation of
Network
Monitoring Tasks
for the Borealis
Stream Processing
Engine

Master’s Thesis
30 Credits

Morten Lindeberg

May 23, 2007

https://core.ac.uk/display/30795072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would definitely like to thank Jarle Sgberg and Vera Goebel for outstand-
ing guidance and support. Vera Goebel for presenting astonishingly clear
thoughts and ideas. Jarle Sgberg for always giving quick and wise advices,
to numerous questions.

Standing on the shoulders of Jarle Sgberg and Kjetil Hernes, by using
their set of experiment tools and scripts, has helped me performing experi-
ments otherwise not being possible within these 17 weeks.

Thank you.

Morten Lindeberg
University of Oslo
May, 2007

Abstract

Several data stream management systems (DSMSs), enabling their users to
measure and analyze the behavior of a data stream on-line, are now available
to the public. Network monitoring, as a challenging application domain, has
shown to fit into the domain of DSMSs. With the use of the Borealis DSMS,
we have implemented a set of network monitoring tasks. By performing
these network monitoring tasks in a network on generated traffic, we have
measured the loads that Borealis can handle. As we know the behavior of
the generated network traffic, we have been able to investigate the correct-
ness the monitoring results. Based on our evaluation, we have shown that
Borealis can handle a 40 Mbit/s network load, with close to 99% accuracy
performing measurements of average amount of received packets per second,
as an example. The query language of Borealis has in addition enabled us to
express complex network monitoring tasks. When increasing the complexity
for the monitoring tasks, we see that the supported network load drops down
to 10 to 30 Mbit/s.

Borealis has shown to handle significant higher traffic loads than expected,
although we have found its load shedding mechanism for preventing overload
situations as not efficient. We expect Borealis to handle higher loads than
today, by altering parameters that are set in its source code.

Contents

1 Introduction

1.1 Background and Motivation
1.2 Problem Description
1.3 Outline.

2 DSMS Application Domains

2.1 Network Monitoring
2.1.1 Challenges
2.1.2 Classifications
2.1.3 Active Network Measurements

2.2 Sensor Networks

2.3 Financial Tickers

3 Data Stream Management Systems

3.1 System Requirements

3.2 Comparison of DBMSs and DSMSs

3.3 Stream Data Models

3.4 Continuous Query Languages

3.5 Data Reduction Techniques

3.6 Unblocking Operations

3.7 Overview of Existing Systems
3.7.1 TelegraphCQ
3.7.2 STREAM
3.7.3 Gigascope
374 Aurora
3.75 Medusa

4 Borealis
4.1 System Description 0oL
4.2 Architecture

4.2.1 Borealis Processing Node

13
14
15
16
17
18
20
20
20
21
21
21
22

vi CONTENTS
4.2.2 Distributed Catalog 25

4.2.3 Meta Optimizer 25

4.2.4 Marshal Tool 25

4.2.5 Borealis Client Applications 25

4.3 Data Model 26
4.4 Query Language 26
4.5 Query Processing Techniques 29
4.6 General Borealis User Experiences 29

5 Network Monitoring Tasks 31
5.1 TCP/IP Stream Definition 31
5.1.1 Timestamp 32

5.1.2 Representation of I[P Addresses 33

5.1.3 Representation of Option Fields 33

5.1.4 Sequence and Acknowledgement numbers 33

5.1.5 Representation of Flags 33

5.2 Task Design and Implementation 34
5.2.1 Task 1: Load Shedding 34

5.2.2 Task 2: Average Load 39

5.2.3 Task 3: Destination Ports 42

5.2.4 Task 4: Connection Sizes 46

5.2.5 Task 5: Intrusion Detection ol

6 Experiment Environment 57
6.1 Experiment Goals 57
6.2 Experiment System Description 58
6.2.1 NIC Packet Filtering with fyaf 59

6.2.2 Generating Traffic with TG 59

6.3 Experiment System Parameters 60
6.4 Alternative Setups 61
6.5 Beyond the Black Box Testing 62

7 Performance Evaluation of Borealis 63
7.1 Description of Evaluation. 63
7.1.1 Factors. 64

7.1.2 Metrics 65

7.1.3 Presentation of Results 67

7.2 Evaluation of Tasks, 68
7.2.1 Task 1: Load Shedding 68

7.2.2 Task 2: Average Load 73

7.2.3 Task 3: Destination Ports 81

CONTENTS vii

7.2.4 Task 4: Connection Sizes 84

7.2.5 Task 5: Intrusion Detection 88

7.3 Summary of the Performance Evaluation 92

8 Conclusion 95
8.1 Contributions 95
8.1.1 Design and Implementation 95

8.1.2 Ewvaluation 97

8.2 Critical Assessment 98
8.3 Future Work oo 98

A TCP/IP 105
B Building and Running a Borealis Continuous Query 107
B.1 Starting a Borealis Node 107
B.2 Implementation of Continuous Queries 108
B.3 Client Application 108

C Experiment Scripts 109
D BATCH SIZE 111

E DVD-ROM 115

viii CONTENTS

List of Figures

2.1

3.1
3.2
3.3

4.1

5.1

5.2
2.3
0.4
3.5
2.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

Schematic drawing of a TinyDB sensor mote.

Result tuples from a query performed on TCP/IP headers. . .
Schematic drawing of tuples in a stream.
Schematic drawing of window techniques.

Drawing off the client application, and its relation to the Bo-
realis query processor.

The TCP/IP stream definition used within all our Borealis

queries.

Task 1:
Task 1:
Task 1:
Task 1:
Task 1:
Task 2:
Task 2:
Task 2:
Task 2:
Task 3:
Task 3:
Task 3:
Task 3:
Task 4:
Task 4:
Task 4:
Task 4:
Task 4:
Task 5:
Task 5:

The random_drop box used to shed load
The first half of the map box
The second half of the map box
Schematic drawing of initial version 1
Schematic drawing of initial version 2.
Initial version 1
Schematic drawing of initial version 1.
Initial version 2 L.
Schematic drawing of initial version 2
Version 1
Schematic drawing of version 1
Version 2
Schematic drawing of version 2
Version 1
Schematic drawing of version 1
Schematic drawing of version 2.
Version 2, first half
Version 2, second half
Version 1
Schematic drawing of version 1

LIST OF FIGURES

5.22
5.23

6.1

7.1
7.2
7.3
7.4

7.5

7.6

7.7
7.8
7.9
7.10

7.11

7.12
7.13
7.14

7.15

7.16
7.17
7.18
7.19

7.20
7.21
7.22

Al
A2

D.1

Task 5: Version 2, first half 54
Task 5: Version 2, second half 55
Schematic drawing of data flow in the experiment system . . . 58
Task 1: Lost packets 69
Task 1: Average load for the Borealis process 72
Task 1: Average maximum CPU values for the Borealis process 72

Task 1: Single run comparison of CPU utilization at 30 Mbit/s

for Task 4 v. 1 andv. 5 73
Task 1: Average maximum memory values for the Borealis

PTOCESS. © « v v v vt e e e e e e e 74
Task 1: Comparison of memory consumption at 30 Mbit/s

network load for Task1 dr: 0.0 and Taskl dr: 0.8 74
Task 2: Lost packets 76
Task 2: Average measured network load 7
Task 2: Packets per second 78
Task 2: Average maximum CPU utilization values for the Bo-

realis process Lo 80
Task 2: Average maximum memory consumption for the Bo-

realis process Lo 80
Task 3: Lost packets 82
Task 3: Count of destination port occurrences 83
Task 3: Average maximum CPU consumption for the Borealis

PTOCESS « .« o v v i e e 84
Task 3: Average maximum memory consumption for the Bo-

realis processo 85
Task 4: Lost packets. 86
Task 4: Total exchanged bytes for the 10 connections 87
Task 4: Average CPU utilization peaks for the Borealis process 89
Task 4: Average memory consumption peaks for the Borealis

PTOCESS « . .« o o o i e e 89
Task 5: Lost packets 90
Task 5: Average CPU utilization peaks for the Borealis process 91

Task 5: Average memory consumption peaks for the Borealis

PTOCESS « . .« o o v i e 92
RFC793 - Transmission Control Protocol 105
RFC791 - Internet Protocol 105

Number of lost packets with varying BATCH_SIZE and net-
work loado 112

LIST OF FIGURES xi

D.2 Measured network load with varying BATCH_SIZE and net-
work loado 112
D.3 Lost packets at 45Mbit/s bandwidth at varying BATCH_SIZE 113

xii

LIST OF FIGURES

List of Tables

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9

7.10

7.11

System Parameters
Showing a batch consisting of n tuples

Workload factorso
Different drop rates used in the Task 1 versions
Task 1: Accuracy
Different window sizes used in the different versions
Task 2: Average accuracy A. of measured network load M; . .
Task 2: Average accuracy A, for measured packet rate P, . . .
Task 3 v. 1. Measured values P,, and estimates based on P,
from Task 2
Task 4: Average of accuracy A, for the measured results of
total exchanged bytes
Task 4, Task 4 v. 1: Sums of exchanged bytes on the 10 con-
nections, at 5 Mbit/s oo
Task 4, Task 4 v. 2: Sums of exchanged bytes on the 10 con-
nections, at 5 Mbit/s o000
Task 4 v. 3: Sums of exchanged bytes on the 10 connections,
at 5 Mbit/s

77
79

Chapter 1

Introduction

1.1 Background and Motivation

The number of people connected to the Internet increases each year [isc].
P2P and file sharing applications have in addition lead to a dramatic in-
crease in network traffic volumes [SUKBO06]. Measuring or monitoring the
Internet traffic, consisting of streams of data sent between connected hosts,
is increasingly of interest in many research fields. Network monitoring is
also needed in order to detect and prevent congestion, equipment failures or
malicious attacks.

As communication technology constantly is evolving, network monitors
have to be able to monitor data transfers at increasing speeds and volumes.
Since network traffic might extend to vast amount of terabytes within short
periods of time, restrictions of what information to obtain, and how long to
keep it, has to be set. In order to get a clear overview of what happens in
a network, high volumes of measured data are often needed to be analyzed.
This might lead to big challenges. Memory and storage resources and opti-
mization issues regarding utilization of high traffic volumes, yield the need
for complex and optimized solutions. Similar types of challenges have been
of great interest within the recent scientific research field of Data Stream
Management, Systems (DSMS)!, incorporating many technologies from the
research field of Database Management Systems (DBMSs).

Throughout the 60s and 70s DBMSs enabled people to store huge amounts
of data and provide them with easy access of the data, by introducing the
declarative query language SQL. The field saw great interest in both the
scientific world, where huge amounts of data of scientific interest could be
stored for easy analysis and sharing, and in the business world storing infor-

L Also referred to as Stream Processing Engines (SPE) in Borealis

2 Introduction

mation on customers, products and prices etc. The evolving technology of
today has led to an increasing amount of data kept in the form of continuous
data streams. Researchers have in the last years discovered the need of a
new type of system; a system to incorporate the query language concepts
from DBMSs on data streams. The need and usage of these systems are
spread across many different application domains. Typical application areas
are sensor networks, financial tickers and network monitoring [GO03].

A DSMS incorporates functionality for allowing its users to investigate
the behavior of data streams. Posing queries on a stream of data, instead
of data in a persistent database however requires that many challenges are
solved. One important challenge is to restrict the consumption of memory,
as the data volumes of streams grow large. Providing a query language fit to
perform the stream operations is also important. Another notable challenge
is to achieve low response times by processing the data as fast as possible,
as it is received by the DSMS. As for measuring the Internet in real-time,
several challenges are the same as those met by a DSMS. As many DSMSs
are multipurpose, meaning they can be adapted to perform queries on almost
any form of streaming data, many DSMSs are able to operate on the tasks
of a network monitor. We need to investigate what network loads they can
handle, and what types of network monitoring tasks they can solve.

1.2 Problem Description

Currently there exist several public domain DSMSs that have been imple-
mented, as part of scientific research projects at different universities:

e TelegraphCQ [tel]
o STREAM [st107]
e Borealis [bor]

e TinyDB [MFHHO03]

As most of these are developed for academic purposes and not for com-
mercial use, they are not optimized in terms of performance, documentation,
or graphical user interface. Their source code however might be available,
giving a clear picture of how their stream processing techniques and func-
tionality are implemented.

In this short Masters thesis we use the public domain system Borealis,
which is a distributed Stream Processing Engine (SPE), to perform network

1.2 Problem Description 3

monitoring tasks, by looking at a stream of TCP/IP packet headers flowing
on a network. We start by explaining the title of this thesis:

Design, Implementation and Evaluation of Network Monitoring
Tasks with the Borealis Stream Processing Engine.

By designing, we will investigate how a set of predefined network moni-
toring tasks can be designed and expressed in Borealis. As this thesis only
has an duration of 17 weeks, a set of four tasks were identified prior to the
semester start, as a minimal set of tasks to perform. The predefined tasks
are:

Task-1: Verify Borealis load shedding mechanisms.

Task-2: Measure the average load of packets and network load per
second over a one minute interval.

Task-3: How many packets have been sent to certain ports during the
last five minutes?

Task-4: How many bytes have been exchanged on each connection dur-
ing the last ten seconds?

We implement these tasks and deploy them on the Borealis query pro-
cessor. The continuous queries are performed on continuous data streams of
TCP/IP packet headers, generated in a network environment already set up
in the DMMS lab [Sgb06, Her06].

Following the implementation of the network monitoring tasks, we evalu-
ate how good they can be expressed and identify what network load Borealis
can handle, while performing the queries. The performance and consump-
tion of system resources by Borealis will be thoroughly examined. We also
investigate how tasks with different complexities affect the maximum sup-
ported network load. By using the same set up, and performing some of
the same tasks as Sgberg [Sgb06] and Hernes [Her06], we can later compare
the performance of Borealis with previous performance results logged from
TelegraphCQ [Seb06] and STREAM [Her06].

We have most often designed several solutions for the tasks, in order to
incorporate and test as much as possible of the continuous query language
functionality that Borealis support. We have as an example managed to
measure how different window sizes in sliding windows may affect memory
consumption. We have also measured how drop_rate, as a parameter for
load shedding, affects the network load Borealis can handle. In addition,

4 Introduction

we include discussions on several parameters affecting the performance of
Borealis, both set within the client applications, and within the source code
of Borealis itself.

In addition to the predefined tasks, we have managed to design a task
intended to show that intrusion detection can be designed and implemented,
as a Borealis continuous query (7Task 5). We have focused on detection of
SYN Flood attacks, and have implemented two task solutions able to identify
such a network event.

1.3 Outline

In this thesis, we start by covering the theoretical background for DSMSs.
Chapter 2 describes a selection of DSMS application domains involving data
streams. We discuss sensor networks, financial tickers and network traffic
monitoring. Out of these domains, we focus mostly on network traffic moni-
toring, as we later perform network monitoring with the Borealis DSMS.

In Chapter 3, we introduce DSMSs in general. We look into the con-
cepts and challenges of handling continuous queries on data streams, and
techniques for solving these challenges discussed in the literature.

We summarize the concepts of Borealis in Chapter 4, and start by pre-
senting its architecture, data model and query language. We also discuss
how Borealis face the DSMS issues and concepts discussed in Chapter 3. A
section where we discuss our own experiments after using Borealis is also
presented.

Our main contribution in this thesis is to show how well Borealis is de-
ployed for performing a set of predefined network monitoring tasks. In Chap-
ter 5, we present our design for the network monitoring tasks, in the Borealis
continuous query language. We start by discussing our stream definition for
TCP/IP packet headers. Furthermore, we discuss each of the tasks, and
present several attempts or versions, for solving each of them. In addition
to the predefined tasks, we also introduce two task designs that are able of
identifying possible SYN flood attacks.

Chapter 6 describes our experiment setup in detail. We discuss tools
used for traffic generation and filtering, and scripts and parameters we use
to execute the experiments. Even though our experiments are considered as
black-box testing?, we also include a section where we present some identi-
fied Borealis system parameters. These system parameters were found when
investigating the Borealis source code, in order to identify load shedding

2In black-box testing, the external characteristics are the subject of testing. This means
internal structures and functionalities are not considered

1.3 Outline 5

techniques. The section is included, as we believe that the parameters sig-
nificantly affect the results of our experiments.

In Chapter 7, we evaluate the performance and results from each of the
implemented network monitoring tasks. Consumption of system resources,
such as CPU is identified, and we identify the network load each of the task
versions can handle. In addition, we calculate the accuracy of the task results.
Based on these calculations and measurements, we are able to compare task
versions and identify how their query design affects the system performance.

Our conclusions are given in Chapter 8, summarizing the findings and
results from this Master thesis. Finally, we present sections on critical as-
sessment and future work.

In the appendixes, we include discussions, and figures not included in
the main chapters: Appendix A includes figures showing the structure of
both the TCP and the IP headers, as they are defined in RFC 793 [rfc81b]
and RFC 791 [rfc81a]. We include a discussion on how to build and run
the Borealis client applications, in Appendix B. As mentioned in Chapter 6,
our experiment setup consists of several scripts that are created in order to
help us perform the experiments. These are presented in Appendix C. In
Appendix D, we present a discussion off how the value for the BATCH_SIZE
parameter was chosen in the client applications. The discussion is included,
as the BATCH_SIZE parameter has shown to have significant impact on our
experiment results. At last, we include a DVD-ROM containing experiment
data, in Appendix E.

Introduction

Chapter 2

DSMS Application Domains

In many application domains data naturally occurs in the form of a sequence
of data elements (data streams) [GO03]. Within the last years researchers
have identified the need for new type of applications, enabling users to per-
form queries on these streams of data. By combining the query functionality
from database management systems (DBMSs) with functionality for pro-
cessing data streams, a new breed of systems is now emerging; data stream
management systems (DSMSs).

In this chapter we present three DSMS application domains, and start
by presenting the field of network monitoring. We present sensor networks
in Section 2.2, and introduce the field of financial tickers in Section 2.3,
concerning the collection of data from streams of stock prices and money
exchange rates between markets.

2.1 Network Monitoring

The numbers of hosts connected to the Internet increase each year. As of
July 2006, a survey from the Internet Systems Consortium stated that the
total number of hosts on the Internet has reached 439,286,364 [isc|. Due to
the increase growth and expansion of the Internet, the interest of measuring
it has grown within the research community [Sie06].

In the design of the Internet Protocol (IP), the routers were not intended
to retain information on ongoing transfers. Instead they were intended to
make use of efficient packet switching [GR|. Because of this, the Internet has
few built-in measurement mechanisms, and gaining the information men-
tioned above yields the need for network monitors. Traditionally, PERL
scripts are often used to measure and analyze Internet traffic [PGBT04]. As
the traffic continues to grow both in number and size, we need more power-

8 DSMS Application Domains

ful and adaptable tools. DSMSs incorporate many solutions to the several
challenges met by a network monitor; hence network monitoring is as an
emerging field of interest within the DSMS research field.

The purpose of network monitoring, is to track the state of the network
[GR]. Measurements performed by a network monitor typically involve:

e Bandwidth utilization and packet roundtrip time (RTT)

e Overview of traffic flows

e Identifying weak links with possible congestions

e Identifying equipment failures

e Traffic analysis, e.g. what applications are causing traffic

e Anomaly traffic detection for security reasons, e.g., Denial of Service

attacks (DoS)

Network monitors are not only needed in order to make sure a network
works like it should. When performing capasity planning or changes to a net-
work, network monitors are needed in order analyze the effect these changes
might have. Even small changes in network set-ups may lead many routers
to reconfigure their forwarding tables, leading to large changes in the net-
work. The effect of even small changes can be complex to foresee [GR], but a
network monitor can be used to gain a better understanding. Understanding
the behavior of network traffic is also vital, when dealing with protocol im-
provements and development. As 90% of the Internet traffic today is carried
with the TCP [MS05], significant research have been performed in order to
locate possible factors in TCP, limiting utilization of bandwidth. Network

monitoring and analysis of Internet traffic plays a vital role in these research
fields.

2.1.1 Challenges

Monitoring and measuring the Internet, or parts of it, consists of several chal-
lenges. The Internet, as a selection of autonomous systems (ASs), consists
of IP networks controlled by a variety of different operators. Within a single
AS the means of communication are either wired or wireless, with a handful
of different low-layered standardized ways of exchanging the bits. Measuring
and monitoring ASs might involve collecting data from several corporations
with different policies regarding privacy. Restrictions on what information

2.1 Network Monitoring 9

that can be gained and analyzed might further complicate the tasks of a net-
work monitor. The use of Internet applications such as Peer to Peer (P2P)
file sharing and streaming audio/video applications, has increased drastically
the last years. This has lead to a drastic increase of Internet traffic volumes.
Large traffic volumes will result in large amount of data to analyze, making
analysis very demanding in terms of memory, CPU and disk storage.

2.1.2 Classifications

Network monitors can either perform measurements on-line, or off-line. In
addition, the measurements are either performed passively or actively. In the
following subsections, we explain each of these classifications.

On-line

On-line measurement and analysis is performed at the instance of time when
the data is flowing through the network. Discarding analyzed data can save
huge amounts of disk space, when dealing with large amounts of network
traffic. Performing on-line analysis is crucial when performing measurements
in time-critical environments. By time-critical, we mean environments that
demand a short response, after identifying critical events.

Off-line

Off-line measurements are performed by logging traffic data into either flat
files or a database. Further analyzes and measurements are performed on
the persistent stored traffic data for complex analysis.

Passive Network Measurements

Passive measurements are used to gather data for network analysis, by mea-
suring observed traffic on a host or router [Sie06]. The data to gather could
for instance be the TCP/IP packet headers form all packets passing by a
gateway or router on the network. The network monitoring tasks, intro-
duced in Chapter 5, are based on on-line passive measurements of TCP /IP
packets headers.

Passive monitoring only observes, hence it does not particularly increase
network traffic. On the other hand, the size of the collected data can po-
tentially be huge; at least in case off-line monitoring is performed. Hence,
an important challenge when performing passive measurements is to restrict
the total size of the collected data. In addition, there are also important

10 DSMS Application Domains

challenges regarding scalability. As Internet network traffic constantly is in-
creasing, tools for measurements and analysis need to be scalable in order to
meet the increasing amount of data to process.

We are now going to introduce some existing systems. An example of a
hardware based passive network measurement tool is the Endace DAG card.
The fastest card in production as of Spring 2007, is claimed to capture 100%
of the packets in a 10 Gigabit Ethernet link [end]. However, these hardware
cards are expensive. In addition, the platforms they use are considered to
be primitive, and it is hard and challenging to implement monitoring appli-
cations on them [Der03].

There exist a variety of software based passive network utilities. tcpdump
[tep] is an example tool for off-line analysis of passive measurements. tcpdump
can be used to produce statistics or graphs based on packet information
dumped to disk. Systems like tcpdump although fails when network loads
increase to 1 GBit/s [Der03].

For off-line analysis, there also exist several DBMS-based systems that
enable users to store packets obtained from the network as relations. InTra-
Base is such an example [Sie06].

For on-line analysis, Gigascope, a proprietary solution from AT&T, is an
example network monitor classified as a DSMS [JCS03]. Tt provides an SQL -
like interface for processing streams of packets, and is said to handle network
loads up to 1 Gbit/s. It includes traffic analysis, intrusion detection, router
configuration analysis etc. In Chapter 5, we introduce Borealis as a network
monitoring tool, performing on-line, passive network measurements.

2.1.3 Active Network Measurements

Active measurements are performed by actively sending probe packets into
the network [Sie06]. These packets are then used as references to track the
state of the network. Estimates of link capacities, and available bandwidth,
are often the subject [Sie06].

As packets are sent to the network, active monitoring will increase net-
work load. In contrast to passive network monitoring, only the probe pack-
ets are subject of the actual measurements. The number of probe packets
should be significantly lower than the number of packets subject of the mea-
surements in passive network monitoring. Hence, active monitoring often
requires smaller disk space and memory resources, than passive monitoring.

An example of an active measurement tool are traceroute. It is used to
trace the route to a host. traceroute obtains information from all gateways
a packet needs to pass in order to get to a host. The information is obtained
by the use of Internet Control Message Protocol (ICMP) packets. By using

2.2 Sensor Networks 11

TinyDB

TinyOS

Hardware

Figure 2.1: Schematic drawing of a TinyDB sensor mote.

the timetolive field in the IP header, latencies between the gateways are
calculated.

2.2 Sensor Networks

Sensor networks have in the past few years matured to the point that they
are now feasible to be deployed at large scale [MFHHO05]. Each sensor within
the network is a battery powered wireless device that can measure certain
values, e.g., temperature, noise, light and seismographic data.

The sensors are capable of creating networks on their own, connecting to
each other in an ad-hoc fashion, acting both as routers and clients. They
communicate wirelessly; hence they do not require cables. By deploying
many sensors, large geographical areas might be covered. Since they are
energy efficient and low-end, their batteries can last for weeks or months at
a time [MFHHO05]. By time synchronizing with their neighbor sensors, they
can save power by only staying awake when they need to transmit data.

Researchers have deployed sensor networks in many monitoring environ-
ments. Example deployments are monitoring of environmental properties for
endangered birds during their burrows, and at a vineyard, and for earthquake
monitoring [MFHHO05].

TinyDB is an example system capable of processing distributed sensor
data from wireless devices, also called motes [MFHHO05]. These motes run
their own operating system, called TinyOS. On top of TinyOS, each mote
runs TinyDB incorporating distributed DSMS functionality. Figure 2.1,
shows a schematic drawing of a TinyDB mote. Users can perform queries on
the motes by the use of a Java based GUI, which can be run on a machine
connected to the motes. We include a sample TinyDB query, performed on
a set of sensors motes:

SELECT nodeid, temp, light, voltage, noise

12 DSMS Application Domains

FROM sensors
SAMPLE PERIOD 5

The query obtains the nodeid in addition to measurements of tempera-
ture, light, voltage and noise from all the sensors, every 5th seconds.

2.3 Financial Tickers

In the financial world, stock prices stream between sellers and buyers through
stock exchange markets. Several of the challenges within the world of DSMS
are met, when controlling these streams of data. Analysis of financial events
typically involves discovering correlations, identifying trends, forecasting fu-
ture values, etc. [GOO03].

Traderbot is an example financial application, which incorporates DSMS
functionality. It is a real-time financial search engine that provides a search-
engine interface to a real-time data stream consisting of prices and finan-
cial news. Traderbot also incorporates an interface to a financial historical
database [tra]. As an example query, it can for instance report stocks under-
going rapid increases or decreases in price on the exchange markets.

Chapter 3

Data Stream Management
Systems

In this chapter, we describe data stream management systems (DSMSs)! in
general.

The main requirements of a DSMS are presented in Section 3.1. As much
of the concepts and functionality of a DSMS are inherited from database
management systems (DBMS), we compare the two different types of systems
in Section 3.2. In Section 3.3, we cover the DSMS stream data model.

DSMSs perform their queries with the use of continuous query language.
We discuss concepts, and mention example languages, in Section 3.4. A
number of data reduction techniques is presented in Section 3.5. In Section
3.6, we discuss unblocking operations when dealing with aggregation of values
from infinite streams. Some example existing DSMSs, are presented at the
end of this chapter, Section 3.7. Note that we thoroughly present Borealis,
in Chapter 4.

L Also referred to as a stream processing engines (SPEs)

FORMAT: timestamp, average packets count pr. second, average bits pr. second
13,5013,420156971
73,6084,511417531
133,6075,511232111

Figure 3.1: Result tuples from a query performed on TCP/IP headers.

14 Data Stream Management Systems

3.1 System Requirements

DSMSs give its end users tools for extracting and analyzing information
from data streams in real-time. As for selecting what information to re-
trieve, DSMSs perform continuous queries. The information retrieved from
the stream is known as result tuples. Figure 3.1 shows example output from
a query performed on a data stream consisting of TCP/IP packet headers.

We start with a short definition of a data stream, posed by Golab et al.
[GOO03]:

A data stream is a real-time, continuous, ordered sequence of
items.

The conceptual behavior of data items arriving in real-time, is that they
may arrive in an uncontrollable rate, and have to be computed during a
restricted period of time. By continuous, we mean they might never stop
arriving. By ordered, we mean that they either arrive in order implicitly by
arrival time or explicitly by a timestamp [GOO03]. We introduce the concept
of timestamps in Section 3.1. The items in the stream, are the data elements
that the stream consist of, these are also called tuples.

What mainly distinguishes data encapsulated in streams, with data resid-
ing persistently in a database, is that the data in streams is not available for
random access from disk [BBD*02]. The streams possibility of unbound sizes
yields that storing them completely is impossible. Latency issues might also
make disk storage operations on the stream infeasible. Hence the tuple values
in streams are only kept in memory during certain time intervals, and may
be seen only once [SCZ05]. We hereby state some important requirements
for a DSMS. In addition to the stated requirements are also the requirements
of correctness, predictability and stability as with most systems.

e Achieving a minimum latency is important in a DSMS, since low re-
sponse time often is needed when reacting to online events. In addi-
tion, a DSMS should not stall the data stream, instead keep it mov-
ing [SCZ05]. DSMSs operating on streams when rapid reactions are
needed, should be able to perform online processing without costly
disk storage operations [SCZ05].

e In order to achieve low latency, incorporation of approzimation, or data
reduction techniques are also important parts of a DSMS [BBD102].
This is because high-volume data streams can increase CPU and mem-
ory consumption. Data reduction is used to relief the systems, although

3.2 Comparison of DBMSs and DSMSs 15

leading to approximate results. We cover reduction techniques in Sec-
tion 3.5. The techniques can be successfully deployed where trends,
rather than results of total accuracy are of interests.

e DSMSs are required to incorporate a continuous query language, in
order to be able to present real-time computed analysis from the stream
[SCZ05]. We present continuous query languages in Section 3.4.

e Load shedding is a more drastic operation, performed to relief a DSMS
with tuples to process. It is a common technique where selected tuples
simply are discarded. The dropping of tuples, might certainly affect
the correctness of query results. Chapter 4 includes a discussion on
how Borealis deals with load shedding.

e Adaptableness is another key requirement of DSMSs [BBD102]. Data
streams are often strictly uncontrollable, hence there is often hard to
foresee their behavior. Somehow, DSMSs have to deal with stream
imperfections like delay, missing or out-of-order data, or bursty data
rates [SCZ05]. As mentioned, load shedding can be used to deal with
high traffic rates, and is among techniques used to increase a DSMSs
means of adaptiveness.

e Stream processing can either be pull-based, or push-based. The later
form is a passive way of processing a stream, where the data contin-
uously is pushed to the system. Network monitoring, as we perform
it with Borealis described in Chapter 6, is an example of push-based
stream processing. This is because the stream is pushed into the DSMS,
without it being able to control the stream rate in which tuples arrives.
In sensor networks, pull-based stream processing is performed, as the
system can control in which rate each sensor should transmit their
measured data.

e Finally, we mention a final DSMS requirement. This is the ability to
integrate stored data with the streaming tuples [SCZ05]. Most DSMSs
are able to store data from streams in internal databases, and also
compare streaming tuples with statically stored data.

3.2 Comparison of DBMSs and DSMSs

Obtaining data from data sources in general, is a task DSMS share with
database management system (DBMS). We start by a definition of DBMSs
given by in Elmasri et al. [ENO7]:

16 Data Stream Management Systems

The DBMS is a general-purpose software system that facilitates
the processes of defining, constructing, manipulating, and sharing
databases among various users and applications.

We further compare these concepts with those shared with DSMSs. Note,
that while DBMSs operate on databases, DSMSs mainly operate on data
streams.

Defining a database in a DBMS involve specifying the data types, struc-
tures and constraints [ENO7]. In DSMSs, stream definitions are used in order
to specify the data elements/tuples, within the stream.

Construction of a database is something DBMSs do for storing data to
a storage medium. A DSMS does not necessarily construct anything; it
will rather connect to a data stream, than constructing it. Note that many
DSMSs are able to store streams as relations to storage mediums as an ad-
ditional feature.

Manipulating a database, in terms of a DBMS, involves queries either
retrieving, updating or deleting specific data in the database. DSMSs also
retrieve and update data in streams by posing queries. Since data in streams
most often are seen as append-only, deletion of data in streams is often not
supported, although selections of streams can be re-routed to a new stream
elsewhere.

Sharing as an event in DBMSs; is the feature of allowing multiple users
access to shared data in databases simultaneously. This concept of sharing is
perhaps not something DSMSs are intended to support. Or at least sharing
is a concept of less interest, since the nature of a data stream yields that
it is easier to share the stream itself. Note, that several DSMSs support
distributed queries, and cooperation in distributed environments, and that
most DSMSs supports several real-time queries at the same time.

3.3 Stream Data Models

The stream data model, as part of a DSMS, is intended as a set of concepts
used to describe the structure of the data streams to process. In a DBMS,
data models describe the a set of concepts used to describe the structure
of a database [ENO7]. Most DSMSs see data streams as a sequential list of
data elements. Each data element takes the form of relational tuples [GO03].
Borealis, introduced in Chapter 4, uses a data model where streams are seen
as append-only sequences of tuples.

A notable behavior of data streams is that tuples can arrive un-ordered,
although seen as an ordered sequence. If they later should be read in a

3.4 Continuous Query Languages 17

(LT [T | T]
T = tuple.
‘ a’17b17cl ‘ a27b2702 ‘ a’37b3vc3 ‘ e ‘ a’nabnacn ‘

an,b, and ¢, is the set of parameters within each tuple 7,,.

Figure 3.2: Schematic drawing of tuples in a stream.

certain order, they should contain a timestamp or a sequential number. This
way the DSMSs can process un-ordered tuples, and order them on behalf of
the timestamp or sequence number. Figure 3.2 shows schematic drawings, of
tuples in a data stream. The figure shows two levels of hierarchies, in order
to show the relation of tuples, and their parameters.

Tuples are seen as relational. The tuples 77 and 715 relate to each other
when sharing the same key parameter(s). This often means having timestamp
values within the same time interval. In Chapter 6, we include several queries
where tuples are said to relate to each other when they have equal values for
the tuple parameters sourcePort and sourcelP.

3.4 Continuous Query Languages

In order to retrieve information from the data streams, DSMSs perform
queries expressed by the use of continuous query languages. Many of these
languages are expressed with syntax and structure similar to SQL (Struc-
tured Query Language). Examples of SQL like languages are: CQL used in
STREAM, GSQL used in Gigascope [JMSS05], AQuery and StreaQuel used
in TelegraphCQ [GO03].

The SPE Aurora, and its successor, Borealis, gives its users ways of ex-
pressing continuous queries with a GUI containing conceptual arrows and
operator boxes. The data flows are presented as arrows. The operator boxes
can be seen as obstacles that by connecting to the streams, obtains result
tuples from them. The results from the operations on the stream, performed
by the operator box, are sent out from the box as separate stream(s). The
parameters within each box declare what to retrieve from the incoming tu-
ples, and whether or not to pass it to the output stream(s). By using the
operator boxes, and stream definitions, users can specify the way the data
flows within a query. Because of the way it gives users control of the data
flow, the CQL used by Borealis is said to be a procedural language [GOO03].
We describe the CQL in Borealis further in Chapter 4.

18 Data Stream Management Systems

3.5 Data Reduction Techniques

Continuous queries that are run over data streams only look at data elements
while they reside in memory. Since memory always is restricted, we need to
set a size limit of maximum bytes or a maximum time interval to process data
from, when dealing with data streams possibly of infinite size. One technique
for setting these restrictions is to evaluate only samples of the data. This
is called sampling [BBD'02]. When restricting the data to evaluate only to
samples, some data will be thrown away, and not considered. In this case,
result tuples will only present approximations, rather than accurate results.
To restrict the use of resources, mainly memory, many other techniques have
been prompted to create reasonable tradeoffs between approximated and
accurate results.

The concept of sliding windows is a data reduction technique supported
by most DSMSs. It is typically used when calculating aggregated values.
Their results are somewhat only approximations of the total stream behavior,
since only a portion of the stream (called a window) is evaluated, instead of
the entire past history [BBD102]. A restriction could be set, for instance
only to evaluate tuples within an interval of five seconds. The restriction
value that defines how many tuples to evaluate within a window is called
the window size. Window sizes are either time-based or tuple-based. Time-
based windows base their selection of tuples on their timestamps, and will
only allow tuples from within a certain interval. Tuple-based windows base
their selection of tuples upon a maximum count of tuples to process at the
same time. The windows are called sliding, since the tuples they process
are sliding through, as new ones arrives. Most DSMSs let the user control
how the windows should advance or slide. In the Borealis continuous query
language, the advance operator in aggregation boxes defines this value.

There exist a variety of window specifications in the DSMS literature,
but there seem to be some disagreements on their definitions. The window
specifications mainly distinguish themselves on how they advance, and how
their advance value relates to their window sizes. We choose to classify
four types of windows as presented by Krishnamurthy et al [KWF06]. The
classifications are presented in Figure 3.3, and described in the list below:

e Hopping windows are windows where the advance value, is larger than
the window size itself. This means that A; > W, where A, is the
advance value, and W; is the window size. Because of this, hopping
windows do not overlap each other [KWF06]. Note that Golab et al.
[GOO03] use the term non-overlapping tumbling windows for these. Hop-
ping windows can be seen as a type of sampling technique, where win-

3.5 Data Reduction Techniques

19

Window 1

%

Window 2

Window 3

NN

% Hopping windows

Window 1

7

Window 2,

Window 3

7

Tumbling windows

Window 1 j%/%//ﬂ%

Window 2

Window 3 Overlapping windows
Window 1 j%/%//ﬂ%
Window 2 W
Window W% W Landmark windows

Figure 3.3: Schematic drawing of window techniques.

dows are sampled from the stream.

Tumbling windows have equal window size and advance value. A; =
Ws. This means they will not overlap, and all values in the stream,
will once, and only once, reside in a window. Note that Golab et al.
[GOO03] use the term jumping windows, for these.

Overlapping windows are windows where the advance values are smaller
than the window sizes. Ay < Wy. Quverlapping windows are used when
one would wish to report aggregated values more often than for each
window. The behavior of overlapping windows, is by many seen as the
typical behavior of sliding windows.

Landmark windows have a fixed point from where they move. Their
size will increase while tuples are added. Using landmarks windows
can result in blocking operations, since one will never will see the entire
input in the window, when performing aggregations on data streams of
infinite size.

There exist a variety of other reduction techniques. Sketching, Histogram

and Wavelets [BBDT02] are all reduction techniques which involve summa-
rization of estimates or representations.

20 Data Stream Management Systems

3.6 Unblocking Operations

Aggregation operations are commonly used in order to summarize multiple
values in a data set. Example aggregation operations are SUM, COUNT,
MIN, MAX and AVG [BBD"02]. When using these aggregations on unbound
data streams, a problem referred to as the blocking problem has to be taken
into consideration [BBD"02]. These aggregations are known to be blocking
operators. If a query processor derived from the DBMS world would be asked
to compute an average value of an infinite continuous stream, it would never
see its entire input. Thus it will be blocked in an infinite loop, computing
average values forever, never able to report a final result. Sliding windows are
often used as a solution for this problem. By only computing aggregations
within windows, the DSMS sees the whole input to compute aggregations
from. This way it is able to present final results, performing aggregation
operations over infinite streams.

3.7 Overview of Existing Systems

In this section, we briefly present some existing DSMSs. We start with
TelegraphCQ.

3.7.1 TelegraphCQ

TelegraphC(Q), is a system developed at University of California, Berkeley.
The initial system Telegraph was implemented with the following goal:

Develop an Adaptive Dataflow Architecture for supporting a va-
riety of data intensive, network applications [CCD*03].

Prototype extensions to early implementations of Telegraph are later
built. These support stream processing, hence the name TelegraphCQ).

TelegraphC(Q) are written in the C language, and base its query processing
functionality upon the open source DBMS PostgreSQL [Seb06]. Because of
its relation to PostgreSQL, TelegraphC() is supposed to store streams to disk
that later can be retrieved as relations in PostgreSQL. TelegraphC() uses
StreaQuel query language, which is very similar to SQL. The language sup-
port windowing semantics like sliding windows and tumbling windows in order
to prevent blocking operations. An in-depth description of TelegraphC(Q can
be found in [Seb06].

3.7 Overview of Existing Systems 21

3.7.2 STREAM

STREAM is implemented at Stanford University. It is a general-purpose
DSMS that support declarative continuous queries over continuous streams
and traditional data sets [ABBT04].

It targets rapid and load varying streams, on systems where re-
sources may be limited [ABB*04].

STREAM uses CQL (Continuous Query Language), which is a relatively
minor extension to SQL [ABBT04]. It supports aggregations over windows,
that are either time-based, tuple-based or partition based. In other words,
STREAM support sliding windows.

Streams are either defined as ISTREAM, which is tuples that are in-
serted, RSTREAM consisting of tuples that resides within a window, and
DSTREAM tuples that are deleted from RSTREAM. Further descriptions
and evaluation of STREAM can be found in [Her06].

3.7.3 Gigascope

Gigascope is a stream database for network applications. Gigascope supports
traffic analysis, intrusion detection, router configuration analysis and mon-
itoring, etc [JCS03]. Tt is developed at AT&T, and deployed at many sites
within the AT&T network. It is supposed to be able of processing 1.2 mil-
lion packets per second during peak periods, at a dual 2.4 GHz CPU server
[JCS03].

The supported continuous query language used by Gigascope is GSQL.
The language supports operations like selections, joins, aggregations and
merging. GSQL are optimized for operation on network tasks, and support
low-level optimizations in order to support high network loads. This means
the query processing is performed at low-levels, such as within the network
interface card (NIC) itself.

3.7.4 Aurora

Aurora is a general-purpose DSMS developed at Brandeis University, Brown
University and M.I.T [ACCT03]. The supported stream processing opera-
tions include filtering, mapping, and windowed aggregations and joins. The
query language of Aurora is expressed by the use of a Java GUI. The GUI
supports dragging and dropping stream processing operators, and connecting
them to data streams. In addition to the GUI, key components of Aurora
include the scheduler reducing overhead and invoking batching techniques,

22 Data Stream Management Systems

the storage manager, which among other things includes pull-based access
to historical stored data. Finally, the load shedder is responsible for detect-
ing and handling overload situations. Borealis, presented in Chapter 4, and
Medusa presented in next section, inherits functionality from Aurora.

3.7.5 Medusa

Medusa is a distributed DSMS, based on the single-site functionality of Au-
rora [BBS04]. By distributing stream processing among several machines,
many advantages are identified. This includes the ability to leverage query
processing among several machines, and the ability to create replicas. The
replicas enables that the task of a faulting machine can be handed over to
another machine.

The concept of high availability (HA) is an important goal for the Medusa
application. Complex functionality is implemented in order to achieve this.
By achieving high availability, the overall system should for instance handle
crashed machines, and broken communication lines, to some extent. Bore-
alis, presented in Chapter 4, inherits its concepts and functionality regarding
distribution of queries from Medusa.

Chapter 4

Borealis

In this chapter we describe Borealis Spring version 2006. Documents regard-
ing the functionality of this version are what we base our descriptions on, at
least throughout Section 4.5. In Section 4.1, we start with a general system
description, and present the Borealis architecture in Section 4.2. We then
present the data model used by Borealis to structure stream data elements
in Section 4.3, and the query language used to pose continuous queries in
Section 4.4. Additional query processing techniques are mentioned in Sec-
tion 4.5. As we have thoroughly tested Borealis, we also present a section
where we discuss our experiences of using it, in Section 4.6. Since Borealis,
rather than being a full production commercial system, is made for academic
purposes, parts of it have shown not to work as expected. These findings are
among other things covered.

4.1 System Description

Borealis is a distributed stream processing engine (SPE)!, developed at Bran-
deis University, Brown University and MIT [AAB105]. It inherits function-
ality from two systems: Aurora and Medusa. From Aurora it inherits its
core stream processing functionality. Functionalities regarding distribution
of queries in networks, are inherited from Medusa [ABCT05].

Borealis, as part of a research project, has as purpose to identify and
address shortcomings of current stream processing techniques [bor]. Tt is
built up on several modules dealing with the different aspects of stream
processing, stream query distribution, and tools to visualize and perform the
processing operations. By looking at a set of input streams, it can aggregate,
correlate and filter continuous streams of data to produce the output of

'Note that we use the terms DSMS and SPE interchangeably.

24 Borealis

interest [Tea06]. Because of the way it is set up to handle I/O, Borealis can
be seen as multipurpose DSMS, which can be deployed in many different
stream processing application areas. These areas include sensor network and
as we describe in Chapter 6, network monitoring. In a demonstration by
Ahmad et al. [ABC*05], Borealis was even used to operate on a multi-player
first person shooter network game, running continuous queries producing
information on player positions in the game.

4.2 Architecture

In this section we present the different modules of Borealis. The modules are
all part of the Borealis system, and deals with the different aspects of Borealis
stream processing functionality. We will mainly describe their concepts.

4.2.1 Borealis Processing Node

A Borealis distribution is a collection of modules, although the Borealis server
application, called the processing node, is the module that performs the
actual stream processing. In order to operate Borealis on a distributed query
network, each processing node runs a Borealis server instance [AABT05]. It
consist of the following components [Tea06:

1. The Query Processor consists of the Aurora Node module, which is the
actual stream processing engine within each Borealis processing node.
Further more, it also keeps an administration interface for handling in-
coming requests. The module Query Catalog holds the query diagrams
locally. In addition, the Data Path module routes tuples in and out
from remote nodes. Within the Query Processor, there is also a module
called the Consistency Manager, which deals with failure handling, and
replicas in distributed query environments.

2. The Availability Monitor is a monitor that observes the state of neigh-
bor nodes in distributed query networks. It is used by the Consistency
Manager, which operates within the Query Processor.

3. The Local Load Manager improves load balance between nodes, by
tracking the state of the node that it runs on. It also reads information
from other Local Load Managers, if in a distributed query. By tracking
the load on other nodes, the modules can perform load balancing. Note
that there also exist a module called the Global Load Manager, as part
of a module called Meta Optimizer, described Section 4.2.3.

4.2 Architecture 25

4. The Transport Independent RPC'is a layer module that handles control
messages sent between components and nodes in the query network.

4.2.2 Distributed Catalog

As part of the collection of modules, Borealis also contains the Distributed
Catalog module that keeps information about the overall system. Although
the nodes perform the actual stream processing, the Distributed Catalog has
overall deployment information, and description of query diagrams in a dis-
tributed query networ.

4.2.3 Meta Optimizer

The Meta Optimizer is a standalone application that monitors the Borealis
processing nodes globally through the Global Load Manager module. It can
also apply load shedding through the use of the Global Load Shedder module,
as nodes get overloaded. The Global Load Shedder is responsible for detecting
and handling overload information. It is supposed to act when nodes become
overloaded due to increased data rates, or increased query workload [Tea06].
Although leading to approximated results, it will drop selected tuples. Bore-
alis is supposed to contain complex computation for selecting which tuples to
drop. It operates on three different levels: locally in the network, on nodes
in the neighborhood and distributed all over the system.

4.2.4 Marshal Tool

The Marshal Tool is used for generating C++ helper functions regarding
stream /0. The functions are used by the Borealis Client Applications, de-
scribed in Section 4.2.5. The Marshal Tool is a stand-alone module that
takes a XML query diagram as input. By reading the query diagram, it cre-
ates well-suited C++ structures and functions on behalf of the streams and
stream schemas defined in the XML. We describe Borealis query language,
and XML in Section 4.4. The Marshal Tool is also well suited for valida-
tion of queries. Validation of the query XML is performed with the use of a
document type description (DTD), and a XML parser.

4.2.5 Borealis Client Applications

A Borealis client application is responsible for sending and retrieving stream
data to the Borealis processing node. By processing node, we mean the actual
instance of the Borealis Query Processor. The actual sending and retrieving

26 Borealis

Input tuples

Data Strea .
Borealis Query Process

Result tuples

Figure 4.1: Drawing off the client application, and its relation to the Borealis query
processor.

is made simple, by using the generated structures and functions created with
the Marshal Tool. Structures for both input and output tuples are defined
in a generated header file, as well as functions that take instances of these
structures as arguments. Provided with the Borealis release is a number of
executable client applications that show how to send and retrieve stream
data with the use of the generated code. Figure 4.1 shows a drawing of the
a client application, and its connections to both a data stream, and to the
Borealis query processor.

4.3 Data Model

The Borealis stream data model is based on the one found in Aurora. This
model defines streams as an append-only sequence of data items [Tea06]. The
tuples take the form of (ki,---,k,, a1, -, ay), where ky,--- k,, consist of
the key for the stream, and a1, - - -, a,, provide the attribute values [ACC*03].
Each data item are called tuples.

Borealis will only recognize parameters within the tuples, if they appear as
defined in the stream definition. We cover the concepts of stream definitions
in next section.

4.4 Query Language

Borealis supports a continuous query language composed of conceptual oper-
ator boxes and stream arrows. Within the Borealis release, a GUI is included
to build these queries. The queries eventually take the form as XML docu-
ments, that are uploaded to the Query Processor when queries are performed.
Since XML is used, queries can also be written by hand, without using the
Java GUIL

We hereby cover the main operation concepts, which are supported in
order to pose queries on the streams:

4.4 Query Language 27

e Operator boxes, are used to retrieve data from parameters within the
tuples. There exist several types of operator boxes. We describe them
later in this section.

e Stream arrows define the intended flow of the streams within the Query
Processor. Note that in the actual XML documents, stream flows are
expressed by using XML deploy diagrams, and implicitly by declaring
their flow in and out from the operator bozes.

e Stream definitions are used in order to define the appearance of the
tuples within the stream. By doing so, the Query Processor knows
what parameters each of the tuples in a specific stream consist of. Bo-
realis supports several field types that we present in Chapter 5.1. This
chapter also describes how to express a stream definition for TCP/IP
header fields.

e Deployment diagram are expressed in XML, and are optionally up-
loaded to the Query Processor during query execution. The diagrams
can be used to connect client applications to streams traveling between
operator bores within the query. By default, only those streams that
have not been identified as a input stream for any operator box, are
sent back to the client application. By the use of deployment diagrams,
users are able to better control the internal stream events, within the
Query Processor.

Borealis support the following operator boxes [Tea06]:

e The Map operator box is used to transform input tuples, and map them
into a output stream.

e The Filter operator box is used to apply predicates, and route tuples
to output streams either matching the predicate or not.

e The Aggregate operator box is used to apply aggregate functions (e.g.
AVG or SUM) over sliding windows. The size of each window is either
given as a maximum time interval (time-based), or a maximum num-
ber of tuples to keep inside each window (tuple-based). The advance
parameter tells how the window should slide.

e The Join and AuroraJoin operator boxes are used to pair tuples from
two streams when both match a certain predicate. The result tuple can
then be constructed by the use of values from both of the input tuples.

28 Borealis

e The BSort operator box is used to sort tuples in a windows, based on a
single integer parameters contained in each of the tuples. A restriction
is set on the maximum number of tuples to be contained within each
result set. The sorting algorithm used is bubble sort.

e The Union operator box is used to merge tuples from two streams with
similar schemas into a stream containing all tuples from the streams in
arbitrary order.

e The Lock/Unlock operator box is used for synchronization and concur-
rent access of tuples with an integer key field with a certain value.

e The WaitFor operator box is used for synchronization as well. It ac-
cepts two streams of tuples. They buffer tuples from stream s; until
the tuple of stream s; matches a tuple in s; with a certain predicate.
The tuple in ss is the one that is released to output stream.

e The Random Drop operator box can be used for load shedding. It drops
tuples randomly with a probability of pg, where p; is the drop_rate
parameter. These boxes can be deployed by the user itself, within
queries, but are additionally deployed by the Global Load Manager,
when overload occurs.

e The Window Drop operator box is also a operator for load shedding.
Instead of dropping single tuples, it drops whole windows. The pa-
rameter drop_rate sets the probability pg, of whether or not a window
should be dropped. The actual window definition is defined in the same
way as in aggregate operator boxes.

Borealis supports internal static tables that can be compared with input
tuples. Four table operator boxes are supported:

e The Select table operator box passes tuples from static tables, as they
match tuples from input streams given a certain predicate.

e The Insert table operator inserts tuples into a static table, as they are
received from input stream.

e The Delete table operator box is used to delete tuples within a static
table, as they are matched with tuples arriving at the input stream
with a given predicate.

e The Update table operator box is used to update tuples within a static
table, as they are matched with tuples arriving at the input steam with
a given predicate.

4.5 Query Processing Techniques 29

4.5 Query Processing Techniques

In this section we present notable query processing techniques, not already
mentioned.

e Dynamic Query Modification is implemented in order to be able to
modify queries dynamically during operation.

e The High Availability module in Borealis makes the nodes monitor each
other with the use of control messages. As nodes get overloaded, the
tasks of faulting nodes can be handed over to others.

e The Statistics Manager provides an interface for fetching statistics from
processing nodes. The statistics includes: stream rates, tuple latency
and operator cost, selectivitys and queue lengths.

4.6 General Borealis User Experiences

Thoroughly testing Borealis gives us the impression that Borealis is a pow-
erful stream processing engine. Since being subject of academic research
rather than commercial production, it does not seem to operate flawlessly
as described in its documentation. For instance, there were some challenges
with respect to the average parameter. The documentation [Tea06] clearly
states that it should be expressed as average. By coincidence, we tried typ-
ing avg instead, which seemed to be the solution. In addition, important
client application functionality incorporated in the provided examples are
not mentioned in the documentation. This includes batching techniques and
parameters used to control the batching technique behavior. Chapter 6.3
includes a discussion of both the technique, and the parameters.
Installation of the system demands high knowledge of Linux system li-
braries, packages and general system setup as well as dependencies. We have
not managed to compile Borealis on any Linux distribution other than Fe-
dora Core 2. This distribution is supposedly the one Borealis was developed
on. There still exist several modules that we have not been able to compile.
Performing queries and connecting to data streams both involve build-
ing a C++ application, and writing intricate XML queries. Several example
applications are provided. By using these, building client applications, and
creating XML queries, have proven to be not so demanding as we first feared,
although basic C++ knowledge is needed. Expressing intricate queries how-
ever, has proven to be very time consuming. Intricate queries will soon
lead to many lines of XML. Several lines of XML, when containing small

30 Borealis

mistakes, e.g., typing errors, are very hard to debug. The provided XML
parser used by the Marshal Tool, and during query uploads, help locating
these to some extent, although the parser does certainly not always respond
with understandable error messages. Although the learning curve of writing
XML queries is steep, we have found that intricate queries can be performed
with success. We have not been able to test the GUI application for writing
queries, but based on our beliefs of the query concept, getting a high level
graphical overview of complex queries should help overcome complexity of
expressing them in XML.

We were not able to compile the Global Load Shedder, as part of the
Meta Optimizer properly. The Local Load Shedder, which is supposed to
operate on each processing node, does not seem to be working either. Further
investigation of its source code shows lines that are commented out, that
perhaps should not be commented out.

Performance wise, Borealis have proven to be more efficient of dealing
with stream data than expected. We present a further discussion on parame-
ters affecting system performance in Chapter 6.5. A performance evaluation
of Borealis is given in Chapter 7.

Chapter 5

Network Monitoring Tasks

In this chapter we present the design of each network monitoring task. We
start by presenting how TCP/IP header fields are defined within the stream
definitions. As there are several ways of representing the fields, we include
discussions explaining the field types we have chosen.

Following the explanation of the stream definition, we start explaining the
task designs. Fach task design often includes several versions, since there are
several ways of solving them.

5.1 TCP/IP Stream Definition

The Borealis client applications receive a stream of TCP/IP header fields
from a socket connection to fyaf!'. Each header is represented as a comma-
separated string containing the header fields?. In this section we discuss how
to represent these values as a stream of tuples.

The TCP and IP headers are defined in RFC793 [rfc81b] and RFC 791
[rfc81al, presented in Appendix A. They consist of a variety of fields; many
with different sizes. They range from one bit fields used for flags, to optional
fields with a possible size of 81 bytes.

When defining a stream in the Borealis query language, six field types
are supported [Tea06]. These are:

e int - A 32 bit signed integer

e long - A 64 bit signed integer

"We introduce fyaf in Chapter 6.2

2Note that for each task, not all fields are needed. But since we want an adaptive
stream definition, we choose to present all the headers, even though some of them never
will be used.

32 Network Monitoring Tasks

single - A 32 bit IEEE floating point value

double - A 64 bit IEEE floating point value

string - A fixed length, zero filled sequence of bytes

timestamp - A 32 bit time value

The lack of field types that perfectly match representations in the TCP /TP
header, pose that the mapping will not be optimal in terms of size. A minimal
size representation of fields in the input stream would possibly lead to a higher
supported network load®. On the other hand, size optimal fields, in terms of
choosing a minimum field representation, would in some cases lead to slower,
or even impossible query executions. If we are only interested in obtaining
field values through a map query, we can for instance represent the IP header
field totallength in a string field of two bytes, as opposed to a 4 bytes int.
This would spare us 2 bytes for each tuple. On the other hand, calling a
Borealis aggregation operator like SUM or AVG over a sliding window, in
order to calculate values from those field types, would not be possible. This
is because operators like SUM and AVG only accepts int, long, single or
double representations.

We have chosen to represent most numeric values in both the TCP and
IP header fields as the field type int. In the following subsections, we discuss
most of the field representations in the stream definition. Figure 5.1 shows
the final stream definition in XML.

5.1.1 Timestamp

In order to compute aggregations over time-based sliding windows, times-
tamps are used to distinguish new tuples from old tuples. Timestamps can
also be used for ordering the out-of-order arrived tuples. The timestamp
we use is created and added to the tuple as it is inserted into the batches
within the client applications. We have used the Borealis type int to rep-
resent timestamps, although there even exist a field type called timestamp
that we have not tested. int representations were chosen to easily set time
values from client applications, to timestamps in the streaming tuples.

3The concept of supported network load are further described in Chapter 7.1. We have
found one important bottleneck to be a restriction for a buffer in the Borealis data handler,
with a maximum size set in the generated marshalling code.

5.1 TCP/IP Stream Definition 33

5.1.2 Representation of IP Addresses

We choose to represent the IP addresses as a Borealis string with the size
of 16 characters. This results in a usage of 16 x 8 = 128 bits, which is quite
large in contrast to the original 32 bit representation.

Another possible representation would be to store the IP addresses as four
int fields, resulting in a 4 % 32 = 128 bit representation also. Test runs have
shown this to result in a decrease of what network load Borealis can handle.
The decrease of supported network load was identified during test runs with
Task 1, introduced in next section. One of the reasons why the four int field
representations is slower, is possibly due to the increased numbers of tuple
fields to process. In terms of query design, representation of IP addresses
as string field types, as opposed to four int fields, require fewer statements
when for instance comparing them in predicates.

5.1.3 Representation of Option Fields

Option fields are optional fields kept in both the TCP header and the IP
header. Their sizes can be maximum 81 characters. Hence, we represent
them in string fields with the size 81.

5.1.4 Sequence and Acknowledgement numbers

Out from the 32 bit representation of TCP /IP sequence and acknowledgment
numbers, it should be sufficient to represent these in the 32 bit int fields.
Results during our implementation however show that the int type cannot
handle these numbers when they grow large. This limit is caused by the fact
that int types are signed in Borealis, enabling a range of [—n,+n| where
n = 2,147,483,648. The sequence and acknowledgement numbers in the
IP protocol are unsigned, meaning they can only be positive, and have a
bigger range among positive numbers than signed representations ([0, 2n]).
In order to properly support int numbers larger than n, we need to use long,
that within Borealis occupies 64 bits. We represent all numbers among the
header fiels, that occupies maximum 16 bits in the TCP/IP headers as the
Borealis field type int.

5.1.5 Representation of Flags

We choose to represent the URG, ACK, PSH, RST, SYN and FIN flags, as
the type int, even though they in the IP header are represented as single bits.
int representation of these flags are certainly not optimal in terms of size.

34 Network Monitoring Tasks

A string with the size of 1, should be sufficient, saving 32 — 8 = 24 bits for
each flag. This would totally spare us 24 x 6 = 144 bits, or 18 bytes for each
tuple.

During the design phase, experiments where performed with the flags
represented as single character string types. These experiments showed no
immediate increase in performance in terms of what network load Borealis
could handle. Most significantly, using the flags in an expression with a filter
boz, showed not work due to difficulties when comparing single character
string values with expected flag values within the query. As we are filtering
packets with the ACK and SYN flags set in Task 5, we choose to represent
the flags as int values.

Note that if Borealis had supported boolean flags as field types, we could

save ‘%f)’;%’;ﬁ} = 24 bytes per tuple.

5.2 Task Design and Implementation

In this section we present our designs for each of the predefined network
monitoring task. In addition we have designed a fifth conceptual task, deal-
ing with intrusion detection. Since we have restricted time and equipment
resources, we have chosen to design the network monitoring tasks for single
node queries only. This mainly because our system experiment setup are
based on the one used by [Sgb06, Her06], which is not built for distribution.
We regard designing distributed queries for the network monitoring tasks as
future work.

Following the design and implementation of these tasks, we present the
experiment setup in Chapter 6. The experiment setup is used when we run
the tasks at several network loads. Evaluation of the experiments is presented
in Chapter 7.

5.2.1 Task 1: Load Shedding
Verify Borealis load shedding mechanisms

The bursty nature of traffic load on a network could result in higher loads
than a DSMS can handle. We discuss the general need for load shedding
mechanisms in Chapter 3.5. In order not to overload the DSMS, load should
be shedded in order to relief the DSMS with tuples to process. When running
single nodded queries, load shedding means Borealis should drop a certain
amount of tuples when overload occurs.

We have not been able to verify a working load shedding mechanism. As
mentioned in Chapter 4, load shedding in Borealis involves both the Global

5.2 Task Design and Implementation

35

<schema name="PacketTuple">

<field

<l--

<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<l--

<l--

<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<field
<!--

</schema>

name="timestamp"

type="int" />

IpP
name="version" type="int"
name="ipheaderlength" type="int"
name="tos" type="int"
name="totallength" type="int"
name="id" type="int"
name="flags" type="int"
name="fragoffset" type="int"
name="ttl1l" type="int"
name="protocol" type="int"
name="headchksum" type="int"
name="sourceip" type="String"
name="destip" type="String"
name="ipoptions" type="String"

END OF IP

TCP
name="sourceport" type="int"
name="destport" type="int"

name="seqnum"
name="acknum"
name="tcpheaderlength"
name="reserved"

name="urg"
name="ack"
name="psh"
name="rst"
name="syn"
name="fin"

name="windowsize"
name="chksum"
name="urgtr"

name="tcpoptions" type="String"
END OF TCP HEADER

-=>
/>
/>

/>

size="16" />
size="16" />
size="81" />
-—>

-—>

/>
/>

type="long" />
type="long" />

type="int"
type="int"
type="int"
type="int"
type="int"
type="int"
type="int"
type="int"
type="int"
type="int"
type="int"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

size="81" />

Figure 5.1: The TCP/IP stream definition used within all our Borealis queries.

36 Network Monitoring Tasks

Load Shedder module, and the Local Load Shedder module. The Global
Load Shedder did not compile during installation. Neither did its parent
component, Meta Optimizer. Since the Local Load Shedder module is passive,
and only performs load shedding when asked to by the Global Load Shedder,
Borealis at our setup will not perform automatic load shedding when overload
occurs.

The errors during compilation of the Local Load Shedder and Meta Op-
timizer modules are probably caused by lack of some external libraries. By
altering several make files we have managed to partly compile the Meta Op-
timizer, as well as the Load Shedder module. Although they do not seem to
react when Borealis gets overloaded.

Even though the Global Load Shedder module does not work properly,
Borealis client applications support some way of dealing with overload. For
each packet that is batched, there is a test in the generated marshal code
that checks if the Borealis input stream buffer has space available. If there
is not enough space for another tuple, the client application will sleep for a
while, trying one more time afterwards. This way of dealing with overload
has proven not to be efficient when dealing with high stable network loads.
Since load is never decreasing, resending tuples when out of space only seems
to lead to congestion.

A complete load shedding solution, in our opinion, should both involve
identifying overload situations, and deal with it by dropping tuples. By run-
ning simple queries, by using the map operator box at high network loads, we
could not identify any signs of a load shedding mechanism. Hence, we cannot
verify any meaningful load shedding mechanism in the current Borealis distri-
bution. However, as mentioned in Chapter 4, applying load shedding can be
performed by the use of the Borealis operator box random_drop. From what
we understand from the source code of the Global Load Shedder, drop_bozes
is the mechanism used when shedding load. Hence, we move the focus for
this task away from the LoadShedding module, and will instead measure the
effect of the random_drop boxes.

We have designed a set of tasks that perform a simple map operation on
all the fields in the stream. This by using a map operator box. We present
the map box in Figure 5.3 and 5.4. In addition to the map boxes, we deploy
random_drop boxes, in order to investigate their effect. Figure 5.2 shows
one of the boxes used, with a drop_rate of 0,8. Schematic drawings of the
task design with and without the random_drop box deployed are presented in
Figure 5.5 and 5.6. For our evaluation in Chapter 7, we will include several
test runs with different drop rates, in order to analyze the effect of them.

5.2 Task Design and Implementation 37

<box name="box1l" type="random_drop">
<in stream="Packet" />
<out stream="Shedded" />

<parameter name="drop_rate" value="0.8" />
<parameter name="max_batch_size" value="1000" />

</box>

Figure 5.2: Task 1: The random_drop box used to shed load

<box name="box2" type="map">
<in stream="Shedded" />
<out stream="Map"/>

<parameter
<parameter
<t--

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<l--

name="expression.0" value="timestamp" />
name="output-field-name.0" value="timestamp" />

IP HEADER -—>
expression.1" value="version" />
name="output-field-name.1" value="version" />
name="expression.2" value="ipheaderlength" />
name="output-field-name.2" value="ipheaderlength" />
name="expression.3" value="tos" />
name="output-field-name.3" value="tos" />
name="expression.4" value="totallength" />
name="output-field-name.4" value="totallength" />
name="expression.5" value="id" />
name="output-field-name.5" value="id" />
name="expression.6" value="flags" />
name="output-field-name.6" value="flags" />
name="expression.7" value="fragoffset" />
name="output-field-name.7" value="fragoffset" />
name="expression.8" value="ttl" />
name="output-field-name.8" value="ttl" />
name="expression.9" value="protocol" />
name="output-field-name.9" value="protocol" />
name="expression.10" value="headchksum" />
name="output-field-name.10" value="headchksum" />
name="expression.11" value="sourceip" />
name="output-field-name.11" value="sourceip" />
name="expression.12" value="destip" />
name="output-field-name.12" value="destip" />
name="expression.13" value="ipoptions" />
name="output-field-name.13" value="ipoptions" />

END OFF IP HEADER -—>

name="

Figure 5.3: Task 1: The first half of the map box

38

Network Monitoring Tasks

<1--

TCP HEADER -—=>

<parameter name="expression.14" value="sourceport" />
<parameter name="output-field-name.14" value="sourceport" />
<parameter name="expression.15" value="destport" />
<parameter name="output-field-name.15" value="destport" />
<parameter name="expression.16" value="seqnum" />

<parameter name="output-field-name.16" value="seqnum" />
<parameter name="expression.17" value="acknum" />

<parameter name="output-field-name.17" value="acknum" />
<parameter name="expression.18" value="tcpheaderlength" />
<parameter name="output-field-name.18" value="tcpheaderlength" />
<parameter name="expression.19" value="reserved" />
<parameter name="output-field-name.19" value="reserved" />
<parameter name="expression.20" value="urg" />

<parameter name="output-field-name.20" value="urg" />
<parameter name="expression.21" value="ack" />

<parameter name="output-field-name.21" value="ack" />
<parameter name="expression.22" value="psh" />

<parameter name="output-field-name.22" value="psh" />
<parameter name="expression.23" value="rst" />

<parameter name="output-field-name.23" value="rst" />
<parameter name="expression.24" value="syn" />

<parameter name="output-field-name.24" value="syn" />
<parameter name="expression.25" value="fin" />

<parameter name="output-field-name.25" value="fin" />
<parameter name="expression.26" value="windowsize" />
<parameter name="output-field-name.26" value="windowsize" />
<parameter name="expression.27" value="chksum" />

<parameter name="output-field-name.27" value="chksum" />
<parameter name="expression.28" value="urgtr" />

<parameter name="output-field-name.28" value="urgtr" />
<parameter name="expression.29" value="tcpoptions" />
<parameter name="output-field-name.29" value="tcpoptions" />

<t--
</box>

END OF TCP HEADER -—>

Figure 5.4: Task 1: The second half of the map box

Packets

<map:

Result

Figure 5.5: Task 1: Schematic drawing of initial version 1

5.2 Task Design and Implementation 39

Packets

<random_drop>

“mapz

Result

Figure 5.6: Task 1: Schematic drawing of initial version 2.

5.2.2 Task 2: Average Load

Measure the average load of packets and network load per second
over a one minute interval.

In this task, we display both the numbers of packets per second, and their
average load, during a one minute interval. Load is calculated by using the
totallength field in the IP header.

In the initial solution shown in Figure 5.7, we use two aggregate boxes.
The first aggregate box uses a sliding window over one second. This box de-
liver tuples each second. Each of these tuples keeps the size and packet count
per second. The output result tuples are sent through a second aggregate
box that calculates the average values per minute. We include a schematic
drawing of the version in Figure 5.8.

In the second initial version, shown in Figure 5.9, we use only one aggre-
gation box. It calculates the sum of packets and their load per minute in one
operation. Since we want the results as averages rather than sums, a map
box is used to divide the results with 60. We present a schematic drawing of
the version in Figure 5.10

One of the notable differences between the two versions is that the version
1 will have fewer tuples being processed in window at the same time. This
since the window size is set to one second, instead of one minute. The
second notable difference is that the second version has one, instead of two

40 Network Monitoring Tasks

<box name="box1" type="aggregate" >
<in stream="Packet" />
<out stream="AggPerSecond" />

<parameter name="aggregate-function.0" value="count()" />
<parameter name="aggregate-function-output-name.O"

value="count" />
<parameter name="aggregate-function.1" value="sum(totallength)" />
<parameter name="aggregate-function-output-name.1"

value="avgsize" />

<parameter name="window-size-by" value="VALUES" />
<parameter name="window-size" value="1" />
<parameter name="advance" value="1" />
<parameter name="order-by" value="FIELD" />
<parameter name="order-on-field" value="timestamp" />
</box>
<box name="box2" type="aggregate" >
<in stream="AggPerSecond" />

<out stream="AggPerMinute" />

<parameter name="aggregate-function.0" value="avg(count)" />
<parameter name="aggregate-function-output-name.0"

value="count" />
<parameter name="aggregate-function.l1" value="avg(avgsizex8)" />
<parameter name="aggregate-function-output-name.1"

value="avgsize" />

<parameter name="window-size-by" value="VALUES" />

<parameter name="window-size" value="60" />

<parameter name="advance" value="60" />

<parameter name="order-by" value="FIELD" />

<parameter name="order-on-field" value="timestamp" />
</box>

Figure 5.7: Task 2: Initial version 1

Packets

<aggregate=

{per second)

<aggregate>

[per minute}

Result

Figure 5.8: Task 2: Schematic drawing of initial version 1.

5.2 Task Design and Implementation

41

<box name="box1" type="aggregate" >
<in stream="Packet" />
<out stream="AggPerMinute" />

<parameter name="aggregate-function.0" value="count()" />
<parameter name="aggregate-function-output-name.0"

value="count" />
<parameter name="aggregate-function.1" value="sum(totallength)" />
<parameter name="aggregate-function-output-name.1"

value="avgsize" />

<parameter name="window-size-by" value="VALUES" />

<parameter name="window-size" value="60" />

<parameter name="advance" value="60" />

<parameter name="order-by" value="FIELD" />

<parameter name="order-on-field" value="timestamp" />
</box>

<box name="box2" type="map" >
<in stream="AggPerMinute" />

<out stream="Map" />
<parameter name="expression.O" value="timestamp" />
<parameter name="output-field-name.O" value="timestamp" />
<parameter name="expression.1" value="count / 60" />
<parameter name="output-field-name.1" value="count" />
<parameter name="expression.2" value="avgsize *8 / 60" />
<parameter name="output-field-name.2" value="avgsize" />

</box>

Figure 5.9: Task 2: Initial version 2

Packets

<aggregate:=

<map>

Result

Figure 5.10: Task 2: Schematic drawing of initial version 2

42 Network Monitoring Tasks

aggregation boxes?.

During initial testing, we found there was a big difference on what network
load the two solutions could operate on. Initial version 1, presented in Figure
5.7. seems to handle significant higher network load than initial version 2,
presented in Figure 5.9. We expect this behavior is caused by the different
window sizes used to calculate the aggregate values.

By using the same schema as in Figure 5.9, we can try several window
sizes. This by changing the window size parameter in the aggregate box,
and what we divide our result upon in the map box. By doing so, we can
identify how the window size affects Borealis ability to handle high network
loads. The task evaluation in Chapter 7 includes several test runs with several
window sizes.

5.2.3 Task 3: Destination Ports

How many packets have been sent to certain ports during the last
five minutes?

In this task, we count packet occurrences designated to certain ports.
The count of the designated packets tells us something about the types of
applications used on the network. Although this applies for most types of
applications, some P2P applications tend to communicate with the use of
traditional HTTP port numbers, in order to hide or make sure to get through
firewalls [SUKBO06]. With our task P2P applications using traditional HTTP
port numbers will not be identified.

When choosing what destination ports to count occurrences of, the sim-
plest solution in terms of query design would be to filter packets destined for
ports defined in a predicate, e.g. destport = 22 or destport = 80. By filtering
only those packets of interest to a stream, counting occurrences of them is
possible by using an aggregate box. This solution will lead to a high number
of XML lines, as the number of ports to compare increase. This is because
every single port would be required to be mentioned. We present a solution
with the filter and aggregate box in Figure 5.11, where we only filter those
packets destined for port 60010, used by the traffic generator that we use. A
schematic drawing is presented in 5.12.

We propose a second solutions in Figure 5.13. In addition, we have in-
cluded a schematic drawing of the query in Figure 5.14. As mentioned,
Borealis supports the use of static tables. In solution number two, we send
two streams into Borealis; S and Sy. The stream S; represents the TCP /1P

4Note that a map box is needed in order to divide the results with 60.

5.2 Task Design and Implementation

<box name="box1" type="filter">
<in stream="Packet">
<out stream="Filtered">

<parameter name="expression.O" value="destport = 60010" />
<parameter name="pass-on-false-port" value="0" />
</box>
<box name="box2" type="aggregate" >
<in stream="Filtered" />

<out stream="Matched" />

<parameter name="aggregate-function.0" value="count()" />
<parameter name="aggregate-function-output-name.O"
value="count" />

<parameter name="window-size-by" value="TUPLES" />

<parameter name="window-size" value="999999999" />

<parameter name="advance" value="999999999" />

<parameter name="order-by" value="TUPLENUM" />

<parameter name="group-by" value="destport" />

<parameter name="timeout" value="300" />
</box>

Figure 5.11: Task 3: Version 1

Packets

<filter=>

Result

Figure 5.12: Task 3: Schematic drawing of version 1

44 Network Monitoring Tasks

<query name="tableQuery">
<table name="testTable" schema="TableTuple" >

<key field="destport"/>
<index field="destport" />
<parameter name="truncate" value="0" />
<parameter name='"create" value="1" />
</table>
</query>

<query name="writeQuery">
<box name="insertBox" type="insert" >
<in stream="Insert" />
<access table="testTable"/>
<parameter name="sql"
value="insert into testTable
values (destport, description)"/>
</box>
</query>

<query name="readQuery">

<box name="selectBox" type="select" >
<in stream="Packet" />
<out stream="Select" />

<access table="testTable"/>
<parameter name="sql"
value="select *
from testTable

where testTable.destport == input.destport"/>
</box>
<box name="box1" type="aggregate" >
<in stream="Select" />

<out stream="Matched" />

<parameter name="aggregate-function.0" value="count()" />
<parameter name="aggregate-function-output-name.O0"
value="count" />

<parameter name="window-size-by" value="TUPLES" />
<parameter name="window-size" value="999999999" />
<parameter name="advance" value="999999999" />
<parameter name="order-by" value="TUPLENUM" />
<parameter name="group-by" value="destport,description" />
<parameter name="timeout" value="300" />
</box>
</query>

Figure 5.13: Task 3: Version 2

5.2 Task Design and Implementation 45

Packets Port numbers

Port Table

<selects <inserts

I

<aggregates

Result

Figure 5.14: Task 3: Schematic drawing of version 2

packet headers. The other stream Sy represents port numbers with descrip-
tions, which will be stored in a static table. In order to store the data in
a static table, we have to use the insert operator box. This box stores the
tuples in S in a BerkeleyDB table. This way, we can easily identify a high
number of ports to count occurrences of. In our implementation, we read
port numbers and their descriptions from a from a text file, and send them
to Borealis from the client applicaiton. We base the text file on data retrieved
from TANA (Internet Assigned Numbers Authority) [ian]. During our exper-
iment, several thousands ports are sent to the table. In addition, we have
also included one port number (60010), which is used as destination for all
the generated packets.

Solution number two is definitely more adaptive in terms of selecting the
ports to count packets destined for. The ports are simply read from a file at
runtime. Adding additional ports, or changing existing ones, are also possible
within the database. A notable difference between the two solutions is that
solution number one does not have to upload the port numbers to the tables.

46 Network Monitoring Tasks

<box name="box1" type="aggregate" >
<in stream="Packet" />
<out stream="Aggregate" />

<parameter name="aggregate-function.0" value="sum(totallength -
(ipheaderlength*4) - (tcpheaderlength*4))" />
<parameter name="aggregate-function-output-name.0" value="bytes" />

<parameter name="aggregate-function.1" value="count ()" />
<parameter name="aggregate-function-output-name.1" value="count" />
<parameter name="window-size-by" value="VALUES" />
<parameter name="window-size" value="10" />

<parameter name="advance" value="10" />

<parameter name="order-by" value="FIELD" />
<parameter name="order-on-field" value="timestamp" />
<parameter name="group-by" value="sourceip,sourceport,

destip,destport" />
</box>

Figure 5.15: Task 4: Version 1

5.2.4 Task 4: Connection Sizes

How many bytes have been exchanged on each connection during
the last ten seconds?

In order to design a solution for this task, we start by defining a connec-
tion. A TCP/IP connection is a connection between two hosts in a network.
The source- and destination address, and the source- and destination port
number of a packet can be used to define its connection. In order to estab-
lish a connection, a three-way handshake is performed between the two hosts
[rfc81b]. In the beginning of a handshake, the client sends a packet with the
SYN flag set to the server. The server responds a packet with both the ACK
and SYN flag set. In order to synchronize the sequence and acknowledgement
numbers between the client and the server, the acknowledgement number in
the packet is set to x + 1, where x is the sequence number of the packet
originally sent by the client. The final event in the three-way handshake, is
when the client respond to the server with an ACK packet, with sequence
number set to x + 1, and acknowledgement number set to y + 1, where y
is the sequence number received from the server. There exists several ways
of terminating a connection. Many connections are often simply timed out,
although TCP support controlled terminations of connections that involve
the header flag FIN.

Initially, our solutions are not based upon identifying three-way hand-
shakes. Instead we simplify the task by using only IP and portnumber fields.
This is based on a simple heuristic proposed by Plagemann et al. [PGB*04],
where all packets with the same destination and source IP address and port
number, belong to the same connection during a one minute window.

5.2 Task Design and Implementation 47

Packets

<aggregates

Result

Figure 5.16: Task 4: Schematic drawing of version 1

The task of counting bytes sent only in a one-way connection can be
solved by simply using an aggregate box, that groups by sourcelP, destIP,
sourcePort and destPort. By using the sum operator, we can easily obtain
the sum of bytes that the client has attempted to send to the server. We
have designed such a solution shown Figure 5.15. A schematic drawing is
presented in Figure 5.16. To summarize the actual bytes sent within the
connection, we only want the size of the packet payloads. Because of this, we
do not want to include the two fields ipheaderlength and tcpheaderlength. We
calculate the payload with the following equation: Payload = totallength —
(ipheaderlenght x 4) — (tcpheaderlenght * 4). Note that we multiply the
header length values with 4 to get the byte value, since their values represent
the number of 32 bit lines they occupy, padding included, in the TCP/IP
packet.

In a TCP connection, bytes are most often exchanged in a two-way fash-
ion, which yields we have to join the tuples sent from host a to host b, with
the tuples sent from b to a. The query language of Borealis supports two
boxes for joining tuples. These are called Join, and AuroraJoin. We tend
to use Join, since this operator is better explained in the Borealis documen-
tation [Tea06]. (AuroraJoin seems to require the use of parameters that is
not even mentioned in the documentation.) A straightforward join of tuples
from the streams in the two directions, is not feasible. There is no guarantee
that the number of packets sent from a to b, is the same as the number of
packets sent from b to a. If the number of packets from a to b outnumbers
packets from b to a, the outnumbered amount of packets from a to b will not
be joined. A result of this is that we need to aggregate tuples sent from a to
b into a tuple 77, and join it with another aggregate tuple 75, consisting of
packets sent from b to a.

48

Network Monitoring Tasks

Packets

<filter=

b

<aggregate:>

N

AN

<aggregate:

Ve

<joinz

<mapz

Result

Figure 5.17: Task 4: Schematic drawing of version 2.

5.2 Task Design and Implementation

49

<query name="Query" >

<box name="filterboxleft" type="filter">

<in stream="Packet" />

<out stream="Left" />

<out stream="Right" />

<parameter name="expression.O"
<parameter name="pass-on-false-port"

</box>

<box name="box1l"

type="aggregate" >

<in stream="Left" />

<out

<parameter

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter

</box>

<box name="box2"

<in stream="Right" />
<out stream="RightAggregate" />
<parameter name="aggregate-function.0"
<parameter name="aggregate-function-output-name.O0"
<parameter name="aggregate-function.1"
<parameter name="aggregate-function-output-name.1"
<parameter name="window-size-by"
<parameter name="window-size"
<parameter name="advance"
<parameter name="order-by"
<parameter name="order-on-field"
<parameter name="group-by"
</box>

stream="LeftAggregate" />

name="aggregate-function.0"

value="seqnum > acknum" />
value="1" />

value="sum(totallength -

(ipheaderlength*4) - (tcpheaderlength*4))" />

name="aggregate-function-output-name.0"

name="aggregate-function.1"

name="aggregate-function-output-name.1"

name="window-size-by"
name="window-size"
name="advance"
name="order-by"
name="order-on-field"
name="group-by"

type="aggregate" >

value="bytes" />
value="count()" />
value="count" />
value="VALUES" />

value="10" />
value="10" />
value="FIELD" />
value="timestamp" />

value="sourceip,sourceport,
destip,destport" />

value="sum(totallength -

(ipheaderlength*4) - (tcpheaderlength*4))" />

value="bytes" />
value="count()" />
value="count" />
value="VALUES" />

value="10" />
value="10" />
value="FIELD" />
value="timestamp" />

value="sourceip,sourceport,
destip,destport" />

Figure 5.18: Task 4: Version 2, first half

50

Network Monitoring Tasks

<box name="joinbox" type="join" >
<in stream="LeftAggregate " />
<in stream="RightAggregate " />
<out stream="Join" />
<parameter name="predicate" value="left.sourceip == right.destip and
left.sourceport == right.destport and
left.destip == right.sourceip and
left.destport == right.sourceport and
left.timestamp == right.timestamp" />
<parameter name="left-buffer-size" value="1" />
<parameter name="left-order-by" value="VALUES" />
<parameter name="left-order-on-field" value="timestamp" />
<parameter name="right-buffer-size" value="1" />
<parameter name="right-order-by" value="VALUES" />
<parameter name="right-order-on-field" value="timestamp" />
<parameter name="out-field-name.0" value="leftsourceip" />
<parameter name="out-field.0" value="left.sourceip" />
<parameter name="out-field-name.l1" value="leftsourceport" />
<parameter name="out-field.1" value="left.sourceport" />
<parameter name="out-field-name.2" value="leftbytes" />
<parameter name="out-field.2" value="left.bytes" />
<parameter name="out-field-name.3" value="rightsourceip" />
<parameter name="out-field.3" value="right.sourceip" />
<parameter name="out-field-name.4" value="rightsourceport" />
<parameter name="out-field.4" value="right.sourceport" />
<parameter name="out-field-name.5" value="rightbytes" />
<parameter name="out-field.5" value="right.bytes" />
<parameter name="out-field-name.6" value="timestamp" />
<parameter name="out-field.6" value="right.timestamp" />
</box>
<box name="resultbox" type="map" >
<in stream="Join" />
<out stream="Result" />
<parameter name="expression.0" value="leftsourceip" />
<parameter name="output-field-name.O0" value="leftsourceip" />
<parameter name="expression.l1" value="leftsourceport" />
<parameter name="output-field-name.l1" value="leftsourceport" />
<parameter name="expression.2" value="rightsourceip" />
<parameter name="output-field-name.2" value="rightsourceip" />
<parameter name="expression.3" value="rightsourceport" />
<parameter name="output-field-name.3" value="rightsourceport" />
<parameter name="expression.4" value="timestamp" />
<parameter name="output-field-name.4" value="timestamp" />
<parameter name="expression.5" value="leftbytes + rightbytes" />
<parameter name="output-field-name.5" value="bytes" />
</box>

Figure 5.19: Task 4: Version 2, second half

5.2 Task Design and Implementation 51

We design a solution where we split the stream of packets into two sep-
arate streams S; and Sy. S consists of all packets that have a greater ac-
knowledgement than sequence number. Sy consists of packets with sequence
number greater or equal to its acknowledgement number. Each of the streams
are sent into aggregate operator boxes, with window sizes of 10 seconds. By
joining their result tuples, and adding the exchanged bytes for each join, we
get a single result for each connection per 10th second. The solution is pre-
sented in Figure 5.18 and Figure 5.19. In addition, a schematic drawing of
the task is presented in Figure 5.17

The results from a 10 seconds window may not be correct in some situ-
ations. Borealis will drop the aggregated tuples from S; when they do not
match any tuples from S5. Since we operate within a 10 seconds window,
tuples that have not been acknowledged within this interval will not be con-
sidered. We see a solution to this problem, as fairly intricate since there is
not possible to fetch unmatched tuples directly from a join box. On networks
like those we are performing our experiments on, we do not expect 10 second
ACK delays, hence it should not affect our results.

An optimal solution to this task would be to identify each connection
by their three-way handshakes, and as well only compute packets that are
acknowledged within the TCP timeout interval. In addition to identify when
connections are terminated, either by TCP timeout, or by the use of FIN
flags. We have not managed to pose such a query by the use of the Borealis
query language. We have managed to identify three-way handshakes with the
use of Filter, Join and WaitFor boxes, although their disability of releasing
un-matched tuples seems to make it hard for us to build queries which could
deliver accurate results.

5.2.5 Task 5: Intrusion Detection
Identify Possible TCP SYN Flood attacks

TCP SYN Flood attacks are a type of a Denial-of-Service (DOS) attack,
where the attacker initiates several half-open TCP connections to a server.
Eventually the number of half-open connections becomes higher than the
server can handle. This can then lead to the server denying services to
legitimate hosts. The specific part of the TCP protocol exploited is the
three-way handshake. By flooding a server with SYN packets from several
fake sources, the server will initiate half-open connections to each of the faked
sources, resulting in it reaching a maximum value of available connections,
denying all hosts trying to connect.

52 Network Monitoring Tasks

<box name="synfilter" type="filter" >

<in stream="Packet" />

<out stream="Syn" />

<out stream="Normal" />

<parameter name="expression.0" value="syn == 1"/>

<parameter name="pass-on-false-port" value="1" />
</box>

<box name="Normalcount" type="aggregate" >

<in stream="Normal" />
<out stream="Aggregatenormal" />
<parameter name="aggregate-function.0" value="count()" />

<parameter name="aggregate-function-output-name.0" value="count" />
<parameter name="window-size-by" value="VALUES" />

<parameter name="window-size" value="1" />
<parameter name="advance" value="1" />
<parameter name="order-by" value="FIELD" />

<parameter name="order-on-field"
</box>

value="timestamp" />

<box name="Syncount"
<in
<out

type="aggregate" >
stream="Syn" />
stream="Aggregatesyn" />

<parameter name="aggregate-function.0" value="count()" />
<parameter name="aggregate-function-output-name.0" value="count" />
<parameter name="window-size-by" value="VALUES" />

<parameter name="window-size" value="1" />
<parameter name="advance" value="1" />
<parameter name="order-by" value="FIELD" />

<parameter name="order-on-field"

</box>

value="timestamp" />

<box name="SynfloodJoin" type="join" >
<in stream="AggregateNormal" />
<in stream="AggregateSyn" />

<out stream="Result" />

<parameter name="predicate" value = "left.count * 2 < right.count" />
<parameter name="left-buffer-size" value = "1" />
<parameter name="left-order-by" value = "VALUES" />
<parameter name="left-order-on-field" value = "timestamp" />
<parameter name="right-buffer-size" value = "1" />
<parameter name="right-order-by" value = "VALUES" />
<parameter name="right-order-on-field" value = "timestamp" />
<parameter name="out-field-name.O" value="timestamp" />
<parameter name="out-field.O" value="left.timestamp" />
<parameter name="out-field-name.1" value="ratio" />
<parameter name="out-field.1" value="right.count / left.count" />
<parameter name="out-field-name.2" value="syn" />
<parameter name="out-field.2" value="right.count" />
<parameter name="out-field-name.3" value="normal" />
<parameter name="out-field.3" value="left.count" />
</box>

Figure 5.20: Task 5: Version 1

5.2 Task Design and Implementation 53

lPa(kets

<filter>

N\

N

<aggregates <aggregate:

™~ /

<joinz

lﬂesull

Figure 5.21: Task 5: Schematic drawing of version 1

A principal solution proposed by Cisco [cis], intended for their routers,
is to alarm when the number of SYN packets ng, on a network exceeds the
number of ordinary packets n, with a certain multiple, for instance n, >
2 % n,. With Borealis this solution can be implemented by the use of a filter
box, dividing the packet stream into a stream of SYN packets, and a stream
of ordinary packets. By sending each of the streams through aggregate boxes,
we can count their occurrences. This way we can join the tuples if a predicate
is met; a predicate that demands that the number of SYN packets n; is higher
than 2% n,, where n,, is the number of ordinary packets. Such a joined tuple
can be seen as a warning of a possible attack. Figure 5.20 shows the query.
In addition we have included a schematic drawing of the query in Figure 5.21

Johnson et al. [JMSS05] propose a principal solution, that is perhaps
more accurate. The correlation between SYN packets and their matching
ACK packets are identified during time intervals. As too many SYN packets
are unmatched, a possible SYN Flood attack is identified.

Based on the solution proposed by Johnson et al. [JMSS05]|, we have
designed a task version where we filter all SYN packets not having the ACK
bit set, to a stream S,,,. We then send S, into a WaitFor box, connected
directly to the packet stream. This WaitFor box keeps the Sy, packets,
until a matching SYN/ACK packets arrives. A matching tuple must have
source IP and source port number equal to destination IP and destination
port number for the waiting tuple. And in addition, a match would require
both the ACK and the SYN bit set, and also acknowledge number equal to
n+1, where n is the sequential number from the waiting tuple. All matching
tuples are sent to a stream Ssynqcr, representing all SYN packets that have
been acknowledged. We then send the two streams Sy, and Sgypecr into

54 Network Monitoring Tasks

<query name="query">
<box name="SynFilter" type="filter">

<in stream="Packet" />
<out stream="Handshakel" />
<parameter name="expression.O" value="syn == 1 and

ack == 0 and
fin == 0 " />
<parameter name="pass-on-false-port" value="0" />
</box>
<box name="SynAckWait" type="waitfor">
<in stream="Packet" />

<in stream="Handshakel" />
<out stream="Handshake2" />
<parameter name="predicate" value="buffered.syn == 1 and buffered.ack == 1 and
enabler.sourceip == buffered.destip and
enabler.sourceport == buffered.destport and
enabler.seqnum+l == buffered.acknum"/>
<parameter name="timeout" value="10" />
</box>
<box name="syncount" type="aggregate" >

<in stream="Handshakel" />
<out stream="Aggregatehsl" />

<parameter name="aggregate-function.0" value="count()" />
<parameter name="aggregate-function-output-name.0" value="count" />

<parameter name="window-size-by" value="VALUES" />

<parameter name="window-size" value="1" />

<parameter name="advance" value="1" />

<parameter name="order-by" value="FIELD" />

<parameter name="order-on-field" value="timestamp" />

<parameter name="group-by" value="destip,sourceip" />
</box>

Figure 5.22: Task 5: Version 2, first half

aggregate boxes, in order to count their occurrences. The aggregated tuples
are then joined, if the count of S, packets are twice or more, the count of
tuple tuples from Ssynack. (Ssyn = 2 % Ssynack). Setting twice the count as a
warning threshold is only done as an example. A predicate should also check
that their timestamp and source/destination match. At the event of a joined
tuple, a possible SYN Flood attack is identified. The solution is shown in
Figure 5.22 and 5.23.

5.2 Task Design and Implementation 55

<box name="Synackcount" type="aggregate" >
<in stream="Handshake2" />
<out stream="Aggregatehs2" />

</bo

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
x>

name="aggregate-function.0"

value="count()" />

name="aggregate-function-output-name.0" value="count" />

name="window-size-by"
name="window-size"
name="advance"
name="order-by"
name="order-on-field"
name="group-by"

<box name="SynfloodJoin" type="join" >
<in stream="Aggregatehsl" />
<in stream="Aggregatehs2" />

</box>
</query>

<out stream="Result" />

<parameter

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter

name="predicate"

name="left-buffer-size"
name="left-order-by"
name="left-order-on-field"
name="right-buffer-size"
name="right-order-by"
name="right-order-on-field"
name="out-field-name.O0"
name="out-field.O"
name="out-field-name.1"
name="out-field.1"
name="out-field-name.2"
name="out-field.2"
name="out-field-name.3"
name="out-field.3"
name="out-field-name.4"
name="out-field.4"

value="VALUES" />

value="1" />
value="1" />
value="FIELD" />

value="timestamp" />
value="destip,sourceip" />

value = "left.count > O and right.count > O and
left.count > right.count * 2 and
left.destip == right.sourceip" />

value = "1" />

value = "VALUES" />

value = "timestamp" />
value = "1" />

value = "VALUES" />
value = "timestamp" />

value="timestamp" />
value="left.timestamp" />
value="ratio" />

value="left.count / right.count" />
value="syn" />

value="left.count" />
value="synack" />
value="right.count" />
value="destip" />
value="left.destip" />

Figure 5.23: Task 5: Version 2, second half

56

Network Monitoring Tasks

Chapter 6

Experiment Environment

In this chapter we describe the experiments, where we have performed the
tasks presented in Chapter 5. We start presenting the goals of our exper-
iments, and describe our experiment setup in general in Section 6.2. This
section also includes descriptions of the tools we have used.

In Section 6.3 we cover the system parameters of our experiments, and
discusses alternative setups in Section 6.4. In addition, we also present ad-
ditional system parameters found when performing white box testing® of the
Borealis load shedding mechanism in Section 6.5. We present these parame-
ters, since we believe they significantly affect our experiments.

6.1 Experiment Goals
By performing the experiment, we initially start with four main goals:

Goal-1: Verify the Borealis load shedding mechanism.

Goal-1I: Show how good network monitor tasks can be expressed and
performed by using Borealis and its continuous query language.

Goal-1II: Find the accuracy of the task results.

Goal-1V: Find the maximum network load the tasks can handle.

We start by describing Goal-1: We try to verify the Borealis load shed-
ding mechanism, by stressing Borealis with high network loads, performing a
simple map operation of the packet headers. By increasing the traffic volume

"'White box testing, in contrast to black box testing, is testing based on the internal
structure of the program. In our case, we tried altering the source code in order to provoke
certain events to happen.

58 Experiment Environment

Experiment results

dmms-lab107 : NIC

dmms-lab

C.A =client application
Q.P = Borealis query processor

Figure 6.1: Schematic drawing of data flow in the experiment system

until Borealis reaches its limits, in terms of how much traffic it can handle,
we expected to see the load shedding module (Load Shedder) start dropping
tuples. Test runs early in the design phase, showed no traces of the Load
Shedder module acting on overload situations. Instead we measure the effect
off the random_drop boxes than can be used for load shedding.

For evaluation of Goal-1I, we design and implement a set of predefined
network monitoring tasks for Borealis. We want to evaluate whether or not
they can be expressed, and how good.

To evaluate the accuracy of the task results, as part of Goal-1II, we com-
pare them with estimated values calculated by us. The calculations for the
estimated results are based on our knowledge of the generated the network
traffic data.

To determine how much network load Borealis can handle, Goal-1V, we
perform several experiments with our setup, with increasing network load.
We will consider the accuracy, in terms of correctness for the results, for each
task at the different network loads. We will also determine how many packets
that are dropped by fyaf? due to overload of the Borealis query processor.

6.2 Experiment System Description

In order to perform network monitoring in real-time, we have performed our
experiments by looking at artificially generated packets on the network at the
Distributed Multimedia Systems (DMMS) lab. We investigate only packets
received on the NIC (network interface card) of the machine dmms-lab77,
more specifically only those traversing the link between dmms-lab77 and the
machine dmms-lab107. We have chosen only to look at these packets, in
order to be able to control the traffic behavior. The actual network traffic is
generated with the use of the traffic generator TG [tg], run on both machines.

2fyaf is explained in Section 6.2.

6.2 Experiment System Description 59

dmms-lab77 runs the Borealis processing nodes, and also the Borealis
client applications. By running the packet filtering tool fyaf [Seb06] [Her06],
the selected TCP/IP headers are sent to the Borealis client application
through a TCP connection. The traffic generator and the NIC packet header
filtering with fyaf, are further described in Section 6.2.1 and Section 6.2.2.
We present system parameters affecting the performance of our experiments
in Section 6.3.

6.2.1 NIC Packet Filtering with fyaf

The actual transformation of packet headers is performed with an application
called fyaf [Seb06] [Her06]. It is a filtering tool that transforms raw data
from network packets, into a comma separated format, accepted by most
DSMSs. The packets are retrieved with the use of the pcap library interface,
used to dump packets directly from the NIC [Sgb06]. After the retrieval of
the packet headers, they are transformed and sent to a receiver through a
TCP socket connection. The receiver, in our setup, will be the Borealis client
application.

In order to achieve accurate amounts of network traffic load in our ex-
periments, fyaf could be set to only filter packets traversing a certain link.
This is how we can filter only the packets traversing between dmms-lab107,
and dmms-lab77.

fyaf also calculates the number of packets that the DSMS due to slow
stream processing time, has not managed to retrieve. The feature of counting
these packets is heavily used throughout our experiments, as it is of signifi-
cant interest. The number of lost packets is a good way of identifying what
network loads Borealis can handle. We store fyafs output on lost packets for
each experiment.

6.2.2 Generating Traffic with TG

In order to generate accurate network loads, we have used TG 2.0 [tg], which
is a traffic generator tool developed at SRI International (SRI) and Sciences
Institute of the University of Southern California (USC-ISI). T'G generates
traffic from a client, to a server that is acting like a sink node. By sink node,
we mean that it receives the network flow, rather than being the source of
it. The behavior of the generated network traffic can be expressed in the
provided specification language. This enables us to address the remote host
to act as the receiving sink, and set parameters for the behavior of the traffic.

Both the UDP and TCP traffic can be generated. There exist a variety
of Quality of Service (QoS) parameters that can be set in order to generate

60 Experiment Environment
Parameter Value Software/Hardware | Description/may affect
CPU dmms-lab77 3 GHz H Overall performance
RAM dmms-lab77 1 GB H Overall performance
OS dmms-lab77 Linux (2.6), FC2 | S Overall performance
CPU dmms-lab107 3 GHz H Overall performance
RAM dmms-lab107 1 GB H Overall performance
OS dmms-lab107 Linux (2.6), FC5 | S Overall performance
MAX_BW (Borealis) 1000000 S Bandwidth within Borealis
MAX_UTILIZATION (Borealis) | 0.99 S Max CPU load
MAX_BUFFER(Client App.) 64000 S Max size of input buffer
SLEEP_TIME (Client App.) 1 ms S Sleep time between batches
BATCH_SIZE (Client App.) 45 S Numbers of tuples per batch

Table 6.1: System Parameters

traffic with certain behavior. At our setup, the execution scripts presented
in Appendix C set these parameters. The parameters are mainly used to
control the network workload, and the number of generated connections. We
present the workload factors further in Chapter 7.1.1.

6.3 Experiment System Parameters

In this section we present important system parameters affecting performance
during our experiments. We have chosen to separate all parameters affect-
ing the experiments into system parameters and workload parameters as in
[Jai91]. System parameters are constant parameters, within our system. In
contrast, the workload parameters are factors we set in order to measure the
performance of the system. We present the workload parameters in Chapter
7.1. The system parameters are presented in Table 6.1.

We now include a deeper presentation of the system parameters SLEEP_TIME
and BATCH _SIZE, since they significantly affect our experiment results. We
choose to see them as system parameters, as with all parameters set in the
Borealis client applications. The parameter values will not vary among the
experiments.

The SLEEP_TIME and BATCH_SIZE parameters are declared within
each Borealis client application. They concern a DSMS technique known
as batch processing [BBD'02]. This technique is used to speed up query
execution, by buffering data elements as they arrive within a certain time
interval. In addition to speeding up query execution, batching can to some
extent compensate for bursty load. As opposed to sampling, batch processing
does not cause inaccurate answers, timeliness is instead sacrificed [BBD02].
Figure 6.2 shows a schematic drawing of tuples in a batch.

After sending a batch of tuples from a client application to a processing
node, a certain sleep interval is required in order to process the tuples. This

6.4 Alternative Setups 61

ai,bi,c1
az,ba,ca
as,bs,c3

an,bnsCn

Table 6.2: Showing a batch consisting of n tuples

requirement manifests itself through a required function argument within the
generated marshal code. In the example Borealis client applications provided
with the release, the BATCH_SIZE and SLEEP_TIME parameter are set in
order to control the send rate of the tuples. Instead we try to set these values
so that a highest possible rate of tuples can be sent to the query processor.
Sleeping as little as possible will result in higher accuracy, as tuples do not
have to wait to be processed. Thus, we have given SLEEP_TIME the value
of 1, which is the smallest value allowed.

For the BATCH_SIZE parameter, we have run several tests, in order
to find a suitable value. Setting the BATCH_SIZE to high has resulted in
Borealis loosing a high number of tuples, no matter what network load it
operates on. This loss of tuples is caused by a limitation within the source
code, restricting the number of tuples being processed at the same time.
We present the variable, defining this limitation in Section 6.5. High values
of BATCH_SIZE have also shown to give inaccurate query results at low
network loads, as tuples are not sent through the query before the batch is
filled up. Setting it to low, we are restricting the maximum workload, as
only a certain number of tuples are allowed each millisecond?.

We have chosen to set BATCH_SIZE = 45. Experiments that show this
as a suitable value are presented in Appendix D.

6.4 Alternative Setups

A possible alternative setup that in future experiments should be tested, is
to perform the actual filtering of the packets within the Borealis client appli-
cation. This would mean to read the headers directly from the pcap library
interface without using fyaf. Incorporating fyafs functionality in Borealis
client applications, should be possible. Doing so should lead to less load
on the machine performing the queries. Both the read and write operations
through the TCP sockets to fyaf would not be needed, neither the trans-
formation of the TCP/IP headers between the fyaf representation, and the

3For example a SLEEP_TIME of 1 ms and a BATCH_SIZE of 5 given an average packet
size of 796 bytes, would result in 5*1'0{)_%50*07.888@;;28}’”5 = 31,8Mbit/s of maximum possible
relative throughput.

62 Experiment Environment

Borealis preferred structure types. A drawback would be the loss of accu-
rate comparison of experiment results, with the results from the experiments
performed by Hernes [Her06] and Sgberg [Seb06].

6.5 Beyond the Black Box Testing

In order to provoke the Global Load Shedder module to perform load shed-
ding, we have tried to alter specific variables within the source code® of
Borealis. During our exploration of the source code, we identified several im-
portant variables set to limit resource utilization. By limiting utilization, the
challenges of handling an overloaded system are simply met by avoiding it.
A drawback is that migration of such a system onto more powerful machines
necessarily does not increase the possible system performance. We cannot
know in what degree the parameters are limiting the utilization at our setup.
At least not without performing further testing. Measurements and analysis
of performance with other values than set in the release, might be subject in
further studies. We include a list of important variables:

e MAX_BUFFER is set in the generated part of the client application.
It restricts the number of tuples waiting to be processed. In our setup
the restriction value is set to 64,000. When overload occurs, Borealis
often complains with an error message that the restriction is violated.

e TUPLE_PROCESSING_LIMIT is set to 100, and limits the number
of tuples being processed within at certain period of time. After mail
exchanges with the Borealis developers, we have been told that setting
it lower, will provoke the Load Shedder.

e MAX_UTILIZATION is set to 0.99. The definition within the source
code states that it limits the maximum CPU utilization for the node.

e MAX_BW is set to 1,000,000. We have performed test where BUFFER_SIZE

within client applications have been set immensely high. Even though
this has led us to achieved higher tuple processing rates, it has shown to
result in a new error message. We believe this error message is caused
by a violation of the MAX_BW parameter.

¢ MAX_SOCKET_BUFFER is set to 64,000. We believe it affects the
maximum number of tuples, held in the socket buffer queue between
the client application and the query processor.

4The variables can be found in the file src/common/common.h, within the Borealis
source code.

Chapter 7

Performance Evaluation of
Borealis

In this chapter we evaluate the performance of Borealis performing the net-
work monitoring tasks, presented in Chapter 5. During each experiment run,
task results, and measurements of CPU utilization and memory consumption
are written to files. Based on these data, we will evaluate the performance
of Borealis. We start with a general description of our evaluation in Section
7.1, and define workload factors and evaluation metrics. The results from
the evaluation are presented throughout Section 7.2. Section 7.3 summarizes
our findings.

7.1 Description of Evaluation

In order to perform our evaluation, we start by identifying the set of workload
factors that are used in our experiments. We explain each of the factors, and
present the actual values set in our experiments. We further introduce a set
of metrics, used to measure our results. During our evaluation we will present
measured results in a collection of different types of graphs and tables. We
explain these graphs and tables in general, at the end of this section.

Note, that throughout the evaluation we use 1 Mbit, for the value 1, 000, 000
bits. Others may refer to the value as 22, although we consider such a refer-
ence as not correct [meg|. After performing the experiments, we have found
that 1 Mbit is referred to as 2%° bit, within the experiment scripts. Hence in
the generated traffic, we expect some inaccuracy when measuring the network

load.

64 Performance Evaluation of Borealis

7.1.1 Factors

Time and storage consumption limits the number of runs we are performing
for each experiment. For each task, we often include several versions, and
each of them is performed several times. The experiments are run with
different network loads, each with a duration of several minutes. For each of
them, several system and result values are written to disk during execution.
With restriction of time and storage consumption in mind, we have specified
a duration time for each of the tasks to run. We have also specified a set of
network loads that the tasks will be tested with. We describe each of these
workload factors, and present the actual values used for our experiments in
Table 7.1.

e Duration time D; (minutes) is a factor for how long each of the tasks
is running at each stage of the experiment. By stage we mean a single
version of a task, running on a single network load during a duration
period D;.

e Network Load N; (Mbit/s) is a factor for how much workload in terms
of generated bits per second (Mbit/s) that Borealis receives. During
our experiments, we have chosen to generate stable network loads, as
opposed to bursty network loads. For instance, on a 5 Mbit/s Inter-
net connection, the connection line is seldom fully utilized in terms of
bandwidth. If Borealis can handle 5 Mbit/s performing a query, dur-
ing D;, we claim that it can be deployed as a network monitor, on that
Internet connection. The network load represents a worst-case value,
in which we try to identify whether or not Borealis can handle in.

e Packet size P; (Bytes) is a metric for the total size of each packet. The
value resides in the totallength field in the IP header. The actual packet
size we have set TG to generate is 796 Bytes. This value was chosen for
our experiment setup, since the same value was used in the experiments
of Seberg [Seb06] and Hernes [Her06]. By using the same packet size,
we can later compare the experiment results. Note, that the packet
size received from fyaf has shown to be different from what we set TG
to generate. We believe this is caused by the TCP implementation
used in the experiment setup, which has placed the payload delivered
from TG in segment sizes that differ from what TG is set to send.
We expect this behavior is caused by a built in mechanism in TCP.
The mechanism is supposed to optimize packet segments sizes delivered
to the IP layer. The mechanism we refer to, is based on solving the
small-packet problem described in RFC0896 [Nag84], also referred to

7.1 Description of Evaluation 65

Parameter Task 1 Task 2 Task 3 Task 4 Task 5

D (s) 600 600 905 600 600

N; (Mbit/s) | 1,5,10,20,---,80 | 1,5,10,20,---,60 | 1,5,10,20,---,60 | 1,5,10,20,---,60 | 1,5,10,20,---,60
Ny (count) 5 5 5 5 5

N¢ (count) 1 1 1 10 20

Ps! (bytes) 796 796 796 796 796

Table 7.1: Workload factors

as Nagles algorithm. The idea is to reduce the number of packets that
need to be sent through the network, in order to decrease network load
caused by overhead of the TCP packet headers.

e Number of test runs N, is a factor for how many times each stage of
an experiment is run. This means the number of runs for a single task
version, on a specific network load N;.

e Number of clients N, is a factor for how many client connections TG is
set to generate. NN, is most often set to 1, since it for most of the tasks
should not affect the experiment results. Task 4 and Task 5 will on the
other hand be affected by the number of clients N., hence we have set
them higher. (See Table 7.1.)

7.1.2 Metrics

Our evaluation of the network monitoring tasks is based on output results
from the continuous queries, and system resources logged during the exper-
iments. In the following subsections, we discuss the metrics we use in our
evaluation.

Supported network load

By supported network load, we mean the network load N; that we measure
that Borealis can handle. In order for Borealis to handle a certain network
load, we expect fyaf to report a packet loss of 0%. We introduce a metric for
lost packets L,. L, is the average percent of lost packets that fyaf reports
for each experiment run, for each specific network load. L, is calculated
by looking at the total number of packets that fyaf has sent, and the total
number of packets that fyaf has reported to be lost. We include a subsection
on Dropped packets reported by fyaf, for all task evaluations, where we identify
the supported network load.

66 Performance Evaluation of Borealis

Accuracy of the results

Task results are evaluated by looking at the output from the queries. Most
often we present the arithmetic mean values, for the task results. Equation
7.1 shows the formula used to compute the arithmetic mean value 7, for a
measured result. z; is the measurement for the single experiment run. Ad-hoc
scripts, used to read the task results, will perform the actual computation.

_ 1 <&
T, =— ; 7.1
o ;Zl x (7.1)

For each task version, we will identify the accuracy by looking at the
output from the tasks, and compare it with our calculated expected values.
By looking at the fyaf output and knowing the behavior of the generated
traffic, we are most often able to calculate the expected values. We introduce
a metric for accuracy A., which is measured in percent. In order to show how
A, is calculated, we start with defining our metric for error. The error FE, is
calculated for each measured result 7, in Equation 7.2. C, is the calculated
estimate.

E, = Cci %100 (7.2)

Based the Equation 7.2, we define our metric for accuracy A.. Equation
7.3 shows how it is calculated.

A. =100 — |E,| (7.3)

Consumption of system resources

We present CPU utilization and memory consumption in order to identify
possible overload situations and overall system utilization. We will look at
values for the Borealis process only. These values are measured each second
during the experiments, with the use of the Unix application top. For each
task, we include both a subsection describing the CPU utilization, and a
subsection describing the memory consumption. We define metrics for both
of them:

e CPU utilization C), (percentage) is a metric for how much CPU is
utilized during our experiments. We use top to investigate the CPU
usage during our experiments.

e Memory consumption M, (percentage) is a metric for the memory re-
sources used by the system.

7.1 Description of Evaluation 67

7.1.3 Presentation of Results

Throughout the evaluation in Section 7.2, we introduce a set of graphs and
tables in order to present our measured metrics for all runs of the different
task version experiments.

e Lost packet graphs is used to present the metric L,. The plotted values
are averages from the five experiment runs, for each network load the
experiments have run on.

o Task result graphs and tables are used to present the query results, as
well as the accuracy A, from each of the task versions. The presented
values are averages of the output from the five experiment runs, at each
network load.

e CPU average graphs are used to present the average CPU utilization
Cpy, during the experiments. One graph presents values for each of the
task versions, at all network loads.

e CPU maximum value graphs are used to present the maximum CPU
utilization for each of the task versions. We choose to look at maximum
values, especially where we want to identify overload situations.

e Memory average graphs are used to present the amount of memory
M, consummed by Borealis during the experiments. The values are
averages from the five runs, presented for each task version, at each of
the network loads. As with CPU, we also present maximum memory
graphs, since we often are interested in the maximum values.

e CPU comparison graphs are used to present single experiment runs,
when comparing different task versions.

e Memory comparison graphs are used to present memory consumption
for single experiment runs, and compare them for different task ver-
sions.

Note, that when we present CPU utilization and memory consumption
during the experiments, we only present from measurements the Borealis pro-
cess. The Borealis process is the process that performs the query processing.
Investigations of client application resource utilization and consumption are
not presented, since we are more interested in the performance of the query
processor. Investigations however show that the client applications consume
fewer resources than the query processor during the experiments, as expected.

68 Performance Evaluation of Borealis

Version | Drop rate
dr: 0 0

dr: 0.2 | 0.2

dr: 0.4 | 0.4

dr: 0.6 | 0.6

dr: 0.8 | 0.8

Table 7.2: Different drop rates used in the Task 1 versions

7.2 Evaluation of Tasks

In this section we present the results from the network monitoring tasks, five
in total. A subsection is included for each of them, showing measured results
from the different task versions.

7.2.1 Task 1: Load Shedding

This task was originally intended for verifying the load shedding mechanism
in Borealis. A complete load shedder, should perform two important opera-
tions:

e Identify overload situation

e Shed load by dropping tuples, when overload occurs

As discussed in Chapter 5, due to compilation problems, we cannot ver-
ify the module that is supposed to identify overload situation. But we have
managed to successfully deploy the module that covers the second function-
ality of a load shedder; to shed load. This functionality is covered by the
random_drop operator box. The operator box sheds load by dropping a cer-
tain percentage of tuples, randomly. Figure 7.2 shows the drop rates we have
tested. By running several task versions with different drop rates, we can
evaluate the effect of the supported load shedding mechanism.

Dropped packets reported by fyaf

In order to identify what load Borealis can handle, we start by looking at
Figure 7.1. The figure shows the average number of dropped packets at each
network load, reported by fyaf. We expect that fyaf will report significant
packet losses, as we the experiments reach higher network loads than Borealis
can handle.

7.2 Evaluation of Tasks 69

[— J I —— | N—
[Drop rates: ;
Drop rate 0,0 i f
90 (Drop rate 0,2
Drop rate 0,4
Drop rate 0,6 :
80 (Droprate 0,8 ~ ———— ;

100

70|
N j \
60 | f :
!
/.
1’ H .
/ i N
50 - lvf ; -
l’ i /
/i sl
’/ : r” / -

40
i ;
/i D
| ;
! ;

Average of lost packets, L, (%)

30 / E
/ 2
i i
/ . i
| / o

20 / g
/
L K i

10 |
~ P . .

Lo Sy %
0 10 20 30 40 50 60 70
Network load, N, (Mbit/s)

Figure 7.1: Task 1: Lost packets

At a network load of 20 Mbit /s, the plot shows that Task 1 dr: 0.2 reports
an average packet loss of 5.6%. Further investigations show that packet losses
only are reported during experiment run 4. We suspect this may be caused
by an unknown overload situation in our experiment setup. At a network
load of 30 Mbit/s, no task version reports any significant packet loss. At
40 Mbit /s however, all but Task! dr: 0.4, report packet losses ranging from
approximately 5% for Taskl dr: 0.6 and dr: 0.8, to 13% for Task1 dr: 0.2

and 80% for Task1 dr: 0. At a N; of 50 Mbit/s, we see that all versions drop
a significant amount of packets. Task! dr: 0.8 is the one that drops the least
amount of packets, approximately 12%. Taskl dr: 0.4 drops 31%, and Task1
dr: 0,6 and dr: 0.2 both drop more than 80% of the packets. However we
see an interesting decrease of L, for Taskl dr: 0 at N; of 50 Mbit/s. This is
probably caused by a crash in our experiment setup, and that the number of
total packets received from fyaf has been reported lower than it should have
been. We believe that the cause of the decreasing L, for the other versions

are the same.
The highest supported N; is 40 Mbit/s, for Task1 dr: 0.4. This is 30%

more network load than Taskl1 dr: 0, dr: 0.2, dr: 0.6 and dr: 0.8 is support-
ing, hence the random_drop boxes have only shown to increase the supported
network load at a drop rate of 0.4. In other words, random_drop boxes does

not dramatically increase the supported network load.

70 Performance Evaluation of Borealis

N, v.0 [v02 |v.04|v.06]v. 08
1 Mbit/s | 100% | 80.1% | 60.1% | 40% | 20%
5 Mbit/s | 100% | 80% 60% 40% | 20%
10 Mbit/s | 100% | 80% 60% 40% | 20%
20 Mbit/s | 100% | 80% 60% 40% | 20%
30 Mbit/s | 100% | 80% 60% 40% | 20%
40 Mbit /s | - - 60% - -

Table 7.3: Task 1: Accuracy

Accuracy of the results

The output from Task 1, consist of all the packet headers sent during each of
the experiments. We have not stored all the original fyaf data, and base our
calculations for the accuracy A, of the count of packets present in the result
files. These are compared to the number of packets sent by fyaf. We expect
the accuracy to decrease, as we are increasing the drop_rate. We present the
results in Table 7.3. The results are as expected, and shows that the amount
of dropped packets with the use of the random_drop box, is consistent with
the achieved accuracy.

CPU Utilization

In order to present CPU utilization, we have chosen to present three plots.
We start with a discussion of Figure 7.2 showing the average CPU utilization
for the task versions, at the different tested network load. The figure shows
average Cp, values of approximately 2 - 3% for all versions, at 1 Mbit/s.
We see that the version with the highest CPU utilization is Task1 dr: 0.2.
Further investigation of the measured results shows that it utilizes 0.12%
more CPU than Task! dr: 0. This can be explained with the fact that Task1
dr: 0 does not contain any random_drop box. At a network load of 5 Mbit /s,
we see that Taskl dr: 0.2 utilizes 0.93% more CPU than Taskl dr: 0. We
claim that deploying a random_drop box with only a drop rate of 0.2, might
lead to even higher CPU utilization. At a network load of 20 Mbit/s Task1
dr: 0 shows higher CPU utilization than Task! dr: 0.2, but we expect this
is only because Task1 dr: 0.2 has suffered the packet losses shown in Figure
7.1.

As long as the drop rate is set to 0.4, or more, the plot is showing that
increasing drop rates decrease CPU utilization. At 5 Mbit/s, we see that the
CPU utilization measurements are evenly distributed between 11 - 14%. The
measured results show 14% for Task1 dr: 0, 13% for Taskl dr: 0.4, 11% for

7.2 Evaluation of Tasks 71

Task1 dr: 0.6 and 8.6% for Taskl dr: 0.8. By looking at the plots, we see
a similar trend for network loads up until 30 Mbit/s. At this point, we see
sudden drops for most versions, as they are reporting to drop packets. This
does not apply for Task1 dr: 0.4, as it did not start dropping packets until
40 Mbit/s. The reason for the sudden increase of CPU utilization for TaskI
dr: 0, from 40 Mbit/s to 60 Mbit/s is unknown.

In overload situations, maximum values are often of interest, hence we
include Figure 7.3. The figure shows the measured average of maximum
CPU utilization, for each task version, at each network load. We see that
the plots are very similar to the ones in Figure 7.2, but there is a clear
distinction between the plots at 30 Mbit/s of network load. All plots in
Figure 7.2, except Taskl dr: 0.4, are rapidly decreasing, but in Figure 7.3
they are in fact increasing. Taskl dr: 0 reaches a maximum of 75% at 40
Mbit/s. All plots show a decrease in maximum values for CPU utilization
from 40 Mbit/s and towards 60 Mbit/s. From this, we can tell that overload,
leading to lost packets, occurs before CPU utilization reaches its maximum.
The cause of overload is probably not that the system reaches a maximum
of CPU utilization.

The last figure for CPU utilization we introduce is Figure 7.4. It shows a
CPU utilization comparison between Taskl dr: 0 and Taskl dr: 0.8. Each of
the plots show a single experiment run, at a network load of 30 Mbit/s. The
plots clearly show that the Taski1 dr: 0 utilizes more CPU than Taskl dr:
0.8. More precisely, Taskl dr: 0 consumes approximately 15% more CPU
than Task1 dr: 0.8.

Memory Consumption

By looking at the Borealis memory consumption, we are interested in identi-
fying the effect random_drop bozes have on relieving the Borealis with mem-
ory. We include two figures, and start by describing Figure 7.5. The figure
shows the average maximum measured memory consumption values, for the
different task versions, at the different drop rates. We are interested in the
maximum measured values, as we want to identify possible overload situa-
tions. For Taskl dr: 0, dr: 0.2, dr: 0.4, dr: 0.6 and dr: 0.8, we see stable
maximum values at 3.1% up until 30 Mbit/s of network load. In other words,
it seems random_drop bozes, has no effect on memory consumption. At 40
Mbit/s, we see that Taskl dr: 0.0, shows an increase up to 3.42%. This
corresponds to a increase of 3.2 MBytes. From Figure 7.1, we know that
Task1 dr: 0.0 has dropped packets at 40 Mbit/s, hence we have an overload
situation. We believe the increase is caused by the overload situation. Task1
dr: 0.2, and Taskl1 dr: 0.4, shows increases at 50 Mbit /s, while Task! dr: 0.0

72

Performance Evaluation of Borealis

Average CPU for Borealis(%)

Average CPU Maximums for Borealis(%)

60

50

Figure 7.2:

80

70

(=2}
o

ol
o

N
o

w
o

N
o

10

?Drop rate 0,0
Drop rate 0,2
Drop rate 0,4

I-Drop rate 0,6

20 30
Network load, N, (Mbit/s)

Task 1: Average load for the Borealis process

Drop rate 0.0
Drop rate 0.2
Drop rate 0.4
Drop rate 0.6

20 30 40 50 60
Network load, N, (Mbit/s)

Figure 7.3: Task 1: Average maximum CPU values for the Borealis process

7.2 Evaluation of Tasks 73

80

Lo D[QP}@@QS
Drop rate 0,0
Droprate 0,8 -=---77)
70 B
60 [B
g
H
g sof i
£
>
[}
5
40 vk ™ U e s R R | b
S M"Q«,\!*fé;“t,~w r,'mv’,\;“{'“»,)‘-‘;‘u”‘;‘wm SN i g
z A R (Y PRI AR P
) b i i
2 30} g
©
o
o
s3]
20 B
10 B
0 d 1 1 1 1 1
0 100 200 300 400 500 600 700

Second

Figure 7.4: Task 1: Single run comparison of CPU utilization at 30 Mbit/s for
Task 4 v. 1 and v. 5

shows a decrease. We believe inconsistent behavior of the measured results is
caused by the fact that Borealis and the experiment systems behave unstable
at such loads.

We also include single experiment comparison for average memory con-
sumption between Taskl dr: 0.0 and Taskl dr: 0.8. The comparison is
shown in Figure 7.6. The experiments were run at a network load of 30
Mbit /s, during 600 seconds. The plots show that the two versions consume
almost exactly the same amount of memory during the experiment. A no-
table behavior of the plots, is that we see an increase for the average memory
consumption during the first seconds for both of the task versions. This is
probably caused by the fact that the experiment was just about started, and
that the network traffic had not reached full speed.

7.2.2 Task 2: Average Load

In Task 2, we measure the average amount of packets per second, and the
network load per second, in a one minute interval. We introduce two metrics
for the query results. Packet rate P, (packets/s) is a metric for the rate
of packets received by Borealis each second. In addition to P,, measured
network load M; (Mbit/s) is a measured metric for how much network load
the packets represent in terms of traffic that has been retrieved from the NIC.

74 Performance Evaluation of Borealis

4

Drop rate 0.2
o Drop rate 0.4
O Drop rate 0.6
o 38 (Droprate08 -
k)
g
i)
«©
< /
@ 36
5
1% /
£ /
=1 /
£
3 ;
s 34r
> /
o
£ /
Q /
= y
[/
g 32f /
9] /
> ;
< /[,’

3 Il Il Il Il Il
0 10 20 30 40 50 60

Network load, N, (Mbit/s)

Figure 7.5: Task 1: Average maximum memory values for the Borealis process.

4 b
Drop rate 0,0 —

35
S
k=4
o
IS
£
>
0

5 |

3 3

= i
Q
=
2
®
<
o
o

25 |

2 Il Il Il Il Il Il
0 100 200 300 400 500 600

Second

Figure 7.6: Task 1: Comparison of memory consumption at 30 Mbit/s network
load for Task1 dr: 0.0 and Taskl dr: 0.8

7.2 Evaluation of Tasks 75

Version | Window size (seconds) | Based on

ws: 1 1 Initial version 1
ws: 20 | 20 Initial version 2
ws: 40 | 40 Initial version 2
ws: 60 | 60 Initial version 2

Table 7.4: Different window sizes used in the different versions

We expect M; =~ N;. Equation 7.4 shows how M is calculated, given a fixed
packet size.

M, = P, % P, (7.4)

From what we have seen in test runs early in the task design phase, we
suspected that the window sizes used in the aggregate boxes, has significant
effect for the supported network load. We included several versions with
different window sizes, in order to identify a possible trend. Table 7.4, shows
the task versions and their window sizes. Note that we have not tested bigger
window sizes because this would not fit into the predefined task description
very well.

Dropped packets reported by fyaf

The number of lost packets is presented in Figure 7.7. The plots shows that
Task 2 ws: 1, ws: 20 and ws 40, did not suffered from any significant packet
loss up until a network load of 40 Mbit/s. Task 2 ws: 60, however, suffered
a 4.8% packet loss at 20 Mbit/s and a 5.1% packet loss at 30 Mbit/s. At
both 20 Mbit/s and 30 Mbit /s, only one out of five experiment run reported
packet losses, hence the cause might be experiment inaccuracy, etc.

At a network load of 40 Mbit/s, Task 2 ws: 1, ws: 20 , ws: 40 and
ws: 60, reports close to 0% packet losses, but at 50 Mbit/s they all loose
packets. From here, the packet losses ranges from 100% for Task 2 ws:
40, approximately 15% for Task 2 ws: 20 and ws: 30, and approximately
5% for Task 2 ws: 60. Based on this, we cannot conclude any notable
effect off increasing the window size, in terms of lost packets, other than
during overload situations, where measurements show different values for the
different window sizes. These variations might be caused by the random
behavior of a overloaded system.

76 Performance Evaluation of Borealis

100 T T T T T

Window size 1 seconds — B /
90 Window size 20 seconds ~ ----—--- : /L
Window size 40 seconds - : ; /

Window size 60 seconds :

80 /-
70 ,
60 ,
50 i

40 /

Average of lost packets, L, (%)

30 //' /. |
20 / I i

10 s i

0 P i ! !) e !
0 10 20 30 40 50 60
Network load, N, (Mbit/s)

Figure 7.7: Task 2: Lost packets

Accuracy of the results

We start by presenting the average network load per second. Figure 7.8
shows the average results of measured network load M; over a one minute
interval, reported each second. The graph shows the results at the different
network loads, for each task version. For these results, we expect N; ~ M;,
hence the plot of M; should reassemble a plot of the function f(x) = x.

The plot in the graph in Figure 7.8 show that the measures of M, for
all Task 2 versions, are a bit higher than N;. We believe this is caused by
the fact that the generated traffic are based on the consumption that 1 Mbit
equals 2% bits, not 1,000,000.

We present the average accuracy A, for the versions in Table 7.5. The
table show that all measured values have an accuracy A, of 90% or better.
As the network load increases, so does the accuracy. We see no clear trends
that window sizes affect the accuracy.

Task 2, also measures the average number of packets per second. For
this, we have introduced the metric P.. We startby presenting a plot of P.
in Figure 7.9. The figure show average values for the experiment runs, for
each version, at the different network loads. The plot is not straight, as
the packet sizes varies among the different network loads. Because of this,
we have not been able to estimate the exact expected values, only based on
what we know from the behavior of the generated traffic. Initially, we set the
generated traffic to use packets with the total size of 796 bytes. Investigation

7.2 Evaluation of Tasks

77

40 ——— | P ———— L — PE— L S ——— | p— 7
oo Windowsizes: A
Calculated value f(x) = X, based on M= N; : 5
Window size 1 seconds i s

35 FWindow size 20 seconds - 2 4
‘Window size 40 seconds S

o Window size 60 seconds —mmm s
= 277
Q /,;
s 0r e T
= 7
k=1 A
8 25 7 ,
a3 &
x Py
2 A
2 20} // R
9 g
9] ~
5 p
8 15 /f’ §
= -
o P
=y %
g 10 L i
< s
/
5F / B
| | | | | | |
5 10 15 20 25 30 35 40

Network load, N, (Mbit/s)

Figure 7.8: Task 2: Average measured network load

Task 2 ws: 20

Task 2 ws: 40

Task 2 ws: 60

N; | Task 2 ws: 1
1 193.2%
5 193.3%
10 | 95.1%
20 | 95.8%
30 | 98.3%
40 | 98.7%

93.8%
93.3%
95.7%
96.6%
97.7%

99.5%

94.0%
93.4%
95.2%
98.4%
98.5%
98.0%

92.5%
93.3%
94.1%
95.2%
96.7%
98.2%

Table 7.5: Task 2: Average accuracy A. of measured network load M,

78 Performance Evaluation of Borealis

Task2: Average Packet Rate Per Second

7000 ——— | ——— L —— L S —— T - | — T T
b Windowsizes:
Calculated values with packet size of 796
Fyaf calculation - :
6000 |Window size 1seconds ~ eeeees : B
Window size 20 seconds :
. Window size 40 seconds — L
@ Window size 60 seconds LT e
% _aE
o 5000 = R
X i
s} T
© =
a T
[T
o 4000 e E
) 2
T P
o #
B P
X 3000 L B
8 ”
o 71/
o #
(= A
g 2000 | - -
> v
£
//
1000 /// B
0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Network load, N, (Mbit/s)

Figure 7.9: Task 2: Packets per second

of the packet sizes, as their packet headers were captured by fyaf, shows
that the TCP layer has chosen a different packet size, for the segmented
packets. With a stable packet size of 796 bytes, it would have been possible
to calculate the packet rate with the following equation:

__ N; % 1000000bits
n 796bytes = 8bits

(7.5)

We include this equation in the Figure 7.9, since it can be seen as an ap-
proximation of the accurate result. A better way of calculating the expected
packet rate P, is by looking at the fyaf result files, for each of the experiment
runs. Since we know the total amount of packets P, that fyaf has sent to
the client application, and as well the experiment duration 7T,, we can pose
the following equation:

P,
Pr ~ tot
Tq

(7.6)

Based on the calculation of P,, we show the accuracy A, of the measured
packet rate P, for each of Task 2 versions in Table 7.6. The Table shows
that the measured results for the versions are approximately 98% accurate
or more, except from Task 2 ws: 60 at the network loads 20 Mbit/s and
30 Mbit/s. This inaccuracy is probably caused by the dropped packets,
discussed earlier.

7.2 Evaluation of Tasks 79

N; | Task 2 ws: 1 | Task 2 ws: 20 | Task 2 ws: 40 | Task 2 ws: 60
1] 98.4% 98.0% 97.7% 99.2%
5 | 98.9% 98.9% 98.8% 98.8%
10 | 98.5% 98.0% 98.4% 99.4%
20 | 98.7% 97.9% 99.2% 76.0%
30 | 98.2% 98.8% 98.1% 75.3%
40 | 98.4% 98.6% 98.9% 98.8%

Table 7.6: Task 2: Average accuracy A, for measured packet rate P,

CPU Utilization

Figure 7.10 presents the average maximum CPU utilization measurements,
among the five experiment runs, for each of the task versions. We see that
the plot from Task 2 ws: 60, has lower values than the other versions, at
the network loads 20 Mbit/s and 30 Mbit/s. This is probably caused by the
packet losses, already explained. By looking at the graph, we see no con-
sistent trend that shows that increasing window sizes in aggregate operator
boxes should decrease CPU. At 40 Mbit/s, we see that the CPU maximums
for Task 2 ws: 40 is 10% higher than for Task 2 ws: 1 and ws: 20. The
plot also shows that Task 2 ws: 20 and Task 2 ws: 40 most often utilizes
approximately 0.5% more CPU than Task 2 ws: 1. We regard 0.5% of CPU
utilization to represent a so small percentage, that it does not necessarily
mean anything in terms of how window sizes affect CPU utilization.

Memory Consumption

Figure 7.11 shows the average maximum memory consumption values for
the experiment runs. We see that all versions, except Task 2 ws: 60, shows
stable maximum values at 3.1%. Task 2 ws: 60, drops down to 3.08% at
20 Mbit/s and 30 Mbit/s. The dropped packets, discussed earlier, probably
cause this. Other than that, we see that there is no variation for the max-
imum consumption values for the different window sizes, and conclude that
window sizes up to 60 seconds do not affect memory consumption.

When increase the window sizes, we expected to see results of increased
memory consumptions. Increasing window sizes should lead to more tuples
being held in memory. As we see no increase, we believe memory consump-
tion is mainly restricted by the system parameters set in the Borealis code,
presented in Chapter 6.5.

80 Performance Evaluation of Borealis

Average CPU Peaks for Borealis(%)

0 L L L L L L L
0 5 10 15 20 25 30 35 40

Network load, N, (Mbit/s)

Figure 7.10: Task 2: Average maximum CPU utilization values for the Borealis
process

3.4
Wi 3
Window size 20 s

@ 3.35 [Window size 40 s 1
Q Window size 60s ol
—
k]
< 33 B
L
K]
()
5 325 E
s3]
8
(%2}
£ 32 E
>
£
L

3.15 E
>
o
£
()
= 31f
()
[=2]
I
g
< 305 E

3 Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40

Network load, N, (Mbit/s)

Figure 7.11: Task 2: Average maximum memory consumption for the Borealis
process

7.2 Evaluation of Tasks 81

7.2.3 Task 3: Destination Ports

In this Task 3, we are counting the occurrences of packets with certain des-
tination ports, during a five-minute interval. In our experiment, we have
chosen to count occurrences of packets with destination port 60010. This is
the destination port used by the packets in the TG generated traffic. We
have included two versions. Task & v. 1, which uses a filter operator box,
and Task 3 v. 2, which uses internal static tables, in order to decide which
port to count occurrences of. In order to test the static table function, we
have included several thousands of ports from IANA [ian], in a stream that
is stored within the static tables. We expect this to have a significant effect
on the supported network load for this version.

Dropped packets reported by fyaf

We start by looking at the number of dropped packets in Figure 7.12. We see
that Task 3 v. 1 does not report any packet loss before reaching a network
load of 40 Mbit/s, meaning it can handle 30 Mbit/s. At 40Mbit/s it suffers
an average packet loss of 3.5%, which increases to 16.8% at 50 Mbit/s. Task
3 v. 2 has an average packet loss of 0.9% at a network load of 5 Mbit/s. At 10
Mbit /s however, it reports a 0% packets loss. We regard the loss at 5 Mbit/s
as so small that it can be caused by random inaccuracy in our experiment
setup. At 20 Mbit/s, Task 3 v. 2 reports an average packet loss of 7.2%.

As expected Task 3 v. 1 seems to handle a significant higher network load
than Task 3 v. 2.

Accuracy of the results

Figure 7.13 shows the average count of packets destined for the TG port
60010, each fifth minute. We have decided to not include any results from
Task 3 v. 2, above 10 Mbit /s of network load, because of the high number of
lost packets. We see a close relation between the curve of Task 3 v. 1 (Figure
7.13), and the curves from Task 2 packet rates (Figure 7.9).

In order to be able to calculate the expected results, we have expressed
an equation based on a very simple assumption. We assume that half of the
packets exchanged between the two machines in the experiment network, are
destined for the port 60010. With this assumption, we can express Equation
7.7 for the expected results for the count of port occurrences P,. P, represents

sample values from the packet rates measured at the different network loads
in Task 2.

82 Performance Evaluation of Borealis

100

Ver: : A
i v
90 |Version2 ------- ; i |
/ v
/ A\ y
80 - j \ 7
/ ‘\\ /
/ s .
70 - ; \ /
! \\ K
60 I f \ / -
/ \ /
/ \ /
50 - / y |

/ Y /
40 / \ / g
/ \ S

Average of lost packets, L, (%)

! \ ,’/
30 X i
; .
20 | R

10 .

o J e /"'// ! ! ! !
0 10 20 30 40 50 60

Network load, N, (Mbit/s)

Figure 7.12: Task 3: Lost packets

N, | P, Expected value based on P,
1 | 45638 | 39300

5 | 225480 | 195150

10 | 399839 | 338550

20 | 761588 | 599250

30 | 947414 | 683400

Table 7.7: Task 3 v. 1: Measured values P,, and estimates based on P, from Task
2

P~ P, % 300seconds (7.7)
2

We include the calculated values in Figure 7.7 and Figure 7.13. Note that
this calculation is fairly inaccurate and only included in order to compare the
trends. The trends however, by looking at the graph in Figure 7.13, seems to
be consistent with the expected calculated estimates. However we see that
the gap between the two plots increases as the network loads get higher. We
believe the correctness of our assumption that half of the packets are destined

for 60010, decrease as network load increases.

As our calculated values are based upon an inaccurate assumption, we
choose to not present any accuracy table for the task results. The average
measured values from Task 3 v. 1, are shown together with the estimated

7.2 Evaluation of Tasks 83

Task3: Average Port Destination Count During 5 Minutes

1e+06 ——————— T S ——— T T
: Window sizes: :

900000 fVersion 1 ;
Version2 ;

800000 |- /,,//’“'/7 .
700000 |- ///'”/ E
600000 |-
500000 |-

400000

Average Port Desination Count

300000

200000

100000 |

0 ! ! ! ! !
0 5 10 15 20 25 30

Network load, N, (Mbit/s)

Figure 7.13: Task 3: Count of destination port occurrences

values in Table 7.7

CPU Utilization

Figure 7.14 shows the average maximum CPU utilization values for the Bo-
realis process, for Task 3 v. 1 and v. 2. As expected, we see that Task 3
v. 2 has higher CPU utilization maximums, than Task 3 v. 1, until Task 3
v. 2 drops a significant amount of packets at a network load of 20 Mbit /s.
Task 3 v. 2 then reach a maximum CPU utilization of 37%, and decreases
to 19% at 30 Mbit/s, as the system gets unstable because of overload. Task
3 v. 1 has an average maximum value of 34.3%, before dropping packets at
40 Mbit/s.

The figure shows, as expected, that Task 3 v. 2 utilize more CPU than
Task 3 v. 1 at the supported network loads. We expected this since Task 3
v. 2 compare thousands of port numbers for each packet, in contrast to Task
3 v. 1 were only on port number is included in the comparison.

Memory Consumption

Figure 7.15 shows the average maximum measured memory consumption
values for Task 3 v. 1 and v2. For the first time in this evaluation, we see
maximum values above 3.1%, without any reported packet loss. Task 3 v.
2, shows 3.3% consumption at the network loads 1 Mbit/s, 5 Mbit/s and 10

84 Performance Evaluation of Borealis

50 - L E— T T T T

Version
45 | Version 2

35

30

25 -

15

Average CPU Utilization Maximums for Borealis(%)

10

5 ! ! ! ! !
0 5 10 15 20 25 30

Network load, N, (Mbit/s)

Figure 7.14: Task 3: Average maximum CPU consumption for the Borealis process

Mbit/s. At 20 Mbit/s the maximum values of memory consumption decrease
for Task 3 v. 2. We consider this to be caused by the high percentages of
dropped packets, as seen in Figure 7.12. Task & v. 1, however consumes a
steady percentage of 3.1%.

We believe that the increase in memory consumption for Task 3 v. 2. is
caused by the use of the internal static tables.

7.2.4 Task 4: Connection Sizes

Task 4 investigates the number of exchanged bytes for each connection, dur-
ing 10 seconds. Initially, we designed two solutions. Their most significant
difference is whether or not they join the results form both sides in the con-
nection. Task 4 v. 1 will return two result tuples for each connection per
time interval, in contrast to Task 4 v. 2, where these result tuples are joined.
Initial testing of Task 4 v. 2, showed correct results. During our experiment
however, we have increased the number of generated TCP connections to 10.
As we also increased the network load, result begun to show that we had a
problem in the join operator. The measured results for Task 4 v. 2 were
significant lower than what we expected. Further investigations showed that
several connections often were not identified. A new task version, Task 4 v. 3,
was implemented, where we increased the window sizes in the join operator,
hoping to identify all connections. However, this has shown to result in ever

7.2 Evaluation of Tasks 85

34

32| .

31

29 1

Average Memory Consumption Maximums for Borealis(% of 1 GB)

28 ! ! ! ! !
0 5 10 15 20 25 30

Network load, N, (Mbit/s)

Figure 7.15: Task 3: Average maximum memory consumption for the Borealis
process

fewer identified connections.

Dropped packets reported by fyaf

Figure 7.16 shows the lost packets L, for Task 4 v. 1, v. 2 and v. 3. We see
that all version show a significant amount of dropped packets at a network
load of 30 Mbit/s. Task 4 v. 1 shows 58% loss, Task 4 v. 2 and v. 8 shows
losses of 87% and 89%. In general, all versions have shown to handle up to
20 Mbit/s of network load, in terms of packet losses.

Accuracy of the results

Figure 7.17 shows the task results for the three versions. The results are
again average values from five runs, at several network loads. We present
the total sum of exchanged bytes, for the 10 connections, since each of them
represent an even share off the total exchanged number of bytes. We have
also included a plot that represents the expected values. These estimates are
based on Equation 7.8. In Equation 7.8, Ej is the total number of exchanged
bytes. Pfactor is an approximation of the factor that we have found that the
packet rate P, increases with in relation to the network load N;. H, is the
total size of the IP and TCP header. We have calculated an approximate
values for H; to 52 bytes, and 150 for Pfueor. These approximations are

86 Performance Evaluation of Borealis

100 P ——— — JLE— T T T T
,,,,,,,, versions:
Version 1
90 (-Version 2
Version3 -
80
g 70F
a
-
g 60
Q
X
Q
[
2 s0f
1%}
k=]
k]
o 40
j=2)
<
g
z 30}
20
10
0 1 / 1 1 1
0 10 20 30 40 50 60

Network load, N, (Mbit/s)

Figure 7.16: Task 4: Lost packets.

based on the Task 2 results.

Ny * 10connections x 1000000M bytes

E
b 8bit

— (Pfactor * Nl * Hs) (78)

By looking at the Figure 7.17, we see that Task 4 v. 2 and v. 3 shows
increasingly lower results than Task 4 v. 1, as network load increases. We
believe the reason for the lower result values, are the unidentified connec-
tions. Task 4 v. 1, however seems to follow the plot of the calculated values,
although the plot show that the precision is decreasing, as network load in-
creases. We have included an accuracy table for the task version, shown in
Table 7.8, based on the estimates calculated with Equation 7.8. Again, we see
that the precision of the estimates and the measured values are decreasing,
as network load is increasing.

We present task results from the five experiment runs at 30 Mbit/s, in
the tables 7.9, 7.10 and 7.11. The tables show result measured for each of the
connections. Note that we in the graph in Figure 7.17 have shown the sum
of all connections, in contrast to the results presented in the tables, showing
the specific exchanged bytes on each of the connections. We see that several
connections have not been identified for Task 4 v. 2 and v. 3, where no results
are presented.

7.2 Evaluation of Tasks

87

4e+07

‘Calculated values
Version 1

3.5e+07 -Version 2

3e+07

2.5e+07

2e+07

1.5e+07

Total Exchanged bytes (Bytes), E,

1e+07

5e+06 [

Version 3

Figure 7.17: Task 4:

10

Network load, N, (Mbit/s)

20

25

30

Total exchanged bytes for the 10 connections

Ny | Task 4v. 1| Task4v. 1| Task 4 v. 3
1]97.7% 77.9% 25.1%
5 197.3% 76.0% 41.0%
10 | 97.5% 81.9% 35.1%
20 | 97.5% 76.0% 41.0%
30 | 93.6% 31.1% 21.6%

Table 7.8: Task 4: Average of accuracy A. for the measured results of total ex-
changed bytes

Run | Con. 1 | Con. 2 | Con. 3 | con. 4 Con. 5 | Con. 6 | Con. 7 | Con. 8 | Con. 9 | Con. 10
0 607348 | 603368 | 603368 | 604816 | 607348 | 603368 | 604816 | 606552 | 604816 | 603368
1 604960 | 604020 | 604164 | 604816 | 620880 | 604020 | 604960 | 604816 | 604816 | 604816
2 605756 | 605756 | 605756 | 605756 | 603368 | 604164 | 605756 | 603224 | 605756 | 605756
3 602572 | 602716 | 601920 | 604164 | 602716 | 604164 | 602716 | 602716 | 623268 | 604164
4 601632 | 601776 | 601776 | 601776 | 601776 | 601920 | 601776 | 601776 | 601776 | 601776

Table 7.9: Task 4, Task 4 v. 1: Sums of exchanged bytes on the 10 connections,
at 5 Mbit/s

88 Performance Evaluation of Borealis

Con. 1 | Con. 2 | Con. 3 | con. 4 Con. 5 | Con. 6 | Con. 7 | Con. 8 | Con. 9 | Con. 10

605104 | 612776 | 605104 | 606552 | 612776 | 604960 | 606552 | 605104 | 606552

604164 | 604816 | 604960 | 604960 | 604816 | 604960 | 604960 | 604960 | 604164 | 604960

Run

0 603368 | 604960 | 605900 | 604960 | 605756 | 604960 | 604960 | 605900 | 604816 | 604816
1 _

2

3

4 603368 | 604816 | 603512 | 604960 | 604960 | 604816 | 603368 | 604960 | 604816 | 604816

Table 7.10: Task 4, Task 4 v. 2: Sums of exchanged bytes on the 10 connections,
at 5 Mbit/s

Con. 1 | Con. 2 | Con. 3 | con. 4 Con. 5 | Con. 6 | Con. 7 | Con. 8 | Con. 9 | Con. 10

604816 | 607348 | 607348 | 604164 | 607348 | 605900 | 604960 | 607348 | 604960 | 604960

Run

0 606552 | 605104 | 606552 | 606552 | 606408 | 605104 | 605104 | 605104 | 605104 | 605104
1

2

3

4

606552 | -

Table 7.11: Task 4 v. 8: Sums of exchanged bytes on the 10 connections, at 5
Mbit /s

CPU Utilization

Figure 7.18 shows the CPU utilization maximums for the Borealis process.
We present plots for the different versions, at the different network loads. As
expected we see that Task 4 v. 2 and v. 3 utilizes more CPU than Task 4 v.
1. This is probably caused by the fact that Task / v. 2 and v. 3, involves a
higher number of operator boxes than Task 4 v. 1, and that Task 4 v. 2 and
v. 8 both include joins.

Memory Consumption

Figure 7.19 shows the memory consumption maximum values for the Task 4
versions. The plot shows that all the versions have equal maximum values at
the different measured network loads. The shared maximum value is 3.1%,
a value that has been measured for most tasks up until now.

7.2.5 Task 5: Intrusion Detection

Our intention for Task 5 has been to identify the possibility of expressing
network monitoring tasks dealing with intrusion detection. We have focused
on detection of SYN Flood Attacks. Our task design described in Chapter
6, has not as purpose to design a complete and trustworthy intrusion detec-
tion task. Doing so would perhaps deserve a thesis alone. Throughout this
subsection, we present the CPU utilization and memory consumption for the
two task versions. This in order to identify what kind of loads these kinds
of queries support. Note, that we have not been able to identify the actual

7.2 Evaluation of Tasks 89

55

! 1
50 [Version 2
Version 3

45 - s :

40 F i
35 - e g

30 L |

20 -

15

Average CPU Utilization Maximums for Borealis(%)
\

0 L L L
0 5 10 15 20

Network load, N, (Mbit/s)

Figure 7.18: Task 4: Average CPU utilization peaks for the Borealis process

. 34
0]
o B
b Version 2
< Version3. -
S 33 |
=
@
o
o
L2 32t i
1%}
£
=)
£
x
@©
= 31t
f =
S
=
£
>
2
S 3 i
o
>
o
£
s
= 29t |
[=2]
I
@
[
>
< 28 w \ ‘
0 5 10 15 20

Network load, N, (Mbit/s)

Figure 7.19: Task 4: Average memory consumption peaks for the Borealis process

90 Performance Evaluation of Borealis

Average of lost packets, L, (%)

0 ! L ! ! !
0 10 20 30 40 50 60
Network load, N, (Mbit/s)

Figure 7.20: Task 5: Lost packets

load that is supported during a real malicious attack, since we do not have
a packet trace form such an event.

Dropped packets reported by fyaf

Figure 7.20 shows the lost packets L,, for Task 5. We see that both versions
drop packets at a network load of 30 Mbit/s. Task 5 v. 1 reports a P, of
56%, and Task 5 v. 2 reports 20%. At 40 Mbit/s, Task 5 v. 1 and v. 2 both
report packet losses above 90%. It is unexpected that Task 5 v. 2, reports
fewer lost packets than Task 5 v. 2 at 30 Mbit/s. We believe that the cause
can be explained by the random behavior of the experiment system, as it
gets overloaded. In general, both Task 5 versions have shown to handle a
maximum network load of 20 Mbit /s.

Accuracy of the results

We have not been able to get hold off traffic sample data from SYN Flood
attacks, but have tested solutions on faked traffic intended to simulate it. We
do not claim that these solutions are fulfilled, but claim that creating such
queries is possible. Because of this, we choose not to present any results, or
their accuracy.

7.2 Evaluation of Tasks 91

90 T T T

Version 1 :
80 | Version2 ~ --——-- :

70 | p

50 - -
40 |
30 -

20 -

Average CPU Utilization Maximums for Borealis(%)

10

0 ! ! !
0 5 10 15 20

Network load, N, (Mbit/s)

Figure 7.21: Task 5: Average CPU utilization peaks for the Borealis process

CPU Utilization

Figure 7.21 shows that Task 5 v. 2 have higher CPU peaks than Task 5 v.
1. This is somewhat expected, because of the complexity of the two queries.
The variation at 10 Mbit/s is measured to 26%, and increases even further
at 20 Mbit/s.

Memory Consumption

Figure 7.22 shows stable maximum values of 3% memory consumption for
Task 5 v. 1 at all network loads. Task 5 v. 2, however, show significantly
higher values. At 10 Mbit/s, we see an average maximum of 4.8%, and
5.3% at 20 Mbit/s. This is the highest measured maximum average for all
tasks. Task 5 v. 1 distinguishes it selves from the other tasks, by deploying a
WaitFor operator box. The WaitFor box causes tuples to be buffered, until
one of them matches a certain predicate. We suspect that the WaitFor box
is what is causing the high memory consumption values for Task 5 v. 2. The

increase of memory consumption from 3 to 5.3%, on our system is equivalent
to 23 MByte.

92 Performance Evaluation of Borealis

Ver :
Version2 ------- :

55 1

35| .

Average Memory Consumption Maximums for Borealis(% of 1 GB)

1 1 1
0 5 10 15 20
Network load, N, (Mbit/s)

Figure 7.22: Task 5: Average memory consumption peaks for the Borealis process

7.3 Summary of the Performance Evaluation

We have shown that Borealis can handle ten-minute bursts of a generated net-
work load of 40 Mbit /s, while performing simple network monitoring queries.
By simple network monitoring queries, we mean queries similar to those of
Task 2, and Task 3 v. 1. For more advanced queries, Borealis only seems
to handle 20 Mbit/s. When incorporating a static table, and comparing the
input tuples with thousands of statically stored tuples, 10 Mbit/s is sup-
ported. The generated traffic consists of packets sent between two hosts on
a network, where the packets with payloads are approximately 796 bytes.

We have shown that the Borealis load shedding technique of deploying
random_drop operator boxes does not increase performance much, in terms
of what network load Borealis can handle. With a drop rate of 0.4, we only
see a 30% increase. Higher or lower drop rates have not shown to increase
the supported network load at all. By looking at the CPU utilization, we see
a small decrease when deploying the random_drop boxes, but not for memory
consumption.

By comparing query results with calculated expected values, we have
shown that Borealis is accurate. We have for most task versions achieved
accuracies A, of 93% or more, and believe that the estimates often are what
is causing the inaccuracy. The accuracy does not apply for our results when
using the join operator, where we get inaccurate results measured to A, of

7.3 Summary of the Performance Evaluation 93

80% or less. The cause is still unknown, but the window size set for the
two input streams in the join operator might affect it. The cause of the
inaccuracy should be pursued further in future work.

Based on the measurements of memory consumption during the exper-
iments, we see that Borealis consumes significantly low percentages of the
available memory. As memory challenges will always restrict a DSMS, as it
performs aggregated queries over data streams in main memory, we would
have expected that memory consumption would increase constantly at in-
creasing data rates. Based on the fact that Borealis only consumes approx-
imately 3% of the available main memory resources, a value that does not
increase at higher network loads, we believe inner system parameters are
what is really restricting the overall performance, in terms of what network
load Borealis can handle. As we base our evaluation on black box testing,
we have not pursued further investigations of this claim, although we have
included a discussion on these parameters in Chapter 6.5.

94

Performance Evaluation of Borealis

Chapter 8

Conclusion

Throughout the stages of writing this Master thesis, we have designed, im-
plemented and evaluated network monitoring tasks, for the Borealis stream
processing engine. In this chapter, it is time to conclude our work. We start
with presenting and summarizing our contributions in Section 8.1. Section
8.2 describes our critical assessment, things we would have done differently,
if writing this thesis all over again. Last, in Section 8.3 we present future
work.

8.1 Contributions

In this section, we summarize our contributions. We have chosen to divide
the section in two. The first section summarizes the contributions from the
design and implementation phases. In the second subsection, we summarize
the contributions from the evaluation of the network monitoring tasks.

8.1.1 Design and Implementation

In Borealis, posing continuous queries on a stream of data is a somewhat
complex task. It involves building a client application, expressing a stream
definition, and designing the query itself. When this is said, examples pro-
vided with the release have given a solid foundation on how to do this.

We see great possibilities derived from the way of using custom created
client applications, in order to connect streams to Borealis, and retrieve their
query results. Building these applications however demands moderate C++
knowledge. But on the other hand, it enables users to build their own appli-
cation front-end, and control both the input stream and the query results.
We believe this feature affects the ability to apply network monitoring tasks

96 Conclusion

in a positive way, since so much functionality can be implemented in the
client applications.

Borealis supports a number of field types that can be used to represent pa-
rameters within the streaming tuples. We managed to represent all TCP/IP
header fields in the supported field types. The TCP/IP representation was
not optimal in terms of size. A single bit field type, able of representing
Boolean, or flag values, is something we definitely have missed.

The Borealis query language made up of conceptual boxes and stream
arrows, has shown to give great possibilities when expressing continuous
queries. It is a new way of thinking, in contrast to the SQL based lan-
guages offered by other DSMSs. At least for complex queries, we see several
advantages with the conceptual boxes and arrows solution. By combining
several operator boxes, one could split a complex query into smaller units.
The concept of creating a graphical overview will in addition make it easier
to understand what to express. Simple queries however are perhaps easier
expressed in SQL like languages, as fewer lines of code are required. XML
is used in the Borealis query language, although a Java GUI can create it
for you. Posing a simple query at least includes two XML entities each con-
sisting of several lines of code. Thus, several more lines of code are needed
in a Borealis query expression, than would be needed in a simple SQL-like
expression.

Although queries often may consist of many lines of code, we believe the
choice of expressing the Borealis query language in XML is a good choice.
XML is a well-known language that many users are familiar with. The XML
parsers used to validate the queries before query execution have however
shown to give imprecise or inconsistent error messages.

After understanding the language concepts, we have managed to express
all the predefined tasks, almost as we wanted them. The only design we
really had to abandon was a complete solution for Task 4. Not only did it
concern joining packets from both sides in a connection, we also wanted it to
identify connections by looking at their three-way handshakes. We believe
the main reason for why we had to abandon this full solution for Task 4,
is that the join operator does not support any feature allowing an output
stream consisting of the tuples that are not joined. By not being able to
identify these, they will eventually be lost, and not considered.

We would finally like to point out a feature of Borealis that we consider
being especially good when designing complex queries. This feature is the
functionality regarding the deployment diagrams. The deployment diagrams
enable us to monitor the streams as they travel between the operator boxes,
within the query. When designing complex queries, this feature has really
shown to ease debugging and better understand how the flowing tuples within

8.1 Contributions 97

the query processor look like.

8.1.2 Evaluation

The performance evaluation of Borealis shows results measured from Borealis
while performing network monitoring tasks, at a real network with generated
traffic. By controlling the generated traffic, we have identified both the
accuracy of the expressed tasks, and found the network load Borealis can
handle, while performing them.

We have shown that Borealis, in our setup, can handle ten-minute bursts
of 10 to 40 Mbit /s, depending on the complexity of the tasks. Exceeding these
network loads will result in dropped packets. The supported network loads
are definitely higher than expected. STREAM, in similar experiments per-
formed by Hernes [Her(06], has shown to handle up to 30 Mbit/s performing
simple queries, but only 3 Mbit/s for complex queries. In experiments per-
formed by Seberg [Sgb06], TelegraphCQ only showed to handle 2.5 Mbit /s.

Although Borealis can handle a network load of 40 Mbit/s, overload sit-
uations occurring at higher network loads are not something Borealis has
shown to handle gracefully. We have not managed to compile or verify any
fully utilized load shedding mechanism. The load shedding technique we
have managed to measure, have shown to result in a 30% increase for sup-
ported network load, although this would cause 40% of the packets to not be
considered.

As for accuracy, we have shown that Borealis is able to present task
query results that are 99% accurate at 40 Mbit/s. For all our measured
tasks, we have most often achieved accuracies of 93% or higher. We often
believe our calculated estimates are what is causing the inaccuracy, rather
than the measured result itself. We have however had problems with the
join operator. The problems have caused inaccurate results for Task 4 v. 2
and 3, as several connections were not identified. We do not know the cause
of the unidentified connections, but regard further investigation of this as
future work.

System performance measurements performed on the machine Borealis
was running on, showed that the system resources consumed by Borealis
were far from fully utilized. Even though Borealis was just about to loose
packets caused by a filled up buffer, we seldom saw memory consumption
greater than 3.1%, and we seldom saw CPU utilization above 80%. We
believe the cause of these resources not being fully utilized are parameters
set in the source code. We describe these parameters further in Chapter 6.5,
but regard further investigation as future work.

98 Conclusion

8.2 Critical Assessment

In case we were to redo the whole process of writing this thesis, there are
a couple of things we would have done differently. In this section, we will
briefly discuss these things.

The last 17 weeks have been intense. The restriction of available time
has always been over us. We spent at least a week, trying to verify a load
shedding mechanism in Borealis. This included altering several source code
files, in order to get rid of compilation errors. We have also spent several
days trying to install a new Borealis beta version that we due to our system
setup had to abandon. We believe the time consumed on trying to verify the
load shedder, and testing out the beta version, better could be consumed on
other things. This includes further investigation and understanding of the
generated network traffic, and the implementation of TCP in our experiment
setup. Gaining a better understanding of the traffic would have enabled us
to calculate more accurate estimated results, for the network tasks.

Initially, we started out designing Task 5, in order to design a network
monitoring task for intrusion detection. We have managed to design such a
task, even in two versions. The task versions are based on our understandings
of how a SYN flood attack looks like. As we lack packet traces from any
legitimate SYN Flood attack, we have not been able to verify the accuracy
of this task. In addition, have we only shown that Task 5 v. 1 and 2 can
handle network loads up to 20 Mbit/s, when traffic is normal. We have not
measured the network load that can be dealt with during a SYN flood attack.
The time we spent running the experiments and evaluating the data of Task
5 could be used elsewhere, among the subjects of this thesis.

8.3 Future Work

This short Master thesis has been carried out during 17 weeks. With the
restriction of time in mind, we have not been able to pursue several ideas
of improvements, or challenges meet during this somewhat short period of
time:

e Borealis support advanced functionality regarding distribution of queries.
By distributing queries to several machines we believe that a higher
supported network load would have been possible to achieve. This by
balancing the load for the query processor, on several machines.

e We believe that by incorporating the functionality of fyaf into the client
application, the system would benefit from not needing to obtain a TCP

8.3 Future Work 99

socket between fyaf and the client application. This should increase
the overall load on the system. In addition, by further developing more
functionality into the client application, load shedding could directly
be implemented, possibly leading to a higher supported network load.

e During evaluation of the results in Chapter 7, we encountered a problem
we refer to as the join problem, in Task / v. 2. Several connections
were not identified in the join operator. We do not know whether this
is caused by an error made by us, or an error in Borealis.

e Early in the design phase, the parameters SLEEP_TIME and BATCH_SIZFE,
were identified as parameters significantly affecting the network load
Borealis can handle. The parameters are set within the client ap-
plications. We decided to choose a SLEEP_TIMFE of 1 ms, in order
to make Borealis sleep as little as possible. Appendix D, shows how
the BATCH_SIZE was chosen. There is of course a possibility that
by increasing the SLEEP_TIME parameter value, we could achieve
higher supported network load. We have only performed testing with
SLEEP_TIMFE set to 1 ms.

e In Chapter 6.5, we present a set of system parameters, we believe af-
fecting the overall performance of Borealis significantly, as mentioned.
These parameters include:

— TUPLE_PROCESSING_LIMIT
— MAX_UTILIZATION,

— MAX_BW
MAX_SOCKET_BUFFER

We believe that by changing and optimizing these values, Borealis
should be able to handle higher network loads, than as of today.

e As of spring 2007, a new Borealis version has been released. We have
partly started compilation of it, but did not pursue this, because we
were afraid of consuming to much time on it. We have been told that
the spring version is supposed to have improved functionality regarding
load shedding.

e Finally, we would like to further investigate and compare the results
obtained from both TelegraphCQ [Sgb06] and STREAM [Her06] with
our results from Borealis.

100 Conclusion

Bibliography

[AAB105]

[ABB*04]

[ABCT05]

[ACCH03]

[BBD*02]

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinskaur,
Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang
Lindner, Anurag S. Maskey, Alexander Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stan Zdonik. The design of the
borealis stream processing engine. 2nd Biennial Conference on
Innovative Data Systems Research (CIDR’05), 2005.

Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz,
Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava,
and Jennifer Widom. Stream: The stanford data stream manage-
ment system. Report, Department of Computer Science, Stanford
University, 2004.

Yanif Ahmad, Bradley Berg, Ugur Cetintemeland, Mark
Humphrey, Jeong-Hyon Hwang, Anjali Jhingran Anurag Maskey,
Olga Papaemmanouil, Alex Rasin Nesime Tatbul, Wenjuan Xing,
Ying Xing, and Stan Zdonik. Distributed operation in the bo-
realis stream processing engine. ACM SIGMOD International
Conference on Management of Data (SIGMOD’05), 2005.

D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer,
M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and S. Zdonik.
Aurora: A data stream management system. SIGMOD 2003,
June 9-12, 2003, San Diego, CA. Copyright 2003 ACM 1-58113-
634-X/03/06, 2003.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani,
and Jennifer Widom. Models and issues in data stream sys-
tems. PODS °02: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
2002.

102

BIBLIOGRAPHY

[BBSO04]

[bor]

[CCDH03]

[cis]

[Der03]

[ENO7]

[end]

[GO03]

[GR]

[Her06]

[ian]

[isc]

Magdalena Balazinska, Hari Balakrishnan, and Michael Stone-
braker. Load managament and high availability in the medusa
distributed stream processing system. SIGMOD 2004 June 15-
18. 2004 Paris France, 2004.

The borealis project web page.
http://www.cs.brown.edu/research/borealis/public/.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong*, Sailesh
Krishnamurthy, Sam Madden, Vijayshankar Raman**, Fred
Reiss, , and Mehul Shah. Telegraphcq: Continuous dataflow
processing for an uncertain world. Proceedings of the 2003 CIDR
Conference, 2003.

Characterizing and tracing packet floods using cisco routers.

Luca Deri. Passively monitoring networks at gigabit speeds using
commodity hardware and open passively monitoring networks
at gigabit speeds using commodity hardware and open source
software. NETikos S.p.A., 2003.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. Greg Tobin, 2007.

Endace web page.
http://www.endace.com/.

Lukasz Golab and M. Tamer Ozsu. Issues in data stream man-
agement. SIGMOD Rec., Volume 32, No. 2, 2003.

Matthias Grossglauser and Jennifer Rexford. Passive traffic mea-
surement for ip operations.

Kjetil Hernes. Design, implementation, and evaluation of net-
work monitoring tasks with the stream data stream management
system. Master’s thesis, University of Oslo, Department of Infor-
matics, 2006.

[ana web page.
WwWww.lana.org.

Isc internet domain survey.
http://www.isc.org/ds.

BIBLIOGRAPHY 103

[Jaiol]

[JCS03]

[JMSS05]

[KWF06]

[meg]

[MFHHO5]

[MS05]

[Nag84]

[PGB*04]

[rfc81al

[rfc81Db]

Raj Jain. The Art Of Computer Systems Perfomrance Analysis;
Techniques for Experimental Design, Measurement, Simulation
nd Modeling. John Wiley & Sons, Inc, 1991.

Theodore Johnson, Charles D. Cranor, and Oliver Spatscheck.
Gigascope: A stream database for network application. Pro-
ceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, June 9-12, 2003.

Theodore Johnson, S. Muthukrishnan, Oliver Spatscheck, and
Divesh Srivastava. Streams, security and scalability. 19th IFIP
WG11.3 Working Conference on Data and Application Security,
2005.

Sailesh Krishnamurthy, Chung Wu, and Michael J. Franklin. On-
the-fly sharing for streamed aggregation. SIGMOD 2006, June
27-29, 2006, Chicago, Illinois, USA., 2006.

Wikipedia articla on megabit.
http://en.wikipedia.org/wiki/Megabit.

Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong. Tinydb: An acquisitional query processing system
for sensor networks. ACM Transactions on Database Systems,
Vol. 30, No. 1, March 2005., 2005.

E. W. Biersack T. EnNajjary M. Siekkinen G. UrvoyKeller. Root
cause analysis for longlived tcp connections. CoNEXT’ 05, 2005.

John Nagle. Congestion control in ip/tcp internetworks, January
1984.
http://www.ietf.org/rfc/rfc896.txt.

Thomas Plagemann, Vera Goebel, Andrea Bergamini, Giacomo
Tolu, Guillaume Urvoy-Keller, and Ernst W. Biersackl. Using
data stream management systems for traffic analysis — a case
study —. Lecture notes in computer science (Lect. notes comput.

sci.) ISSN 0302-9743, 2004.

Internet protocol (rfc 0791), 9 1981.
http://www.ietf.org/rfc/rfc0791.txt.

Transmission control protocol (rfc 0793), 9 1981.
http://www.ietf.org/rfc/rfc0793.txt.

104 BIBLIOGRAPHY

[SCZ05] Michael Stonebraker, Ugur Cetintemel, and Stan Zdonik. The
8 requirements of real-time stream processing. ACM SIGMOD
Record 34, 4 (Dec 2005), 2005.

[Sie06] Matti Siekkinen. Root Cause of TCP Throughput: Methodology,
Techniques, and Applications. Ph.d. thesis, Universite De Nice-
Sophia Antipolis - UFR Sciences, 2006.

[Seb06] Jarle Sgberg. Design, implementation, and evaluation of network
monitoring tasks with the telegraphcq data stream management
system. Master’s thesis, University of Oslo, Department of Infor-
matics, 2006.

[str07] Stream web page, 15.04.2007.
http://infolab.stanford.edu/stream/.

[SUKB06] Matti Siekkinen, Guillaume Urvoy-Keller, and Ernst W. Bier-
sack. On the interaction between internet applications and tcp.
Report, Institut Eurecom, 2006.

[tep] Tcpdump web page.
http://www.tcpdump.org/.

[Tea06] Borealis Team. Borealis Developer’s Guide, May 2006.

[tel] Telegraphcq web page.
http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/.

[tg] Tg (traffic generator) web page.
http://www.postel.org/tg/.

[tral Traderbot web page.

http://www.traderbot.com.

Appendix A

TCP/IP

1]

01234567890

EE ¢ T

EF ¢ T

EF ¢ T

o v — e —

e
Data
offset

—

—

i o e o

-

Figure

0

01234567890

1

2
123456789012345678%9

3

01

tmtetetetatatatatatdtatatatatdteatatatdtatatateatdtatatatatatadtatd -t

Source Port

Destination Port

tmdatetetatateatatatdtetatateatdteatatatatatatatdtatatatatatadt ettt

Seguence Number

tmdatetetatateatatatdtetatateatdteatatatatatatatdtatatatatatadt ettt

Acknowledgment Number

tmdatetetatateatatatdtetatateatdteatatatatatatatdtatatatatatadt ettt

Reserved

e
Checksum

u
R
G

A
C
K

P
s
H

R
5
T

5
¥
N

F
I
N

Window

B T T T S et o Yy
Urgent Pointer

SR B T Eh et e T T e B PR R TR TR TR e e e T e T

Options

| Padding

R e e el el e e e et el el el el el et el el el el el el el el el el el el

data

o ol e o o e o o o o e o e e e e e e o

A.1: RFC793 - Transmission

1

2
123456789012345678390

Control Protocol

3

1

S T S
IHL
S S &
Identification |Flags|

|version

L O L T P N N T T
to Liwve

| Time
-

ottt mt=

b e

Fmt=t =t

+

+

+

—_—

-

——

—_—

+

+

+

+

+

+

+

+

| Type of Service|

+*

+

+

Total Length

Fragment Offset

el L B Bl e DR DR DR B Pl Pl R DR DR EE Pl Pl Pl P e E

Protocol |
Bt
Source Address
S A
Destination Address
Bt Bt PL L PR B DL P P B T L T

Options
S

+

+

+

+

Header Checksum

et ettt ==t =t
m—fmtmtmt ettt -t
e

| Padding
T

Figure A.2: RFC791 - Internet Protocol

-

-+

-t

-

-+

106 TCP/IP

Appendix B

Building and Running a
Borealis Continuous Query

In this chapter we explain how to build and run a Borealis continuous query.
We focus a little more on the technical side, than we have done in the previous
chapters. We start by describe the concepts of the actual query implementa-
tions. Secondly we explain how to start the query processor. Last, we discuss
how to use the Marshal Tool in order to build a client application.

B.1 Starting a Borealis Node

The Borealis node is the actual instance of the query processor. Borealis can
simply be started from a Unix terminal, provided that the borealis distribu-

tion is compiled and working. Borealis will then listen on the following ports
1.

e 15000 will accept TCP/RPC connections

e 15001 will accept XML/RPC connections for dynamic query modifica-
tion.

e 15002 will accept data connections

The Borealis node instance will automatically respond to events from the
client application. By these events, we mean the event of loading the query
into the query processor, and to connect the query processor to the input
and output stream(s).

!Note that these ports are set as a default setting, other ports can be chosen as default
at compile time.

108 Building and Running a Borealis Continuous Query

B.2 Implementation of Continuous Queries

Chapter 5 should give a good overview of how to implement the queries in
XML. An important part of the query is the stream definitions. These stream
definitions, and the defined input and output streams, are what is used to
generate code for the client applications, described in next section. Note,
that the XML has to follow a document type description (DTD), provided
with the Borealis distribution.

Deployment of the query diagrams is normally performed by the client
application. Big Giant Head, as a standalone module, can also upload queries
to the query processor, although we have not tested this.

B.3 Client Application

The Borealis distribution provides a tool for simplifying the programming
of the Borealis client applications. The name of the tool is Marshal Tool.
It is used to generate C++ code consisting of functions and header files.
It is executed with the command 'marshal [queryname.xml]’; and will then
generate code based on the query in the file [queryname.xml]. The generated
code will be places in the files "ApplicationnameMarshal.cc and .h’. The files
then include generated functions that can be used to open a connection, and
send /receive batches of tuples.

Skeletons of source code found in the test directory of the Borealis dis-
tribution, helps implementing a executable program that uses the generated
code in order to connect the streams to the query processor. When running
a successfully implementation of such a program, the query will be uploaded
to the Borealis node, and the data stream will begin to flow into the query
processor.

Note, that in order to compile the needed code for running a Borealis
client application, the tools automake and autoconf are used. The provided
test applications includes Makefiles and filepaths for the needed libraries, in
order to properly compile a client application.

Appendix C

Experiment Scripts

The execution scripts help us perform the experiments several times with out
starting each of them manually. In this appendix, we briefly present a list
of the scripts. Developed as part of [Seb06] and [Her(06], they are used to
execute the following stages of an experiment:

e Execute the tools for generating traffic

e Execute the tools for logging consumption and utilization of system
resources

e Start and stop the DSMS
e Execute the queries, and store the output results to files

Since the experiments are running at two machines, two scripts are needed
in order to start a series of experiments. The machine dmms-lab107 acts like
the experiment server, and dmms-lab77 acts like the experiment client. This
machine is also the one to execute the queries. We start with describing the
scripts on the machine dmms-lab77:

e sscripts2.pl is called from the terminal. It is used to define the tasks to
run, how many times, and at what network workload. It will further
invoke other helper scripts.

e supers_script3.pl is called from sscript2.pl. It starts and stops the
DSMS, and the single task runs.

e experiment_client.pl is called by super_script3.pl, and starts fyaf and
the system monitors. In addition, it communicates with experiment_server.pl
on the other machine, and transmits variables for defining the network
traffic behavior.

110 Experiment Scripts

e create_servers.pl is called by the experiment_client.pl. It defines the
generated network traffic duration time, for a single experiment.

e tg clients_run.pl is called by experiment_client.pl, and starts the TG
instance.

The machine dmms-lab107 contain the following scripts:

e experiment_server.pl is called from the terminal. It takes only one key
argument. This argument defines the count of single experiment phases,
included in the series of experiments about to be run.

e change_template.pl is called from experiment_server.pl, and helps set-
ting the traffic behavior on behalf of arguments retrieved from the
connection to dmms-lab77.

e create_client.pl is called from change_template.pl, and creates the TG
files that controls the behavior of the network traffic.

e tg clients_run.pl is called by experiment_server.pl, in order to start
transmitting the actual traffic data.

Appendix D
BATCH_SIZE

In this appendix, we explain how we selected the value for the BATCH_SIZE
variable, set in the client applications. The value was chosen after running a
series of experiments, where we tried to identify the BATCH_SIZE leading to
a highest possible supported network load. In the experiment, we ran Task
2 v. 1, at high network loads, with varying BATCH_SIZEs. We include a
set of figures, showing plots of the total number of packets lost, at different
BATCH_SIZE values.

Figure D.1 shows how different values of BATCH _SIZEs affect the number
of lost packets. The experiment was run on BATCH_SIZE values ranging
from 1 to 60. The figure shows no results with values of 50 or 60, since the
experiments did not finish, possible due to Borealis crashing. Hence we see
them as inappropriate values. Out from Figure D.1, it seems BATCH_SIZEs
around 40 leads to the least amount of lost packets

Figure D.2 shows the measured average network load per second per-
formed with Task 2 described in Chapter 5.2.2, at varying BATCH_SIZE.
Out from the tasks, Task 2 was chosen because it reports the measured net-
work load /V;, which is a easily comparable result value. We see that low
values of BATCH_SIZE leads to inaccurate results. Again we see a trend
that BATCH_SIZEs around 40 gives satisfying results at workloads up to
nearly 50 Mbit /s of generated bandwidth.

Figure D.3 shows reported lost packets from 20 test runs at 45 Mbit/s.
Each run had duration of 10 minutes. At 45 Mbit/s we know that Borealis
will loose tuples due to overload with a high probability. By running several
experiments, we hope to see which BATCH_SIZE that leads to the fewest
lost tuples. Within the experiment we have tested sizes of 30, 35, 40 and
45. We choose not to test sizes of 50 and above, as the experiments behind

Figure D.1 showed indications of those values resulting in system crashes.
By looking at Figure D.3, we see that the BATCH_SIZE of 45, resulted in

112 BATCH _SIZE

Numbers of lost packets at varying BATCH_SIZE

~—— BATCH_SIZE = 1
—— BATCH_SIZE = 10
BATCH_SIZE = 20
~—— BATCH_SIZE = 30
—— BATCH_SIZE = 40

Number of lost packets

10 20 30 40 50 60 70 80 90 100
Generated bandwidth (Mbit/s)

Figure D.1: Number of lost packets with varying BATCH_SIZE and network load

Average measured network load per second with varying BATCH_SIZE

~—BATCH_SIZE = 1
——BATCH_SIZE = 10
BATCH_SIZE = 20
~——BATCH_SIZE = 30
——BATCH_SIZE = 40
" BATCH_SIZE = 50
= BATCH_SIZE = 60

Measured network load (Mbit/s)

10 20 30 40 50 60 70 80 90 100
Generated bandwidth (Mbit/s)

Figure D.2: Measured network load with varying BATCH_SIZE and network load

113

5000000

4500000

4000000

3000000

2500000

Lost packets

1500000 |

1000000 |

500000 |

0!

Lost packets at 45Mbit/s with varying BATCH_SIZE

-

3500000

2000000 |

30

S5
BATCH_SIZE

40

Series20
¥ Series19
¥ Series18
W series17

Series16
W Series15

! Series14

Series13

Series12

Series11

Series10
W Series9
I Series8
M Series7
Series6
M Series5
1 Series4

Series3
M series2
W Series1

Figure D.3: Lost packets at 45Mbit/s bandwidth at varying BATCH_SIZE

the fewest lost packets. Hence this is the value we have chosen throughout

our task experiments.

The experiments upon where we conclude this are

perhaps not as documented and deeply tested as one would wish. This since
we see them as somewhat not part of the actual evaluation of Borealis. We
consider a deeper evaluation of BATCH_SIZE and SLEEP_TIME parameters

as future work.

114 BATCH _SIZE

Appendix E
DVD-ROM

The tasks, experiment results, and the scripts used to calculate result values
from them, are included in the DVD-ROM. At the root of the DVD, we have
included three directories:

e cxperiments - includes a directory for each of the tasks versions, includ-
ing the experiment results and system resource consumption logs.

e scripts - includes a number of scripts used to simplify the presentation
of the experiment scripts. We have not included any documentation
for these scripts.

e tasks - includes the task versions, both C++ code, and the XML
queries.

Note, that the content of the DVD is compressed.

