

PREPRINT

INSTITUTT FOR INFORMATIKK

UNIVERSITETET I OSLO

Institutt for Informatikk
Universitetet i Oslo
Postboks 1080 Blindern
0316 Oslo

Tlf: 22 85 24 10
Fax: 22 85 24 01
E-post: jens.kaasboll@ifi.uio.no
WWW: http://www.ifi.uio.no/~jensj

Department of Informatics
University of Oslo
P.O.Box 1080 Blindern
N – 0316 Oslo, Norway

Phone: +47 22 85 24 10
Fax: +47 22 85 24 01
E-mail: jens.kaasboll@ifi.uio.no
WWW: http://www.ifi.uio.no/~jensj

Abstraction and concretizing in information
systems and problem domains:

Implications for system descriptions and
theoretical frameworks

Jens Kaasbøll

Preprint 1995-1

February 1, 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30794422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Accepted for publication at

The IFIP 8.1 International Working Conference on Information System Concepts:
Towards a Consolidation of Views (ISCO3)

(Marburg, Germany, 28–30 March, 1995)

Abstraction and concretizing in information
systems and problem domains:

Implications for system descriptions and
theoretical frameworks

Jens Kaasbøll

Abstract

“Abstraction” is used both for denoting relations in the problem domain of an
information system, and for denoting relations inside software and hardware of
a computer. This calls for a clarification of the concept, such that frameworks of
information system concepts and techniques for analysis and design can
distinguish and compare different types of abstractions.

Abstraction is specialized in the paper as follows: representation,
classification, generalization, aggregation, and role-realization. The latter
relation occurs often when modelling reality, but it is presented with erroneous
direction of abstraction in the literature, and it is not supported by techniques for
analysis.

It is also shown that separating abstraction in analysis of problem domains
from abstraction when designing information systems clarifies the direction of
abstraction.

Abstraction relations in a taxonomy of concepts for information systems
science and the FRISCO framework are discussed, and improvements
suggested. Jackson System Development, object-oriented analysis and design,
and dataflow diagrams can be improved through extensions with the abstraction
relations specified in this paper.

Keywords: Modelling, analysis, design, object-orientation, system development methods,
techniques

Introduction 3

1 Introduction

Descriptions of information systems are often complex. One strategy of reducing complexity
is to use abstraction. Abstraction should be supported by methods and learnt by students. Yet,
“abstraction” is a diverse issue. In everyday language,

abstraction

 is to ignore aspects of a
phenomenon and concentrate on other aspects. Thus abstraction can be used to reduce
complexity through ignoring the irrelevant aspects while focusing on the relevant ones.

Because of this need to reduce complexity, concepts and mechanisms for abstraction appear
in programming languages, system description languages, user interface construction tools, and
frameworks for information systems. “Information systems” here include programs, hardware,
data, transformations and transportation of data, people interpreting and producing the data.
The data, and the information that people have, refer to phenomena in problem domains.

Abstraction is useful both when analysing problem domains and when designing the
software of an information system. However, abstraction for analysis and abstraction for design
are seldom separated, which may lead to a confusion of the direction of abstraction and
concretizing.

A typical illustration of abstraction during analysis of the problem domain is found in (Olle
et al, 1991). Olle et al state that “trading partner” is on a higher abstraction level than “supplier”
and “customer” (p.58), and that users may comprehend a lower abstraction level easier than
they understand a higher level.

Abstraction for design can be illustrated by a history of software abstraction as presented
by Wirfs-Brock et al (1990, pp.4–5): the first abstraction was from bits to assembly language,
then grouping instructions to macros and naming them, defining machine-independent high-
level languages, grouping instructions into procedures, and defining abstract data types; the
latter denotes a representation-independent specification of a data type that can be implemented
in several ways. The encapsulation in object-oriented programming languages is abstraction in
this sense: the specification is accessible from the outside, while the implementation is hidden.
Abstraction in Wirfs-Brock et al’s history deals with removing details of the computer from the
software tools that are used for implementing application systems. Contrary to the analysis,
users would probably understand a high level of abstraction in the design sense, eg, “customer,”
easier than a low level, eg, the ASCII code.

A low level of abstraction in analysis of problem domains is therefore not the same as a low
level of abstraction during software design. This ambiguous meaning of “abstraction”
illustrates the need for clarifying the concept, so that frameworks of information system
concepts and techniques for development can distinguish and compare different types of
abstractions without mixing them up.

The common type of abstraction used during design is to separate layers of specification and
implementation. The analysis of problem domains can benefit from using a similar distinction
between roles and realizations. However, this is not commonly done, and the result is that
concepts or objects that should have been more abstract than others are modelled as more
concrete.

Abstraction relations concerning the formal aspects of information systems have been
discussed in the literature (Bergheim et al, 1989). This is useful for design and implementation
of software, and it is in line with Wirfs-Brock et al’s history. Abstraction relations of the
problem domain have also been discussed (Haugen, 1980; van de Weg and Engmann, 1992).

The meaning triangle 4

However, these do not relate abstractions in the problem domain and abstractions in the
implementation of the information system, so that the ambiguity remains.

This paper aims to develop an unambiguous approach to abstraction that includes both
analysis of problem domains and design of information systems. To achieve this, the “meaning
triangle” constitute the basis (Section 2). Two types of abstraction that relate the analysis and
design approaches are discussed; representation (Section 3 – 4) and role-realization (Section 8
and 10). In addition to these concepts that are rarely considered in the information systems
literature, the traditional relations of classification, generalization, and aggregation are briefly
presented in Section 5 – 7. The abstraction relations are summarized in Section 9.

The corresponding view of information system (Section 10) and the resolution of the
ambiguity of “abstraction” (Section 11) are presented. Implications of the approach on
definitions of “abstraction” in conceptual frameworks (Section 12), and on abstraction
mechanisms in object- and flow-oriented techniques for system development will be discussed
(Section 13), and improvements proposed.

2 The meaning triangle

In order to cover the problem domain, the information system, and the way the information
system represents the problem domain, a simple model of representation of reality is chosen as
the point of departure. In the model, an expression expresses a meaning, the meaning refers to
an extension, and the expression represents the extension. These relations are depicted as a
triangle, according to Charles Kay Ogden (1889–1957), see Figure 1.

The expressions consist of signs and symbols in the form of printed matter, sounds,
contrasts on screens, electronic or magnetic patterns in computers. Extensions may consist of
any phenomenon, also including expression and meaning. Hypothetical phenomena and future
phenomena may also be included in the extension. Meaning is the relation that persons make
between expression and extension. Examples of meaning are the interpretation of an expression
and the intention while carrying out a speech act.

When saying for short that an expression

e

 represents a phenomenon p as its extension, it is
assumed that the meaning that relates

e

 and p is provided by relevant persons. These may be a
language group if the expression is a word, or group of persons communicating if the
expression is relevant for the group. We will therefore say for short that an expression
represents a phenomenon, implicitly assuming the existence of appropriate persons who
provides the relation through their meaning.

The following typography will be used when separation is needed:

“Relation between expression and extension”

refers toexpresses

ExtensionExpression

Meaning

represents

Figure 1: “Ogden’s triangle”: The relation between language and reality

Representation 5

“Expression”

Extension

3 Representation

An expression

represents

 an extension if the meaning of the expression refers to
the extension.

The relation between expression and extension is the

representation relation,

also for short

representation.

When using the representation relation, extensions do not have to be present in a speech act,
expressions are sufficient. The test to judge whether a relation is a representation relation is to
ask: can the expression be separated in time and space from the phenomena which they
represent? If the answer is no, there is no representation relation.

Since abstraction is to ignore aspects and concentrate on those aspects that are relevant,
representation is abstraction, on the condition that the expressions express the relevant aspects
of the extension.

Language is the most developed social means of representation. Since the relation between
phenomena in the world and the expression depends on the linguistic conventions of the
persons uttering or interpreting the expression, these persons are in the position of determining
whether the relation holds.

Information systems process expressions through, eg, transforming and transporting data.
The people working in an information system, and those whom the data concern, determine the
meaning of the expressions in the system, and hence the extension represented by the
expressions. When the expressions in the information system represent an extension, we will
also say that the information system represents this extension. The extension of an information
system is often called the “problem domain” or the “universe of discourse.” Eg, parts of the
expression at a flight ticket represent a flight journey when the persons issuing and controlling
the ticket interpret it that way, see Figure 2. Correspondingly, the reservation system also
represents the flight journeys, and the flight journeys constitute the problem domain (or the
universe of discourse) of the system.

The opposite of “to represent” is

to be represented by.

 The journey is represented by the
ticket.

Representations is a type of

abstraction relations.

 The process starting with an extension,
and associating an expression with it, is the

representation process,

 which is an

abstraction
process,

 ie, a way of

abstracting.

 The opposite of “an abstraction process” is

a concretizing
process

, thus “to be represented by” is to concretize, eg, the journey concretizes the expression
at the ticket.

4 Representation relations in the problem domain

Since extensions can be of any kind, there exist representation relations that have expressions
or other representation relations as their extension. Assume that the pilots have the procedure
knowledge written up as a text, which they follow during safety check of the airplane. Since the
written procedure is an expression that represents each of the checks, there is a representation
relation between the text and a check. Assume also that the computer system has the procedure

Representation relations in the problem domain 6

in a knowledge base and, that this knowledge is used for control of the safety data. Then there
is a representation relation inside the computer system that represents a corresponding
representation relation in the problem domain.

In general, assume the following conditions:

The representation relation “

ee

 represents

pe”

represents

 the representation
relation

 “pe

 represents p

.”

A criterion for the existence of a representation relation in the problem domain is that there
exists an expression that can be separated in time and space from the phenomenon that the

Table 1:

Example

•

There exists a phenomenon p safety check

•

There exists an expression

pe

in the
problem domain, and

pe

 represents p
The procedure knowledge written up as a text
represents safety checks

•

There exists an expression

e

 in the
information system, and

e

 represents p
safety check data represents safety checks

•

There exists an expression

ee

 in the
information system, and

ee

 represents

pe

the procedure in the knowledge base
represents the procedure knowledge

Air
Travel

Information
(meaning)

represents
Problem domain

Figure 2: An information system consists of data that express the information of people in the
system. The information system represents a problem domain.

refers to
expresses

Diana Smith,
01 12 94,
From Paris 09.15,
To London 10.05,
FF 1500

Data

(Expression) (Extension)

Information
system

1010

Classification 7

expression is about.
Knowledge based systems and expert systems represent general knowledge from the

problem domain. The knowledge representations in the knowledge base is applied to specific
data that represent phenomena in the problem domain.

5 Classification

This abstraction relation and the two following ones, generalization and aggregation, are
assumed to be well known; thus they are not motivated and discussed. For motivation and
discussion, consult textbooks on object-oriented analysis (Hutt, 1994) or articles on abstraction
(eg, van de Weg and Engmann, 1992). The reason for presenting the relations here is to define
them in the context of the meaning triangle.

For classification, assume the following conditions:

Then classification is defined:

C is a representation that

classifies

 c1, c2, ….

Since only the common parts of e1, e2, … are included in E, there are other parts that are left
out, hence classification is abstraction. Since the parts of the expressions that are excluded in
classification differ, these parts represent the differences between the phenomena of the
extensions. Hence classification disregards differences while focusing on similarities.

The opposite of classification is

instantiation

, and c1, c2, … are

instances

or

 examples

of
the representation C.

Table 2:

Example

•

There exists phenomena p1, p2, … Diana Smith’s journey from Paris to London 01
12 94, Tom Jackson’s journey from …, …

•

There exists a class P consisting of p1,
p2, …

Journeys from Paris to London 01 12 94
consists of Diana Smith’s, Tom Jackson’s, …

•

There exist expressions

e1, e2,

… which
have some common parts

E

“

Diana Smith

,

01 12 94

,

From Paris 09.15, To

London 10.05, FF 1500

”; “

Tom Jackson, 01 12 94,

From Paris To London 10.05, FF 1500

”
have the common part
“

01 12 94, From Paris To London 10.05, FF 1500

”

•

c1 is the representation “

e1

 represents
phenomenon p1”; c2 is the relation “

e2

represents p2,” …

Diana’s right to go by plane is the representation
“

Diana Smith

,

01 12 94

,

From Paris 09.15, To

London 10.05, FF 1500

 represents Diana Smith’s
journey from Paris to London 01 12 94”; …

•

C is the representation “

E

 represents a
class P”

The right to go by plane from Paris to London
01 12 94 is the representation “

01 12 94, From

Paris To London 10.05, FF 1500

represents
journeys from Paris to London 01 12 94”

Generalization 8

In summary, the expression “

classification relation

” has the following extension: relations
between representations with singular extensions and representations that have classes as
extensions.

6 Generalization

Given two representations C and B, B is a

generalization

 of C if all instances of
C are also instances of B.

Eg, “the right to travel” is more general than “the right to go by plane,” because all instances
of “the right to go by plane” also instantiate “the right to travel.”

The opposite of generalization is

specialization

.
Since B may have instances that are not Cs, the common parts of the expressions of the Cs

cannot be common for all B’s. There has to be less common parts of the expressions of C than
those of B. Thus some aspects of C are not aspects of B, hence generalization is also abstraction.

“Generalization relation”

 is thus defined to have the following extension: relations between
representations and other representations with larger extensions.

7 Aggregation

Given the representations

r1: the expression

e1

 represents phenomenon p1,

r2: e2 represents p2, …

and the representation

R: the expression E represents the composition of p1 and p2 and …,

R aggregates r1 and r2 and … into an aggregate representation. Conversely, r1,
r2, … segregates R into details.

Eg, “Diana Smith, 01 12 94, From Paris 09.15, To London 10.05, FF 1500” and “Diana Smith,
01 12 94 From London 11.15, To New York 13.00, FF 3000” aggregates to the aggregate
“Diana Smith, 01 12 94, From Paris 09.15, To New York 13.00, FF4500”

Aggregation is commonly associated with real world phenomena and not with concepts.
“Aggregation” is given a more general denotation here, also covering the aggregation of
representations. Saying that one representation C aggregates c1 and c2, means that each
instantiation of C has an extension that is a composition of the extensions of c1 and c2. Eg,
saying that “floor,” “walls,” and “ceiling” aggregates into “room,” means that every
instantiation of “room” has an extension that is a composition of extensions of “floor,” “walls,”
and “ceiling.”

Aggregation differs from classification because the representations that are classified have
to be similar in some respect, while similarity is no condition for aggregation, eg, “room.”

The expression “aggregation relation” has the following extension: relations between
representations r1, r2, … and another representation with an extension that constitutes the
composition of the extensions of r1, r2, …. Since the aggregate ignores the characteristics of
its details, aggregation is abstraction.

The role-realization relation 9

8 The role-realization relation
Classification, generalization, and aggregation relate representations of any phenomenon in the
problem domain. The role-realization relation exists for those phenomena in the problem
domain where at least two aspects can be identified. One aspect, the realization, is closer to
physical matter than the other aspect, the role. For the role to exist, the realization also has to
exist. Assume in general:

The role-realization relation is defined:

Ro is a role of Re. The opposite way: Re realizes Ro.

The process of going from realization to role is called role-derivation, while the opposite
direction is realization. Whereas separability in time and space is a criterion for identifying
representation relations, roles exist in the same time and space as their realizations. Assuming
that Diana Smith is also a pilot in the airline, both the pilot and the passenger are roles of the
person. When Diana Smith disappears, so do both her roles too.

In addition to persons realizing roles, phenomena that can be interpreted in symbolic ways
also realize roles. For example, ink on paper realizes a text, a video cassette realizes a movie.
For artificial realizations like a movie cassette, there may exist many copies realizing the same
role. One copy is necessary for the movie to exist. The necessity of the existence of the
realization has not been considered in literature on role relations (Richardson and Schwarz,
1991; Coad, 1992; van de Weg and Engmann, 1992; Goldstein and Storey, 1994). In this paper,
the existence criterion is important for deciding which aspect of a phenomenon is the role, and
which is the realization. However, due to that the purpose here is to consider the direction of
abstraction, neither the existence criterion will not be discussed further.

When separating roles from realizations, the aspects of the realization are ignored, hence
roles are more abstract than their realizations.

An objection may be that the roles carry more information than the realizations, such that
more aspects are considered when focusing on the roles rather than on the realizations.

Table 3:

Example

• There exists a phenomenon p-role in the
problem domain

Diana Smith’s actions and properties related
to being a passenger

• Another phenomenon p-realization has
also to exist for p-role to exist.

The person Diana Smith

• Ro is the representation
“e-role represents p-role”

Diana the passenger is the representation
“Diana Smith, reservations, bonus points

represents Diana Smith’s actions and
properties related to being a passenger”

• Re is the representation
“e-realization represents p-realization”

The identification of Diana Smith is the
representation “Diana Smith, female, 11 Home

Road represents the person Diana Smith”

Relations between abstraction relations 10

However, when the roles constitute the relevant issues, one can abstract away from the aspects
of the realization, even if those are only a few.

Counter to this, one can say that when the realization is in focus, the argument will work the
other way. However, since roles are conceptual while the realizations is closer to the physical
world that can be sensed, more aspects of realizations can be found more easily than can aspects
of roles.

A common way to make object-oriented models of roles, is to mix roles with
specializations, see the example from (Odell, 1992) in Figure 3. Since the general class Person
in Odell’s model is more general than the classes Man, Woman, and Employee; Person is more
abstract than Employee and other possible roles of a person. The same direction of abstraction
is also suggested by Coad (1992) and van de Weg and Engmann (1992). This direction of
abstraction is contrary to the direction that follows from the role-realization relation, as
illustrated in Figure 4.

Expressions consist of signs and other symbols, which is the subject of computer semiotics
(Andersen, 1990). The form is the distinctive properties of the expression, while its substance
is a particular way of realizing the form (Andersen, 1992, p.17). The form-substance relation is
a specialization of the role-realization relation for expressions. When designing a text processor
or other programs having expressions in their problem domain, several layers of form and
substance may be needed.

9 Relations between abstraction relations
The expression “abstraction relation” has the following extension: relations between phenomena
with aspects and phenomena where only some aspects are included. There is no limitations on
what the phenomena may be. “Abstraction relation” is the concept relating the expression to
the extension presented in this paragraph.

Person

Employee

Direction of
abstraction

Person

Employee Direction of
abstraction

Role
Realization

Figure 3: Mixing the role-realization
relation with generalization according to
Odell (1992)

Figure 4: The role-realization relation and
generalization with the proper direction of
abstraction

1:m

ManWomanManWoman

General
Special

General
Special

1

Role-realization relations in the information system 11

It has been argued that the representation, generalization, classification, aggregation, and
role-derivation relations are abstractions. This means that every instance of these relations also
instantiate “abstraction relation.” Thus, these relations are specializations of “abstraction
relation,” and “abstraction relation” is a generalization of these relations, see Figure 5.

The corresponding concretizing relations are illustrated in Figure 6.
In the following, it will be argued that there is also a generalization relation between

classification and generalization.
Generalization relations are between representations and other representations with larger

extensions. Classification relations hold between representations with singular extensions and
representations that have classes as extensions. Assuming that a common opinion of classes is
that classes are larger than a singular entity of the class, classification relations are also relations
between representations and other representations with larger extensions. Hence,
generalization is more general than classification.

Classification and generalization are often regarded as unrelated mechanisms. As an
exception, Tsichritzis and Lochovsky (1982) use the expression “token-type generalization” to
denote classification (p.17). However, they neither argue for the relation, nor do they identify
it as a generalization relation.

Specializations of aggregation have also been considered in literature (eg, van de Weg and
Engmann, 1992). A transitive composition of whole from parts can be distinguished from a
grouping of elements in a set (Motschnig-Pitrik, 1994), see Figure 5 and 6.

10 Role-realization relations in the information system
Since information systems handle expressions, the role-realization relation is useful for

A b s t r a c t i o n

G
en

er
al

iz
at

io
n

Generalization
Specialization

G
en

er
al

iz
at

io
n Specialization

Classification

G
en

.

Sp
ec

.

Spec. G
en

.Sp
ec

ia
liz

at
io

n

G
en.

Figure 5: Abstraction relations: Generalization and specialization relations between
abstraction relations.

Role-derivationAggregation
G

en
er

al
iz

at
io

n Specialization

Spec.

G
en

.

Composition Grouping

Specialization

G
en

.
Form-derivation

Representation

Role-realization relations in the information system 12

structuring information systems. The expression “Diana Smith, 01 12 94, From Paris 09.15, To

London 10.05, FF 1500” can have a computer screen and a printed airline ticket as two different
substances. The form is the shape that is invariant and recognized as the same meaning
regardless of substance. Layers of realization can often be identified. Eg, black and white
contrasts on computer screens can be substantiated with CRT and LCD substance.

Information systems do not only store data, they change data as well. The realization
relation between form and substance can be extended to the transformation of data. Eg, when
deleting a passenger from the database of scheduled flights, the selection of the passenger and
of the text Delete that appears in a menu constitutes the form of the transformation. This
form may be realized through, eg, pointing and clicking, or through pressing command keys.
These realizations constitute substances.

Programs and data are textual or graphic expressions, hence the form-substance relation
applies between their form and the substance. The meaning of a program is recognized through
its functionality, which includes its data and operations. The functionality is expressed in a
specification, which can be implemented in different codes. Since the specification of a piece
of software expresses its meaning, the specification constitutes its form, while the code is the
substance of the program. Therefore, there specification is realized in code. This special
realization relation is called implementation, while the opposite is called specification-
derivation.

Layers of specifications and code are found in computer systems too. Eg, text is
implemented in ASCII code, which in turn is implemented in electrical currents and magnetic
fields. Program text is often even more partitioned into layers, because this is assumed to
enhance flexibility. These examples concern the computer systems as seen from a
programmer’s view. The above example of passenger and menu selection illustrates
realizations of the program seen from a user’s point of view.

To be represented

Instantiation

Figure 6: Concretizing relations.

 Specialization Segregation

C o n c r e t i z i n g

G
en

er
al

iz
at

io
n Specialization

G
en

er
al

iz
at

io
n Specialization

G
en

.

Sp
ec

.
Spec. G

en
.Sp

ec
ia

liz
at

io
n

G
en.

G
en

er
al

iz
at

io
n Specialization

Spec.

G
en

.

Decomposition Dissolving

Specialization

G
en

.

Substantiation

Realization

Separating abstraction in problem domains from abstraction in the information system 13

Assume an implementation relation, known to be correct, between a specification and a
code. When the code is executed, it is highly predictable that the corresponding specification is
followed, because errors tend not to appear at random.

The users also have to master realization relations. They have to know that to make the com-
puter fulfil a specific function, specific behaviour is required. This is part of the skills required
to master a system. However, people’s knowledge and behaviour is not predictable to the same
extent as computer processing. A user may push a button that triggers an unintended function.
Therefore, there is a weaker regularity between the user’s knowledge of the function and its
implementation than between specification and implementation in the computer. Similarly, the
relation between the form of a user’s action and the substance of her/his behaviour is not as pre-
dictable as the realization relation of computers. Therefore, there exist other specializations of
realization in addition to implementation. Three specializations are presented in (Kaasbøll).

To be able to deal with only one concept, the realization relation is defined in general for
both computer processing and people’s behaviour to be a regular correspondence between form
and substance of signs, data, transformations of data, and categories of these. The collection of
all code and the people, machines, documents, etc. that carry the code is called the ensemble of
the information system. As in the theatre, the ensemble realizes the play. The realization rela-
tion in information systems is illustrated in Figure 8.

11 Separating abstraction in problem domains from
abstraction in the information system
Since realization in the information system does not interfere with abstraction and concretizing
in the problem domain, the ambiguity of direction of abstraction presented in the introduction
can be clarified.

Realization

G
en

er
al

iz
at

io
n

 Implementation

Specialization

Figure 7: Roles relations and realization relations in information systems

Substantiation
G

en
er

al
iz

at
io

n Specialization

Role-derivation
G

en
er

al
iz

at
io

n

 Specification-derivation

Specialization

Form-derivation

G
en

er
al

iz
at

io
n Specialization

For expressions:

For expressions in software:

Separating abstraction in problem domains from abstraction in the information system 14

Problem domain

Figure 8: Representations and realizations in information systems

refers to
expresses

Diana Smith,
01 12 94,
From Paris 09.15,
To London 10.05,
FF 1500

Data and

(Expression) (Extension)

Information
system

Specification

Passenger
Flight
Payment

Ensemble

Ticket
Air Travel

Tag

From Par DG
To Lon Hea
Reservation

Class ticket:
P: Passenger
F: Flight
Payment: Money

realized in

Air
Travel

represents

1010

represents

instance of

Air
Travel

Information
(meaning)

Separating abstraction in problem domains from abstraction in the information system 15

Confused direction of abstraction. Given an information system that represents a problem
domain, eg, a flight reservation system. From the travel of Diana Smith from Paris to
London, we can abstract “travels from Paris to London,” from where we can abstract
“travels.” Then the question is, will it be more abstract or more concrete to go from “travels”
(or from “Diana Smith, 01 12 94, From Paris 09.15, To London 10.05, FF 1500”) to program
code, to 1011 0101 0011 1001 …, and to electrical currents, light pulses, and magnetic
fields? In the sense that abstraction is to ignore some aspects while focusing on others,
electrical currents is certainly ignorance of everything concerned with flights, and focus on
one issue. On the other side, electrical currents are more concrete than is a general concept
like “travel.” Thus there is intuitive support for saying both that realization in the
information system is abstraction and concretization. Since both choices of direction of
abstraction corresponds to some intuition, but runs counter to another, separating
abstraction in the problem domain from abstraction in the information system solves the
confusion.

Confusion between users’ and developers’ perspectives. Since both users and developers
strive for an accurate representation of the problem domain, they will have to deal with the
same abstraction relations. When designing and implementing a solution, the developers
will have to consider implementations in the information system. For periods of time,
different layers of implementation may constitute the domain of the developers, making it
reasonable to consider implementations in the computer as concrete, and specifications of
applications as abstract. “Abstract data types” (Guttag and Horning, 1978) are examples. As
long as the developers separate their technical sense of abstraction (specification-derivation
and implementation) from abstractions in the problem domain, confusion is avoided. But if
the developers mix up the two, they also mix their own technical view of an information
system with the users’ perspective.

The implementation relation is independent of the problem domain. Since implementation
has no connection to the problem domain; the same implementations can be used for
expressions representing any problem domain. Thus, by defining substantiation and
implementation as relations between expressions only, the incoherence between the
information system and the problem domain is taken care of.

Parts of the code may also represent. When analysing the information of a ticket, some of the
printed text represents a travel. In addition, the material that the ticket is made of also
represents phenomena in the problem domain. The specific paper and colours is a contract
giving the passenger rights towards the airline company. The text at a photo copy of the
ticket still represents the travel, while the copy is not representing the passengers rights. If
developing a paperless computer based system for reservation and travel, the representation
relations to the passengers rights must be taken care of. The functionality of the system is
independent of the layer of realization where the expressions of the current system are
found. Even if these representations were expressed by codes in the ensemble of the old
system, it may be appropriate to make a textual expression in an electronic version of the
system.

If the realization in the information system was mixed up with abstractions in the problem
domain, those developing the system might have transferred the relation to the new

Related approaches 16

system, knowing that the abstraction relations that corresponds to the problem domain
should be transferred.

12 Related approaches
This section discusses two approaches to concepts for information systems, aiming to suggest
ways to improve both these approaches and the current exposition of abstraction. The
approaches are selected because they also aim at conceptual clarification.

12.1 A taxonomy of concepts for the information systems science

Bergheim et al (1989) have developed a taxonomy of concepts for formalisms applicable to
information systems and their development. The taxonomy separates between abstraction at the
“application level” (α-level) and at the level of the languages used for making models and
programs (β-level). The α-level corresponds to the expressions in the model of information
systems developed in this paper. In our terms, β-level expressions represent α-level
expressions.

The general sense of abstraction in their taxonomy, “to suppress irrelevant details in order
to emphasize on essential details in some context,” is similar to the one adopted in this paper.
Several types of abstraction are mentioned: “generalization, composition, procedural
abstraction, control abstraction, abstract data types,” etc. (Bergheim et al, p.283). We have
already stated that “abstract data types” is an implementation relation.

They speak of α-abstraction levels, depending on the amount of details in the α-model. If
levels of expression constructed with aggregation, categorization, and generalization (as
defined here) were identified, the expressions in the highest levels of abstractions would have
less details than those of the lower. Hence, these three types of abstraction can be defined within
the α-level of Bergheim et al’s taxonomy. This would enrich their formal taxonomy, since they
do not consider thoroughly their own suggestions for abstraction relations.

Their “β-models are β-abstraction of each other to cope with the details of the computer”
(p.284). The hardware is at the lowest level of β-abstraction. Hence, their β-abstraction seems
to correspond with the specification-implementation relation. Since Bergheim et al intend to
cover also tools for development (at their β-level) with their taxonomy, the software system is
the problem domain of the tools. Then it is in accordance with the information system/problem
domain distinction to use abstraction to characterize the internal relations in the computer. The
lesson to be transferred to the information system/problem domain distinction is that the models
of the computer needed to produce software development tools have to include abstraction
relations, while the information system models and programs developed by these tools should
include specification-implementation relations between the expressions and the layers of
codes.

12.2 FRISCO

The Framework of Information Systems Concepts (Lindgreen, 1990) exemplify “abstraction”
like this: “abstraction is applied when … a bee, an elephant, a snake etc. are regarded as
animals” (p.73). Instantiation is mentioned as the opposite relation. “Abstraction” in FRISCO
thus corresponds roughly to classification. “Generalization” in FRISCO is defined in close
accordance with how it is defined here.

Techniques for analysis and design 17

FRISCO aims to identify conceptually what “information systems” are. The identification
starts from the general concept “system.” “System” is first specialized into “open active
system,” which in turn is specialized into “organizational system,” and then to “formalized
organization system.” The second step is called “organizational abstraction” (p.30). However,
since the class of “organizational systems” is smaller than the class of “open, active systems,”
the operation carried out is a specialization. It is thus neither abstraction nor generalization, nor
is it in line with the FRISCO definition of “abstraction” as classification referred above. These
parts of the framework are therefore in need of clarification.

The way of specializing “systems” to “information systems” carried out in FRISCO may
also be an appropriate way to better specify the concept of information system illustrated in
Figure 9.

The “formalized organization system” is a system in which all activities are carried out in a
reproducible manner. A “formalized organizational system” may consist of all the aspects
illustrated in Figure 9. Compared to the view of information systems here, the requirement of
reproducibility limits all information to be interpreted according to rules given.

The next step in FRISCO is called “semiotic abstraction.” Semiotic abstraction consists of
disregarding all material matter except data and its physical carriers. This corresponds to
disregarding the problem domain, and the resulting “information realization system”
corresponds roughly to the expressions and the ensemble in Figure 9. Since semiotic
abstraction is to disregard the extension while focusing on expressions, semiotic abstraction is
representation according to the concepts in this paper.

The final step in FRISCO consists of “infological abstraction” and “datalogical
abstraction,” which here is interpreted to mean separating the form of expressions
(“infological”) from their substance (“datalogical”).

FRISCO also say that “data represents information.” In the terms used here, data expresses
information. The representation relation is found in FRISCO’s triadic “sign relation,” which
corresponds to Ogden’s triangle. However, FRISCO does not consider the extension of the data.

13 Techniques for analysis and design
Techniques for systems analysis and design are evaluated regarding their coverage of
abstraction in the problem domain and the information system, and the evaluation is
summarized in Table 1 and 2. Three methods with distinct approaches are selected. Formal
arguments are not provided, since the methods are assumed to be well-known. Suggestions for
improvements are made.

13.1 Jackson System Development

Jackson System Development (JSD) was an early approach to modelling according to objects,
called “entities” in the method (Jackson, 1983). JSD starts out with making a description of the
problem domain of an information system. The method further advises to make a model of the
data used to represent that domain, and the relations between the problem domain (“level 0”)
and the data (“level 1”). The descriptions may be extended to cover realizations of the data too
(“levels 2, …”). JSD does not introduce any conceptual difference between representation and
realization. The difference could probably easily be achieved if the two relations were intro-
duced conceptually in the method, and “level 0” was called “problem domain”; “level 1” called

Techniques for analysis and design 18

“expression”; and “level 2” and further levels called “layers of realization”.
Classification of objects into classes is supported in the method, but there is no notation for

describing a classification relation. However, it may be sufficient to say that all objects are
treated as if they were instances of a class.

Unlike the object-oriented methods appearing around 1990, JSD does not support
generalization. This could probably be remedied with a “gen/spec” relation similar to Coad and
Yourdon’s (1991a) technique. Additional rules for specifying how to merge event sequences
when such sequences are inherited, would have to be provided. A proposal for such merges is
found in (Mathiassen et al, 1992 and 1993).

The method has notation for aggregation of events, covering the common ways of
structuring an algorithm. Aggregation of objects or classes is not supported. This could also be
introduced, and the merging of event sequences could be carried out as for inheritance.

Table 4: Analysing abstractions in the problem domain

JSD OOA/D Dataflow

Representation No No No

Classification
The classification
process is supported,
but not the relation

The classification
process is supported,
but not the relation

No.

Generalization
No. Could be
introduced

Yes No. Captured when
extended with data models

Aggregation
Of events only. Could
be introduced.

Of objects No. Captured when
extended with data
dictionaries or data models.

Role-
Realization

No No No

Table 5: Designing abstractions in the information system

JSD OOA/D Dataflow

Representation
of problem
domain

Yes. The problem
domain and relations
to the data that
represents. Notation
can be improved.

No. The problem
domain and the data
that represents are
described separately,
but the representation
relation is not captured.

No. Can be achieved if
“material flow” and its
relation to “logical”
diagrams is included

Role-
realization

Implementation can
be expressed in layers.
Notation should be
improved to separate
realization from
representation.

Implementation in one
layer. Could be
extended to any
number of layers.

Implementation in one
layer. Can be extended to
several layers, provided a
suitable visualization.

Techniques for analysis and design 19

13.2 Object-oriented analysis and design

Coad and Yourdon’s (1991a and b) method for object-oriented analysis and design (OOA/D)
contain guidelines for analysis of the problem domain of the information system. In design, the
description is to be interpreted as a model of the expressions in the computer. OOA/D therefore
describes both the problem domain and the expressions that are going to represent it. However,
because the method shift interpretation of the description instead of making separate
descriptions, it becomes impossible to capture the representation relations between the problem
domain and the expressions in the computer. Keeping the relations as in JSD could be done.

Similar to JSD, OOA advises classification, but the notation gives only room for the class,
not for the relations between class and object. Generalization relations can be described through
a “gen/spec” relation. Objects can be aggregated by means of a “whole-part” relation. In
addition, objects can be aggregated in one level into “subjects.”

During design, the model is implemented in user interface and in data base and task man-
agement implementations. Additional layers of implementation are not included. There seems
to be no good reason why the method does not allow for any number of layers. The proposed
realizations into user interface, data base, and task management may be practical solutions in
many cases, but these could be specialized suggestions in a general mechanism for realizations.

13.3 Structured analysis

Structured analysis (DeMarco, 1978; Yourdon, 1989) consists of a series of techniques; here
only dataflow diagrams are considered, since they constitute the core of the method. Dataflow
diagrams describe “logical” and “physical” data processes, while “material processes” should
be excluded in the dataflow technique. “Material processes” are what the data is about, ie, the
problem domain. The representation relation is thus not included in dataflow diagrams.
Through including material processes, the relation could be described, which is done in, eg, ac-
tivity graphs in ISAC (Lundeberg et al, 1981). Dataflow diagrams are also extended with data
dictionaries or data models. Data dictionaries focus on aggregation. Some dialects of data mod-
els capture aggregation and generalization.

The “logical” diagrams describe the expressions in the system, while the “physical” dia-
grams depict the realization in one layer. However, the notation to show the relation between
physical and logical is poor. The number of layers could be extended through introducing a
“format” layer between the logical and the physical. A notation or visualization of the realiza-
tion relations for each element in the layers is necessary for working with layers.

A process in a diagram can be expanded to show its interior, which may consist of more
processes flows, and stores. The expansion is a mechanism for aggregation of the processes in
the information system. However, since this paper is focused on abstraction of representation
relations, and the interior of information systems consist of expressions only, a discussion
would be necessary to consider abstraction relations between expressions. This is outside the
scope of this paper.

13.4 Summary of evaluation of techniques

OOA/D supports generalization, aggregation, and classification in analysis of problem
domains. JSD could be extended with similar mechanisms. Dataflow diagrams have poor
support for analysis of problem domains. Their abilities to model aggregates of processes may

Conclusion 20

be useful during design.

14 Conclusion
This paper aimed at distinguishing and comparing different types of abstractions in problem
domains and information systems. In addition to the well-known classification, generalization,
and aggregation, two rarely considered abstractions have been discussed: representation and
role-realization.

Roles and realizations often occur in problem domains. When defining the relation properly
within the meaning triangle, it has been shown that models of roles and realizations found in
literature erroneously indicated that realizations were more abstract than roles.

Expressions acquire a form that is realized in substance. The form-substance relation is a
specialization of the role-realization relation for expressions. This relation is further specialized
for software where a specification is realized (also called implemented) in code.

When abstraction in the problem domain is mixed up with implementation relations, the
direction of abstraction become confused, and users’ and developers’ perspectives are mixed.

Both conceptual frameworks and techniques for modelling information systems can be
improved through clarifying the different abstraction relations.

Implications

System development techniques have been internalized by the developers using the techniques,
and CASE tools may strengthen current practice and knowledge. Even if new methods that are
more conceptually sound appear, those who are educated in accordance wiht the existing
methods will probably stay within the modes of thought of these methods. It may be easier to
change the CASE tools, so that they at least could allow for improvements of the methods and
techniques. The CASE tools should be constructed to fulfil the following criteria:

• The tool represents the different abstraction relations both for the problem domain and the
information system.

• The tool allows for defining notations that realize these relations as modifications and
extensions of the techniques.

However, only changing computerized tools give little impact on knowledge and work practice
(Sørensen, 1993). Improvements of system developers’ knowledge about basic concepts like
these relations should also be carried out.

Acknowledgement
Thanks to Kristin Braa, Joan Greenbaum, Renate Motschnig-Pitrik, Jan-Erik Ressem, Ole
Smørdal, and the anonymous referees for discussions and comments on the paper, and to Sara
Selmark for improving the language.

References
Andersen, Peter Bøgh (1990)A Theory of Computer Semiotics: Semiotic Approaches to
Construction and Assessment of Computer Systems Cambridge University Press

Conclusion 21

Andersen, P.B. (1992) “Computer Semiotics” Scandinavian Journal of Information Systems
Vol.4, pp.3–30

Bergheim, G.; Sandersen, E.; Sølvberg, A. (1989) “A taxonomy of concepts for the science of
information systems” In Falkenberg, E. and Lindgreen, P. Information system concepts: an in-
depth analysis Proceedings of the IFIP TC 8/WG 8.1 Working Conference on Information
System Concepts (Namur, Belgium, 18-20 October, 1989) Amsterdam, North-Holland,
pp.269–321

Coad, Peter (1992) “Object-Oriented Patterns” Communications of the ACM Vol.35, No.9,
pp.152–159

Coad, P. and Yourdon, E. (1991a) Object-Oriented Analysis Second Edition, Prentice-Hall, NJ

Coad, P. and Yourdon, E. (1991b)Object-Oriented Design Prentice-Hall, NJ

DeMarco, Tom (1978)Structured Analysis and System Specification Yourdon, New York

Goldstein, R.C. and Storey, V.C. (1994) “Materialization” IEEE Transaction on Knowledge
and Data Engineering, Vol.6, No.5, pp.835–842

Guttag, J.V. and Horning, J.J. (1978) “The Algebraic Specification of Abstract Data Types”
Acta Informatica Vol.10, pp.27–52

Haugen, Øystein (1980) Concepts of Hierarchies in Programming and System Description (In
Norwegian. Original Title: Hierarkibegreper i programmering og systembeskrivelse) Master
Thesis, Department of Informatics, University of Oslo

Hutt, Andrew T.F. (ed.) (1994) Object Analysis and Design: Description of Methods Wiley,
New York

Jackson, Michael (1983) System Development Prentice-Hall, New Jersey

Kaasbøll, J. Types of explanation and prediction for information systems: Implications for
system development techniques Submitted for publication

Lindgreen, P. (1990) A Framework of Information Systems Concepts Interim report from the
IFIP WG 8.1 Task Group FRISCO, IR.3-PL, University of Nijmegen

Lundeberg, Mats; Goldkuhl, Göran; Nilsson, Anders (1981) Information systems development:
a systematic approach Englewood Cliffs, N.J.: Prentice-Hall

Mathiassen, L.; Munk-Madsen, A.; Nielsen, P. A.; and Stage, J. (1992) “Modelling Events in
Object-Oriented Analysis” In Bjerknes, Bratteteig & Kautz (eds.) Precedings of the 15th IRIS
Department of Informatics, University of Oslo, pp.742–757

Mathiassen, L.; Munk-Madsen, A.; Nielsen, P. A.; and Stage, J. (1993) Object Oriented
Analysis (In Danish) Aalborg, Forlaget Marko

Motschnig-Pitrik, R. (1994) “Analyzing the notions of attribute, aggregate, part, and member
in data/knowledge modelling” In Joze Zupancic and Stanislaw Wrycza (eds.) Proceedings of
The Fourth International Conference Information Systems Development — ISD’94 Methods &
Tools. Theory & Practice (Bled, Slovenia, 20–22 Sept., 1994) Moderna Organizacija, Kranj,
1994 pp.31–42

Conclusion 22

Odell, James (1992) “Managing object complexity, part I: abstraction and generalization”
Journal of Object-Oriented Programming Vol.5, No.5, pp.19–22

Olle, T. W.; Hagelstein, J.; Macdonald, I.G.; Rolland, C.; Sol, H.; Van Assche, F.J.M.; Verrijn-
Stuart, A.A. (1991) Information Systems Methodologies: A framework for understanding
Second Edition, Addison-Wesley, Wokingham

Richardson, J. and Schwarz, P. (1991) “Aspects: Extending objects to support multiple,
independent roles” SIGMOD Record, Vol.20, No.2, pp.298–307

Sørensen (1993) “What influences regular CASE use in organizations? — An Empirically
Based Model” Scandinavian Journal of Information Systems Vol.5, pp.25–50

Tsichritzis, D.C. and Lochovsky, F.H. (1982) Data models Prentice-Hall, Englewood Cliffs,
NJ

van de Weg, Rob L.W. and Engmann, Rolf (1992) “A framework and Method for Object-
Oriented Information Systems Analysis and Design” In E.D. Falkenberg, C. Rolland, and E.N.
El-Sayed (eds.) Information System Concepts: Improving the Understanding (Alexandria, 13–
15 April, 1992) IFIP Transactions A-4, North-Holland, pp.123–146

Yourdon, Edward (1989) Modern Structured Analysis Yourdon Press, Englewood Cliffs, NJ

