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Comparing Kirchhoff-approximation and boundary-element
models for computing gadoid target strengths
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To establish the validity of the boundary-element metihB&M) for modeling scattering by
swimbladder-bearing fish, the BEM is exercised in several ways. In a computation of backscattering
by a 50-mm-diam spherical void in sea water at the four frequencies 38.1, 49.6, 68.4, and 120.4
kHz, agreement with the analytical solution is excellent. In computations of target strength as a
function of tilt angle for each of 15 surface-adapted gadoids for which the swimbladders were earlier
mapped, BEM results are in close agreement with Kirchhoff-approximation-model results at each of
the same four frequencies. When averaged with respect to various tilt angle distributions and
combined by regression analysis, the two models yield similar results. Comparisons with
corresponding values derived from measured target strength functions of the same 15 gadoid
specimens are fair, especially for the tilt angle distribution with the greatest standard deviation,
namely 16°. ©2002 Acoustical Society of AmericdDOI: 10.1121/1.1458939

PACS numbers: 43.30.Gv, 43.30[FiLB]

I. INTRODUCTION mation must be addressed, at least for realistic shapes at
Knowledge of fish target strength has long been recog[elatlvely high frequencies, where the wavelength is not very

nized to be vitally important in acoustic measurements ofond nglpare“ to the size of significant scattering
fish density, witnessed by the bibliographies in Refs. 1-5. proans o 2720

the echo integration method, it appears through the back- The deformed fImd-cyImdgr mode .has been very
scattering cross section as a divisor of the area backscatterirﬁ,’gpul‘_"lr and has been the object of a major slidyssen-
coefficient or like proportional quantifyin the echo count- tially, it reduces an observed shape to a series of axisymmet-

ing method, it appears in the expression for the acoustic sanjic cylinders. The methzod has been realized by Clay and
; Horne for Atlantic cod?> McClatchie and Ye for orange
pling volume’ ,

There is a multiplicity of methods to determine target roughy,® McClatchieet al. for barracouta(Thyrsites atup
strength. The 20 or so methods cited in a 1991 studve red cod(Pseudophycis bachysand southern blue whiting

. . . 5
since been augmented significantly by a number of new tecHMicromesistius australis” and Sggvadaat al. for walleye
niques, including both empirical methddsand theoretical POllock (Theragra chalcogramma® Excepting the cited

models, especially those based on the deformed-cylindef2Se of Atlantic cod, each model has been based entirely on
modef® and boundary-element methddThese have been the swimbladder as a deformed cylinder. The swimbladder is

accompanied by novel applications, for example, to salmodmportant in the Atlantic cod model, but this includes other
and trou® cod (Gadus morhug'? orange roughy(Hop- parts of the fish too, again represented as finite cylintfers.
Iostethus’ atlanticus’®* and  pollack (Pollachius The exact shape of the swimbladder has also been con-

pollachiug. 2415 sidered more directly in the Kirchhoff-approximation model

- - w23
Modeling fish target strength, in particular, offers oppor-for Pollack and saithe (Pollachius  vireny™ walleye

24 L
tunities of investigation that may otherwise be unrealizabld®°llock;™ and southern blue whitin. _ o
or exceedingly cumbersome, as in the case of orange roughy, Al Of the high-frequency models cited so far are similar
a fish that resides at 700—1500 m deltAt the same time, I their neglect of diffraction. To remedy this, the boundary-

models generally have a domain of applicability that must béf'ément methodBEM)™" has begun to be a%plled in model-
defined and respected in applications. ing scattering by swimbladder-bearing i

A number of distinct scattering models have been ap- In addition to treating diffraction, the BEM allows use
plied to fish. These have been based principally on simpl@f general conditions on the swimbladder boundary surface,

shapes such as the sphere at low frequeticigand prolate with explicit representation of the internal fluid. Thus the
ellipsoid2°-22or the actual shap¥;'523-2%alled “mapping” BEM can also be used to study pressure-dependent effects,

method by McClatchieet al25 Only the first two models which are otherwise precluded by the standard Kirchhoff-
have exact solutions in general, thus the matter of approxi@PProximation model. Establishing the validity of the BEM
for a pressure-release surface is important for the larger pro-
gram being introduced.

dElectronic mail: kfoote@whoi.edu The present aim is to describe the two basic models that
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represent the swimbladder by its actual shape, namely the The backscattering cross section is
Kirchhoff-approximation model and the BEM, but both as- _ 2

. L o o=4mx|f|°. (2
suming a pressure-release boundary condition. Application
of these to historical swimbladder morphometric data is deThe target strength is the logarithmic expressionrpf
scribed. Independent validation of the two methods is ad- o
dressed, and computations with the two models are com- TS=10 |O%:—2
pared. g

, ()

wherer g is a reference distance, assumed here to be 1 m.

II. KIRCHHOFF-APPROXIMATION MODEL

. L _ Ill. BOUNDARY-ELEMENT METHOD
In the Kirchhoff approximation, the field on the scatter-

ing surface is assumed to be knowa priori. For a To develop the acoustic boundary-element method
swimbladder-bearing fish at rather high frequencies, ofBEM), the wave equation for the pressyrés reduced to
wavelengths which are rather small compared to the maxithe Helmholtz form by assuming the harmonic time depen-
mum length of the swimbladder, the fish is represented by 8ence expt), wherew is the angular frequency in radians
pressure-release surface conforming to the inner wall of thger second, hencé?p+k?p=0, wherek= w/c is the wave
swimbladdef®?* The normal component of particle velocity number. This is rewritten in integral form, in which the pres-
on the scattering surface is assumed to be equal to that of tisgire at any point is expressed in terms of the acoustic pres-
incident field on the directly insonified part of the surface,sure and normal displacememtbon the scattering surface
and zero on the geometrically shadowed part of the surfacd.his surface is subdivided into elements, and the pressure
Mathematically, the farfield backscattering amplitude inand displacement distributions &hare represented by dis-

this approximation is crete valuesp; andu;, respectively, at each nodeassoci-
ated with these elements. The standard Helmholtz integral
f=)"1 3£ exp(2ik-r)H(k-A)k-AdS, (1)  equation suffers from singularities at certain critical frequen-
S cies, which are dense at high frequencies. To overcome this

problem, the integral is combined with a second integral de-
veloped from the first by differentiating with respect to the
normal direction at the surfacé.In principle, the two equa-
tions are combined by adding the standard form evaluated at
each node of each element to a multipleof the normal-
derivative form evaluated at the centroid of that element in

x<0. the local coordinate systehh.The resulting equation can be
The integration in Eq(1) is performed numerically us- written thus: Y ’ geq

ing Gauss quadrature over curvilinear surface elements on

which the position vector is interpolated quadratically from IPinc
nodal values. The integrand is evaluated at each integration, AP=BU=Pinc=a —-=.
or Gauss, point using the interpolated valuerofA good ) . .
representation of the phase, as given by the factoPc the_ swimbladder is assumed to be ideally pressure-
exp(dk-r), depends on the separation of these points. If thd€€asingp;=0 for alli, and Eq.(4) can be solved directly
integration were to be performed by primitive Riemann sum-©" the nodal normal displacements:

mation, then the points should be closer than abdus. - IPinc
However, the point-separation condition is undoubtedly re- U=B ! an )
laxed by the use of Gauss quadrature. If the polynomial fit

assumed by Gauss quadrature is of order 2 or higher, a godd'e coefficients of the matri8 are assembled from local
representation of the wave form should be obtained for dnatrices pertaining to each element of the mesh. With the
point Separation up tQ/G For Seven_point quadrature on CaICUIation pOint Of the HelmholtZ integral taken at ndde
six-node triangular elements, with nodes at the corners andith positionr;, integration over element provides the
midsides of the elements, the Gauss point separation is #llowing coefficients in the standard formulation:

most 0.8 times the nodal separation. A similar relationship

exists for eight-node quadrilateral elements using33or bfﬁ%(fi)przf Np(q)Ccostn,G(ri,q)dS,, (6)
more Gauss points. A condition for validity of the numerical Sm

integration, that the nodal separation should be lessxfan wherep is the fluid densityq is the position vector of the

is therefore tentatively suggested. This translates to a condintegration point on the element surfa$g, G is the Green’s

tion that the element side-to-wavelength ratio should be lesinction, given byG(r; ,q)=e*ik“i*q|/477|ri—q|, n is the

than 2/5. In order to give commonality with the correspond-local nodal label, andN,(q) (h=1,2,...,6 for triangular ele-

ing condition in the case of the boundary-element method, tonents,n=1,2,...,8 for quadrilateral elemeintare the shape

be discussed in Sec. lll, the slightly stricter ratio of 1/3 isfunctions, which are of the standard second-ofdeadrati¢
adopted in this paper for assessing the frequency range &6rm.>? The factor cod,,, is included to allow for the devia-
validity of a given mesh. The element meshes are describetibn 6,,, of the normal to the elememt at local noden from

in Sec. IV. the mean normal at that node. The mean normal at a node is

where\ is the acoustic wavelengtk, is the wave vector in

the source or backscattering directibr k/k, r is the posi-
tion vector of the surface element with infinitesimal adSa
f is the unit normal tadSat r, andH(x) is the Heaviside
step function with values 1 fox>0, 3 for x=0, and 0 for

4

®

Pinc T @
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TABLE I. Properties of the 15 specimens whose swimbladder surfaces have been remapped, based on the origindRe&23ngith n,; small triangular
facets, byngem curvilinear elements with,,qesnodes. The nodal separation distance such that 99% of neighboring separations are smaller and the maximum
nodal separation are both specified.

New meshes Swimbladder Nodal separation

Length Mass Ref. 23 Surface area Volume 99% limit Max

Fish No. Species (cm) (9) Ni Nelem Nnodes (cm?) (cm?) (mm) (mm)
201 Pollack 315 195 5546 1168 3364 33.01 6.91 1.20 2.21
202 Pollack 44.0 533 9965 1389 4041 58.83 16.33 1.37 1.77
204 Pollack 35.5 321 6 562 1078 3116 42.39 10.03 1.41 1.72
205 Pollack 39.0 380 7171 1107 3181 45.75 11.34 1.43 1.93
206 Pollack 35.0 287 5379 1159 3347 31.37 7.75 1.17 1.46
207 Pollack 44.5 635 8695 1487 4363 65.24 19.15 1.34 1.61
209 Saithe 38.5 385 6762 1501 4387 43.29 10.08 1.06 1.39
213 Pollack 34.5 259 10192 1039 2935 34.11 7.83 1.33 1.61
214 Pollack 39.0 406 7649 1164 3362 44.14 10.15 1.34 1.53
215 Pollack 37.0 332 5265 1076 3092 38.89 8.75 1.34 1.74
216 Pollack 36.5 343 6 436 1062 3060 43.33 10.85 1.40 1.64
217 Pollack 34.5 253 5500 962 2764 34.61 7.11 1.32 1.46
218 Pollack 325 257 4689 1327 3879 29.75 6.27 1.00 1.39
219 Pollack 35.5 292 5106 1039 3005 35.74 8.15 1.27 1.53
220 Saithe 38.0 406 8968 1321 3857 44.32 10.46 1.13 1.32

defined as the average of the normals at the node on aill'tlegra| equation by calculating coefficients similar to
contiguous elements weighted by the respective differentidd’iy(ri) but with r; replaced by the position vector
surface area.

The normal-derivative form of the Helmholtz integral b}3)(r)=pw2 E . N, (g)costnG(r,q)dS,
equation, calculated at the centroigof the elements, simi- mn:Cimn)=j /Sy 10
larly provides coefficients as follows: (10
_ and then
(2T = 12 9G(ri,a)
bmn(r_l)_pw SmNn(q)Cosamna—nrdSqa (7) p(r):—b(3)(r)-u_ (11
where the normal derivative is evaluated at the centroidThe backscattering amplitude at finite rangi
These are combined with the previous coefficients by adding rlp(r)|
a multiple ofb{Z)(r)) for all elementd on which global node = Tord (12)
i lies, i.e.,
The farfield backscattering amplitudiés the limit of f(r) as
be (r)=bY(r )+ a: b2 (1), 8 r approaches infinity. Expressions for the backscattering
mr11) = BranF) + 1155 (1) ® cross section and target strength are derived by substituting
where the combination facta; is taken to be-ifkM,, f(r)ll'f?;féllgr:grft's(zasirédPg?:a)r,erzs;gecltgglrzll.aterals and triangles
whereM; is the number of elements meeting at nodk333* q 9

The use of the centroids, rather than the nodes, as th%f the quadratic isoparametric type, in which both the geo-

calculation points for the normal-derivative form is found to metric and acoustic quantities are interpolated from the nodal

be sufficient to overcome the problem of the critical frequen-values using quadratic shape functions, the nodes being situ-

. ; . ) : ated at the vertices and midsid8#s a general guide, good
cies while not increasing the computational effort unddily. . . . . . .
X , . representation of the acoustic variables is obtained if the
The integrals are evaluated numerically using Gaus

quadrature ?engths of the sides of the elements are less than one-third of

The coefficientsb,,(r;) are assembled into the global a wavelength. The accuracy of geometrical representation

: . - depends on the degree of undulation of the surface, but it

matrix B by summing the coefficients that correspond to the . :
should be noted that the quadratic interpolation allows the

same global node, thus . .
elements to be curved. Further details of the formulation and

equations can be found in Ref. 11.

Bj= > bpdr), )
m,n:C(m,n)=j
where C(m,n) is the global node label of local nodeon V. SWIMBLADDER MORPHOMETRY
elementm. The source terms in E@4) are evaluated thus: The origin of the morphometric data is a study per-
Pine(17) formed in 1986° on surface-adapted specimens of pollack
Pinc(ri) + e |23T and saithe, described briefly in Table I. Each specimen was
e r

anesthetized, tethered, and acoustically measured at each of
Given the solution fou from Eq.(5), the scattered pres- four frequencies, nominally 38, 50, 70, and 120 kHz, prior to
sure at any exterior point is obtained from the standard shock-freezing and microtoming in the sagittal plane, hence
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z shown in the final column, column 11; however, a better
indication of the degree of fineness of each mesh is given in
column 10, namely the limit of nodal spacing which is sat-
isfied by 99% of the distances between pairs of neighboring
nodes. At 120.4 kHz the nodal spacing, to satisfy iié
condition for accuracy of the BEM and Kirchhoff-
approximation model, should be less than 2.03 mm. All of
the meshes except that for specimen 201 are well within this
limit even on the basis of the maximum nodal spacing found
in the mesh. Detailed analysis of the mesh for specimen 201
reveals that tha/6 condition is satisfied for all but two pairs
of neighboring nodes out of 4530 such pairs.

V. INDEPENDENT VALIDATION OF MODELS

A cogent form of validation of the Kirchhoff-
¥ approximation model is the direct comparison of model com-
putations and measurement results for the same fish speci-
mens used in the morphometry. This work is documented in
detail in Ref. 23 but in which the integration in E€]) is
o performed by the primitive Riemann summation, with evalu-
FIG. 1. Boundary-element mesh of the swimbladder to specimen No. 205 o?tlon Of- the- integrand at the centroid of each triangular facet.
Ref.' 2.3, shown in both oblique and dorsal views. The model haé 1107 V_a“datlon of th_e BE_M has alr?ady been documente_d for
elements and 3181 nodes. The meshed swimbladder length is 141 mm. @ Series of cases in which analytical solutions are available.
Three of those described in Ref. 11 are citdd.The forward
scattered pressure for a plane wave incident on a rigid sphere
parallel to the main axis, according to the method of &ha. has been computed. The agreement ovekthnge from 0
The thickness of successive photographed sections was 108 10 is excellent, without discrepancies at the critical fre-
um. Each swimbladder section was digitized as a set of coguencies that arise in the standard formulation, which lacks
ordinates describing the outline of the swimbladder, and théhe normal component included in Ed). (2) The backscat-
surface of each swimbladder was represented by a mesh cotered pressure from a rigid sphere has been computed under
sisting of flat triangular facets. similar conditions, again with excellent agreement, while
Because of the use of curvilinear quadrilaterals and tri-avoiding discrepancies at the critical frequenci@.As an
angles in the BEM, new meshes have been produced for eadlustration, the radiation impedance of a uniformly vibrating
of the specimens using a semiautomatic process. First, tharcular piston of radius in the end face of a cylinder of
contours of the swimbladder in planes perpendicular to theadius 2a and height 4 over theka range from 0 to 5 has
major axis of the fish, and hence perpendicular to the microbeen computed and compared with the analytical solution for
tomed sections, are determined at intervals along the majax piston in an infinite baffle. With allowance for the differ-
axis, by finding the points of intersection of each plane withence between the two problems, the agreement is quite good.
the original digitized sections. Quadrilateral and triangular ~ An additional trial of the BEM has been designed spe-
elements are then fitted between neighboring contoursifically for the present study. A spherical void of radius 25
Where required, nodes are interpolated using cubic splinesnm is assumed to be immersed in sea water of sound speed
This method allows the fineness of the mesh to be controlled470 m/s and density 1025 kg/nThe size has been chosen
by the choice of the separation between the contours and tHer having an area of 7854 nfimwhich is roughly 20%
nodal separation on each contour. Some manual fitting ofreater than the area of the mesh spanning the surface of the
elements is required where the swimbladder branches intlargest swimbladder, No. 207, as represented by 1487 ele-
separate lobes. ments(4363 nodek with an area of 6524 mmMeshes have
A further reason for the remapping exercise was to rebeen generated by subdividing each spherical triangle of a
duce the number of nodes in order to facilitate matrix operageodesic icosahedron into four subtriangles, subdivided
tions inherent to the BEM. The resulting meshes have feweagain to get a mesh of 320 elemeffg2 nodesand subdi-
elements than the original triangular meshesut this is  vided once more to get a mesh of 1280 elemg@562
offset by the allowance for curvature of the surface. An ex-nodes. The latter mesh has a maximum nodal separation of
ample of one of the meshes is visualized in Fig. 1. The new2.06 mm, which is just outside the limit of 2.03 mm required
meshes have been used in computations with the Kirchhoffby the \/6 condition at 120.4 kHz.
approximation model in parallel with the BEM. The same example provides a trial for the Kirchhoff
Details of the meshes are listed in Table |I. For eachapproximation, since the integration in E{.) can be per-
mesh, the maximum distance between neighboring nodes fermed analytically for the spherical shape:
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f:(4k)_1{—1+Co§(2ka)+2kasin(2ka) proportions, the several functions have been averaged with
respect to normal distributiong(#) of tilt angle 6, with

+i[sin(2ka) —2kacog 2ka) |}, (13 meané and standard deviatiosy:
wherea is the sphere radius. Comparison of the numerical
and closed-form analytic solutions at the frequencies 38.1, E:f g(6)o( g)dg/ jg(e’)da’, (14)

49.6, 68.4, and 120.4 kHz demonstrates agreement to within
0.01 dB for the 2562-node Sphere. Further exercise of thﬁ/here the integration has been performed over the raﬁge

K|rc_hhc|)ff T?delfrevet?lls S|gn|tf|ca|ntt_ dlvetrgincf 1c;3fOtEﬁ| ”fu'—3s(, 0+ 3sy]. For the measured target strength functions,
merical solution irom the exact soiution at abou Z 100y ajues at tilt angles outside the ranige45°, 459 were not

the 2562-node sphere and at about 90 kHz for the 642-nodg »jjaple, and for such angles the valueoofit the nearest
sphere. The truth of this last statement is evident in the targ%{ng|e limit has been used.

strength spectrum in Fig. 2, which also compares the results Computations have been performed for each of four nor-
of the Kirchhoff approximation with the exact series solution o . . —

and BEM solution for the 642-node mesh. The observed der_nal distributions of tilt angle. The paired values,¢,) are
viation of the BEM solution from the exact series solution at(0 , 09, (0%, 59, (0°, 109, and(~4.4°, 16). Because of the

about 90 kHz corresponds to a nodal spaciny/df which is effect of perspect_lvg, by which the gpparent t”t. gngle. of a
. o . fish changes as it is observed at different positions in the
coarser than the nominal criterion for validity of the BEM,

namely neighboring-point separations withif6 plane transverse to the acoustic aXithe effective values of

. . S, are larger than the nominal ones. The values shown above
Numerical computations have been performed for botl’l1 . . :
. o ave been adjusted for the perspectival effect for a circular
the BEM and Kirchhoff-approximation model for each of the o :
. bqam of 5° beamwidth measured between the half-power
two meshes. The computations have been repeated at each Of. . o

: ints. The effective standard deviations for the four cases
the four measurement frequencies, 38.1, 49.6, 68.4, a g:)e 550 559 102° and 183
120.4 kHz, hence witlkka=4.07, 5.30, 7.31, and 12.87. The T e ' .

. . The target strength corresponding to each averaged
results have been compared against the well-known analth kscatteri tion. denct@l has b ted
cal solution for scattering by a spherical void, with perfectly bac sk;:at.te;!ng ;:rr]oss :T‘ec Ic(i)an en?;si 123. T,Een C3om_|[_)# €
soft boundary condition, in a homogeneous fluid with given y substituting the value rom Eq. ( _) in Eq. (3). _e
sound speed and density vald&dn one set of computa- values of TS hgve been regress_ed on flsh length centi-
tions, the effect of orientation of the axis of the meshed voidneters according to the regression equation,
is examined by comparing the backscattered pressure ampli- 75— logl +b (15)
tude at infinity for the Kirchhoff-approximation model and at ’

1000-m range for the BEM. The results are shown in Tablevhere the regression coefficiebtis expressed in decibels.
II. In a second set of computations, the same backscatterekhe standard error of the regression has been computed for
pressure amplitude for a single orientation is compared di€ach derived regression equation. The results are shown in
rectly against the amplitude derived with the analytical solu-Tables V and VI.
tion. The results of these computations, as well as those for
the forward scattered amplitude by the analytical solution
and BEM, are presented in T_able Ill. Corresponding targe(_/“_ DISCUSSION
strengths and forward-scattering strengths are presented in o _
Table IV. A. Model validation computations
Itiis noted that, for certain frequencies and mesh sizes,  To validate the BEM for application to the gadoid swim-
the condition for the nodal spacing discussed in Secs. Il an@ljadder, a 25-mm-radius spherical void in sea water has been
IIl, namely that this should be less tharg, is violated. The  chosen as a test case in order to have a shape for which a
results for these cases are included in Tables 11—V but argather simple analytical solution exists and whose surface
shown in italics. The limit is only just exceeded by the finerarea is greater than that of the largest swimbladder in the
mesh at 120.4 kHz. data set. Finite-element representation of the sphere by a
subdivided icosahedron has allowed both the BEM and
Kirchhoff approximation to be computed according to Egs.
VI. COMPARISON OF MODEL COMPUTATIONS (12) and(1), respectively. ,
Because of the finiteness of the facets, there is an effect
The target strength for an immersed void with the shapealue to axial orientation, which is indicated in Table Il. The
of the swimbladder shown in Fig. 1 has been computed as BEM is seen to be quite accurate for the two meshes that
function of tilt angle for both the dorsal and ventral aspectsvere chosen. Sensitivity to axial orientation is negligible as
at each of four frequencies. Both the Kirchhoff- long as the maximal nodal separation does not exedéd
approximation model and BEM have been examined. Th&he Kirchhoff-approximation model is exercised with the
computational results are shown with the measured functionislentical meshes but performs less well than the BEM,; it is
in Fig. 3. inherently different, as is proved by the difference in respec-
The same computations have been repeated for thiéve exact and analytical solutions for the two models for this
mapped swimbladder shapes of all 15 gadoid specimerspecial shape. The variability with orientation is notable for
listed in Table I. In order to reduce these to manageabl¢he coarser mesh.
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FIG. 2. Frequency dependence of a spherical void of radius 25 mm im
mersed in water of density 1025 kgimnd sound speed 1470 m/s, as given

120

separation in neighboring Gauss points for the coarser mesh,
using seven-point integration, is abaut4, thus exceeding
N6. The nodal spacing for the same mesh is abhd8it also
exceeding both the\/5 and A/6 conditions mentioned in
Secs. Il and Ill, respectively.

The Kirchhoff approximation, since it requires only a
direct integration, is computationally much faster than the
BEM, which requires the inversion of a complex matrix of
size equal to the square of the number of nodes. Above about
4000 nodes, the BEM becomes cumbersome, at least on cur-
rent desk-type workstation-level computers. In contrast, the
Kirchhoff approximation could be exercised with far more
elements than used here and thus, in principle, could be more
amenable to computation at higher frequencies. However, the
approximation has inherent limitations, such as the neglect of
diffraction over the surface of the scattering shape or body, if
most serious at relatively low frequencies.

To summarize, the BEM results agree well with the ana-
Iytical results for the cases of 2562 and 642 nodes, deviating

by the series solution, Kirchhoff integral through the closed-form expressiorﬁi_gniﬁcamly Only_ for _nOda| separat_ions exceed_m/@. The _
in Eq. (13), numerical Kirchhoff approximation using a surface mesh with Kirchhoff approximation fares relatively poorly in compari-

642 nodes, and boundary-element method using the same 642-node surfaggn; nonetheless, it agrees to within about 1.2 dB at 38.1 kHz

mesh.

Both backscattering and forward-scattered pressure anE
plitudes for the same boundary-element meshes are shown
Table 1ll for the BEM, with close agreement with the ana-

and within about 0.6 dB at the three highest frequencies.

Swimbladder-shape-based computations

The detailed computations of target strength as a func-

lytical result except for the coarser mesh at the highest fretion of tilt angle are shown for a single specimen, No. 205, in
guency of 120.4 kHz, where the nodal spacing greatly exfig. 3. Both the Kirchhoff-approximation model and BEM

ceeds\/6. Again, the Kirchhoff approximation performs less results are shown for the swimbladder as represented in Fig.
well. Differences in the two models are also evident in thel. The respective measured target strength functions are also
logarithmic measures presented in Table IV. shown.

The apparent improvement in performance of the Kirch- ~ Both similarities and deviations are observed. Signifi-
hoff approximation at the highest frequency of 120.4 kHz iscantly for this work, the Kirchhoff-approximation and BEM
illusory, since, as noted previously, the closed-form analytiaesults are quite similar. Comparisons against the measured
solution for the Kirchhoff-approximation model for the function reveal similarities in overall structure, but with siz-
spherical void differs from the exact series solution. In fact,able discrepancies over certain angular regions, both in am-
the approximation solution given by E@.3) oscillates about plitude and degree of structure. Nonetheless, in the displayed
the analytical solution with a cycle frequency of about 30case of specimen No. 205, it can be imagined that some
kHz, corresponding to the conditionAXa= 7, where Ak  average backscattering cross sections will be similar in mag-
describes the change in wave number that satisfies the equaltude.
ity, as shown in Fig. 2. The corresponding Kirchhoff- Statistical combination of the individual averages in the
approximation model results for the two meshes agree wellegression analysis described by Etp) reveals strong simi-
with each other except at the highest frequency, where thharities, especially for the tilt angle distribution with largest

TABLE II. Backscattered pressure amplitude relative to the incident pressure amplitude in unk4.ef&for

a 50-mm-diam spherical void immersed in sea water, calculated at 1000 m range for the analytical series-
expressed solution and BEM, and scaled to 1000 m for the farfield Kirchhoff approximation. The effect on the

amplitude of the orientation of the subdivided icosahedron used to represent the void in the BEM and Kirchhoff

approximation is expressed through the parenthetical quantity, which is the maximum percentage deviation
from the mean observed over a wide range of axial orientations. Values in italics indicate that the model has a
nodal separation exceeding6 at the specified frequency.

FrequencykHz) 38.1 49.6 68.4 120.4
ka 4.071 5.300 7.309 12.866
Analytical solution 12.850 12.721 12.634 12.545
BEM, 2562 nodes 12.846 12.716 12.6®01) 12.541(0.3
BEM, 642 nodes 12.83@0.1) 12.710(0.9) 12.616(1.6) 12.587(28.4
Kirchhoff, 2562 nodes 11.19®.6) 13.692(0.9) 11.801(1.0 12.219(1.4)
Kirchhoff, 642 nodes 11.1812.5) 13.707(3.7) 11.784(4.9) 12.060(29.1)
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TABLE lIl. Back- and forward-scattered pressure amplitudes relative to the incident pressure amplitude in units
of 1x 107 ® for a 50-mm-diam spherical void at 1000-m range for the analytical series-expressed solution and
BEM, and scaled to 1000 m for the farfield Kirchhoff approximation. A single, fixed orientation is assumed for
the axis of the subdivided icosahedron used to represent the void in the BEM and Kirchhoff approximation. The
percentage deviation relative to the analytical solution is given.

FrequencykHz) 38.1 49.6 68.4 120.4

Back Forward Back Forward Back Forward Back Forward

Analytical solution 12.850 78.658 12.721 95.306 12.634 122.240 12.545 195.700
BEM, 2562 nodes 12.847 78.644 12716 95.290 12.629 122.222.542 195.695
Percentage error —-0.026 -0.018 -0.038 -0.017 -0.036 —0.012 -0.026 —-0.003
BEM, 642 nodes 12.839 78.625 12.707 95.26912.617 122.204 13.511 195.544
Percentage error —0.088 —-0.042 -0.106 -0.039 -0.135 -0.030 7.696 —0.080
Kirchhoff, 2562 nodes 11.203 13.686 11.808 12.228

Percentage error —12.817 7.586 —6.538 —2.527

Kirchhoff, 642 nodes 11.206 13.677 11.820 11.769

Percentage error —12.794 7.515 —6.443 —6.186

standard deviatio\(—4.4°,16°). This distribution, in fact, 0.4 dB, with average difference about 0.2 dB. At 120.4 kHz,
is the first and possibly only one of a gadoid, o@gadus the respective numbers are 0.8 and 0.5 dB.
morhua, determined photographicallp situ.® In this case, A survey of the overall results in Tables V and VI may
in dorsal aspect, the Kirchhoff approximation agrees withsuggest some systematic differences with the regression co-
measurement to within 0—1 dB over all four frequencies,efficientb and standard error. Caution is advised in the inter-
while the BEM results differ by 0.7—1.5 dB, as documentedpretation of apparent systematic differences, however, be-
in Table V. For the tilt angle distribution with nominal stan- cause the computational results are not all independent.
dard deviation of 10°, the difference between the KirchhoffWhile 16 sets of computations are presented for each aspect,
and measured TS functions is 0.1-1.5 dB. The differencéhey apply to a total of only four frequencies, which is closer
between the BEM and measured TS functions is 1.2—2 dBto the number of degrees of freedom for the respective as-
For the narrower tilt angle distributions, differences arepect. Were data available at other frequencies, the possible
larger, reflecting differences in structure of the modeledpresence of systematic differences among measurements and
backscattering amplitude at central angles. models might reveal the influence of other parts of the fish in
For the ventral aspect, with results presented in Tablenodifying backscattering by the swimbladder alone.
VI, differences are smaller. The difference between Kirch- A further internal comparison is possible for the Kirch-
hoff and measured results at the broadest tilt angle distribuhoff approximation. The mapping of the swimbladder is de-
tion is 0.7—-1.9 dB. For the BEM and measured results, theived from the original mapping by flat triangular facéts.
difference is 0.4-1.1 dB. The new mapping, for consistency with the BEM, contains
The BEM and Kirchhoff-approximation results are quite fewer but curvilinear elements spanning the swimbladder
similar except at the lowest frequency, 38.1 kHz, where thesurface. A detailed comparison of corresponding values for
greatest discrepancy in regression coefficient is 1.3 dB. Athe regression coefficiertt in Eq. (15 reveals a greatest
this frequency, the Kirchhoff-approximation result is closerdiscrepancy of 0.2 dB, with median discrepancy of 0.1 dB,
to the result based on measurement in dorsal aspect for dbr the dorsal aspect. In ventral aspect the greatest discrep-
four tilt angle distributions. In ventral aspect, the BEM resultancy is 0.1 dB, with median discrepancy less than 0.05 dB.
is closer.
At 49.6 kHz, the greatest difference in Kirchhoff-
approximation and BEM results is 0.7 dB, with average dif- Earlier validation exercises with the BEM have been
ference about 0.4 dB. At 68.4 kHz, the greatest difference isupplemented by a new example, that of a spherical void for

C. Summary of comparisons

TABLE V. Back- and forward-scattered pressure amplitudes shown in Table Ill, but expressed in decibels
relative to 1-m range and incident wave amplitude.

Frequency(kHz) 38.1 49.6 68.4 120.4

Back Forward Back Forward Back Forward Back Forward

Analytical solution —37.822 —22.085 —37.910 —20.418 —37.969 —18.256 —38.031 —14.168
BEM, 2562 nodes —37.824 —22.087 —37.913 —20.419 —37.972 —18.257 —38.033 —14.168
BEM, 642 nodes —37.830 —22.089 —37.919 —20.241 —37.981 —18.258 —37.387 —14.175
Kirchhoff, 2562 nodes —39.013 —37.274 —38.556 —38.253
Kirchhoff, 642 nodes —39.011 —37.280 —38.547 —38.585
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FIG. 3. BEM and Kirchhoff-approximation-model computations of target strength as a function of tilt angle compared against direct measurements for
specimen No. 205. The functions are shown for both dorsal and ventral aspects at each of four frequencies.

which a simple analytical solution is known. Results with theapproximation, when exercised with the curvilinear elements
Kirchhoff approximation are poorer. Nonetheless, in the casesed in the BEM, yields results that agree well with earlier
of the swimbladder-shape-based computations, the Kirchhoffomputations carried out using meshes with larger numbers
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TABLE V. Regression coefficient for the target strength—fish length relationship based on computations or
measurements of each of 15 specimens in dorsal aspect when averaged over four distinct distributions of tilt

angled, characterized by the meanand standard deviatias), , abbreviated s.d. The coefficiemts that shown
in Eq. (15). The associated standard error of the regression, SE, is also shown.

Tilt angle distribution Measured TS
(deg BEM Kirchhoff functions
Frequency
(kHz) Mean s.d. b SE b SE b SE
38.1 0.0 0.0 -61.3 1.0 -623 1.2 -63.5 1.3
38.1 0.0 5.0 -62.3 0.6 —63.6 0.9 —-64.3 0.6
38.1 0.0 10.0 -64.1 04  —65.4 0.7 —65.7 0.4
38.1 —-4.4 16.0 —65.7 04  —67.0 0.6 —66.9 0.4
49.6 0.0 0.0 —-60.8 11 -611 1.3 —-64.8 11
49.6 0.0 5.0 -61.9 0.6 —624 0.8 -64.1 0.7
49.6 0.0 10.0 —63.8 04  —64.4 0.7 —-65.0 0.6
49.6 —-4.4 16.0 -65.4 04  —66.1 0.6 -66.1 0.6
68.4 0.0 0.0 -60.2 13 -60.0 1.4 —-64.7 1.2
68.4 0.0 5.0 —61.4 07 -615 0.8 -63.9 1.0
68.4 0.0 10.0 -63.3 05 —635 0.7 -64.8 0.7
68.4 —4.4 16.0 —-65.0 05 -65.2 0.6 —65.9 0.6
120.4 0.0 0.0 -59.3 16  —59.8 1.8 -64.8 1.6
120.4 0.0 5.0 -60.7 12 -612 1.3 -63.8 1.3
120.4 0.0 10.0 -62.7 11 -632 1.2 —-64.7 11
120.4 —-4.4 16.0 —-64.4 1.0  —-649 1.2 -65.9 0.9
of flat elements. offsetting factor, however, is the effective element side-to-

While use of the BEM does not improve the earlier wavelength ratio, which increases with frequency, decreasing
agreement of Kirchhoff-approximation computations with the applicability, hence accuracy, of the approximation.
the measured target strength functihghe two models do
show a basic agreement. Differences in predictions, as ex-
pressed through the regression coefficient in @dy), are
less than 1 dB in all cases except at 38.1 kHz where th
greatest difference is 1.3 dB. There is some expectation that The BEM performs similarly to the Kirchhoff approxi-
the discrepancy might be largest at the lowest frequency, fomation for the frequencies and swimbladder sizes considered
the Kirchhoff approximation assumes high frequencies. Arhere. This is reassuring, since both models have the great

Lp. Future work

TABLE VI. Regression coefficient for the target strength—fish length relationship based on computations or
measurements of each of 15 specimens in ventral aspect when averaged over four distinct distributions of tilt

angled, characterized by the meahand standard deviaticsy,, abbreviated s.d. The coefficidmis that shown
in Eq. (15). The associated standard error of the regression, SE, is also shown.

Tilt angle distribution

(deg BEM Kirchhoff Measured
Frequency
(kHz) Mean s.d. b SE b SE b SE
38.1 0.0 0.0 —64.8 19  -652 1.8  -63.7 15
38.1 0.0 5.0 —65.0 1.2 —65.7 1.2 -64.3 0.9
38.1 0.0 10.0 -65.8 07  —66.7 08  —657 0.7
38.1 —4.4 16.0 —66.7 0.4 —67.8 0.7 -67.1 0.7
49.6 0.0 0.0 —65.7 2.5 —65.2 2.2 —62.7 1.4
49.6 0.0 5.0 —65.4 1.4 —65.3 1.4 —63.4 0.8
49.6 0.0 10.0 —65.9 0.7 —66.2 0.9 —64.6 0.6
49.6 —-4.4 16.0 —66.7 05  —67.2 07  —66.0 0.6
68.4 0.0 0.0 —66.0 25 —65.6 2.6 -62.3 13
68.4 0.0 5.0 —65.7 15 —65.5 1.7 -63.0 0.7
68.4 0.0 10.0 —66.0 0.8 —66.1 0.9 —64.3 0.5
68.4 —4.4 16.0 —66.6 0.6 -67.0 0.8 —65.8 0.5
120.4 0.0 0.0 —66.0 1.9 —66.4 2.2 —62.5 1.2
120.4 0.0 5.0 —65.6 1.2 —66.0 1.4 -62.8 0.7
120.4 0.0 10.0 —66.0 0.9 —66.6 1.2 —64.0 0.5
120.4 —4.4 16.0 —66.6 0.9 —67.4 1.2 —65.5 0.5
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