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Comparing Kirchhoff-approximation and boundary-element
models for computing gadoid target strengths
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To establish the validity of the boundary-element method~BEM! for modeling scattering by
swimbladder-bearing fish, the BEM is exercised in several ways. In a computation of backscattering
by a 50-mm-diam spherical void in sea water at the four frequencies 38.1, 49.6, 68.4, and 120.4
kHz, agreement with the analytical solution is excellent. In computations of target strength as a
function of tilt angle for each of 15 surface-adapted gadoids for which the swimbladders were earlier
mapped, BEM results are in close agreement with Kirchhoff-approximation-model results at each of
the same four frequencies. When averaged with respect to various tilt angle distributions and
combined by regression analysis, the two models yield similar results. Comparisons with
corresponding values derived from measured target strength functions of the same 15 gadoid
specimens are fair, especially for the tilt angle distribution with the greatest standard deviation,
namely 16°. ©2002 Acoustical Society of America.@DOI: 10.1121/1.1458939#

PACS numbers: 43.30.Gv, 43.30.Sf@DLB#
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I. INTRODUCTION

Knowledge of fish target strength has long been rec
nized to be vitally important in acoustic measurements
fish density, witnessed by the bibliographies in Refs. 1–5
the echo integration method, it appears through the ba
scattering cross section as a divisor of the area backscatt
coefficient or like proportional quantity.6 In the echo count-
ing method, it appears in the expression for the acoustic s
pling volume.7

There is a multiplicity of methods to determine targ
strength. The 20 or so methods cited in a 1991 study3 have
since been augmented significantly by a number of new te
niques, including both empirical methods8,9 and theoretical
models, especially those based on the deformed-cylin
model10 and boundary-element method.11 These have been
accompanied by novel applications, for example, to salm
and trout,8,9 cod ~Gadus morhua!,12 orange roughy~Hop-
lostethus atlanticus!,13 and pollack ~Pollachius
pollachius!.14,15

Modeling fish target strength, in particular, offers oppo
tunities of investigation that may otherwise be unrealiza
or exceedingly cumbersome, as in the case of orange rou
a fish that resides at 700–1500 m depth.16 At the same time,
models generally have a domain of applicability that must
defined and respected in applications.

A number of distinct scattering models have been
plied to fish. These have been based principally on sim
shapes such as the sphere at low frequencies17–19and prolate
ellipsoid,20–22or the actual shape,14,15,23–26called ‘‘mapping’’
method by McClatchieet al.25 Only the first two models
have exact solutions in general, thus the matter of appr

a!Electronic mail: kfoote@whoi.edu
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mation must be addressed, at least for realistic shape
relatively high frequencies, where the wavelength is not v
long compared to the size of significant scatteri
organs.23,24

The deformed fluid-cylinder model10,27–29has been very
popular and has been the object of a major study.30 Essen-
tially, it reduces an observed shape to a series of axisymm
ric cylinders. The method has been realized by Clay a
Horne for Atlantic cod,12 McClatchie and Ye for orange
roughy,13 McClatchieet al. for barracouta~Thyrsites atun!,
red cod~Pseudophycis bachus!, and southern blue whiting
~Micromesistius australis!,25 and Sawadaet al. for walleye
pollock ~Theragra chalcogramma!.22 Excepting the cited
case of Atlantic cod, each model has been based entirel
the swimbladder as a deformed cylinder. The swimbladde
important in the Atlantic cod model, but this includes oth
parts of the fish too, again represented as finite cylinders12

The exact shape of the swimbladder has also been
sidered more directly in the Kirchhoff-approximation mod
for pollack and saithe ~Pollachius virens!,23 walleye
pollock,24 and southern blue whiting.26

All of the high-frequency models cited so far are simil
in their neglect of diffraction. To remedy this, the boundar
element method~BEM!11 has begun to be applied in mode
ing scattering by swimbladder-bearing fish.14,15

In addition to treating diffraction, the BEM allows us
of general conditions on the swimbladder boundary surfa
with explicit representation of the internal fluid. Thus th
BEM can also be used to study pressure-dependent eff
which are otherwise precluded by the standard Kirchho
approximation model. Establishing the validity of the BE
for a pressure-release surface is important for the larger
gram being introduced.

The present aim is to describe the two basic models
111(4)/1644/11/$19.00 © 2002 Acoustical Society of America

https://core.ac.uk/display/30793726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


t
s-
tio
de
ad
om

r-

o
ax
y
th
y
f t
e

ac
in

-

tio

to
th
m

re
l fi
o
r
n
a
is
hi

a

n
le
d
,
is
e
ib

.

od

en-
s

s-
res-

ure
-

gral
n-
this
de-
e

d at

in
e

re-

l
the

e is
represent the swimbladder by its actual shape, namely
Kirchhoff-approximation model and the BEM, but both a
suming a pressure-release boundary condition. Applica
of these to historical swimbladder morphometric data is
scribed. Independent validation of the two methods is
dressed, and computations with the two models are c
pared.

II. KIRCHHOFF-APPROXIMATION MODEL

In the Kirchhoff approximation, the field on the scatte
ing surface is assumed to be knowna priori. For a
swimbladder-bearing fish at rather high frequencies,
wavelengths which are rather small compared to the m
mum length of the swimbladder, the fish is represented b
pressure-release surface conforming to the inner wall of
swimbladder.23,24The normal component of particle velocit
on the scattering surface is assumed to be equal to that o
incident field on the directly insonified part of the surfac
and zero on the geometrically shadowed part of the surf

Mathematically, the farfield backscattering amplitude
this approximation is

f 5l21 R
S

exp~2ik•r !H~ k̂•n̂!k̂•n̂dS, ~1!

wherel is the acoustic wavelength,k is the wave vector in
the source or backscattering directionk̂5k/k, r is the posi-
tion vector of the surface element with infinitesimal areadS,
n̂ is the unit normal todS at r , and H(x) is the Heaviside
step function with values 1 forx.0, 1

2 for x50, and 0 for
x,0.

The integration in Eq.~1! is performed numerically us
ing Gauss quadrature over curvilinear surface elements
which the position vectorr is interpolated quadratically from
nodal values. The integrand is evaluated at each integra
or Gauss, point using the interpolated value ofr . A good
representation of the phase, as given by the fac
exp(2ik•r ), depends on the separation of these points. If
integration were to be performed by primitive Riemann su
mation, then the points should be closer than aboutl/16.
However, the point-separation condition is undoubtedly
laxed by the use of Gauss quadrature. If the polynomia
assumed by Gauss quadrature is of order 2 or higher, a g
representation of the wave form should be obtained fo
point separation up tol/6. For seven-point quadrature o
six-node triangular elements, with nodes at the corners
midsides of the elements, the Gauss point separation
most 0.8 times the nodal separation. A similar relations
exists for eight-node quadrilateral elements using 333 or
more Gauss points. A condition for validity of the numeric
integration, that the nodal separation should be less thanl/5,
is therefore tentatively suggested. This translates to a co
tion that the element side-to-wavelength ratio should be
than 2/5. In order to give commonality with the correspon
ing condition in the case of the boundary-element method
be discussed in Sec. III, the slightly stricter ratio of 1/3
adopted in this paper for assessing the frequency rang
validity of a given mesh. The element meshes are descr
in Sec. IV.
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. G. Foote and
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The backscattering cross section is

s54pu f u2. ~2!

The target strength is the logarithmic expression ofs,

TS510 logF s

4pr 0
2G , ~3!

wherer 0 is a reference distance, assumed here to be 1 m

III. BOUNDARY-ELEMENT METHOD

To develop the acoustic boundary-element meth
~BEM!, the wave equation for the pressurep is reduced to
the Helmholtz form by assuming the harmonic time dep
dence exp(ivt), wherev is the angular frequency in radian
per second, hence¹2p1k2p50, wherek5v/c is the wave
number. This is rewritten in integral form, in which the pre
sure at any point is expressed in terms of the acoustic p
sure and normal displacementu on the scattering surfaceS.
This surface is subdivided into elements, and the press
and displacement distributions onS are represented by dis
crete values,pi and ui , respectively, at each nodei associ-
ated with these elements. The standard Helmholtz inte
equation suffers from singularities at certain critical freque
cies, which are dense at high frequencies. To overcome
problem, the integral is combined with a second integral
veloped from the first by differentiating with respect to th
normal direction at the surface.31 In principle, the two equa-
tions are combined by adding the standard form evaluate
each node of each element to a multiplea of the normal-
derivative form evaluated at the centroid of that element
the local coordinate system.11 The resulting equation can b
written thus:

Ap5Bu2pinc2a
]pinc

]n
. ~4!

If the swimbladder is assumed to be ideally pressu
releasing,pi50 for all i, and Eq.~4! can be solved directly
for the nodal normal displacements:

u5B21S pinc1a
]pinc

]n D . ~5!

The coefficients of the matrixB are assembled from loca
matrices pertaining to each element of the mesh. With
calculation point of the Helmholtz integral taken at nodei,
with position r i , integration over elementm provides the
following coefficients in the standard formulation:

bmn
~1!~r i !5rv2E

Sm

Nn~q!cosumnG~r i ,q!dSq , ~6!

wherer is the fluid density,q is the position vector of the
integration point on the element surfaceSm , G is the Green’s
function, given byG(r i ,q)5e2 ikur i2qu/4pur i2qu, n is the
local nodal label, andNn(q) ~n51,2,...,6 for triangular ele-
ments,n51,2,...,8 for quadrilateral elements! are the shape
functions, which are of the standard second-order~quadratic!
form.32 The factor cosumn is included to allow for the devia-
tion umn of the normal to the elementm at local noden from
the mean normal at that node. The mean normal at a nod
1645D. T. I. Francis: Comparing Kirchhoff-approximation and BEM
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TABLE I. Properties of the 15 specimens whose swimbladder surfaces have been remapped, based on the original mapping~Ref. 23! with ntri small triangular
facets, bynelem curvilinear elements withnnodesnodes. The nodal separation distance such that 99% of neighboring separations are smaller and the m
nodal separation are both specified.

Fish No. Species
Length
~cm!

Mass
~g!

Ref. 23
ntri

New meshes Swimbladder Nodal separation

nelem nnodes

Surface area
~cm2!

Volume
~cm3!

99% limit
~mm!

Max
~mm!

201 Pollack 31.5 195 5 546 1168 3364 33.01 6.91 1.20 2.21
202 Pollack 44.0 533 9 965 1389 4041 58.83 16.33 1.37 1.77
204 Pollack 35.5 321 6 562 1078 3116 42.39 10.03 1.41 1.72
205 Pollack 39.0 380 7 171 1107 3181 45.75 11.34 1.43 1.93
206 Pollack 35.0 287 5 379 1159 3347 31.37 7.75 1.17 1.46
207 Pollack 44.5 635 8 695 1487 4363 65.24 19.15 1.34 1.61
209 Saithe 38.5 385 6 762 1501 4387 43.29 10.08 1.06 1.39
213 Pollack 34.5 259 10 192 1039 2935 34.11 7.83 1.33 1.61
214 Pollack 39.0 406 7 649 1164 3362 44.14 10.15 1.34 1.53
215 Pollack 37.0 332 5 265 1076 3092 38.89 8.75 1.34 1.74
216 Pollack 36.5 343 6 436 1062 3060 43.33 10.85 1.40 1.64
217 Pollack 34.5 253 5 500 962 2764 34.61 7.11 1.32 1.46
218 Pollack 32.5 257 4 689 1327 3879 29.75 6.27 1.00 1.39
219 Pollack 35.5 292 5 106 1039 3005 35.74 8.15 1.27 1.53
220 Saithe 38.0 406 8 968 1321 3857 44.32 10.46 1.13 1.32
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defined as the average of the normals at the node on
contiguous elements weighted by the respective differen
surface area.

The normal-derivative form of the Helmholtz integr
equation, calculated at the centroidsr̄ l of the elements, simi-
larly provides coefficients as follows:

bmn
~2!~ r̄ l !5rv2E

Sm

Nn~q!cosumn

]G~ r̄ l ,q!

]nr
dSq , ~7!

where the normal derivative is evaluated at the centro
These are combined with the previous coefficients by add
a multiple ofbmn

(2)( r̄ l) for all elementsl on which global node
i lies, i.e.,

bmn~r i !5bmn
~1!~r i !1a i (

l : i«Sl

bmn
~2!~ r̄ l !, ~8!

where the combination factora i is taken to be2 i/kMi ,
whereMi is the number of elements meeting at nodei.11,33,34

The use of the centroids, rather than the nodes, as
calculation points for the normal-derivative form is found
be sufficient to overcome the problem of the critical freque
cies while not increasing the computational effort unduly.11

The integrals are evaluated numerically using Ga
quadrature.

The coefficientsbmn(r i) are assembled into the glob
matrix B by summing the coefficients that correspond to
same global node, thus

Bi j 5 (
m,n:C~m,n!5 j

bmn~r i !, ~9!

whereC(m,n) is the global node label of local noden on
elementm. The source terms in Eq.~4! are evaluated thus:

pinc~r i !1a i (
l : i«S

]pinc~ r̄ l !

]nr

Given the solution foru from Eq.~5!, the scattered pres
sure at any exterior pointr is obtained from the standar
1646 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. G. Fo
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integral equation by calculating coefficients similar
bmn

(1)(r i) but with r i replaced by the position vectorr :

bj
~3!~r !5rv2 (

m,n:C~m,n!5 j
E

Sm

Nn~q!cosumnG~r ,q!dSq

~10!

and then

p~r !52b~3!~r !"u. ~11!

The backscattering amplitude at finite ranger is

f ~r !5
r up~r !u
upincu

. ~12!

The farfield backscattering amplitudef is the limit of f (r ) as
r approaches infinity. Expressions for the backscatter
cross section and target strength are derived by substitu
f (r ), or f, in Eqs.~2! and ~3!, respectively.

The elements used here are quadrilaterals and trian
of the quadratic isoparametric type, in which both the ge
metric and acoustic quantities are interpolated from the no
values using quadratic shape functions, the nodes being
ated at the vertices and midsides.32 As a general guide, good
representation of the acoustic variables is obtained if
lengths of the sides of the elements are less than one-thir
a wavelength. The accuracy of geometrical representa
depends on the degree of undulation of the surface, bu
should be noted that the quadratic interpolation allows
elements to be curved. Further details of the formulation a
equations can be found in Ref. 11.

IV. SWIMBLADDER MORPHOMETRY

The origin of the morphometric data is a study pe
formed in 198035 on surface-adapted specimens of polla
and saithe, described briefly in Table I. Each specimen
anesthetized, tethered, and acoustically measured at ea
four frequencies, nominally 38, 50, 70, and 120 kHz, prior
shock-freezing and microtoming in the sagittal plane, he
ote and D. T. I. Francis: Comparing Kirchhoff-approximation and BEM
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parallel to the main axis, according to the method of Ona36

The thickness of successive photographed sections was
mm. Each swimbladder section was digitized as a set of
ordinates describing the outline of the swimbladder, and
surface of each swimbladder was represented by a mesh
sisting of flat triangular facets.23

Because of the use of curvilinear quadrilaterals and
angles in the BEM, new meshes have been produced for
of the specimens using a semiautomatic process. First,
contours of the swimbladder in planes perpendicular to
major axis of the fish, and hence perpendicular to the mic
tomed sections, are determined at intervals along the m
axis, by finding the points of intersection of each plane w
the original digitized sections. Quadrilateral and triangu
elements are then fitted between neighboring conto
Where required, nodes are interpolated using cubic spli
This method allows the fineness of the mesh to be contro
by the choice of the separation between the contours and
nodal separation on each contour. Some manual fitting
elements is required where the swimbladder branches
separate lobes.

A further reason for the remapping exercise was to
duce the number of nodes in order to facilitate matrix ope
tions inherent to the BEM. The resulting meshes have fe
elements than the original triangular meshes,23 but this is
offset by the allowance for curvature of the surface. An e
ample of one of the meshes is visualized in Fig. 1. The n
meshes have been used in computations with the Kirchh
approximation model in parallel with the BEM.

Details of the meshes are listed in Table I. For ea
mesh, the maximum distance between neighboring node

FIG. 1. Boundary-element mesh of the swimbladder to specimen No. 20
Ref. 23, shown in both oblique and dorsal views. The model has 1
elements and 3181 nodes. The meshed swimbladder length is 141 mm
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. G. Foote and
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shown in the final column, column 11; however, a bet
indication of the degree of fineness of each mesh is give
column 10, namely the limit of nodal spacing which is sa
isfied by 99% of the distances between pairs of neighbor
nodes. At 120.4 kHz the nodal spacing, to satisfy thel/6
condition for accuracy of the BEM and Kirchhoff
approximation model, should be less than 2.03 mm. All
the meshes except that for specimen 201 are well within
limit even on the basis of the maximum nodal spacing fou
in the mesh. Detailed analysis of the mesh for specimen
reveals that thel/6 condition is satisfied for all but two pair
of neighboring nodes out of 4530 such pairs.

V. INDEPENDENT VALIDATION OF MODELS

A cogent form of validation of the Kirchhoff-
approximation model is the direct comparison of model co
putations and measurement results for the same fish sp
mens used in the morphometry. This work is documented
detail in Ref. 23 but in which the integration in Eq.~1! is
performed by the primitive Riemann summation, with eva
ation of the integrand at the centroid of each triangular fac

Validation of the BEM has already been documented
a series of cases in which analytical solutions are availa
Three of those described in Ref. 11 are cited.~1! The forward
scattered pressure for a plane wave incident on a rigid sp
has been computed. The agreement over theka range from 0
to 10 is excellent, without discrepancies at the critical f
quencies that arise in the standard formulation, which la
the normal component included in Eq.~4!. ~2! The backscat-
tered pressure from a rigid sphere has been computed u
similar conditions, again with excellent agreement, wh
avoiding discrepancies at the critical frequencies.~3! As an
illustration, the radiation impedance of a uniformly vibratin
circular piston of radiusa in the end face of a cylinder o
radius 2a and height 4a over theka range from 0 to 5 has
been computed and compared with the analytical solution
a piston in an infinite baffle. With allowance for the diffe
ence between the two problems, the agreement is quite g

An additional trial of the BEM has been designed sp
cifically for the present study. A spherical void of radius 2
mm is assumed to be immersed in sea water of sound s
1470 m/s and density 1025 kg/m3. The size has been chose
for having an area of 7854 mm2, which is roughly 20%
greater than the area of the mesh spanning the surface o
largest swimbladder, No. 207, as represented by 1487
ments~4363 nodes!, with an area of 6524 mm2. Meshes have
been generated by subdividing each spherical triangle o
geodesic icosahedron into four subtriangles, subdivid
again to get a mesh of 320 elements~642 nodes! and subdi-
vided once more to get a mesh of 1280 elements~2562
nodes!. The latter mesh has a maximum nodal separation
2.06 mm, which is just outside the limit of 2.03 mm require
by thel/6 condition at 120.4 kHz.

The same example provides a trial for the Kirchho
approximation, since the integration in Eq.~1! can be per-
formed analytically for the spherical shape:

of
7
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f 5~4k!21$211cos~2ka!12ka sin~2ka!

1 i @sin~2ka!22ka cos~2ka!#%, ~13!

wherea is the sphere radius. Comparison of the numeri
and closed-form analytic solutions at the frequencies 3
49.6, 68.4, and 120.4 kHz demonstrates agreement to w
0.01 dB for the 2562-node sphere. Further exercise of
Kirchhoff model reveals significant divergence of the n
merical solution from the exact solution at about 180 kHz
the 2562-node sphere and at about 90 kHz for the 642-n
sphere. The truth of this last statement is evident in the ta
strength spectrum in Fig. 2, which also compares the res
of the Kirchhoff approximation with the exact series soluti
and BEM solution for the 642-node mesh. The observed
viation of the BEM solution from the exact series solution
about 90 kHz corresponds to a nodal spacing ofl/4, which is
coarser than the nominal criterion for validity of the BEM
namely neighboring-point separations withinl/6.

Numerical computations have been performed for b
the BEM and Kirchhoff-approximation model for each of th
two meshes. The computations have been repeated at ea
the four measurement frequencies, 38.1, 49.6, 68.4,
120.4 kHz, hence withka54.07, 5.30, 7.31, and 12.87. Th
results have been compared against the well-known ana
cal solution for scattering by a spherical void, with perfec
soft boundary condition, in a homogeneous fluid with giv
sound speed and density values.37 In one set of computa
tions, the effect of orientation of the axis of the meshed v
is examined by comparing the backscattered pressure am
tude at infinity for the Kirchhoff-approximation model and
1000-m range for the BEM. The results are shown in Ta
II. In a second set of computations, the same backscatt
pressure amplitude for a single orientation is compared
rectly against the amplitude derived with the analytical so
tion. The results of these computations, as well as those
the forward scattered amplitude by the analytical solut
and BEM, are presented in Table III. Corresponding tar
strengths and forward-scattering strengths are presente
Table IV.

It is noted that, for certain frequencies and mesh siz
the condition for the nodal spacing discussed in Secs. II
III, namely that this should be less thanl/6, is violated. The
results for these cases are included in Tables II–IV but
shown in italics. The limit is only just exceeded by the fin
mesh at 120.4 kHz.

VI. COMPARISON OF MODEL COMPUTATIONS

The target strength for an immersed void with the sha
of the swimbladder shown in Fig. 1 has been computed
function of tilt angle for both the dorsal and ventral aspe
at each of four frequencies. Both the Kirchho
approximation model and BEM have been examined. T
computational results are shown with the measured funct
in Fig. 3.

The same computations have been repeated for
mapped swimbladder shapes of all 15 gadoid specim
listed in Table I. In order to reduce these to managea
1648 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. G. Fo
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proportions, the several functions have been averaged
respect to normal distributionsg(u) of tilt angle u, with
meanū and standard deviationsu :

s̄5E g~u!s~u!duY E g~u8!du8, ~14!

where the integration has been performed over the rang@ ū

23su ,ū13su#. For the measured target strength functio
values at tilt angles outside the range@245°, 45°# were not
available, and for such angles the value ofs at the nearest
angle limit has been used.

Computations have been performed for each of four n
mal distributions of tilt angle. The paired values (ū,su) are
~0°, 0°!, ~0°, 5°!, ~0°, 10°!, and~24.4°, 16°!. Because of the
effect of perspective, by which the apparent tilt angle o
fish changes as it is observed at different positions in
plane transverse to the acoustic axis,38 the effective values of
su are larger than the nominal ones. The values shown ab
have been adjusted for the perspectival effect for a circu
beam of 5° beamwidth measured between the half-po
points. The effective standard deviations for the four ca
are 2.5°, 5.5°, 10.2°, and 16°.23

The target strength corresponding to each avera
backscattering cross section, denotedTS, has been compute
by substituting the value ofs̄ from Eq. ~14! in Eq. ~3!. The
values ofTS have been regressed on fish lengthl in centi-
meters according to the regression equation,

TS520 logl 1b, ~15!

where the regression coefficientb is expressed in decibels
The standard error of the regression has been computed
each derived regression equation. The results are show
Tables V and VI.

VII. DISCUSSION

A. Model validation computations

To validate the BEM for application to the gadoid swim
bladder, a 25-mm-radius spherical void in sea water has b
chosen as a test case in order to have a shape for whi
rather simple analytical solution exists and whose surf
area is greater than that of the largest swimbladder in
data set. Finite-element representation of the sphere b
subdivided icosahedron has allowed both the BEM a
Kirchhoff approximation to be computed according to Eq
~12! and ~1!, respectively.

Because of the finiteness of the facets, there is an ef
due to axial orientation, which is indicated in Table II. Th
BEM is seen to be quite accurate for the two meshes
were chosen. Sensitivity to axial orientation is negligible
long as the maximal nodal separation does not exceedl/6.
The Kirchhoff-approximation model is exercised with th
identical meshes but performs less well than the BEM; it
inherently different, as is proved by the difference in resp
tive exact and analytical solutions for the two models for t
special shape. The variability with orientation is notable
the coarser mesh.
ote and D. T. I. Francis: Comparing Kirchhoff-approximation and BEM
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Both backscattering and forward-scattered pressure
plitudes for the same boundary-element meshes are show
Table III for the BEM, with close agreement with the an
lytical result except for the coarser mesh at the highest
quency of 120.4 kHz, where the nodal spacing greatly
ceedsl/6. Again, the Kirchhoff approximation performs les
well. Differences in the two models are also evident in t
logarithmic measures presented in Table IV.

The apparent improvement in performance of the Kirc
hoff approximation at the highest frequency of 120.4 kHz
illusory, since, as noted previously, the closed-form analy
solution for the Kirchhoff-approximation model for th
spherical void differs from the exact series solution. In fa
the approximation solution given by Eq.~13! oscillates about
the analytical solution with a cycle frequency of about
kHz, corresponding to the condition 2Dka5p, whereDk
describes the change in wave number that satisfies the e
ity, as shown in Fig. 2. The corresponding Kirchho
approximation model results for the two meshes agree w
with each other except at the highest frequency, where

FIG. 2. Frequency dependence of a spherical void of radius 25 mm
mersed in water of density 1025 kg/m3 and sound speed 1470 m/s, as giv
by the series solution, Kirchhoff integral through the closed-form expres
in Eq. ~13!, numerical Kirchhoff approximation using a surface mesh w
642 nodes, and boundary-element method using the same 642-node s
mesh.
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. G. Foote and
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separation in neighboring Gauss points for the coarser m
using seven-point integration, is aboutl/4, thus exceeding
l/6. The nodal spacing for the same mesh is aboutl/3, also
exceeding both thel/5 and l/6 conditions mentioned in
Secs. II and III, respectively.

The Kirchhoff approximation, since it requires only
direct integration, is computationally much faster than t
BEM, which requires the inversion of a complex matrix
size equal to the square of the number of nodes. Above a
4000 nodes, the BEM becomes cumbersome, at least on
rent desk-type workstation-level computers. In contrast,
Kirchhoff approximation could be exercised with far mo
elements than used here and thus, in principle, could be m
amenable to computation at higher frequencies. However,
approximation has inherent limitations, such as the neglec
diffraction over the surface of the scattering shape or bod
most serious at relatively low frequencies.

To summarize, the BEM results agree well with the an
lytical results for the cases of 2562 and 642 nodes, devia
significantly only for nodal separations exceedingl/6. The
Kirchhoff approximation fares relatively poorly in compar
son; nonetheless, it agrees to within about 1.2 dB at 38.1
and within about 0.6 dB at the three highest frequencies

B. Swimbladder-shape-based computations

The detailed computations of target strength as a fu
tion of tilt angle are shown for a single specimen, No. 205
Fig. 3. Both the Kirchhoff-approximation model and BEM
results are shown for the swimbladder as represented in
1. The respective measured target strength functions are
shown.

Both similarities and deviations are observed. Sign
cantly for this work, the Kirchhoff-approximation and BEM
results are quite similar. Comparisons against the meas
function reveal similarities in overall structure, but with si
able discrepancies over certain angular regions, both in
plitude and degree of structure. Nonetheless, in the displa
case of specimen No. 205, it can be imagined that so
average backscattering cross sections will be similar in m
nitude.

Statistical combination of the individual averages in t
regression analysis described by Eq.~15! reveals strong simi-
larities, especially for the tilt angle distribution with large

-

n

face
series-
n the

chhoff
viation
l has a
TABLE II. Backscattered pressure amplitude relative to the incident pressure amplitude in units of 131026 for
a 50-mm-diam spherical void immersed in sea water, calculated at 1000 m range for the analytical
expressed solution and BEM, and scaled to 1000 m for the farfield Kirchhoff approximation. The effect o
amplitude of the orientation of the subdivided icosahedron used to represent the void in the BEM and Kir
approximation is expressed through the parenthetical quantity, which is the maximum percentage de
from the mean observed over a wide range of axial orientations. Values in italics indicate that the mode
nodal separation exceedingl/6 at the specified frequency.

Frequency~kHz! 38.1 49.6 68.4 120.4
ka 4.071 5.300 7.309 12.866

Analytical solution 12.850 12.721 12.634 12.545
BEM, 2562 nodes 12.846 12.716 12.630~0.1! 12.541~0.3!
BEM, 642 nodes 12.839~0.1! 12.710~0.4! 12.616~1.6! 12.587~28.4!
Kirchhoff, 2562 nodes 11.199~0.6! 13.692~0.8! 11.801~1.0! 12.219~1.4!
Kirchhoff, 642 nodes 11.187~2.5! 13.707~3.7! 11.784~4.8! 12.060~29.1!
1649D. T. I. Francis: Comparing Kirchhoff-approximation and BEM
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TABLE III. Back- and forward-scattered pressure amplitudes relative to the incident pressure amplitude i
of 131026 for a 50-mm-diam spherical void at 1000-m range for the analytical series-expressed solutio
BEM, and scaled to 1000 m for the farfield Kirchhoff approximation. A single, fixed orientation is assume
the axis of the subdivided icosahedron used to represent the void in the BEM and Kirchhoff approximatio
percentage deviation relative to the analytical solution is given.

Frequency~kHz! 38.1 49.6 68.4 120.4

Back Forward Back Forward Back Forward Back Forwa

Analytical solution 12.850 78.658 12.721 95.306 12.634 122.240 12.545 195

BEM, 2562 nodes 12.847 78.644 12.716 95.290 12.629 122.22512.542 195.695
Percentage error 20.026 20.018 20.038 20.017 20.036 20.012 20.026 20.003

BEM, 642 nodes 12.839 78.625 12.707 95.26912.617 122.204 13.511 195.544
Percentage error 20.088 20.042 20.106 20.039 20.135 20.030 7.696 20.080

Kirchhoff, 2562 nodes 11.203 13.686 11.808 12.228
Percentage error 212.817 7.586 26.538 22.527

Kirchhoff, 642 nodes 11.206 13.677 11.820 11.769
Percentage error 212.794 7.515 26.443 26.186
,

it
es
e
-

of
nc
dB
re

le

b
h

ib
th

ite
th
. A
e
r
ul

f-
if

e

z,

y
co-

er-
be-
ent.
ect,
er
as-
ible

s and
in

h-
e-

.
ins
der
for
t
B,
rep-
B.

en
for
standard deviation,N(24.4°,16°). This distribution, in fact
is the first and possibly only one of a gadoid, cod~Gadus
morhua!, determined photographicallyin situ.39 In this case,
in dorsal aspect, the Kirchhoff approximation agrees w
measurement to within 0–1 dB over all four frequenci
while the BEM results differ by 0.7–1.5 dB, as document
in Table V. For the tilt angle distribution with nominal stan
dard deviation of 10°, the difference between the Kirchh
and measured TS functions is 0.1–1.5 dB. The differe
between the BEM and measured TS functions is 1.2–2
For the narrower tilt angle distributions, differences a
larger, reflecting differences in structure of the mode
backscattering amplitude at central angles.

For the ventral aspect, with results presented in Ta
VI, differences are smaller. The difference between Kirc
hoff and measured results at the broadest tilt angle distr
tion is 0.7–1.9 dB. For the BEM and measured results,
difference is 0.4–1.1 dB.

The BEM and Kirchhoff-approximation results are qu
similar except at the lowest frequency, 38.1 kHz, where
greatest discrepancy in regression coefficient is 1.3 dB
this frequency, the Kirchhoff-approximation result is clos
to the result based on measurement in dorsal aspect fo
four tilt angle distributions. In ventral aspect, the BEM res
is closer.

At 49.6 kHz, the greatest difference in Kirchhof
approximation and BEM results is 0.7 dB, with average d
ference about 0.4 dB. At 68.4 kHz, the greatest differenc
oc. Am., Vol. 111, No. 4, April 2002 K. G. Fo
h
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0.4 dB, with average difference about 0.2 dB. At 120.4 kH
the respective numbers are 0.8 and 0.5 dB.

A survey of the overall results in Tables V and VI ma
suggest some systematic differences with the regression
efficientb and standard error. Caution is advised in the int
pretation of apparent systematic differences, however,
cause the computational results are not all independ
While 16 sets of computations are presented for each asp
they apply to a total of only four frequencies, which is clos
to the number of degrees of freedom for the respective
pect. Were data available at other frequencies, the poss
presence of systematic differences among measurement
models might reveal the influence of other parts of the fish
modifying backscattering by the swimbladder alone.

A further internal comparison is possible for the Kirc
hoff approximation. The mapping of the swimbladder is d
rived from the original mapping by flat triangular facets23

The new mapping, for consistency with the BEM, conta
fewer but curvilinear elements spanning the swimblad
surface. A detailed comparison of corresponding values
the regression coefficientb in Eq. ~15! reveals a greates
discrepancy of 0.2 dB, with median discrepancy of 0.1 d
for the dorsal aspect. In ventral aspect the greatest disc
ancy is 0.1 dB, with median discrepancy less than 0.05 d

C. Summary of comparisons

Earlier validation exercises with the BEM have be
supplemented by a new example, that of a spherical void
cibels

rd
TABLE IV. Back- and forward-scattered pressure amplitudes shown in Table III, but expressed in de
relative to 1-m range and incident wave amplitude.

Frequency~kHz! 38.1 49.6 68.4 120.4

Back Forward Back Forward Back Forward Back Forwa

Analytical solution 237.822 222.085 237.910 220.418 237.969 218.256 238.031 214.168
BEM, 2562 nodes 237.824 222.087 237.913 220.419 237.972 218.257 238.033 214.168
BEM, 642 nodes 237.830 222.089 237.919 220.241 237.981 218.258 237.387 214.175
Kirchhoff, 2562 nodes 239.013 237.274 238.556 238.253
Kirchhoff, 642 nodes 239.011 237.280 238.547 238.585
ote and D. T. I. Francis: Comparing Kirchhoff-approximation and BEM
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FIG. 3. BEM and Kirchhoff-approximation-model computations of target strength as a function of tilt angle compared against direct measurem
specimen No. 205. The functions are shown for both dorsal and ventral aspects at each of four frequencies.
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which a simple analytical solution is known. Results with t
Kirchhoff approximation are poorer. Nonetheless, in the c
of the swimbladder-shape-based computations, the Kirch
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. G. Foote and
e
ff

approximation, when exercised with the curvilinear eleme
used in the BEM, yields results that agree well with earl
computations carried out using meshes with larger numb
1651D. T. I. Francis: Comparing Kirchhoff-approximation and BEM



ons or
s of tilt

1652 J. Acoust. S
TABLE V. Regression coefficient for the target strength–fish length relationship based on computati
measurements of each of 15 specimens in dorsal aspect when averaged over four distinct distribution

angleu, characterized by the meanū and standard deviationsu , abbreviated s.d. The coefficientb is that shown
in Eq. ~15!. The associated standard error of the regression, SE, is also shown.

Frequency
~kHz!

Tilt angle distribution
~deg! BEM Kirchhoff

Measured TS
functions

Mean s.d. b SE b SE b SE

38.1 0.0 0.0 261.3 1.0 262.3 1.2 263.5 1.3
38.1 0.0 5.0 262.3 0.6 263.6 0.9 264.3 0.6
38.1 0.0 10.0 264.1 0.4 265.4 0.7 265.7 0.4
38.1 24.4 16.0 265.7 0.4 267.0 0.6 266.9 0.4

49.6 0.0 0.0 260.8 1.1 261.1 1.3 264.8 1.1
49.6 0.0 5.0 261.9 0.6 262.4 0.8 264.1 0.7
49.6 0.0 10.0 263.8 0.4 264.4 0.7 265.0 0.6
49.6 24.4 16.0 265.4 0.4 266.1 0.6 266.1 0.6

68.4 0.0 0.0 260.2 1.3 260.0 1.4 264.7 1.2
68.4 0.0 5.0 261.4 0.7 261.5 0.8 263.9 1.0
68.4 0.0 10.0 263.3 0.5 263.5 0.7 264.8 0.7
68.4 24.4 16.0 265.0 0.5 265.2 0.6 265.9 0.6

120.4 0.0 0.0 259.3 1.6 259.8 1.8 264.8 1.6
120.4 0.0 5.0 260.7 1.2 261.2 1.3 263.8 1.3
120.4 0.0 10.0 262.7 1.1 263.2 1.2 264.7 1.1
120.4 24.4 16.0 264.4 1.0 264.9 1.2 265.9 0.9
er
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e
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of flat elements.
While use of the BEM does not improve the earli

agreement of Kirchhoff-approximation computations w
the measured target strength functions,23 the two models do
show a basic agreement. Differences in predictions, as
pressed through the regression coefficient in Eq.~15!, are
less than 1 dB in all cases except at 38.1 kHz where
greatest difference is 1.3 dB. There is some expectation
the discrepancy might be largest at the lowest frequency
the Kirchhoff approximation assumes high frequencies.
oc. Am., Vol. 111, No. 4, April 2002 K. G. Fo
x-

e
at
or
n

offsetting factor, however, is the effective element side-
wavelength ratio, which increases with frequency, decreas
the applicability, hence accuracy, of the approximation.

D. Future work

The BEM performs similarly to the Kirchhoff approxi
mation for the frequencies and swimbladder sizes conside
here. This is reassuring, since both models have the g
ns or
s of tilt
TABLE VI. Regression coefficient for the target strength–fish length relationship based on computatio
measurements of each of 15 specimens in ventral aspect when averaged over four distinct distribution

angleu, characterized by the meanū and standard deviationsu , abbreviated s.d. The coefficientb is that shown
in Eq. ~15!. The associated standard error of the regression, SE, is also shown.

Frequency
~kHz!

Tilt angle distribution
~deg! BEM Kirchhoff Measured

Mean s.d. b SE b SE b SE

38.1 0.0 0.0 264.8 1.9 265.2 1.8 263.7 1.5
38.1 0.0 5.0 265.0 1.2 265.7 1.2 264.3 0.9
38.1 0.0 10.0 265.8 0.7 266.7 0.8 265.7 0.7
38.1 24.4 16.0 266.7 0.4 267.8 0.7 267.1 0.7

49.6 0.0 0.0 265.7 2.5 265.2 2.2 262.7 1.4
49.6 0.0 5.0 265.4 1.4 265.3 1.4 263.4 0.8
49.6 0.0 10.0 265.9 0.7 266.2 0.9 264.6 0.6
49.6 24.4 16.0 266.7 0.5 267.2 0.7 266.0 0.6

68.4 0.0 0.0 266.0 2.5 265.6 2.6 262.3 1.3
68.4 0.0 5.0 265.7 1.5 265.5 1.7 263.0 0.7
68.4 0.0 10.0 266.0 0.8 266.1 0.9 264.3 0.5
68.4 24.4 16.0 266.6 0.6 267.0 0.8 265.8 0.5

120.4 0.0 0.0 266.0 1.9 266.4 2.2 262.5 1.2
120.4 0.0 5.0 265.6 1.2 266.0 1.4 262.8 0.7
120.4 0.0 10.0 266.0 0.9 266.6 1.2 264.0 0.5
120.4 24.4 16.0 266.6 0.9 267.4 1.2 265.5 0.5
ote and D. T. I. Francis: Comparing Kirchhoff-approximation and BEM
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advantage over other models in being able to treat a com
cated shape without compromise, in principle, based o
finite-element representation of the surface.

The BEM can, however, do much more than t
Kirchhoff-approximation model.~1! It can, for example, trea
lower frequencies, for diffraction is addressed in a fund
mental manner through the integral-equation solution of
wave equation described in Sec. III.~2! The BEM can also
treat the case of a gas-filled swimbladder under the influe
of hydrostatic pressure without having to make assumpti
about the applicable boundary conditions.~3! A third advan-
tage of the model is its capacity to treat heterogeneous s
tures, as long as the heterogeneities can be demarke
surfaces within which the acoustic properties are unifo
Thus, the BEM can predict scattering by a swimbladd
bearing fish in which the swimbladder and other structur
e.g., liver, reproductive products, and fish tissue surround
the swimbladder, are explicitly represented.~4! It is noted
that the BEM can address finite-scattering-range effe
without having to assume an infinite range, as is done
typical farfield-only models.

The applicability of the BEM to organisms other tha
swimbladder-bearing fish is evident. Thus the BEM can
dress scattering by the organisms conveniently classified
Stanton as deformed fluid cylinders, deformed elastic-she
spheres, and bubble plus tissue, as represented, for exa
by euphausiids, gastropods, and siphonophores, res
tively.40 Significantly, there is no need to approximate sha
or boundary conditions, for the model is numerical.

Some of the effects mentioned here may be addresse
a future work. These may also include bistatic scatteri
which is allowed by both the BEM and Kirchhoff
approximation model, as well as other models, such as
deformed-cylinder model.10
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