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Chapter 1

Introduction

1.1 Background and motivation

The demand for more processing power has made us make the move from

trying to utilise the processing power of only one computer, to create net-

works of computers cooperating to solve complex computational problems

within a multitude of application areas. These application areas can be ev-

erything from physical simulations, monitoring stock markets, to simulating

climate changes and earthquakes. The most powerful networked clusters of

massively parallel processing computers in existence today are the super-

computers. According to the TOP500 [1] list, which keeps track of existing

and planned supercomputers, the number of FLoating point OPerations per

Second (FLOPS) a supercomputer is capable of currently is in the order of

more than 1015 and estimated to break the exaFLOPS (1018) barrier within

ten years from now.

To be able to communicate efficiently between processors in a High Per-

formance Computing (HPC) cluster such as the supercomputer, a special

type of network have emerged, the interconnection network. The inter-

connection network is concerned about point-to-point connections directly

between processors or to Input/Output (I/O) devices. One of the domi-

nant interconnect technologies in supercomputers today is the InfiniBand

Architecture (IBA) [2], being used as interconnect in 42.6% of all the cur-
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rent supercomputers in the most recent edition of the TOP500 list [1]. IBA

offers a high-performance and scaleable interconnection technology, enabling

supercomputers to break new barriers.

With the need for efficient and scalable network solutions for HPC there

is a similar need for effective strategies to handle issues around topology,

routing, flow control, congestion and deadlocks in such networks. One of

the most common tools used by researchers, when developing algorithms and

strategies to improve network performance, is simulation. Instead of trying

to test for example, new proposed routing algorithms or flow control strate-

gies on real-life InfiniBand clusters, taking up resources from more important

calculations, one typically tests them on simulated InfiniBand clusters. This

is done by simulating the existence of a complete InfiniBand fabric on a

testbed, using dedicated management simulation tools. Data traffic simu-

lation itself, is done by tools such as the Network Simulator 2 (NS-2) [3]

or OMNeT++ [4, 5] and the output are trace files or event logs, containing

data about events that happened in the simulation run, for later analysis and

evaluation. Trace files can be tedious to analyse manually, using pen and pa-

per. Consequently, researchers write dedicated scripts or programs to answer

specific questions about how a given algorithm or strategy performs in a sim-

ulation setting. For example, a researcher writing a routing algorithm, wants

to see how it performs with a given network topology. Thus, the researcher

writes a script to give statistical results on link loads in the topology, output

as numbers. In this thesis, we explore the use of a visualisation tool to aid

researchers in analysing properties regarding the behaviour of simulated In-

finiBand networks. So that the same researcher as in the example, can gain

insight about the behaviour and performance of his routing algorithm in a

more efficient and time-saving manner, by “using vision to think” [6].

For this purpose, several visualisation tools have been created. Examples

of such tools for wired scenarios include the Network Animator (NAM) [7]

and an option bundled in OMNeT++ [4]. However, these visualisation tools

are not able to handle the scale of network topologies commonly present in

interconnection networks. Even when the number of nodes reaches the size

of a small network topology, the visualisation can become hard to read. This
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is because most of the tools mentioned, are concerned about node positions

in a network topology using only two dimensions, cluttering up the available

display space on the monitor. In addition, they are more focused on giving

users the ability to analyse statistical data in topologies and simulations, in-

stead of using visual elements. For example, routing algorithms and network

topology together are key when it comes to network performance. Combin-

ing these two factors, one can for example create exciting visual maps of

the path distribution in a network topology. In turn, such visual maps can

lead to a researcher experiencing “eureka” moments, without even having to

think, thanks to the advanced human visual system. There also exists general

network analysis tools that can handle network topologies with more than

a few hundred nodes, such as Gephi [8], Cytoscape [9] and Pajek [10]. But

these tools are not able to handle simulation data and are geared toward a

multitude of other research fields.

1.2 Problem statement

As stated above, analysing both static and dynamic properties in simulations

manually or using statistical tools can be a tedious and a time consuming

process. For this reason, visualisation tools have emerged to aid researchers

in understanding aspects of network topology, routing, congestion, flow con-

trol and protocols. However, not many tools are able to visualise network

topologies with nodes in the range of hundreds to thousands in a visually

pleasing manner, none are able to visualise the special properties of simu-

lated InfiniBand networks and not many tools have been designed by apply-

ing techniques in information visualisation.

Hence, we want to investigate how to make a useful visualisation tool that

is able to visualise OpenSM-defined network topologies and routing data in

a simulated InfiniBand subnet, in addition to simulated message traffic from

OMNeT++. We achieve our results by designing, implementing and evalu-

ating a visualisation tool prototype. The issues we examine in this thesis,

are the design challenges when creating such a tool. We want to examine

how we can visualise network topology, path distribution, routing and mes-

3



sage transmissions in simulated InfiniBand clusters. We want to attempt to

apply principles and concepts in information visualisation to create a useful

and time-saving visualisation tool. We want to investigate how to position

nodes in both regular and irregular network topologies, to achieve visually

pleasing and readable layouts, using the field of graph drawing. We also want

to look into design issues around time complexity and predictability using

graph drawing algorithms. We want to explore the use of 3D techniques to

help us encode data visually in another dimension. Lastly, we want to take

a look at challenges when parsing both static data such as network topology

and routing data, in addition to data that changes over time.

1.3 Main contributions

We have presented the design and a visualisation tool prototype called IB-

SimVis, used to visualise OpenSM-managed network topologies and routing

data in 3D. Through visualisation it can aid researchers asking both precise

and fuzzy questions regarding a certain network topology or routing algo-

rithm, returning insight on how well paths are distributed in the network.

Using IBSimVis for visualising network topologies and routing data, we argue

that alot of time can be saved on the researchers behalf. In addition, it can

not only help researchers instantly locate patterns or anomalies in a network,

but also see the location where in the network topology anomalies occur.

Originally we designed IBSimVis to be used for both visualising OpenSM

topology and routing data, in addition to simulation message transmissions

by parsing event logs from OMNeT++. The visualisation of simulation mes-

sage transmissions had to be dropped because of time constraints. The reason

why we had to do that was because of the time consuming implementation

of both 3D and GUI programming, since we had no prior knowledge or ex-

perience doing either.
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1.4 Language

This thesis is written in UK English. Meaning that some words are spelled

differently compared to the their US English counterparts. US English words

like “color” and “visualization” are instead spelled in their UK English form,

“colour” and “visualisation” [11].

1.5 Outline

In Chapter 2 we present the necessary background material. We take a look

at interconnection networks, network topologies and an industry standard for

interconnects, InfiniBand. We proceed to introduce the field of information

visualisation and look at techniques that can help us achieve more efficient

visualisations, in addition to giving an overview of how to draw network

topologies. In Chapter 3 we give an overview of visualisation tools that

have been created to visualise simulation data for both wired and wireless

scenarios. In Chapter 4 we show the design of our visualisation tool prototype

and see how it was realised in Chapter 5. In Chapter 6 we evaluate our

result, the application we have created and provide a discussion around it.

Lastly, in Chapter 7 we conclude and summarise our thesis work and round

off by proposing what improvements can be made to the visualisation tool

prototype, in the future.
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Chapter 2

Background

In this chapter, we introduce the necessary background information for our

prototype visualisation tool. In Section 2.1, we introduce interconnection

networks, network topologies and an industry-standard for interconnection

networks, InfiniBand. In Section 2.2 we introduce concepts and techniques

we have used from the field of information visualisation. In Section 2.3, we

take a look at challenges and techniques in visualising network topologies,

using graph-drawing algorithms. We provide a summary of this chapter in

Section 2.4.

2.1 Interconnection networks

An interconnection network, is a switched network, which consists of nodes,

connected together by links. The main purpose of an interconnection net-

work, is to transport data in the form of messages between the nodes. Nodes

in an interconnection network, can be switches, routers, hosts (also called

terminals) or other devices. Interconnection networks that fit the above de-

scription, can be found in many different physical scales. They can range

from the small, such as the insides of a switch. To the large, such as parallel

computer clusters with thousands of processing nodes. These types of net-

works typically offer high bandwidth and low latency, and are referred to as

System Area Networks (SANs). One of the driving factors behind intercon-
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nection networks, is the increasing demand in processing power. However, the

technology that connects the parallel processing nodes together is a limiting

factor [12].

Interconnection networks fall in two categories: direct interconnection net-

works and indirect interconnection networks [12]. In a direct interconnection

network, every node is both a switch and a host, thus messages are forwarded

directly between hosts. In an indirect interconnection network, nodes are ei-

ther hosts or switches, which means that messages that travel from a source

host to a destination host, use an indirect route, passing through one or more

dedicated switches.

In the next few sections, we take a look at the structure of intercon-

nection networks (network topology), routing and an industry-standard for

interconnection networks (InfiniBand).

2.1.1 Network topology

A network topology defines how nodes and links are interconnected within a

network [12, 13]. Each link is bidirectional, meaning each side of a link can

both send and receive data. Ideally, each network would be a fully-connected

direct network, where each node would have a link to every other node. All

messages sent from a source node, would only have to travel to a neighbour,

to reach its destination. However, such network topologies are limited by

cost, hardware constraints and physical constraints [12]. For example, a

fully-connected cabled network requires N ports per node. Depending on

the amount of nodes, this would take up alot of physical space in addition to

being a costly solution. That is why network topologies that are not fully-

connected, have been defined, to reduce the cost and meet the constraints

when creating interconnection networks [12].

Network topologies can be divided into two main categories. When we

have a topology, that has rules on how switches are interconnected, it is called

a regular topology [13]. Such rules may involve all nodes having the same de-

gree, or nodes arranged in orthogonal n-dimensional space [13]. When we on

the other hand, have a topology where no such rules for the connection pat-
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tern is defined, we call it an irregular topology [13]. Routing algorithms may

exploit the properties of regular topologies. This is not the case for irregular

topologies, where general solutions are required [12]. In this thesis, we are

interested in being able to visualise both regular and irregular topologies.

Network topologies are typically modelled as graphs, since they share

many of the same characteristics [12, 13]. Vertices and edges in a graph,

map to nodes and links in a network, respectively. Later in this chapter, we

see how we can draw graphs- and thus also network topologies. Next, we

briefly introduce and show some common regular network topologies found

in interconnection networks. Namely, the torus (k-ary n-cube), mesh (k-ary

n-mesh) and fat-tree (k-ary n-tree) topologies. These are part of a parametric

family of network topologies, constructed using the parameters k and n, as

shown in Figure 2.1.

(a) Torus topology: 4-ary
2-cube

(b) Mesh topology: 4-ary
2-mesh

(c) Fat-tree topology: 4-ary 2-tree

Figure 2.1: Three common regular network topologies for interconnection
networks: torus, mesh and fat-tree. Using k = 4 and n = 2.
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2.1.1.1 Torus (k-ary n-cube)

A torus topology, is a direct interconnection network, constructed as an n-

dimensional grid with k nodes in each dimension [12]. The number of nodes

is kn. Figure 2.2 shows how a torus topology grows when the dimensionality,

n goes from 1 to 3.

(a) 4-ary 1-cube (b) 4-ary 2-cube

(c) 4-ary 3-cube

Figure 2.2: Three torus topologies, showing how the topology grows when n
increases.

2.1.1.2 Mesh (k-ary n-mesh)

A mesh topology, is a direct interconnection network and shares many of the

same characteristics of a torus network. The exception is that the connections
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from address ak−1 to a0 has been removed [12]. The number of nodes is kn.

Figure 2.3 shows how a mesh topology grows when the dimensionality, n goes

from 1 to 3.

(a) 4-ary 1-mesh (b) 4-ary 2-mesh

(c) 4-ary 3-mesh

Figure 2.3: Three mesh topologies, showing how the topology grows when n
increases.

2.1.1.3 Fat-tree (k-ary n-tree)

A fat-tree topology is an indirect interconnection network [14]. The fat-trees

are based on complete binary trees and are named such since they resemble

real trees, since they get thicker closer to the root [14]. A special subclass of

fat-trees is the k-ary n-tree, having kn processing nodes and nkn−1 switches,

arranged in a k ∗ k connection pattern [14]. Fat-tree topologies such as the
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k-ary n-tree is commonly found in deployed InfiniBand networks [15]. Thus,

they are the most relevant to visualise in our tool. Figure 2.4 shows a k-ary

n-tree with the dimensionality n from 1 to 3.

(a) 4-ary 1-tree (b) 4-ary 2-tree

(c) 4-ary 3-tree

Figure 2.4: Three fat tree topologies, showing how the topology grows when
n increases.

2.1.2 Routing

Routing determines the path taken by data messages through a network, from

a source node to a destination node. Some topologies offer only one path,

such as the one-dimensional regular topologies we have seen. However, in the

case of topologies that offer multiple paths between two switches, routing al-

gorithms determine which path a message should take. A routing algorithm

is a key factor in network performance, the other being flow control [12]. It

is the routing algorithms task, to distribute paths evenly in a topology, so

that some links are not more heavily loaded than others [12]. In addition to
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keeping the number of hops, i.e. the path length as short as possible. We

refer to the load or distribution of paths over a network topology as path

distribution. Note that the performance and characteristics of routing algo-

rithms is not the focus of this thesis. We are merely interested in visualising

the effect a routing algorithm has on a network topology.

2.1.3 InfiniBand

The InfiniBand Architecture (IBA) [2], is an industry-standard architecture

for inter-server communication, in Local and System Area Networks [16].

IBA has been specified by the InfiniBand Trade Association (IBTA), a group

of technology companies, whose Steering Comittee consist of IBM, Intel,

Mellanox, Oracle, Qlogic, SFW and Voltaire [17]. Furthermore, the Open-

Fabrics Alliance (OFA), an open-source community for IBA actors, develops

and maintains the OpenFabrics Enterprise Distribution (OFED), a software

package used by IBA compatible network clusters [18].

IBA has two main characteristics. First, IBA is using point-to-point con-

nections instead of busses; avoiding arbitration issues, increasing reliability

and allowing scaling [16]. Second, transferring data and commands are sent

as messages and not memory operations [16]. As illustrated in Figure 2.5,

a subnet is the smallest complete IBA unit. A subnet is also referred to as

a fabric or cluster. It consists of endnodes, switches, links and a Subnet

Manager (SM). Endnodes send messages over links, via switches to other

endnodes. Channel Adapters (CAs), connect endnodes to links. Each link

is connected to a port on either a switch or a CA. In the next paragraphs,

we give a brief description of each element in an IBA subnet, as presented

in [16] and selected topics in [2].

Links

IBA supports bi-directional communication, through both copper cable and

optical fibre. Physical links can be used in parallel to achieve greater band-

width. Link widths are referred to as 1X, 4X and 12X. Links are split into

logical channels, called Virtual Lanes (VLs). Each link can have a config-
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Figure 2.5: An InfiniBand subnet with a fat-tree topology (3-ary 2-tree).

urable number of VLs, up to a maximum of 16. The minimum number of

required VLs is two: VL 0 is designated for normal data traffic and VL 15

is designated for subnet management traffic. In addition, each VL has a

set of dedicated send- and receive- buffers at both ends of the physical link.

Although IBA is specified with support up to 16 VLs, only 8 data VLs in

addition to the dedicated VL for subnet management traffic, have currently

been implemented in hardware.

Switches

Switches forward messages from source endnode to destination endnode.

Each switch has a forwarding table, which is computed during network initial-

isation and modification. As an example, a forwarding table might be linear,

specifying destination Local Identifier (LID) : outgoing portnumber pairs, for

each possible destination LID in the subnet, as is the case for the OpenSM

unicast forwarding file. Both LID address and SM are described below. The

amount of ports on a switch is vendor-specific, but the maximum number

of ports is 256. Switches have three methods of service differentiation. VL
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to Service Level (SL) mapping, weighted round-robin VL arbitration and

classification of VL as either High or Low priority.

Endnodes

Endnodes are the packet producers and consumers in an IBA unit. They can

be a wide variety of hosts or devices. Hosts can be computing units, while

devices can be storage units. Endnodes are connected to CAs, described in

the next paragraph.

Channel Adapters

The Channel Adapter (CA), is the interface between a physical link and

an endnode. There are two types of Channel Adapters: Host Channel

Adapter (HCA) and Target Channel Adapter (TCA). HCAs has a soft-

ware interface, called verbs and are connected to hosts. TCAs on the other

hand, are connected to devices and have no verbs. The main tasks of a CA is

to transmit data to endnodes, using one of the communication service types,

and segmentation and reassembly of messages. There are five communication

service types offered by the CA [2]:

Reliable connection An acknowledged connection between two endnodes,

ensuring that data has reached the destination.

Unreliable connection An unacknowledged connection between two endnodes,

where lost or corrupted messages are dropped.

Reliable datagram An acknowledged datagram that can be sent reliably

to an endnode without a connection.

Unreliable datagram A connectionless and unacknowledged service. Used

by the management system to discover the fabric.

Raw datagram (IPv6 datagram and EtherType) A data link service

to allow bridging of native Ethernet, TCP, UDP and IPv4 packets into

an IBA subnet.
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Furthermore, for the CA to communicate using the mentioned communi-

cation service types, it utilises work queues called Queue Pairs (QPs). There

are three types of QPs: send, receive and completion.

Subnet Manager

An IBA subnet requires a Subnet Manager (SM), residing on either an

endnode or a switch. Their main purpose is to initialise and discover the

network, assign LIDs to switches and CAs and load the forwarding tables

for switches for endnode-to-endnode routing. The SM also provides paths

for networks with different MTU. All management information is commu-

nicated via special messages, called Management Datagrams (MADs). An

implementation of SM software, OpenSM is described in Section 2.1.3.1.

Addressing

Local Identifiers (LIDs) are 16-bit identifiers, used by switches for routing

purposes. LIDs are assigned to each switch and each port on an endnode.

Note that switch ports do not have an assigned LID address. Global Unique

Identifiers (GUIDs) are 64-bit EUI-64 IEEE identifiers (Ethernet MAC ad-

dress) for elements in a subnet, they are assigned to chassis, CA, CA ports,

switch and router ports.

2.1.3.1 OpenSM

OpenSM is an InfiniBand compliant Subnet Manager [19], maintained by the

OFA [18] and is a part of the OFED. A software entity such as OpenSM,

residing on a node in an InfiniBand subnet, is required in order to initialise

InfiniBand hardware [19]. OpenSM attaches itself to a port on an InfiniBand

node. It then proceeds to initialise the InfiniBand fabric, by first discovering

the fabric using MADs, then by assigning LIDs to switches and CA ports [19].

OpenSM generates a Unicast Linear Forwarding Table (LFT), based on

one of several routing engines [19]. The LFT is a forwarding table that exists

in every switch. It specifies which port packets should be forwarded through,

for every LID in the subnet. Reassigning LIDs requires recomputation and
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repropagation of LFTs [19]. Routing engines in OpenSM, are algorithms

that compute LFTs, based on the network topology of a fabric. Depending

on the OpenSM version, there can be several routing engines present. A few

examples of routing engines [19]:

• Min Hop Algorithm

• UPDN Unicast routing algorithm

• Fat Tree Unicast routing algorithm

• LASH unicast routing algorithm

In addition, the user can create his own routing engines.

2.1.3.2 IBMgtSim

The InfiniBand Management Simulator (IBMgtSim) is a management sim-

ulator for InfiniBand networks. It simulates the existence of a complete

InfiniBand subnet with the number of nodes and topology input by the user.

After IBMgtSim has been initialised, OpenSM is able to “discover” the sim-

ulated fabric. It is important to note that IBMgtSim only simulates nodes

and properties related to nodes in an InfiniBand network, not the actual data

traffic. For this, OMNeT++ is used. In this thesis we sometimes refer to the

topology and routing data files in OpenSM format. By this we mean that

OpenSM discovered and initialised the InfiniBand fabric and dumped the

static information to files. While IBMgtSim created the fabric by simulating

the existence of all the switches, CAs, ports and links.

2.2 Information visualisation

In the field of visualisation, there are at least two related and overlapping

subfields. One, scientific visualisation, is concerned about visualising prop-

erties of the real world, usually in 3D, such as medical imagery, mechanical

stress and weather simulations [20]. The other, information visualisation,
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is about visualising abstract data and concepts, such as networks, finance,

statistics [20]. Both fields overlap each other, in the sense that they both use

some of the same techniques for visualisation. In this thesis, we are inter-

ested in visualising network topologies and related properties in InfiniBand

networks, over time in a simulation setting. In Section 2.1.1, we observed

that topologies are modelled as graphs, which are collections of abstract data.

Thus, techniques in the field of information visualisation is most relevant to

apply when we design and implement our visualisation tool prototype.

Card defines information visualisation as:

The use of computer-supported, interactive, visual representations

of abstract data to amplify cognition. [6], page 7.

Cognition is the process of acquiring and using knowledge [6]. One might

ask, how does visualisation amplify cognition? Card [6] and Ware [21] state

several reasons:

First of all, our highly developed visual system, gives us the ability to

recognize and process patterns efficiently [6, 21]. Second, our visual system

allows high bandwidth access from the computer display, to our brain [21].

Third, visualisations expand our working memory for solving problems and

can store large amounts of information in a quickly accessible form [6].

Spence notes three primary reasons [20], for why computer-support have

aided cognition. Computerized storage mediums with low access times, al-

lowing storage and fast access to large amounts of data. Increase in computer

processing power, enabling dynamic selection and interaction with datasets.

High-resolution computer hardware and monitors, which is able to present

data well enough to match the human visual system. In essence, information

visualisation is a set of graphical techniques and methods for gaining insight,

understanding and information from abstract data.

One of the first examples of information visualisation is the famous image

of the Russian Campaign in 1812, during the Napoleonic Wars [20]. Made

by Joseph Minard and published in 1869. It shows the advance and retreat

by the forces of Napoleon I. As shown in Figure 2.6, line thickness indicates

troop numbers and the bottom graph, temperature. The image is a prime
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Figure 2.6: Charles Minard’s 1869 chart showing the losses in men, their
movements, and the temperature of Napoleon’s 1812 Russian campaign.
Lithograph, 62 x 30 cm. Public domain. [22]

example of how visualisation can aid in the understanding of data.

The initial definition of information visualisation also covers the three

principal issues [20]. Those of, how to represent abstract data, encode data to

visual objects. How to present the visual representations to the user, so that

the user can interpret the image to gain insight and knowledge. And lastly,

how to able the user to view the data from different angles, by interacting

with the presentation. These issues are covered next and the process is shown

in Figure 2.7.

2.2.1 Representation

The first step in the process of information visualisation is to take raw data

and find a way to represent them [6,20,21]. Raw data usually takes the form

of numbers or strings of text with some semantic. In Figure 2.6, we saw how

numerical data such as number of troops was represented as line thickness

and the use of colour encoding shows the advance and retreat of Napoleon

I’s troops. This process of transforming raw data to visual objects is called

encoding [20]. Before we start encoding data, we need to know what type

of data we are dealing with and their complexity [20]. Once that has been
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Figure 2.7: The process of information visualisation. Showing the three main
issues in information visualisation, in addition to the interaction feedback
loops, described in Section 2.2.3. Adapted from Figure 2.17 in [20] and
Figure 1.2 in [21]

established, we need to choose which encoding mechanisms to apply [20].

There are two categories of data types, entities and relations [21] (Spence

refers to these as value and structure, respectively [20]). An entity is the

object we want to visualise, such as a car or a house. Relations are the

structures that connect entities together and can be one of two types, con-

ceptual or structural [21]. As an example, the relationship between a car

and its owner is conceptual and the relationship between inner components

of a car such as engine and tires are structural. Furthermore, entities and

relations contain zero or more attributes [21]. An attribute is a property that

can not be described independently, such as the colour of a car [21]. At-

tributes of entities can have several dimensions [6,20,21]. Scalar attributes is

an one-dimensional quantity, such as the number of wheels of a car. Vector

attributes are two-dimensional, for example the direction a car is travelling.

Tensor attributes are multi-dimensional and can be used to denote both the

direction and force of a car.

Above, we have presented what types of data that exists. Once data has

been abstracted into entities, relations and associated attributes, we need
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0x1A 0xB0 0x0F 0x4F

0x3C 0x1C 0xD6 0x90 0x6C

0x2E 0x91 0x8E 0x33 0x5A

0xA9 0x1E 0x7B 0x5F 0xF7

0x05 0x2D 0x4D 0x1B 0x44

0x00

(a) No pre-attentive fea-
tures.

0x1A 0xB0 0x0F 0x4F

0x3C 0x1C 0xD6 0x90 0x6C

0x2E 0x91 0x8E 0x33 0x5A

0xA9 0x1E 0x7B 0x5F 0xF7

0x05 0x2D 0x4D 0x1B 0x44

0x00

(b) Coloured.

0x1A 0xB0 0x0F 0x4F

0x3C 0xD6 0x90 0x6C

0x2E 0x91 0x8E 0x33 0x5A

0xA9 0x1E 0x7B 0x5F 0xF7

0x05 0x2D 0x1B 0x44

0x00

0x1C

0x4D

(c) Different shapes.

Figure 2.8: Example of pre-attentive processing [21]. Try identifying switches
labelled 0x1C and 0x4D.

to know how to create their visual representations. We refer to encoded

visual representations as glyphs or symbols [21]. We get the glyphs by ap-

plying encoding mechanisms to the entities we want to represent. Here, we

come back to what we mentioned earlier about human visual pattern pro-

cessing. Certain glyphs stand out to our visual system [21]. This is called

pre-attentive processing and is shown in Figure 2.8. Visualisations can help

us identify patterns or anomalies in data, such as graph structures, by iden-

tifying similarities or differences in groups of symbols [21]. Ware notes, that

it is desirable for symbols in a visualisation to be preattentively distinct from

eachother [21]. Thus, the encoding mechanisms are tightly connected to what

visual properties they exhibit.

One set of encoding mechanisms often referred to in literature, are those

introduced by the cartographer Jacques Bertin (1918-2010), who is con-

sidered one of the pioneers in information visualisation [6, 20, 21]. Bertin

introduced the six encoding mechanisms (called “retinal variables” [23]) in

graphical representations, that could be applied to entities [6]. The encoding

mechanisms introduced by Bertin [23] are shown in Figure 2.11.

The encoding mechanisms in the figure, has later been formalised and

evaluated for efficiency and accuracy, by Cleveland and McGill [24] and later

by Mackinlay [25]. The encoding mechanisms presented by the authors men-

tioned above, still keep the basic encoding mechanisms presented by Bertin,
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Figure 2.9: Bertin’s encoding mechanisms or “retinal properties” [23].
Adapted from Table 1.21 in [6].

with the exception of seperating gray scales from the colour encoding mech-

anism. With the full list of possible encoding mechanisms being far to many

to use in our visualisation tool prototype, we have decided to use the basic

ones introduced by Bertin, except the grayscale one, which we incorporate

into colour. The reason for this choice is that not all encoding mechanisms

are relevant to visualising network topologies. For an overview of the most

common encoding mechanisms, we refer to Figure 3.44 and 3.45 in [20]. Re-

garding the colour encoding mechanism, Ware suggests a set of 12 default

colours to use when labelling data. These colours are red, green, yellow, blue,

black, white, pink, cyan, gray, orange, brown and purple. They are shown in

Figure 2.10, on white and black backgrounds.

We have covered what data types that data belongs to and what encod-

ing mechanisms that are relevant to apply to entities and their associated

attributes. However, we have not yet mentioned how to represent relational

data, in the form of graphs. Most commonly this is done by constructing
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(a) On white background.

(b) On black background.

Figure 2.10: Ware’s suggested set of 12 colours used for labelling. Adapted
from Figure 4.21 in [21]

node-link diagrams [20,21]. With nodes representing entities, and with links

going between them, indicating relationships. Furthermore, nodes can be en-

coded according to the attributes that belongs to it or associated data values.

They can for example be encoded as specific coloured shapes of specific sizes,

depending on context. Links can in turn vary in width and colour.

2.2.2 Presentation

The second step in information visualisation process is to decide how to

display the representations to the user [20]. Or even more important, if we

are to display them at all [20]. Sometimes, there is too much information

available at the same time, so there might be a need to hide some information.

Either from the start or through interaction. Furthermore, when we have

decided what information to display, we have to consider if the user is allowed

to interact with the presentation [20].

The most important problem during presentation is the lack of display

space [20], the available area of a computer display. Even high-resolution

computer monitors can not show all information, at once. Therefore there is

a need for techniques that effectively utilises the available display space. The

most common techniques is by adding the ability to zoom and pan. Zoom-

ing is the ”smooth and continuously increasing magnification of a decreasing
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fraction (or vice versa) of a two-dimensional image ounder the constraint of

a viewing frame of constant size” [20], page 117. Panning is the ”smooth,

continuous movement of a viewing frame over a two-dimensional image of

greater size” [20], page 117. Zooming can be divided into two activities.

Zooming in gives the ability of viewing information in a more manageable

manner. While the other activity, zooming out can give context to infor-

mation. There are also two types of zoom. Geometric zooming or spatial

zooming allows the user to take a closer look on information, while keeping

representations static [6, 20]. For example, when taking a closer look on a

map. Semantic zoom [26] offers new views on representations depending on

zoom distance, making presentations dynamic. For example by zooming in

on a city on a geographical map, it gives more information about that city,

such as demographics. In Section 2.2.1, we learned that graphs can be repre-

sented as node-link diagrams. To address the presentation problem of graphs

and network structures, we have dedicated Section 2.3 to the specialised field

of graph drawing.

2.2.3 Interaction

“A good visualization is not like a static picture or a 3D en-

vironment we can walk through and inspect like a museum of

statues.” [21], page 317.

Interaction enables the user to find information in the presentation and

glyphs on the display screen, typically using input devices such as a mouse

and a keyboard. Interaction is the real strength of information visualisation,

giving the ability to change views when looking at data. Interaction is done

by the user in three feedback loops. The data selection and manipulation

loop, where the user selects, filters and manipulates the glyphs [21]. The

exploration and navigation loop, where the user navigates through the visu-

alisation and identify structural landmarks [21]. Lastly, the problem solving

loop, where users form questions or gain insight to the visualisation [21]. The

feedback loops were illustrated earlier, in Figure 2.7. Next, we briefly in-

troduce the three main interaction techniques we use in this thesis, besides
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the already introduced pan and zoom, which are part of the exploration and

navigation loop.

Selection and hover queries

The selection query is initiated when the user clicks on a glyph in a visuali-

sation and is one of the most common interactive operations [21]. It is used

to retrieve additional entity data.

Colour selection using a colour pallette

A colour pallette enables the users to manipulate entity representations, by

changing its colour. For example, the default colour of a glyph, might have

been unsuitable in combination with the background or other glyphs in a

visualisation. Requiring a method of being able to select different colours

for a glyph. One method is to allow the user to type in RGB coordinates

in the colour cube, drag on sliders to adjust red, green and blue or choose

colours from a pallette [21]. The two first methods might be confusing for

the user, since they may not necessarily know much colour theory and do not

know what colours to mix in what quantities to get the one they want [21].

Ware states that a colour pallette is a “good solution to the colour selection

problem.” [21], page 123.

Dynamic Query

Figure 2.11: Dynamic query in a slidger GUI widget. Adapted from Figure
1 in [27]

A Dynamic Query is an interaction technique to filter data, using graph-

ical widgets such as sliders [27]. Originally the dynamic query was used

as an alternative to high-level query languages such as Structured Query

Language (SQL), to dynamically fetch data from databases [27]. However, it
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can be applied to most scenarios where a user either needs to fetch data or

filter data out. The advantages is that limits of the query is displayed graph-

ically, the query result is immediately displayed, it is easy to use even for

novices and it is easy to implement [27]. This technique is used in our visu-

alisation tool prototype, when we want to filter out entities when visualising

path distribution.

2.3 Graph drawing

“A good layout can be a picture worth a thousand words; a poor

layout can confuse or mislead” [28], page 435.

Earlier, in Section 2.1.1 we learned that network topologies are graphs.

And in Section 2.2.1, we learned that relational datatypes, such as graphs

can be drawn using node-link diagrams. These node-link diagrams, or graph

drawings, can help us see patterns and anomalies in graph structures [29].

To draw graphs, we turn to the specialised field of graph drawing, which

goal is to create algorithms that produce drawings of graphs that are easy

to follow [30]. The input of a graph drawing algorithm (also called graph

layout algorithm) is a graph and the output is its layout. The layout contains

information about where nodes are placed in the display space. There are

two parameters, in addition to the input (a graph) to a graph drawing. The

first, is its convention, rules that apply to the drawing. The second, is the

aesthetic criteria, visual properties of a graph that a given graph drawing

algorithm tries to achieve as best as possible. Both these parameters are

covered later in this section.

Furthermore, there are many challenges in graph drawing. In the survey

by Herman et. al. [31], the authors point out several issues that needs to be

considered when visualising graphs:

• Size

• Predictability

• Time complexity
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When graphs grow in size, the density of vertices and edges in the display

space increases [31]. For dense graphs, this has an impact on the viewability

and usability of a graph [31], assuming its part of a visualisation tool. Select-

ing individual nodes or links might be difficult, because of crossing edges and

overlapping nodes [31]. Predictability is another factor. What this means

is that applying the same layout algorithm on a graph, should not yield

radically different visualised graph structures [31]. If a layout algorithm is

unpredictable, this can break the cognitive map the user has learned when

previously having viewed the same graph [32]. Last, there is the issue of time

complexity for algorithms that produce graph layouts [31], presented later in

this section. Some algorithms do heavy computations to place vertices, trying

to achieve a set of aesthetic criteria. In this thesis, we use “big O notation”

to express time complexity in graph drawing algorithms. The needed graph

terminology, common aesthetic criteria, common graph drawing conventions,

graph drawing approaches and a set of graph drawing algorithms relevant to

this thesis are presented in the next few sections.

2.3.1 Graph terminology

Some basic graph terminology is needed to understand the graph drawing

algorithms we describe later in this thesis. Next, we introduce some select

terminology as presented in [33], Chapter 1 and Chapter 2.

A graph, G = (V,E) is a pair of sets, a set of vertices, V and a set of

edges, E, connected together. Vertices are sometimes referred to as nodes,

and edges referred to as links. The order, or number of edges in a graph

G is |E| and the number of vertices is |V |. The vertices on each side of an

edge, e is u and v. Both u and v are adjacent or neighbours to each other if

connected by an edge, e. The edge e is incident to u and v. Two edges are

adjacent to each other, if they share a common vertex. The degree of v is the

number of its neighbours. If all the vertices of G are adjacent, the graph is

complete.

A graph is directed if there exists a direction from an initial vertex init(e)

to a terminal vertex ter(e) for every edge e in E. A graph with no direction,
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is an undirected graph. Graphs may also have more than one edge between

two vertices, these edges are referred to as multiple edges.

The matching problem is about finding a set of independent edges in

a graph, where no edges share the same vertex. Vertices incident to the

independent edges are considered matched. All other vertices are considered

unmatched.

2.3.2 Conventions

The first parameter to a graph drawing, is the convention. Conventions are

rules that graph drawings need to adhere to [30]. These rules may be that the

drawing has to conform to a specific shape, or there are certain constraints set

to how the edges are drawn. Battista et al. [30] list some widely used graph

drawing conventions, where we introduce the most common here, namely:

Polyline drawing Edges can have multiple bends. See Figure 2.12a.

Straight-line drawing Each edge is drawn as a straight line. See Fig-

ure 2.12b.

Orthogonal drawing Each edge is drawn as either horisontal or vertical

edges. See Figure 2.12c.

Planar drawing No edges cross each other.

Polyline drawings are highly flexible, since one can create curved edges

by increasing the amounts of bends [30]. However, polyline drawings with

edges that have few bends (2-3) are hard to follow by eye [30]. Straight-line

drawings are the most common and are featured in almost all literature men-

tioned in this thesis, mainly due to the visual complexity of polyline drawings.

Orthogonal drawings are often used in circuit schematics and software en-

gineering diagrams. Planar drawings are the most aesthetically appealing,

being able to fulfill many of the aesthetics mentioned in Section 2.3.3. It is

worth knowing that not all graphs are able to be drawn in such a way, such

as the graph in Figure 2.12.
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Figure 2.12: Three different graph drawing conventions on the same graph.
Adapted from Figure 2.1 in [30].

2.3.3 Aesthetics

The second parameter for graph drawing is the aesthetics. Graph drawing

algorithms usually select a few aesthetics, that they try to apply as much as

possible to improve readability of a graph [30]. The most common aesthetics

are presented below [30]:

Edge crossings Try to minimise the amount of edge crossings.

Drawing area Try to minimise the drawing area to create area-efficient

drawings, saving display space.

Edge length Try to keep edges the same length, alternatively set a lower

and upper bound on edge length.

Edge bends Try to keep edge bends at a minimum, as these reduce read-

ability of the graph.

Symmetry Try to keep graph as symmetrical as possible

Battista et. al. notes that “aesthetics often conflict with each other”, so

there are always tradeoffs [30]. As an example, having uniform edge length

might conflict with trying to keep the drawing area as small as possible,

if the edge lengths are uniform, but long. In addition, in the cases where
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two aesthetics do not conflict, it might be algorithmically complex to handle

both at the same time. Furthermore, the paper by Purchase et. al. [28]

evaluated the aesthetics of edge crossings, edge bends and symmetry. The

authors came to the conclusion that increasing edge bends and edge crossings

in the drawing would decrease understandability of the graph [28]. Symmetry

was deemed important, but there were no conclusive results that increasing

symmetry would increase understandability of a graph [28]. When we later

in this thesis decide on how to visualise network topologies, we have the three

aforementioned aesthetics foremost in mind.

2.3.4 Approaches

Earlier, we established that the parameters that form a graph drawing, is

one or more conventions and a set of aesthetics. From these, methodologies

have evolved to conform to the different conventions and aesthetics of graph

drawing [30]. The methodologies, or approaches as we call them, “divide the

graph drawing process into a sequence of algorithmic steps, each one targeted

to satisfy a certain subclass of aesthetics” [30], page 18. The issue of choosing

an approach is also tied in to the application area of the graph one wants

to draw. Factors like size, predictability and time complexity mentioned in

Section 2.3, also come in to play. The most popular of these approaches, that

are most suited to visualise the network topologies introduced in Section 2.1.1

are briefly mentioned and illustrated in general terms, below.

2.3.4.1 Orthogonal

Orthogonal approaches are often used in software engineering to show for ex-

ample flow or entity-relationship diagrams [30], or by electronic engineers to

draw circuit diagrams. This approach, typically uses a polyline and orthog-

onal convention, while trying to treat the different aesthetics equally [30]. It

typically consists of a planarisation step, orthogonalisation step and a com-

paction step [30]. The planarisation step tries to reduce the number of edge

crossings as much as possible, crossing are marked by a dummy vertex to

create a planar drawing. The orthogonalisation step applies the orthogonal
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convention to the graph. The compaction step tries to reduce the drawing

area of the graph as much as possible. The process is outlined in Figure 2.13.

V = (1,2,3,4,5,6)

E = {(1,4),(1,5),(1,6),

         (2,4),(2,5),(2,6),

         (3,4),(3,5),(3,6)}

1

6

25

3

4

D

1

6

25

3

4

1

6

2

5

3

4

D

Planarisation

Orthogonalisation

Compaction

Figure 2.13: Orthogonal approach process. Adapted from Figure 2.6 in [30].

2.3.4.2 Hierarchical

As the name implies, hierarchical approaches are applied to graphs that imply

a hierarchy, such as inheritance diagrams. It is typically used by directed

graphs, to show dependencies, but can also be used on undirected graphs, by

preprocessing the undirected graph so that its models a directed graph [30].

Hierarchical approaches often use a polyline convention. They are also quite

intuitive to read [30]. Drawing a hierarchical graph involves three steps, layer

assignment, crossing reduction and x-coordinate assignment [30]. The layer

assignment step assign vertices to vertical layers. The crossing reduction step

orders the vertices at each layer, trying to reduce crossings. The x-coordinate

step, preserves the ordering of the vertices from the previous step and assigns
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the final x-coordinates of the vertices, at each level. The process is outlined

in Figure 2.14.

V = (1,2,3,4,5,6,7,8)

E = {(1,4),(1,6),(1,7),

         (2,3),(2,5),(2,8),

         (4,6),(4,8)}

Layer assignment

1 2

3
4

5

6
7 8

Crossing reduction

1 2

3

4 5

67 8

1 2

3
4 5

67
8

x-coordinate

assignment

Figure 2.14: Hierarchical approach process. Adapted from Figure 2.7 in [30].

2.3.4.3 Force-directed

The force-directed approach, draws inspiration from the field of physics [30].

Algorithms using this approach, usually simulate “a system of bodies with

forces acting between the bodies” [30], page 303. The goal is to generate

a layout, where the vertices have converged to a state of local minimum

energy configuration, also called equilibrium configuration. Force-directed

approaches most often use straight-line drawing conventions, as these are

easy to model [30].

There are two main components in this approach: A force model and a

technique for finding the equilibrium configuration [30]. Examples of force

models is a spring system, where vertices are modelled as balls and edges

as springs. Another example is a spring-electrical system, where vertices are

particles of equal polarity, repelling each other and edges modelled as springs,

pulling particles together. Other force systems include the use of magnetic

fields and annealing (heat treatment of materials).
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The most common technique for finding the equilibrium configuration

is by iterating- doing small changes to the layout, until it reaches a state

where all vertices have zero energy [30]. See Figure 2.15 for an illustration

of a spring system, with an iterating reduction technique. Something worth

noting, is that the number of iterations needed to achieve the equilibrium

configuration depends on the algorithm.

V = (1,2,3,4)

E = {(1,2),(1,3),

         (2,3),(3,4)}

1

2

3

4

1 2

3
4

1
2

3

4

Force model (spring)

Equilibrium technique (iteration)

Equilibrium technique (iteration)

Figure 2.15: Force-directed approach using springs.

2.3.5 Force-directed algorithms

Describing all of the graph drawing algorithms available, for each approach,

is outside the scope of this thesis. For an overview, one can refer to the

surveys by Herman et. al. [31] and Battista et. al. [34], the book by Battista

et. al. [30] and the website by Tamassia [35].

At first glance, it would make sense to use an algorithm with an orthog-

onal approach to draw meshes (Figure 2.3) and toruses (Figure 2.2), and a

hierarchical algorithm to draw fat-trees (Figure 2.4). However, those are not

the only topologies we encounter. In addition, we must also take into account

irregular topologies.

A solution to this problem, would be to handle each topology different,

applying a specific algorithms based on the topology, and apply a general one
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to irregular topologies. This is quite tedious to implement and requires sys-

tems in the visualisation tool, to detect topology types, which in itself might

be a complex and time consuming task. In addition, network topologies used

in real-life applications are rarely 100% regular. Therefore, we have decided

to focus on graph drawing algorithms using the force-directed approach, in

this thesis. There are several reasons for this:

• The analogy to physics is easy to understand [30]

• They are easy to implement [30]

• They produce good layouts [30]

• They exhibit symmetries well [30]

• Many algorithms are made for 2D, but they can be generalised to

3D [31]

• They can be applied to general undirected graphs [31]

Drawbacks of the force-directed algorithms is their complexity [30,31] and

unpredictability [31]. Certain implementations might have a complexity of up

to O(|V |3) [36]. In addition, many algorithms do not give good layouts when

the number of vertices increases. Battista et. al remarks that the algorithm

of Frick, Ludwig and Mehldau [36]“is one of the few methods that can handle

graphs with more than 100 vertices” [30], page 323. The book by Battista

et. al. was written in 1998. After the year 2000, several techniques extended

functionality of existing force-directed algorithms, to graphs with a thousand

vertices or more [37]. The most common technique is the multilevel layout

technique [37]. We explain this technique when we describe the multilevel

force-directed placement algorithm, in Section 2.3.5.2.

There are many force-directed drawing algorithms that have been pro-

posed. One of the first examples, is the SpringEmbedder by Eades [38], us-

ing spring mechanics similar to Hookes Law [31,37]. The algorithm by Eades

has been revised and improved several times by authors such as Kamada and

Kawai [39], Fruchterman and Reingold [40], Frick, Ludwig and Mehldau [36],
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Davidson and Harel [41], Walshaw [29], and many more [30,31]. Their main

difference, is the physics model used, and what method that is used to achieve

the equilibrium configuration [30].

In the next two sections, we show two force-directed placement algo-

rithms. The first, the algorithm by Fruchterman and Reingold is based on

the SpringEmbedder by Eades [40]. The second, the multilevel force-directed

placement algorithm by Walshaw [29], uses a multilevel approach in position-

ing vertices, using a modified Fruchterman-Reingold algorithm to calculate

the force displacement of vertices [29].

2.3.5.1 Fruchterman-Reingold algorithm

The algorithm of Fruchterman and Reingold uses a physical model of the

movement of particles, where neighbouring vertices attrach each other and

all other vertices repel each other [40]. The technique for finding the lowest

energy state is by iteratively displacing vertices [40]. This is done, by using a

“temperature” scheme, limiting the displacement of a vertice to a maximum

value, decaying or “cooling” this value for each iteration [40]. The iterations

continue, until the layout has converged to an equilibrium configuration and

all vertices are in a state of zero energy. Each iteration has three steps:

• Calculate attractive forces on each vertex

• Calculate effect of repulsive forces

• Limit the total displacement by cooling the temperature

The initial configuration of the algorithm is done by randomly placing

vertices. The algorithm is shown as pseudocode in Figure 1 of [40].

2.3.5.2 Multilevel force-directed placement algorithm

The multilevel force-directed placement algorithm of Walshaw, uses a multi-

level framework in addition to a force-directed placement algorithm for laying

out a graph [29]. A series of coarser graphs are constructed from the original

graph by reducing the graph until the number of vertices are two [29]. The
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process of graph coarsening is done by finding the maximal independent edge

set of a graph (also known as maximal matching), where edges are collapsed

to create a coarser version [29]. Walshaw uses the edge contraction method

by Hendrickson and Leland [42]. Where, a randomly ordered list of vertices

are visited in turn, matched to a random adjacent vertice, and collapsed to

form a new vertex [42]. The neighbours of the new vertex is the union of

neighbours of the collapsed vertices [42]. Each new vertex is also added a

weight, which is the sum of the degree of the collapsed vertices [42].

After having done this, the two vertices of the coarsest graph is randomly

laid out [29]. Each coarsened graph is then refined, placing clustered pairs

of vertices at the same position as the cluster, until it has been extended

to the original graph [29]. The force-directed algorithm applied to each re-

finement step is a modified version of the Fruchterman-Reingold algorithm,

described in Section 2.3.5.1. The main modification in Walshaw’s algorithm

compared to that of Fruchterman-Reingold, is the repulsive force function,

using a constant modifier C and the weight of the vertex as input [29]. The

algorithm is shown as pseudocode in Figure 1 of [29]. This is the algo-

rithm that we intend to implement in our visualisation tool prototype and

the implementation details are described in Section 5.3.3.

2.4 Summary

In this chapter, we have presented an overview of interconnection networks,

topologies, routing and the InfiniBand industry-standard. We have also pre-

sented key issues in information visualisation. We have given an introduction

to the field of graph drawing, and presented some algorithms to achieve read-

able graph layouts. In the next chapter, we take a look at some visualisation

tools for the presentation of network topology and simulation data in com-

puter networks.
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Chapter 3

Related work

This chapter presents an overview of tools related to the visualisation of

network topologies and simulation data, describing their main features and

visual look. Later, we see how common elements in these related visualisation

tools have impacted the design and implementation of our prototype. Both

in regards to visual communication and underlying implementation details.

The visualisation tools fall in several categories. Some are tightly in-

tegrated in the simulation environment, such as OMNeT++ [4, 5]. And

some are external tools that parse topology and/or simulation event data

such as NAM [7, 43], Interactive NS-2 protocol and environment confirma-

tion tool (iNSpect) [44] and Huginn [45]. OMNeT++ has an option for

visualisation integrated in its simulation environment. To give a broader

perspective, we have described NS-2 [3] and three options for that simulator

in Section 3.1. Both OMNeT++ and its visualisation is briefly introduced in

Section 3.2.

Simulation data can also be shown in the form of plots or charts. Com-

mon tools for this is plotting programs (gnuplot, xplot), spreadsheet tools

(OpenOffice Calc, Microsoft Word) or other data analysis frameworks. There

also exist general network analysis tools (Cytoscape [9], Gephi [8], Pajek [10])

used for a broad range of research fields including computer networks, social

networks, genome research and molecular research. Although we do draw in-

spiration from these, they are general graph analysis tools, unable to visualise
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simulation data.

3.1 Network Simulator 2

NS-2 [3] is a discrete-event simulator aimed at network research, based on

the REAL network simulator. It supports simulation of transport-, routing-

and multicast- protocols over both wired and wireless networks. NS-2 is

implemented using two languages: the object-orientedc simulator environ-

ment written in C++ and the OTcl (an object-oriented extension of Tcl)

interpreter that acts as a front-end. Both implementations have their own

associated class hierarchies, the C++ class hierarchy (compiled hierarchy)

and the OTcl class hierarchy (interpreted hierarchy), that are mapped one-

to-one. NS-2 can be extended to simulate other protocols or event-driven

scenarios not covered by the class libraries [46].

Listing 3.1: Sample NS-2 trace file [46], showing packet transmission events.

+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

- 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

r 1.84609 0 2 cbr 210 ------- 0 0.0 3.1 225 610

+ 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610

d 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610

- 1.8461 2 3 cbr 210 ------- 0 0.0 3.1 192 511

r 1.84612 3 2 cbr 210 ------- 1 3.0 1.0 196 603

+ 1.84612 2 1 cbr 210 ------- 1 3.0 1.0 196 603

- 1.84612 2 1 cbr 210 ------- 1 3.0 1.0 196 603

NS-2 outputs event data, that can either be displayed on-screen while

the simulation is running or dumped to files called trace files. Contained

within the trace files, information about topology, layout and events can

be disseminated (one line in the trace file is an event) Trace files form the

basis for analysis and can be used as input to a visualisation tool. Listing

3.1 shows a section of a sample NS-2 trace file, where each line is an event
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identified by the first character of the line. “s” being a packet send event,

“r” being a packet receive event and “d” being a packet drop event. In the

following sections we give a brief description of what visualisation options

that exists for NS-2.

3.1.1 Network Animator

NAM [3, 7] is an animation tool for network simulation traces and packet

data, based on the Tcl/Tk widget toolkit and is the default visualisation

tool for NS-2 [46]. It can take NAM trace files as input, that contains infor-

mation about network topology and packet events. Alternatively, the user

can interact with NAM to create and edit network topologies to use with

NS-2. In addition, NS-2 can generate a NAM trace file from a simulation

run. NAM is not entirely dependent on NS-2 to function, other programs

can also generate NAM trace files for animation in NAM.

NAM has five basic building blocks when visualising simulation events.

As seen in Figure 3.1, the building blocks are [7]:

Node Represents a switch, router or host. Can have three shapes that are

immutable: circle, square and hexagon. Can be labelled and change

colour during animation.

Link Represents a link between nodes. A full-duplex link, modelled as two

bidirectional simplex links. Can be labelled and change colour during

animation.

Packet Represents a packet in a network. Shown as a block with an arrow, if

in a queue it is shown as a square. If the packet is dropped, it is shown

as a falling rotating square (not visible during backward animation).

Can be coloured.

Queue Represents a packet queue. Connected to a simplex link in a link

animation object. Shown as packets stacked on a line, which can be

orientated in an angle from the horizontal line.
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Agent Represents protocol states in nodes. Shown as a square with name

inside, next to a node.

Figure 3.1: An image showing the building blocks of NAM [43].

NAM offers a 2D cartesian (x, y) layout and three ways of doing layout

of network topologies. Manual placement (x,y) of nodes, manually setting

the link-orientation between two nodes and automatic layout. The auto-

matic layout method works by modelling nodes as balls and links as springs.

Connected balls repulse each other and springs pull them together. After

a number of iterations, the layouts ideally converge. This layout method

is similar to a force-directed approach, introduced in Section 2.3.4.3. The

manual for NAM suggests automatic layout with hand placement for large

graphs and link orientation for smaller ones [46].

The user can interact with NAM by zooming in and out, manipulating

a timeline for rewinding, playing backwards and playing forwards in various

speeds. It has a time label for showing where in the simulation timeline the

animation is at. The user can drag a slider to skip to different times in the

timeline. In addition, NAM has a box where events are described as (time,

string) pairs, called annotations. The user may have annotated the trace file

using NS-2 or may add, edit or remove them manually during a simulation,

whereas they are recorded in the trace file. The user can also observe packet

40



information in a monitor window, get a popup to see bandwidth utilisation

or show a loss graph when selecting simplex edges [46].

To store the playback of a NAM animation, users can save individual files

on a per-frame basis, which can later be post-processed into making animated

.gifs or MPEG vids using other tools. NAM can also read from filestreams

such as STDIN to give a near-realtime animation of a simulation, piped from

a ns-2 simulation execution [46].

Due to the almost nonexistent wireless support, other tools have been

developed as visualisation support for NS-2 [44, 45]. These tools fill the gap

in NAM functionality. Another drawback is the flexibility of NAM, since the

animation complexity is pushed on the user. In the next section we look at

a tool that supports wireless networks.

3.1.2 Interactive NS-2 protocol and environment con-

firmation tool

iNSpect [44, 47] is a cross-platform Open Graphics Library (OpenGL) [48]

based visualisation tool written in C++ for NS-2 wireless simulations. It

was made in a time when NS-2 had recently been extended with wireless net-

work support, but NAM was not. The difference from NAM is that iNSpect

can read mobility files (input to NS-2) and post-simulation NS-2 trace files

with no modifications. Optionally one can use the custom iNSpect vizTrace

format [49].

iNSpect draws nodes on a 3D plane (originally it was 2D [44]). As shown

in Figure 3.2, nodes are shown as balls that can change colour depending on

the state. The colour of a node is important for event feedback [50]. After a

transmission is initiated, the source node is coloured blue, the receiving node

coloured red and the final destination coloured green. Other colour codes

can be customised. For example: a node receiving a duplicate packet might

be coloured orange. During transmission, a black line is extended from the

source node to the destination node. Overlay objects like circles or rectangles

can be added transparently on top of the nodes. These can denote for exam-

ple congested areas (work cantina), physical obstacles (concrete building) or
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Figure 3.2: An image of iNSpect showing node positions, graph connectivity
and node states [47].

other areas of interest. A background image can be added to give context to

the simulation, for example a sketch of an university seen from above where

mobile devices are shown as nodes in different rooms [49].

The user can navigate the scene by zooming and panning. There is also a

slider for simulation playback with buttons to pause, resume, play forwards

and backwards at various speeds. A drawback is that there does not seem

to be any option to jump to an arbitrary position in the timeline. Selecting

a node yields a transmission ring, a dotted circle around the node denoting

ideal transmission range. Clicking a node also updates a node status window,

showing location, status, id and node report of the selected node. Node

reports shows statistical data such as number of packets received, dropped

and forwarded. The user can take screenshots in png or ppm formats or

capture animation in MJPEG format, with controls for setting start time,

stop time and capturing frame rate [49].
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Features for data analysis have been added in newer versions of iNSpect.

A graph connectivity tool renders lines between nodes based on the trans-

mission range of nodes, this can be used to verify correctness of node be-

haviour and visually show shortest path, unavailable paths and routing loops.

A graph partitioning tool has also been added, it is used for changing the

appearance of nodes that move out of range and can impact protocol per-

formance. An overlay for showing node locations can also be activated by

clicking a button, it can be used to verify if the simulation program did the

correct movements or placements compared to what the simulation input

dictated [49].

One can supply a configuration file for iNSpect, prior to execution. This

minimises command-line arguments and gives flexibility to control various

display elements, such as position and size of overlay objects and colour

codes. The supplied configuration file contains default values that can be

customised. In other words, the user can define visualisation in iNSpect to

highlight the most useful data.

3.1.3 Huginn

Huginn [45,51] is a toolbox for visualising Mobile Ad Hoc Network (MANET)

traces from NS-2. It was created as a response to the lack of wireless support

in NAM. Scheuermann et al. states that visualisation tools can greatly aid

researchers in identifying and avoiding mistakes in protocol development [45].

Huginn is not a single software component in the classical sense i.e. linked

into a single binary. But an UNIX pipeline consisting of three main parts:

Flowchart Editor (FE), Evaluation Engine (EE) and Visualisation Engine

(VE). Each of the components communicate with each other by passing

messages or sharing configuration scripts.

The FE is implemented in C++ and is used for all interaction tasks prior

to visualisation. It gives the user the option to filter, aggregate, scale and

display each event or state that might be interesting. For example, a user

interested in the number of packets received per node, can aggregate packet

count, scale the value logarithmically and display a barchart above the node
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Figure 3.3: An image of Huginn showing nodes, transmission and carrier
sensing ranges [51].

during visualisation. The user needs to have knowledge of NS-2 wireless trace

file semantics before working on the flow chart. Flow chart files are re-usable

for any trace file sharing the same configurations [45].

The EE, written in Ruby does not interact with the user. It reads the

configuration flowchart and applies the evaluations to the given NS-2 wireless

trace file, which is input to the VE. The EE also holds necessary data

structures for the VE during run-time. The EE and VE communicate using

two-way Inter-process communication (IPC) and a minimum of high-level

communication is needed. This is because the VE knows how the scene looks

like and the EE knows the data structures that composes the scene, only

changes need to be communicated. The EE initiates the VE, which we have

describe above [45].

Huginn has a VE as the last component of the pipeline. It uses a high-

level configurable visualisation engine library called V-IDS to draw a 3D

scene. As seen in Figure 3.3, the scene is drawn as a two-dimensional MANET
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scenario. The third dimension is used to show the inner state of nodes, packet

transmission process and statistics. Nodes are shown as cones and each cone

is in the centre of two circles, where one circle shows the transmission range

and the other circle shows carrier sensing range. This is so the user can see

if two nodes are blocking each other. Transmission of packets are visualised

as horizontal cones stretching from one node to the other. The base of this

horizontal cone acts as the sending node and apex the receiving node [45].

Navigating the scene can be done with the mouse or a joystick, with

features like zooming in and panning the scene for a closer look at areas

of interest. A time line at the bottom of the scene, shows the position in

simulated time. It has two modes: linear time and FlexTime. Linear time

allows the playback of the simulation at various speeds. FlexTime adapts

visualisation speed to the amount of events happening in certain time inter-

vals. For example, if there is a period of inactivity, the visualisation speeds

up. One can click on the timeline to jump to the corresponding time point

in simulation time [45].

3.1.4 Summary

In this section, we have briefly mentioned NS-2 and described three visuali-

sation options made for it. We have seen that NAM fulfils many of the basic

needs required by wired network simulations. Two of the tools we have seen

were originally developed because of the lack of wireless support in NAM. In

the next section, we look at OMNeT++ and its options for visualisation.

3.2 OMNeT++ and visualisation

OMNeT++ [4, 5] is an object-oriented modular discrete-event simulation

framework. It is a simulation package with the ability to simulate just about

any scenario involving discrete events, but is targetted at computer networks

and distributed systems [4]. OMNeT++ has a component architecture for

simulation models, where models are formed from modules. Modules are

written in C++ and can be connected and combined to form compound
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modules. The OMNeT++ manual compares this process of “moduling” to

building with LEGO blocks [52]. Examples of modules is a node consisting

of several nodes. The Network Description (NED) language of OMNeT++ is

where the set-up of network simulation takes place and forming of compunded

modules occur. OMNeT++ ships with the Eclipse Integrated Development

Environment (IDE) for editing NED and module files both programatically

and graphically [52]. OMNeT++ has the option to output its own flavour

of simulation trace files, called event logs. A sample event log is shown in

Listing 3.2, where each line is an event identified by the code at the start of

the line. For example, “BS” code indicating a message send event and “CE”

being a message cancel event. OMNeT++ also supplies tools for the statisti-

cal analysis of event logs. For more information about the OMNeT++ event

log grammar and semantics, we refer to the OMNeT++ manual, Chapter

25 [52].

Listing 3.2: Sample of an OMNeT++ event log [52].

E # 14 t 1.018454036455 m 8 ce 9 msg 6

BS id 6 tid 6 c cMessage n send/endTx pe 14

ES t 4.840247053855

MS id 8 d t=TRANSMIT , ,#808000;i=device/pc_s

MS id 8 d t= , ,#808000;i=device/pc_s

E # 15 t 1.025727827674 m 2 ce 13 msg 25

- another frame arrived while receiving -- collision!

CE id 0 pe 12

BS id 0 tid 0 c cMessage n end -reception pe 15

ES t 1.12489449434

BU id 2 txt "Collision! (3 frames)"

DM id 25 pe 15

OMNeT++ has a built-in visualisation option that is executable via the

IDE or via the command-line [52]. It does not use any event log file from

OMNeT++ to parse and run post-simulation. It is rather a part of the

simulation process, where the user can step-by-step see the simulation execu-

tion in real-time. It is done by a Tcl/Tk based user-interface called Tkenv.

When the simulation is initiated, the simulation controls showing the details
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Figure 3.4: An image of an OMNeT++ Tkenv sample.

of simulation execution opens up in a window. In addition another interface

window is opened, displaying the visualised topology. The display scene is

in 2D (x, y) where the topology is assembled and viewed. The NED file con-

tains information about what the topology should look like with a @display

property [52].

The visual look in Tkenv is completely user controlled pre-simulation [52].

Rather than having hard-coded visual figures for nodes like in NAM, iNSpect

and Huginn. One can import just about any graphical icon or geometrical

shape of various colours in Tkenv. Connections between nodes are shown

as lines in wired scenarios or as a transmission ring for wireless scenarios.

Background images can be added to give context to the visual simulation, just

like in iNSpect. Due to the high degree of customisation it is recommended to

view the OMNeT++ manual, chapter 10 for further information [52]. Please
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refer to Figure 3.4 to see an example of OMNeT++ in action. Just like

NAM, Tkenv pushes alot of the animation complexity on the user.

Nodes in Tkenv can be manually laid out using a tag in the @display prop-

erty of a module. If this is omitted, Tkenv attempts to automatically layout

the network topology using the SpringEmbedder algorithm of Eades [38].

The manual notes that it can produce “funny” or “erratic” results depending

on the number of nodes or size of modules [52]. The user can re-layout the

topology by clicking a button. This layout scheme is similar to the one used

by NAM and highly popular in many general network analysis tools [8–10].

Tkenv gives the option to zoom in and out to view certain areas in

more detail and also inspect model information, component types, messages,

queues, nodes, connections, etc. Since the simulation environment is run-

ning in parallel with the visualisation support, the latter has access to all the

data structures needed to show almost every aspect of the simulation. For

this reason, simulations do not seem to be able to be played backwards, nor

does one have a timeline to choose specific timestamps that one might be

interested in.

In this section, we have briefly described the default option for visualis-

ing simulation runs in OMNeT++. Recently, a visualisation extension for

OMNeT++, called OmVis [53] has emerged. It offers a parallel multi-view

approach to observe simulation runs both in space and time [53]. However,

only one paper has been written about it and there is no binary, source

code or documentation available as of yet. But it does show, that there is

still a need for visualisation tools to aid in the development and analysis of

protocols and algorithms prior to and after simulations.

The next section summarises this chapter.

3.3 Summary

In this chapter, we have given an overview of the visualisation options for

NS-2 and OMNeT++. In the next chapter, we try to use what we have

learned from these previous efforts.
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Chapter 4

Design

In this chapter, we present the design of our visualisation tool prototype for

viewing network topologies and OMNeT++ simulation data.

We begin this chapter by giving an introduction to the ideas behind the

visualisation tool in Section 4.1. Next, we present the design overview for the

visualisation tool in Section 4.2. We then move on to discuss the design of

each main component in our prototype visualisation tool, in turn. Starting

with the data model component in Section 4.3 and then the visualisation

component in Section 4.4. Lastly, we summarise and discuss the design in

Section 4.5.

4.1 Introduction

In Section 2.2, we saw that visualisations can help in gaining insight and

understanding about problems. However, designing a visualisation tool is

not a trivial task, as the user has to be informed by the visualisation. As

Card et. al. stated: “The purpose of visualization is insight, not pictures” [6],

page 6. Furthermore, as outlined in Chapter 3, there have been several

visualisation tools created for viewing simulation data. Such tools gives the

user a multitude of dynamic and interactive options to solve many tasks.

To better aid the researcher to post-analyse OMNeT++ simulation traces

and OpenSM-defined network topologies, we propose a stand-alone prototype
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visualisation tool, named IBSimVis. It is designed to offer a dynamic visu-

alisation of network topologies and OMNeT++ simulation data. From this

chapter, and the rest of this thesis, we refer to the prototype visualisation

tool we have designed and implemented, as IBSimVis.

4.1.1 Usage scenario

As illustrated in Figure 4.1, the typical usage scenario is the following. The

user wants to study a network topology or results from a simulation run. The

user then inputs the network topology, routing table and simulation data to

IBSimVis. IBSimVis then initialises and offers an interactive view of the

topology, its entities and attributes. The user can then interact with the

topology, changing views as needed, for both exploration and analysis.

User

Simulation

IBSimVis

Network topology, 

routing tables,

simulation data

Interaction

Insight, information, understanding

Figure 4.1: Usage scenario for IBSimVis, showing a simple usage flow, where
data is input to IBSimVis, returning a visualisation for the user to interact
with and gain information from.

4.1.2 Characteristics and requirements

There are many challenges in creating visualisation tools. But the informa-

tion a user gains from using a visualisation tool, can be of great value. The
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basis for our design requirements is the common characteristics that the re-

lated visualisation tools, introduced in Chapter 3 exhibit. Based on those

tools, we have isolated the following characteristics:

1. Ability to view network topology in 2D or 3D

2. A strategy to layout the network topology

3. Ability to inspect entities and their attributes

4. Ability to differentiate between nodes, using various encoding mecha-

nisms

5. Ability to view the packet transmission process

6. Ability to playback simulation data

Another characteristic, that had an impact on the design of IBSimVis,

is that all related work, with the exception of visualisation in OMNeT++,

are stand-alone applications. Stand-alone application means that the tool is

not part of a framework or integrated in the simulation environment. The

reason why we have created IBSimVis as a stand-alone tool is discussed in

Section 4.2.

Due to the large amount of different simulation events occuring in simu-

lation data, we have decided to limit the design of IBSimVis to only being

able to visualise simulation message transmissions. That is, we have con-

sidered strategies to parse and detect events related to sending, forwarding,

dropping and receiving messages. The same limitation exist in related work

for the same reason. For example Huginn, iNSpect and NAM can only visu-

alise transmission processes and inner state of network nodes. We leave it as

future work to visualise all aspects of an OMNeT++ simulation event log.

From the aforementioned characteristics and by looking at the problem

domain, we have extracted a list of functional requirements and features that

we want IBSimVis to have. These requirements are, namely:

• Read topology data files, routing table files and simulation trace files
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• Layout the network topology

• Provide presentation and interaction of network topology in 2D or 3D

• Provide the user with a GUI to filter data, manipulate simulation play-

back and change views

The requirements are not only consistent with the reviewed related work,

but also general graph visualisation tools, that have only been mentioned

briefly. Such as Gephi [8] and Cytoscape [9]. Bastian et. al. state that the

most important requirements for a network exploration tool are: “high quality

layout algorithms, data filtering, clustering, statistics and annotation.” [8],

coupled with a modern user-interface [8].

A key consideration when designing IBSimVis, was to give the user the

ability to quickly get a visualisation of the network topology. So the user

can immediately start to analyse and explore it. We want novices that are

not acquainted to the topology or simulation scenario, and experts to easily

get started with IBSimVis. To achieve this, we want an extensive GUI to go

together with the topology visualisation for changing views and data filtering.

Contrary to for example Huginn, requiring the user to pre-configure aspects

of the visualisation using a flowchart editor. We also want the inner workings

of IBSimVis, to be as transparent to the user as possible. This consideration

is reflected in our design and implementation of IBSimVis.

Among the requirements, one of the major challenges is to be able to vi-

sualise the network topology. In related work, we saw that the central visual

element of all the tools, was the ability to present a network topology. As

mentioned in Section 2.1.1, not only do we want to be able to visualise both

regular and irregular topologies, we also want IBSimVis to be able to scale

and handle large networks. The size of a topology and the time complex-

ity in layout algorithms pose serious design and implementation challenges.

These challenges are discussed in Section 4.3.3. To alleviate the network size

problem, when visualising a network topology, we want to explore the use of

3D, since it gives the ability to encode data in another dimension. The use

of 3D also gives additional challenges to presentation and interaction, which

we discuss in Section 4.4.1 and Section 4.4.6.
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Furthermore, we also want to consider the users perception of a visualised

topology. Consider Figure 2.1c. In literature, this is the standard approach

in drawing Fat-trees, see [13] (Figure 1.23b) and [14] (Figure 2). This fig-

ure shows a tree with k root nodes, connected to k switch nodes in n levels,

with k processing nodes, connected to the switches at the lowest level. What

happens to the understanding a user has of a given Fat-tree, when the topo-

logical layout changes radically? It may destroy the “mental map” a user has

of a topology [32], forcing the user to re-learn the topology. We discuss this

in Section 4.3.3.2.

Section 4.3.1.2 addresses a parsing challenge, how IBSimVis handles the

simulation, as it changes over time. This has an impact on our parsing

strategy and communication between components, as the simulation model

requires that enough events have been recorded in advance [45]. Another

challenge is to correlate events, assuming enough data has been read in ad-

vance from the simulation trace file, discussed in Section 4.3.1.3.

In information visualisation, a crucial aspect is giving the user the ability

to view data not only from different angles, but also in different contexts. As

mentioned in the requirements, we refer to this as changing views. A view in

IBSimVis is an user-selectable feature for viewing data in different contexts.

Entities remain the same, but different encoding mechanisms may be applied

to them, depending on the chosen view. For example, the normal view offers

the standard glyphs, used for printing on paper or presentations. While, se-

lecting the NumPath view, shows path distribution over the topology, giving

the user the ability to see potential choke-points in the topology. Views are

discussed in Section 4.4.7.

The characteristics and requirements introduced here, in addition to the

select challenges we have mentioned above, all have an impact on our design

and are discussed in this chapter. In the next sections, we introduce the de-

sign overview of IBSimVis and discuss design decisions of main components.

We start by showing the design overview of IBSimVis.
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4.2 Design overview

Early in the design process, we decided that IBSimVis should be a stand-

alone application, seperate from the simulation environment. Alternatively,

it could have been built on top of OMNeT++, offering real-time visualisation

of simulations. We decided against this, because getting acquainted to the

inner workings of OMNeT++ would have taken a long time and because we

did not want IBSimVis to be tied to a specific IBA simulation tool, instead

giving the option to work with other IBA simulation tools in the future.

Routing data

Topology data

Simulation data

Data Model Component

Layout

TopologyParser

Visualisation Component

IBSimVis

Visualisation

GUI

Graphics Engine

Figure 4.2: Design overview, showing components and inter-component com-
munication.

IBSimVis is considered the main application, which controls all the inter-

nal components. The main application consists of two main components, as

illustrated in Figure 4.2, namely: the Data Model Component (DMC) and

the Visualisation Component (VC). Each main component addresses one or

more of the issues in information visualisation: representation, presentation

and interaction. The DMC contains all the entities, their representations

and strategies for parsing data. In addition, it helps facilitate presentation
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of a network topology. The VC takes care of presentation and interaction.

Furthermore, each main component consist of subcomponents, each handling

specific tasks, linked to the requirements mentioned in Section 4.1.2. For the

DMC, the subcomponents are:

Parser Parses topology data, routing data and simulation data. A compo-

nent such as the Parser is needed to create the entities that we want to

represent and read simulation data.

Topology Main datastructure for IBSimVis. Keeps track of both static

and dynamic entities. Calculates and maintains statistical data de-

rived from both static and dynamic data, such as path distribution

and packet counts. This statistical data is the basis for IBSimVis’s

ability to change views.

Layout Handles the presentation of graph structures, by calculating the

layout of nodes, using force-directed drawing algorithms, covered in

Section 2.3.5.

For the VC, the subcomponents are:

Graphics Engine Contains encoding mechanisms for entities and values in

Topology. Able to render and display a visualisation of static topology

in 2D or 3D.

GUI Handles interaction between the user and the visualisation. Gives the

user the option to change to different views and filter values, both

spatial and temporal in nature.

The reason for the division into only two main components is that as

mentioned above, we wanted to keep the design as simple and lightweight as

possible. Furthermore, each subcomponent handles specific tasks or issues

connected to the requirements mentioned in Section 4.1.2. We also believe

the component division is intuitive in regards to the information visualisation

process, mentioned in Section 2.2 and shown in Figure 2.7.
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Before initialisation, the user adds topology data, routing data and simu-

lation data as parameters to IBSimVis. Topology data contains information

about nodes, links and ports in the network topology, i.e. the data type

is structural relations. Routing data contains the LFT for all switches in

the subnet. Simulation data contains information about a simulation run.

Furthermore, we refer to the topology data and routing data as static data.

Simulation data is referred to as dynamic data. Depending on the simula-

tor network model, simulation data can be different in every simulation run,

even with the same set of static data. (e.g. links or nodes randomly dropping

packets)

After intitialisation, the Parser identifies and creates entities based on the

static data, by adding them to the Topology. After topology data has been

read, it invokes the Layout component in an own thread, while continuing

to read routing data in the main thread. The Layout component is invoked

with the default implemented layout-algorithm. While routing data and lay-

out is being applied on the static topology, the Parser commences to buffer

simulation data, so that it is ready for display when the visualisation is ready.

After layout has been applied to the static topology, the VC is invoked, by

taking the Topology as a parameter and communicating to both its subcom-

ponents to create the visualisation. An event loop is created, listening for

user interaction and handling input appropriately.

Since IBSimVis is a stand-alone application, with only two main compo-

nents. Communication between subcomponents is done via direct function

calls, by passing object pointers or references. This makes communication

overhead very low. Contrary to for example Huginn, which essentially con-

sists of three different programs, with different human-readable text-based

communication protocols between each step in the UNIX-like pipeline [54].

The advantage with this is that debugging is made easier [54] at the cost

of communication overhead, such as parsing the text-based protocol. Thus,

since we want IBSimVis to be as fast and lighweight as possible, we do not

use the approach mentioned above and do not discuss communication be-

tween subcomponents in more detail. However, communication between the

two main components, the DMC and the VC poses some design decisions,
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covered in Section 4.4.5. Next, we move on to discuss the design choices and

challenges in the DMC.

4.3 Data Model Component

In this section, we discuss the design choices made for the Data Model

Component (DMC). We discuss issues and challenges we had to consider

in each subcomponent, mentioned above. Next, we discuss each subcompo-

nent in the DMC, starting with the Parser subcomponent.

4.3.1 Parser

The Parser component parses data, identifies and creates entities. The input

to the Parser component are files, containing topology data and routing data

from OpenSM. In turn, the data from OpenSM was created from simulating

an InfiniBand fabric, using IBMgtSim. The input to the Parser component

also include simulation data from OMNeT++. The format and semantics

of these files are described later, when we describe how we implemented the

Parser, in Section 5.3.1.

The Parser component has three main tasks:

1. Parse the topology data from OpenSM/IBMgtSim.

2. Parse the routing data from OpenSM/IBMgtSim.

3. Parse the simulation data from OMNeT++.

To reduce inter-component communication overhead, we want the Parser

to directly communicate with the Topology for creating and manipulating

entities. Thus when intiating the Parser, it takes the Topology as a param-

eter. This way, the Parser can call on the exposed interface of Topology to

create and manipulate the entities directly with minimal overhead.

Parsing (or syntactic analysis [55]) of static data is a straight-forward task.

Nodes, ports, links and their structural relationships are clearly defined in the

topology file. In addition, LFT entries in the routing table file have a clear

57



relation to each switch. Parsing static data is only done once, at the initialisa-

tion step of IBSimVis. Parsing the OMNeT++ event log is made easier since

the grammar of the event log is readily available in the manual [52] (Chap-

ter 25), in Backus-Naur Form (BNF) [56]. Since the formal grammar for the

event log is defined, we want to use a scanner to tokenise data input and send

it to a parser generator to parse the dynamic data. Note that it is outside the

scope of this thesis to cover parsing techniques. For a formal introduction to

parsing and parsing techniques, we refer to the book by Grune et. al. [55].

Parsing simulation data still rise some issues. First, because the size of this

data can be substantial and can not be kept in memory at the same time [45],

even when abstracted into data structures with low memory footprint. Sec-

ond, because the start-up delay of the visualisation can be long [45]. Third,

because the semantic and structure of the simulation data file is not straight

forward [45]. (e.g. there might be several thousand different, small events

between a source node transmitting a packet and the sender receiving the

packet) Among the reviewed visualiation tools introduced in Chapter 4, only

Huginn and the article by Scheuermann [45] describes challenges in parsing

simulation data. Thus, we often refer to strategies introduced in that article.

In the next sections, we discuss issues and challenges around a general file

format for IBSimVis and parsing the simulation data file.

4.3.1.1 General file format

As mentioned above, IBSimVis has to be able to handle three different file

formats to visualise static and dynamic data. This is unavoidable when

processing data for a given simulation run for the first time, as we have no

control over the applications that IBSimVis depends on.

However, if the same topology and simulation is considered several times,

a general file format for visualising the simulation run would be advanta-

geous. A possible approach is used in NAM and iNSpect. As mentioned in

Section 3.1.2, iNSpect has its own optional file format for showing visuali-

sations, named vizTrace [49]. The main motivation for the vizTrace format

was that MANET research used many different simulation tools [49]. The
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vizTrace file format consists of six fields that describe each event to create

the visualisation, in the form of:

[NodeID] [timestamp] [sending to|received from] [NodeID]

[source|forwarding|destination] [PacketID]

The vizTrace file needs to be coupled with a file describing the topology, such

as a mobility file [49], as such data is not present in the vizTrace format.

The advantages of this approach is that it minimises the overhead re-

quired to initialise and start the visualisation, as all events have already

been disseminated and grouped. In fact, any simulation tool could output

such a file format and IBSimVis would be able to visualise the simulation.

The general file format would be smaller in size, than the combined size of

the three input files to IBSimVis. The drawback is that a general file format

in a form similar to the vizTrace format, would be too simple to be used as

a basis for analysis and evaluation. For this reason and the fact that the

amount of simulation tools used for InfiniBand networks are very limited. In

addition, to time constraints, we opted against defining a general file format

for IBSimVis, leaving it as future work.

4.3.1.2 Simulation data look-ahead

All static data is required to be read, for IBSimVis to understand what the

network topology looks like. For simulation data, however, we do not want to

pre-process the simulation data prior to visualisation. As mentioned earlier,

because the start-up delay is increased by parsing and analysing possibly

millions of simulation events [45]. And second, because of excessive memory

consumption [45]. Therefore, we need an approach to both parse and visualise

the simulation data with as low start-up cost as possible, while at the same

time making sure that the DMC has enough information for the visualisation

to show the next few frames.

One approach would be to simply parse the simulation data line-by-line

in real time, keeping track of the current time of the trace file and comparing

this to the timeline in the application. The start-up cost would be non-

existant and it would give the user a sense of real-time simulation. However,
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this method is made impractical due to the fact that events in a trace file are

not grouped. (e.g. a packet transmission might span thousands of lines and

then be dropped.)

Another approach is to introduce a look-ahead when parsing the simula-

tion trace file, to model the internal network state ahead of the visualisation

timeline [45]. At the cost of a little start-up delay, to read a certain amount

of simulation data ahead, one can visualise events when they occur, since

the tool has an overview of the network model a certain time ahead [45]. A

question then arises, how long should this look-ahead be?

We can get a possible solution for this answer by looking at previous

work. Huginn uses a solution, where the look-ahead is defined as the upper

time extent of the lowest layer transmission in the simulation, the Media

Access Control (MAC) layer [45]. Scheuermann defines ts as the current

visualisation time and L as the look ahead, “a span of time longer than the

longest MAC layer transmission in the trace file” [45], Section 5.1. So the

parser in Huginn is always ts + L ahead in the trace file, compared to the

visualisation [45]. It is unclear if L is pre-computed by parsing the trace file

(thus finding the longest MAC transmission in advance, prior to visualisation)

or L is initially set and updated during parsing. Regardless, we decided to

use a similar approach to Huginn in IBSimVis, as line-by-line reading is

impractical and can make the implementations of the DMC and the VC

complex. L in our Parser can either be set by the user or set intially by the

program, then updated during parsing when it finds a complete InfiniBand

packet transmission taking more than L time. IBA packets do not carry

information about timeout in their header [16], otherwise we could use this

as an upper bound of L. The challenge of grouping trace file lines into events

to be visualised, is covered next.

4.3.1.3 Event correlation

After the Parser component has made sure that relevant simulation events

have been parsed, one needs to group related simulation events into a cause-

and-effect group [45]. Events in the event log are not grouped, meaning that
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a message receive event might be thousands of lines after a message send

event. That is, for the visualisation to be able to show the complete history

of a packet, from source to destination, it needs to know which message

events that correlate. The VC needs to know from which node the message

was sent and at which node it was received. It also needs to know whether

the message was dropped in either of the two switches in the example. We

want to use the messageId field in the OMNeT++ event log, initiated by

the BeginSend (BS) event [52]. The messageId is unique during an entire

simulation run and can be tracked when it is deleted or any other message

event is recorded. Another solution to this, presented by Scheuermann [45],

is to compare fields in the message header, requiring the parser to read the

header of IBA messages, in addition to the event trace itself. This has the

disadvantage of being potentially slow, since one has to compare each message

header to every other message header.

4.3.2 Topology

The Topology is the central component in the DMC and contains data struc-

tures that keeps track of all the entities and their attributes. In addition,

it calculates statistical data derived from the entities and simulation. As

mentioned in Section 2.2.2, entities are abstractions contained within data.

These entities have a structural relationship, which can be modelled as a

graph, making up the network topology.

4.3.2.1 Entities

Previously, we have mentioned what the Topology component does and how

it communicates with the other components. Here, we briefly introduce the

entities that are present in the Topology component, namely:

Node Models either an InfiniBand CA or switch, introduced in Section 2.1.3.

Contains a list of ports and the LFT.

Port Attached to nodes, contains information about what link it is con-

nected to.
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Link Models a bi-directional physical link in an InfiniBand network, intro-

duced in Section 2.1.3. Connected to two ports, each connected to a

different node each.

Message The main method of communication between nodes. A message

is produced and consumed by nodes and travel over links.

The Node, Port and Link entities are contained within static data, show-

ing the structural relationship in an InfiniBand network. Messages are dis-

seminated by the Parser component from dynamic data.

4.3.3 Layout

The Layout component of IBSimVis, has one requirement, based on the char-

acteristic shown by for example NAM and OMNeT++, both employing a

similar approach to layout network topologies, namely the force-directed ap-

proach. The requirement is to handle the presentation issue of a network

topology, that is, how to display it in a way so that it is easy to understand.

Here, we discuss design considerations of the Layout component, which im-

pacts our implementation, described in Section 5.3.3.

The Layout component is designed to contain a set of implemented force-

directed layout algorithms. It takes a graph maintained by the Topology

component as input, and outputs a layout for the graph as points in 2D or

3D space for each node, by directly manipulating the position of the nodes.

It follows that, if the nodes are placed, then the links between them also

know where to start and where to end. Other components can invoke the

Layout component when they need a layout applied to a graph. For example,

it may be configured prior to initialisation and run during initialisation of

IBSimVis. The Layout component may also be called by the GUI, to either

apply a new layout algorithm or re-layout with the same algorithm.

As mentioned, this component has one essential task, being able to layout

a network topology. To do so, we employ a force-directed layout approach,

introduced in Section 2.3.4.3 and the reason for our approach was discussed

in Section 2.3.5. In addition, both NAM and OMNeT++ use a similar ap-
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proach [43,52], giving a good presentation of the network, when the number

of nodes and links in it is small. However, since we are going to deal with sim-

ulated networks with hundreds or thousands of nodes, we need to take into

consideration the challenges introduced by Herman et. al. [31], mentioned

in Section 2.3. Namely those of graph size, time complexity and predictabil-

ity. We take a look at those layout challenges next, and how they relate to

IBSimVis.

4.3.3.1 Topology size and time complexity

As mentioned in Section 2.3.5, force-directed layout algorithms generally take

a long time to run. Some implementations may take up to O(|V |3) time to

process [36]. So the larger the topology is, the longer it takes to converge to

the equilibrium configuration. The reviewed force-directed layout algorithms

such as the one by Fruchterman and Reingold requires at least O(|V |2+ |E|),

per iteration [40]. The multilevel algorithm by Walshaw requires the same

as the Fruchterman-Reingold algorithm, in addition to the time complexity

introduce by the multilevel approach [29], although the graph coarsening step

only happens once.

There is little we can do to reduce these demands for computation time,

as to the best of our knowledge, there are no parallellised version of these

algorithms. If there are, we leave it as future work to add parallellised force-

directed layout algorithms to the Layout component. However, we can intro-

duce visual elements that shows how far the layout algorithm has progressed,

such as a progress bar. Another approach is to introduce options to the lay-

out algorithm, by enabling the user to adjust layout algorithm parameters,

reducing the computation time. For example, by reducing the cooling tem-

perature or increasing tolerance of the multilevel force-directed placement

algorithm of Walshaw, described in Section 2.3.5.2, the number of iterations

needed for the graph to converge, decreases [29].
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4.3.3.2 Predictability

As mentioned earlier, it is possible that a layout algorithm may produce

very different layouts during two seperate layout computations on the same

graph. Especially if the graph changes. For example, if a node or link goes

down and the layout is recomputed, the new equilibrium configuration may

offer a dramatically different visualisation of the network topology [57]. In

turn, rendering the visualisation unusable, since the user might have become

“lost” [57]. As mentioned earlier, another disadvantage of the force-directed

approach is that the user may require to use time to re-learn any new layouts,

breaking the “mental map” [32] the user had of the network topology. As

an example, assume that the graph in Figure 4.3a has been created with a

force-directed layout algorithm. Adding the edge (A,C) and re-applying the

same layout algorithm, may create a layout such as the one in Figure 4.3b.

Requiring the user to re-learn the structure and node positions.

A

D

B

C

(a)

A

C

D

B

(b)

Figure 4.3: Adding an edge, (A, C) and re-applying a force-directed layout
algorithm destroys the mental map. Adapted from Figure 4 in [32].

A possible solution to this issue is to introduce a layout file format, to

the set of static data files, as optional input to IBSimVis. Alternatively,

modify existing topology data file formats to include node positions in its

definitions. Where the user the user can pre-define a layout complete with all

node positions, similar to the approach used in both NAM and OMNeT++.

Or let the user save a computed layout of a network in the layout file. This

has two advantages; it saves start-up time by not having to run costly force-

directed algorithms on a topology more than once, and the user does not
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have to re-learn how the network topology looks like. The Parser component

can easily be extended to read this layout file. A drawback is that the user

has yet another input file to keep track of, even when using the OpenSM

topology data file format, as this would not be usable by OpenSM again.

Another solution is to introduce a layout cache, transparent to the user.

The layout cache would write to the users home directory, preserving node

locations after a given layout algorithm has been run, mapping the input file

to the layout cache. Due to time constraints, we reserve defining layout file

formats or layout caches as further work.

4.4 Visualisation Component

The Parser component is responsible for identifying the entities and at-

tributes according to the semantics given in both static and dynamic data.

The available entities we want to represent are introduced in Section 4.3.2.1.

Entities may contain attributes that we want to visualise.

How to represent and display these entities and their attributes, is the

task of the Visualisation Component (VC). It handles the conversion from

entities to visual objects by applying various encoding mechanisms, such as

the ones mentioned in Section 2.2.1. Furthermore, its subcomponents, the

Graphics Engine displays the symbols (visual objects) to the user. While the

GUI offers options for giving extra information about visual objects, allowing

data filtering, interaction, simulation playback and statistics. The Graphics

Engine and GUI in IBSimVis use high-level abstractions from third-party

libraries, introduced in Chapter 5. We move on to discuss the design issues

and challenges of the VC. Starting with a look at the presentation problem

in information visualisation, by deciding to visualise in 2D or 3D.

4.4.1 2D or 3D?

In Section 2.2.2, we saw that one of the main problems with presentation is

the lack of display space. As mentioned earlier, in IBSimVis and the reviewed

related work, the view of the network topology is central to the visualisation.
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Looking at the tools in related work, most use a 2D layout for the topol-

ogy. With the exception of Huginn, that uses 3D but the topology itself is

drawn in a 2D scenario. The third dimension used for statistical data in the

form of bar charts [45]. The main drawback of a 2D layout is the amount of

zooming and panning needed to navigate the topology.

To increase the available display space, 3D instead of 2D techniques have

been suggested [6,21,31]. First of all, as we mentioned, 3D offers more space

due to the extra dimension [31,58]. Second, our world is in 3 dimensions and

it is easier for us to relate to [58]. Third, it is easy to extend force-directed

layout algorithms to 3D [29, 31, 40]. Another argument to presenting the

visualisation in 3D, is to offload visualisation calculations to the Graphics

Processing Unit (GPU), leaving Central Processing Unit (CPU) resources

free for other tasks.

There are several drawbacks when using 3D. On a display screen, we

render 2D projections of 3D scenes [58]. The infinite possible viewing angles

makes it hard to deal with edge crossings [58]. Although a layout algorithm

does not produce edge-crossings in 3D, it is hard to avoid when viewing it.

Navigating in 3D is difficult to handle in a user-friendly way, due to the six

movement directions [6]. In addition, 3D tools can be harder to implement

than their 2D counterparts [6].

A compromise between a 2D and 3D topology layout could be done,

giving the user an option to switch between them. For example, by “flat-

tening” the topology, by setting the z-value to 0, placing nodes according

to position(x, y, 0). Or by providing 2D and 3D implementations of layout

algorithms.

Due to the advantages mentioned above and the fact that 3D visualisa-

tions tend to be visually exciting [6], we have decided to make IBSimVis

able to display a network topology in 3D, with the ability to switch to flat-

tened 2D layouts if the user wants to. As Fruchterman and Reingold put

it: “In summary, a three-dimensional layout stands or falls according to the

preference and expectations of the user.” [40], page 1156. In the end, 3D is

the default and preferred view in IBSimVis. Note that we do not extensively

cover the background and challenges around 3D rendering and programming,
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even though we do use and refer to some basic terminology. For more infor-

mation about those topics, we refer to the the books by Foley et. al. [59],

Akenine-Moller et. al. [60] and Schreiner et.al. [48].

4.4.2 Choosing the background

The network topology is central to our visualisation. To be able to discern

glyphs in the network topology visualisation, some care must be taken to

choose a background that contrasts with the glyphs to make them preatten-

tively distinguished. In general there are two main approaches.

The first is a static coloured background colour, such as white, seen in

iNSpect, OMNeT++ and NAM. The choice of background colour is based

on personal preference. The only criteria is that glyphs encoded with colour,

needs to contrast well with the background [21], for this black or white are

suggested [21].

Another approach is to have a texture as a background, given that the

texture is able to contrast colours and possibly other textures well. An advan-

tage is that it could also help give context to the visualisation. For example,

OMNeT++ and iNSpect allows a custom texture background [49, 52]. Hug-

inn has a texture background of a mountain range, as seen in Figure 3.3.

Textures can be helpful, giving context to the visualiation. A texture of a

mountain range might give context to a search-and-rescue scenario where

nodes transmit to eachother or a desert texture might give context to a mil-

itary scenario, simulating communication between military units.

We decided to go with a black background, because it contrasts well with

the colour set suggested by Ware [21]. We believe that the alternative, a

textured background in IBSimVis is not applicable to our simulation setting

or scenario.

4.4.3 Supported encoding mechanisms

As mentioned in Section 4.4.1, we are going for a 3D approach. The actual

transformation of entities to graphical primitives is handled by the Graphics

Engine, typically using high-level abstractions, calling a low-level graphics
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API such as OpenGL or Direct3D. It is the job of the VC, to decide what

the glyphs look like. Here, we briefly mention the supported encoding mech-

anisms the VC is going to handle.

IBSimVis supports the most common encoding mechanisms mentioned

in Section 2.2.1. Namely, position, size, colour, texture, shape and orienta-

tion. The reason for this is that they are easy to implement and their visual

properties make them easy to distinguish from each other [21]. These encod-

ing mechanisms, are the basic building blocks of our visualisation. However,

the choice of which encoding mechanism to apply to which entity or values

connected to entities is open to debate. We discuss this in the next section.

4.4.4 Entity representations

So far we have introduced the entities that exist in the DMC, and what en-

coding mechanisms that are supported in the VC. Here, we discuss what

encoding mechanisms we want to apply to a given entity, to create its glyph.

As mentioned in Section 2.2.1, it is desirable for glyphs to be preattentively

distinct from each other. Thus, we have decided to create one basic rep-

resentation per entity. These representations might change depending on

what type of view the user decides to choose. The entities are covered in

Section 4.3.2.

Nodes can be one of two types: CA or Switch. These are perceived as

different, so we need to represent them differently. There are several ways

to do this. One, is to use colour, for example green for switch and red for

CA. Another, is to use different shapes, such as a cube for switch and sphere

for CA. In literature, we saw a similar approaches. Dally showed switches as

squares and terminals as circles [12]. Kurkowski et. al. used spheres for nodes

and coloured them according to state [49]. And Huginn represented nodes

as cones [45]. Another approach is to use textures to show the difference.

A switch might have a texture that looks like a switch and a host a texture

that looks like for example a normal PC. We decided to join the approaches

by Dally and Kurkowski et. al., in addition to extending the representations

to 3D, by representing CAs as coloured spheres and switches as coloured
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cubes. Mainly because these encoding mechanisms are simple to implement.

In addition, texture encoding needs texture files, requiring creative skills that

we do not posess.

Ports can be represented as small, coloured shapes attached to a Node.

Alternatively, we can omit them from the visualisation, due to their small size.

We have no effective method of distinguishing them from each other, since

the number of ports on a Node can be high. As mentioned in Section 2.1.3,

switches can have max 256 ports. Not only would a switch look cluttered,

if we represented them as shapes and attached them to the Nodes, placing

them around a cube in a smart way, is a challenge in itself. Thus, we have

decided to omit representing Ports in the visualisation, instead adding them

to an information table in the GUI, when the user selects a Node.

Since we use force-directed placement algorithms, that utilise straight-

line drawings, we want to represent Links as such. We also want to be able

to encode links with thickness (size) and colour. Thickness may denote the

number of multiple edges between two switches or links that are prone to

congestion. We also want to be able to both connect and disconnect links,

as the simulation may change the network topology.

We want to represent a Message as a cube travelling over links from a

source to their destination, this is similar to the Packet building block in

NAM. We want packets to be encoded with colour, depending on what type

of traffic they represent. (e.g. red for MADs and blue for normal traffic) In

addition, they should be able to move along the links, passing through nodes.

4.4.5 Communication with DMC

To be able to create symbols and show changes, one needs a method for

communicating between the DMC and VC. The DMC needs to be able to

inform the visualisation of what entities look like and if they change during

simulation playback. In addition, the VC needs access to entities and their

attributes. (e.g. a user selecting a node, wants information about that node)

We have observed two main approaches to inter-communication between the

data model and the visualisation.
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ServerClient

XMLRPC

Data model

XMLRPC HTTP

(a) Client-server approach in UbiGraph [61] using XMLRPC,
showing communication between a data model and its visuali-
sation

Data model

Visualisation

entity_query() visual_change()

(b) Direct function call approach used by
NAM, iNSpect and OMNeT++, showing di-
rect function calls between a data model and
its visualisation.

Figure 4.4: Two approaches when communicating between a data model and
its visualisation. One using a client-server approach and the other using
direct function calls.

First, the client-server model used by a graph visualisation tool named

UbiGraph [61]. The server offers visualisation as a service to the client, or

several clients. The communication between the server and client, utilises

Extensible Markup Language Remote Procedure Call (XMLRPC) over Hy-

pertext Transfer Protocol (HTTP) to push changes to the visualisation [61],

as illustrated in Figure 4.4a. The XMLRPC call from the client to the server,

also contains information about nodes or edges, such as a label for their name,
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so the server does not have to query about this when the user interacts with

the visualisation. There are three advantages to this approach. One is that

the client can be distributed on several computers. Second, both the client

and the server are loosely coupled, and thus either can be replaced as long as

the communication semantics stay the same. Third, static entities in the data

model is contained in the visualisation, querying for entity attributes is not

necessary. A disadvantage of the approach used in UbiGraph is the poten-

tial overhead in communication on the server-side, due to parsing Extensible

Markup Language (XML) [61]. Limiting the client Application Program-

ming Interface (API)-calls to 1-2 thousand, compared to 105− 106 API-calls

when calling the visualisation directly [61]. Small changes to the visualisa-

tion might take time, due to parsing delay, especially if the communication

bandwidth is bad and there are alot of changes that happens rapidly. A sim-

ilar approach is used in Huginn, but the communication medium is different,

with Huginn’s EE only pushing visualisation changes to its VE through a

UNIX pipe [45].

The other approach, used by NAM, iNSpect and OMNeT++ is a tight in-

tegration between data model and the visualiation, relying on direct function

calls in software. This approach is illustrated in Figure 4.4b. This has the

advantage that communication overhead is almost non-existent. Changes are

immediately displayed. A disadvantage is, that the tight coupling between

the components makes the system less flexible. We decided to go for the latter

approach, since implementation is easier and the potential amount of events

in the data model that needs to be pushed to the VC might be substantial.

Mainly because our problem domain is concerned with simulating high-speed

InfiniBand networks. Although, the advantages to the former approach are

very interesting, we leave this as a future extension to IBSimVis.

4.4.6 Presentation and interaction techniques

Here, we briefly mention the presentation and interaction techniques used in

IBSimVis and briefly discuss some design considerations. For the implemen-

tation details, we refer to Chapter 5.
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In IBSimVis, we use geometric zoom. However, it would be interesting

to explore the use of semantic zoom. Zooming in with semantic zoom, can

for example show the internals of switch entities, with buffers filling with

messages, going through ports or even simulation aspects of even lower gran-

ularity. However we reserve this as further work, since the use of semantic

zoom requires alot more design and implementation considerations, which is

outside the scope of this thesis.

As mentioned in Section 4.1.2, using 3D gives additional challenges to

presentation and interaction. To be able to view more than a 2D presentation

of a 3D model, we need to add the ability to rotate around the model. We

argue that rotation, coupled with zooming and panning is enough to navigate

the 3D environment.

In IBSimVis, we want users to be able to select entities in the visuali-

sation, to get more information about them. This is similar to the tools in

related work, where nodes could be selected and one would get information

about their internal state. We do this by introducing the Entity Selection

Query. Nodes and links, the main glyphs in our visualisation, can be clicked

on by the user and information about them queried for. Selecting nodes in

3D space poses several challenges, which we tackle in our implementation.

Features deemed important in any visualisation tool, is not only being

able to view data from different angles, but also to choose whether to do so.

As mentioned in Section 2.2.2, data filtering is of utmost importance to any

visualisation tool. As an example, Huginn has an entire pre-configuration

step using a flowchart editor for filtering data. In addition, the more general

graph visualisation tools such as Cytoscape and Gephi, have data filtering as

a core feature [8, 9]. Data filtering is important in IBSimVis, since we want

to visualise network topologies, where nodes and links occlude each other.

As Card et. al. put it: “Visual representations of generalized graphs of even

modest size tend to look like a ball of tangled string” [6], page 187. There

is little we can do to untangle the ball of string, as the layout algorithm

we have applied already has attempted to do so. However, we can make

patterns come out more clearly by giving the user the option to filter data.

In IBSimVis, the user is able to filter data using Dynamic Queries, by for
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example dragging sliders in the GUI or tweaking number filters.

A common characteristic among the tools in related work, is the ability to

do simulation playback. The interactive element of this, is commonly shown

as a timeline slider. Allowing the user to manipulate the timeline slider,

enables the user to skip to an arbitrary point in simulation time. However,

a timeline slider poses a number of challenges. Not only, because the time

granularity of packet transmissions, in InfiniBand networks can be as low as

nanoseconds. We already presented the design of the Parser subcomponent

in Section 4.3.1. Assuming the DMC and VC has enough data to visualise

given time slices, there are more challenges. For example, playing forwards in

a linear fashion. Alternatively a FlexTime approach used in Huginn could be

used, where simulation playback increases, based on the numbers of events

occuring ahead in time. Consequently, slowing down simulation playback

when there are numerous events. Skipping to an arbitrary point in time

also poses several more issues, in regards to parsing strategies. In IBSimVis,

we want to implement a simple timeline to playback simulations in a linear

fashion, leaving other playback features as further work. For strategies to

handle problems related to playback of simulations, we refer to [45], Section

5.

4.4.7 Views

In this section, we present the views that we want present in IBSimVis.

While the number of different views can be many, we have chosen three

based on user needs. These can be considered important when considering

the performance of for example, routing algorithms. Only one of the views

described below, can only be used to analyse static data. The other two, can

be used when viewing simulation when it changes over time.

4.4.7.1 Normal

The normal view is shown by applying encoding mechanisms, with default

values to the entities.
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4.4.7.2 Routing

The routing view can be selected if the user wants to analyse routes between

two CAs. In the GUI, it shows details about each hop in the route. And in

the visualisation, the route between the CAs is shown by colouring the links

green. To limit the effects of occlusion in 3D, only the links in the route and

the nodes involved in the hops, in addition to their closest neighbours are

shown. The rest are hidden from view.

The routing view can for example, be used to compare two routing algo-

rithms, by showing the difference in the route. In addition, the NumPaths

view can be applied, showing that paths along the route may be potential

choke-points.

4.4.7.3 NumPaths

The NumPaths view is the most important view in IBSimVis. The purpose

of this view is to show the path distribution in a network topology, which

is calculated by the Topology subcomponent in the DMC. This feature we

consider important, because it is one of the basic tools used when researchers

evaluate routing algorithms.

The NumPaths view is created by encoding all node and link entities

in different colours, based on the number of paths that go through each

link and node. For example, considering a regular fat-tree topology, a view

such as NumPaths can show if a given routing algorithm makes the topology

unbalanced, by encoding the node and links with the most paths in a deep

red colour. This can draw the attention of the user so that he can address

the issue or possibly find bugs in the routing algorithm.

However, two issues arise. One is what intervals the number of paths

should be, assuming the minimum number of paths over a link is linkmin and

the maximum, linkmax. A simple solution to this issue is to take linkmax

and divide by a constant, C. This way, we each interval is linkmax/C. A

drawback of this solution is that if most links in a network topology has

path values closer to linkmin and there is one really large linkmax, most of

the links would be coloured in the same colour. And other important links
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except the one that is linkmax might be overseen. Another solution is to give

the user the ability to set his own path intervals, giving good customisability

and flexibility. However, this could be a tedious process for the user. We

opted for a compromise, to show the former approach as the default, with a

C set to 5, with the user able to optionally tweak the interval values. In the

future, we would like the user to be able to also configure C.

The other issue is how to colour nodes and links according to the number

of paths that go over them. One method is to simply hardcode the colours

according to each interval. The other, is to allow the user to choose his own

colour for intervals using a colour pallette, mentioned in Section 2.2.3. This

issue is also linked to the number of intervals C, considering each interval

is to be assigned its own colour. Ware recommends that the colour set in

a visualisation tool, to between five and ten, because “only a small amount

of colours can be rapidly perceived” [21], page 125. We choose the colour

pallette approach, since it gives the user customisation options and since

such a feature is easily available in most GUI libraries.

4.5 Summary

In this chapter, we have discussed design challenges in developing a proto-

type visualisation tool for OpenSM topologies, routing data and OMNeT++

simulation traces, named IBSimVis. Inspired by tools in related work, we

have introduced the simple design of the stand-alone visualisation applica-

tion. The design is limited to visualising static network topologies and packet

traces from simulation data. It consists of two main components, the DMC

and VC. The main components communicate directly together, using func-

tion calls for minimal communication overhead. Furthermore, the following

subcomponents have been defined, each handling a requirement introduced

in Section 4.2. The Parser component handling parsing of static and dynamic

data. The Layout component handling how to layout a network topology.

The Graphics Engine component handling presentation and interaction of

a network topology in 2D and 3D. And the GUI component handling data

filtering, simulation playback and view change.
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The Parser component in IBSimVis processes OpenSM-defined network

topologies and routing data. It also uses a look-ahead and event correlation

strategy to parse simulation data. The Topology component contains four

main entities: Node, Port, Link and Message. Each representing a different

part of the static and dynamic data input to IBSimVis. IBSimVis features an

interactive 3D topology view on a black background, using a force-directed

layout algorithm to position nodes. There is an option to flatten the topology

into 2D. The VC can encode entities using the shape, colour, size and texture

encoding mechanisms. Interaction techniques included is geometric zoom,

rotation, panning, Entity Selection Queries for selecting entities in the 3D

view and Dynamic Queries to filter data. IBSimVis features a timeline slider

in the GUI, visualising simulation data changes in linear time. In addition,

there are three defined views in the GUI: Normal, NumPaths and Routing

view. These enable a change of context in the 3D visualisation. The Normal

view is the default view, showing entity representations with default values.

The Routing view shows the path from a CA to another CA, hiding the rest

of the topology, except the immediate neighbour links and nodes to each hop.

The NumPaths view shows the path distribution of the network topology.

In the next chapter, we present the implementation details of IBSimVis.

We realise the features summarised above and attempt to tackle the design

challenges introduced in this chapter.
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Chapter 5

Implementation

In this chapter, we present the implementation details of IBSimVis. We go

into detail of how the components we discussed in Chapter 4 were imple-

mented and how they communicate.

Due to time constraints, we had to omit the simulation aspect when imple-

menting IBSimVis. Thus, the current prototype is used for visualising static

properties of OpenSM-defined InfiniBand subnets, such as network topology

and routing tables. The reason why we had to narrow our implementation

down, was the implementation complexity of the 3D and GUI programming,

as we had no prior experience doing this. The ability to visualise simula-

tions is reserved for future work. We believe that our design can aid the

implementation of simulation data visualisation, if done in the future.

The IBSimVis application has gone through two major prototype itera-

tions. In the first prototype we focused on the data structures and layout

mechanisms, while using a simple 3D interface. In the second prototype, we

focused on the visualisation parts, considering various third-party libraries

for handling the GUI and Graphics Engine components in the VC. The sec-

ond iteration required a tight coupling between the VC and DMC, due to the

design of the third-party GUI library we used. In this chapter, we sometimes

refer to either of the two prototype iterations. This is to show that IBSimVis

has evolved during our thesis work. We have also focused on implementation

on the GNU/Linux platform, reserving other platforms as further work. This
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should be no problem, as all utilised third-party libraries are cross-platform

compatible.

We start this chapter by discussing our choice of implementation language

in Section 5.1 and differences from our original design in Section 5.2. Then

move on to discuss implementation details of each component outlined in the

design, in turn. We discuss the DMC implementation in Section 5.3, the

VC implementation in Section 5.4 and GUI implementation in Section 5.5.

When we discuss component implementation, we reflect over choice of third-

party libraries, data structures, program flow and implementation issues,

with some relevant pseudocode or C++ code at select places. Towards the

end, we briefly mention some license considerations. Lastly, we provide a

summary of this chapter.

5.1 Programming language

We chose to implement our visualisation tool in the object-oriented pro-

gramming language C++ [62]. C++ is the most actively used programming

language for developing 3D games and applications. This is evident as 261

of 321 (81.3%) currently listed graphics engines at [63], are implemented in

C/C++ or have bindings to it. This is most relevant since we want to explore

the use of 3D to encode data, as discussed in Section 4.4.1.

In this thesis, we use the Standard Template Library (STL) in C++ and

other C++ standard library features and terminology. In addition to fea-

tures in the future C++ standard, C++0x already present in the GNU’s

Not Unix (GNU) C++ compiler, gcc. For example, the auto keyword used

for type inference. We also refer to and use parts of the Boost C++ library,

which is commonly used for C++ applications [64]. Furthermore we refer

to namespaces such as std, referring to the C++ standard library. In addi-

tion, we also mention some object-oriented programming terminology such

as classes, objects, member functions and inheritance.
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5.2 Differences from design

In Section 4.2, we discussed the design overview for IBSimVis. We discussed

the division into two main components, the Data Model Component (DMC)

and the Visualisation Component (VC), where these two communicate with

each other through direct function calls. One of the main changes from the

design, is how the GUI subcomponent in the VC communicates with the

rest of the application. In our original design, our intent was to make the

GUI component communicate with the DMC through functions in the VC.

However, the GUI library we chose for our implementation changed this.

Therefore, we present a new component design overview in Figure 5.1. The

original design overview is shown in Figure 4.2. This time, the GUI applica-

tion wraps around both the main component, itself being a supercomponent

in IBSimVis, controlling the other components. Another difference is that

we have implemented the VC inside a GUI widget. A widget being a basic

visual building block in a GUI system. Thus, GUI library calls are prevalent

in almost all components, since we now communicate directly with the GUI.

We discuss why the design change was necessary in Section 5.5.3 and the

GUI library we opted to use, wxWidgets in Section 5.5.1.

5.3 Data Model Component implementation

In this section, we present the implementation of the Parser, Topology and

Layout components, that we discussed in the design.

5.3.1 Parser

As stated at the start of this chapter, we do not visualise simulation data. So

we do not describe implementation details of parsing simulation data which

was listed as a task in our Parser design, in Section 4.3.1. Instead, we have

implemented parsing topology and routing data.

The input comes from the command-line parser in the GUI component,

explained in Section 5.5.2. The topology data file, with lst extension is a
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Figure 5.1: Revised component design overview in IBSimVis, showing com-
ponents and inter-component communication. Note that the GUI component
now is a supercomponent controlling the main components.

list of all the nodes, ports and links in the fabric. The routing data file, with

fdbs extension, contains Unicast Linear Forwarding Tables (LFTs) of the

switches in the fabric. Because both file formats lack documentation, we had

to read the source code of both OpenSM and IBMgtSim to understand their

semantics.

As mentioned in Section 4.3.1, parsing topology- and routing- data is

straight-forward. Parsing itself is done by defining regular expression gram-

mar [55] using the boost::regex library and the file reading capabilities in

C++ <iostream>. Another approach would be the input data to a scan-

ner tool such as flex [65] to recognise lexical patterns and for tokenisation.

Then provide the tokens to a parser generator tool such as GNU Bison [66],

together with a syntax grammar. However, we opted against this approach,

since the grammar in the two file formats we are parsing is simple. Writing

syntax grammar for Bison and lexical definitions for flex would require us to
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learn the tools and then write the required configurations needed. For more

advanced parsing strategies and an overview of the parsing craft, we refer to

the book by Grune et. al. [55].

After the main application has gathered the input and options for IB-

SimVis, the parser is intialised with the input files mentioned above, as pa-

rameters. The Parser component is implemented as a class named TopologyParser,

taking a Topology pointer as a parameter in its constructor, to make sure en-

tity creation is fast, as discussed in the design. Parsing the topology data file

is implemented in a class member function called parseLstFile and parsing

routing data in a class member function called parseFdbsFile.

The TopologyParser class confirms whether the input files are of the cor-

rect extension. That is, the topology data files should have the extension lst

and the routing data file the extension fdbs. TopologyParser assumes that

if the extensions are correct, then the file format is correct. TopologyParser

does not do any format verification checks, since such checks can be tedious

to implement. We assume that the user inputs the correct file formats when

starting IBSimVis. When this is set up, the main thread in the GUI compo-

nent, either calls parseLstFile or parseFdbsFile to parse each file format,

respectively. The Parser component fails if the file reader reports a failure

or the line fails to match the regular expressions in either parsing function.

We describe their formats and parsing implementation in Section 5.3.1.1 and

Section 5.3.1.2, respectively.

5.3.1.1 The topology data file

The topology data file is logged after OpenSM has discovered a subnet, using

IBMgtSim to simulate the existence of a cluster. The format is a list of lines,

showing nodes, ports and links in an InfiniBand fabric. Each line is an uni-

directional relationship between the ports of two nodes. The nodes can either

be a switch and a CA or a switch and another switch. Table 5.2 describes

the fields identifiers, their descriptions and integer base. Table 5.1 shows the

three different available node-types. The node type is defined in the first

token of the uni-directional line, as shown in Listing 5.2.
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Table 5.1: Node type and description

Type Description

SW Switch

CA Channel Adapter

CA-SM Channel Adapter acting as Subnet Manager

Table 5.2: Topology data file field descriptions. Showing
the field identifier, their semantic and what integer base
they are.

Field identifier Description Base

Ports Number of ports on the node 16

SystemGUID GUID of system 16

NodeGUID GUID of node 16

PortGUID GUID of port 16

VenID ID of vendor 16

DevID Vendor-assigned device ID 16

Rev Revision ID 16

LID Local Identifier of the port 16

PN Port number on the node 16
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Two lines in a sample topology data file is shown in Listing 5.2. The first

line, shows a CA that is acting as a SM with GUID 0x0002c90000000001 and

is connected through port 1 to a switch with GUID 0x0002c90000000015 at

port 1. The second line shows the other direction. Together these two lines

make up a bi-directional link. In Listing 5.1 we show the regular expressions

that we used. Each text string containing digits or alphanumerical characters

following the field identifier in Table 5.2 is matched to an attribute in a Node

entity, with the portLine itself identifying it. Note that some parts of the

regular expression grammar are greedy when using the wildcard signs “*”,

meaning that they match whatever is inside the delimiters [55].

Listing 5.1: Regular expressions used to extract field data in a topology data
file. Each line in a topology data file, consists of a portLine, blank space, a
portLine and an endLine.

string portLine = "\\{\\s+(.*)\\s+Ports :(\\d+)\\s+SystemGUID

:([0 -9a-zA-Z]+)\\s+NodeGUID :([0 -9a-zA-Z]+)\\s+PortGUID

:([0 -9a-zA-Z]+)\\s+VenID :([0 -9a-zA-Z]+)\\s+DevID :([0 -9a-zA

-Z]+)\\s+Rev:([0 -9a-zA-Z]+)\\s+\\{(.*) \\}\\s+LID:([0 -9a-zA

-Z]+)\\s+PN:([0 -9a-zA-Z]+)\\s+\\}.*";

string endLine = "\\s+PHY =(.*)\\s+LOG=([A-Z]+)\\s+SPD =(.*)";

boost::regex regex(portLine +"\\s+"+ portLine+endLine);

Once a Node entity at either end has been identified, we proceed to look up

both their GUID in the Topology component. If they do not exist, they are

created. Only if both exist, either by nodeMap lookup or creation, two Port

entities are created, with the portGUID and port number. The Port entities

are then connected together, via a Link entity. In the implementation, these

are are pointers.

5.3.1.2 The routing data file

The routing data file is logged by OpenSM after it has first discovered a

subnet, and after a routing engine has been applied to the subnet. It consists

of a list of LFTs of all the switches in the subnet. Listing 5.3 shows an

LFT table for a switch. Each forwarding table in the routing data file is

divided in two parts; an initialisation line followed by a list of what we
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Listing 5.2: Sample topology data file, showing a bi-directional connection
between two ports.

{ CA-SM Ports :02 SystemGUID :0002 c90000000001 NodeGUID :0002

c90000000001

PortGUID :0002 c90000000002 VenID :000000 DevID:5A44 Rev

:00000000 {H-1 HCA -1

(Mellanox HCA)} LID :0001 PN:01 } { SW Ports :18 SystemGUID

:0002 c90000000015

NodeGUID :0002 c90000000015 PortGUID :0002 c90000000015 VenID

:00000000

DevID:B9240000 Rev :00000000 {S-0 Infiniscale -III Mellanox

Technologies}

LID :0006 PN:01 } PHY=4x LOG=ACT SPD =2.5

{ SW Ports :18 SystemGUID :0002 c90000000015 NodeGUID :0002

c90000000015

PortGUID :0002 c90000000015 VenID :000000 DevID:B924 Rev

:00000000 {S-0

Infiniscale -III Mellanox Technologies} LID :0006 PN:01 } { CA-

SM Ports :02

SystemGUID :0002 c90000000001 NodeGUID :0002 c90000000001

PortGUID :0002 c90000000002

VenID :00000000 DevID:5 A440000 Rev :00000000 {H-1 HCA -1 (

Mellanox HCA)} LID :0001

PN:01 } PHY=4x LOG=ACT SPD =2.5

refer to as forwarding entries, to every LID in the subnet. The initialisation

line identifies which switch the forwarding table belongs to. The string _-

_osm_ucast_mgr_dump_ucast_routes prior to the switch GUID is skipped.

Each forwarding entry consists of the destination LID, outgoing switch port,

number of hops until destination and optimal flag. The optimal flag was

originally used as an indicator whether the route was the shortest path in a

fat tree, but is rarely used. Note that we do not parse the hop and optimal flag

fields, as they are not used in our implementation, we reserve this as future

work. Referring to Listing 5.3, if a message wants to reach LID 0x0008, it has

to go through outgoing port 002 on the switch. After the switch GUID has

been parsed, the Parser component looks it up in the Topology component.

If the switch exists as a Node, the LID and port number is matched using

regular expressions and inserted into the LFT of the Node.

84



Listing 5.3: Sample fdbs file, showing the LFT for one switch.

__osm_ucast_mgr_dump_ucast_routes: Switch 0x0002c90000000015

LID : Port : Hops : Optimal

0x0001 : 001 : 01 : yes

0x0002 : 002 : 02 : yes

0x0003 : 002 : 03 : yes

0x0004 : 002 : 04 : yes

0x0005 : 002 : 05 : yes

0x0006 : 000 : 00 : yes

0x0007 : 002 : 01 : yes

0x0008 : 002 : 02 : yes

0x0009 : 002 : 03 : yes

0x000A : 002 : 04 : yes

5.3.1.3 Implementation issues

One of the first issues we encountered, was how to turn a hexadecimal string

into an unsigned 32bit or 64bit integer. We could have parsed each character

in the hex string, leading to a complicated implementation. Instead, we

found the solution on StackOverFlow, using std::hex and stream insertion

operators on the string [67].

Another issue we encountered, was the non-uniform way port numbers in

the topology data and routing data files formats were used. In the topology

data file format, a port number is in hexadecimal. In the routing data file

format, the port number is in decimal. This quickly led to problems in the

parsing, when the Parser component encountered letters in the “PN:” field.

Leading to a matching failure and Parser component shutdown.

5.3.2 Topology

The Topology component is the main datastructure in IBSimVis. As men-

tioned in the design, it keeps track of all entities (objects), their data and

their relations. It has convenience functions to retrieve information about

topology, routing, construction and modification of the network topology.

Note that when we refer to classes contained in the Topology component,

they are essentially the same as the entities mentioned in the background

and design. The same goes for member variables and entity attributes.
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The Topology component is implemented in a set of classes: Topology,

Node, Link and Port. The Topology, which is the main class in the Topol-

ogy component, keeps track of two main data structures. One is the network

topology containing all the nodes the other is the graph implementation used

by the Layout component. The network topology data structure is imple-

mented using the STL key-value associative container std::map, with the

local member variable called nodeMap. The node GUID, a 64bit unsigned

integer is the key and the value is the pointer to a Node. This allows for

O(log n) lookup and insertion. Lookup can also be done using the std::map

operator[]. But it also inserts key to the map if key is not found, which

can cause false nodes being inserted. An alternative would be to hash the

GUIDs and use a hashmap container instead for constant lookup and inser-

tion. However, hashmaps are as of yet not available in the C++ standard

library. Note that the std::map must not be confused for a hashmap, as

its implementation is actually a self-balancing binary search tree [62]. The

nodeMap itself is primarily used by the Topology class, but it provides public

service functions such as getNodeFromGUID for other components to call it,

typically used by the GUI to lookup nodes and by VC and layout component

to find node positions.

The Node class, keeps track of a std::vector container, with pointers

to Port objects, it is a local member variable named ports. At Node con-

struction (done in the Parser component), it initialises the number of ports

as indicated in the Ports field in the topology data file. For example, if a

switch has 24 ports then 24 ports are allocated, although not all may be

plugged to another port on a different node. The advantage of this is that

we can address a Port, using the std::vector operator[] with the port

number, minus one, in constant time (compared to for example O(log n) in

a std::map container). The disadvantage is that we do allocate more ports

than necessary, using more memory. However, we need a fast lookup on

ports since we use it frequently when for example calculating the path dis-

tribution of a network topology. The Node class, when it is of type switch

keeps track of a Unicast Linear Forwarding Table (LFT). The LFT is stored

as a std::map with a LID as key and port number as value, named LFT. It
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could also be implemented as a std::vector, for constant access with the

LID as the index and port number as the value. But LIDs might not start at

0, thus requiring to allocate all indexes up to the highest LID address that

exists in the fabric. Since the LFT usually contains the LID and port num-

ber pairs of all the LIDs in the entire fabric. Node positions are stored as an

Ogre::Vector3 in a member variable called pos, allowing for 3D positions

in (x, y, z) coordinates.

The Port class keeps track of what Link it is connected to on the other

side, using a pointer. The Link class knows which two Ports it is connected

to. In addition, both the Node and Link classes have a pointer to an OGRE

ManualObject, their entity representation, which we cover later in this chap-

ter. Note that all the entities (classes) mentioned here all have additional

attributes that are not relevant to list here. For more information, we refer to

the Doxygen generated API documentation at ((TBA)). As mentioned in the

design, the Topology component calculates the statistical data in IBSimVis.

We cover this functionality in the next section, where we look at how we

calculated path distribution.

5.3.2.1 Calculating path distribution

To be able to show the path distribution over the network topology, we first

need the topology itself and the routing data tables, which has been done

by the Parser component. The Topology class has a routeAll function to

calculate path distribution, which is called once per topology, typically at

startup of IBSimVis. Each Node and Port entity has a member variable,

numPaths to keep track of the amount of paths going over them. This is an

unsigned 32bit integer. As shown in Pseudocode 5.1, we route all CAs to

all CAs. By first iterating through the CAs in nodeMap, as the source CA.

Then an inner loop, iterating through all potential destination CAs, except

itself. We only route from a given source CA to a destination CA once. This

is shown at line 5 in Pseudocode 5.1, where we route to the first port LID of

the destination node.

The route function is shown at line 11 in Pseudocode 5.1. Here, we route
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Pseudocode 5.1 The routeAll and route functions in pseudocode. Used for
calculating path distribution of a network topology.

1: function routeAll

2: for all sourceCA ∈ V do
3: for all destinationCA ∈ V do
4: if sourceCA 6= destinationCA then
5: ROUTE(nsrc, ndst←Port1←lid);
6: end if
7: end for
8: end for
9: end function

10:

11: function route(source, destinationLID)
12: cur = source←Port1←LocalNode;
13: while cur 6= CA and loop < 20 do
14: loop = loop+ 1;
15: { increment numPaths in cur};
16: nextPort = cur←LFT [destinationLID];
17: if cur = NULL and nextPort = NULL then
18: break;
19: end if
20: { increment numPaths in nextPort};
21: cur = nextPort←RemoteNode;
22: end while
23: end function
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the source node, src toward the destination LID, dstLid. From lines 13 to

21, we route toward the destination, by looking up in the LFT of each switch,

visiting each outgoing port in turn, until we reach the destination. There

exists a loop counter to avoid the function spinning, in case the routing table

contains a cycle. Each visitation of either a Node or Port increments their

numPaths member variable by one. At the end of the routeAll function,

not shown in the pseudocode, we record statistics needed for the GUI, such

as the minimum number of paths over a port and node and the maximum

number of paths over a port and node. We also record numPaths in the Link

entity, by summing up the numPaths of the two Port entities it is connected

to. It is clear from the algorithm in Pseudocode 5.1, that the time complexity

is O(n2). The function does however, have a potential for parallelisation by

routing toward several destinations at once, but it would require locks on

the numPaths variables in both Port and Node, to avoid race conditions. We

leave parallelisation as future work.

5.3.3 Layout

In this section, we describe how we implemented the Layout component,

which handles how to layout a network topology. Earlier we mentioned that

the input to a layout algorithm, is a graph. The network topology data

structure used when we described the Topology component models a graph,

but it is tedious to use. Mainly because to get to a node, we first need to

go through the port. Then the link. Then the port on the other side of the

link and then the local node on the remote port. Therefore, we decided to

use a graph library that provides an effective and re-usable graph structure

implementation. The choice stood between two popular graph libraries. The

Boost Graph Library (BGL) [68] and the Library for Efficient Modeling and

Optimization in Networks (LEMON) [69].

The BGL is part of the Boost C++ library and provides highly extendable

generic interfaces for storing and traversing graph structures [68]. LEMON is

a library that focuses on effective implementations of general data structures,

with a focus on graph data structures. The advantage of the BGL is that
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we have used other parts of that library suite in many other parts of our

implementation, so we do not require a dependency to another library. It is

also a highly configurable and fast. The disadvantage comes at the cost of

syntax complexity. We found that the BGL was quite hard to use, since we

find generic programming (templates) in C++ to be hard. We found that

the advantage of LEMON is its simple syntax and semantics. In addition, it

claims to be faster than BGL in certain algorithm implementations, such as

Dijkstra’s algorithm [70].

In our first prototype, we implemented the layout algorithm using the

BGL, but found it hard to use. Later, when implementing our second pro-

totype, we tried a LEMON implementation. However, we discarded this

implementation due to performance issues with our implementation of the

layout algorithm. Hence, we continued using the BGL. We discuss this when

we evaluate IBSimVis, in Chapter 6.

5.3.3.1 Single-level force-directed placement algorithm implemen-

tation

As discussed in the design, we decided to implemented the multi-level force-

directed placement of Walshaw, in a class called MLFDP (standing for Multi-

Level Force-Directed Placement). The MLFDP class inherits from a LayoutAlgorithm

class, which contains general features for layout algorithms and functions for

both laying out nodes randomly in 3D and post-flatting the layout. Ran-

dom calculation in IBSimVis, is done using the boost::random library and

Mersenne twister [71] implementation with the current time in nanoseconds

as seed. The LayoutAlgorithm superclass defines a purely virtual function

called layout, which all classes that inherit from LayoutAlgorithm need to

implement. The purpose of the layout function is to initiate the implemen-

tation of a given layout algorithm. However, due to time constraints we were

not able to finish implementing the multilevel part of the algorithm. Hence,

we revert to a single-level version, similar to that of Fruchterman and Rein-

gold, mentioned in Section 2.3.5.1. The main difference is that the graph

coarsening phase is omitted from our implementation.
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Pseudocode 5.2 Pseudocode of the repulsive, attractive and cooling func-
tions in our single-level implementation of Walshaw’s multilevel force-directed
placement algorithm.

1: function fr(w, x, k)
2: return −Cwk2/x;
3: end function
4:

5: function fa(x, k)
6: return x2/k;
7: end function
8:

9: function cool(t)
10: λ = 0.99;
11: return λt; ⊲
12: end function

As mentioned above, we only provide a part-implementation of a the

multi-level force-directed placement by Walshaw, based on the pseudocode

in Figure 1 of [29]. In the article the author mentions changes that can be

done, to implement a single-level version with the layout looking similar to

the multilevel one [29], namely:

• Set node weight to 1

• Increase λ during the cooling phase

Our implementation is shown as pseudocode in Pseudocode 5.3 and our

changes are marked in red. We use a node weight of 1, as Walshaw indicates

when one is to implement a single-level version [29], this is shown on line 12

in Pseudocode 5.3. We found that the layouts generated by the single-level

implementation so far, did not create satisfactory layouts. But according to

Walshaw, a single-level scheme would produce the same result as a multilevel

sheme, by adjusting the cooling schedule [29]. This means increasing the λ in

the cooling function, hence also increasing the amount of iterations. Walshaw

defines the amount of iterations, i as λi < tolerance [29]. Where both λ and

tolerance are constants, set to 0.9 and 0.01, respectively. Since originally,
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Pseudocode 5.3 Pseudocode of our single-level implementation of Wal-
shaw’s multilevel force-directed placement algorithm. Based on Figure 1 in
[29]

1: function layout

2: Posn = Topology→graph;
3: k = initialspringlength;
4: t = k;
5: tol = 0.01;
6: while converged 6= 1 do
7: converged = 1;
8: for all v ∈ V do
9: Θ = 0;

10: for all u ∈ V, u 6= v do
11: ∆ = Posn[u]− Posn[v];
12: Θ = Θ+ (∆/||∆||) · FR(||∆||,1, k);
13: end for
14: for all e ∈ neighbours do
15: ∆ = Posn[u]− Posn[v];
16: Θ = Θ+ (∆/||∆||) · FA(||∆||, k);
17: end for
18: newPos = Posn[v] + (Θ/||Θ||) ·min(t, ||Θ||);
19: oldPos = Posn[v];
20: Posn[v] = newPos;
21: ∆ = newPos− oldPos;
22: if ||∆|| > k · tol then
23: converged = 0;
24: end if
25: end for
26: t = COOL(t);
27: end while
28: end function
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the multilevel algorithm used the same cooling scheme as the Fruchterman-

Reingold algorithm, and the constants in the cooling schedule was found by

“extensive experimentation” [29], Section 2.3.5. We simply adjusted the λ in

the cooling function from 0.9 to 0.99, as shown in Pseudocode 5.2, line 10.

We found out that with λ of 0.99 and tolerance of 0.01, we could get good

looking layouts. The amount of iterations would then be:

0.99i < 0.01

Leading to:

i =
log(0.01)

log(0.99)
= 458.210577

Note that using this cooling schedule, it might be subject to floating

point rounding errors. So we do not necessarily get 458 iterations in our

implementation. This also means we know an upper value of the number of

iterations. Enabling us to easily construct a progress bar, to show the user

how long time is left of the layout calculations, which we mentioned in the

design.

The only difference from our implementation to that of Walshaws pseu-

docode, barring the single-level changes, is that we do not copy the graph

before running the repulsive and attractive calculations. We did not do this

since we use pointers in the nodes of the graph to directly manipulate the

member variable in the Node class that contains positional data. Instead, we

store a variable containing the old position in a variable called oldPosition,

in the repositioning phase, as shown in line 19 of Pseudocode 5.3. Then, we

reposition the node and calculate the delta. We do this instead of copying the

entire graph, which we did in the first prototype of IBSimVis, since copying

a BGL graph has a time complexity of O(|V | + |E|) [68]. One more thing

to note about our implementation of the multilevel force-directed placement

algorithm of Walshaw, is that we use the Ogre::Vector3 library abstraction

for linear algebra, instead of a general one. This inherently ties our Layout

component implementation closely to the OGRE library.

As mentioned in our design, we also want to use the iteration calculation
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above, to return the number of iterations to supply to a progress bar. For each

iteration, the progress bar is updated and we also know the max number of

iterations. We use the boost::progress_display to implement the progress

bar, alternatively it could be shown in the GUI.

We reserve finishing the multilevel algorithm implementation as future

work, in addition to adding other layout algorithms to the Layout component.

5.4 Visualisation Component implementation

In this section, we describe our implementation details in regard to the Vi-

sualisation Component (VC). The design for the VC was discussed in Sec-

tion 4.4. We also discuss what choices we had to take when implementing

the Graphics Engine component, such as selecting a graphics engine library.

5.4.1 Graphics Engine

As mentioned early in this chapter, there are many choices of graphics en-

gines available to developers [63], using the C++ language. Some are light

wrappers around OpenGL, being able to draw graphic primitives in an highly

efficient manner. Some are rendering engines with higher-level abstractions

wrapping around OpenGL. And other graphic engines are game engines

complete with implementations for physics-, input- and sound- support.

In the first IBSimVis prototype, we tried out two different graphics en-

gines based on popular choices at [63]. These were OGRE [72] and the

Visualization Toolkit (VTK) [73]. OGRE is an open-source cross-platform

scene-based 3D rendering engine written in C++, used for writing appli-

cations within games, simulations, visualisations or other business applica-

tions [72]. VTK is an open-source cross-platform system, written in C++

for 3D computer graphics, image processing and visualization, with a rich

feature-set for scientific visualisation [73].

Since one of the requirements of IBSimVis, mentioned in Section 4.1.2,

required that it could display a network topology and able the user to interact

with it, we had a set of requirements for the graphics engine itself. Namely:
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• Able to render 2D and 3D

• Provide high-level abstractions to graphics primitives

• Provide abstractions for interaction in 3D

• Be easy to integrate with the GUI

• Be cross-platform

• Have good documentation

• Have an active user community

In the end, the choice fell on OGRE as a graphics engine in IBSimVis.

The reason for this is that it fulfills all the requirements mentioned above.

It comes with renderers for both OpenGL and Direct3D, allowing for cross-

platform compatibility, in addition to being easy to implement. The main

advantage for a scene based design is that one can easily organise and apply

transformations to the nodes. Another factor is that OGRE has a visible

and active user-community, contrary to VTK which relies on subscription

mailing lists [73]. As we see in a bit, searching the OGRE forums helped us

solve a problem when integrating with the GUI library, wxWidgets. We also

saw that VTK was more tuned for applications within scientific visualisation,

rather than information visualisation.

In the next few sections, we first describe the OGRE library, as some

knowledge about it is required in order to understand our VC implementa-

tion. Then we move on to describing our overall VC implementation and

how we implement the encoding mechanisms to the enitities by rendering

nodes and links in our static network topology. Afterwards, we move on to

the challenge of interacting in a 3D environment.

5.4.1.1 The OGRE library

As mentioned above, OGRE is a rendering engine, used for 3D applications.

In this section, we briefly describe central OGRE library concepts, and classes
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that have been used when implementing the VC of IBSimVis. In addition to

the typical program flow when using OGRE.

SceneNode("Root")

SceneManager

SceneNode("D")SceneNode("C")

SceneNode("B")

Camera("Main")

SceneNode("A")

MovableObject("T")

MovableObject("E")

FrameListener

Root

Light("SpotLight")

Figure 5.2: Example of a scene graph in OGRE. Showing relation-
ship between the SceneManager, SceneNodes and world objects such as
MovableObjects.

As seen in Figure 5.2, the Root object is the most central class of OGRE.

It acts as a hub controlling all fundamentals in an OGRE system. The

Root class manages the SceneManager class, whose main task is to control

the internal scene graph, comprised of scene nodes using SceneNode objects.

As illustrated in Figure 5.2 one can attach world objects such as glyphs,

cameras and lights to a scene node. Transformations (translation, rotation,

scaling) applied to a scene node also propagate down to its children. For

example, rotating the “A” scene node in the figure, would rotate both the
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world objects“T”and“E”and translating (moving) the scene node“B”would

move the“Main”camera. Furthermore, the SceneManager indexes both scene

nodes and world objects using an unique string, requiring the programmer to

keep track of what a given scene node controls or what a given world object

represents.

A ManualObject in OGRE is a world object and provides a simple inter-

face to creating OpenGL-style [48] custom geometry [74]. This means that

one has to call position, colour and normal for each vertex. We decided

to render entities in IBSimVis using these basic world objects, since they

are very fast, with a low memory footprint. At the cost of few features and

higher-level abstractions.

A FrameListener is the input handler in OGRE, designed to consume

input such as mouse events and keyboard strokes, in addition to special

cases between each time a frame is rendered. In an application, one typically

creates a class that inherits from the FrameListener class in OGRE. OGRE

is typically initialised in several stages, usually in the following order:

1. Initialise the Root

2. Get the available render system of the platform and initialise one (OpenGL

or Direct3D).

3. Define resource locations for assets, such as textures, meshes and sounds.

4. Create the SceneManager

5. Create camera and lights

6. Create viewport

7. Create scene

8. Create Framelistener

9. Initiate render-loop

After initialisation, OGRE renders one frame at a time, and listens for

user input between frames. This repeating sequence is referred to as the
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render loop [75]. Also note that during the stage where the viewport (the

viewing area of the camera) is created, the background colour is also set. For

further information about the OGRE framework, we refer to the website [72],

wiki [75], API documentation [74] or book [76].

5.4.1.2 Applying encoding mechanisms to entities

As mentioned at the start of this chapter, we did not have time to implement

simulation data visualisation features, so we do not take into account message

entities. And for reasons mentioned in Section 4.4.4 in the design, port

entities are not converted to glyphs. Thus, the only two entities we are

interested in applying encoding mechanisms to, is Node and Link. To encode

entities, we use a class containing static methods using a factory-like design

pattern to encode shapes and colours to a world object. These glyphs form

the basic structures in our visualised network topology. Moving on, we cover

how we implemented the encoding mechanisms and how we applied them to

the Node and Link entities managed by the DMC.

As mentioned in the design, we want to encode Node entities as coloured

shapes. Switches are encoded as blue cubes and CAs are encoded as red

spheres. The way the encoding mechanism is applied is using OpenGL-like

syntax [48] by first denoting each vertex position and colour. Since we use no

lighting or shading on the objects, there is no need to apply normals, although

this can easily be applied in the future. The advantage of this approach, is

that both shape and colour can be applied during the same procedure. The

disadvantage of this approach is that, to change colour on a node, one has to

update the ManualObject by calling position (with the same position) and

colour (with the new colour) again.

Link entities are encoded as coloured straight-lines, using ManualObject

and a line list from a position to a position. This way, OGRE automati-

cally draws a line between these two points, which is always one pixel wide,

regardless of viewing distance [74]. Listing A.6 in Appendix A shows how

encoding Link entities were implemented.
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5.4.1.3 Visualising the static network topology

Our implementation of the OGRE initialisation is done in the function initOgre

in the class wxMainFrameImpl, which is the main entry point in IBSimVis.

We use the OpenGL renderer in OGRE, since we program on a GNU/Linux

system. OpenGL can also be used on other platforms, with some adaptions

to our implementation. The implementation of the input handler is done in

a class called wxOgreFrameListener. Our implementation of the VC first

starts with the initialisation of OGRE following the same pattern of stages

as mentioned earlier. The background colour is set to black in the viewport

stage, as per the design. And we use a right-handed coordinate system, look-

ing down the negative z-axis from the camera. When that is done, we start

the render-loop, using the wxWidget input system and event handler to take

care of keyboard/mouse input events. This is passed to the OGRE render

window and pushed further to our custom OGRE input handler.

SceneManager

"HCANode""SwitchNode"

"DebugNode""TopologyNode" "PivotNode"

"Root"

"MainCamera"

"PivotCameraNode"

"NodeGUID" "NodeGUID" "NodeGUID""NodeGUID"
... ...

Figure 5.3: The scene graph structure in IBSimVis, showing the scene graph
structure from the SceneManager.

We do not go into detail of all the library calls required to initialise OGRE.

But instead describe how we render the scene, the display area where the

network topology is visualised and show how it is organised. This is done in
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wxMainFrameImpl. Here, we create the scene nodes that comprise the scene

and then proceed to render nodes first, with links afterwards. Node entities

are indexed in the SceneManager with the key being a string representation

of their GUID. While Link entities are indexed using a key with the following

format:

“port1GUID:port1PortNumber,port2GUID:port2PortNumber”

In our first prototype, we used a simple key in the format of“NodeGUID1,NodeGUID2”.

This was insufficient, since we in some topologies, we encountered multiple

links between nodes. The keys for the Link entity mentioned above, only

shows one direction of a link. To retrieve the other direction, we simply swap

what is between the comma. Note that OGRE does not know the difference

between a Node or Link entity in its SceneManager, it was our task to create

keys that can identify them. When all nodes and links are placed in the

scene, we calculate the bounding box of all the nodes and attempt to center

the topology. The reason why we do this, is that during layout, nodes might

have been placed outside the viewing volume. It would be inconvenient if the

network topology for example was rendered behind the camera. Figure 5.3

illustrates how the scene in the VC is organised. Here we can see the green

SceneNodes, orange cameras and the entities we applied encoding mecha-

nisms to, mentioned earlier. The “TopologyNode” holds the “SwitchNode”

and “HCANode”, keeping track of switch and HCA representations, respec-

tively. The “PivotNode” is in the center of the scene. Attached to that is the

“PivotCameraNode”, which the camera “MainCamera” is attached to. What

is not shown in the illustration, is the links that are attached to either the

“SwitchNode” or “HCANode”, depending on which node type they belong to.

5.4.1.4 3D interaction

In Section 4.4.1 and Section 4.4.6, we learned that navigating and inter-

acting with 3D can be problematic. Here we address how we implemented

rotation, geometric zoom and pan in IBSimVis. In addition to how the En-

tity Selection Query works and how it is implemented. All these functions

were implemented in our input handler class. This class receives mouse and
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keyboard events from the wxWidgets event handler system, via the widget

wxOgreRenderWindow, described later.

Geometric zoom

In the design we stated that we wanted to use geometric zoom. As we can see

in Listing 5.4, we simply use the wheel-delta of the mousewheel and move the

camera along the z-axis only. When the mousewheel is scrolled in a forward

motion, the wheel delta is positive. If it is scrolled backwards, the wheel delta

is negative. According to the mouse event documentation in wxWidgets, the

scrolling delta is always 120 [77]. We increase this by a factor of 1.5 to enable

abit faster scrolling. Since we look down the negative z-axis, a negative wheel

delta would make the camera move along a positive z-vector. The opposite

is true when scrolling forwards.

Listing 5.4: The zoomCamera function in the wxOgreFrameListener.

void wxOgreFrameListener:: zoomCamera(int delta)

{

mCamera ->moveRelative(Ogre:: Vector3 (0.0f, 0.0f, -(delta /

120.0f) * 1.5f));

}

Pan

Panning is implemented in the panCamera function in our wxOgreFrameListener

class. The user can pan when the right mouse button is pressed down. It

takes the relative x and y mouse positions as parameters. These are calcu-

lated by aquiring the difference between the current mouse position and the

old mouse position. To pan, we move the camera along the x and y axis.

Listing 5.5: The panCamera function in the wxOgreFrameListener.

void wxOgreFrameListener:: panCamera(int relX , int relY)

{

mCamera ->moveRelative(Ogre:: Vector3(-relX , relY , 0.0f));

}
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Rotation

Rotation is done when the user holds down left mousebutton in the visual-

isation window. There are several approaches to rotating a 3D model. One

involves rotating the camera around the model and the other rotating the

model with the camera being static. We choose an approach similar to the

former as a matter of preference. Here, we rotate the “PivotNode”, that the

camera looks at, thus allowing the model to be still while the camera is able to

rotate at a fixed distance. As shown in Listing 5.6 in Appendix A, when the

differences in x and y changes, we pitch and yaw the SceneNode“PivotNode”

mentioned earlier, so that SceneNode is pitched and yawed. Note that we

use a 2D technique to rotate a 3D model, an alternative implementation to

rotating a 3D model, could be to implement a virtual trackball instead [78].

Listing 5.6: The rotateCamera function in the wxOgreFrameListener.

void wxOgreFrameListener:: rotateCamera(int relX , int relY)

{

Ogre:: Degree rotX = Ogre:: Degree(-relX * 0.30);

Ogre:: Degree rotY = Ogre:: Degree(-relY * 0.30);

mSceneMgr ->getSceneNode("PivotNode")->pitch(rotY);

mSceneMgr ->getSceneNode("PivotNode")->yaw(rotX);

}

Entity Selection Query

The Entity Selection Query is used when we want to select objects in 3D

space. Selection is done in IBSimVis, with the user left-clicking an entity,

whereas the function selectedObject is called in wxFrameListener. The

main challenge this function deals with, is how to select 3D objects using

a 2D display and 2D input controller (typically a mouse). In addition, 3D

objects might occlude each other. Simply selecting a 3D object by its x and

y position is not enough, since some 3D objects are in the foreground and

others in the background. One has to take into account the axis that the

camera is aligned with.
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Our implementation uses the OGRE Ray and SceneQuery class function-

ality. Briefly explained, a ray is shot out from where the mouse is clicked,

where it can intersect a series of MovableObjects. Then we query the Ray

using a SceneQuery by sorting the MovableObjects the Ray intersected, by

depth and filtering them by type. The query mask used as a parameter, is a

mask that is applied when creating the entity representations, to differenti-

ate between glyphs. For example, a node has the query mask NODE FLAG

and link, LINK FLAG. Our implementation of the Entity Selection Query is

shown in Appendix A, Listing A.5.

5.5 Graphical User Interface

In Section 5.2, we mentioned that we changed our design to conform to

the design of our chosen GUI library. In this section, we discuss why we

chose that specific GUI library, wxWidgets [79] by comparing it to two other

viable alternatives, Crazy Eddies GUI (CEGUI) [80] and Qt (pronounced

“cute”) [81]. Then we describe the wxWidgets library and central features

used in IBSimVis. Afterwards, we introduce the implementation of our three

main views, namely the normal, NumPaths and Routing views.

We briefly introduce the GUI libraries we considered for IBSimVis. For

more extensive information, we refer to their websites [79–81]. wxWidgets is

an open-source cross-platform widget toolkit for creating GUIs, implemented

in C++ with bindings to many other programming languages [79]. It offers

a native look and feel, since it uses the native API of the platform it runs

on, instead of emulating the GUI [79]. CEGUI is an open-source cross-

platform widget API for games, implemented in C++. It is designed to offer

a GUI to graphics engines, where that feature is missing, and it is typically

rendered inside a 3D environment, such as OpenGL, OGRE or Direct3D. Qt

is an open-source cross-platform widget toolkit, implemented in C++ with

bindings to many other programming languages [81]. Recent versions of Qt,

features native platform API calls for drawing the GUI.

When deciding between the GUI libraries mentioned above, we had two

main critera. The first, that it had to to work well with OGRE, using either
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of two methods, drawing the GUI inside OGRE or embedding OGRE in

a widget. The second, that it had to have core GUI features present in

desktop applications. For example, filemenu, statusbar, toolbar, treelist,

checkboxes, radio boxes and input fields. In the first IBSimVis prototype,

we used CEGUI, as it was the GUI library recommended by the OGRE

community. Mainly because it has a dedicated OGRE-renderer. However, it

is aimed at game development and fell short when it came to core features

present in desktop applications, such as the features required above. We also

found it hard to use with drawing fonts correctly. So we had to look for a new

GUI library, having to choose between wxWidgets or Qt. Both can embed

OGRE in a widget, both natively draw GUI depending on the platform,

both have a What You See Is What You Get (WYSIWYG) GUI editor for

rapid widget prototyping, both are well documented, both have a vibrant

and active user community and both have less restrictive licenses (Both Qt

and wxWidgets has the Lesser GNU Public License (LGPL) based licenses.).

In the end, we could not find any compelling arguments for choosing either,

so we settled on wxWidgets because of personal preference, since we had

some prior programming experience with that toolkit, cutting down on time

needed to learn Qt. Next, we describe the wxWidget toolkit.

5.5.1 The wxWidgets toolkit

As mentioned above, wxWidgets is a widget toolkit. Containing all the

widgets that a typical desktop environment has. In addition to the features

mentioned above, it also has a flexible event handler for GUI events, enabling

simple and easy communication with the underlying application data model.

IBSimVis does not have a main function as an entry point. Instead,

wxWidgets wraps around the main function, making it heavily integrated to

the rest of the application. A wxWidget application is a hierarchy of windows

and widgets, base visual objects on the screen [77]. After wxWidgets initia-

tion, it runs the main thread and initiates the event handling [77], described

below.

The wxWidgets event system uses event tables, instead of programmatic
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callbacks to map events to window member functions [77]. Each interactable

window in wxWidgets has its own event handler. An event is declared in

the event table with a window ID and a member function belonging to a

window [77]. A window ID is an int, typically declared in an enum and

might identify a button in a panel. Listing 5.7 shows an event table used in

wxWidgets, with the event, EVT_BUTTON, indicating someone clicked a button

widget with EXIT_BUTTON window ID, calling the exit member function in the

MyFrame window. It is the programmer that has to keep control over which

window IDs that is assigned to which window. When a user clicks any visual

element, the wxWidgets window system fires an event off to the widgets event

handler, scanning the event table to call the appropriate member function.

If no event table entry is found, the event returns and nothing happens. The

exact method of searching event tables is detailed in the “Event handling

overview” of [77].

Listing 5.7: An event table in wxWidgets, showing how it binds events to
functions.

BEGIN_EVENT_TABLE(ExampleFrame , wxFrame)

EVT_BUTTON(START_BUTTON , ExampleFrame::start)

EVT_BUTTON(EXIT_BUTTON , ExampleFrame::exit)

END_EVENT_TABLE ()

Similar to for example Qt, wxWidgets has its own string implementation,

instead of the C++ std::string, in a class called wxString. It provides

90% of the std::string functionality, in addition to giving full unicode

support [77]. The disadvantage is that the programmer has to convert the

wxString to a std::string when it is used, either in the application or

in third-party libraries. For more information about wxWidgets and their

widgets, we refer to the website [79], documentation [77] or the book [82].

5.5.2 Run-time configuration

For IBSimVis to process input files, we need a way to input them to it.

This is implemented as a standard command-line option parser, using the
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wxWidgets command line parser. In the first iteration of IBSimVis, we

used boost::program_options, but decided to scrap this implementation

as wxWidgets had built-ins for command-line option parsing and configura-

tion file parsing. Using the option -t followed by the filename of the topology

data file, one inputs this to IBSimVis. And the option -f followed by the

routing data file, inputs this to IBSimVis. Presently, we have not defined a

configuration file, we leave this as further work.

5.5.3 Implementation

Earlier we mentioned that we had to do a major change in our original design

to conform to the application structure that wxWidgets enforces. Namely

that wxWidgets is the entity that both initialises and acts as the application

control flow. However, the same behaviour that wxWidgets exhibits, is also

present when using Qt [83]. An advantage to this approach is that the GUI

is able to directly communicate with the DMC and the VC, instead of going

through the VC as originally proposed in Section 4.2. The disadvantage to

this approach is that we always have a tight coupling to wxWidgets and

swapping the GUI to use for example Qt in the future, might be a tedious

task. Just like Qt, wxWidgets has a WYSIWYG GUI design editor, to make

it easier to design GUI panels. This is called wxFormBuilder [84]. Instead

of tediously designing the layout of GUI panels programmatically, we used

wxFormBuilder to generate widget layout code, when creating the GUI in

IBSimVis.

In our design, we wanted to create an event loop for input listening and

event handling. Currently, as mentioned in Section 5.5.1, wxWidgets takes

care of this, using framework specific input handling. Sometimes we mention

the classes, functions and terms used when implementing the other com-

ponents. We refer to the sections describing those components when we

mention such terms here. Next, we will briefly explain the application flow

of IBSimVis.

1. Read user command-line input
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2. Initiate wxMainFrameImpl (the application window frame)

3. Initiate the Topology class

4. Parse topology and routing data, using TopologyParser

5. Run Layout component, using a LayoutAlgorithm (MLFDP)

6. Initialise OGRE

7. Calculate path distribution using Topology component

8. Launch the application window

When program options have been input to IBSimVis, wxWidgets ini-

tialises in the wxMainApp class, being the entry point. Then we parse the

command-line using the built-in command-line parser. The command-line

options are put in a simple struct, called AppOptions and passed to the main

GUI window, wxMainFrameImpl. The main window initialises the Topology

object and proceeds to initiate TopologyParser, with the topology data file,

routing data file and Topology object as parameters. It then tells the Parser

component to parse the topology data. When that is done, it creates the

MLFDP object and spawns two threads: one to parse the routing data file and

one thread to layout the network topology. We can do this in parallel without

suffering from race conditions, since parsing routing data does not touch the

positional attribute in the Node. After both the threads are done, we route

all CA to all CA.

After the setup phase, we proceed to initialise OGRE, as described in

Section 5.4.1.2. The communication between the GUI and the VC is mainly

done via the wxOgreRenderWindow class, which is contained inside a wxWid-

get widget as seen in Figure 5.1. This is the class that offers the user a 3D

topology visualisation. After OGRE initialisation, we create all the views and

enables the user to see the visualisation and the ability to choose between

views.
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5.5.4 Implementing views

The normal view is simply the default OGRE visualisation and offers no

extra options. We have already described this implementation. The normal

view is implemented in the wxNormalViewPanel class.

5.5.4.1 Routing view

The Routing view is implemented in the wxRoutingViewPanel class. It offers

two input text fields, where one is used for the source GUID address and the

other is used for the destination GUID address. Here, the user can paste in

which two CAs he wants to route between. There are also checks in place,

to make sure the user can not route to or from switches. A warning dialog

warns about operations that are not allowed. Such as routing from a CA to

a switch. A button labelled “Route” is implemented. When the user clicks

on this, the GUI attempts to call the Topology component to retrieve the

RoutingHistory, an object that manages a collection of RoutingHop. When

the route has been obtained, the Routing view signals to the VC that the

route should be highlighted in green, by changing the colour of the link. In

addition, only neighbouring nodes and links to each hop is shown, the rest

are hidden.

5.5.4.2 NumPaths view

The NumPaths view is implemented in the wxNumPathsViewPanel class. It

offers a colour pallette as mentioned in the design, allowing to the user to

choose between interval colours. The intervals are implemented per the de-

sign, dividing for example the linkmax number of paths into 5 steps, each step

shown as a different colour. In addition, it offers two Dynamic Query sliders,

to filter the number of paths of links and nodes respectively. The sliders are

independent of each other, so one can decide to filter links and then filter

nodes. The sliders are initiated by the statistics gathered in the Topology

class, having ranges between linkmin − linkmax and nodemin − nodemax for

each of the sliders.
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The interactive element of the NumPaths view is the Dynamic Querying.

The way it is implemented is by using a std::map with the number of paths as

a key and a std::vector of the nodes that have the same number of paths as

the key. This way, we can exploit the ordering that std::map automatically

does, since internally it is a binary search tree, having a natural ordering of

the keys, which are numbers. For example, if we drag the node filter slider we

listen to the slider drag event. When the slider drag event has been caught

by the event handler in wxNumPathsViewPanel, we hide the entire network

topology and filter out all nodes that are greater than or equal than the

value the slider is currently at. So for each slider drag event, we do an O(n)

iteration through the std::map, hiding or showing the nodes.

5.5.5 Implementation issues

During the implementation of the GUI, we encountered a few issues around

embedding OGRE in a wxWidgets widget.

The wxOgreRenderWindow class we used are based on the class with the

same name in another open-source project, OgreMeshy [85] which again is

derived from wxOgreControl in the open-source wxOgre project [86]. When

we first implemented this class when working on the second iteration of IB-

SimVis, we noticed a massive performance drop in Frames Per Second (FPS)

compared to our first prototype, where we only used OGRE and CEGUI.

We also noticed that our mouse and keyboard input would not be registered.

Searching the OGRE forums, we found a solution to our problem [87]. The

reason for the FPS drop was two bugs in the class we had re-used. The imple-

mentation previously used in wxOgreRenderWindow, was timers to refresh the

OGRE 3D scene. Each time the timer timed out, the frame would updated.

The reason for the FPS drop was that the code handling frame updates in

the wxOgreRenderWindow, called renderOneFrame and update in the same

timeout callback. The two functions operate in a similar manner, enforcing

frame updates, thus forcing two frame updates in the same callback. The

timer based approach was not good, since wxWidgets would then use all idle

processing time to update the renderwindow, thus blocking the input devices.
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Table 5.3: Used libraries, their licenses and whether they are GPL
compatible or not

Library License GPL compatible

Boost C++ libraries Boost Software License Yes

OGRE MIT License Yes

wxWidgets wxWindows License Yes

wxOgre/OgreMeshy GPLv2 Yes

Having found out the reason why this happened, we created a callback for

the wxOgreRenderWindow, as suggested in the forum thread [87], registering

it with an idle event in wxWidgets. So every time every time the application

was idle, it would enter the callback and not obstruct user interaction. To fix

the frame update problem we simply removed the call to renderOneFrame.

5.6 Licenses

In this section, we will briefly cover the licenses used in the implementation

of IBSimVis. Since we have used both dynamically linked libraries, headers

and classes from open-source projects. The libraries used and their licenses

are summarised in Table 5.3. As we can see from the table, each library

uses a different license. We will not describe each license, since they are not

the focus of this thesis. But instead, we point out that we have used the

GNU General Public License (GPL) version 2 code in our implementation.

The GPLv2 license states that derivative works must also be under the GPL.

Thus, all source code in IBSimVis needs to have the GPLv2 license. The

other libraries licenses also do work fine with GPL. In addition we had to

notify about the other library licenses in our distribution, as per the text in

their licenses.
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5.7 Summary

In this chapter, we presented a detailed description of all the components

and inner workings of IBSimVis. We saw how the design differs from the

implementation, with the GUI component acting as a supercomponent con-

trolling the other components. In the Parser component we used simple

regular expression matching with boost::regex. In the Topology compo-

nent, we decided to use the BGL because it is a fast and highly configurable

graph library. The BGL is only used by the Layout component for graph

drawing. In the VC we used OGRE as the Graphics Engine. For the GUI

component, we chose wxWidgets. In the next chapter, we move on to see

how IBSimVis looks like and how it can aid a researcher in solving problems

related to issues within network topology, routing and path distribution.

111





Chapter 6

Evaluation

In this chapter, we present the result of our thesis: IBSimVis. We show

what it looks like using different network topologies and attempt to evaluate

its usability. We start off with the evaluation environment in Section 6.1,

introducing what methods, tools, topologies and testbed we have used to

show get our results. In Section 6.2, we continue by taking a first look at

IBSimVis and evaluate its usability. At the end, in Section 6.3, we provide a

summary of our results and evaluation.

6.1 Evaluation environment

6.1.1 Method and tools

We have done a qualitative evaluation of IBSimVis based on its usability in

visualising and analysing network topologies and routing data. We have also

done a quantitative evaluation of how the application scales in time compared

to the number of nodes present in the topology. Note that the preferred

method of evaluation was to do a user study on individuals, both with and

without knowledge about IBSimVis’s application area and collect information

using interviews or questionnaires. However, we could not commit to those

methods due to time constraints.

In addition to IBSimVis itself, we have used is the UNIX command time

to measure various aspects of our application. We used gnome-panel-screenshot
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Table 6.1: The name and properties of the sample topologies used to
evaluate IBSimVis.

Topology name |V | CA Switches |E| Regular topology?

4-ary 2-tree 24 16 8 32 Yes

4-ary 3-tree 112 64 48 192 Yes

4-ary 4-tree 512 256 256 1024 Yes

TITAN 885 581 304 2348 No

to take screenshots and gnuplot to plot charts.

6.1.2 Sample topologies

We have decided to use a selection of both regular and irregular topologies, to

see how well IBSimVis can handle different classes of network topologies. The

regular topologies are all k-ary n-trees, n ranging from 2 to 4, of which two

were previously shown in Section 2.1.1.3. The main motivation for evaluating

IBSimVis using fat-trees is that they are the preferred topology for InfiniBand

networks [15], as mentioned earlier. The irregular topology we have chosen,

is the one used by the University of Oslo’s Research Computing Services

(RCS) group, called the TITAN computing cluster [88]. It is a Linux-based

computing cluster with 581 compute nodes able to do about 40 teraFLOPS

currently, using InfiniBand as interconnect. The topologies and their network

topology properties, are summarised in Table 6.1.

6.1.3 Testbed

To evaluate IBSimVis, we used a PC workstation, with two single-core Intel R©64-

bit XeonTM3.00GHz CPUs, using symmetric multiprocessing (SMP), allow-

ing for more efficient use of multithreaded applications. The two CPUs share

the same 4GiB main memory. The graphics card is an nVidia Corpora-

tion NV41GL Quadro FX 1400 with 128 MiB memory. We realise that this

hardware is currently abit dated, being from 2005. However, this shows that

IBSimVis can run on older hardware. Newer and better hardware most likely
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is going to increase IBSimVis performance. The Operating System (OS) used

is Ubuntu 10.04 Lucid Lynx. Currently IBSimVis has only been tested on

a Linux distribution, however all software dependencies are cross-platform

capable and could be easily extended to other platforms in the future. All

screenshots are taken in 1280x1024, IBSimVis’s default resolution. However,

the IBSimVis application window can be resized in case of higher resolution

monitors.

6.2 Uses and results

In this section, we show the results of our design and implementation. Namely,

a visualisation tool prototype for OpenSM-defined topologies and routing

data. We start off by showing a first impression of the topologies mentioned

in Section 6.1.2, as visualised by IBSimVis. Then move on to evaluate various

aspects of it.

6.2.1 First impressions

Here we present a first look at IBSimVis in its current form, showing both the

Normal and NumPaths view for each of the network topologies mentioned

above. This is shown in Figure 6.1 (4-ary 2-tree), Figure 6.2 (4-ary 3-tree),

Figure 6.3 (4-ary 4-tree) and Figure 6.4 (TITAN). The images were taken

after rotating, zooming and panning to fit the whole network topology in

the VC widget. Note that the figures in this chapter might not print well

on paper, with the printer resolution not being able to show the structural

relations in the network topology or colours properly. For this reason, we

have provided an archive of all the figures, available at our website1.

1http://heim.ifi.uio.no/~joakibj/master/figures.zip
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(a) 4-ary 2-tree visualised by IBSimVis, using Normal view.

(b) 4-ary 2-tree visualised by IBSimVis, using NumPaths view.

Figure 6.1: 4-ary 2-tree visualised by IBSimVis.
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(a) 4-ary 3-tree visualised by IBSimVis, using Normal view.

(b) 4-ary 3-tree visualised by IBSimVis, using NumPaths view.

Figure 6.2: 4-ary 3-tree visualised by IBSimVis.
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(a) 4-ary 4-tree visualised by IBSimVis, using Normal view.

(b) 4-ary 4-tree visualised by IBSimVis, using NumPaths view.

Figure 6.3: 4-ary 4-tree visualised by IBSimVis.
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(a) TITAN visualised by IBSimVis, using Normal view.

(b) TITAN visualised by IBSimVis, using NumPaths view.

Figure 6.4: TITAN visualised by IBSimVis.
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Note that the first impression was not good for the small topology in

Figure 6.1a. Originally, it was rendered outside the camera’s viewport, so we

had to rotate, zoom and pan to locate where it was. This issue was probably

due to a bug in the function that was responsible to center the topology.

However, this was only in the case of the smallest topology, as the other

topologies were centered pretty well, where we only had to zoom abit to fit the

entire network topology in the VC widget. The 4-ary 2-tree (Figure 6.1) and

4-ary-3-tree topologies (Figure 6.2) visualised by IBSimVis can be compared

to their 2D versions in Figure 2.4b and Figure 2.4c, respectively.

Taking a look at Figure 6.5a and Figure 6.5b, we see how the GUI design

turned out. In Figure 6.5a, we see the view panel to the left, where view

information is shown. At the bottom left, there are tabs to select the Normal,

NumPaths and Routing views, respectively. On the right side we have a node

info panel, where the results of our Entity Selection Queries are displayed

(currently no node is selected), showing basic node information in addition

to its port connectivity. At the bottom right, the user is able to select between

the node info panel and the statistics panel, showing basic statistics about

the topology such as the number of nodes, switches and CAs.

Viewing Figure 6.5b, we can see the same view panel to the left, but this

time with the controls mentioned in the design. Namely the colour pallette

chooser and dynamic query sliders for both Link and Node entities. By

clicking on the drop-down, one can choose between colouring Node or Link

entities. By clicking the coloured button, one can select a different colour.

The default colours from the lowest interval to the highest, for both Node and

Link entities are: cyan, grey, orange, brown and purple. These colours are in

the same colour set recommended by Ware [21] in Section 2.2.1. In addition,

at the bottom of the view panel, one can see the the currently displayed node

entities and the number of paths going over them.
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(a) Showing the main GUI elements of IBSimVis.

(b) Showing the GUI elements of the NumPaths View in IBSimVis.

Figure 6.5: Showing the GUI elements of IBSimVis.
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6.2.2 Scaling

As mentioned in Section 4.3.3.1, one of the main problems with the family of

graph drawing algorithms we have chosen, is time complexity. Here, we inves-

tigate how IBSimVis scales with regards to time as a function of the number

of nodes present in the topology. We also see where in the application there

was the most overhead, and which components that require optimisation.

For this experiment, we ran three tests, where we investigated:

1. How long time it takes to parse and set up the network topology data

structure.

2. How long time it takes to parse, network topology creation and run the

layout algorithm.

3. How long time it takes for the user to start the application and get the

visualisation on screen.

We expect the parsing stage and topology data set-up stage to to take

O(|E|) time, since the topology file parses the links in the fabric, that are

passed only once. We expect the current implementation of the layout algo-

rithm to take about O(458|V |2+ |E| time, since it uses 458 iterations running

attractive and repulsive force calculations using O(|V |2 + |E|) time, per iter-

ation on the topology. We expect the time it takes from parsing, data set-up

and layout to take about O(2|V 2|+ |E|) time, including the path distribution

calculations (O(|V 2|)) and the scene creation (O(|V |+ |E|).

We performed five runs per test and took the average total time of these,

using the UNIX time tool. To make IBSimVis stop when we wanted it to

stop, we simply used the exit system call to terminate the process, when it

had done the tasks as specified above. Here, we are only interested in total

time, as this is what the user experiences when waiting. We also included two

plots per test, one using the BGL and one using LEMON. In Section 5.3.3

we chose the BGL instead of LEMON, since we had performance issues with

LEMON. Those results are also included here and it impacted our final

choice of graph datastructure library. Our results are shown in Figure 6.6,

Figure 6.7 and Figure 6.8.
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As seen in Figure 6.6, both implementations used about the same time

to parse and set up the datastructures for all the topologies. The time it

took for the largest sample topology, was a little over 6 seconds. Note that

handling the routing data file for the TITAN topology, requires parsing 1 450

384 lines and there are constraints when it comes to hard-drive access times.
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Figure 6.6: Execution time versus the number of nodes in the topology, by
running parsing and topopology insertion only.

Figure 6.7 shows the time used by each library to parse, set up data

structures and layout the network topology. In the figure, we can see a

substantial difference in performance between the BGL and LEMON. BGL

is almost 3 times faster using the TITAN topology. Although, waiting 26

seconds using the BGL is still quite a long time for the user to simply wait.

Figure 6.8 shows the time from the user starts IBSimVis, until the first

frame of the visualisation has been rendered. From the figure, we can see

an overhead of about 3 seconds for the BGL and 2 seconds for LEMON. So

the time it takes for the GUI and VC components to draw the visualisation
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Figure 6.7: Execution time versus the number of nodes in the topology, by
running parsing, topopology insertion and layout algorithm.

is minimal compared to the time used during layout. We also observe that

the LEMON implementation was faster, which might indicate a flaw in our

LEMON implementation, compared to the BGL implementation.

In this experiment we have seen how long time it takes to run various

parts in IBSimVis, for two different implementations. We saw that our ex-

pectation in regard to the performance of the layout stage was correct, with

most of the time complexity tied up in graph layout algorithms. The other

stages had far less overhead and this would further be remedied using more

modern and faster hardware. Even though the user does know how far along

the layout algorithm has come, thanks to the progress bar in the command

line, waiting almost 80 seconds to see the visualisation is not good. And this

is considering the TITAN topology is of medium size and there does exist

much larger topologies than this in simulation settings. However, once the

user has the visualisation up and running, there are no more waiting periods.
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Figure 6.8: Execution time versus the number of nodes in the topology, from
the starts IBSimVis, until the first frame is rendered in the visualisation.

Since interactions in data selection and navigation are responsive and imme-

diate. We expect the user to take time to explore the visualiations, once they

are up and running. Also, one can not ignore the parsing time required for

the data files, especially the routing data file since it has LFT entries for each

LID in the fabric. We also assume that the user has a more modern work-

station, than the one the tests were run on. Based on our measurements we

recommend the tool to be used on medium sized topologies, with maximum

1800 nodes, assuming the user can tolerate waiting for one minute. Note that

this recommendation needs to be adjusted, depending on what machines the

user runs IBSimVis on.

6.2.3 Usability evaluation and use cases

Here we evaluate the usability of IBSimVis. We compare the presentation

against the interactive elements and assess how useable it is. To do this, we
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attempt to apply the usability definitions in [89], namely:

Learnability If the system is easy to learn and the user can get it up and

running fast.

Efficiency If the system is easy to use so that the user can increase produc-

tivity.

Memorability If the system and interface is easy to remember, without the

user having to re-learn the system.

Errors If users of the system can make few errors and if they are able to

recover from catastrophic failure.

Satisfaction If the system is subjectively pleasant to use.

The suggested way of measuring the usability of an application, is to

select a representative set of test users to try to solve a set of predetermined

tasks [89]. Then allow them to grade the system by use of questionnaires

according to the five definitions provided above. Since we did not have time

to do a user study, we instead attempt to do use the two views in IBSimVis

and evaluate how well they work. We attempt to investigate how our vision

and IBSimVis can help gain insight or answers to both fuzzy and concrete

questions regarding the network topology or routing data. Next, we evaluate

the two views that we believe researchers are going to find useful.

6.2.4 Routing view evaluation

In this use case, we attempt to evaluate the usability of the Routing view

in IBSimVis. Loading up the 4-ary 4-tree, shown in Figure 6.9a, we route

between two nodes. The choice of these nodes were picked at random and

the way they were input, was by copying the GUID text field in the node info

panel on the right to the route input boxes. Afterwards the Route button

was clicked. The result is shown in Figure 6.9b, as the route is shown in

green between the two CAs.
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(a) Initial view of the 4-ary 4-tree.

(b) Routing between two nodes in the 4-ary 4-tree

Figure 6.9: Result when using the Routing view.
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The positive about the routing view is that a researcher can get immediate

information about how the route looks like. Typically the view can be used

to answer concrete questions about a certain path the researcher is curious

about, for example after having found a bug during simulation.

The negative about the Routing view, is that even though we route from

top CA in the figure, to the bottom CA, it is not possible to see which

direction the route took. There is also an issue colouring the last hop toward

either the source or destination. We also find the view to be confusing, as

we have no idea where in the topology we currently are. Perhaps a different

technique in obscuring irrelevant links and nodes should have been used.

Another drawback to this view is that it has limited use during exploration

of a network topology, not being able to answer fuzzy questions. Since the

exact GUIDs need to be input in the two input fields.

6.2.5 NumPaths view evaluation

In this use case, we see if the NumPaths view can aid researchers in de-

tecting patterns or anomalies. We analyse the TITAN computing cluster

topology using IBSimVis and see what the NumPaths view can tell us and

how usability affects this.

As shown in Figure 6.4a, initially we were greeted with quite a complex

graph structure. Except for its pleasing aesthetics, the only thing it told

us after zooming, panning and rotating the topology around abit, was the

there clearly was a subtree connected to the main cluster. Turning on the

NumPaths view in Figure 6.10a, the network topology looked like a cyan

ball of tangled string. To better see the cluster structures in the graph, we

changed the colour of the lowest interval to a green colour as this contrasts

well with the background as shown in Figure 6.10b. But as we can see in

Figure 6.10c, it was a poor choice since the topology is dominated by the

cyan, which we know is close to green in the RGB colour scale. As shown

in Figure 6.10d, we changed the lowest interval link colour to white to help

contrast against the green nodes. Now that the graph was more readable,

we decided to use the dynamic query filter, to filter out some links to make
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the graph more readable as shown in Figure 6.9f. Sliding it some more, an

interesting link was discovered immediately and coloured red for emphasis

as shown in Figure 6.8h. We noticed that two nodes connected to a link

had the highest number of paths in the topology. Indicating a potential

bottleneck. Recalling from earlier, we found out that the link in question is

connected to the subtree structure. This meant that the two intermediate

switches between computing nodes at the end of the subtree and the rest

of the topology, could lead to lower performance in the cluster. Identifying

the same could also be done in a text-based analysis script, but it would

not be possible to discern where in the topology this anomaly occured. As

seen in Figure 6.4a, the bottleneck between the subtree and main cluster was

intuitive to us, enabling us to more efficiently reason as to the cause of this

and also how to solve it. This example showed the strength of IBSimVis and

information visualisation, being able to visually point out interesting areas in

the network topology. Also notice the cluster structures, in the graph when

links were filtered out.

The advantages of the NumPaths view is that a user can receive visual

information about path distribution in a network topology. It can help prove

that a path distribution of a network topology is unevenly distributed. In

addition to show where in the structure it occurs. This allows for fast iden-

tification of potential bottlenecks. Another advantage is that the NumPaths

view works regardless of routing algorithm applied to the topology. It is also

customisable, enabling the user to change colours on the path intervals, ac-

cording to the users own liking. Also taking into account colour blindness.

The disadvantages is that it the division into colours offers little accuracy in

the visualisation, one has to click an entity or refer to the sorted path distri-

bution list to retrieve the exact number of paths. The flaw in the coloured

path intervals is also apparent when studying Figure 6.8h, as almost all links

are filtered out with the dynamic query slider for links only halfways. This

means that the vast majority of links are categorised using the lower four

colour intervals, if there is even one link or node with high path number

value. This can lead to potentially interesting links being pushed to the

background visually, as IBSimVis deemed the links uninteresting.
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(a) Initial layout, after swapping to NumPaths view.

(b) Changing colour on the lowest interval nodes, in an attempt to make them more
distinct.

Figure 6.10: Result when using the NumPaths view.
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(c) Choosing a green colour for the lower interval nodes was a bad choice, as can be
seen.

(d) Attempting to change lowest interval link colour to white, to better see the cluster
structures.
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(e) The green nodes on white links gives good contrast, but there is still alot of
occlusion going on.

(f) Starting to filter out nodes by number of paths, in order to see better.
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(g) Almost all links filtered out, where some links stand out.

(h) Changed colour to red on the highest interval links and navigated to get a better
look.
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6.2.6 Usability discussion

Here we provide a discussion on each usability topic.

Learnability

As seen in the first impression and the two use cases, IBSimVis features

a simple GUI with few options for interaction. The overhead of starting

to explore the topology and analyse it should be low. Simply using the left

mousebutton rotates the camera around the model, right clicking for pan and

using the mouse wheel for zooming. Left clicking a node entity selects it and

display information. As is evident, IBSimVis is not a complex application on

the surface, even though it does offer complex solutions under the hood. We

believe that IBSimVis is easy to learn, both for novices and experts in the

research fields surrounding interconnect topologies and routing.

Efficiency

As mentioned, IBSimVis offers a simple set of interaction options for nav-

igation. However, navigating to get a good view of the network topology

depends on how large the topology is and how it is drawn. As previously

mentioned, small topologies had a chance of being rendered outside the cam-

era viewport, thus we had to rotate around to locate it and then clunkily use

a combination of pan, zoom and rotation to get a good view. But exploring

the topology was hard to do, since the pivotnode that the camera rotates

around, was still anchored at the center of the scene and not the center

of the topology. For large topologies however, navigating was usually done

within seconds. The only noticeable drawback was the slow scroll speed, if a

topology used too much space.

Selecting nodes worked out nicely, although there could have been addi-

tional visual cues to show if the node actually was selected. Even though

one cannot select links using the mouse in IBSimVis, there could still be in-

teresting links that we want to know more about. To get information about

such links, one has to first click on the node incident to the link in question,

then the node on the other side of the link. Afterwards identify the port and
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see if it leads to the other node. This way of identifying information about

links is cumbersome, so we propose that this ability should be of priority in

a future version of IBSimVis.

Using the default colour set for both Node and Link entities, for the same

intervals proved troublesome. Where we had to find out which colours to use

ourselves, initially choosing unsuitable colours in the NumPaths example.

Although changing colours to suit the users needs is easy to do, by just

simply clicking a button in the GUI.

A key question regarding effiency is how IBSimVis would perform com-

pared to a script that parsed the same input data, and analysed for example

path distribution. We believe, because of the delay in layout algorithms that

a script could find the raw numbers faster and more efficient. However, as

mentioned earlier the numbers would give little clue to where in the network

topology a possible choke point was or give an overview of how the paths

in the rest of the network was distributed. In addition, the dynamic queries

worked out really well, being responsive and able to smoothly filter out nodes

and links. For these reasons, we believe that IBSimVis is easy to use, being

able to cut down on the time a researcher would come to the same conclusion

from textual output. In addition, IBSimVis can help on finding answers to

fuzzy questions regarding a topology, just by navigating it.

Memorability

IBSimVis has few options for interaction and the GUI shows what we believe

is a modern style, with file menus and context panels on each side of the

VC widget. This is similar in style to the general graph analysis tools we

have mentioned earlier, such as Gephi and Cytoscape. We argue that a user

should easily be able to remember how to interact with IBSimVis, even after

not having used it for a while, due to its simplicity of design and clear GUI.

However, when it comes to the network topology visualisation, it is an

entirely different matter. Predictability is a term we have used before in

this thesis, to define whether a network topology is recognisable from one

visualisation run to the other. Since we have a used an unpredictable lay-
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out algorithm, this issue is mostly noticeable on the TITAN topology, since

it is irregular. For clarity, we have attached Figure 6.8i and Figure 6.8j

for comparison. This is just visualising the TITAN topology, zooming out

and panning to fit the topology in the VC widget. Notice how the subtree

protuding from the main cluster is angled differently. This means that the

user gets a new layout to re-learn each time the application is run on the

same topology. For regular topologies, this has not been as much as an is-

sue however. This issue supports our idea of having a layout file format as

discussed in the design, or alternatively find layout algorithms that are more

predictable for irregular topologies.
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(i) First visualisation

(j) Second visualisation

Figure 6.8: Comparing the predictability of the TITAN topology.
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Errors

Due to the few features in IBSimVis, both in terms of interaction and views,

the user is not able to do many errors. In case the user tries to do an illegal

action, for example routing from a switch to a switch, there are error handling

mechanisms to prevent catastrophic failure for that. Errors however, may

occur if the user inputs topology or routing data files in the wrong formats to

IBSimVis, resulting in an unrecoverable catastrophic failure. This is also true

if the file formats are of the wrong version of OpenSM currently supported.

Satisfaction

We found using IBSimVis was a satisfying experience, after it had started

up. The visual aspect, with the use of 3D has definitely an aestheticly pleas-

ing appeal. Especially the regular topologies look good, since they show

symmetric properties.

6.3 Summary

In this chapter, we have shown the visual aspects of IBSimVis and provided

both a quantitative and qualitative evaluation of usability in regard to vi-

sualising static network topologies and routing data. First we gave a first

impression look at IBSimVis, where we showed and described the visual fea-

tures of both the GUI and VC widget.

We then moved on to do a series of experiments, evaluating how the differ-

ent components in IBSimVis scales in regard to the number of nodes present

in the topology. Where we pointed out that layout algorithm computation

time is the achilles heel in our application, greatly increasing startup delay.

We also saw how our implementations using the BGL and LEMON respec-

tively, performed with BGL being the clear choice. Assuming the user is

willing to wait a minute for a visualisation, we recommended that the upper

bounds of topology size in IBSimVis should be around 1800 nodes. We argue

that this is enough to visualise medium sized InfiniBand clusters. In the fu-

ture we would like to finish the multilevel layout algorithm implementation
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to speed up layout time.

Finally we did a qualitative evaluation of the usability of IBSimVis and

examples in the form of use cases, how IBSimVis can be used by researchers

to create the network topologies and routing algorithms of the future. In the

end, it gives researchers the ability to evaluate for example routing algorithms

by viewing the path distribution of the topology. Obvious anomalies such as

links or nodes with a high load stands out to our visual system, requiring no

concious thought, thanks to preattentive processing.

Looking at the results presented in this chapter, we believe that IBSimVis,

with the suggested improvements, is a useful tool to aid researchers in creat-

ing and evaluating network topologies and routing data. By enabling them

to “use vision to think”.
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Chapter 7

Conclusion

In this thesis, we have presented a design and a visualisation tool prototype,

named IBSimVis used to visualise OpenSM-defined network topologies and

routing data in simulated InfiniBand fabrics. The scope of this thesis was

limited in the application implementation to only cover static data and not

simulation data, due to both time constraints and implementation challenges.

We evaluated IBSimVis, both in regards to scalability and usability. We

managed to visualise the network topology, routing data and path distribu-

tion using OpenSM data files. We managed to apply interesting techniques

in information visualisation literature to create IBSimVis. In addition, we

also related the process of information visualisation to IBSimVis’s program

flow. We successfully used the field of graph drawing to present aesthetically

pleasing layouts of both regular and irregular network topologies, at the cost

of startup time and predictability. However, we only partly managed to apply

a layout algorithm to our visualisation, instead reverting from a multilevel

layout algorithm to a single-level layout algorithm. We managed to overall

create a visually pleasing view of a network topology and path distribution

over an InfiniBand fabric in 3D. In turn this enables researchers to quickly

get an overview of a network topology and identify patterns and anomalies

in path distribution from routing algorithms.

In the end, we believe our thesis work has resulted in a useful visualisa-

tion tool prototype for visualising static properties in simulated InfiniBand
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subnets. Its main strength being its NumPaths view for visualising path dis-

tribution over a network topology. And its main weakness being that it has

a long startup time due to a compute-intensive implementation of a layout

algorithm. Our vision for a useful visualisation have only been partly fulfilled

and we believe we also have included design considerations that can be of

use when further extending IBSimVis.

7.1 Further work

As mentioned earlier in this thesis, we have considered many improvements to

IBSimVis, that are interesting for further study. We summarise that further

work here, by reflecting on a future vision of IBSimVis.

Visualising simulation data

Since we in this thesis work, did not manage to visualise simulation data,

that topic is an obvious candidate for further investigation. As mentioned

in the design, we outlined some challenges for parsing simulation data. In

the future it would be interesting to see how parsing simulation data would

be handled. Not only in regards to the actual parsing itself but also how

to able the visualisation to generate the whole picture and grouping events

around messages, from production to consumption. Regarding parsing, we

mentioned the use of more advanced parsing techniques using the flex and

Bison toolchain. This would make IBSimVis more flexible and let it be

extendable not only to read event log simulation traces. We also proposed

the idea of a general file format, which would be exciting to define. It could

either be a human-readable text format or a more effective binary format,

containing both static and dynamic data.

In our design we only took into account the visualisation of topology

and packet transmission, although we did not have time to implement the

latter. Another interesting future extension would be to cover all aspects of

a simulation run. For example, showing buffers of messages filling inside the

nodes, where a researcher can quickly see the reasons for congestion and see
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how it potentially spreads in the network.

Optimisation

As we saw in our result, IBSimVis was hampered by a slow startup thanks

to the time consuming variant of a layout algorithm we implemented. An-

other obvious improvement would be finish the multilevel layout algorithm

implementation, finding a faster and better layout algorithm or find a par-

allelisable layout algorithm. This would also help in scaling IBSimVis to

larger topologies, as it currently is recommended used with medium sized

topologies. Another interesting feature would be a stop button for layout

generation and animating when the layout converges toward the equilibrium

configuration. Allowing the user to decide when the layout is good enough.

Layout

Evaluating the aesthetic qualities of a network topology is a completely sub-

jective opinion, therefore we propose adding different high-quality layout al-

gorithms, so the user can choose by using the GUI. Adding to that, we saw

that tweaking layout constants could help us produce better layouts, at the

cost of time complexity. We could give the user the option to configure such

aspects via the GUI or prior to IBSimVis initialisation.

An approach to also reduce the time complexity could be to animate

the network topology for each iteration, as it converges and include a “stop”

button. Clicking the stop button would halt the layout algorithm, allowing

the user to decide for himself when the network topology looks pleasant. The

network topologies produced by IBSimVis were also quite unpredictable, in

the future we would like see a layout file format or layout cache to save layout

computation when viewing the same network topology multiple times.

3D Visualisation

The use of 3D enabled us to create some exciting and diverse visualisations

of network topologies, both regular and irregular in nature. However, we

feel that there is plenty of potential left to extend IBSimVis with the more
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powerful features of 3D graphics. For example, by adding more visually

appealing glyphs using lighting and shaders, in addition to particle effects.

IBSimVis is also in need to improvements in regards to for example centering

the network topology correctly in front of the camera. Coming back to the

ability to view messages in buffers earlier, adding semantic zoom would be

exciting. As mentioned in the design, this means that one can zoom in on

switches and see their inner workings. Or zoom out on the network topology

to reveal clustered nodes.

Visualising routing subgraphs. For example by routing from one source

node to all other destination nodes, one can visualise the subgraph and see

which switches are not in any path from that source node. A similar feature

could be used, by showing nodes that do not have paths over them at all,

and thus become redunant, unless a certain degree of redundancy a part of

it.

Client-server model

Another interesting feature would be to create a client-server communication

model between the DMC and VC components. Doing this, one can possibly

run visualisation on a computer dedicated for that, with a computer dedi-

cated for fast parsing and computations pushing only visualisation changes

to the visualisation. This would also mean a loose coupling between the

implementations of VC and DMC, allowing for more flexibility in the future.

IBSimVis as plugin to OMNeT++

As of now IBSimVis is a stand-alone application, but future work could

include integrating the VC into OMNeT++. For example by creating a

IBSimVis OMNeT++ plugin or create a fork of OMNeT++ specialised for

InfiniBand simulation visualisation. This would also give the option to add

real-time support, enabling a researcher to see not only the path distribution,

but also how it actually works out in simulation scenarios. Adding a timeline

for playback and recording functionality would also be a useful feature, in

line with visualisation tools we have reviewed.
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Cross-platform compatibility

Currently IBSimVis only works on the Linux platform, since some users may

prefer other platforms, we would like it to be extended to reach those other

platforms aswell. This is made easy, since all the dependencies in IBSimVis,

has support for the most common platforms.

Statistical data analysis tools

IBSimVis could also be extended to calulcate statistical data, such as being

able to aggregate, sum or average the number of package per node, per link,

per port, per buffer and so forth.

Real-time surveillance

In the end, real-time surveillance of InfiniBand networks would be the ulti-

mate goal for a visualisation tool. Both being able to work with simulations

and connected to a real, working InfiniBand cluster.
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Appendix A

Source code and documentation

The source-code and documentation of IBSimVis can be found in a tar-

ball at http://heim.ifi.uio.no/~joakibj/master/. Please refer to the

README file in the distribution for instructions on how to resolve depen-

dencies, build and run IBSimVis. Both BGL and LEMON implementations

are included in the distributions.

A.0.1 Sample source code

Listing A.1: Our single-level implementation of Walshaw’s multilevel force-

directed placement algorithm.

1 #define CONST_C 0.2

2

3 void MLFDP:: layout()

4 {

5 boost:: graph_traits <Graph >:: vertex_iterator viv , vi_endv ,

nextv;

6 boost:: graph_traits <Graph >:: vertex_iterator viu , vi_endu ,

nextu;

7 boost:: graph_traits <Graph >:: out_edge_iterator oeiu ,

oei_endu , oei_nextu;

8

9 Graph* g = topology ->getGraph();

10

11 int i = 0;
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12 double t = initial_k_springlength(topology ->getGraph());

// temperature

13 double tolerance = 0.01;

14 double k = t;

15

16 Graph *Posn = topology ->getGraph();

17 Graph OldPosn;

18

19 Ogre:: Vector3 theta;

20 Ogre:: Vector3 delta;

21

22 int converged = 0;

23 while (converged != 1)

24 {

25 converged = 1;

26

27 boost:: tuples::tie(viv , vi_endv) = vertices(*Posn);

28 for (nextv = viv; viv != vi_endv; viv = nextv)

29 {

30 v_desc vdv = *nextv;

31

32 theta = Ogre:: Vector3();

33

34 // global repulsive forces

35 boost:: tuples::tie(viu , vi_endu) = vertices(*Posn

);

36 for (nextu = viu; viu != vi_endu; viu = nextu)

37 {

38 if (nextu != viv)

39 {

40 v_desc vdu = *nextu;

41 delta = (*Posn)[vdu]->pos - (*Posn)[vdv

]->pos;

42 theta += (delta / delta.length()) *

FR_repulsive(delta.length(), 1 ,k);

43

44 }

45 ++nextu;

46 }

148



47

48 // local attractive forces (loop over edges and

calculate displacement on vertices at either

side of the edge)

49 boost:: tuples::tie(oeiu , oei_endu) = out_edges(

vdv , *Posn);

50 for (oei_nextu = oeiu; oeiu != oei_endu; oeiu =

oei_nextu)

51 {

52 e_desc edu = *oei_nextu;

53 v_desc vdu = target(edu , *Posn);

54

55 delta = (*Posn)[vdu]->pos - (*Posn)[vdv]->pos

;

56 theta += (delta / delta.length()) *

FR_attractive(delta.length(), k);

57

58 ++ oei_nextu;

59 }

60 // reposition

61 Ogre:: Vector3 reposition = (*Posn)[vdv]->pos + (

theta / theta.length()) * std::min(t,

static_cast <double >(theta.length()));

62 Ogre:: Vector3 oldPosition = (*Posn)[vdv]->pos;

63 (*Posn)[vdv]->pos = reposition;

64

65 delta = (*Posn)[vdv]->pos - oldPosition;

66

67 if (delta.length() > (k * tolerance))

68 {

69 converged = 0;

70 }

71 ++nextv;

72 }

73 t = cool(t);

74 i++;

75 }

76 }
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Listing A.2: Repulsive, attractive and cooling functions in our single-level
implementation of Walshaw’s multilevel force-directed placement algorithm.

1 double MLFDP:: FR_repulsive(double x, double w, double k)

2 {

3 return (-CONST_C * w * pow(k, 2)) / x;

4 }

5
6 double MLFDP:: FR_attractive(double x, double k)

7 {

8 return pow(x, 2) / k;

9 }

10
11 double MLFDP::cool(double t)

12 {

13 // lambda

14 return 0.99 * t;

15 }

Listing A.3: Implementation of the path distribution discovery algorithm.

1 void Topology:: routeAll()

2 {

3 for(auto iterSrc = nodeMap.begin(); iterSrc != nodeMap.

end(); iterSrc ++)

4 {

5 if(iterSrc ->second ->getType() == IB_CA_NODE)

6 {

7 for(auto iterDst = nodeMap.begin(); iterDst !=

nodeMap.end(); iterDst ++)

8 {

9 if(iterDst ->second ->getType() == IB_CA_NODE)

10 {

11 if(iterSrc != iterDst)

12 {

13 route(iterSrc ->second , iterDst ->

second ->getPort (1) ->getLid());

14 }

15 }

16
17 }

18 }

19 }

20 ...

21 }
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Listing A.4: Routing from source node to destination LID.

1 void Topology::route(Node* src , uint32_t dstLid)

2 uint32_t loopCounter = 0;

3 std::vector <Node*> path;

4 for(unsigned int i = 1; i <= src ->ports.size(); i++)

5 {

6 if(src ->getPort(i) != NULL)

7 {

8 path.clear();

9 loopCounter = 0;

10 Node* cur = src ->getPort(i)->getRemoteNode ();

11
12 while(cur ->getType() != IB_CA_NODE && loopCounter

< 20)

13 {

14 loopCounter ++;

15 path.push_back(cur);

16 Port* nextPort = cur ->getRoutingNextPort(

dstLid);

17 if(nextPort != NULL)

18 {

19 nextPort ->visit();

20 cur = nextPort ->getRemoteNode ();

21 }

22 else

23 {

24 break;

25 }

26 if(cur == NULL)

27 {

28 break;

29 }

30 }

31 for(unsigned int i = 0; i < path.size(); i++)

32 {

33 path[i]->visit();

34 }

35 }

36 }

37 }
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Listing A.5: Our implementation of the Entity Selection Query.

Ogre:: MovableObject* wxOgreFrameListener:: selectedObject(

uint32_t queryMask , wxMouseEvent &evt)

{

if(lastSelectedObject != NULL)

{

lastSelectedObject ->getParentSceneNode()->

showBoundingBox(false);

}

Ogre::Ray curMouseRay = mCamera ->getCameraToViewportRay(

evt.GetX()/float(windowWidth), evt.GetY()/float(

windowHeight));

mRaySceneQuery ->setRay(curMouseRay);

mRaySceneQuery ->setSortByDistance(true);

mRaySceneQuery ->setQueryMask(queryMask);

Ogre:: RaySceneQueryResult& result = mRaySceneQuery ->

execute();

auto iter = result.begin();

if(iter != result.end() && iter ->movable != NULL && iter

->movable ->isVisible())

{

iter ->movable ->getParentSceneNode()->showBoundingBox(

true);

return iter ->movable;

}

return NULL;

}
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Listing A.6: The newLine function in OgreShapeFactory, showing the
OpenGL-like syntax when creating ManualObjects.

void OgreShapeFactory:: newLine(Ogre:: ManualObject *obj ,

Ogre:: Vector3 from ,

Ogre:: Vector3 to,

Ogre:: ColourValue color)

{

obj ->setDynamic(true);

obj ->setQueryFlags(LINK_FLAG);

obj ->begin("BaseWhiteNoLighting", Ogre::

RenderOperation :: OT_LINE_LIST);

obj ->position(from);

obj ->colour(color);

obj ->position(to);

obj ->colour(color);

obj ->end();

}
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[13] Lionel M. Ni José Duato, Sudhakar Yalamanchili. Interconnection Net-

works: An Engineering Approach. Morgan Kaufmann Publishers, 2003.

[14] Fabrizio Petrini and Marco Vanneschi. k-ary n-trees: High performance

networks for massively parallel architectures. In In Proceedings of the

11th International Parallel Processing Symposium, IPPS’97, pages 87–

93, 1997.

[15] Top500 supercomputing sites - 2007 overview of recent su-

percomputers. http://www.top500.org/2007_overview_recent_

supercomputers, 11 May 2011.

[16] Gregory P. Pfister. An Introduction to the InfiniBandTMArchitecture,

pages 617–632. John Wiley & Sons, Inc., 2001.

[17] InfinibandTMtrade association. http://www.infinibandta.org/,

February 2011.

[18] Openfabrics alliance website. http://www.openfabrics.org/, 28 April

2011.

[19] Mellanox Technologies. OpenSM User’s Manual, rev 1.20 edition, 2005.

[20] Robert Spence. Information Visualization - Design for Interaction.

Pearson Education Limited, 2nd edition, 2007.

156

http://www.top500.org/2007_overview_recent_supercomputers
http://www.top500.org/2007_overview_recent_supercomputers
http://www.infinibandta.org/
http://www.openfabrics.org/


[21] C. Ware. Information visualization: perception for design. Morgan Kauf-

mann Publishers, 2004.

[22] C.J. Minard. Carte figurative des pertes successives en hommes de

l’Armée Française dans la campagne de Russie 1812-1813. Graphics

Press. Public domain.

[23] J. Bertin. Graphics and Graphic Information-processing. Walter de

Gruyter & Co, 1981.

[24] W.S. Cleveland and R. McGill. Graphical perception: Theory, exper-

imentation, and application to the development of graphical methods.

Journal of the American Statistical Association, 79(387):531–554, 1984.

[25] J. Mackinlay. Automating the design of graphical presentations of rela-

tional information. ACM Transactions on Graphics (TOG), 5(2):110–

141, 1986.

[26] B.B. Bederson, J.D. Hollan, K. Perlin, J. Meyer, D. Bacon, and G. Fur-

nas. Pad++: A zoomable graphical sketchpad for exploring alternate

interface physics. Journal of Visual Languages and Computing, 7(1):3–

32, 1996.

[27] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for

information exploration: An implementation and evaluation. In Proceed-

ings of the SIGCHI conference on Human factors in computing systems,

pages 619–626. ACM, 1992.

[28] H. Purchase, R. Cohen, and M. James. Validating graph drawing aes-

thetics. In Graph Drawing, pages 435–446. Springer, 1996.

[29] Chris Walshaw. A multilevel algorithm for force-directed graph-drawing.

Journal of Graph Algorithms and Applications, 7(3):253–285, 2003.

[30] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph drawing:

Algorithms for the Visualization of Graphs. Prentice Hall, 1998.

157



[31] Ivan Herman, Guy Melancon, and M. Scott Marshall. Graph visual-

ization and navigation in information visualization: A survey. IEEE

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPH-

ICS, 6(1):24–43, 2000.

[32] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Layout adjustment and

the mental map. Journal of Visual Languages and Computing, 6(2):183–

210, 1995.

[33] Reinhard Diestel. Graph Theory, volume Graduate Texts in Mathemat-

ics, Volume 173. Springer Verlag, Heidelberg, 2nd edition, 2010.

[34] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Algorithms for

drawing graphs: an annotated bibliography. Computational Geometry-

Theory and Application, 4(5):235–282, 1994.

[35] Robert Tamassia. Handbook of graph drawing and visualization.

http://www.cs.brown.edu/~rt/gdhandbook/, 12 April 2011.

[36] Arne Frick, Andreas Ludwig, and Heiko Mehldau. A fast adaptive layout

algorithm for undirected graphs. In Proceedings of the DIMACS Inter-

national Workshop on Graph Drawing, GD ’94, pages 388–403, London,

UK, 1995. Springer-Verlag.

[37] Stephen G. Kobourov. Handbook of graph drawing and visualization

- force directed drawing algorithms. http://www.cs.brown.edu/~rt/

gdhandbook/chapters/force-directed.pdf, 12 April 2011.

[38] P. Eades. A heuristic for graph drawing. Congressus Numerantium,

42:149–160, 1984.

[39] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general

undirected graphs. Information Processing Letters, 31(1):7–15, 1989.

[40] Thomas M. J. Fruchterman and Edward M. Reingold. Graph draw-

ing by force-directed placement. Software - Practice and Experience,

21(11):1129–1164, 1991.

158

http://www.cs.brown.edu/~rt/gdhandbook/
http://www.cs.brown.edu/~rt/gdhandbook/chapters/force-directed.pdf
http://www.cs.brown.edu/~rt/gdhandbook/chapters/force-directed.pdf


[41] Ron Davidson and David Harel. Drawing graphs nicely using simulated

annealing. ACM Transactions on Graphics, 15(4):301–331, 1996.

[42] Bruce Hendrickson and Robert Leland. A multilevel algorithm for par-

titioning graphs. In Proceedings of the 1995 ACM/IEEE conference on

Supercomputing (CDROM), Supercomputing ’95, New York, NY, USA,

1995. ACM.

[43] Nam : Network animator. http://www.isi.edu/nsnam/nam/, June

2010.

[44] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. A visualization

and animation tool for ns-2 wireless simulations: inspect. In Proceedings

of the 13th IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems, pages 503–

506, 2004.
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