
Team Incentives in Relational Employment

Contracts∗

Ola Kvaløy†and Trond E. Olsen‡

August 15, 2005

Abstract

The paper analyzes conditions for implementing incentive schemes

based on, respectively joint, relative and indendent performance, in a

relational contract between a principal and a team of two agents. A

main result is that the optimal incentive regime depends on the produc-

tivity of the agents, or more preciseley on the returns from high effort.

This occurs because agents’ productivites affect the principal’s tempta-

tion to renege on the relational contract. The analysis suggests that we

will see a higher frequency of relative performance evaluation (RPE)

- and schemes that lie close to independent performance evaluation -

as we move from low-productive to high-productive environments. In

particular, it is shown that if effort-productivity is sufficently high, the

optimal scheme for the principal is (for a range of discount factors) a

collusion-proof RPE scheme, even if there is no common shock that

affects the agents’ output.

1 Introduction

High-productive workers are more often than low-productive workers gov-

erned by high-powered incentive regimes (see e.g. Lazear, 1998). And while
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group incentives typically are enjoyed by low-wage ‘blue-collar’ workers, in-

centives based on individual or relative performance (including promotion-

tournaments) are more common among ‘white collar’ workers at higher or-

ganizational levels (see Prendergast, 1999; and Appelbaum and Berg, 1999).

These observations can be explained by endogenous matching,1 but in

this paper we explore the relationship between productivity and incentive

regime by taking a different approach: We show that when workers’ pro-

ductivity affects the employer’s temptation to renege on contracts, then the

optimal incentive regime (based on joint, relative or independent perfor-

mance) will depend on the productivity of the workers.

We build our analysis on a model that capture quite common features of

employment contracts: 1. They are long-term (or dynamic). The employer

(principal) and her workers (agents) interact repeatedly, and the princi-

pal must deal with problems of dynamic moral hazard. 2. Employment

contracts are (to some extent ) relational. A relational contract contains

elements that cannot be verified by third parties. A worker’s performance,

for instance, may be observable, but still difficult to verify by a court, since

the assessment of performance may be complicated. In repeated interaction

the parties are able to self-enforce contracts that are not court-enforceable,

since contract deviation can ruin the ongoing relationship. 3. Employment

contracts are multilateral. In organizations with more than one worker, the

employer must not only control the decisions of a single agent; she must also

take into account that her treatment of one worker may affect the behavior

of other workers. In addition she must consider the strategic behavior of

workers interacting with each other.

In the literature on employment contracts, each of these features have

attained much attention, but usually they are not analyzed within the same

model. We incorporate the above features in one model, and compare the

efficiency of different incentive regimes. While this may seem ambitious, we

stick to a quite simple model: We assume risk neutrality, and as shown by

Levin (2003), optimal relational contracts between risk neutral parties have

the nice feature of being stationary.2 Hence, the potentially complex con-

1Observed correlation between contracts and other variables, such as riskiness and
productivity, can be understood as heterogenous agents choosing different environments,
see e.g. Ackerberg and Botticini (2002) and Chiappori and Salanie (2002).

2 In a stationary contract, the principal promises the same contingent compensation in
each period.
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tracting problems that arise in dynamic relationships can be solved by simple

self-enforcing stationary contracts, given some assumptions. So we analyze

a multiagent moral hazard problem within a repeated game framework of

self-enforcing relational contracts, and compare incentive schemes based on

joint performance evaluation (JPE), relative performance evaluation (RPE)

and independent performance evaluation (IPE).

Two papers come closest to ours: First, Levin (2002) who compares

multilateral to bilateral relational employment contracts in a model with n

agents. An important insight is that multilateral contracts need only satisfy

the sum of individual constraints. This favors relative performance evalu-

ation since the principal can credibly commit to a limited total payment.3

Second, Che and Yoo (2001) who analyze a repeated game between one

principal and two agents where the agents engage in implicit contracting4

with each other. This repeated agent-interaction favors joint performance

evaluation since the agents have means for peer sanctions, which lowers

the principal’s costs of providing incentives. While Levin does not consider

repeated agent-agent interaction, Che and Yoo do not consider relational

contracting between principal and agents. We complement Che and Yoo’s

model by assuming that the agents’ output is not verifiable. In such we

model a multilateral relational employment contract that includes repeated

interaction between agents. And we can thus run a ’horse race’ between the

commitment advantage of RPE and the peer-monitoring advantage of JPE.

A main result is that the optimal incentive regime (JPE, RPE or IPE)

depends on the productivity of the agents, or more precisely on the returns

from high effort. This occurs because agents’ productivity affect the prin-

cipal’s temptation to renege on the relational contract: The higher effort-

productivity, the more there is to lose from breaking promises. One inter-

pretation of the model is that we will see a higher frequency of RPE (and

3Malcomson (1984) and Carmichael (1981) make a similar argument.
4Relational’ contracts and ‘implicit’ contracts are used synonymously in the literature.

MacLeod and Malcomson (1989), Baker, Gibbons and Murphy (1994) and Schmidt and
Schnitzer (1995) used ‘implicit’, while Bull (1987) used both ‘implicit’ and ‘relational’.
Newer papers such as Baker, Gibbons and Murphy (2002) and Levin (2003) use ‘relational’,
inspired by the legal literature, particularly MacNeil (1978). Since implicit contracts can
be interpreted as vaguer than relational contracts (due to the antonym implicit versus
explicit), we will in this paper use the term ‘implicit’ on the contract between the agents
(like Che and Yoo), since it is most natural to think about this contract as a verbal
informal agreement. But we will use ‘relational’ on the contract between the principal
and his agents, since this most likely is a formally written wage contract.
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schemes that lie close to IPE) as we move from low productive to high-

productive environments. For low effort productivity, the cost of contract

deviation is low, and the principal has therefore larger reneging temptations.

Ceteris paribus, this calls for RPE due its commitment advantage. However,

for low effort productivity, relational contracts can only be implemented for

high discount factors. This favors JPE since implicit contracts between the

agents are then easy to self-enforce. As we move towards high-productive

environments, the cost of contract deviation becomes higher, and relational

contracts can therefore be implemented for lower discount factors. We will

then expect a larger fraction of RPE, since the repeated peer-monitoring de-

vice of JPE is vulnerable to low discount factors. This result is interesting

since RPE seems more common in high-productive environments.

In the last section we open for the possibility of collusion between the

agents. RPE is susceptible to collusion since both agents can jointly be

better off by exerting low effort. We deduce an RPE scheme that is proof

to collusion strategies, and show that our basic conclusions are not altered.

In fact, in the setting where no common shock affects the agents’ outputs,

we show that if effort-productivity is sufficiently high, the optimal scheme

for the principal is (for a range of discount factors) a collusion-proof RPE

scheme.5 But since the collusion problem increases the cost of RPE, we

also find that IPE in some cases may come out as the uniquely optimal

contract. Moreover, if collusion is possible, IPE may be uniquely optimal

even if output is verifiable. For this to happen, however, there must be some

common noise. With verifiable output and no common noise JPE dominates

IPE, due to the advantage of peer monitoring. But if we introduce common

noise, JPE does not dominate IPE for all parameter values since the cost of

providing JPE incentives is high if the probability of positive common shock

is high.

An interesting feature of the model is that optimal schemes do not always

take the typical stark forms that are often found in the literature.6 For

instance, we identify schemes that pay the worker both for relative and

individual performance, or both for joint and individual performance. These

less extreme schemes are not efficient when output is verifiable. But the

5As is well known, a main advantage of RPE is that it helps the principal filter out
common noise, see in particular Holmström (1982).

6A notable exception is Carmichael (1983) who identify conditions where it is optimal
to combine RPE with IPE.
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extreme schemes are seldom observed in practice, which indicates that the

relational contract approach is fruitful. Moreover, we find that small changes

in parameter values induce small changes in the form of the optimal contract.

This is in contrast to models where small changes either make no changes

on contract form, or major changes from one extreme to another extreme.

1.1 Related literature

There is a larger literature on multiagent moral hazard in static settings

that compares the costs and benefits of RPE and JPE. As noted, a main

advantage of RPE, stressed in particular by Holmström (1982), is that it

can help the principal filter out common noise so that compensation to the

largest possible extent is based on effort, not random shocks that are out-

side the agent’s control. With RPE’s special form, rank-order tournaments,

the agents are also completely insulated from the risk of common negative

shocks (see Lazear and Rosen, 1981; Stiglitz and Nalebuff, 1983). With

risk averse agents, Green and Stokey (1983) show that piece rate schemes

dominate tournaments when there is no common shocks (since RPE would

only increase risk exposure without improving incentives), but that tourna-

ments may dominate piece rates if there are common shocks. In a model

with two sided moral hazard, (i.e. the principal is involved in production),

Carmichael (1983) finds that RPE may dominate IPE even if there are no

common shocks. Under sufficient level of risk aversion, however, IPE domi-

nates RPE.

A problem with RPE, in addition to the collusion problem (analyzed in

particular by Mookherjee; 1984), is that it may induce sabotage and dis-

courage cooperation (see e.g. Lazear, 1989). JPE, on the other hand, can

promote cooperation since an agent is rewarded if his peers perform well

(see e.g. Holmström and Milgrom, 1990; Itoh 1993; and Macho-Stadler and

Perez-Castrillo, 1993). JPE can also provide implicit incentives not to shirk

(or exert low effort), since shirking may have social costs (as in Kandel and

Lazear, 1992). But the classic problem with JPE is of course the free rider

problem, analyzed in particular by Alchian and Demsetz (1972) and Holm-

ström (1982). However, Che and Yoo (2001) elegantly show how repeated

interaction between the agents can generate incentives and overcome the

free-rider problem.7

7Radner (1986), Weitzman and Kruse, (1990), and FitzRoy and Kraft (1995) have all
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In the literature on relational contracts, the majority of models have

focused on environments where the parties have symmetric information (as

in Klein and Leffler, 1981; Shapiro and Stiglitz, 1984; Bull 1987; MacLeod

and Malcomson, 1989, Kreps 1990, Levin 2002). But as noted by Levin

(2003), the assumption of symmetric information contrasts with the tra-

ditional incentive theory view that asymmetric information, rather than

enforcement, is the central impediment to effective contracting (e.g. Holm-

ström, 1979). Prior to Levin (2003), who makes a general treatment of the

self-enforcing relational contract model with asymmetric information and

risk neutral agents, only a few, such as Baker, Gibbons and Murphy (1994,

2002), have analyzed relational contract models with moral hazard in effort.

We complement this literature. To our knowledge, the present paper is the

first to analyze repeated agent-agent interaction within the framework of

relational incentive contracts.

The rest of the paper is organized as follows: Section 2 presents the

basic model. A comparative analysis of optimal contracts is presented in

Section 3. Section 4 discusses the implications of collusion, while Section 5

concludes. Unless noted otherwise, all proofs are in the appendix.

2 The Model

Consider an economic environment consisting of one principal and two iden-

tical agents who each period produce either high, QH , or low, QL, values

for the principal. Their effort level can be either high or low, where high

effort has a disutility cost of c and low effort is costless. The principal can

only observe the realization of the agents’ output, not the level of effort

they choose. But the agents can observe each other’s effort decisions. The

agents’ output depend on effort. The probability for agent i of realizing QH

is qH if the agent’s effort is high and qL if the agent’s effort is low, where

1 > qH > qL ≥ 0.
Agent i receives a bonus vector β ≡ (βiHH , β

i
HL, β

i
LH , β

i
LL) where

the subscripts denote respectively agent i and agent j ’s realization of Qi,

(i = H,L). It is assumed that all parties are risk neutral, except that the

pointed out that the folk theorem of repeated games provides a possible answer to the free
rider critique of group incentives. But Che and Yoo is the first to demonstrate this in a
repeated game between the agents.
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agents are subject to limited liability: The principal cannot impose negative

wages.8

Let agent i and j choose efforts k ∈ {H,L} and l ∈ {H,L} respectively.
Agent i ’s expected wage is then

π(k, l,βi) ≡ qkqlβ
i
HH+qk(1−ql)βiHL+(1−qk)qlβiLH+(1−qk)(1−ql)βiLL. (1)

For each agent, a wage scheme exhibits joint performance evaluation if

(βHH , βLH) > (βHL, βLL).
9 (For the most part we suppress agent-notation

in superscript since the agents are identical.) In this case π(k,H,β) >

π(k, L,β), so an agent’s work yields positive externalities to his partner.

A wage scheme exhibits relative performance evaluation if (βHH , βLH) <

(βHL, βLL). In this case π(k,H,β) < π(k, L,β), so an agent’s work gen-

erates a negative externality on his partner. A wage scheme exhibits inde-

pendent performance evaluation if (βHH , βLH) = (βHL, βLL), which implies

π(k,H,β) = π(k, L,β), so an agent’s work has no impact on his partner.

2.1 Verifiable output

Assume first that output is verifiable and that high effort is sufficiently

valuable to the principal so that she always prefers to induce the agents

to exert high effort. The principal’s problem is then to minimize the wage

payments subject to the constraints that the agents must be induced to yield

high effort. In a static setting, a contract β induces high effort from both

agents as a unique equilibrium if

π(H,H,β)− c ≥ π(L,H,β), (2)

π(H,L,β)− c ≥ π(L,L,β). (3)

The left hand sides (LHS) show the expected wage from exerting high effort,

while the right hand sides (RHS) show the expected wage from exerting low

effort. We will solve the principal’s problem regarding (2), and then discuss

8Limited liability may arise from liquidity constraints or from laws that prohibit firms
from extracting payments from workers.

9The inequality means weak inequality of each component and strict inequality for at
least one component.
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optimum against (3). The principal solves

min
β≥0

π(H,H,β), subject to (2). (4)

The incentive constraint (2) can be written

qHβHH + (1− qH)βHL − qHβLH − (1− qH)βLL ≥
c

∆q
,

where ∆q = qH − qL . Since the LHS of the constraint is decreasing in βLH

and βLL, while the objective is increasing in βLH and βLL, it is optimal to

set βLH = βLL = 0. With βLH = βLL = 0 , then any combination of βHH

and βHL that satisfies the IC-constraint with equality is optimal, and yields

expected wage π = qH
c
∆q . We have the following lemma:

Lemma 1 The optimal static wage scheme when output is verifiable is any
scheme βs = (βHH , βHL, 0, 0) that satisfies (2) with equality. The expected

wage per agent is then π(H,H,βs) = qH
c
∆q .

The scheme βs in the lemma can be RPE, IPE or JPE. It can be shown

that any RPE scheme and the IPE scheme in βs also satisfy (3) π(H,L,β)−
c ≥ π(L,L,β), while JPE schemes in βs do not (see appendix). Hence, with

incentive scheme βs and βHH > βHL, low effort from both agents is also an

equilibrium. However, the agents are indifferent between the two equilibria

(H,H) and (L,L) since the JPE scheme satisfying (3) has wage qLc
∆q , and we

have qHc
∆q − c = qLc

∆q .

Let us now proceed to the repeated setting, but still assume that output

is verifiable. In a repeated setting, the agents can exploit the fact that they

are able to observe each other’s effort decisions. In particular, they can play

a repeated game where they both play high effort if the other agent played

high effort in the previous period. In order for such a strategy to constitute

a subgame perfect equilibrium, we must have:

1

1− δ
(π(H,H;β)− c) ≥ π(L,H;β) +

δ

1− δ
min {π(L,L ;β), π(L,H;β)} ,

(5)

where δ is the discount factor. The LHS shows the expected present value

of playing high effort, while the RHS shows the expected present value from

unilaterally playing low effort in one period and being subsequently pun-

ished by the worst possible equilibrium payoff. Hence (5) says that, given
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the strategy to play high effort if the other agent played high effort in the

previous period, an agent will play high effort as long as the present value

from playing high effort is greater than the present value from playing low

effort. Note that (5) is a necessary but not sufficient condition. For (5) to

be sufficient, the punishment path specified on the right hand side must also

be self-enforcing.

Observe that in a JPE scheme π(L,H ;β) > π(L,L;β). Thus the right

hand side of (5) becomes π(L,H,β) + δ
1−δπ(L,L ;β). In an RPE scheme,

however, where π(L,L ;β) ≥ π(L,H;β), the right hand side of (5) is re-

duced to 1
1−δπ(L,H;β). This makes (5) coincide with the static incentive

constraint, equivalent to δ = 0 . Hence, we see that repeated interaction

between the agents can increase the punishment of playing low effort in a

JPE scheme, but not in an RPE scheme. We have:

Lemma 2 (Che and Yoo 2001) The optimal repeated wage contract when
output is verifiable is the JPE scheme βJ ≡ (βHH , 0, 0, 0) where βHH =

c
(qH+δqL)∆q .

The intuition is straightforward: In the JPE scheme, low effort from

agent i does not only imply a reduced chance for him to realize high values,

it also implies that his peer plays low effort and thus lowers the chance of

realizing high values in the future. This is costly for the agent since a JPE

scheme promises highest wages if both realize high values. This is the peer-

monitoring advantage of JPE: the repeated interaction between the agents

yields both direct and implicit incentives to exert high effort. This lowers

the cost of providing incentives.

As shown in the appendix any JPE contract (βHH , βHL, 0, 0) (including

βJ) for which (5) is binding has the property that the worst sustainable

punishment - low effort from both workers (L,L) - is self-enforcing. This

makes high effort from both agents (H,H) a subgame perfect equilibrium,

and this equilibrium moreover yields each worker a higher payoff than (L,L).

(Che and Yoo call this a ‘team equilibrium’). Hence, the incentive constraint

given by (5) is sufficient.

2.2 Relational contract between principal and agents

Unlike Che and Yoo, we will now assume that the value realizations are

not verifiable to a third party. Hence, the contract between the agents
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and the principal must therefore be self-enforcing, and thus ‘relational’ by

definition. We consider a multilateral relational contract, which implies

that any deviation by the principal triggers low effort from both agents. The

principal honors the contract only if both agents honored the contract in the

previous period. The agents honor the contract only if the principal honored

the contract with both agents in the previous period. A natural explanation

for this multilateral feature is that the agents interpret a unilateral contact

breach (i.e. the principal deviates from the contract with only one the of

agents) as evidence that the principal is not trustworthy (see Bewley, 1999;

and Levin, 2002).

The contract is self-enforcing if the present value of honoring is greater

than the present value of reneging. Ex post realizations of values, the prin-

cipal can renege on the contract by refusing to pay the promised wage, while

the agents can renege by refusing to accept the promised wage. The parties

play trigger strategies. Like Baker, Gibbons and Murphy (2002), we assume

that if one of the parties renege on the relational employment contract, the

other insists on spot employment forever after. Spot employment implies

that the agents exert low effort, but receive zero wage.10

We will now deduce the condition for the relational contract to be self-

enforcing. Note first that the agents will always honor the relational contract

as long as the incentive constraints hold. Hence, when deducing the enforce-

ability constraint (or ’implementability condition’), it is the condition that

makes the principal honor the contract that is relevant. For each output re-

alization Qi, Qj , i, j = L,H, the principal must then find it better to pay the

agents the specified bonuses βij+βji rather than renege on these payments.

This is expressed by the following condition:

max{2βHH , βHL + βLH , 2βLL} ≤
2δ

1− δ
[∆q∆Q− π(H,H;β)] .

The left hand side is today’s loss from honoring the contract, while the right

hand side is the future gain from honoring, namely the present value of the

expected gain from high rather than low effort minus the wage cost. The

constraint will clearly bind at the outcome where the contract specifies the

10As opposed to here, where it is (implicitly) assumed that the principal owns the goods
once they are produced, Kvaløy and Olsen (2005) analyze a multilateral realtional contract
where the agents can hold-up values ex post.
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highest total bonus payments.

As we will see, an optimal contract will never bind at outcome (QL, QL).

Note then that the binding constraint for the principal to honor the contract

depends on whether βHL+βLH > 2βHH or not. For βHL+βLH > 2βHH the

constraint is binding at outcome (QH , QL), but for βHL+βLH < 2βHH the

constraint is binding at outcome (QH ,QH) (paying each agent at (QH , QL)

costs more than paying, say, only the best at (QH ,QL)). In a JPE and IPE

scheme the constraint is thus binding at outcome (QH , QH).

We clearly see the ’commitment advantage’ of RPE. While the principal

‘risks’ paying both agents high bonuses in the JPE scheme, she only risks

paying one of the agents the highest bonus in the RPE scheme (at least in

its extreme form with only βHL positive). But, due to the ’peer monitoring

advantage’ of JPE, the necessary JPE wage is for most parameter values

lower-powered and thus easier to implement. Hence, there is a trade off

between enforcing a double set of ’medium size’ JPE bonuses and a single,

but (in most cases) larger ’winner prize’ in RPE.

3 Comparative analysis of optimal contracts

We will now seek to determine the optimal contract for a given discount

factor δ. Consider first the constraints for the principal’s wage minimization

program. Note that the implementability condition discussed above can be

written as

1− δ

δ
max{βHH ,

βHL + βLH
2

, βLL}
+ q2HβHH + qH(1− qH)(βHL + βLH) + (1− qH)

2βLL ≤ ∆q∆Q. (GE)

As pointed out in the discussion following (5), the agents’ IC condition for

an RPE contract takes the following form:11

qHβHH + (1− qH)βHL − qHβLH − (1− qH)βLL ≥
c

∆q
. (IR)

From that discussion it also follows that for a JPE contract the IC condition

(5) is of the form 1
1−δπ(H,H ;β) ≥ π(L,H, β) + δ

1−δπ(L,L ;β), and hence

11Note that IR is not collusion proof. We analyze collusion in the next section.
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can be written as

(qH + δqL)βHH + (1− qH − δqL)βHL

+ (δ − qH − δqL)βLH − (1− qH + δ(1− qL))βLL ≥
c

∆q
. (IJ)

Consider then the wage minimization problem for the principal;

minπ =
£
q2HβHH + qH(1− qH)(βHL + βLH) + (1− qH)

2βLL
¤
,

subject to the implementability condition (GE), and the agents’ IC condi-

tions (IR) and (IJ), respectively. We first note that we can restrict attention

to contracts with βLH = βLL = 0:

Lemma 3 If the set of implementable contracts is non-empty, the least-cost
contract has βLH = βLL = 0.

Proof. Note that a reduction of βLL will relax all constraints and hence
ease implementation. It will of course also reduce wage costs. Next note that

for an RPE contract a reduction of βLH will relax the relevant constraints

IR and GE, and it will reduce costs. For a JPE contract we see that a unit

reduction of βLH combined with a unit increase of βHL will not affect GE

but will strictly relax IJ. Hence we can increase βHL less (so that ∆(βHL+

βLH) < 0) and still satisfy both constraints (GE and IJ). Reducing βLH this

way will thus ease implementation and reduce wage costs. This proves the

lemma.

The lemma allows us to consider only contracts of the form (βHH , βHL, 0, 0).

We will refer to contracts with two positive elements as JPE2 when βHH >

βHL and RPE2 (when βHH < βHL), respectively. The border case (when

βHH = βHL) is still referred to as an IPE contract. We will also refer to

contracts with a single positive element as JPE1 (when βHH > 0) and RPE1

(when βHL > 0), respectively.

For these contracts the constraints take the form

1− δ

δ
max{βHH ,

βHL

2
}+ q2HβHH + qH(1− qH)βHL ≤ ∆q∆Q, (GE)

qHβHH + (1− qH)βHL ≥
c

∆q
, (IR)

12



(qH + δqL)βHH + (1− qH − δqL)βHL ≥
c

∆q
. (IJ)

The constraints and the set of feasible contracts can be represented graphi-

cally, as illustrated in Figure 1.

 
           HHβ  
 
 
 
 

HH HLβ β=  
 
                                         1

2HH HLβ β=  
        IJ       GE  
        
 
 
 

 
 IR 

 
 

                                                                                                HLβ  

Figure 1. Constraints and feasible contracts

Points above and below the diagonal (where βHH = βHL) represent

JPE and RPE contracts, respectively. The shaded area shows the set of im-

plementable contracts. Note that the implementability constraint GE has a
kink at βHH = βHL. The figure illustrates a case where a limited set of JPE
and RPE contracts are feasible, but no JPE1 contract can be implemented.

The least costly contract is thus a JPE2 contract; more specifically the con-

tract at the intersection point between GE and IJ. This contract is optimal

because iso-cost lines (represented by q2HβHH+qH(1−qH)βHL = const) are

parallel to the line representing IR, and this line is always steeper than IJ.

The best RPE2 and IPE contracts are equally costly (the common cost is

qH
c
∆q , see Lemma 1), but they cost more than the best JPE2 contract.

Let δJ be the minimal discount factor for which a JPE1 contract can be

implemented. The figure illustrates a case where δ < δJ , so no JPE1 con-
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tracts are feasible. The factor δJ can be found by solving the two constraints

(GE and IJ) for the minimal δ when βHL = 0. This yields the following

equation for δJ :

1− δJ
δJ

− (∆q)2∆Q
c

qLδJ =

·
(∆q)2

∆Q

c
− qH

¸
qH . (6)

The figure also makes it clear that for δ < δJ there are implementable JPE2

contracts if and only if some part of the diagonal is within the shaded area,

meaning that there is a range of contracts with βHH = βHL —i.e. IPE

contracts—that satisfy both constraints (GE and IJ). Let δI be the minimal

discount factor for which an IPE contract can be implemented. This factor

can be found by solving the two constraints (GE and IJ) for the minimal δ

when βHH = βHL. This yields the following equation for δI :

1− δI
δI

=

·
(∆q)2

∆Q

c
− qH

¸
. (7)

Note that an IPE contract will be implementable (i.e. δI < 1) only if the

expression in the square bracket is positive. Recall that the minimal cost

(per agent) for an IPE contract is qH c
∆q (the cost for any contract on IR).

In order for the principal to find it profitable to induce high effort by the

agents via such a contract, the expected gain in output must be higher than

the cost, i.e. we must have ∆q∆Q ≥ qH
c
∆q . This is precisely the condition

that makes δI well defined in (7).

As noted, the graphs in Figure 1 correspond to a case where δI < δ < δJ ,

and here a unique JPE2 contract is optimal. As the discount factor moves

from δJ to δI , the intersection point between GE and IJ moves southeast

towards the diagonal. Hence, the closer the discount factor gets to δI , the

more the principal must reduce βHH and increase βHL. The intuition for this

is as follows: As the discount factor decreases, exploiting peer monitoring

becomes more costly. A JPE contract where most of the bonus payments

are concentrated in βHH (such as the stark JPE1 contract) has a lower wage

cost than the least costly IPE, but the maximum total pay that the principal

risks paying is also larger compared to IPE (or to a JPE2 scheme that is

close to IPE). Hence, when δ = δI + ε, (ε close to zero), the optimal scheme

is a unique JPE2 contract that is quite close to IPE.

For yet a lower discount factor; δ < min{δI , δJ}, neither JPE1 nor JPE2
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contracts can be implemented. For such a δ it is possible that a RPE2

contract will be feasible, and if so is the case it follows that such a contract

will be optimal.

Let δR2 be the minimal discount factor for which an RPE2 contract

can be implemented. From the geometry of the constraints it follows that

the set of implementable RPE2 contracts is non-empty if and only if some

RPE2 contract with βHH = βHL
2 can be implemented (see Figure 1 and

note that the implementability constraint GE is always steeper than IR for

βHH < βHL
2 ). The critical discount factor δR2 can thus be found by solving

the two constraints (GE and IR) for the minimal δ when βHH =
βHL
2 . This

yields
1− δR2
δR2

=

·
(∆q)2

∆Q

c
− qH

¸
(2− qH). (8)

Comparing with the condition (7) defining δI we see that δR2 < δI . Thus,

whenever it is possible to implement an IPE contract (i.e. when δI < 1),

it is also possible to implement some RPE2 contract. This illustrates the

commitment advantage of RPE.

But the fact that δR2 < δI does not mean that any RPE contract is

implementable when IPE is implementable. For instance, if δ = δI > δR2,

the RPE1 contract (0, βHL, 0, 0) is not necessarily implementable. When

qH > 1
2 a single RPE bonus βHL =

c
∆q(1−qH) is larger than a double set of

IPE bonuses 2 c
∆q . Hence the incentive for the principal to deviate is larger

under this RPE1 contract than under the IPE contract. Thus, if δR2 < δ ≤
min{δI , δJ} and qH > 1

2 , then the stark RPE1 contract (0, βHL, 0, 0) is not

part of the set of feasible RPE2 contracts.

The discussion so far can be summarized in the following Proposition:

Proposition 1 (i) When δ ≥ δJ a unique JPE1 contract is optimal. For

δ < δJ we have:

(ii) If δI < δ < δJ a unique JPE2 contract is optimal.

(iii) If δR2 ≤ δ ≤ min{δI , δJ}, all RPE2 contracts that satisfy (IR) with
equality and (GE) are optimal.

(iv) For δ < min{δR2, δI , δJ} no incentive contracts are implementable.

Recall that δR2 < δI holds as long as the principal finds it profitable to

induce high effort; see the discussion following (7). In light of this, Propo-
sition 1 elucidates the trade-off between RPE’s commitment advantage and
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JPE’s peer monitoring advantage. Since there is no common noise in our

model, a JPE scheme is always optimal if it can be implemented (Proposi-

tion 1, parts (i) and (ii)). However, RPE schemes are in general easier to

implement, and if no JPE contracts can be implemented there may exist

discount factors where RPE is implementable and thus optimal (part (iii)).
In order to draw more economic intuition out of Proposition 1, we now

compare further the critical discount factors necessary to implement the

defined contracts. In particular, we want to determine under which condi-

tions the various cases delineated in the proposition will arise. We find the

following:

Proposition 2 There are bounds bi = bi(qH , qL), such that

δi < δJ ⇐⇒
h
(∆q)2∆Q

c − qH

i
> bi, i ∈ {I,R2}.

The bounds bi are given by

bi(qH , qL) =

r³
ai−qH−qL
2(ai−qH)ai

´2
+ qHqL

2(ai−qH)ai −
ai−qH−qL
2(ai−qH)ai ,

where aI = 1, aR2 = 2− qH .

We are here particularly interested in when it is the case that no JPE1

contract is implementable, but some ’second best’ contract (JPE2, IPE or

RPE2) is implementable, i.e. when it is the case that δI < δJ and/or

δR2 < δJ . From the proposition we see that this can occur only if the

expression A =
h
(∆q)2∆Q

c − qH

i
is sufficiently large. Recall that in RPE

or IPE the principal will induce high effort only if A > 0. We see that for

A small (A ≈ 0) we will clearly have δJ < δI , δR2, and a JPE1 contract

can then be implemented whenever an RPE2 or JPE2 (or IPE) contract

can be implemented. But if A becomes sufficiently high, we will conversely

have δi < δJ . Hence, a necessary condition for RPE2 or JPE2 (or IPE)

to be optimal is that the effort-productivity, ∆q∆Q
c , is sufficiently high.

12

If qL and QL are constants (e.g. equal to zero) variations in ∆q
∆Q
c will

reflect variations in skills. We can then say that the agents’ skills must be

sufficiently high in order for JPE2 or RPE2 to be implementable.

Propositions 1 and 2 are illustrated in figure 2.13

12Effort-productivity ∆q∆Q
c
measures the expected gain in output per unit cost of effort

when effort increases. This differs from labor-productivity (or ’agent producitivity’), since
a high -productive agent may have low effort-productivity (i.e both QL and QH high, but
∆Q low). However, it is reaonsalbe to assume that a high-productive agent has higher
effort-productivity than a low-producitve agent.
13The figure is generated with qH = 0.6 and qL = 0.3.
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Figure 2. Critical discount factors as function of productivity

The figure shows the relationship between δ, ∆Q
c , and optimal incentive

regimes. The curves show critical discount factors as functions of ∆Q
c ,where

the thick solid line is δJ , the thin solid line is δR2, and the dotted line is

δI . A change in other parameters would shift all three curves. In particular,

note that an increase in qH − qL = ∆q, will shift the curves leftward, and

thus ease implementation.

Like in Che and Yoo, we see that RPE tends to dominate for low discount

factors, while JPE dominates for high discount factors. However, in Che and

Yoo the optimality of RPE depends on a positive common shock. Since we

assume no common noise, RPE is always more costly than JPE in our model.

The expected JPE wage is always lower than the expected RPE wage due to

the peer-monitoring advantage of JPE. But the relational contract constraint

that we add to the analysis makes the starkest JPE contract unfeasible on

lower discount factors. If the JPE bonus βHH becomes sufficiently high (as

it does with low discount factors), the maximum wage that the principal

’risks’ paying is higher in JPE than in RPE, and relational JPE contracts

are therefore relatively harder to implement when the discount factor is low.

Let us now discuss variations in productivity generated by variations in
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the ratio ∆Q
c . In Che and Yoo such variations are not relevant, except that

productivity must be sufficiently large in order that the principal should

have incentives to induce high effort. In our model ∆Q
c is decisive for the

determination of incentive regime. We see that when ∆Q
c is very high, any

scheme can be implemented (since the principal’s loss from reneging is high).

For a given discount factor, say δ = 0.6, we see that as ∆Q
c decreases, the

principal cannot commit to JPE1, and she must must offer a JPE2 contract.

With further decreases in ∆Q
c , the principal cannot commit to JPE2, and

she must offer an RPE2 contract. This shows the commitment advantage of

RPE, which here makes such a contract optimal for relatively low values of
∆Q
c .

The latter observation seems at odds with our statements that we will

see a higher frequency of RPE as we move from low productivity to high

productivity environments. However, it is not natural to think of all trans-

actions/relationships/industries as governed by the same discount factor.

We can interpret the discount factor as a measure for the dependency, or

trust level, between the transacting parties (see e.g. Hart, 2001, on inter-

preting δ as trust; and James Jr., 2002, for a nice survey on the economic

concept of trust). We can say that the vertical axis represents dependency

levels, or trust levels, where δ = 0 is a spot market, and δ = 1 is a fully

dependent high-trust relationship. We see that as ∆Q
c increases, the frac-

tion of δ0s where RPE2 is optimal increases more than the fraction of δ0s
where JPE2 is optimal, which again increases more than the fraction of δ0s
where JPE1 is optimal. Hence, our interpretation of the analysis is that

we will see a higher frequency of RPE (and JPE2 schemes that lies close

to IPE) as we move from low-productive to high-productive environments.

On low effort-productivity, relational contracts can only be implemented on

high trust-levels, i.e. high discount factors. This favors JPE since implicit

contracts between the agents are then easy to self-enforce (in Figure 2 we

see that when ∆Q
c < 9.3, only JPE1 can be implemented, but this requires

δ > 0.76). As we move towards high-productive environments, the cost of

contract deviation becomes higher and relational contracts can therefore be

implemented on lower discount factors. We will then expect a larger fraction

of RPE, since JPE is vulnerable to low discount factors.

However, irrespective of how one interprets Figure 2, it clearly suggests

a relationship between productivity, measured as return from effort, and
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incentive regime. This a quite different approach than the standard moral

hazard models that stress the trade-off between incentives and insurance.

Since we assume risk neutrality, insurance is not as issue in our model. As

indicated in the introduction, a technical difficulty with risk aversion is that

it does not ensure the optimality of stationary contracts (see Levin 2003).

Introducing risk aversion would thus considerably complicate the analysis.

At the outset, this does not justify the neutrality-assumption. So one may

ask whether risk aversion would alter our results. In a more general model

with verifiable output, Green and Stokey (1983) show that IPE dominates

RPE when agents are risk averse and there are no common shocks. Our

Lemma 1 would thus be altered if we introduce risk aversion. Risk aversion

would also imply relatively higher critical discount factors for JPE and RPE

than for IPE, since social surplus from these schemes are lowered when

agents are exposed to their peer’s risk. In Figure 2 this should imply that

the solid lines take a larger shift to the right than the dotted line. But

the basic trade-off between the peer-monitoring advantage of JPE and the

commitment-advantage of RPE should still apply.

4 Collusion

In contrast to IPE and JPE, RPE is vulnerable to collusion. If the principal

offers an RPE contract, then the agents can be better off if they both play

low effort (L,L) than if they both play high effort (H,H). To see this note that

a least-cost RPE contract (which satisfies IR with equality) yields expected

wages equal to qH c
∆q per agent if efforts are (H,H). If efforts are (L,L), the

expected wage is straightforwardly seen to exceed qL c
∆q iff βHL > βHH . The

difference in wage payments is then smaller than the cost c of high effort,

hence in such a contract the agents are better off if they can coordinate on

both exerting low rather than high effort.

As we shall see, the agents can sustain such a low-effort ’collusive’ out-

come as a subgame perfect equilibrium, but only if the discount factor is

sufficiently high. The agents can, however, for the given RPE contract

always sustain a coordinated randomized strategy, and in particular a cor-

related randomization where they play (H,L) and (L,H) with equal proba-

bilities (for parameters such that qL
qH
≤ 1

2 the latter is in fact optimal for the

agents). To prevent such an outcome, the principal must then modify the
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RPE contract such that the collusive strategy is no longer an equilibrium for

the agents. This will typically increase expected wage costs, and hence make

RPE contracts more expensive than the least-cost IPE contract (which is

not vulnerable to collusion) for the principal. If the IPE contract is feasible,

it may therefore be uniquely optimal. On the other hand, if neither this

IPE contract nor any JPE contract is implementable, it can still be possible

to implement a set of ’collusion proof’ RPE contracts, and the least-cost

contract among those will be the uniquely optimal one for the principal.

We show in this section the following results:

1. The least-cost collusion proof RPE scheme entails the lowest possible

βHL, i.e. the best RPE contract lies as close as possible to IPE. As a result

IPE can be uniquely optimal.

2. If we introduce common noise when agents can collude, IPE can be

uniquely optimal even if output is verifiable.

3. The main results in the previous section regarding variations in effort

productivity still apply.

Turning to the analysis, consider first a correlated randomization where

the agents play (H,L) and (L,H) with equal probabilities. Can the agents

sustain this as a subgame perfect equilibrium (SPE) outcome in the repeated

game? Yes, but for this to be the case it is necessary that an agent is not

tempted to deviate when he is to play low effort as a part of (L,H). This

means that we must have:

π(L,H;β)+
δ

1− δ

1

2
(π(L,H;β)+π(H,L;β)−c) ≥ π(H,H;β)−c+ δ

1− δ
(π(H,H ;β)−c).

The LHS is the payoff associated with adhering to the collusive strategy.

The RHS is the payoff obtained by deviating to high effort and then being

punished in the future by the worst SPE, namely (H,H) forever.

To prevent such a ’collusive’ equilibrium, the principal must choose

bonuses such that the above inequality is reversed. This entails bonuses

that fulfill the following condition:

qHβHH + (1− qH − δ

2
)βHL > (1− δ

2
)
c

∆q
. (IRC)

An RPE contract that satisfies IRC is thus immune to collusion that involves

playing (H,L) and (L,H) with equal probabilities. As we shall see it is

immune to a much wider class of collusive strategies.
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Consider next the collusive strategy where the agents coordinate on both

exerting low effort. To sustain this as a SPE outcome in the repeated game,

an agent must not be tempted to deviate when he is to play low effort as

a part of (L,L). By a similar reasoning as above we find that the principal

can upset this equilibrium by choosing bonuses that satisfy the following

condition (see the appendix):

(δqH + qL)βHH + (1− qL − δqH)βHL >
c

∆q
. (IRL)

It turns out that, depending on the parameters, one of the two collusive

strategies we have considered here will be optimal for the agents. Moreover,

this implies that the two conditions IRC and IRL completely characterizes

the set of collusion proof RPE contracts. We have the following result:

Lemma 4 For any RPE contract that satisfies IR we have:
(i) For qL

qH
≤ 1

2 the correlated strategy where the agents play (H,L) and (L,H)

with equal probabilities is optimal for the agents in the sense of maximizing

their per period payoff. For qL
qH

> 1
2 the pure (L,L) strategy is optimal.

(ii) The contract is collusion proof if and only if it satisfies IRC and IRL.

(iii) For a set of parameters including qL
qH
≤ 2(√2− 1) = 0.828 the contract

is collusion proof if and only if it satisfies IRC.

An RPE contract satisfying IR is thus immune to any form of collusion if

and only if it satisfies both IRC and IRL. Collusion on (L,L) is feasible if the

discount factor is sufficiently high, and for such discount factors contracts

may have to be constrained more than what is implied by IRC in order to

prevent collusion. But for a wide set of parameters, including qL
qH
≤ 0.828,

it is the case that IRL is satisfied whenever IRC is, and hence IRC alone is

then necessary and sufficient to prevent collusion. To make the exposition

cleaner we consider only the latter case in the following.

Given the parameter restriction, condition IRC defines the set of col-

lusion proof RPE2 contracts, and it is geometrically represented by a line

delineating this set such as illustrated in Figure 3.
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Figure 3. Implementable and collusion proof contracts

The line representing IRC intersects IR at the point βHH = βHL =
c
∆q ,

and we see that the condition is binding (reduces the set of feasible contracts)

since IRC is flatter than IR. An RPE contract is vulnerable to collusion, and

we see that the principal must increase the bonus βHH for good performance

by both agents relative to the bonus βHL for good performance by only one

agent (making the constraint flatter) in order to prevent the agents from

colluding on low efforts.

Recall that iso-cost lines are parallel to IR. All RPE contracts that satisfy

IRC are therefore more costly than, and thus dominated by the IPE contract

βHH = βHL =
c
∆q . Hence, if the IPE contract is feasible, i.e. if δ > δI , it

will be preferred by the principal to any feasible RPE contract.

Figure 3 illustrates a case where neither the IPE contract nor any JPE

contracts are feasible, and where the collusion constraint binds, i.e. where

δ < min{δI , δJ}. In this case there is a set of feasible collusion proof RPE
contracts (the shaded area), and we see that the uniquely optimal contract

is represented by the point in this set that is on IRC and is closest to IPE

(the northwest intersection between GE and IRC).

From the figure it is clear that there is a non-empty set of feasible col-
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lusion proof RPE contracts if IRC intersects the line βHH = βLH
2 to the

left of where GE intersects this line. Algebraically this condition takes the

following form (see the appendix for the derivation):

1− δ

δ
−
·
(∆q)2

∆Q

c
− qH

¸
(2−qH) ≤ 1− δ

2
−δ
·
(∆q)2

∆Q

c
− qH

¸
− δ
2
q2H . (9)

The condition defines the set of discount factors for which such a set of

feasible and collusion proof RPE contracts exists.14 The terms on the RHS

makes this condition different from the one defining the critical δR2 in the

absence of collusion (8). The condition will hold for δ in an interval (δRC , δ̂),

where δ̂ ≤ 1. (Written as g(δ) ≤ 0 condition (9) is represented by a second-
order polynomial.) The smaller root δRC is the critical lowest discount

factor for which there will be an (economically interesting) collusion proof

RPE contract that can be implemented. Comparing (9) and (8), we see

that (9) does not hold for δ = δR2, hence we must have δRC > δR2.15

The collusion proofness constraint naturally increases the critical discount

factor for implementation. Comparing with the critical discount factor δI
for IPE contracts defined in (7), we see that δI will satisfy (9) and hence will

exceed δRC (δRC < δI), only if the square bracket (or effort-productivity) is

sufficiently large.

We can now state the following proposition:

Proposition 3 For a set of parameters including qL
qH
≤ 2(√2 − 1) the fol-

lowing holds. When contracts must be proof to collusion by the agents we

have:

(i) If δI < δ < δJ a unique JPE2 contract is optimal.

(ii) If δ = δI < δJ , then a pure IPE contract is uniquely optimal.

(iii) If δ ∈ (δRC , δ̂) and δ < min{δI , δJ}, the optimal scheme is a unique
RPE2 contract (the one that lies as close as possible to IPE).

(iv) If δ < min{δRC , δI , δJ} no collusion proof incentive contracts are im-
plementable.

Proposition 3 is similar to Proposition 1 (where collusion is not possible),
14 In the present setting the condition is sufficient but strictly speaking not necessary,

since IRC may be flatter than GE (for large δ) and hence may intersect GE to the left of
the line βHH = βLH/2. But such a case is not economically interesting, since any feasible
RPE contract would then be dominated by the IPE contract.
15For δ = δR2 defined in (8) the left hand side of (9) is zero while the right hand side is

negative.
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except for one important aspect. Contrary to the former case, the optimal

RPE2 contract is now not any RPE2 contract that lies on IR and satisfies the

enforceability constraint. Instead there is a unique optimal RPE2 contract,
and this lies as close as possible to IPE. This also implies that IPE may be

uniquely optimal. The intuition behind this is straightforward: By increasing

βHH and reducing βHL, the agent’s future gain from sustaining collusion is

reduced. Hence the wage costs incurred by the principal to prevent collusion

are reduced.

It is easy to see that a sufficiently high ∆Q
c is still a necessary condition

for an RPE2 contract to be optimal. The easiest way to verify this is to note

that when ∆Q
c is sufficiently small, then the relational contract can only be

implemented for δ close to one. But for δ close to one, RPE schemes are

impossible to implement because collusion is then easy to sustain. As ∆Q
c

increases, it is possible to implement relational contracts on lower discount

factors. And with lower discount factors collusion is harder to sustain (and

thus easier to prevent). Hence, the result that relative performance eval-

uation can only be optimal when effort productivity is sufficiently high is

clearer under the threat of collusion. Figure 4 is similar to Figure 2 and

illustrates how the critical discount factors, including δRC , varies with
∆Q
c .
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Figure 4. Critical discount factors under collusion proofness.

24



Verifiable output. Before we leave this section, we will show that under

the threat of collusion IPE can be optimal even if the contract is verifiable.

For this to occur, however, we must introduce common noise. As we have

seen, JPE is less costly than IPE when output is verifiable (Lemma 2).

However, if we introduce common noise JPE becomes less attractive since

the cost of providing JPE is high if the probability of a positive common

shock is high. Hence, common noise makes IPE less costly than JPE for some

parameter values. What about IPE vs RPE? As we have seen, collusion

makes IPE less costly than RPE. If we introduce common noise, though,

RPE becomes less costly than IPE for some parameter values (since RPE

filters out common noise). But to sum up: Collusion weakens RPE, while

common noise weakens JPE. This makes IPE potentially uniquely optimal

even if the contract is verifiable:

We follow Che and Yoo, assuming that a favorable shock occurs with

probability σ ∈ (0, 1), in which both agents produce high values for the
principal. If the shock is unfavorable, the probability for agent i of realizing

QH is still qH if the agent’s effort is high and qL if the agent’s effort is

low. Observe now that a marginal increase in βHH , while holding the IC

constraint (IRC) with equality, will reduce the principal’s surplus (increase

the wage) when σ is sufficiently high : ∂π
∂βHH

= σ+(1−σ)q2H+(1−σ)qH(1−
qH)

∂βHL
∂βHH

= σ+ (1− σ)q2H(1− 1−qH
1−qH− δ

2

) . Hence the optimal collusion proof

incentive scheme with βHH ≤ βHL has either βHH = 0 or βHH = βHL.

When βHH = 0, the collusion proof RPE scheme has wage cost qH(1 −
qH)

(2−δ)
(2−2qH−δ)∆q per agent, which exceeds the per agent wage cost under

IPE (σ + (1 − σ)qH)
c

∆q(1−σ) when δ > 2σ(1−qH)
q2H(1−σ)+σ

= δ. The expected cost

per agent under the JPE1 contract is (σ + (1 − σ)qHqH)
c

∆q(1−σ)(qH+δqL) .
Hence, the expected cost per agent is lower under IPE than under JPE if

δ < σ(1−qH)
qL(qH(1−σ)+σ) = δ. A necessary condition for IPE to be optimal is then

that δ > δ, which is true for 1 ≥ σ >
2qHqL−q2H

2qHqL−2qL−q2H+1
, which can only hold

for qL ≤ 1
2 . We can thus state:

Proposition 4 When output is verifiable, and collusion is possible, then if
parameters are such that δ > δ, there exist discount factors δ > δ > δ where

independent performance evaluation is optimal.
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5 Concluding remarks

A large literature has explored the merits of RPE and JPE in static settings.

It is, however, often natural to think of managers and workers interacting

repeatedly and basing pay on non-contractible performance measures. We

know that joint performance evaluation can be optimal in dynamic settings

since peer monitoring works as an incentive device. On the other hand, non-

contractable performance measures gives relative performance evaluation a

commitment advantage since the principal need only commit to a limited to-

tal payment. In this paper we have compared these competing effects. Our

main result is that the agents’ productivity is decisive for the feasibility of

different incentive regimes. Ceteris paribus, low productivity calls for RPE,

since low productivity increases the principal’s incentives to deviate from

the relational contract, and RPE limits total payment. However, low pro-

ductivity makes high discount factors necessary for implementing relational

contracts, and high discount factors support JPE’s peer-monitoring device.

We have thus argued that our model predicts a higher frequency of RPE as

we move from low to high-productive environments, since high productivity

makes it possible to implement relational contracts on low discount factors.

Interestingly, our result seems consistent with the established hypothesis

that high productive workers are more common under high-powered incen-

tive regimes. However, we do not develop a "sorting argument", in which

high productive workers seek high-powered incentive contracts. Instead, it is

the principal’s opportunity to renege from promises that makes productivity

matter, since the cost from reneging is positively related to the productivity

of the agents. Our analysis thus indicates that the causality puzzle between

contracts and other relevant variables may still occur even if one controls

for adverse selection.

6 Appendix

Appendix to Lemma 1:
We first show that any RPE scheme and the IPE scheme in βs also

satisfy (3). Note that for any contract (βHH , βHL, 0, 0) we have

π(H,H,β)+π(L,L,β)−π(H,L,β)−π(L,H,β) = (∆q)2(βHH−βHL). (10)
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Hence, π(H,H,βs) − c + π(L,L,βs) ≤ π(H,L,βs) − c + π(L,H,βs) when

βHL ≥ βHH . This implies that (3) is satisfied, since π(H,H,βs) − c ≥
π(L,H,βs).

Note that JPE schemes in βs may not satisfy (3). When βHL < βHH ,

then π(H,H,βs)+π(L,L,βs)−π(H,L,βs)−π(L,H,βs) > 0, hence π(H,H,βs)−
c+ π(L,L,βs) > π(H,L,βs)− c+ π(L,H,βs), which does not ensure that

π(L,L,βs) ≤ π(H,L,βs)− c.

We finally find the optimal JPE scheme satisfying π(H,L,β) − c ≥
π(L,L,β). This contraint can be written

qLβHH + (1− qL)βHL − qLβLH − (1− qL)βLL ≥
c

∆q
. (11)

Now any combination of βHH and βHL that satisfies the IC-constraint (11)

with equality and has βLH = βLL = 0 is optimal. Solving the constraint for

βHH or βHL and inserting in the objective function yields expected wage

π = qL c
∆q always.

Proof of Lemma 2:
When π(L,H ;β) > π(L,L;β),we can write the constraint (5) as

(qH+δqL)βHH+(1−qH−δqL)βHL−(δ−qH−δqL)βLH−(1−qH+δ(1−qL))βLL ≥
c

∆q
.

The left hand side of the constraint is decreasing in βLL, while the objective

function π(H,H;β) = (q2HβHH + qH(1− qH)(βHL + βLH) + (1− qH)
2βLL)

is increasing in βLL. Hence, it is optimal to set βLL = 0. Observe that the

coefficient of βHL is weakly greater than that of βLH in the left hand side

of the contraint, but that their coefficients are the same in the objective

function. It is thus optimal to set βLH = 0. Moreover, observe that a

marginal increase in βHL, while holding the constraint with equality, will

reduce the principal’s surplus (increase the wage): ∂π(H,H;β)
∂βHL

= q2H
∂βHH
∂βHL

+

qH(1−qH) = −q2H (1−qH−δqL)
qH+δqL

+qH(1−qH) > 0 for δ > 0. Hence it is optimal
to set βHL = 0. The optimal JPE scheme is thus β

J ≡ (βHH , 0, 0, 0) where

βHH = c
(qH+δqL)∆q . For JPE to dominate IPE and RPE we must have

q2Hc
(qH+δqL)∆q <

qH c
∆q which holds for δ > 0.

By an argument similar to Che and Yoo, we can show that any JPE con-

tract βj = (βHH , βHL, 0, 0) where (5) is binding and βHH > βHL (including

βJ) makes the worst sustainable punishment -low effort from both workers
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(L,L)- self-enforcing. Given that (5) is binding we have 1
1−δ (π(H,H;βj) −

c) = π(L,H;βj)+ δ
1−δπ(L,L ;β

j). Since π(L,H;βj) > π(L,L ;βj), this im-

plies π(H,H;βj)−c < π(L,H;βj). Then, since π(H,H;βj)+π(L,L ;βj)−
π(H,L;βj)−π(L,H;βj) > 0 by (10), we have π(L,L ;βj) > π(H,L;βj)−c
(Comment: Note that in the static case π(H,H;βj) − c < π(L,H;βj) and

π(L,L ;βj) > π(H,L;βj) − c would break the IC contraint. The virtue of

JPE is that the IC contraint is slacked in the repeated setting).

Proof of Proposition 2:
Here we compare the critical δ’s; δJ , δI , δR2. They are given by (6),(7)

and (8), respectively. The equation (6) for δJ has the form F (δJ) = 0, where

F 0 < 0. Hence δi < δJ iff F (δi) > 0. Each δi is defined by an equation of

the form
1− δi
δi

= Aai, A =

·
(∆q)2

∆Q

c
− qH

¸
> 0.

Substituting into the expression for F (δ) we thus have

δi < δJ ⇐⇒ 1− δi
δi
− [A+ qH ] qLδi > AqH ⇐⇒ A(ai − qH) >

[A+ qH ] qL
Aai + 1

.

For ai − qH > 0 the last inequality holds iff A exceeds the unique positive

root of the equation (ai − qH)A(Aai + 1)− [A+ qH ] qL = 0, i.e. iff

A > bi ≡
sµ

ai − qH − qL
2(ai − qH)ai

¶2
+

qHqL
2(ai − qH)ai

− ai − qH − qL
2(ai − qH)ai

.

Proof of Lemma 4.
Let Π(a, b;β) denote the expected per period payoff per agent when they

play a correlated (symmetric) strategy with probabilities (a, b, b, 1− a− 2b)
on effort combinations (H.H), (H,L), (L,H), (L,L) respectively. We prove

statement (i) below, i.e. that b = 1
2 is optimal when

qL
qH
≤ 1

2 , and that

a = b = 0 (the pure low-effort strategy) is optimal otherwise.

A strategy with 0 < b < 1
2 is feasible (sustainable as a SPE) iff an agent

is not tempted to deviate when he is to play L as part of (L,H) nor as part

of (L,L), i.e. iff the following two conditions hold

π(L,H;β)+
δ

1− δ
Π(a, b;β) ≥ π(H,H;β)−c+ δ

1− δ
(π(H,H ;β)−c), (12)
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π(L,L;β)+
δ

1− δ
Π(a, b;β) ≥ π(H,L;β)− c+ δ

1− δ
(π(H,H ;β)− c). (13)

(The agent will never be tempted to deviate from H as a part of (H,L), since

π(H,L;β)− c > π(L,L;β)). The pure (L,L) strategy is sustainable iff (13)

holds for a = b = 0, and since the payoff then is Π(0, 0;β) = π(L,L;β), this

condition amounts to

1

1− δ
π(L,L;β) ≥ π(H,L;β)− c+

δ

1− δ
(π(H,H ;β)− c).

Substituting for the π−terms, we see that this condition is not satisfied
precisely when IRL holds.

It follows immediately that conditions IRL and IRC are necessary for

collusion proofness. For if IRL is not satisfied, then the collusive strategy

(L,L) is feasible (at least for sufficiently large δ). And if IRC is not satisfied,

the collusive strategy b = 1
2 is feasible.

To prove sufficiency suppose IRC and IRL are satisfied. Since IRC holds,

the strategy b = 1
2 is not feasible. By construction, IRL makes the pure

strategy (L,L) (a = b = 0) infeasible. We will show that no other collusive

strategy (0 < b < 1
2) can be feasible either.

Consider first qL
qH
≤ 1

2 . Since b =
1
2 is optimal in this case (statement

(i)), we have Π(a, b;β) ≤ Π(0, 12 ;β). But then (12) cannot hold, since this
condition by construction of IRC does not hold for b = 1

2 .

Consider next qL
qH

> 1
2 , in which case the pure strategy (L,L) (a = b = 0)

is optimal, i.e. Π(a, b;β) ≤ Π(0, 0;β). But then (13) cannot hold, since this
condition by construction of IRL does not hold for the pure (L,L) strategy

(a = b = 0). This proves that no collusive strategy is feasible, and hence

that statement (ii) holds.

To prove statement (iii), we compare the slopes of the lines defined by

equalities in IRC and IRL, respectively. The claim holds if the line for

IRC is flatter than that for IRL, which occurs if
1−qH− δ

2
qH

≤ 1−qL−δqH
qL+δqH

. This

condition is equivalent to qL(1 − 1
2δ) − qH + δqH − 1

2δ
2qH ≤ 0. The latter

inequality can be written as (δ2− (1+Q)δ+2Q)12qH ≥ 0 where Q = 1− qL
qH
.

The polynomial is nonnegative for all δ ∈ (0, 1) if Q ≥ 3 − 2√2, i.e. if
qL
qH
≤ 2(√2− 1) = 0.828. This proves statement (iii) in the lemma.
It remains to prove statement (i). The expected payoff Π(a, b;β) per

agent is given by 2Π(a, b;β) = a(2π(H,H)− 2c) + 2b(π(H,L) + π(L,H)−
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c) + (1− a− 2b)2π(L,L). Hence

Π(a, b;β) = a(π(H,H)−π(L,L)−c)+b(π(H,L)+π(L,H)−2π(L,L)−c)+π(L,L).

This is to be maximized, subject to a + 2b ≤ 1. For an RPE scheme we
always have, from (10) π(H,L) + π(L,H) ≥ π(H,H) + π(L,L), and hence

π(H,L) + π(L,H)− 2π(L,L) ≥ π(H,H)− π(L,L).

This shows that the payoff multiplying a in Π(a, b;β) is smaller than

that multiplying b, hence a = 0 is optimal. Then b = 1
2 is optimal iff

π(H,L) + π(L,H) − 2π(L,L) ≥ c. As shown below, this is equivalent to

[βHL − 2qL(βHL − βHH)]− c
∆q ≥ 0. This inequality is satisfied for all RPE

contracts β that satisfy IR iff (comparing slopes) 1−2qL
2qL

≥ 1−qH
qH

. This is

equivalent to qL
qH
≤ 1

2 , and hence proves that b =
1
2 is optimal. It follows

that for qL
qH

> 1
2 it is optimal to set b = 0.

It then only remains to verify the condition for π(H,L) + π(L,H) −
2π(L,L) ≥ c. We have

π(H,L) + π(L,H) = (qHqLβHH + qH(1− qL)βHL)

+(qLqHβHH + qL(1− qH)βHL)

= 2qHqL(βHH − βHL) + (qH + qL)βHL.

Thus

π(H,L) + π(L,H)− 2π(L,L) = (2qHqL(βHH − βHL) + (qH + qL)βHL)

−2(q2L(βHH − βHL) + qLβHL)

= 2(qH − qL)qL(βHH − βHL) + (qH − qL)βHL

= [βHL − 2qL(βHL − βHH)]∆q.

This completes the proof.

Derivation of (9)
Consider the minimal δ for which IRC intersects βHL = 2βHH to the left

of where GE intersects this line. The two points are given by, respectively

qHβHH + (1− qH − δ
2)2βHH = (1− δ

2)
c
∆q ,

(1−δδ + q2H)βHH + qH(1− qH)2βHH = ∆q∆Q.

So the condition is

(1− δ
2)

c
∆q

(2− qH − δ)
≤ ∆q∆Q

1−δ
δ + qH(2− qH)

.

This is equivalent to (9).
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